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ABSTRACT

A 1/8-scale structural dynamics model of the Space Shuttle Orbiter has been
analyzed using the NASA Structural Analysis System (NASTRAN). Comparison of
the calculated eigenvalues with preliminary test data for the unrestrained condition
indicated that the analytical model was consistently stiffer, being about 20% higher
in the first mode. The eigenvectors showed reasonably good agreement with test
data. A series of analytical and experimental investigations undertaken to resolve
the discrepancy are described. Modifications in the NASTRAN model based upon
these investigations resulted in close agreement for both eigenvalues and eigen-
vectors.

NOTE
This report is one of a series describing the Grumman effort
in the NASA Langley Research Center 1/8-Scale Shuttle
Structural Dynamics Model analysis program. The entire
series of reports consists of:

• Orbiter

- Task 12 NASA CR-132488 (Vol. I)

NASA CR-132489 (Vol. II)

NASA CR-132490 (Vol. IHA)

NASA CR-132491 (Vol. HIE)

• External Tank

- Task 13 NASA CR-132549

• Solid Rocket Booster

- Task 14 NASA CR-132492.
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3, 4, and 5; this second model, and its associated analytical results, is
referred to as "Model II"

- Section 7 correlates test and analytical results

- Section 8 provides conclusions and recommendations regarding the overall
study task

- Appendixes A through H provide detailed discussions of supporting data

for the main sections of the report

Volume IIIA - Supporting Data; Design drawings for the 1/8-Scale Orbiter

Model, static test data, and the NASTRAN Model n finite element idealiza-

tion, input data, and detailed analytical results

Volume niB - Supporting Data; NASTRAN Model I finite element idealiza-

tion, input data, and detailed analytical results.

VOLUME II
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VOLUME III A
SUPPORTING DATA
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ANALYTICAL AND EXPERIMENTAL
INVESTIGATION OF A 1/8-SCALE DYNAMIC

MODEL OF THE SHUTTLE ORBITER

Volume I - Summary Report

By P. W. Mason, H. G. Harris, J. Zalesak, and M. Bernstein

GRUMMAN AEROSPACE CORPORATION
Bethpage, New York 11714

INTRODUCTION

The Space Shuttle configuration has more complex structural dynamic charac-

teristics than previous launch vehicles, primarily because of the high modal density

at low frequencies, and the high degree of directional coupling in the pitch plane.

An accurate analytical representation of these characteristics is a primary means

for treating structural dynamics problems during the design phase of the Shuttle

program. The 1/8-scale model program was developed to explore the adequacy of

available analytical modeling technology, and to provide the means for investigating

problems which are more readily treated experimentally. The basic objectives of

the 1/8-scale model program are to

• Provide early verification of analytical modeling procedures on a Shuttle-

like structure

• Demonstrate important vehicle dynamic characteristics of a typical Shuttle

design

• Disclose any previously unanticipated structural dynamic characteristics

• Provide for development and demonstration of cost-effective prototype

testing procedures.

As originally proposed, the entire mated vehicle was to be analyzed using the

NASA Structural Analysis System (NASTRAN). A separate mathematical model of

each Shuttle model element was to be formulated and analytically mated with the other

element mathematical models. However, difficulties arose during the investigation

which have delayed completion of the mated-configuration analysis. These difficulties

are related to the modeling procedures employed, deficiencies of the physical model,

and present practical limitations of the NASTRAN program.



This four-volume report describes the analytical and experimental studies of
the orbiter element of the 1/8-scale Shuttle model as listed in the FOREWORD.
Studies pertaining to the External Tank and Solid Rocket Boosters are de-
scribed in References 8-1 and 8-2, respectively.

,



SYMBOLS AND ABBREVIATIONS

Symbols

m

m

Abbreviations

ALARM

FEER

ALTER

CBAR

CROD

CSHEAR

CTRMEM

CQDMEM2

CQUAD2

DOF

ET

GLOW

deflection, in.

influence coefficient, i.e., deflection of point i due to unit load

at point j., in. /lb

frequency of model, Hz"

frequency of prototype, Hz

length of model

length of prototype

skin thickness of model, in.

computer programs to solve eigen-value problems of very

large size

modification of NASTRAN rigid formats

finite elements in the NASTRAN program used in analysis

of Orbiter structure

MFC

degrees of freedom

external Tank

gross liftoff weight

liquid Hydrogen

liquid Oxygen

multiple point constraint - NASTRAN

3



NASTRAN NASA Structural Analysis System

SPC single point constraint - NASTRAN

SRB Solid Rocket Boosters

TPS thermal protection system

4



DESCRIPTION OF PROTOTYPE SHUTTLE

The Grumman proposed Design 619 Space Shuttle, a 4. 8-million-lb GLOW,

182-ft long, parallel-burn configuration, formed the prototype for the 1/8-scale model
study. This particular Grumman design is shown schematically in the mated config-
uration, Fig. 1. The design includes an Orbiter, two Solid Rocket Boosters (SRB's) and
an External Tank (ET). The ET consists of a monocoque LO~ tank, an intertank skirt
with frames to accept SRB attachment members, and a LH_ tank with frames andz
skirts for SRB attachment.

The prototype SRB consists of a monocoque segmented steel cylinder providing the
propellant carrying structure, a forward skirt with frames and longerons providing for

interstage attachments, and an aft conical skirt with frames providing for interstage
attachments and four longerons for the on-pad support structure.

The prototype Orbiter consists of a forward fuselage module with the cabin life
support system and controls, a U-shaped mid-fuselage with cargo bay doors, an aft-

fuselage with engine thrust structure, delta wings with elevens, and a vertical fin.
Figure 2 shows the structural arrangement of the prototype Orbiter.

After the 1/8-scale model design was completed, it was reviewed by Rockwell

International, the prime contractor of the prototype Shuttle program. Under their

sponsorship, an alternative configuration was designed for the portion of the model

representing the forward attachment between the SRB and ET.

DESCRIPTION OF 1/8-SCALE MODEL

The design philosophy for the present 1/8-scale orbiter dynamic model was to

• Derive from Grumman Design 619 an adequate model representing the signifi-

cant low frequency characteristics for overall modes

• Maintain similarity of materials between the model and its prototype refer-

ence where feasible

• Meet an overall fabrication cost target.



SRB SEPARATION \ 156 IN.DIA SRB (2)
ROCKETS

SRB THRUST SUPPORT

97 FT

AFT THRUST
TERMINATION PORT

SRB SEPARATION
ROCKETS

FWD SRB SUPPORTS FWD THRUST
'TERMINATION PORTS

QMS

318 IN.DIA, WET
A-A COLD & PRESSURIZED

PAD SUPPORT
4 PER SRB

OR BITER
INSERTION

EXTERNAL TANK C.G.
ORBITER BURNOUT C.G.

(505 SEC)
ENGINES NULL

\ LIFTOFF C.G.
QMAXC.G. (64 SEC)

SRB BURNOUT C.G. (119.5 SEC)
SRB STAGED C.G. (119.5 SEC)

162 FT

S-1

Fig. 1 Grumman Parallel-Burn Space Shuttle Design 619 Used as Reference Prototype for 1/8-Scale Model Design
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Physical scale parameters of importance are listed in Table 1,

Table 1. Summary of Significant Scale Factors

Parameter

Length

Weight

Material Density

Frequency

Material Modulus

Poisson's Ratio

Longitudinal
Stiffness

Bending Stiffness

Expression

Lm/Lp=1/X

Wm/Wp = 1 A3

pm/pp = 1

<*Wwp = X
Em/Ep = 1

"m/"p=1

(EA)m/(EA)p=1X2

(EI)m/(EI)p=1X4

Scale Factor

1/8

1/512
1

8

1

1

1/64
1/4096

ST-9

Simplifications, such as constant-thickness unstiffened skins in place of vari-
able thickness skin-stringer-frame construction were used to reduce fabrication costs
of the experimental model and to simplify mathematical modeling. Likewise, frames
constructed of back-to-back channel elements and fittings constructed of bent sheet
were used in place of more elaborate machined parts in the prototype. Figure 3 shows
a mockup of the mated 1/8-scale Shuttle model suspended vertically. Figure 4 shows
the structural configuration of the Orbiter model (without doors).

A detailed description of the orbiter model is given in Reference 8-3. A brief
summary of the physical details is presented in the following paragraph.

The fuselage consists of a forward 20-in. long non-circular shell representing
the cabin, a 102. 5-in. long midsection containing the payload area and wing support
structure, and a 20-in. long aft section providing a representative engine and fin
support structure. Major bulkheads of stiffened sheet construction are located in the
forward and aft sections. The midsection consists of a series of U-shaped frames
spaced 10 in. apart in most instances. The Orbiter model sidewalls are constructed
of 0. 020-in. 2024-T3 aluminum sheet which is greater than the directly scaled thick-
ness of 0.012 in. representing prototype sheet and smeared area of stiffeners. The
use of a thicker gage model skin (to account for the larger local bending and exten-
sional rigidity of the prototype stiffened construction) would have changed the mass-



S-3

Fig. 3 Mockup of 1/8-Scale Shuttle Model Basic Configuration

stiffness ratios of model to prototype appreciably; the use of sandwich construction
(although not considered seriously during design) would have increased the model

cost substantially. The sidewall thickness of 0.020 in. (and bottom deck of 0. 025 in.)
would be sufficient to prevent elastic buckling, assuming an initially perfect flat
plate. The wing skins are 0.020-in. thick sheet and the cargo door skins are con-
structed of 0.016-in. sheet.

9
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Fig. 4 1/8-Scale Orbiter Model Structural Configuration



NASTRAN FINITE ELEMENT MODELS

The mathematical modeling of the Orbiter began in January 1973. Consistent
with the concepts of testing substructuring capability in NASTRAN level 15.5 (using

ALTERS where needed), the structure was divided into five components: fuselage,

fin, cargo doors, payload, and wing.

All skin material in the initial NASTRAN model (Model I) was considered to be
nonbuckled, i. e., fully effective. This approach is consistent with the design of the
full-scale Shuttle Orbiter where any wrinkling of the skins would loosen the bonded

thermal protection system (TPS).

The total 1/2 Orbiter analytical model contained approximately 930 grid points
and 2000 members. (Refer to Table 2.) Weight distributions for the 1/2 model are

given in Table 3.

Table 2. Statistical Description of 1/8-Scale Orbiter Model I

Substructure

Payload
Fin
Wing
Doors
Fuselage

Total '/, Orbiter

Orbiter Analysis

ST3

No.
Grid
Points

12
59

192
134
537

934

215 '

No.
CBAR

8
—
-
9

93

110

No.
CQDMEM2

_

24
149
20

336

529

No.
CSHEAR

_

22
81
64

172

339

No.
CROD

_

65
187
178
616

1046

No.
CTRMEM

_

—
8
-

7

15

No.
CQUAD2

_

-
—

16

16

Total
No. of
Members

8
111
425
287

1224

2055

Contains 125 plotel elements

SYMM CASE

DOF
After

SPC & MPC

24
101
531
396

1417

2469

400

DOF
After

GUYAN

24
25

183
26

246

504

339

ANTISYMM CASE

DOF
After

SPC & MPC

26
99

531
384

1368

2408

378

DOF
After

GUYAN

26
24

183
26

222

481

324

Table 3. Design Weight Distribution for One-Half
of the 1/8-Scale Model Structure

Substructure

Fuselage

Wing

Cargo doors

Fin

Payload

Total

Weight, Ib

100.91(a)

32.86

6.52

3.85

64.62

208.76(b)

Weight, %

48.34

15.74

3.12

1.84

30.96

100.00

aThe fuselage weight of 100.91 Ib contains the aft OMS
ballast of 26.15 Ib and the cabin ballast of 29.2 Ib (per
half structure)

''The actual measured weight was 420 Ib for the Orbiter Model

11



After the model had been fabricated and preliminary vibration tests started,
disagreement between experimental and analytical data from Model I drew attention

to bows in the fuselage sidewall and wing skins that were observed to be of the order
of the sheet thickness. These initial imperfections are in line with simple calculated

deadload deflections for a 9.5 x 16-in. sidewall panel, and a 9. 5 x 12. 5-in. bottom

deck panel as shown in Table 4.

Subsequent experiments and analyses designed to resolve the disagreement

verified that these initial imperfections increase the flexibility of the skins by as

much as 50% (compared to perfectly flat sheet) in resisting in-plane axial and shear

forces. Excessive flexibility was also observed to exist in the fin/fuselage connec-
tion. This resulted from a poor connection constructed of lower-cost sheet material,

rather than a machined fitting. The cargo bay doors contain inherent built-in eccen-
tricities in their connection to the fuselage. The original finite-element modeling

did not adequately account for the behavior of these fittings and hence resulted in too

stiff an analytical representation of the cargo door longeron. In addition, the forward/
mid-fuselage splice contained more flexibility than the original finite element model.
Likewise, the wing carry-through structure was built with a number of cutouts

in the skins to facilitate fabrication, thus causing additional flexibility in the model
in that region.

A number of experimental model design changes were proposed subsequent to
fabrication and initial testing. The major fixes considered were stiffening the fuse-
lage and wing skins with external hat stiffeners and changing the fin-fuselage attach-
ment. These changes were not incorporated because:

• There was a lack of experimental data needed to positively ascertain the
major problem areas and the extent of their contribution to the overall
correlation

• The prime objective of the program was to analytically represent the ex-
isting physical model (shuttle-like) where feasible

• Suggested modifications of the experimental model would have caused drastic

slippage in the program schedule with resulting delay in the exercise of

NASTRAN capabilities.

12



Table 4. Calculated Maximum Deflections for Typical Panel
Under Own Weight with Various Boundary
Conditions

Calculation

• Sidewall Panel (t = 0.020")
- Beam Strip
- Simply Supported Plate
- Clamped Plate

• Bottom Deck (t = 0.025")
- Beam Strip
— Simply Supported Plate
- Clamped Plate

ST-1

Dead Load, 6/t

1.51
0.93
0.25

0.77
0.344
0.103

Instead, it was decided to modify the NASTRAN analytical model to account for

the nonlinearities of the ineffective skin, and the additional flexibility of major Orbiter

component connections.

After a subsequent series of static and dynamic tests, it was concluded that the

NASTRAN model should be modified to account for initial imperfections and poor joint

designs. These changes in the finite element model (NASTRAN Model II) accounted

for additional flexibility in six major areas that are discussed in detail in Volume II.

The changes include:

• Fin/fuselage supports

• Forward/mid-fuselage splice

• Cargo door attachments

• Wing carry-through structure

• Effective width of fuselage and wing skins

• Payload attachment.

The complete details of the original and modified math models are contained in

Volumes n, EIA, and TUB. Complete listings of the NASTRAN bulk data containing

the geometry, types of finite elements and gages are also given in Volumes ITJA and

ins.
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In Table 5 the frequencies for NASTRAN Models I and II are compared with test
values. The effects of revising the model were substantial. The agreement between

analysis and test is very good for the low frequencies, and as generally expected, dis-

crepancies between theory and test become larger for the higher modes.

Table 6 gives a comparison of the analytical and measured antisymmetric free-
free modes. (Only the first lateral bending mode had been measured at the time of

writing of this report.)

To place the values of Table 5 into perspective, Table 7 and 8 compare the
weight and frequencies of the 1/8-scale model with a Grumman analysis of the proto-
type Shuttle (current as of March 1973). Note that the prototype vehicle is generally

heavier, and (in particular) the prototype fin is considerably heavier than the model
fin. Therefore, the predicted prototype frequencies would be expected to be propor-

tionately lower as they are generally shown to be in Table 8. However, the prototype
payload and fin fore-aft modes occur at higher frequencies when compared to the mod-

els. This is probably due to excessive flexibilities in the model fin-fuselage and pay-

load-fuselage connections. These model joints are not considered to be representative

of the type found in prototype vehicle designs.

Table 5. Comparison of Analytical and Preliminary Experimental Results
for the Symmetric Free-Free Normal Modes

Mode

1

2

3

4

5

6

7

8

9

10

Model 1
Freq, Hz

53.2

62.6

75.2

108.5

133.8

162.3

133.8

175.3

216.5

Model II
Freq. Hz

44.2
54.4

63.0

80.2

103.5

115.9

121.5

139.7

170.9

185.0

Test
Freq, Hz

43.6

51.2 \
54.2 1

58.2

801

104.1 (a) I
106.8 /
-

-

-

-

-

Modelll
to Test
% Error

+ 1.4

+3.2

+ 8.3

+ 0.1

-3.1

-

-

-

-

-

Description

. Fuselage 1st bending

Wing 1st bending (vs payload vertical)

Wing 1st bending (vs aft fuselage vert)

Fin fore-aft

Payload - aft vertical

Payload fore-aft (vs fwd fuselage fore-aft)

Aft fuselage pitch

Wing 1st torsion (vs fwd fuselage fore-aft)

Fuselage 2nd bending & wing fore-aft

Wing fore-aft bending'

Questionable mode; very similar to 106.8 Hz mode, also not measured during the second survey on 1-3-74.
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Table 6. Comparison of Analytical and Experimental Results for the
Antisymmetric Free-Free Modes

Mode

1
5
3
4
5

ST-5

Model 1,
Freq, Hz

52.9
72.6
85.1

101.5
92.0

135.3

Model II,
Freq. Hz

42.2
57.0
58.6
71.6
78.9

103.5

Test

43.5
—
—
—
-
—

Model II
Test. % Error

-3.0
—
—
—
-
—

Description

Fus 1st lateral bending
Wing 1st bending/thin lat bending
Fin lat bending
Forward fus torsion
Aft fus roll-yaw
Fus 2nd torsion/wing torsion

Table 7. Weight Comparison of Grumman Design 619 Prototype and 1/8-Scale Model

Substructure

Fuselage
Wing
Fin
Payload

Total 1/2Orbiter

512* x1/8-Scale Model

Ib

54,940
16,800
1.970

33,100

106,810

%

51.46
15.74
1.84

30.96

100%

Prototype*

Ib

73,600
15,131
2,884

32,500

124.115

%

59.4
12.2
2.3

26.1

100%

*51 2 is the length scale ratio to the third power, i.e., (77- ) = (-H

Table 8. Comparison of Prototype and 1/8-Scale Model Dynamic Analyses
with Test Results for Symmetric Free-Free Modes

1/8 Scale*
Model II

5.5
6.8
-
-

15.2
7.9
—

14.5
-

10.0
-

—
—
—

1/8 Scale*
Test

5.45
6.40

12.0
-

13.4
7.26
—

13.0
—

10.0
-
—
-
-
—

Prototype**

3.56
5.26
5.38
7.23
8.28

11.97
12.32
12.59
14.17
14.70
15.40
16.68
18.00
23.05
24.62

Normal Mode
Description

fuselage 1st Bending
Wing 1st Bending
Payload Pitch
Payload 1st Bending
Fuselage 2nd Bending
Payload Fore-Aft
Aft Crew Comp. Trunion
Wing 1st Torsion
Fwd Crew Comp. Trunion
Fin Fore-Aft
Wing 2nd Bending
Fuselage 1st Longitudinal
Fuselage 3rd Bending
Fuselage 2nd longitudinal
Payload 2nd Longitudinal

'Scale factor on frequencies for replica models if f^/fp = 8/1
** Results from Grumman analysis of prototype shuttle current in March 1973

ST-7
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EXPERIMENTAL RESULTS

The first series of vibration tests were conducted with the model suspended on
soft springs in an upside-down configuration (Fig. 5). The main objective of these

«
preliminary tests was to determine the symmetric free-free modes of the Orbiter
and compare them with the initial NASTRAN analytical results. Table 5 gives a sum-
mary of the first seven measured modes. These vibration results were verified by
repeating the tests on the Orbiter when suspended in a nose-up position under 1-g
and 2.5 g axial loading condition. The results of the nose-up vibration tests were
practically identical to the upside-down tests.

Fig. 5 Mode Survey of Model in Upside-Down Suspended Position

16



A series of static tests were conducted with the Orbiter model in a horizontal
position, right side-up, supported at the interstage fittings, and loaded incrementally

at a number of different locations (Fig. 6). Extensive deflection measurements were
made over the whole surface of the model for each load case, during loading and un-
loading, to obtain influence coefficients for comparison with the analytical results.
Figure 7 shows typical load-deflection curves for the transverse loading applied at
the nose bulkhead. Table 9 summarizes the experimentally determined influence
coefficients.

Fig: 6 General View of Static Load Testing Arrangement
of 1/8-Scale Orbiter Model

17
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Fig. 7 Load Vs Deflection Curves for ±Z Load on Nose Bulkhead
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COMMENTS ON THE NASTRAN SYSTEM

The analysis of the 1/8-scale model was viewed as a pilot study of the use of

NASTRAN on realistic aerospace projects. Therefore, some of the comments extend

past specific application to the 1/8-scale model. Many areas must be considered in

attempting to judge the NASTRAN system, some of which are not necessarily con-

cerned with NASTRAN itself.

One of the prime reasons for Grumman's interest in NASTRAN is the work that

NASA is doing in attempting to establish NASTRAN as the industry standard. For

multi-corporation aerospace projects, standardization is a necessity. Standardiza-

tion of computer programs, type of data, etc, is important from a contractual point

of view, where subcontractors interface with prime contractors and the prime inter-

faces with the principal agency. However, with standardization there must be suffi-

cient technical flexibility - in this regard NASTRAN has room for improvement.

FLEXIBILITY OF THE NASTRAN SYSTEM

NASTRAN contains a number of rigid formats that allow for specific types of

problems to be solved. Where these formats do not fit the specific application, the

rigid format may be changed with ALTERS. In analyzing the 1/8-scale Orbiter
.

model, numerous ALTERS to rigid format 3 were made. The system was modified

to handle substructuring using level 15.5. It was found that, although the basic sys-

tem can be modified, it requires an extensive learning period to become sufficiently

proficient with the system to make use of ALTERS. After making a series of exten-

sive ALTERS, the modified program must then be checked; if altered again, it must

be rechecked. Because this procedure is cumbersome, it tends to produce a small

group of NASTRAN experts. Our own in-house system (COMAP ASTRAL, Reference

8-4) contains no rigid formats; only one structural command generates all the re-

quired matrices (or those that are requested) to solve the problem. All matrix oper-

ations are coded in a simple, interpretive language that may be learned in a few

hours. This system requires that the engineer understand the physics of the problem.

Altering NASTRAN, on the other hand, requires a good understanding of the systems

aspects of NASTRAN. Thus, there is diversion of engineering talent from engineer-

ing problem-solving to overcoming NASTRAN system complexities.



CAPABILITY OF NASTRAN

The original analysis plan for the 1/8-scale model required that all components
(Orbiter, ET and two SRB's) be coupled to determine mated vehicle modes. This

combined hydro-visco-elastic analysis is theoretically possible within the present
NASTRAN system, but from a practical standpoint it is not. Although we successfully
calculated modes for the individual components, we were not able to couple these com-
ponents and analyze the total vehicle due to extremely large computer time require-
ments. Note that the lack of correlation of the Orbiter analytical and test modes for
Model I is not a fault of NASTRAN. This lack of agreement did, however, cause

us to shift our emphasis from studying the coupling problem to examining the Orbiter
modeling, design, and fabrication in more detail. Having cleared up the Orbiter cor-
relation by the use of Model n, the coupling problem is still a major obstacle. Two
approaches seem feasible:

• Modal coupling in lieu of static coupling to reduce the size of the final

problem

• Incorporation into NASTRAN of approximate reduction schemes that employ

the automatic tri-diagonal reduction algorithm. (For example, FEER, Ref.
8-3; or ALARM, being developed by Grumman under Master Agreement

NASI-10635, Task 17. FEER and ALARM would have to be extended to
handle complex modes.)

Master Agreement NASI-10635, Task 21 will pursue the modal coupling approach by

making the appropriate ALTERS to the NASTRAN rigid formats.

Many complaints of NASTRAN are associated with the form of the stress output.

Average stresses in elements are of little use to the engineer in the design mode.

Traditional cap loads and shear flows are preferable. At this stage the designer is
looking for the best load paths, and will rearrange the framing to the best of his abil-

ity to obtain it. The elements of a structure are proportioned to withstand the load
imposed on them using allowable stresses, therefore the average stress in an element

is not a convenient quantity. NASTRAN level 15. 5 produces element corner forces

which may be used as input to a post processor to produce equivalent cap loads and
shear flows. The Grumman post processor produces listings of member loads not
only by condition, but by critical condition ranking as well.



CONCLUSIONS

Comments and recommendations concerning the analysis and correlation fall
within four basic categories: the physical model, modeling procedures, correlation,
and experiences with NASTRAN.

PHYSICAL MODEL
One of the major constraints on the experimental model was the total cost of

design and fabrication. It would have been better to place a cost on the total project:

design, fabrication, analysis and testing. It is believed that through this study much

has been learned about compromising fidelity in models to achieve simplicity. It is

also apparent, in retrospect, that timely and careful attention during design to details

and their associated effects on dynamic responses would have resulted in more de-

sirable experimental model characteristics at justifiable costs. Thus, either a stif-
fened sheet or a sandwich construction could have minimized or eliminated the

problems associated with the panel initial imperfections. Likewise, machined fit-
tings would have eliminated the fin-fuselage connection problem.

MODELING PROCEDURES

In NASTRAN Model I the CQDMEM2 element was used to model a fully effective
structure. Lack of correlation should not be attributed to the behavior of this element
or to NASTRAN. The major cause for lack of correlation was traced to the ineffec-

tiveness of the skin panels due to the presence of initial bows. Model n used bars and
shear panels to represent the behavior of the physical model. Here effective bar
areas and an effective shear modulus were used. It is felt that this type of modeling
is more descriptive of the actual characteristics of the structure. The effectiveness
factors were obtained through the use of a computer program that solved the large

deflection problem of in-plane loading of plates with initial imperfections. Little

information exists in published form that contain the parameter range and type of

loading of interest to the present study. Work was done by NASA some 20 years ago.

It is recommended that this work be updated to cover a broad range of aspect ratios,

initial imperfections and loadings. Publications of these data in chart form would be

beneficial to modeling efforts on many structural projects.

22



Some remodeling of major joints could have been made in the analysis. How-
ever, for some joints such as the fin-fuselage connection, only static tests could give
the exact behavior no matter how careful an analysis was made.

Consistent mass concepts tend to lose their significance for structures that do
not behave in a linear fully effective fashion. In fact for structures of this type it be-
comes desirable to control the mass and stiffness properties independently.

CORRELATION

• The results of the vibration tests reported here are only preliminary, and

have not been fully completed

• The static test data have a ± 10% error in reproducibility

• It is felt that the agreement of Model n results with test data is sufficiently
close to pursue a coupling analysis.

EXPERIENCES WITH NASTRAN

Existing eigenvalue routines in NASTRAN are inadequate to handle the large
size problems that are associated with the coupled structure. Routines such as FEER
or ALARM should be added and extended to include complex eigenvalue problems.

The five Orbiter substructures were coupled using NASTRAN level 15. 5. No
great difficulties were encountered in using NASTRAN to do this. However, the col-
umn partitioning vectors required in the MERGE instruction are somewhat awkward.
The equilibrium checks that were incorporated in the analysis proved helpful in find-
ing errors and in giving a high level of confidence to the results. For the 1/8-Scale
Model, five substructures were combined to give the total structure. Multilevel sub-
structuring does not appear to present any technical difficulties.

The learning period required to become proficient with the NASTRAN system is
excessive. But, regardless of many objections, a Government/industry standard
like NASTRAN is a necessity.
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