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Introduction

This semiannual report summarizes one aspect of the research

sponsored by the National Aeronautics and Space Administration under

NASA Grant NSG - 5013 for the period June 27, 1974 - December 16, 1974.

The research discussed in this report considers the encoding of video

signals using the Song Adaptive Delta Modulator. This DM conceived by

Professor D. L. Schilling and developed by Drs. C. L. Song and J. Garodnick

is widely used today for voice encoding. It is considered to be the best

"sounding " of all DM systems by Engineers at the NASA JSC in Houston,

Texas.

Currently research is being directed toward the operation of the.Song

ADM system for video transmission. Video signals can be characterized

as a sequence of pulses having arbitrary height and width. The ADM is

well suited to track signals having fast rise times as the DM algorithm

permits an exponential rise to estimate an input step. However, the

DM algorithm also results in a large overshoot and an underdamped re-

sponse the step. This is analogous to the response of an RLC circuit

to a step. In Part I of.this report we present an Overshoot Suppression

algorithm which significantly reduces the "ringing" while not affecting

the rise time. Formulii for the "rise time" and "settling time" is present-

ed.

Another problem considered in this report deals with channel errors

and their effect on the DM encoded bit stream. It is well known that

when a bit in a DM sequence is in error that the decoded waveform will

have an error which can propagate virtually forever. Part II of this report

considers two algorithms which virtually eliminate the errors.

During this report several papers were presented at conferences.

Part I and II of this report will be submitted for Publication. A complete

list of publication will be given in the final report.
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I. Video Encoding Using an Adaptive Digital Delta Modulator

ABSTRACT

An overshoot suppression scheme to improve the performance

of the Digital-Song-Adaptive Delta. Modulator (DM) for picture

transmission is described. This scheme allows for a faster

increase in the step. sizes than permitted by overshoot and

settlihg timie considerations, thus improving rise-time per-

formance. The overshoot suppression (OSS) algorithm used

has been verified using computer simulations on a PDP-8.

Furthermore, experimental results usihg :computer generated

test pictures as well as pictures from a flying-spot scanner

show the improvements due to the overshoot suppression scheme.

It is also shown that the additional hardware required for the

actual implementatioh of the algorithm is simpler than those

encountered in the literature, and gives better signal tracling

accuracy. Upper and lower bounds for the settling time, with

and without OSS are derived showing an improvement with the

suppression scheme. Stability conditions are also derived

permitting the proper selection of DM parameters. Considering

the DM link as a nonlinear digital filter, a formula that relates

the minimum rise time that can be handled for given filter para-

meters and voltage swings is developed. In developing the

formula the problem of random truncation errors due to the

finite arithmetic implementation is handled.



I. INTRODUCTION

Figure 1 shows the structure of the digitally implemented Adaptive

Delta Modulation (ADM)'System referred to in this paper. Briefly, its

operation is as follows:

The in.put signal S(t) is sampled and A to D converted to. give Sk.

Sk is then compared to-its estimate, X, generating a sign-bit ek, with

ek = sgn (Sk - Xk) (1)

where

Xk= Xk-1 + Ak (2)

The step size at the kth sampling instant is

Ak = g (ek_' Ak-1) + 92 (ek-2'  k-) (3)

Thus the kth step size depends on the previous step size, and the previous

two sign bits. The g, and g2 function characteristics, shown in Fig (2),
are a generalization of the step-size algorithm of the Song ADM [1

permitting a variation of its parameters for possible optimization.

Figure (2) indicates that:

A k = k-1 ek-1 + ek-2) k-i1 M

Me Ak-1  < Mk-1

where the special zero region, A k-1 i < M, is needed to prevent a

dead zone at the origin. ( Note that we are assuming a digital implemen-

tation where the fractional part of Akis truncated, but the positive
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constants a and f3 may be nonintegral.) Based upon these considerations

we define I = 1/(a + - 1). Then the zero region is

M= I I an integer (5)
Truncation (I + 1) .,.I not an integer

where the function Truncation (..) is defined to give the integer portion

of its argument. A consequence of the above is that the minimum step

size possible is given by

A = Truncation ( (a - 3) M) (6)

Defining two new symbols, y = a + 3, and 6 = a - 1, note the following

specific cases. If y 2, then A = 0 and M = 1. If 1.5 5 y < 2, then

M = 2 and A = 1 if 6 r 0.5(also A = 0 if 6 < 0.5). It is apparent from

this, and in general from Eq (5) and (6), that M and A decrease with

increasing y. We show later that this interaction between M, A and

v is desirable in many applfcations such as video. Finally, note that

y must be greater than unity to permit an increasing step-size adaptation

when operating in "slope-overload ", i.e., when tracking a rapidly varying

input. To permit the large step-sizes that evolve during slope-overload to

decay when tracking a slowly varying input we must have 0 < 6 < 1.

The decoder is the feedback portion of the encoder. It reconstructs

the approximation Xk from the e k bit stream. Xk is then D/A converted and

low pass filtered to give 9 (t), the estimate of the transmitted signal.

In video processing, S(t) may contain many large discontinuities of

very short rise times. This corresponds to abrupt changes in grey level

in the picture content. Thus, edge response is very important in video.

A linear delta modulator, however, is limited in its ability to track sudden

input changes by its fixed step size, the magnitude of these steps being

bounded by the permissible granular noise in the constant shade regions,



see Fig 3a. Shade contrast is thus degraded by the so called " slope-

overload-noise " introduced by the DIM channel. A further, and often

subjectively worse degradation that is introduced is edge bu*sness.

This is observed as a jaggedness along what should appear as smooth

edges. It has been shown by Oshima and Ishiguro (2] that this effect

is minimized if slope overload is not permitted. Thus, to alleviate

edge bussyness and permit A(t) to approximate rapid rises, i.e., minimize

the slope-overload-noise, it is desirable to make the step sizes 6k
small when tracking a slowly varying input but allow themito increase:

quickly, in some nonlinear fashion, when tracking rapidly varying inputs.

This is done in the Song adaptive DM [1i by adjusting a, 0, and A to

meet rise time requirements. See Fig 3b and Eqs (1) through (4). Other

ADM schemes [3], [4], [5] have similar step size variability and our

results and discussions are, in principle, of general applicability.

The sharp rises in a video signal are often followed by regions of

fairly constant level due to regions of uniform shade in the picture.

Thus, while alleviating slope overload problems, an adaptive DM

introduces the possiblity of large overshoots when the tracked level

is finally reached.. Furthermore, the overshoot is followed by a

transient oscillatory response until the DM finally locks onto the

tracked signal level. These effects are shown in Fig 3b. Figure 3b

also shows that good steady state response, iLe., small amplitude

oscillations about a constant level in S(t), requires a small minimum

step, A. It will'also be shown that the DM becomes unstable if a

and 0 are chosen improperly, Thus, in choosing a, 0, and hence

indirectly A, a trade-off must be made between slope overload noise

and edge busyness versus overshoots including the recovery (settling)

time and the requirements for steady state response. Moreover, all

this must be done while maintaining DM stability.

We may therefore conclude as follows: Both the overshoot and the

subsequent recovery time are undesirable attributes of an adaptive DM.

Reducing the step sizes decreases the possible overshoot amplitudes
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and shortens the recovery time. This, however, augments slope

overload, edge busyness and rise time. A trade-off therefore exchanges

overshoot amplitude and its recovery time for slope-overload-noise in

an adaptive DM.

Overshoot suppression (OSS) is a scheme to sharply limit the

overshoot amplitude and reduce the subsequent recovery time,. This

is done without reducing the step sizes until overshoot is imminent.

Thus, slope-overload-noise, and hence the ris e time, may be decreased.

Using this technique y can be increased while decreasing A . In this

way, slope overload as well as small steady state amplitude require-

ments can be met simultaneously and, obviously, overshoots and

subsequent recovery times are miniinized.

An OSS algorithm has been suggested in the literature [6] which

us es a "look-up table" where arbitrary values for the step sizes are

tabulated. Furthermore, the maximum step size is limited by overshoot

considerations.

In the Song Delta Modulator, the step sizes can continually increase

with the OSS scheme described in this paper [71 thus yielding better

signal to slope-overload-nois e ratio than that obtained using the other

OSS technique. Moreover, the amount of equipment involved in implement-

ing our OSS algorithm is very modest in comparison to the equipment

needed to implement the other proposed scheme, and co uld fit into any

ADM in which the next step size is explicity calculated. It is also

flexible as to the amount of OSS it can perform and trade-offs between

conflicting factors can be accurately set.

The OSS algorithm proposed in this paper has been checked by

computer simulations. The. results obtained indicate the feasibility

of increasing the rise time capability of the DM without causing excessive

overshoots and subsequent oscillations. The improvements in the quality

of the transmitted video is illustrated with computer generated pictures

processed by the DM with and without OSS as well as by real pictures
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from a flying-spot scanner.

Theoretical results include upper bounds for the settling time,

with and without OSS, showing a cons iderable improvement with

the suppression scheme. A general theoretical study is made of

ADM stability as a function of the parameters y and 6. Previous

investigators such as Jayant [4' only assumed a stability condition

of the form v 6 1. Our results are more detailed and permit the proper

selection of the ADM parameters to satisfy performance trade-offs.

Finally, the finite arithmetic inherent inthe digital implementation of

the DM results in random truncation errors in Eq (4) that cause

inaccuracies in deriving equations to describe performance. However,

using certain approximations a deterministic relation between the rise

time and the signal level has been obtained. Computer investigations

indicated that for all practical cas es tested, the results obtained using

this relation are in close agreement with the actual rise-times.

II.THE PROPOSED OVERSHOOT SUPPRESSION ALGORITHM

The Overs hoot Sup pression Algorithm may be understood by

considering the four cases shown in Fig 4 in which an overshoot or an

undershoot occurs, In Fig 4a an overshoot occurs at sampling timne

k - 1 followed immediately by an undershoot at k. For this case it is

easy to show that the DM will approach its steady-state condition

rapidly. This is not the case in Fig, 4b where the overshoot is larger

than in (a) and Xk is greater than Sk . Consequently an undershoot

occurs at k + I or later and with an amplitude larger than in (a). This

occurs because the step sizes begin increasing again after the first

reversed step. Thus it will take many-more sampling periods to reach

steady state in (b) than in (a). The algorithm is therefore implemented

only when case (b) occurs. Note that Figs 4(c) and 4(d) depict under-

shoots corresponding to the overshoots in (a) and (b) respectively. Action

to prevent--exces sive undershoots is thus taken only for case (d).
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The occurrence of cases (b) and (d) can be recognized by examining

the sequence _e ek-3 ek ek}. The fingerprint of (b) is

C+1, +1, -1, -1). while that of (d) is (-1, -1,' +1, +i). When either

sequence is encountered action is taken to prevent overshoot or

undershoot. The corrective action entails decreasing the stored values

of 6k- ,' and hence Xk_ , and Xk. Case (b) is thus transformed into a

case (a) situation and the s ame for (d) and (c) respectively. The shape

of the modified waveform actually depends on the amount by which

Ak-1 is decreased. The simplest scheme is one where Ak-i is replaced

by half of its original value. We may allow for more rapidly increasing

step sizes Ak, i.e., larger y (see Eq 4), as long as A k-i is replaced by

a smaller fraction of its original value when OSS is employed.

Now the Overshoot Suppression Algorithm is applied to the Song

ADM operating in the Video Mode where a = 1, 0 = 0.5. It is shown

elsewhere [8] that good video transmission results using these parameters

even without OSS. With the addition of the suppression algorithm video

reproduction is improved.

The salient features of the Song Video Mode response are now

summarized. In approaching a level from above or below as in Fig 4,

each step size is 1.5 times the previous one (see Eq 4 for y = 1, / = 0.5).

When a direction reversal occurs, as at sampling time k in Fig 4, the first

step size following the reversal is bne half the previous step size, i.e.,

Ak = -1/2 Ak_- (see Eq 4). Thus, in Fig 4(b) we have

Xk > Xk_- -1/2 A k-1= Xk- 2 + 1/2 Ak-1 (7)

The inequality sign is needed due to the fixed point arithmetic

employed in the digital implementation. Also in Fig 4(b)

Xk_ 2 < Sk < Xk . To implement OSS, sef ( k-1) = 1/2 A k-i' where

the prime refers to the new values after the OSS algorithm has been

implemented. Therefore
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= Xk 2 + k-) Xk- 2 + 1/2 k(8)

Next set

(Ak)' = k = -1/2 A k-1 (9)

Thus

(Xk)' Xk)' + k)' = Xk-2 (10)

Hence, Fig 4(b) has been transformed into Fig 5, with undershoot

occurring at k rather than at k + 1 or later. It should be evident from

Fig 5, even without a detailed explanation of the worst case, that the

overshoot has been at best entirely eliminated or at worst cut in half

depending on whether S(t) is closer to (Xkl)' or Xk- 2 respectively.

Figure 5 also shows that the recovery time is greatly reduced since the

DM locks onto S(t) very rapidly after sampling time k. The improvement

in recovery time due to OSS is discussed in Section VII. Note also that

now (ek)' = sgn (Sk -(Xk)' ) = 1, whereas in Fig 4(b) ek = sgn (Sk - Xk)= -1.

The above OSS scheme is summarized in the form of an algorithm by

considering a typical cycle of the modified DM.

Step 1: Generate Sk.
Step 2: Calculate A = gl (ekk- ,  k-1) + g2 (e 2,  k-
Step 3: Calculate Xk = Xk_- + Ak

Step4: Calculate ek = sgn (Sk - Xk) and transmit this bit

In the DM without OSS this would complete the cycle. That is, k
is next updated and steps 1 through 4 are repeated. To implement OSS

the following additional steps are needed:
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Step : If e 3 
= ek- 2  1, and ek-1 = e k  -1, set V 1. If ek- 3

ek_ 2 = -1, and ek_ = ek = 1, set W= 1.

Step 6: If V 1 and W # 1 go to Step 7. Otherwise set

(a) (A k-1)' = 1/2 Ak_= - k

(b) (Xk_) = Xk- + ( k-)' = Xk-2 + 1/2 A k-1 Xk

(c) ( k)' = Ak = -1/2 Ak-1

(d) (Xk)' = (Xk_)' + (Ak) = Xk- 2

(e) (ek)' = -ek

Step 7: Update k. That is, set ek_ = ek_2; ek_ 2  ek_. If step 6 has

been executed set ek-1 = (ek) ' ; Xk_ 9 = (Xkl)' , etc. Otherwise

set ek_-1 = ek; Xk- 2 = Xk_-1, etc. This completes a cycle.

The OSS algorithm introduces, with a smallthough nonzero

probability, the undesirable effect of increasing the duration of large

amplitude narrow-pulses. In video,, this results in a smearing effect

in highly detailed picture areas. This occurs since S(t),which does not

remain constant, may start decreasihg and reach a value less than

(Xk)' at t = k. However, the OSS algorithm automatically sets (ek)' = i.

Thus, it is only at t =k + 2 that Xk starts following the trailing edge of the

pulse. Furthermore, the initial rate of attack on the trailing edge will be

very slow since Ak+2 = -1/8 Ak-_. Whereas it is impossible to eliminate

the delay in the trailing edge of the response, exceedingly slow rates of

attack may be avoided by imposing a threshold on the OSS algorithm. That

is, to avoid a very small k+2 OSS is not implemented when A isk+2 k-1
smaller than some threshold value. Note, that this does not reduce the

effectiveness of the OSS algorithm since a small A k-1 cannot produce a

large overshoot anyway. The effectiveness of the OSS algorithm combined

with a threshold is shown in Section IV with ADM processed flying spot

scanner pictures.
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III. HARDVWARE IMPLEMENTATION OF THE OVERSHOOT SUPPRESSION

ALGORITHM

The implementation of the above OSS algorithm requires the addition

of very little hardware to the Digital-Song-Adaptive Delta Modulator.

This can be seer by consildering the schematic representation of the

ADM CODEC with OSS shown in Fig 1. Note that the extra components

needed to implement the suppression scheme appear in branches that

are drawn with dashed lines. These elements include the delay D5,

as well as the indicated gates needed for decision, switching and

timing purposes.

It is difficult to discern the operation of the circuit by merely

examining the schematic diagram in Fig 1 because the sequential

order of operation is not specified in the diagram. However, the actual

operation is made clear by considering Fig 1 in conjunction with the

seven steps of the OSS algorithm. The implementation of the first five

steps is easily seen. However, the execution of step 6 hears further

discussion. Note that step 6(a) of the algorithm, (A k-1)' = A k-i'

is not explicitly executed since (Xkl)' is obtained without performing

any arithmetic, but by replacing Xk_ 1 with the available value of Xk.

Step 6(c) is a null operation since (Ak)' = Ak. Finally, when overshoot

is detected, ire., when Y = 1, the switches S1 and S2 are placed in the

OSS position. In this way steps 6(b) and 6(e) are executed. Finally,

(Xk)' is obtained by using adder A3 to produce (Xk)' =(Xkl)'+ (A k)

Xk + Ak. Note that the three adders Al, A2 and A3 are really one time-

shared adder. These additional steps of the algorithm place an added

requirement on the logic speed. After the- completion of a normal cycle of

the ADM,,extra time is needed to perform one more addition and the

various logic operations needed to rearrange the internal values. Usually

this can be done in one sampling period.
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IV. COMPUTER VERIFICATION 01F THE ALGORITHM

The Digital-Song Delta Modulator, with and without OSS was

simulated on a PDP-3 computer. The minimum step size used (A )

was.normalized to unity. The dynamic range was set to correspond

to a ten bit internal arithmetic in an actual hardware implementation.

Thus, the signal estimate Xk was permitted to vary from 0 to 1024A.

The respons es of the DM to step functions of different amplitudes,

with and without OSS, appear in Fig 6. Figures 6(a) and 6(b) exhibit

large overshoots and sustained oscillations (see also Fig 8(b)). They

correspond to the sequence ek_3 = ek_ 2 = 1, ek_= ek = -1, where

k - 1 is the sampling time when overshoot occurs. Figures 6(a!) and

6(b') are the same waveforms but with overshoot suppression (see also

Fig 8(c)). As an example compare Figs 6(a) and 6(a'). Here the

maximum peak to peak os cillations are reduced from 22A to 9A.

Similar observations can be made for Figs 6(b) and 6(b'). Further-

more, here the settling time to the steady state is reduced from six

to three sampling periods. While Fig 6 gives a good indication of the

general nature of the improvement due to OSS, a more convincing illus-

tration is depicted in Fig 7 where the discontinuities are much larger.

Note that the apparent slow rise times in Fig 7 are due to the compression

produced by a scaling factor of 0.1 used in the plotting. In reality Fig 7

rises over a range of 500A in only 13 sampling periods. To achieve the

same amplitude, a non-adaptive DM would require over 500 sampling

periods.

Briefly, the salient features of the response are as follows. The

rise time to reach a given level is the same with or without OSS.

Overshoots are suppressed by a minimum of 50/o. Recovery times

following overshoots are significantly reduced as seen in Fig 7(b).

An analysis of the recovery time improvement is given in Section VII.

The data plotted in Fig 7 is given in Table 1 for quantitative comparisons.

The peak-to=peak amplitude of the steady state respons e is three times

the minimum step size for either scheme. The period of steady state



oscillations is 4 sampling periods without OSS, and 8 sampling periods

with OSS. In either case, the peak-to-peak steady state oscillation

amplitudes can be made smaller than a grey level in the picture wave-

form. Thus, constant shade regions will not suffer significant degrada-

tion (granularity and contouring).

V. EXPERIMENTAL INVESTIGATIONS

The experimental test set-up that was used is built around a

PDP-8 computer equiped with multichannel A/D and D/A converters.

The computer was programmed to perform real time DM processing of

the analog signals applied to the A/D converter. Provision was made

for implementing an OSS option. The various channels of the D/A converter

were programmed to output the DM estimates of the analog imputs, as

well as synchronized scanhing waveforms to produce a video display of

the DM estimates on a monitor.

To display the edge effects of delta modulation in video processing

a square wave input was used. The square wave had a repetition rate of

350 IH and was bandlimited to 10Khz to simulate the rise times of

realistic bandlimited waveforms. The DM sampling frequency is

40Khz. The original square wave and the filtered waveforms appear

in Fig 8(a). Figure 8(a') is the 100 line raster produced with the

filtered waveform of Fig 8(a) as the Z modulation. Note that except

for the narrow vertical bright band at the leading edge of each bar,

which is due to the ringing introduced by the filter, the brightness of

the bar is uniform and the edges are sharply defined.

Figure 8(b) shows the delta modulated version, without OSS, of the

filtered waveform in Fig 8(a). The lower waveform in Fig 8(b) is just

the delta modulated output waveform bandlimited to fm = 10, KHz, (the

bandwidth of the input to the DM). The raster in Fig 8(b') results

when the filtered waveform of Fig 8(b) is applied to the Z-input of the

monitor. The deleterious effects of the overshoots and subsequent

oscillations on the leading edge are obvious . Note als o that the
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gradual roll-off at the trailing edge of the waveform causes a lack of

sharp contrast at the trailing edge of the bright bars.

Figures 8(c) and 8(c') correspond to Figs 8(b) and 8(b') respectively,

when OSS is applied. The improvement in Fig 8(c') over 8(b') is again

obvious. In fact, the only difference between Fig 8(a') and Fig 8(c') is

the lack of sharp contrast on the trailing edges in Fig 8(c'). This is

due to the slower fall-time of the delta modulated waveform than.that

of the original filtered waveform. The way to improve this is to increase

a + 0 which will lead to faster rise time capabilities of the DM. This

is now possible because the overshoot effects on the leading edge are

taken care of by the OSS scheme.

As a further arid more realis tic verification of the viability of OSS

in video transmission, the square wave input was replaced by a flying-

spot scanner, and a realistic still picture was ADM processed using

the PDP--8 computer. A frame consisted a 400 DM bits per line with

170 lines per frame. The minimum DM step--s ize was adjusted for

64 grey levels/pixel while a and 0 were set equal to 1 and 0.5,

respectively. In scanning the frame each DM estimate was displayed

with a slight spatial overlap with its neighboring estimates. This in

effect is an "averaging" procedure which tends to low-pas s filter

the picture. As such, some of the overshoots are filtered out without

the OSS algorithm, which is itself effectively a. low-pass filter for

overshoots. Averaging has, in general, the added advantage of

eliminating much of the "btsy.ness " introduced by the ADM.

The picture chosen for processing has areas of much detail as

well as relatively quiet areas. This permits us to display the

limitations of the ADM as well as of the OSS algorithm. The results

appear in Fig (9). Although aveiaging has removed some of the over-

shoots, many bright spots are still observable on the jacket, especially

along the edge with the shirt, as well as on the hair, and along the hair

and face border in the picture without OSS. The picture with OSS, but
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without a threshold (see the threshold discussion on page .8),

has no overshoot but all detail is smeared out. Note especially the

background area with the trees. This picture is certainly unsatisfactory.

Finally, consider the picture with OSS but with a threshold set at 8 grey

levels. Here practically all detail is restored and all but a few over-

shoots along the jacket and shirt edge are removed. Thus, OSS with a

thres hold appears to perform better for picture transmission than similar

schemes without OSS and a threshold.. It should be pointed out, however,

that although overshoots constitute a lack of fidelity, they may sometimes

be desirable. This is due to the subjective edge enhancement overshoots

sometimes produce. Thus, the decision to implement OSS or not

ultimately depends on the system use requirements.

VI. ADM STABILITY CONSIDERATIONS

As previously mentioned, there are various trade-offs in choosing

a and /. To obtdn a rapid rise-time capability, y = a + /, should be

made large. This may result in a step response containing large

amplitude overshoots, and oscillations which last many sampling

periods unless OSS is used. Furthermore, some values of a and 3

give rise to large amplitude oscillations which do not decay and may

even become unbounded. This is an "unstable" mode of operation

and is undesirable. In this section we derive conditions on a and /

which insure stability. It is then possible to pick a and P from this

stable set to meet rise-time requirements and subsequently use .OSS

to reduce any resulting overshoot noise.

The permissible regions of operation in the a vs / plane are now

derived. Cons idering Eq (4) we must have for proper ADM operation

0< 6=a -< 1 (11a)

and
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S< y =a +  (Ilb)

to permit the step-sizes to decay and increase, respectively. However,

not all points in the y vs 6 plane bounded by Eq (11) result in stable

operation. (Note, it will be more convenient to use y and 6 in the

discussion that follows).

Stability is now carefully defined in terms of the DM step response.

As seen in Fig (10), the step response consists of a sequence of rising

steps until overshoot occurs. Following overshoot the response oscillates

with a varying number of points above and below the constant input. The

exact settling pattern depends on the particular value of the level S(t) as well

as on y and 6. The slowest settling pattern, and hence the one most

likely to start diverging in amplitude, occurs when the response

oscillates with n points above and n points below the constant input.

This shall be called an "n-point" pattern. It turns out that the value

of n depends on the particular yand 6 utilized. An ADM is thus defined

to be stable if the n-point oscillatory pattern about a constant input

decays. This depends on the value of y and 6 . Note that Fig (10)

shows a stable case with n = 3. Note too, that we have defined stability

in terms of an n-point pattern because, as mentioned above, that is the

case most likely to s tart diverging and hence provides a bound on

stability. That is, if all n-point patterns for a given y and 6 decay,

so too will all other patterns.

The stability conditions for an ni -point pattern are now derived.

Consider Fig1_O generalized to an n-point pattern. The step sizes are
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a (1)

a (2)= L a (1)

n-1
A (n) = y (1)

A (n +1)= yn -1 (12)

a (n+2) = 6 A n a (1)

2n-2
A (2n) = 6y a (1)

To insure stability it.is necessary to have X (1) < X (2n + 1). This

is equivalent to

A (1)+ A (2)+ * + (n) > IA (n + 1) . + + A (2n) (13)

Substit uting Eq.(12) into (13), the stability condition is found to be

1 -n
6 < 1(14)

Next, it is necessary to ensure the proper pattern of n, and only n,

points above S (t) per half cycle of the oscillations. To have n points

above S(t), X (n) < X (2n). This is equivalent to

a (n) > I a (n + 1) + * " + A (2 n - 1) 1 (15)

Substituting Eq (12) into (15), we obtain the pattern condition
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1-y
<1 - y n-1 (16)

To have less than n + 1 points above S(t),X (2 n + 1) < X (n). This

is equivalent to

A (n) < 1 A (n + 1) 1+ * + A (2n) 1 (17)

Substituting Eq (12) into (17), we obtain

n< 6 (18)
1 -y n

Finally, combining Eqs (14), (16), and (18); we obtain the conditions for a stable

n-point pattern

S < < (19)

1-y

and

<6< -(19b)

Points in the y - 6 plane bounded by Eq (19b) will produce n-point

pattern oscillations. However, only those points lying in the region

bounded by Eq (19a) will be both n-point as well as stable.

Figure (11) is a plot of the stability regions for n = 2, and 3.

Note that the lower bound on 6 for n = 2 is the "pattern" upper

bound for n = 3. This is true in general for any n. Note too, that the

only stable pattern in the overlap region of say n = 2 and 3 is n = 2.
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In general, any overlap region will be stable for one, and only one,

n-point pattern.

In conclusion, the results we give permit the selection of y

and 6 to meet performance specifications, such as rise time re-

quirements, and at the same time guarantee stable operation. We

conjecture, without proof, that some unstable (y , 6 ) pairs may

operate in a stable fashion when used with OSS. It can in fact be

shown, for example, that this is the case for the otherwise unstable

pairs (2,0.5) and (3,0.5). On the other hand, stable (y , 6) will not

become unstable when used in conjunction with OSS. Hence, our

results guarantee the existence of large stable y 's, and our OSS scheme

permits the minimization of resulting overshoots. Once a stable (y, 6 ) is

chosen, a =(y + 6)/2 and P =(y- 6)/2. Finally, it is generally desirable

to make n small, namely n = 2. This results in oscillations with the

smallest possible period producing a minimum amount of in-band

oscillatory granular noise. Hence, this facilitates the post - ADM

low-pass filtering of the noise.

VII SETTLING TIME CALCULATIONS

The slope overload response of an ADM, as occurs when tracking

a step input, is terminated with the occurrence of an overshoot. This

is followed by oscillations about the constant level that decrease in

amplitude until a small steady state pattern is reached. We define

the " settling time ". as the time interval between the overshoot and the

beginning of the final steady state pattern. Since the oscillations

constitute undesirable granular noise, the settling time should be as

small as possible. In this section we calculate bounds for the settling

time. Consideration is given to the ADM response when operating with

or without the OSS algorithm. The quantitative results verify the desirable

and significant reduction in the settling time with the use of OSS.



A. A Settling Time Upper Bound Without OSS

When the first overshoot occurs in a step response at time k

with a step-size Ak as shown in Fig (12a) the input S(t) may be

anywhere between Xk_ 1 and Xk_- + Ak . The longest settling time occurs

when S(t) falls in the middle of Ak so that the oscillations decay in a

sym.metric n-point pattern. As shown in Section VI, the pattern is

determined by the particular (y , 6) used. Since a 2-point pattern

provides, in general, the shortest settling time and produces the

smallest percentage of in-band granular noise, we shall consider only

this particular practical case.

In Fig (12a) the step size which causes the overshoot is A k' while

the step-size magnitudes at k + 1, k + 2, . . are given by

k+1 = k

k

A k+ 3 f = Y 62 Ak

I k+4  = 2 62 Ak
Thus, the emerging pattern is given by

N-1 N+1

2 2

6 A , N odd (20a)

k+N
N N
2 2.

7 6 k Neven (20b)
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Next, the settling time N is defined as the minimum time required for

Ak+N = A, i.e., the minimum number of sampling periods that elapse,

following the initial overshoot, until the final steady state oscillatory

pattern is reached. Recalling the conditions,y > 1 and 0 < 6 < 1, it

is apparent from Fig 12(a) that the first minimum step size occurs at

Ak+ N = A when N is odt. Thus, using Eq (20a) we obtain the following

upper bound on the settling time when (y, 6) produces a 2-point pattern:

N 2 In 6
max 6j- (21)

In (y 6)

The reduction in N when OSS is utilized is calculated in themax
following section.

B. A Settling Time Upper Bound With OSS

The worst case settling time with OSS, corresponding to Fig 12(a),

is shown in Fig 12(b). In this case OSS is implemented every third

sampling instant, and the amplitude prior to suppression is indicated

with dashed lines. Here the step-size at time k is A' = a
k 2 Akasa

result of the suppresston algorithm. Further,

A k+2 1 6 A k

L k+3  1 k+4  6Ak

A k-5 = y 62 A k

A 'k+6 I= 1/8 y 2 62 k
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The pattern that emerges is given by

1 m m-1

A' = 2-m 6 y Ak , m = 1, 2, 3, . (22a)k+3 m- k

and

A' j= ' m+1 (Y 6)m , m= 0, 1, 2, 3,. (22b)
k+3m k+3m+1 m+Ak"

In considering the settling time to the steady stata here, it is not

clear whether A k+N = A for N odd or even. This depends on the

particular (y, 6) used. However, for (y, 6 ) chosen from the stability

region for n = 2 in Fig (11) it was found that N = 3m gives a slightly

pessimistic estimate of the settling time. We thus use Eq (22b) to

find the maximum settling time for a 2-point pattern with OSS

Nmax I OSS = 3 m =  (23)

Nmax IOSS is plotted in Fig (13) as a function of Ak with (y, 6) as

parameters. It is noted that Nmax I OSS increases with y . Thus,

although large yis desirable to reduce slope overload noise, it is

undesirable because of the resulting increases in granular noise.

However, the latter is reduced using OSS as seen by comparing

Eqs (21) and (23). The percentage improvement in settling time due to

OSS is plotted in Fig (14). It is seen that the improvement increases

with y. This is desirable since the settling time increases with y.

in general. Finally, we see that there is a better than 50% improvement

for the practical case y = 1.5 and 6 = 0.5.
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VIII Rise Time Formulas and Truncation Errors

The ADM, when operating in slope overload, can be modeled as

a nonlinear digital low-pass. filter. The shortest rise times that can

be handled by this model without slope-overload obviously depend on

its parameters A and y . The speed with which the step-size increases

is a function of y, higher values for y will ensure shorter rise times and

therefore are to be preferred in video transmission. Large values of y,

however, as already indicated, will lead to large overshoots and in-

stabilities unless some OSS scheme is used.

In what follows, in order to illustrate the complexity of the

mathematical models needed for investigating this problem, and as

a first step towards its solution, we derive a formula for the minimum

rise time obtainable under given initial conditions at the beginning of

an input discontinuity. For this purpose, the rise time tr (for brevity we

will use in what follows the simplifying notation tr = i) is defined by the,

number of sampling instances needed in a given ADM (given .y, 6) in

order to attain a specified voltage level V. Namely, we look for a relation

of the form

i = fi (V y, V (0), Ai ) (24)

where V(O) is the DM voltage level at the start of the discontinuity

and A1 is the first step size.

It is shown below that the main difficulty in deriving an explicit

formula for Eq (24) is due to the truncation errors inherent in a digital

implementation where V(i) and A(i) are constrained to be integer valued

while y may be noninteger valued. These errors become too large to be

neglected as i increases.

To derive Eq (24) we first derive an expression for
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V = f2 (i V , V (0), A1) (25)

assuming no truncation errors (infinite arithmetic capabilities). Eq (25)

is obtained by summing V(0) and the increasing step sizes

V(i I , V.(0), A > A, no truncation) = V(0) + A + y A + . . . . + Y A1

(26)

which yields

V(i y, V(0), AI > A, no truncation) V(Q) + 6 1 (1 ), i 1, 2, .... (27)

Note that Eq(27) must be modified if A is the minimum step size, i.e.,

A1.= A. For this case

i-2

V(i I y,V(0), Ai A, no truncation) = V(O) + A + M + y M + . . . +i-2 M (28)

which yields

i- i 2,3 (29)

V(i y, V(0), Ab = A, no truncation) = V(0) + A + M , i=2,3,. (29)

Under the no-truncation assumption, Eq (24) is obtained by straightforward

algebra from Eqs (27) and (29), yielding

In 1+ (Y -1) (V - V(O)) 1n(y) 'A > (30a)

VIn 1 + (V - V(0) - n (, = (30b)

Msb
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These values obtained for V(i) in Eqs (27) and (29) and for i(V)

in Eq (30) are actually upper and lower bounds, respectively, for

the true values in a digital implementation because the actual

step sizes Ak given by Eq (4) are obtained with all fractional

parts truncated. Table (2) shows the discrepancy in voltage between

the processes with and without truncation for y= 1.5. Let VT(i) and

VNT(i) be the values of V(i) with and without considering the truncation

error, respectively, Also, let Ecum(i) be the cumulative truncation error

in the voltage V(i). We then have

VT (i) = VNT (i) - (i) (31)

Next, E cum (i) is computed. It should be noted that it results

from the local round-off error, r, in the step size at each sampling

instant. The analysis is complicated by the fact that r is a random

variable,with unknown statistics, assuming different values in the

range, 0 ! r < 1, at each sampling instant. To make this problem:

tractable, we assume that r is always the same and occurs only at

every other sampling instant. These assumptions were motivated by

the examination of many typical error patterns and are ultimately

justified by the accuracy of the results given. It should be pointed

out here that r is a scaling factor in our final formula, Eq (35), and

that we shall give a rule to pick the proper r to obtain accurate results

for a given value of y. Finally, using the two assumptions mentioned

above, the cumulative truncation error in V at time n, where the first

step size round-off error occurs at n = 1, is given by

n

cu (n) = E (k) 
(32)

cum k=l
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Note that E(k)is the local truncation error in the step size resulting

from the previous and present round-off errors. It is given by the

following recursion relation

E (k+l) = + (k) + + (1)kJ (33)

subject to the initial condition E (0)= 0. Equation (33) can be

easily solved using Z transform methods, yielding

k+1 r -)k (34)
_ (k) + r (34)

2 2 (y+1) 2(1-y )
y -1

Thus, the cumulative truncation error is given by

n n+l )
cum (n) = ' e (k) = 1 (1

k=l -1) (1-) + 1)

(35)

rn
+ n= 1, 2, 3,....

2 (1-y)

It is now possible to find VT (i y 7, V(o), A)bycombining

Eqs (27), (29), (31) and (35). Considering Eq (271, note that if

A1 > A, then truncation may start occurring at i t 2. Thus, we

introduce the index shift i = n - 1, n 2, i > 1 in Eq (35). Com-

bining the result with Eqs (27) and (31) we obtain

VT (i y, V(o), a > A) i- i1
V (0) + (i > ) ,i= 2, 3,1,1-7 cum

(36)
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where E (i > )= (n) 6 and 6. is the
cum cum n, i-i 1,3

Kroenecker delta. Similarly in Eq (29) truncation may start occurring

at i 3. Hence, we introduce the index shift i = n - 2, n > 3,

i 1 in Eq (31), obtaining

V(o) + A , i - 1

VT (i ) y, V(o), 1 = ) = V(o) + + M , i = 2 (37)

V(o) +- (i A ) , =3, 4, 5,.,
1 y cum

where cum(i A cu (n) 6i-2.

To make Eqs (36) and (37) meaningful and accurate, we present the

following procedure to find the proper r for a given y y. Let

(cum (imax ) actual be the actual value of the truncation when

i corresponds to the maximum voltage.excursion to be considered.
max

Note, this value may always be obtained by simulation of the DM

with truncation. Next, for any value 0 < r < 1, say r = 0.5, find

E cum (imax I A1 ) r=0.5 as defined in Eqs (36) and (37). Then

the value of r that gives accurate results in Eqs (36) and (37) for all

i i i is given bymax

cum (imax A I) actual
r = 0.5 (38)

cum (imax rA1) 0.5

The derivation of this formula should be apparent by noting that r

is actually a scaling factor in Eq (35).

The above equations and procedures, although heuristic and

approximate in the sense that they provide a deterministic solution

for a random process, have been tested and shownto be very accurate
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for all practical examples. We give results for r as a function of

y (1 5 y 5 4) in Fig (15) and Table (3). Here it is assumed that

V(im) corresponds to the maximum voltage excursion possible,max
without overflow, in a digital implementation with a ten bit storage

register for V(i) and A (i). It is also assumed that A = 1 and M = 2

for all values of y except y = 1.25 where M = 4. For the values of

r in Table (3) it was found that Eq (37) gave accurate results for

V(i) when rounded off to the nearest integer. The worst cases occurred

for y equal to 1.25 and 1.5 where the maximum discrepancies were 6

and 2 respectively. This can be compared to the results given by

Eq (29). where the maximum discrepancy for y equal to 1.25 and 1.5

is greater than 400 and 200 respectively. It was further found that

Eq (37) gives values whose accuracy improves with increasing y.

In fact, for y > 1.75 the given results for V(i) are exact.

As mentioned earlier, Eq (30) gives a lower bound for i in Eq (24)

since it does not take into consideration the effects of truncation.

A more accurate formulation for Eq (24) results if Eqs (36) and (37)

are solved for i. However, an exact closed form solution is not

possible since Eqs (36) and (37) are transcendental in i. A converging

iterative approach may be used where we solve for i by finding y and

taking logarithms. This results in the following recursion formula for
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(' -1) (V(i) -V(o) -)(1-) -(r+M) + n(y)
ry - M(y 2 -1) ()

n+1
(39)

( -1)[(V(i) -V(o))(1-.y)- + in + 2 (y2+)
Ery - A (y 2 -In (y) , A1 > A.

The questions of convergence and accuracy of Eq (39) were

investigated for the values of yand r in Table (3).' For i = 0, it was
0

found that convergence occurs for all y, r and V(i) . 1000 by the second

iteration. Furthermore, when rounded to the nearest integer, i 2 is found

to be accurate for all of the above values of r, y, and V(i). Table. (4)

illustrates the convergence by i 2 for y = 1.5, and comparison with

Table (2) shows the accuracy of i 2 for this case. The general trend

found in investigating Eq (39) was that convergence is fairly in-

sensitive to variations in r but improves very rapidly with increasing

y and V. Accuracy is found to be perfect when r is chosen accordihg

to Eq (38) On the other hand, although it is approximate, Eq (30) is

preferable because it provides a much simpler closed form solution for

i. It was found that the. accuracy of Eq (30) improves with increasing

y and degrades with increasing V(i). However, for y > 1.5 and V(i)

< 1000 Eq (30) deviates from the correct value of i by at most unity.

Thus, for these cases Eq (50) is to be preferred over Eq (39). The

utility of Eq (39) is hence for cases where 1 < y < 1.5 and V(i) >

1000. Furthermore, E (i) is certainly required for accurate cal-

culations of VT(i).

In conclusion, we have derived a deterministic approach to handling

the problem of random truncation error is analyzing the slope overload

operation of a digitally implemented ADM. The rise time formulas
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derived above in Eq (30) or (39) are important for they specify the rise

time limitations of an ADM with a given y. Considering the ADM in

slope overload as a nonlinear low-pass filter, Eqs (30) or (39) in effect

specify its bandwidth as a function of y. Thus, in designing an ADM

to handle a video signal with a given bandwidth, Eqs (30) or (39) specify

the minimum y needed to prevent slope overload noise. It should,

however, be pointed out that there are other trade-offs in choosing

y and 6 such as granular noise and, in particular, overshoots and

oscillations. The latter may be minimized by the use of the OSS

algorithm. However, the exact trade-off must be determined experi-

mentally through subjective evaluations of resulting picture quality.
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IX. CONCLUSIONS

An overshoot suppression algorithm has been proposed and verified

by computer simulations using real and computer generated video test

patterns. It has been shown that the scheme significantly improves

the transient behavior of digital ADM channels that handle video

waveforms.

The main advantages of the proposed algorithm are:

(a) It can be easily utilized in optimizing digital ADM channels

that can be described by a closed form mat-ematical formulation and

in particular in the Adaptive-Song-Delta Modulator.

(b) The scheme has rather modest requirements for hardware

implementation.

(c) It allows for flexible trade-offs between slope-overload and

overshoot noise. Therefore, the addition of the OSS algorithm

significantly improves the performance of a digital DM channel for

picture transmission.

Upper bounds for the settling time, with and without OSS, are

also derived showing a significant improvement with the suppression

scheme. Stability conditions are given to enable the selection of

proper DM parameters when optimizing the trade-off between slope-

overload and overshoot noise. To further facilitate the trade-off a

rise-time versus voltage level formula is derived taking into considera-

tion truncation errors. This formula gives accurate results for all the

practical cases tested.
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Figure 8(b) Upper Waveform: Bandlimited m(t) after DM processing (without OSS)

at f = 40 KHz.

Lower Waveform: Upper Waveform low-pass filtered (fm= 10KHz)= x(t).

Figure 8(b 100 line raster intensity modulated by x(t).

Figure 8(b ) 100 line raster intensity modulated by x(t).
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Table 2 Sampling Time vs. Level, with and without truncation, and Sampling

Time vs. Cumulative Error ( Y = a +3 = 1.5).

Note: I = Sampling Instant
XRONI = Level at time I with truncation

XNRONI = Level at time I without truncation.

ECUMI = Cumulative error at time I
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Table 3

r versus y as given by Eq (38) for a 10 bit digital implementation.

Y r A M

1.00 0 1

1.25 0.5765 1 4

1.50 0.3122 1 2

1.75 0.6604 1 2

2.00 0 1 2

2.25 0.4581 1 2

2.50 0.1831 1 2

2.75 0.7689 1 2

3.00 0 1 2

3.25 0.6683 1 2

3.50 0.1311 1 2

3.75 0.5733 1 2

4.00 0 1 2
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Note that for LEVEL >5 convergence occurs by th e second iteration, 12.



II. The Effect of Channel Errors on DM Encoded Video Signals

ABSTRACT

Although Adaptive Delta Modulation (ADM) systems have found wide

application in source encoding of voice, problems arise when they are

used as source encoders for video signals. The difficulty in using an

ADM ih video applications results from the fact that transmission error s,

in ADM channels cause permanent dic. shifts in the received video

signal. These level shifts inflict serious damage to the quality of the

received picture by producing bright (or dark) horizontal streaks across

the' picture.

A two step technique is proposed for overcoming the above

difficulty. The first step requires the encodOr to periodically send

information about the signal level to the receiver via a PCM word.

The second step involves a line to line correlation technique which

detects error streaks and replaces the streak by the average intensity

of the adjacent lines.

INTRODUCTION - THE SONG ADM

The Song ADM shown in Fig 1 was used to encode the pictures'.

presented in this paper. The following is an explanation of the Song

.ADM algorithm. The analog video signal, S (t), is sampled at the kth

instant of time, and converted into a digital signal Sk. ' This signal is

then compared to Xk . The output, ek , is obtained from the relation.

ek = sgn (Sk - Xk) (1)

and is transmitted over the channel. Xkl referred to as the transmitter

estimate, is obtained using the recursive equation
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Xk - - + k (2)

and Ak, referred to as the current step size, is generated by

A k { k-1 (k-1 + k-2) Ak-1 I

2A ek_- I k- 1 ) < 2A (3)

where A is a constant and is the minimum step-size of the system.

The decoder for the Sig ADM is just the feedback loop of the

encoder. the decoder reconstructs the eStimate, Xk , from the e k pulse

train and converts Xk to an analog signal A (t). The quality of the

received picture as compared to that of the transmitted picture depends

upon how closely S (t) approximates S (t) the original signal.

The effectiveness of the Song ADM as a video source encoder an be

judged by.comparing the picture in Fig 2, encoder by PCM, with the

picture in Fig 3 encoded by the Song ADM. In Fig 3, a, b, and c the

sampling rate of the ADM is 5, 4 and 3 times the nyquiest rate of the

video signal, respectively. Since the Song ADM transmits 1 bit per

sample the number of bits per pixel in Fig 3a, b and c is also 5, 4 and 3.

At these sampling rates the Song ADM produces pictures siimilar in

quality to PCM.

If noise is introduced into the channel, the ADM encoded picture

severely degrades, as shown in Fig 6b. This same noise rate would

have little effect on the PCM channel. If the Song ADM is to be used

as a video encoder over a noisy channel an error correcting scheme

must be included to reduce the effects of channel errors on the re-

ceived pitcure. The rest of this paper concerns itself with analyzing

the effects of channel errors on the Scing ADM and presents an error

correcting scheme which minimizes the effects of channel errors.
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EFFECTS OF CHANNEL ERRORS ON THE SONG ADM

The response of the Song ADM to a voltage step input in the presence

of channel errors is shown in Fig 4. The solid lines represent the signal,

Xk, at the decoder in the absence of channel errors, while the dashed

lines represent the signal, x k , corrupted by a single channel error. It

is obvious from Fig 4 that channel errors cause a permenent and signi-

ficant DC shift in the received signal. We also observe that 50% of

the time channel errors cause errors in the step size, Ak, of the ADM

(see Eq 3 and Fig 4).

We will now show that step size errors in an ADM become self

correcting if the ADM tracks a constant DC level and if the constant

DC level persists long enough. Observe from Fig 4 and Eqs 1, 2 and 3

that the step size, Ak , will decrease while the ADM is tracking a

constant DC level. If the constant signal level persists long enough

the ADM reaches the minimum step size, A, for both the corrected

signal and the error free signal. When this condition occurs, the step

size error has corrected itself since both the corrupted signal and error

free signal will have the same step size namely 6 ., the minumum step

size.

The number of transmitted bits, (ek), that will reach the receiver

after the occurrence of a channel error, but before the step size corrects

itself, has an upper bound for a Song ADM tracking a constant DC level.

This upper bound can be shown to be

N
-2

(.75) A/ A k

or2 In A/4 k (4)r N.75
In .75
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where N = the number of transmitted bits until step size correction occurs.

For the pictures shown in Fig 6 the worst case parameters for Eq 4,

are A = 1 and 'a = 31 and yield an N equal to 24.
max

Since there are five bits per pixel in the pictures of Fig 6, any step

size error which might occur will be corrected whenever 5 pixels in a

row have the same value. Of course, most step size errors will not

occur under the worst case conditions and will be corrected sooner.

Several pixels of the same value in a row are a common occurence in

a picture; thus step size errors are undetectable in Fig 6.

ERROR CORRECTING ALGORITHM

The preceeding discussion has shown that channel errors effect

delta modulated encoded video signals by altering the DC level of the

demodulated signal. A two part correction algorithm is proposed to

minimize theeffects of the channel errors on the video signal.

PART I

The first step in the correction process showh in Fig 5 reduces the

light and dark bands of Fig 6b to short streaks as in Fig 6c. This is

accomplished by sending to the receiver the value of the transmitter' s

current estimate, xk , (as a PCM codeword) after every i delta modulator

bits have been transmitted. Upon receiving x k , the receiver modifies

its own current estimate to agree with xk. Once the receiver' s current

estimate agrees with the transmitter' s current estimate, all DC shifts

caused by past channel errors are eliminated from future estimates.

However, DC shifts caused by past channel errors are not eliminated

from past receiver estimates. Thus, a single channel error may still

cause a DC shift in at most i 'consecutive receiver estimates with this

type of correction algorithm.
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To implement this correction algorithm the channel bit rate must be

increased to accommodate the periodic sending of the transmitters

estimate. If the bit rate of the channel without correction is f , the

sampling rate of the delta modulator, then the new channel bit rate

f' is given by
S

fs = s (1 + -)  (5)

where 'b' is equal to the number of bits of the transmitters estimate

that is sent to the receiver as a PCM word.

From Fig 5 it is apparent tshat i should be as large as possible and

b as small as possible to minimize f' . i is upper bounded by the desired
S

degree of correction required in the picture since the length of the remain-

ing error streaks in the corrected received picture grows linearly with i. b

is lower bounded by the accuracy of the correction. If b is less than the

total number of bits in the transmitter estimate, bT, (in Fig 5 b = 4 and

bT = 6), then the correction algorithm requires that after-every i delta

modulated bits have been sent, the 'b' bit PCM estimate will be sent

to the receiver. The next lowest significant bit present in the transmitters

estimate and the receivers estimate will be momentarily set to one. All

bits of lesser significance in both the transmitters and receivers estimate

will be momentarily reset to zero. This has the effect of introducing an

error into the estimates of the transmiLtar and receiver. It can be shown
-b-I

that the amplitude of the error is proportional to 2 and the error will

last for M delta modulator samples where M is upper bounded by

M
N bTb-l

E 1.5 < 2
n= 0
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simplifying yields:

bT-b-2
M < 2'5 In (2 + 1) (6)

For the pictures shown in Fig 6 b T = 6, b = 4 and from Eq 6, M = 2.

Thus, the error introduced by the error correction algorithm will correct

itself in two delta modulator samples or one-half a pixel and have a

maximum amplitude of two quanti ation levels. Such a small error

of such short duration cannot be seen in the pictures of Fig 6.

PART II

The second part of the error correction algorithm detects the re-

maining error streaks left by the first part of the correction algorithm

and replaces the streak by the average intensity of the adjacent lines.

This is accomplished by comparing each pixel on a line with the pixel

above and below. If the absolute value of the pixel in the middle exceeds

both the pixel above and below by a prescribed threshold, the pixel will

be replaced by the average value.of the pixels above and below.

The setting of the threshold has an effect on the quality of the

corrected picture. If the threshold is set too low, the picture will

lose definition because too many pixels which are not part of an error

steak will be replaced by the average value of the pixels above and

below. If, on the otherhand, the threshold is set too high many error

stmeaks will go undetected. Using a threshold setting of one-eighth the

maximum value of a pixel, the picture in Fig 6c was transformed to that

shown in Fig 6d. Note that some error streaks are still present in Fig 6d,

and a slight loss of definition is observed. However, the general quality

of the picture has been increased by the removal of the most severe arror

streaks.
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CONCLUSIONS

Delta modulators can be used to encode video signals. The

pictures that result from these signals are similar in quality to

pictures that result from PCM -encoders. The problem of channel

errors causing 'hicture streaks " in delta modulated encoded video

signals has been minimized by the algorithm presented in this

paper.
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