TEST REPORT NO. 24121-2

FOR

LK21T1 S/N V-3 INFRARED DETECTOR

FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND

CONTRACT NO. NAS5-21961

BY

HONEYWELL INC.
RADIATION CENTER
2 FORBES ROAD
LEXINGTON, MASSACHUSETTS 02173
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Introduction</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>DATA SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>NOISE SPECTRUM FROM 10 HZ TO 50 KHZ</td>
<td>4</td>
</tr>
<tr>
<td>$D^*_{\lambda P}$ VS. BIAS CURRENT</td>
<td>6</td>
</tr>
<tr>
<td>RELATIVE SPECTRAL RESPONSE 2 TO 16μM</td>
<td>7</td>
</tr>
<tr>
<td>RESPONSIVITY VS. MODULATION FREQUENCY</td>
<td>16</td>
</tr>
<tr>
<td>RESPONSIVITY VS. DETECTOR TEMPERATURE</td>
<td>18</td>
</tr>
<tr>
<td>$D^*_{\lambda P}$ VS. MODULATION FREQUENCY</td>
<td>20</td>
</tr>
<tr>
<td>$D^*_{\lambda P}$ VS. DETECTOR TEMPERATURE</td>
<td>22</td>
</tr>
<tr>
<td>D^*_{λ} VS. WAVELENGTH 6.7 TO 16μM</td>
<td>24</td>
</tr>
<tr>
<td>DETECTOR RESISTANCE VS. TEMPERATURE</td>
<td>26</td>
</tr>
<tr>
<td>DETECTOR TEST APPARATUS DESCRIPTION</td>
<td>28</td>
</tr>
<tr>
<td>HANDLING AND USE PRECAUTIONS</td>
<td>30</td>
</tr>
</tbody>
</table>
INTRODUCTION

The detector reported herein was fabricated to determine the feasibility of atmospheric sounding from synchronous orbit for water vapor and carbon dioxide.

The device was extensively tested both before and after a 24-hour soak at 50°C and relative humidity of 95 percent. No degradation in performance as a result of the "soak" was observed. Although not intended for space flight use, this detector was fabricated to Honeywell's High Reliability Workmanship Standards.

The device contains a single Photoconductive HgCdTe element designed to operate in the six to fifteen micron region.
DEVICE DESCRIPTION

HRC Detector Identification
LK21T1 S/N V-3

HRC Element Identification
40371S136D10

Type of Detector
Photoconductive HgCdTe

Date of Manufacture
June, 1974

Detector Operating Temperature Range
80°K to 120°K

Field of View
90°

Element Active Area Length
0.0048 Inches

Element Active Area Width
0.0049 Inches

Detector Resistance at Room Temperature
14.6 Ohms

Optimum Bias Current
4.0 Ma
<table>
<thead>
<tr>
<th>Temp. (Kv)</th>
<th>Temp. Freq. (Hz)</th>
<th>Signal (mv)</th>
<th>Noise (mv)</th>
<th>Ampl. Gain x10^6</th>
<th>D^x 10^6</th>
<th>D^x 11, 0^6</th>
<th>D^x 14, 0^6</th>
<th>D^x 14, 25^6</th>
<th>λp (microns)</th>
<th>R^P (volts/ watt)</th>
<th>RMIN (volts/ watt)</th>
<th>R^6.7/ R^P</th>
<th>Bias Current (ma)</th>
<th>Volt. Drop (mv)</th>
<th>Power (mw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>2K</td>
<td>2.10</td>
<td>.031</td>
<td>4.70</td>
<td>1.00</td>
<td>1.20</td>
<td>1.53</td>
<td>1.12</td>
<td>.995</td>
<td>11.0</td>
<td>2370</td>
<td>60%</td>
<td>4</td>
<td>137</td>
<td>.55</td>
</tr>
<tr>
<td>100</td>
<td>2K</td>
<td>1.65</td>
<td>.026</td>
<td>4.70</td>
<td>.958</td>
<td>1.12</td>
<td>1.29</td>
<td>1.09</td>
<td>.905</td>
<td>11.0</td>
<td>2850</td>
<td>63%</td>
<td>4</td>
<td>132</td>
<td>.53</td>
</tr>
<tr>
<td>105</td>
<td>2K</td>
<td>1.28</td>
<td>.025</td>
<td>4.70</td>
<td>.726</td>
<td>1.17</td>
<td>.794</td>
<td>.632</td>
<td>11.0</td>
<td>2310</td>
<td>54%</td>
<td>4</td>
<td>128</td>
<td>.51</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>750</td>
<td>2.10</td>
<td>.038</td>
<td>4.70</td>
<td>.816</td>
<td>1.25</td>
<td>.914</td>
<td>.812</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>750</td>
<td>1.65</td>
<td>.032</td>
<td>4.70</td>
<td>.778</td>
<td>1.05</td>
<td>.886</td>
<td>.735</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>750</td>
<td>1.28</td>
<td>.030</td>
<td>4.70</td>
<td>.605</td>
<td>.975</td>
<td>.662</td>
<td>.527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Actual measurements made at Amplifier Output with 6 Hz bandwidth Wave Analyzer

D^xA (λ, Hz, θ, 90°) in cmHz^1/2w^-1
Test Report No. 24121-2

Noise Spectrum

LK21T1 S/N V3

Pre Soak 105°K I_{B}=4\text{mA}

Detector Noise (Nanovolts/Hz^{1/2})

Frequency (Hz)
Noise Spectrum

LK21T1 S/N V3 Post Soak 105°K $I_B=4\text{ma}$

Detector Noise (Nanovolts/Hz$^{1/2}$)

Frequency (Hz)

-5-
PRE SOAK

D*λ vs Bias, Responsivity (R_λ) vs Bias

![Graph](attachment:image.png)

POST SOAK

D*λ vs Bias, Responsivity (R_λ) vs Bias

![Graph](attachment:image.png)
Test Report No. 24121-2

Relative Spectral Response

Pre Soak Temperature 80°K

Post Soak

Wavelength (microns)
Relative Spectral Response

Pre Soak Temperature 85 °K

Relative Response

Wavelength (microns)

Post Soak

Relative Response

Wavelength (microns)
Relative Spectral Response

Pre Soak Temperature 90 °K

Post Soak
Relative Spectral Response

Pre Soak Temperature 95°K

Wavelength (microns)

Post Soak

Wavelength (microns)
Relative Spectral Response

Pre Soak Temperature 100 °K

Relative Spectral Response

Post Soak
Relative Spectral Response

Pre Soak Temperature 105 °K

Post Soak
Relative Spectral Response

Pre Soak Temperature 110 °K

Post Soak
Relative Spectral Response

Pre Soak Temperature 115°K

Post Soak
Relative Spectral Response

Pre Soak Temperature 120 °K

Post Soak

Wavelength (microns)
Responsivity vs Modulation Frequency

Post Soak 105 K I_B=4mA

Responsivity, R_L (Volts/Watt)

Modulation Frequency (Hz)
Responsivity, R_λ vs Detector Temperature

Temperature (°Kelvin)

Responsivity, $R_\lambda \times 10^3$ (Volts/Watt)
Responsivity, R_λ vs Detector Temperature

Post Soak $I_B=4\text{ma}$

Temperature (°Kelvin)

Responsivity, $R_\lambda \times 10^3$ (Volts/Watt)
Test Report No. 24121-2

D* vs Modulation Frequency

Pre Soak
105°C
I_B = 4ma

Modulation Frequency (Hz)

-20-
Test Report No. 24121-2

\(D^*_P \) vs Modulation Frequency

- Post Soak
- 105°K
- \(I_B = 4 \text{ma} \)

Modulation Frequency (Hz)

- Original page is of poor quality
$D^*_\lambda P \text{ vs Detector Temperature}$

Pre Soak $I_B = 4 \text{ ma}$

$T_J = \text{T0}$

$D^*_\lambda P \times 10^{10} \text{ (cm}^2\text{Hz}^{1/2} \text{W}^{-1})$

Temperature ($^\circ\text{Kelvin}$)
Test Report No. 24121-2

$D^*_\lambda p$ vs Detector Temperature

Post Soak $I_B = 4$ ma

Temperature (°Kelvin):

80 85 90 95 100 105 110 115 120

$D^*_\lambda p \times 10^{10}$ (cmHz$^{1/2}$/s$^{-1}$)

$D^*_p(2\times 2K, 1.90^\circ)$

$D^*_p(2\times 750, 1.90^\circ)$
\(\frac{D_{x}^{*}}{\lambda P} \text{ vs Wavelength} \)

Pre Soak 105°k \(I_B = 4 \text{ ma} \)

Wavelength (Microns)
$D^* \lambda_p$ vs Wavelength

Post Soak 105°K $I_B = 4$ ma
Detector Resistance vs Temperature

Pre Soak \(I_B = 4 \text{ mA} \)

Temperature (°Kelvin)

-26-
Detector Resistance vs Temperature

Post Soak $I_B = 4 \text{ ma}$
LIST OF TEST EQUIPMENT

The following equipment or its equivalent was used to test the detector electrical characteristics:

1. Blackbody source - IRI Model 403
2. Blackbody temperature controller - IRI Model ISL 101R
3. Wave analyzer - HP Model 302A
4. Integrating VTVM - IRI Model 602A
5. Oscilloscope - HP type 547
6. Preamplifier and battery bias supply - HRC design
7. 1 KHz sine wave chopper - HRC design
8. Spectrometer - Perkin Elmer Model 112
9. Variable temperature dewar - HRC design
Calculation of D_{bb}^*

Detector Temperature
Chopping Frequency
Detector Area (A_D)
Orifice Diameter (d_B)
Blackbody Temperature (T_B)
Background Temperature (T_c)
Emissivity
 Blackbody (ϵ_B)
 Chopper (ϵ_α)
Noise Bandwidth (Δf)
Chopper RMS Factor (K_1)
Detector to Orifice Distance (D)
Stefan-Boltzman Constant (K_2)
RMS Noise Correction (K_3)
Amplifier Gain (same for signal & noise)

D^* Formula:

$$D_{\text{bb}}^* = \frac{4D^2 (\Delta f)^{1/2}}{K_1 K_2 K_3 d_B^2 (\epsilon_B^4 T_B^4 - \epsilon_C^4 T_c^4)} \times \frac{S}{A_D \sqrt{N}}$$

$$\text{Resp}_{\text{BB}} = \frac{4D^2}{K_1 K_2 d_B^2 (\epsilon_B^4 T_B^4 - \epsilon_C^4 T_c^4)} \times \frac{S}{A_D G}$$

DETECTOR READOUT CIRCUITRY
HANDLING AND PRECAUTIONS FOR HRC PRECISION INFRARED DETECTORS

This precision infrared detector was built in the laboratories of the Honeywell Radiation Center with the utmost care, using some of the most modern technology. However, as with any precision piece of equipment, there are tolerance limitations to which it can be subjected physically, thermally, and electrically.

Operating Temperature: The detector is designed to operate at temperatures between 80 and 120° Kelvin.

Window and Housing: Parts may crack or break if subjected to high impact. Always transport the detector in the container in which it was shipped.

Detector Element Burnout: The detector element dissipates only milliwatts of power, therefore, do not over bias it.

A. Caution: If a lead from the detector breaks contact with bias circuit:

1. Turn off bias and amplifier power source.
2. Discharge coupling capacitor by shorting test leads.
3. Re-connect detector element to bias supply.
4. Turn bias power on again.

B. When the detector is connected to any power source, there must be no voltage differential between the contacts until after the circuit is complete.

C. Do not use any amplifier circuit that may generate current surges in the detector.

D. The detector should be operated only in a cooled condition. If the cooling unit should malfunction without operator's knowledge, Honeywell suggests that a current voltage limiter be installed in the bias circuit to prevent burnout when the detector element warms.

Normally, meters used to measure resistance have a 1.5 volt battery. The current generated by the battery is sufficient to burnout the detector. Therefore, if resistance must be measured, observe the following:
A. Use Wheatstone bridge with an external battery to produce a current/voltage level compatible with Honeywell's test results.

B. When the detector is in an operating circuit or system, use a VTVM with selector switch set to VOLTAGE. Read voltage drop across detector and compute resistance by Ohm's Law. Be cautious of power ground loops between the VTVM and detector circuitry. Connect common ground first, then connect VTVM to high side of detector. If VTVM is of a high impedance, use a series limiting resistance in VTVM lead. Resistance values up to 1\% of VTVM input impedance will cause no voltage reading errors.

If in usage, it is necessary to expose this device to elevated temperatures, do not exceed +65°C.

Lead Soldering: Use a low melting temperature solder on leads attached to the detector pins. The detector wires are soldered to the pins with 115°C melting temperature solder. The feed thru pins are extremely short. Do not allow the temperature to build up to the point where detector wires become unsoldered. Use a well grounded iron or heat tip to melt solder then disconnect power cord from socket prior to soldering the leads to the pins.