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FOREWORD

This report was prepared by The Boeing Aerospace Company, a division of

The Boeing Company, Seattle, Washington for the Langley Research Center

of the National Aeronautics and Space Administration. The strength analysis,

design, and correlation with tests of advanced beaded and tubular structural

panel specimens is presented. The work is part of a comprehensive program

to develop advanced beaded and tubular structural panel designs and static

strength prediction methods under contract NASI-10749, "Design and Testing

of Advanced Structural Panels." This program was under the cognizance

of Herman L. Bohon and John L. Shideler of the Thermal Protection Section

of the Structures and Dynamics Division, Langley Research Center.

The principal investigator on this program was Bruce E. Greene. The tech-

nical leader was Max D. Musgrove, reporting to the program manager,

John L. Arnquist, Chief of the Structural Methods and Allowables organization.

This report was prepared by Bruce E. Greene in cooperation with John L.

Shideler.

The art work and drafts for this report were prepared by Gary Jensen.
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Abstract

A study was conducted to exploit the efficiency of curved elements in the

design of lightweight structural panels under combined loads of axial com-

pression, inplane shear, and bending. A summary of the total program

(analysis, fabrication and test) is presented in document NASA CR-2514.

The report presented herein is a supplement to the summary document and con-

tains detailed analytical procedures for optimum panel design, static

strength analyses, results of panel design studies, and correlation of theory

with test results. Detailed descriptions of the fabrication development and

of the panel tests are contained in supplementary documents NASA CR-132482,

and NASA CR-132515, respectively.

The work reported herein has resulted in a verified analysis and design pro-

cedure for one of the panel configurations studied. Typical design curves

for this configuration are presented. Comparison of test results with theory

for the other three configurations shows poor agreement, and a verified

design procedure for these concepts was not attained. The need for further

analytical effort is discussed.
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NOMENCLATURE

A area of bead

A^ area of bead flute

A area of bead webw
B width of panel

b width of bead, width of tube, at panel middle

plane

b, projection of diagonal width on panel mid plane

(see Fig. 12-2)

b^ width of bead flute

b width of bead webw
C.F. correlation factor

d diagonal width (see Fig. 12-2)

D ,D2,D3 orthotropic plate stiffness coefficients in

panel stability equations

D',Dl,Dl orthotropic plate stiffness coefficients in

diagonal buckling equations

E modulus of elasticity

E secant modulussec
E^_ tangent modulus
tan

f width of flat

f, ,f ,f bending, compression, shear stresses
D O S

f. stress intensity, octrahedral shear theory

f ,-1 maximum shear stress in flat (single sheet
Si Xd.L

configurations only)

F, ,F ,F bending, compression, shear stresses at failure
D C S

(prime denotes equivalent elastic stress)

F , ,F ,F bending, compression, shear local buckling
CD CC OS

critical stresses of circular arc elements

F. stress intensity at failure (prime denotes equivalent

elastic stress)

F ,, maximum shear stress in flat at failure
sflat
F critical stress (prime denotes equivalent elastic

stress)

VIII



NOMENCLATURE (Cent'd)

F ,F compression, shear critical stresses (primeccr SCL
denotes equivalent elastic stress)

F compression yield stress

F ,Ff compression, shear local buckling critical

stresses of flat elements

F proportional limit stress, threshold of

inelastic stress region

G shear modulus

g function of structural element geometry

h bead height

hd height of diagonal (see Fig. 12-2)

hf depth of bead flute

h arc height of bead web

h (see Fig. 12-2)z
I moment of inertia of one bead or tube about

i

panel mid plane axis

I, moment of inertia of panel cross section

associated with diagonal width, 'd, about

diagonal axis (see Fig. 12-2)

If moment of inertia of bead flute about its

centroid axis parallel to panel mid plane

I moment of inertia of bead web about itsw .
centroid axis parallel to panel mid plane

J average torsional constant per unit width

k,k buckling coefficientss
L Length of panel

M panel center bending moment per unit width
X

(in-lb/in.)

N panel axial compression load, Ib/in.
X

critical axial compression load for panel

instability

N , critical axial compression load for diagonal

buckling

IX



NOMENCLATURE (Cont'd)

N panel shear load, Ib/in.xy
N critical shear load for panel instabilityxycr v

N , critical shear load for diagonal buckling

n shape factor in Ramberg-Osgood stress-strain law

p pressure, psi; width of panel between crests

of alternate beads (see Fig. 12-1)

Q statical moment of one bead about panel mid

plane axis

R radius

R ,R ,R stress ratios of actual stress to critical stressD C S
for bending, compression, shear (prime denotes

equivalent elastic stress ratio)

R,. radius of bead flute

R radius of bead webw
s developed length of panel cross section over

the width p

s arc length of circular arc element of panel

cross section

s, developed length of panel cross section
a

associated with diagonal width, d

t thickness

t equivalent extensional thickness

U utilization factor (prime denotes equivalent

elastic value)

y distance from panel mid plane to centroid of

bead (circular arc) cross section

yf,y distance from panel mid plane to centroid of

bead flute, web

y panel center deflection produced by pressure

load only

Z panel curvature parameter in local shear buckling

analysis



NOMENCLATURE (Cont'd)

ot half angle of circular bead arc

af half angle of bead flute arc

a half angle of bead web arc

3 effective aspect ratio of rectangular, orthotropic

plate

Y,Yv»Y correlation factors used in bead crippling

analysis

n.n. plasticity correction factor (numerical sub-

script, ±, identifies equation used; see Eqs.

12-54)

n ,n plasticity correction factor for compression,

shear

n ,TI plasticity correction factors calculated fromsec tan v

secant modulus, tangent modulus

6 angle defining diagonal width, d (see Fig. 12-2)

6 inclination of bead web radius from vertical ato
crest of bead (see Fig. 12-2)

9 inclination of bead web chord from verticalw
(see Fig. 12-2)

v,v ,v Poisson's ratio, subscripts x and y refer to

principal directions in an orthotropic plate

a ,a normal stress in x and y directionsx y J

T shear stress on an x or y facexy y

$ angle of bead web intersection with panel mid plane

co half angle of bead web arc intercepted by diagonal

axis, d (see Fig. 12-2)
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SUMMARY

A study was conducted to exploit the efficiency of curved elements in the

design of lightweight structural panels under combined loads of axial com-

pression, inplane shear, and bending. Governing analytical static strength

and stability equations and material and geometric constraint equations were

incorporated in a random search-type optimization computer program to identify

minimum weight designs for several potentially efficient concepts. Buckling

tests were conducted on subscale panels to identify local failure modes and

provide for modification of local buckling theory where required. Full scale

40 x 40 inch (1x1 meter) panels were tested under combined loading to

obtain failure data for correlation with theory. Modifications to failure

theory were made as required. A nondestructive force-stiffness test tech-

nique was used in conjunction with the Moire' grid monitoring technique to

provide extensive test data from a comparatively few test panels.

A summary of the total program (analysis, fabrication and test) is presented

in document NASA CR-2514. The report presented herein is a supplement to the

summary document and contains detailed analytical procedures for optimum

panel design, static strength analyses, results of panel design studies, and

correlation of theory with test results. Detailed descriptions of the fabri-

cation development and of the panel tests are contained in supplementary

documents NASA CR-132482, and NASA CR-132515, respectively.

The work reported herein has resulted in a verified analysis and design pro-

cedure for one of the panel configurations studied. Typical design curves

for this configuration are presented. Comparison of test results with theory

for the other three configurations shows poor agreement, and a verified

design procedure for these concepts was not attained. The need for further

analytical effort is discussed.



INTRODUCTION

For several years Langley Research Center and other NASA agencies have been

investigating structural concepts which use elements with curved cross sections

to develop beaded or corrugated skin panel structure as indicated in References

1 through 6. The curved sections exhibit high local buckling strength which

leads to highly efficient structural concepts. These concepts can be applied

where a lightly beaded external surface is aerodynamically acceptable or where

the primary structure is protected by heat shields. The corrugated nature of

the panels makes them especially attractive for high temperature application

because controlled thermal growth is permitted which minimizes thermal stress.

The technology resulting from this program is applicable to various formable

materials and to many areas such as launch vehicles, space vehicles and hyper-

sonic aircraft.

A study was conducted to develop lightweight structural panels designed for

combined loads of axial compression, inplane shear, and bending due to lateral

pressure. Governing analytical static strength and stability equations for

panels under combined load, and material and geometric constraint equations

were incorporated in a random search type optimization computer program des-

cribed in Reference 7 to identify minimum weight designs for several potenti-

ally efficient concepts. However, in order for these concepts to realize

their analytical potential, all of the significant failure modes had to be

properly recognized and accounted for. Consequently, a major fabrication and

test development effort was initiated. Buckling tests were conducted on sub-

scale panels to identify local failure modes and provide data for the modifi-

cation of local buckling theory where required. Full scale 40 x 40 inch

(1x1 meter) panels were tested under combined loading to obtain large panel

failure data for correlation with theory. A nondestructive force-stiffness

test technique described in Reference 8, was used in conjunction with the

Moire' grid monitoring technique to provide extensive test data from a com-

paratively few test panels. A summary of this study (analysis, fabrication

and testing) is presented in document NASA CR-2514. Detailed descriptions of

the fabrication development and of the panel tests are contained in supple-

mentary documents NASA CR-132482 and NASA. CR-132515 respectively.



The report presented herein describes the analytical methods developed for

optimum design and for static strength analysis of beaded and tubular panels.

Preliminary design trade studies were conducted to determine relative effi-

ciencies of different panel configurations. From these studies four final

panel designs were selected for further development. Correlation of the

analysis with test data from local buckling specimens and from full scale

panel tests of these four panel designs is presented and discussed.



11.0 DESIGN AND ANALYSIS PROCEDURES

The design/analysis procedure consists of the following basic tasks:

1) Identification of buckling and failure modes of beaded and tubular

panels.

2) Development of analytical methods for predicting buckling and

failure loads for the modes identified.

3) Incorporation of analytical equations into computer codes for

optimum design (OPTRAN) and for panel strength prediction (PANAP).

4) After design, fabrication and testing of panel specimens,

comparing the analysis with test results to determine if modifi-

cations are necessary to obtain the desired degree of correlation.

The, results of the first two tasks constitute the static strength analysis,

which is presented in detail in Section 12 of this document. The computer

codes developed in the third task are discussed briefly in Sections 11.1 and

11.2. The results of the fourth task are discussed separately in Section 14,

CORRELATION WITH TEST DATA.

11.1 Optimum Design (OPTRAN)

Minimum weight panel designs are obtained using a computer code called OPTRAN

(OPTimization by RANdom search technique). This code was derived from experience

with the Boeing developed AESOP program (Reference 11-1) in optimizing panel

and cylinder designs. The random point search method of the AESOP program was

further developed by Laakso (Reference 11-2) into the OPTRAN code. Designs

are established by random selection of values for the dimensional parameters

(thickness, bead spacing, radius, etc.) within specified search ranges.

Observance of minimum gage or bead spacing design constraints is accomplished

by proper specification of the search ranges. If a design is found that has

lower weight than the best preceding design, failure mechanism constraints

are then checked. If all constraints are satisfied then the design becomes



the current best design. The process is repeated until a specified number

of good designs are found, which completes a search cycle. Design refine-

ment is achieved by resizing the parameter search ranges and conducting

another search cycle; the search cycles are repeated until the weight change

between successive cycles is within a specified tolerance which signifies

convergence to an acceptable optimum design. This search technique was found

to be simple, reliable and adequate.

An individual OPTRAN code is specialized for each panel type by adding code

modules describing panel geometry, section properties and failure mechanisms.

OPTRAN may evaluate thousands of panel configurations in the process of

arriving at a single optimum design. Therefore, for the sake of economy,

static strength equations are coded in the simplest forms available consistent

with accuracy. The static strength equations which are incorporated in

the OPTRAN panel codes are discussed in detail in Section 12.

11.2 Strength Predictions (PANAP)

The PANAP (PANel Analysis Program) computer codes were developed under this

program to obtain analytical strength predictions for each of the three basic

panel types selected for final development in this program. These codes use

the same static strength equations incorporated in OPTRAN. They give ultimate

loads and panel stresses associated with each failure mode for a specific

dimensional configuration and for any number of arbitrary load conditions.

Input to the PANAP codes consists of geometric parameters describing the cross

section and panel dimensions, and descriptions of load conditions. Geometric

parameters may be obtained directly from an OPTRAN design, or may be measure-

ments from test specimens. Load conditions are specified by the ratios of

compression, shear, and lateral pressure. The option is available to specify

the lateral pressure as a constant value. The PANAP codes are used to obtain

the analytical panel strengths appearing in the final data correlations

(Section 14.2).



12.0 STATIC STRENGTH ANALYSIS

The basis for panel design optimization is the static strength analysis. This

analysis can be considered in five parts as follows:

1) Calculation of section properties and other geometric

parameters needed for stress and stability analyses.

2) Stress analysis for determining detailed stress distributions

as functions of applied loads and panel geometry.

3) Failure mode analysis to determine critical loads for panel

general instability, local buckling, and material strength.

4) Interaction analysis for failure criteria under combined loads.

5) Plasticity corrections for modifying failure criteria when

elastic failure mode analyses indicate failure stresses that

are beyond the material proportional limit.

These parts of the static strength analysis are discussed in detail in the

following subsections.

12.1 Section Properties

Panel Cross Section Geometry

Before calculations of panel stiffnesses can be made, a complete geometric

description of the panel cross section is required. This description begins

with the identification of the design parameters, the values of which are

selected randomly as independent variables in the OPTRAN code to establish

a panel design. From these independent design parameters a more extensive

set of dependent geometric parameters are calculated prior to calculation

of stiffnesses and other section properties.



Independent Parameters - The independently selected design parameters listed

below are identified in Figure 12-1 for the various panel configurations.

Type 1 and Type 2:

t, R, a, f

Type 1A and Type 2A:

t, b, h, b^, h^, f, <{>

Dependent Parameters - The necessary additional geometric parameters are

calculated from the independent design parameters according to the following

equations. These are identified in Figure 12-1 and Figure 12-2.

Type 1 and Type 2:

b = 2R sin a

p = b + f

h = R(l - cos a)

s = 2R a + f (12-1)

- _ x sin a Ny = .R ( cos a)

Type 1 only:

b, = p - 2R sin 6 (0<6< -r- a)
a J

h, = 2R(cos 6 - cos a)
d

h = f h,/d
z d

a) = cos"1 (b,/d) - 0
d

s, = 2R(a - 6) +f (12-2)
a



TYPE 1
(TYPE 1F f + 0)

TYPE 1A

'W

TYPE 2

TYPE 2A

Figure 12-1: BASIC GEOMETRY OF BEADED AND TUBULAR PANEL CONFIGURATIONS



Figure 12-2: DETAILED GEOMETRIES OF SINGLE-SHEET CONFIGURA TIONS FOR CALCULA TION OF
SECTION PROPERTIES



Type 1A and 2A:

P = b_+ f

bw

9 = cos"1 (h/b )w w

a = d> - IT/2 + 0w w

af = 2tan~1 (2hf/bf)

hw " "2% tan (aw/2) (12~3)

R = h /(I - cos a )
W W W

Rf = hf/(l - cos af)

sin a (b - br)
R ( —~ cos « )L\ \ t»VSO <Jb / rtlw a w 2b
sin

h - Rf(— cos a,) (12-3)f af f

Type 1A only:

b. = p - 2 R,. sin a,. + 2R (sin 6 - sin 6), (6 <9<a )d r f f w o o w

h, = 2R (cos 6 - cos <J>)d w
2 2

d = (b^ + hi)d d

h = f h,/dz a

a) = cos (b,/d) - 9d

sd = 2Rw(<J> - 6) + f (12-4)

Bead and Tube Properties

Areas, statical moments, and moments of inertia of individual beads and tubes

are required for determining panel stiffnesses and for other purposes in

the analysis. These are .calculated as follows.

10



Type 1:

A = 2aRt

Q = Ay 2

I = R3t (a + sin a cos a - 2sln a ) + Ay 2 (12-5)

Type 2:

A = 2oRt 2 -i

I = 2[R3t(a + sin a cos a - 2s^n ") + Ay 2J (12-6)

Type 1A:

A = 4 R a tw w w

A = 2R a t

Q - Vw + Af^f , . 2
, 2sin af

If = R^t (af + sin af cos af -) (12-7)

„ 2sin2a
I , = R t (a + sin a cos a -) (12-7)w l . w w w w aw

3
I 0 = R t (a - sin a cos a )w2 w w w w

I = (I - + I _) + (I - - I .) cos (ir - 28 )
w wl w2 wl w2 w

I = ! . + ! + Afyl + A y2

f w fjf wyw

Type 2A:

A = 4R a tw w w

A = 2R aft

2
, 2sin a,.

If = R,t (a,. + sin a., cos a )
r i r I L ^ f

2
, 2sin a

I . = R t (a + sin a cos a ) (12-8)wl w w w w aw

11



3
I - = R t (a - sin a cos a )w2 w w w w

I = (I . + I _) + (I . - I ,) cos (IT - 28 )w wl w2 wl w2 w

I - 2(1, + I + A.y2 + Aj2)f w fjf vrw

Orthotropic Plate Bending Stiffness Coefficients

For an orthotropic plate the bending stiffness coefficients are given by

Timoshenko in Reference 12-1, pp. 403-404, as follows:

Dl - <EIV (1 - Vy>

D3 - \ (vxD2 + Vl> + 2(GI)xy ,

For the isotropic case these simplify to,

and

Et3/12(l - v2)

v = v - v (12-10)
A y

Substituting these values into the more general expression above for the

twisting rigidity,

vD

v(EI) (l-v)(EI) - 3

12



which is satisfied only if

Et3
(EI)x - (EI)xy = f| (12-12)

From the foregoing discussion it may be concluded that I in the term

2(GI) of D3 is given by

I = -J2 (12-13)

If the torsional rigidity of the flat, isotropic plate is represented by

the torsional constant per unit width from Roark, (Reference 12-2, p. 176)

3.K-'3J U 3

then

I = J/4 (12-14)

For the single sheet panel configurations, types 1 and 1A, the torsional

constant per unit width is derived from the foregoing equations:

3 ' f ' f (12-15)

where p is the width between crests of alternate beads, i.e., one-half

the full pitch, and s is the developed length of the beaded cross section

over the width p.

For the two-sheet, tubular configurations, types 2 and 2A, the effective

torsional constant must be derived by considering the case of springs in

series where the overall stiffness is the inverse of the sum of the flexi-

bilities, rather than the sum of the stiffnesses. Therefore, although the

torsional rigidity of the tubes is high, the overall twisting stiffness of

the panels is low because of the low torsional rigidity of the flats.

Considering the tubes to be rigid in comparison to the flats, the average

torsional constant per unit width is given by:

13



(12-16)

where b is the width of the tube and f is the width of the flat.

According to Timoshenko (Reference 12-1, p. 404) tests show that v and v inx y
Equations (12-9) can usually be taken as zero. This is assumed to be the

case for both the beaded and the tubular panel configurations. Therefore,

the orthotropic plate bending stiffness coefficients reduce to

Dl - <EI)x

D2 = (EI)y

D3 = 2(GI)xy

Plate bending stiffness coefficients for the beaded and tubular panels are

determined from Equations (12-17) by calculating effective bending stiffnesses

per unit width for (El and (El) from the panel geometries, and obtaining Jx y
from Equation (12-15) and Equation (12-16). Considering the x axis to be

the direction of the principal stiffness (i.e., parallel to the longitudinal

axes of the beads and tubes) these are:

Type 1 and Type 1A

DI - S.
1 P

D
2 12(l-v2) S

D3 = 12lfeo. ' f (12-18)

Type 2 and Type 2A:

D.1

14



where

D.

D* =

j D2 (b+f)

D*f + D*b

2Et . (b+f)
f

2Et

3(lV )

and, for Type 2,

D* = 2.8ing . Et
1 c

c = a - (sina - a cosa)
r 2 3 ~ i
|a(% + cos a) - y sinacosal

and, for Type 2A;

Ef

c (Cl2>2

I11 °22 _

12(l-v2)

C-n = 2oc R +O..R..
11 w w f f

2
C,, = R sin<fi(l-cos2a )+hR af
L£* Vv V7 X X

2
- Rf sinaf(l-cosaf)

2 2 2
C =. R sin <f>(a -!jsin4a )+h R a

3 . 2

(12-19a)

(12-19b)

(12-19c)

(12-19d)

- 2hR^sinaf (1-cosa )+R:isin a (y- - ̂ sin2af)

The stiffness coefficients for the single sheet, beaded configurations,

Equations (12-18) agree with the approximate formulas given by Lekhnitskii

in Reference 12-3, p. 294, for corrugated plates. In Equations (12-19c)

the expression for c is an approximation which is accurate for R/t ratios

and bead angles in the ranges of interest (i.e., R/t >̂  20 and a >̂  30 ).

The expression for D» in Equation (12-19a) is derived on the assumption

15



that the tubes are rigid in torsion relative to the flats, and is valid

only if the tube cross section remains uridistorted. Distortion of the tube

cross section can greatly increase the apparent torsional flexibility of

the tubes, thus causing the effective value of D_ to be much lower than the

value given by this equation. Such distortion of the tube cross section

was observed in tests of the type 2A panels. (See Section 14.2 and Volume

3, Testing.)

Orthotropic plate bending stiffness coefficients for that part of the

panel associated with the diagonal width, d, of the single sheet configura-

tion (see Figure 12-2) are needed to analyze the diagonal mode of buckling.

These are calculated as follows.

Type 1 and Type 1A:

El*
°{ = -d4

D. = 5*L . _!
2 12(l-v2) Sd <12-20a>

„ _' Et3 . Sd
d

At3
where, I, = 21 + I +

d Q z 12(l-v2)

and, for Type 1:

3 2I = R t (o)-3sinu)coso)+2u)cos 01)
c

h2t ~l
f+2R(a-2u-e) I ' j| (12-20b)

and, for Type 1A:

3 2I = R t(u)-3sinu)cosuH-2u)cos oo)
c w

h 2

I = t[~f+2R (<J>-2o>-e)| ' Y| ' (12-20c)
£t L ™ J *~^

16



12.2 Stress Analysis

Stresses are calculated at the panel center from the cross section geometry ,

the panel edge loadings and the panel bending moments, using elementary theory

as follows .

Axial Compression

Calculated at panel centroidal axis

f = N It (12-21)
C X

where, for panel Type 1 and Type 1A,

t = ts/p

and, for panel Type 2 and Type 2A,

t = 2ts/p

Bending

For highly orthotropic panels deflections and bending moments are analyzed with

sufficient accuracy using beam column theory rather than the more complicated

orthotropic plate analysis. Timoshenko (Reference 12-1, pp. 29-30) derives

an amplification factor for approximate analysis of beam column deflections

which is used here. With a uniform lateral load the approximate analysis

is accurate within one-half of one percent for values of the axial load less

than the column critical load. The panel center bending moment is given by,

Mx = pL2/ 8 + Nxyo/(l - N x / N ) (12-22)

The first term in the expression is the center bending moment for a beam with

simple end supports and a uniform pressure load, p. The second term is the

column bending moment produced by the axial load acting on the total panel

center deflection where y is the center deflection produced by the pressure

load p alone plus an assumed initial eccentricity, i.e.,
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yQ - 5pL4/384 H^ + .001L (12-23)

The denominator of the second term in Equation, (12-22) is the amplification

factor which simulates the beam-column effect. As the axial compression

load, N , approaches the column critical load, N , the denominator
x xcr

approaches zero and the second term in the expression for bending moment

increases without limit. The shear load, N , is not considered in cal-xy
culating the amplification factor. The characteristic mode shape for

general instability in shear of these panels has several half waves across

the panel width. Therefore, very little coupling exists between this mode

shape and the deflected shape due to the lateral pressure, which consists

essentially of a single half wave. Because of this small degree of coupling,

and the generally smaller magnitude of shear load compared to compression

in panel design loads, the amplification effect of the shear load has been

assumed negligible.

The compression stress due to bending is calculated at the extreme fiber of

the bead or tube.

fb = Mx cE/Dj. (12-24)

where, for panel Type 1 and Type 1A,

c = h

and for panel Type 2 and Type 2A,

c = h + t/2.

Shear

Shear stress is assumed uniformly distributed throughout the sheet, or sheets,

which form the panel.

Type 1 and Type 1A:

fg = Nx/t (12-25)
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Type 2 and Type 2A:

f = N /2ts xy

The maximum shear stress in the flats, due to bending (single sheet con-

figurations only), is at the panel ends. This is calculated conservatively

from an approximate formula derived from the assumption of sinusoidal

distribution of panel longitudinal bending moment.

Type 1 and Type 1A only:

f = f -HrM EQ/2D Lt (12-27)
Sflat s x l

where M is the maximum bending moment at the panel center and L is the
X

panel length.

Stress Intensity

Stress intensity is determined from octohedral shear theory as given by

Nadai (Reference 12-4) . It is calculated at the extreme fiber of the bead

or tube at the panel center.

r 1/2

- <fcL

21
fi - <fc + V +3Vmax L J

12.3 Failure Mode Analysis

Panel General Instability

Compression - The critical axial compression load for panel instability is

determined from the wide-column Euler buckling equation:

Nxcr = sV1- (12-29)

This equation is sufficiently accurate for highly orthotropic panels where

both the transverse bending and twisting stiffness coefficients, D? and D ,

19



are very small in comparison to the longitudinal bending stiffness coefficient,

DI . All of the panel configurations being considered here satisfy this

criterion. The plasticity coefficient, n,- in Equation (12-29) is a reduction

factor applied when critical stresses are greater than the proportional limit

stress. For the linear elastic case it is equal to unity. A detailed

discussion of plasticity corrections is given in Section 12.5.

The wide column Euler buckling load also appears in the amplification factor

for calculating panel bending moment, Equation (2-22). In this case a

different plasticity correction factor is used because rir i-s a function of

the bending stress, which is not yet available. 'Therefore,

Nxcr = 7|H1D1/L (12-29a)

Shear - The critical shear load for panel general instability is taken from

Timoshenko (Reference 12-1, p. 407):

Nxycr = n2(4k/L)(D1D2) (12-30)

where k is a function of

3 = (L/B) (D2/D1)
1M

1/0 = D3/(D1D2)
1/2

and is taken from the curves in the reference. Equation (12-30) is valid

for 0 >_ 1 and for g <_ I, which are satisfied for all panel configurations

being considered here.

Local Instability

Local instability is defined here as buckling of one or more elements of

the panel cross section with buckle half-wave lengths which are small com-

pared to the panel length. Specifically, the modes considered are: buckling

of flat elements occurring between adjacent beads or tubes; buckling of

circular arc elements of the bead or tube cross section, referred to as
20



bead crippling; and buckling of portions of the panel cross section consisting

of adjacent circular arcs with intermediate flat where applicable, referred

to as diagonal .buckling.

Flat Buckling - Flat elements are analyzed for local instability as long,

simply supported, isotropic plates using equations given by Timoshenko

and Gere (Reference 12-1) . The critical compression stresses for the single

sheet, beaded configurations are:

Type 1 and Type 1A;

Ffc = *2n4Et
2/[3f2(l-v2)]

Fc = 5.35TT2n,Et2/[12f2(l-v2)] (12-31)
rs 4

The critical compression stresses for the two-sheet, tubular configurations

are :

Type 2 and Type 2A:

Ffc = ^2n4E

Ffg = 5.35Tr2n4Et
2/[3f2(l-v2)] (12-32)

Bead Crippling - Circular arc elements of the panel cross section are

analyzed for local instability in compression and bending using equations

derived from a classical solution with correlation factors presented by NASA

in Reference 12-5.

F = 0.82n»E(t/R)1-19
cc o

F . = 0.77n-E(t/R)1'15 (12-33)
CD J

These equations are approximations to the analyses given in Reference 12-5

which are valid for the R/t range of interest in these panels (i.e.,

20<R/t<120). Plots comparing Equations (12-33) with the NASA analyses over

this range are shown in Figure 12-3.
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The critical stress for local instability in shear is taken from Gerard and

Becker (Reference 12-6):

F = n,Gk (t/s )2 (12-34)
cs L s c

where,

k - 4Z'514
s

2 2 1/2
Z = (s /Rt) (1-v )

The expression given here for k is an approximation to the curve given in
S

Reference 12-6 for an infinitely long, simply supported, cylindrical plate.

The approximation is accurate for values of Ẑ 50, which is satisfied for

all panel configurations considered here.

For the fluted panel configurations, Type 1A and Type 2A, critical bead

crippling stresses are calculated separately for the web and flute portions

of the bead, using Equations (12-35) and (12-36). The web portion refers

to the convex sidewalls of the bead, and the flute is the concave portion

at the crest of the bead.

Diagonal Buckling - The diagonal buckling mode is analyzed as a long, simply

supported, orthotropic plate, using equations from Timoshenko and Gere

(Reference 12-1). The width of the plate, d, is made variable within speci-

fied limits of the angle 0, as indicated in Figure 12-2 and in Equations

(12-2) and (12-4) , until the minimum value of the critical compression load is

found using Equation (12-35a). The value of d is then fixed, and the

critical load in shear is determined from Equation (12-35b).

Nxdcr = I3<
2ll2/d2) (YV+V* (ds/bsd) (12-35a)

2 3 1/4
Nxydcr = n2(4k/d

Z)[D1'(D2')'
>] (12-35b)

where k is a function of

@ = (d/L)(D1'/D2')
1/4
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1/0 - D

and is taken from the curves given in Reference 12-1.

Material Strength

The criterion for material strength used in the analysis is that the

maximum stress intensity in the panel must not exceed the compression

yield strength of the material.

12.4 Compression - Shear Interaction

The standard interaction equation for buckling failure of panels under

combined loads of axial compression and shear is:

R + R 2 = 1 (12-36)
c s

where R and R are stress ratios of the actual compression and shear
c s v

stresses in the panel at failure under the combined load to the critical

stresses in pure axial compression and in pure shear, respectively. .This

equation is used for all buckling failure modes, with the stress ratios

defined in each case as follows:

Panel General Instability -

R = N /N
c x xcr

R = N /N (12-37)
s xy xycr

Local Instability -

Flat Buckling:

R = f /F- .
c c fc i

R - f /F, ' (12-38a)
s s fs
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Bead Crippling:

R *= f /F + f /F
C C CC D CD

R - f /F (12-38b)
s s cs '

Diagonal Buckling:

R = N /N ,
c x xdcr

R = N /N ,
s xy xydcr

12.5 Plasticity Corrections

Procedure

Critical buckling stresses of structural elements can usually be expressed

by equations of the general form,

Fcr = knEg (12-39)

where k is a constant, E is the elastic modulus of the material, and g is

a function of the element geometry. The plasticity correction factor, n, is

dependent on the material stress-strain characteristics and on the mechanism

of buckling. When F is less than the proportional limit stress, n is

equal to unity and the equation reduces to the familiar elastic form. When

F is greater than the proportional limit stress the failure is inelastic,
cr
Since n is then a function of the stress, Equation (12-39) becomes trans-

cendental. Iterative solutions of this equation tend to diverge unless

special procedures are used, and even then, convergence is likely to be slow

and unreliable. An alternate method of solution is to rewrite the equation

in its equivalent elastic form,

Fcr/n = Fcr' = kEg (12-40)

F ' is an equivalent elastic failure stress which is greater than the actual

failure stress, F , whenever it is greater than the proportional limit stress,

i.e.,
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F *>F >F__
cr cr PL

Since n is a specified function of stress, a plasticity correction curve of

equivalent elastic stress, F' = F/n, versus actual stress, F, can be con-

structed.

Some typical plasticity correction curves of the type just described are shown

schematically in Figure 12-4. The curves identified by n and n aretan sec
derived from tangent and secant moduli of the material,

ntan " Etan/E> Vc ~ Esec/E (12-41)

These two curves represent maximum and minimum values of the plasticity

correction factor. Other plasticity correction factors, represented by

TI=TI(T) , 1 ) in the figure, are functions of the tangent and secant moduli
^ 3X1 SG C

and the curves will always lie between these two extremes. [Entering this

figure with the ordinate F' , as would be calculated from Equation (12-40),

the actual failure stress, F , is determined by the abscissa (see dotted

line).]

Critical loads or stresses for cases of compression alone, or of shear

alone, are defined explicity by equations similar to Equation (12-39). In

these cases it is a simple matter to use the appropriate plasticity correction

curve as just described. However, failure under combined loading is usually

defined by an interaction equation, such as Equation (12-36). The application

of plasticity corrections in this type of failure analysis is complicated by

the fact that different plasticity correction curves apply to determining

critical stresses in compression alone and in shear alone. Furthermore, the

equivalent elastic stress at which the curves of Figure 12-4 are entered is

not the critical value in either compression alone or in shear alone, but is

a function of both the compression and shear stresses at failure under the

combined load.

Figure 12-5 illustrates the procedure used to apply plasticity corrections to

the combined load failure analysis. The interaction equation is of the form
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R + R 2 = 1 (12-42)
c s

where R and R are stress ratios of actual stress to critical stress for pure
c s

compresssion and for pure shear, respectively. The point (f , f ), in the
C S

figure, represents the actual compression and shear stresses existing under a

specified load condition. The diagonal straight line passing through this

point from the origin represents other stress levels produced by varying the

load intensity while maintaining a constant ratio of compression stress to

shear stress, i.e.,

f /f = constant. (12-43)
c s

Two curves are shown in the figure. The dashed curve, with end points F'

and F1 , gives equivalent elastic failure stresses, F' and F' . The
scr 6 M c s

solid curve, with end points F and F , gives the true, inelastic failurer ccr scr
stresses, F and F . That is, F and F are the predicted actual failure

c s c s r

stresses if the load intensity is increased such that f and f increase in
c s

conformity with Equation (12-43).

From Figure 12-5 and the preceding discussion the following relationships are

established:

F' = F /n
ccr ccr c

F' = F /n (12-44)scr scr s

R' = n Rc c c

R's = VRs

F1 = F /n
s s

R' and R1 are critical stress ratios based on the equivalent elastic critical
c s

stresses, F' and F1 . The plasticity correction factors n and n »
ccr scr r c s

for compression alone and for shear alone, are functions of the failure

stresses, F and F . The stress intensity, as determined from octahedral
C S

shear theory (Reference 12-4), is used to represent the biaxial stress state
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in calculating the plasticity correction factors. Finally, r\ is the unknown

plasticity correction factor for the combined load failure.

The procedure for determining F , F , and r\ is outlined in the following steps:
c s

1) Calculate equivalent elastic critical stresses, F1 and F1 , from
ccr scr

the elastic form of the buckling equations, Equation (12-40).

2) Calculate equivalent elastic stress ratios:

R' = f /F'
c c ccr

R's - V*'scr (12'45)

3) Calculate the equivalent elastic utilization factor for the combined

load:

f 2 2\1/2

U' = 1/2IR1 + {(R' r + 4(R' rf ] (12-46)c c c s J

4) Calculate equivalent elastic failure stresses for the combined

load:

F' = f /U'
c c

F' = f /U1 (12-47)
S S •

5) Calculate equivalent elastic stress intensity for the biaxial stress
i .
s *
1/2

state represented by F' and F1 :

F1' = [(F' )2 + 3(F' )*] (12-48)
1 C S

6) Enter the appropriate plasticity correction curve for compression

buckling with F1 . as ordinate, determine F. from abscissa, then

. calculate n •
c

nc = F-L/F'i (12-49)

7) Repeat step 6 using the appropriate plasticity correction curve for

shear buckling to determine n -
S

8) Calculate true (inelastic) stress ratios:

R = R' /nc c c

Rg = R's/ng (12-50)

9) Calculate true (inelastic utilization factor:

2 2 1/2
U - 1/2 [R + (R + 4 R ) ] (12-51)

C C S
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10) Calculate true (inelastic) failure stresses for the combined load:

F = f /U
c c

F = f /U (12-52)

11) If desired, calculate the plasticity correction factor for combined

load failure:

n = U'/U (12-53)

Plasticity Correction Factors

The plasticity correction factors used in the various failure mode equations

have been identified by numerical subscripts from 1 through 5. These are

defined explicitly in the following equations as functions of the tangent

and secant values:

n = n = E /E (Ref. 12-7)
1 tan tan "

n0 = n = E /E - (Ref. 12-6)
2 sec sec

n = (n n )1/2 (Ref- 12-5)
3 tan sec

n

1, - n U/2 + 1/2 [1/4 + (3n /4n )] ' \ (Ref- 12-6>4 sec J_ tan sec '

F 'n. - + FK^n - 1/2

C 2 9 SSC (Ref. 12-8) (12-54)
F + F,

c b

The tangent and secant moduli of the material are obtained from the following

equations which are derived from a modified Ramberg-Osgood stress-strain law.

E = F_±_
tan

(F ./E + n[.002(F./F )n-. 00001]
i i cy

S C (F4/E + .002(F./F ) -.00001)i i cy

where F
i
>F
PL =

 F
c (.005)

1/n

F.
(12-55)
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and E •= E = E
tan sec

where F <F
X I: Li

F is the compression yield stress and n is the shape factor determined from

the material stress-strain curve. The stress intensity, F. , depends on the

particular mode being considered, as follows:

Panel Bending Moments - In calculating panel being moments from Equations

(12-22) and (12-29a) , stress intensity is calculated from panel axial com-

pression and shear stresses, f and f , at the specified load magnitude rather
c s

than at failure:

fi = (fc + 3fs> (12-56)

Panel General Instability - Stress intensity for use with Equations (12-29)

and (12-30) is a function of combined axial compression, bending, and shear

stresses at failure:

9 91/9
F1 = [(Fc + Fbr + 3FsV (12-57)

Flat Buckling - Stress intensity is a function of the axial compression stress

and the maximum shear stress in the flat at failure: For use with Equations

(12-31) :

Fi = [Fc + 3

For use with Equations (12-32) :

9 9 1 / 9
F = [F/ + 3F/]1// (12-59)

J. L. S

Bead Crippling - Stress intensity for use with Equations (12-33) and (12-34) is

a function of the maximum compression stress in the outermost fiber of the

bead and the shear stress at failure:

9 91/9
F± = [(Fc + Fb)

Z + 3Fs
Z;T (12-60)
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Diagonal Buckling - Stress Intensity for use with Equations (12-35) is a function

of the axial compression and shear stresses at failure:

2 2
F = (F + 3Fo (12-61)
i C S
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13.0 PANEL DESIGN STUDIES

The first analysis task, after initial development of OPTRAN code modules for

the various panel configurations, was to conduct a series of trade studies to

determine the effects of parameter range restrictions, panel configuration,

and load configuration and magnitude on panel weight efficiency. The primary

purposes of these studies were to establish configuration trends which would

influence selection of manufacturing methods, and finally, to select the panel

configurations which would be retained for the principal development effort

under the contract.

13.1 Initial Trade Studies

The first objective was to study the interaction between panel configuration

geometry and panel weight efficiency. The influence of bead depth was of

particular interest because it was a primary factor in determining whether

manufacturing was to be by brake forming or by stretch forming. The results

of these initial trade studies are summarized and presented in this section.

Most of the initial work was done with the Type 1 panel configurations because

this was considered at the start of the program to be a principal candidate for

final development. The initial trade studies were conducted before the static

strength equations were available in their final form, as presented in Section

12. Particularly, the plasticity corrections were generally not included.

Therefore, the results presented in this section should be regarded as indica-

tive of trends rather than as absolute values.

Figure 13-1 shows the effects of bead depth, as measured by the included angle,

2a, on panel efficiency. The weight penalty incurred by varying the bead angle

from its optimum value is given in percent of the least weight for the optimum

panel design having a flat width constrained to 0. All panel designs repre-

sented in the figure were optimized for the following combination loading in

compression, shear, and bending:

N = 2000 Ib/in, N = 667 Ib/in. = 1.0 psi.
x xy p
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Figun13-1: WEIGHT PENALTY VS. BEAD ANGLE AND FLAT WIDTH-PANEL TYPE 1
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The optimum bead angle is seen to vary with the flat width, from approximately

160 degrees at zero flat width, to approximately 180° at a flat width of .75

inch. The optimum value of the bead angle for variations in flat width is

indicated by the dashed curve. The broad, shaded band on either side of the

dashed curve indicates the permissible range of bead angles which will increase

the weight penalty, for constant flat width, by not more than 1/2% over that

incurred with the optimum bead angle. It is apparent that bead angle can be

varied at least +10° from the optimum value with less than one half of one

percent weight penalty incurred. Thus, panel efficiency is relatively insen-

sitive to bead angle.

It is also apparent from Figure 13-1 that variations in flat width have a

pronounced effect on panel efficiency. This effect is a function of load

magnitude and is illustrated in Figure 13-2, where weight versus flat width

is plotted for several load magnitudes. These plots were obtained using the

optimum bead angle, as indicated in Figure 13-1, for each variation in flat

width. Note from Figure 13-2 that weight penalties of 5 percent to 10 percent

result from a flat width as small as .2 inch.

Figure 13-3 shows the effects of bead angle, 2<x, on panel efficiency, of the

type 2, tubular configuration. The optimum bead angle is seen to be 180°

except when the magnitude of the load is such that minimum material gage

restrictions control the design. As in the case of the type 1 panel, the

type 2 panel efficiency is relatively insensitive to bead angle, except when

the design is constrained by minimum material gage, and variations up to 10°

from the optimum bead angle can be tolerated with not more than one half

percent increase in panel weight. In contrast to the type 1 configuration

it has been found that the efficiency of the type 2 panel configuration is

relatively insensitive to variations in flat width. Variations in flat

width are compensated for by changes in bead radius and thickness, and designs

which are constrained to different values of flat width are found to have the

same weight as the unconstrained optimum designs.
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Five basic panel configuration types were selected as candidates for the

principal development effort. The comparative weights of these configurations

versus load are presented in Figure 13-4. The two solid line curves in the

figure, for the type 1 configuration with and without flat, are from OPTRAN runs

which included plasticity corrections. In all other cases plasticity correc-

tions, have not been included. The plasticity corrections had negligible effect

on the panel weight curves for the type 1 configurations below the 2000 Ib/in

load level. Above this load level the effect of the plasticity corrections is

to make the type 1 panels appear relatively heavier with respect to the other

configurations and direct comparison is not valid.

13.2 Final Design Selections

Four basic design configurations were selected for detailed investigation in

this program. These are shown in Figure 13-5. The selection was based on the

initial trade study results which appeared in Figure 13-4. Two design load

conditions were selected in order to establish the validity of the design and

analysis methods over a range of loads representative of a variety of aerospace

vehicle structural applications. These load conditions, representing a low

load level and a high load level, are identified as load conditions 1 and 2 in

Figure 13-5. They are characterized by their principal axial compression

components, 600 Ib/in and 2000 Ib/in, respectively. At the high load level

the type 2A configuration is clearly indicated in Figure 13-4 to be superior

to all others considered. This was the basis for selecting the 2A-2 design.

Although the efficiency of the type 2A configuration is compromised at the

lower load level because of minimum gage restrictions, the 2A-1 design was

selected to provide a data base for evaluating the configuration over a range

of loads. The single sheet configurations were not considered promising

because a satisfactory, flight end closure design which could transmit the

required shear load was not achieved (See summary document, NASA CR-2514).

However, since the type 1A panel is clearly indicated in Figure 13-4 as the

most efficient configuration at the low load level, the 1A-1 design was selected

anticipating that future development work might solve the end closure problem.

The 2-2 design was selected primarily as a backup in case unexpected problems
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should occur in manufacturing or testing the fluted configurations which

might compromise their potential efficiencies.

The actual manufactured panel configurations differed slightly from those

shown in Figure 13-5 in order to use standard commercially available material

thicknesses. Thus, the 2-2 and the 2A-2 designs were reduced in thickness

to .025 in. and to 0.20 in., respectively. In the case of the 2-2 design

the radius and flat width were reduced proportionately to the thickness

reduction, to R = 1.34 in. and f = 1.04 in. For the 2A-2 design, initial

end closure development work was already completed using the dimensions

indicated in the figure. Therefore, these dimensions were retained to save

the cost of remaking the dies.

The predicted strengths of the 2-2 and the 2A-2 panels differ from the design

loads indicated in Figure 13-5 because of the thickness reductions. Further-

more, preliminary local buckling test results indicated that an initial

assumption that the ridge at the crest of the fluted bead would have a

stabilizing effect on bead web failure in bending was an incorrect assumption.

Thus, modification to the critical bending stress equations which reduced the

critical load for all fluted configurations was made subsequent to the final

design selection. These modifications are reflected in the equations given

in Section 12 for the fluted configurations. Figure 13-6 shows the panel

designs as manufactured, with the revised strength predictions.

Since the original OPTRAN design was changed for the two high load panel

designs, a question arose concerning how far off optimum the manufactured

test panels might be. This question was answered by re-optimizing these two

panel designs for design loads equal to the predicted strength of the manu-

factured panels. In each case virtually identical panel designs and minimum

panel weights were obtained. From these results it was concluded that the

manufactured panel designs were, in every practical sense, optimum.
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.020" 10.273"

t-.0316"
FLUTED SINGLE SHEET (1A-1)

.020"

t - .0451"

FLUTED TUBE (2A-I)

PREDICTED PANEL STRENGTHS (REVISED)

Nx = 558 LB/IN Nx = 498 LB/IN

NXY
=166LB/IN

P=1.0PSI

NXY = 186 LB/I N

P=1.0PSI

t = .025'

t - .0702"
CIRCULAR TUBE (2-2)

t = .020"

FLUTED TUBE (2A-2).

PREDICTED PANEL STRENGTHS (REVISED)

NX = 179ILB/IN NX = 1685LB/IN

Nx Y = 358 LB/I N Nx Y = 337 LB/I N

P = 2.0PSI P = 2.0PSI

Figure 13- 6 : OPTIMUM PANEL DESIGNS AS MANUFACTURED WITH REVISED STRENGTH PREDICTIONS
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14.0 CORRELATION WITH TEST DATA

Correlation of the analysis with test data consists of two steps. The first

step is a preliminary one in which analytical local buckling strengths are

compared with local buckling test results, and the static strength equations

are modified as necessary to achieve the desired correlation.

Except in cases of pure shear loading critical stresses from local buckling

tests are determined from strain gage readings in critical locations and from

average material coupon properties. In the case of pure shear loads applied

to the local buckling specimens, critical stresses are calculated from the

applied load and net section properties. The second step is the final data

correlation in which analytically predicted failure loads are compared with

test data from the full size, 40-in. x 40-in. panel specimens.

The purpose of final data correlation is to establish the validity of the

analysis method for use in designing minimum weight structural panels to

withstand specified design loads of compression, shear, and lateral pressure.

Test data from the full size, 40-in. x 40-in. panel specimens is compared

with the analysis and discussed. Correlations are based on panel loads

rather than on stresses. Ten basic load conditions were established for

each panel type. Test results consist principally of nondestructive test

data obtained using the F/S test technique, described in Reference 14-1,

while loading the panels in each of these ten load conditions.

The goal for final data correlation is five percent. Significant differences

between analysis and test results greater than this are evaluated to determine

if further analysis modifications should be made to attempt to bring the

correlation within the five percent goal. This goal is achieved only in the

case of the circular tubular panel configuration, type 2. Reasons for not

attaining this goal with the other configurations are discussed in presenting

the data and in Section 15.0.
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Material Properties

Material properties used in the data correlation were obtained from coupon

test results. Twelve coupons were obtained from each lot of material used

in manufacturing the local buckling and panel specimens. Six of these were

tensile specimens and six were compression specimens. Three of each type,

tension or compression, were longitudinal and three were transverse with

respect to the grain direction in the sheet. Average properties used in the

data correlation are given in the following table:

PANEL TYPE

2-2-U-X

1A-2-U-X

2A-1-U-X

2A-2-U-X

2-2-P-X

1A-1-P-X

2A-1-P-X

2A-2-P-X

E
(•C

10 psi

10.96

10.66

10.56

10.43

11.03

10.58

10.77

10.58

G

106psi

3.97

3.86

3.84

3.81

3.94

3.85

3.89

3.85

Fcy
ksi

80.4

81.6

81.7

81.5

80.3

81.4

81.3

81.4

n

24.0

24.1

23.6

22.7

22.9

22.9

21.4

22.9

The shear modulus, G, in the table is computed from the average of both

tension and compression moduli using Poisson's ratio v = .33, and n is

the exponent used in Equations 12-55. All other values are taken from

compression coupon tests only. In the case of panel type 1A-1-P-X the

coupons were lost prior to testing, and in the case of panel type

2A-2-P-X the quality of the data was too poor to obtain accurate properties.

For these two panel types material properties are average values from all

of the other .020-inch material coupons tested.

Panel Dimensions

Measured dimensions of panel cross sections were obtained from local buckling

specimens. After testing, the potted ends of the specimen were sawed trans-

versely, to expose the rigidly supported specimen cross section, and photographed

with a scale to provide an accurate record of the cross sectional shapes.
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Average measured dimensions for the fluted configurations were taken from these

photographs and are tabulated below:

Panel Type

1A-1

2A-1

2A-2

t

.0201

.0197

.0197

b

2.80

4.20

3.97

1.

•

1.

h

086

885

51

1

1

1

bf
.046

.51

.62

*
101.1°

59.4°

105.0°

hf
.298

.300

.382

f

0

1.98

1.36

R
w
.860

1.65

1.20

Rf
.608

1.10

1.05

Since the cross sections of the full size panels were manufactured with the

same dies used to manufacture the local buckling specimens, the above values

were considered sufficiently accurate to be used in the final data correlation.

In the case of the type 2 panel the local buckling specimens are of a different

cross section configuration than the full size panels. Therefore, nominal design

values were used in final data correlation of the type 2 panels.

14.1 Correlation of Panel Type 2 Data

14.1.1 Local Buckling Specimen Test Data

Failure stresses from local buckling test data are compared with analytical

failure stresses in Figures 14-1 and 14-2. • Modifications to the local buckling

theory using only the local buckling specimen test results did not achieve

satisfactory correlation with panel test results. Therefore, results from

local buckling failures of the full size, 40 in. x 40 in. panels are included

in addition to the results from the small, uniform section, specimens.

The correlation factors are calculated from the equation,

1 2 2 1 / 2
C.F. = -j RC + ^ + [(Rc + Rjj) + 4 Rg r" (14-1)

which is derived from the interaction equation,

Rc + Rk + Rs
2 - 1 (14-2)
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RC+RB

RC + RB

SPECIMEN TYPE

• UNIFORM (2-2-U-X)
O PANEL (2-2-P-X)

-2

(A) BEFORE ANALYSIS MODIFICATION

-3
O

(B) AFTER ANALYSIS MODIFICATION

Figure 14-2: LOCAL BUCKLING TEST/ANAL YSIS CORRELA TION - PANEL TYPE2
(TEST TO FAILURE, NUMBERS BY DATA POINTS INDICATE SPECIMEN NUMBER)
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where R , R, , and R are stress ratios of actual stresses at failure to
C D S

critical stresses in pure compression, bending, and shear respectively.

The correlation factor is the ratio of test failure stress to analytical

failure stress. Thus, a correlation factor greater than unity indicates

that the analysis is conservative.

On the basis of the correlation with the original analysis of Section 12.3,

the following modifications to the analyses are made:

(1) The correlations with test of specimens 2-2-U-3 and 2-2-U-4 are

brought within desired limits by applying a knockdown factor of .9 to

the expression for F in Equation (12-33) . Thus ,
cc

Fcc = 0.738 n3 E (t/R)1'19 (14-3)

(2) The correlations with tests of the panel specimens, 2-2-P-l and 2-2-P-3,

are brought within desired limits by changing the expression for the

shear buckling coefficient in Equation (12-34) as follows:

k = 3.3 Z' . (14-4)s

This change is primarily a change in the length effect which is repre-

sented by a series of curves, in the analysis of Reference 12-6, giving

k as a function of Z for various length ratios (a/b) . The original
S

expression for k was taken from the curve for a/b = °°. Correlations
S

with the short, local buckling specimens were made using the curve for

a/b = 3. The change represented by Equation (14-4) approximates a curve

which is closer to the latter, thus reducing the length effect for long

panels in this application.

The improved correlation obtained with the modified analysis is seen in com-

paring the last two columns of Figure 14-1. A graphical representation of the

local buckling test/analysis correlation before and after analysis modification

is seen in Figure 14-2.
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LOAD

N
X

1

0

1

1

1

1

0

0

1
1

RATIO

N
xy
0

1

-1/5

1/3

0

0

1

1

1/5

1/5

p = CONSTANT

(psi)

0

0

0

0

1.0

2.0

1.0

2.0

1.0

2.0

14.1.2 Panel Test Data

Three 40 in. x 40 in. panel specimens of the type 2 configuration (2-2-P-l,

2-2-P-2, 2-2-P-3) were each tested in ten different load conditions as

follows:

TEST LOAD COMP. VS SHEAR LATERAL PRESSURE
CONDITION

1

2

3

4

5

6

7

8

9

10

Failure loads were predicted for each of the 10 load conditions above using

the local buckling analysis, modified as shown in Equations (14-3) and

(14-4) , and using average material properties from material control coupon

tests. These loads are compared with test results in Figure 14-3. Only the

major load component, N or N , is given for each load condition. Test loads
X ^Q"

are nominal values determined from the applied loads assuming uniform stress

distribution with a calculated panel net-to-gross area ratio of .396 (60.4

percent of gross area is edge chord area) and a net panel width of 40 inches.

Shear load is assumed to be carried entirely in the net panel.

A graphical representation of the theoretical panel failure load interaction

surface with test data is seen in Figure 14-4. The indicated axes, R and R
c s

in the figure are ratios of N and N at failure to the critical failure
X ^̂ f

loads in compression alone and shear alone. Curves are shown for three

different values of pressure. The numbers beside data points indicate test

load conditions.

50



oc
o§
LL.

Z
o

_l
LU
oc
oc a.

CM
CM

C)
03

I

X
z

(O
LU

5
O

LU

a.
CM

CM

o;
i

3i
38

o > o > p p p p o > p o > p p
" —i .J »J »J *J o «— " «— «—

8S 8 E 8 5. § S 8 8 8

a o i n
r^ oo

o c o a o o
^ ~* *" OT

C M C M

§Q m o
S f f i f i

COCM n

m u > i n o o i n

o i n

O

O_
coo.

o c M f x i o

0 0 0 0
+
0)

O Q O Q
+ +
0 O

s
a.

K
_J
CO

LU
/n LU

< C

OC 3.
LU ^

< if
o oc

O
U.

a.

£ x

o
m

O

g
t
o

a
to
LU
Q

2Z
u52
LU Q

<0
V) O

i to

I
QCQC
o
Co

fi

B

51



O J <

O O. to

* E ?
UJ <-> _J
CC Q LU

ui < O <
mo. < u.

• o 4-

i



All test results are F/S failure predictions, except where actual failure

loads are indicated for the -1 and the -3 panels. Test failure of the -2 panel

was an edge failure which occurred prematurely during an application of load

condition 1. Therefore, the actual failure load for this specimen is not

valid for use in correlation. The panel instability failure prediction of 93

percent of the analytical value for the -2 panel in load condition 1 (see

Figure 14-9) is probably influenced by the same edge defect which caused the

premature edge failure and may, therefore, be unrepresentative of the actual

panel capability. The predominate failure mode is bead crippling as can be

seen from Figure 14-10. Panel instability becomes a factor only under the

conditions R, = R =0; and even then, some test results indicate bead
D S

crippling.

The analytically predicted stresses at failure in load conditions 5 and 6 are

well into the inelastic material range. The F/S failure loads predicted for

these conditions required large extrapolations from elastic test data to

inelastic failure and are probably less reliable than the test loads predicted

for the other load conditions. This probably accounts for the poor correla-

tion of the -1 panel in these load conditions. The correlations are otherwise

generally good. The average correlation factor for all three panels is 1.035,

which is within the stated accuracy goal of 5 percent. In calculating average

correlation factors only the lesser of the two values given for load condition 1

is used. The larger of the two, in parenthesis, is given for comparison

only.

Nominal panel test loads were used in making the correlations because they are

representative of loads available to the designer. Net panel test loads were

also determined using strain gage data from the panel center region to ensure

against possible unconservative correlations which would result if actual

panel center loads were significantly less than the nominal values. However,

panel center loads were found to be slightly higher than the nominal values.

Consequently, the correlation factors shown are based on nominal loads.
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14.2 Correlation of Panel Type 1A Data

14.2.1 Local Buckling Specimen Test Data

Failure stresses from local buckling test data are compared with analytical

failure stresses in Figure 14-5 and 14-6. The correlation factors are calcu-

lated in the same way described for panel type 2. Five test data points were

obtained from specimen 1A-2-U-5-CBS by using the F/S nondestructive test tech-

nique, which worked quite well in predicting diagonal buckling failures. The

correlations are quite good and would be considered acceptable without analysis

modification except for the one data point representing combined loading of

compression, bending, and shear on specimen 1A-2-U-5CBS. This data point sug-

gests the possibility that bending interacts with compression and shear in the

diagonal buckling mode. Such interaction is not recognized in the present

analysis of this failure mode, and no modification to the analysis was made.

14.2.2 Panel Test Data

Two 40 in. x 40 in. panel specimens of the type 1A configuration (1A-1-P-1,

1A-1-P-2) were each tested in ten different load conditions as follows:

TEST LOAD COMP. VS. SHEAR LATERAL PRESSURE
CONDITION LOAD RATIO p = CONSTANT

N N (psi)x xy vf /

1 1 0 0

2 0 1 0

3 1 1 / 5 0

4 1 1 / 3 0

5 1 0 0 . 5

6 1 0 1 . 0

7 0 1 0 . 5

8 0 1 1 . 0

9 1 1/3 0.5

10 1 1/3 1.0

In testing the -1 panel a pronounced nonuniformity in the axial compression

was observed which caused the.net compression load at the panel center to

be approximately 40 percent higher than the nominal applied value. This
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Û.

fe
-1
LU
Z

*
*

.

te
LU
H
LU

(J
. D

Z CC

' O CO
CO LU
ii a
"I. o
Lu S
s o
CJ UL
LU ^

cc 3
LU — •

H LL

_J ^§ LU

< t

? 3
O CC
° OL

II CO
_l LL

^ ^_

s

1

I

(3

I
CQ
-J

i

i

55



• DIAGONAL BUCKLING (DB)

O BEAD WEB CRIPPLING (BWC)

Figure 14-& LOCAL BUCKLING TEST/ANAL YSIS CORRELA TION - PANEL TYPE 1A
(NUMBERS BY DATA POINTS INDICA TE SPECIMEN NUMBER)

56



peaking of the compression load is caused by a mismatch between the test

beam, consisting of the panel specimen with attached chords, and the load

application system. This system is better suited to the tubular panels,

which constitute the majority of the panels tested, than to the single sheet

panels which have a much smaller net-to-gross aroa. ratio. The shear load

distribution in the panel was found to be essentially uniform.

The compression load peaking caused the load ratios of N to N at the
X. ^tf

panel center to be considerably different from the nominal values given in the

above table. On the basis of the -1 panel test results the applied loads were

adjusted to give panel center load ratios equal to those given in the table.

These adjusted loads were applied in testing the -2 panel.

Analytical failure loads for these panels were computed from average material

coupon test properties and average measured dimensions of the cross section

as previously described under Section 14.0. A different set of analytical

failure loads was calculated for each panel because of the different test

load ratios of N to N . The analytical failure loads are compared withx ^y
the test results in Figure 14-7. Only the major component, N or N , is

3c **y
given for each load condition. Test loads are net panel loads determined

using strain gage data from the panel center region.

All test results are F/S failure predictions except for the actual failure

loads indicated in load condition 10. The diagonal buckling mode was

apparently critical in all the test load conditions. This agrees with the

analysis except in load conditions 5 and 6 where bead web crippling was

predicted to be critical. This is seen more clearly in Figure 14-8 which

shows a graphical representation of the theoretical failure load interaction

sur_ .ice with test data.

The ave-rge test/analysis correlation of .85 achieved for the type 1A panel

indicates the analysis to be unconservative. This appears to be due to a

length effect which does not occur in the present diagonal buckling mode

analysis. There also appears to be some interaction between bending and

compression in the diagonal mode which is not recognized in the present

analysis.
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LOAD
COND.

1

2

3

4

5

6

7

8

9

••10

1A-1-P-1

ULTIMAT
NXORNX

ORIGINAL
ANALYSIS

1093

249

867

708

t 1070

t 938

249

249

685

667

ELOAD
y - LB./IN.

TEST

880

206'

790

656

870

705

217

212

618

*529

Ave.

* ACTUAL FAILURE LOADS
** PANEL DESIGN LOAD CONDI1
t INELASTIC BEAD WEB CRIPPL

ALL OTHERS ARE ELASTIC D

CORRELATION
FACTOR

.80

.83

.91

.93

.81

.75

.87

.85

.90

.79

.844

JA-1-P-2

ULTIMATE
Nx OR Nxv

Am
1093

249

777

588

t 1070

t 938

249

249

584

548

LOAD
- LB./IN.

TEST

912

225

690

535

880

680

218

212

530

'487

Ave.

CORRELATION
FACTOR

.83

.90

.89

.91

.82

.72

.88

.85

.91

.89

.860

riON
.ING FAILURE;
IAGONAL BUCKLING

Figure 14-7 FINAL TEST/ANALYSI5CORRELATIONSUMMARY-PANEL TYPE 1A
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14.3 Correlation of Panel Type 2A-1 Data

14.3.1 Local Buckling Specimen Test Data

Failure stresses from local buckling test data are compared with analytical

failure stresses in Figure 14-9 and Figure 14-10. The correlation reveals

apparent conservatism in roost of the results. In the case of flat buckling

this is due partly to the separation of the two sheets by the bond layer

resulting in increased bending stiffness, and partly to the assumption of

simple support at the edges of the flat in the buckling analysis. In spite of

the apparent conservatism in the bead crippling combined load and shear analysis

there was indication in testing the 30-in. long specimen, 2A-1-U-1-C, that

complex modes involving distortion of the cross section and having fairly long

wave lengths were occurring. These modes probably could not develop in the

shorter specimens, but it was expected that they could occur in the full size

panels and considerably reduce the actual buckling stresses. For this reason

no analysis modification was attempted on the basis of the local buckling correl-

ations .

14.3.2 Panel Test Data

Only one 40 in. x 40 in. panel of the type 2A-1 configuration was tested. Ten

test load conditions were defined as follows:

TEST LOAD COMP. VS. SHEAR LATERAL PRESSURE
CONDITION LOAD RATIO p = CONSTANT

N N (psi)
x xy

1 1 0 0

2 0 1 0

3 1 1 / 5 0

4 1 1 / 3 0

5 1 1 / 2 0

6 1 0 1 . 0

7 0 ' 1 1.0

8 0 1 2.0

9 1 1/3 .5

10 1 1/3 1.0
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O FLAT BUCKLING (FC)

Figure 14-10 LOCAL BUCKLING TEST/ANAL YSIS CORRELA TION - PANEL TYPE2A-1

(TEST TO FAIL URE, NUMBERS BY DA TA POINTS INDICA TE SPECIMEN NUMBER)
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Force/stiffness plots indicated premature panel instability failure in

nearly all load conditions due to pronounced effects of tube distortional

modes. In the case of compression and bending loads the distortion observed

was flattening of the tubes, while more complex distortions appeared to

occur in the presence of shear loads. In pressurizing the panel it appeared

that the tubes might collapse before reaching 2 psi; therefore the panel was

not tested in load condition 8. The panel was tested to failure in load

condition 1. Failure consisted of elastic buckling of the panel with no

permanent damage.

After completing the first series of tests the panel was modified by inserting

stiffening posts to prevent bead flattening. Six pairs of holes were drilled

on the unpressurized side of the panel at the intersections of the bead web

and flute. A .10 inch diameter pin, notched at the proper length to maintain

the correct internal depth of the tube, was inserted in each hole. The edge of

the hole was engaged in the notch and the pin was wedged in place in the hole.

The modified panel was designated 2A-1-P-1M and was retested.

The test results are compared with the analysis in Figures 14-11 and 14-12.

Average material coupon properties and average measured panel cross section

dimensions were used in the analysis as previously described. Test loads

are nominal values determined from the applied loads assuming uniform stress

distribution with a calculated panel net-to-gross ratio of .303 (69.7 percent

of gross area is edge chord area) and a net panel width of 43.3 inches. The

trends shown in Figure 14-12 for both test data and theory indicate a shift

in failure mode from panel instability to bead web crippling as lateral

pressure is increased. However, the test data are in poor agreement with

theory.

Significant improvement in the test results was observed with this type of post

stiffening, and the panel was eventually tested to failure in the design load

condition at 99 percent of the analytical failure load. The panel was still

deficient in the presence of large shear components. This is apparently due

to the inability of simple post stiffening to provide adequate support against

tube distortion other than flattening. It was determined that further testing

of the Type 2A-1 panels, even with post type inserts, was not warrented and that

further study of the tube distortions could best be accomplished using the Type

2A-2 panels which, because they were not yet fabricated, were amendable to more

refined types of inserts.
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LOAD
COND.

1

2

3

4

5

6

7

8

9
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ULTIMATE LOAD NXOR Nxy LB/IN.

ORIGINAL
ANALYSIS

700
FB

440
PI

682
FB

652
FB-PI

545
PI

483
BWC

440
PI

440
PI

605
BWC

467
BWC

TE

2A-1-P-1

*530
PI

270
PI

535
PI

470
PI

366
PI

458
BWC

335
PI

-

525
PI-BWC

378
PI-BWC

ST

2A-1-P-1M

660
PI

338
PI

630
PI

590
PI

420
PI

485
BWC

350
PI

-

-

*462
BCW

AVE.

'ACTUAL FAILURE LOADS
"DESIGN LOAD CONDITIONS

FB-FLAT BUCKLING. PI-PANEL INSTABILITY, W

CORREl
FAC

2A-1-P-1

0.76

0.61

0.78

' 0.72

0.67

0.95

0.74

-

0.87

0.81

0.768

-ATION
TOR

2A-1-P-1M

0.94

0.78

0.92

0.90

0.77

1.00

0.80

-

-

0.99

0.888

AfC-BEAD WEB CRIPPLING

Figure 14-11 FINAL TEST/ANALYSIS CORRELATION SUMMARY-PANEL TYPE2A-1

64



£m m CO
UJ
IT

§ << u-

O

g
O

* s
m 1 *
CC

§^

Ul

1

5
QL

1

K.

£3P:

m



14.4 Correlation of Panel Type 2A-2 Data

14.4.1 Local Buckling Specimen Test Data

Failure stresses from local buckling test data are compared with analytical

failure stresses in Figure 14-13 and Figure 14-14. The correlation pattern

with the original analysis is similar to that seen in the type 2A-1 specimen

tests. The poorer correlation in the case of the two compression specimens

is evidence of greater susceptibility of this panel configuration to the

cross section distortional mode. This mode was particularly evident from

the Moire fringe patterns observed in testing specimen 2A-2-U-2.

On the basis of the correlation with the original analysis of Section 12.3,

the following modifications to the bead crippling analysis were made:

(1) The correlations with test specimens 2A-2-U-1 and 2A-2-U-2 are

brought within the desired limits by applying a knockdown factor

of .8 to the expression for FCC in Equation 12-33. Thus,

F = .656 n, E (t/r)1'19 (14-5)
CC tj

(2) The correlation with test of specimen 2A-2-U-3, in shear only is

brought within desired limits by applying a factor of 1.4 to the

expression for F in Equation (12-34). Thus,cs

Fcs = 1'4 n2 G ks (t/8c>2 <14-6>

The expressions for k and for Z in Equations (12-34) are unchanged.s

(3) To give better correlation with the remainder of the Type 2A-2 local

buckling test data, the exponent of the shear term in the inter-

action equation for bead crippling, Equation (12-36), is changed

from 2 to 4.5. Thus, for bead crippling only,

Rc + Rs
4'5 = 1 (14-7)
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RC+RB

.5 -

•-9

R C +R B + RS
2=1

• -7

.5 1.0

(A) BEFORE ANALYSIS MODIFICATION

(B) AFTER ANALYSIS MODIFICATION

Figure 14-14: LOCAL BUCKLING TEST/ANALYSIS CORRELATION-PANEL TYPE 2A-2
(TEST TO FAILURE IN BEAD WEB CRIPPLING, NUMBERS BY DATA POINTS
INDICA TE SPECIMEN NUMBER)
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The improved correlation achieved with these modifications to the bead crip-

pling analysis is apparent in Figures 14-13 and 14-14.

No flat buckling test data was obtained from tests of the Type 2A-2 local

buckling specimens because they failed in bead web crippling before signifi-

cant flat buckling modal behavior was observed. However, the flat buckling

analysis is known to be conservative for the same reasons given in Section

14.3.1. To obtain more realistic correlation of analysis with panel test data

it was decided to modify the flat buckling analysis using the available data

from the Type 2A-1 local buckling specimens. Therefore, on the basis of the

flat buckling test results for specimens 2A-1-U-1 and 2A-1-U-2 given in Figure

14-9, a factor of 1.5 is applied to the expressions for Ff and Ff in Equations

(12-31). Thus,

Ffc = 1.5 T72
 n/, Et2/[3f2 (1-v2)]

F, = 8.025 TT2 n Et2/[12f2 (1-v2)] (14-8)
fs 4

14.4.2 Panel Test Data

Three 40 in. x 40 in. panel specimens of the type 2A-2 configuratipn were

tested, the ten test load conditions are identical to those described for

panel type 2. Analytical failure loads are compared with test data for

these ten load conditions in Figures 14-15 and 14-16. Average material coupon

properties and average measured panel cross section dimensions were used in

the analysis as previously described. Test loads are nominal values determined

from the applied loads assuming uniform stress distribution with a calculated

panel net-to-gross area ratio of .350 (65 percent of gross area is edge chord

area) and a net panel width of 42.8 inches.

All test data shown in the Figures are from F/S indications of local buckling

except where actual panel failures are indicated. The F/S local buckling

indications and the test/analysis correlations foV specimens 2A-2-P-1M and

2A-2-P-2M are based on the original analysis of Section 12.3. The F/S indica-

tions and test/analysis correlations for specimen 2A-2-P-3M are based on the

modified analysis described in Section 14.4.1. In Figure 14-16 the test results

from specimen 2A-2-P-3M only are compared with the modified theory.
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In testing the first specimen it was immediately apparent that the effect of

tube distortional modes was even greater than that observed in the type 2A-1

panel. Therefore, the first specimen was modified by post stiffening similar

to that described for the type 2A-1 panel. This specimen was then redesignated

2A-2-P-1M and tested. It was found deficient in all load conditions with

premature failure indicated in panel instability or flat buckling at loads

averaging 71.5 percent of the analytical failure loads. The specimen

finally failed due to bead web crippling in the design load condition at only

63 percent of the analytical failure load. The failure occurred at a location

away from the panel center which was not covered by F/S instrumentation. It

appeared to be caused by a reduction in curvature of the bead web. This

distortion was apparently associated with inadequate transfer of shear load into

the panel from the ends.

The second and third specimens were modified by the addition of tube stabilizer

inserts during the panel assembly. Details of these modifications are found

in Volume 2 of this report which covers fabrication.

The second specimen (2A-2-P-2M) contained modified post type tube stabilizer

inserts which were designed to prevent tube flattening and to provide stif-

fening against other distortional modes that could be identified. Early in

testing this specimen an edge defect was discovered which was expected to

cause premature edge failure, similar to that which occurred in the case of

panel 2-2-P-2, if loaded in axial compression. It was decided to test it to

failure in shear rather than risk the edge failure in another load condition.

Consequently, test data is only available for two load conditions. These

data show a marked improvement with this type of tube stabilization.

The third specimen (2A-2-P-3M) contained a modified arch type of tube stabilizer

insert. The insert was designed to maintain the radius of curvature of the tube

side walls (the bead web), as well as provide stiffness against the other

tube distortional modes. The test results show an improvement in average

load carrying capability from 71.5 percent of the analytical failure loads

for the first specimen to 93.7 percent for the third specimen.

In some test load conditions shown in Figure 14-16, two different modes of

failure are indicated by the F/S test data. Where this occurs both test

data points are shown on the figure. Failure modes are identified for all

test data points so that they can be compared with the failure loads predicted

by the modified theory. 72



The F/S data for bead web crippling of panel 2A-2-P-3M agree reasonably well

with the failure surface predicted by modified theory for most test load con-

ditions. However, the actual failure of the panel by bead web crippling in

pure axial compression (load condition 1) occurred at only 69% of the load

predicted by the modified theory. This can be explained by the fact that F/S

plots of the local buckling kind are'extrapolated to a limiting strain line

(See Reference 14-1). The limiting strain line is determined from the local

buckling analysis as substantiated by local buckling test results. Therefore,

F/S indications of panel local buckling behavior are valid only if the local

buckling specimen behavior is identical to the panel local buckling behavior.

This is apparently not true in the case of the fluted tubular configurations.

Complex distortional modes, which are prevented from occurring in the local

buckling specimens by their short length and by the stabilizing effect of the

potted ends, are only partially restrained by the tube stabilizer inserts in

the fuel size panels. Therefore, the correlation indicated in Figure 14-16

between F/S test data and the modified bead web crippling theory is probably

not reliable and actual panel failures at substantially smaller load levels

might be expected in some load conditions if panels were tested to destruction.

The F/S indications of flat buckling in Figure 14-16 are premature compared

to the modified flat buckling theory. This fact indicates that stresses in

the flats are higher than they should be according to the panel stress analysis.

This phenomenon is due to inadequate load transfer from the panel ends into

the tubes, which in turn can be attributed to two causes. First, the transition

section at the panel ends was too short. Second, the distortional flex-

ibility of the fluted tube cross section apparently prevents the tubes from

carrying their allotted portion of the panel loads. Because of this distor-

tional flexibility, adequate correlation can not be obtained by simple modi-

fication of the flat buckling coefficient.
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15.0 RESULTS AND CONCLUSIONS

Circular Tube Panel

A satisfactory design and analysis procedure has been established for the

circular arc, tubular panel configuration. The final correlation of analysis

with test data is good. The average correlation factor for the thirty test

points, as well as the majority of the individual values, are within the stated

goal of 5%. Therefore, it is recommended that the static strength equations

for the type 2 panel configuration, as presented in Section 12 and as modified

in Section 14.1 be adopted for design purposes.

A typical set of optimum design curves for circular tubular panels is given

in Figure 15-1. These curves were generated using OPTRAN with the modified

equations as recommended above, and with nominal design allowable material

properties for 7075-T6 aluminum at 70°F. The curves represent a single load

configuration of axial compression, shear, and lateral pressure. Similar

curves can be generated for other load configurations as required.

The curves in Figure 15-1 also represent a fixed bead angle, 2a = 180 degrees,

and a constant ratio of flat width to bead radius, f/R - .75. As discussed in

Section 13.1, the 180 degree bead angle is optimum for panels which are not

constrained by minimum material gage. Also, because panel efficiency is

insensitive to changes in flat width, the ratio f/R can be varied considerably

with no measurable change in panel weight for a given length of panel and

load magnitude. Therefore, it is possible to generate similar design curves

for other ratios of f/R as necessary to satisfy different geometric contraints.

The designs represented by the curves of Figure 15-1 are all geometrically

similar in cross section, except for the relative sheet thicknesses. There-

fore, the basic panel weight in pounds per square foot is a function of the

thickness only, and is easily obtained for any panel size and load from the

formula given in the figure. The weight given by the formula is the nominal

weight for the uniform section of the panel and does not include the weight

penalty for end closures and edge reinforcing. The type 2 panel specimens
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manufactured and tested in this program were weighed and compared with the

nominal panel weight. The average joint weight penalty for the 3 panel

specimens was 18 percent. This included end closures and edge doublers but

not fasteners. It is expected that the joint weight penalty of 18 percent will

remain fairly constant regardless of panel size and loading. However, this

should be verified when experience over a wider range of panel designs becomes

available. One way of reducing the joint weight penalty drastically is to

make longer panels with continuous uniform section over intermediate supports.

The intermediate supports reduce the effective panel length, L, for design

purposes to a fraction of the actual panel length. Thus, effectively two or

more panels of length L are obtained, but with the end closure weight of

only one.

Fluted Panels

The results of the test/analysis data correlation appearing in Section 14

indicate that a satisfactory design and analysis procedure has not yet been

achieved for the fluted panel configurations. The local buckling test results

have indicated the analysis to be generally conservative, while the full

size panel test results have indicated that the analysis is unconservative.

This apparent contradiction is caused by the lack of a satisfactory analysis

for the longer wavelength modes, i.e. the diagonal buckling and tube

distortional modes, which become dominant in the full size panels.

Before recommending further analysis effort for the fluted panel configurations,

relative panel efficiencies need to be reviewed. The fluted tubular and

circular tubular panel weights are compared in the following table:

PANEL NO.

2-2-P-l

2-2-P-2

2-2-P-3

2A-2-P-2M

2A-2-P-3M

TYPE

(AVE.) CIRCULAR TUBE

FLUTED TUBE

FLUTED TUBE

DESIGN
WT.

12.6 LB

10.4 LB

10.4 LB

ACTUAL
WT.

14.9 LB

14.0 LB

15.4 LB

WEIGHT
PENALTY

18%

35%
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