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ARBITRARILY CURVED AND TWISTED SPACE BEAMS

by

William F. Hunter
(ABSTRACT)

A derivation of ‘the equations which govern the deformation of an

arbitrarily curved and twisted space beam is presented. These equations
| differ from those of the\classicé] theory in that extensional effects
are included. Other departures from the'previeus theery‘are‘thet the
strain - dispTacement re]ations'ake derived and that the expreséions fo?
the stress resultants are deve1oped from the stra1n - displacement ‘
relations 1nstead of assuming that the resu1tants are proportxona] to
~ changes in the curvatures. It is. shown that the tor51ona1 stress resul-
tant obtained by the c1assica} approach is bas1ca11y incorrect except
when the cross-section is circu1ap.p |

Using a vector approach the exact expressiohs for the curvature

components of a deformed space beam_are'deve1oped.‘ BecauSe inextensipn'
of the beam is not assumed an‘additional_;erhjappears fn each of the
Tinearized curvature expressfons. These expre551ohs'are utilized in
the derivation of the strain - displacement relations. fhe normal and.
| shearing phys{ca1 components of the strain tensor are given. These
re]atfons,ere not restricted to beams whose cross-sectional dihenéions
are very small compared to the radius of curvature. - Next, a develop-

ment of the stress resultants is presented. Effects arising from the



initia]ftwist of ﬁhe beam are obtained which éfé ndt reflécted in the
classical theory. Finally, the six eqﬁj]ibrium equations'are derived _
using a vector approachi _

The governing équations are given in the form of twe1v§ first»
order differential equations. A numerical algorithm is givén for
obtaining the natural vjbration characteristics and examp}é prob]ems

are presented.
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v. TNTRODUCTION-v

The- work presented herein arose from the need to better understand
the elastic and dynam1c behavior of tw1sted and curved prope11er b1ades.
It has long been recognized that the stresses in- propel]er blades can be
reduced by designing the blades to be s11ght1y-curved 50 that the centr1f
fuga1 forces are used to counteract the bendIng moments arising from |

1ift and drag. This technique can be espec1a11y benef1c1a1 to the des1gnj
of wind tunnel blades. However, an adequate.theory forfaccomplishlng ;
this has not yet been deve]oped Also, there nas the need tn.study‘the
effects of curvature on. the v1brat10n character1st1cs of rotat1ng
blades. In add1t1on there 15 much current 1nterest in ana1y21ng the 31‘ -
Darrieus windmill (sometimes called the vert1ca1 -axis w1ndm111)
Although these specific problems are not treated in th1s paper, much of
the needed ana1yt1ca1 deve1opment work 15 presented _ |
A review of the classical theory for curved and tw1sted space ‘beams '

as presented by A E. H. Love in reference 1 led to an interest to ex-
' tend the theory to 1nc1ude add1t1ona1 effects and to present a fresh
and more rigorous derivation of the govern1ng d1fferent1a1 equat1ons

-~ The c]ass1ca1 theory was developed by K1rchoff C]ebsch ‘Michell,
and Basset in the ldatter part of the last century (1n reference 1 Love
discusses the development and 11st5'references). However, Love 1is
respons1b1é for presenting the theory in an organized fashion and his‘:

work is most often quoted.



In the classical theory, the central 1ine.of the beam is assumed
to be inextensible and the cross-sectional dimensions are assumed to be
- very small compared to the radius of curvature. Love gives a develop-
ment for the curvature expressiohs of the central line of a deformed .
beam.- Love s work contains an 1rregu1ar1ty in that h15 direction
cosines do not satisfy the orthogonality relations. The 1nextensxb111ty
assdmption and the direction cosine ahoma]y; which are related, have
been questioned by Waltking (see reference 2) and by Philipson (see
reference 3}. |

In this paper the exact expressions.for the curvature components
of a deformed beam, which is init1e1ly eurved in space in'any arbitrary*f
manner, are derived using a vector approach. No aseumptions are hade ih
the deveIOpment'and,.thus, the_resuIting-equaﬁions‘ere app1i¢ab1e to
1arge,'es well as small, deformations. When the three curvature rela-
tions are 1ihearized an additfonal term, that Love does not obtain,
appeers in each one. It is shown that these‘terms arise because exten-
sional deformatioﬁ'is included. |

A development is presented for the stra1n d1sp1acement relatlons of;
space beams. Since the strain d1str1but1on is not linear over the
cross-section, the re]atlons can'b¢~app1jed to beems hav1ng_much ]argef
curvatures than that permitted by the c]assica]Itheory. The strain-
displacement relations are used to determine the §tre5$hre$y1tants.

‘in the classical thedry the.stfain-displacemeet‘re]ations are not -
derived. The stress . resultants are assumed. to be equal to changes in

the curvatures times an elastic cross- sectlonal constant It is shown



that this approach yields an incorrect.stress'resu]tant which can lead
to censiderable error. | |
A vector derivation is presented for the six beam equilibrium equa-

tions. These eqUations are essentially the same as Love's equations
when linearized for natural vibration solutions.

 The analysis developed for curved beams is applied to natural vibra-
tion examples. The governing equations consist of twelve first-order
differgntia] equations and.the Sb]utions are obtained by using a
transfer matrix method. Included in the equations are rotary inertia
and elastic foundation effects. _

Reference 4 is a survey paper by Royster on the subject of curved
beam vibrations. Practically all studies have been on rings or beams
yhose centra1-1ines lie in a plane. In fact, in the summary 6f his
report Royster states “Only two papers on the vibraﬁions'of a cur#ed
beam of double curvapure_haﬁe been pubifshedl" Also, regarding solu-
tions he lists the conclusion "In theraI,iso]utions for the‘coupled

in plane and out of plane vibration prob1em, as is the case if the
central-line of the unstressed beam 1s not a plane curve, are extreme]y
rare." In references 5 and 6 Vo]terra app11es the Methad of Internal
Constraints to béams of dbubie curvatu}é. He obtains nine'toupTed
" second-order differential equations having variable coefficients with
the derivatives being of the nine unknown dispIacemeﬁt funbtidnsu A
solution method is not pkesented. ' ”‘

In pﬁpers pertaining to the vibrations and buﬁkling of c¢circylar

. rings the governing. equations are arrived at by other methods, as well



as from Love's work, when the deformation is in the plane of the ring.
However, for coupled torsion and out-of-plane bending deformation thé
equétions of Love's classical theory are inﬁariab1y used. For such |
deformation the classical theory should be modified because of the pre-
viously mentioned error associated with one. of the-stfess resu]tants.

It is the intent of this dissertation to present a new deﬁelopmentl_
of the equations which govern the deformation of spacé‘beams ratherlthan
to present a study'of the vibration chﬁracteristics of curvgd beams;
.However, a numerical solution method is.given for such beéms; Compre-
hensive discussions are presented‘on thé developments of the‘curvature'
relations, the strain—dispiacement re1ation$,}and the stress reéu?tan;s~

in view of the classical theory according to Love and'dther literature.
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VI. LIST OF SYMBOLS

Cross-sectional area of beam |
Quantities defined by equations (28)
Transfer matrix defined by equation (145)

Matrix appearing in equation (132}

Cross-sectional constant défjned by equations (115},

(i=1,2, ... 9)
Product of the transfer matrices as given by equat1on

(147)

Binormal vectbr‘df'the space curve formed by the axis of!

ndeformed beam

Matrix appearing in equation (132) |
Etastic foundation constants for linear dispiacements
Matrix defined by equation (148)
Modified Darboux vector for, uﬁdéformed and deformed

beam, respect1ve1y | |
Matrix defined by equation (149)
Elastic foundation constants for rotationa]rdisplagements

Mass of differentia] lengths ds and ds' of beam

- Force acting on differential length ds'

Lengths of an arbitrary incremental line e1ement before

and after deformation (see equat1on (11})

‘Differential lengths along elastic axis before and aftef

deformation



ds, d¢!

{1]

| kx, K. s kz

Y

Ko k&, K,

L

32 M3s Ng

Differential lengths defined by equations'(go) and (81)
Flastic modulus |

Normal components of the strain tensbr

Shearing components of the strain tensor

Orthonormal vectors af point onre?astic axis of_undeformed

beam

Orthonormal vectors at point on eTast1c axis of

defonned beam (defined by the rotation of the 1mbedded

e € &) vectors)

<X’ 2y

Vector of internal forces

Components of F

Sheér modulus

Metric coefficients for deformed and undeformed beam,

respectively

Matrix defined by equation (140)

“Moments of inertia about the cross-sectional axes

'Polar moment of inertia of cross-section about elastic

axis

Denotes station along beam

Identity matfix‘ .

Saint-Venant torsionaj stiffﬁgss'constant defined by one
of equations (115) ' : | '

Components of curvature of the undeformed beam

Components of curvature of the deformed beam

rD1rect1on cosines defined by reference 1



[ ]
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O

' to e, e

Direction cosines relating el, e', e, x> &y e

L =X 2y

(i=1,2,3) o

birection cosine of the angle between the. z coordinate-
]ine and gé

Vgctor of the interna1“moments

Components qf @ _

Mass per unit length of the undeformed and défofmed beam, -
respectively | | | |

Nofmal vector of the space curve formed by the elastic
axis of undeformed beam |

Denotes position of point before and after defdrmation;é
respettive]y . | |

Applied distributed force vectdrrper unit length of
deformed beam | | |

Cpmponents of p

Applied distributed forces per unit Tength of undeformed
beam | o |

App]iéd distributedumqment per-uﬁit iength of‘déforméd _

~ beam | R o

Components of " g

Applied distributed moments per-pnif'length.of undéformed“
beam o ) |

 Radius of curvature |

Position vectors to pbint'on e1astﬁc axis.before and.ﬁfter

deformation, respectively
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r, r' Position vectors to point in crbss-section before and
after deformation, respectively
Sy S' Coordinate along elastic axis of undeformed and deformed

beam, respectively

E' Unit tangent vector of the space curQe formed by the

elastic axis of the undeformed beam.
| [ul Matrix defined by equation (151)

Uy V5 W | Disp]acementé of phe elastic axis in fhe. e €y and e,
directions | |

u | Second partial derivative of u w&th réspect to time

W Saint-Venant warping function |

Xy ¥ ‘*Cross¥sectidna1 coordinates.

{¥} Column vector of the variéb1es of the vibration problem,

E de%ined by equation (138) o

{y'} Column vectors of‘the‘varjable der{vatives, defined by
equation (139) . |

z Coordinate iiﬁé defined by-tﬁélintersectidh'of tﬁe
coordinate surfaces x = constant’ énd- y = constant

G Gy o, Quantities defined by dquations (20)

B | Direction cosine of reférencé 1 '

v Orijentation of gxu're1ativé to g.'(see figure 2) -

Yij Strain tensor '

AR Displacement vector of;a pdint on the elastic axis

As' ' Incremental length of deformed beam

€ ’ Tensorial extensional strain of the elastic axis



-]

=

r 4

Eulerian rotation

Curvilinear coordinate

Angle between the xl-_and x) coordinate Tines before

and aftef‘deformation, respectively
Curvature of the elastic axis of‘fhe'undeformed beam
Mass density of beam

Normal stress in direction of the z coordinate line

Torsion of the undéformed beam

Rotational displacement of the beam about’ gé
Eulerian rotation

Natural vibration freguency



VII. ANALYSIS

In this chapter developments will be preséntéd for curvature
relations, the strain-displacement re]ationﬁ; the stress resultant
expressions, and the equilibrium equations for afbitrari]y curved and
twisted spacé beams. Each of the firsf threg deveiopments is followed
by a discussion of the development.. These discussions are‘inc1uded in
this chapter since they are an in-depth analysis of-thé'deve1opmehts
in relation to previous work instead of beihg of-é genefa] discussion
nature. Besides being convenient to the reader, it 1s.thoﬁght that
the placement of the discussions in this chapter wil]'give the réadeﬁ‘i
a better understanding of the_deve]opmehts which follow each. |

Also, a sﬁmmary of the-governing_dif¥éfehtia1 eqpafions-forlnatﬁraf_.
vibration is given. This is followed by a description of a numerical

method for solving them. :

A. Development of nggature Relations.

Consider a curved beam whos§ élastic‘axis'forms any.general space
curve. The elastic axis of the-beém before and after déformatibn is
shown in figure 1 where primes denote tﬁe defﬁrmed'statéf ‘iﬁ this
figure, R .is the pbsition véctor to poiﬁt “P on theféléétic akis;

s is the coordinate along the e]astic-aXis;: AB_ iéffhe disp]acémehf‘
vectdr of point P, and e, gy, and' g? ’afe orthonormal vectoiﬁ W1£h
e, tangent to the curve s. o

The unit vectors ey and e, are taken to be aligned with the

principal axes of the beam's cross-section. The orientation of ey

10
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@B F UG, T Ve, T WE,

Figure 1.- Elastic axis of beam before and after deformation.
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and e, is specified relative to the space curve's normé?, n, as shown
in figure 2. The vectors t, n, and b are the ‘tangential, normal,
and binormal unit vectors, respectively, of the space curve. They

are related to e, e, and ez by the transformat1on

~X ~y
n=e Cosy- ey sin y - | . }
b=e siny+e cosy 7:7‘ _& ay -
LI
J

The shape of a space curve can be cdmp1etely described by two
parameters: the curvature «(s) and the torsion 2(s). The,defiya—
tives. of t, n, and b with respect to s are given by the well

known Frenet-Serrett formulas as -

dt

ds = <n

dn - ' o , >, o .
ekt @
db )

gs - ™ )

Similar expressions can -be obtained for the e ey, e_ trihédroh.

They are most.simply obtained by modifying the Darboux vector {see
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[ R~

Y
13

t, e

Figure 2.~ Or{entation of € 85 & trihedron relative to n, b, t
trihedron. ~ Y - | -
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| reference 7 or any other bookdon differehtia] geometry)_aﬁd obératfng
with it. The Darboux vector is'the rotation rate’ of the trihedron at
point P as P moves along the curve at un}t:vejocify. or; ﬁ£ can be
viewed as rotation per unit Iength of tﬁe curve. Since vy is not taken

to be constant, the modified Darboux vector is .
g. (T + dS)E + KE - SR (3)
Substituting equations (1) into the above gives
< dy ‘ - SR
d {t + ds)gz +ksinye +«cosy Ey' ‘ . {4)

The quantities (t + %%), (¢ sin Y),'and_(k cos y). are knowh as the

components of curvature. Letting

kx =k siny ‘
ky =K COSY . '>.‘§J
R < 4
kz Tt ds
. )
the modified Darboux vector may be rewritten as
d=ke +ke +ke -~ ey

~ X=X y-y  ziz
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In the manner used in dynamics to obtain the derivatives of unit
vectors with respect to time, it can be shown that the derivatives of

e, e, and e_ with respect to s are

<X’ Iy <2
d 3
e
_.:.x...=
ds - g X Sx
gs - dx & B ' >(7)
de' :
_'.”.z_='
ds 9 X Ez
' J
" Hence,
de ‘ : B
_.'.‘.'..%.= '..
ds szy"'kygz
-de . : o
ds kzgx‘+ kxgz" ) (BJ
de . D |
~Z _. L a
s - %S kxgy-"" J

X ky, and . kz_ are

It is noted that in the preceding equations, k
the'curvatﬁre cbmponents'before deformatién. The goal is to‘arfive at
expressions for the curvature components=of-the-aeformed beam 1in terms
_of the elastic displacements,

As shown in figure 1,_pdsition vector to the'disp1aced point’ p!

is



‘R'=R+MR - - {9)
where

4R = u SX tve + w;gz | o ‘_7_(10)
and u, v, and w are the elastic disp]acéménts'of»pcint"P"in the"
‘directions of the reference unit vectors of the undeformed beam. -

If dS is the length of an arBitrary inCreménta]-]ine-eTement in
an elastic solid and dS' s its length after deformation, then‘(see

reference 8 or other book on elasticity or continUum‘méchanics}ff
N2 a2 P35 e aaq oy
(ds') -_(ds) -zyijds de (i, 3 =71, 2, 3) )

where the Yqy -are the components of the strain tensor and the ©' are
the curvilinear coordinates. |
Applying -this equation to a curved'béam with therjncremental Tine

element being chosen to lie along the elastic axis such that |

1 2 3

de’ = do® = 0, do”. = ds, and Y33 = € gives

2

(ds')2 - (ds)2 = 2e 45 k ‘(J2)

Or,



(13)

where e is tensorial extensional strain of the centroidal axis. Since

: (dsl)z = dBl - dEr

the above_mgy be rewritten as

drR' dR'
€=l-~_'._-:-'--.|]
2 "ds  ds-

Differentiating equation (9) with respect to s,

dR' R d(qﬁ)_'_“:‘

s ds | ds

Also, it is noted that

) -o.{ f=%
il
W

Tt

(18}

a7

Substituting the'abovg'into equation (TG)iand the result into equation

(15) leads to

CAQR) g d(eR)  d(R)

R R A ds

(18)
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Differentiating equation (10) with respect to s and applying o

equations (8) yields

d(4R) , . e
dg' - axgx ¥ aygy ¥ uzgz (19) -
where
Sdu L, )
% T I kz v + ky W
o =y e (20)
y ds - 2 X .
- dw _ |
o, % Is ky u -+ kx v
4‘ B J
Substituting equation (19) into equation (18} givesl o
2 2 S
g=%+%(%+q§+§) @

which is the nonlinear expfessioﬁ for the exiensiong] st%ain of the
elastic axis. Thé significance of the above result in view of
‘previous work will be discussed later.. |
Equation {16) may be rewritten by éhbsfitutihg equationé (}f) .
~and (19). | -

dr'
ds

- dxgx1+ ygy +‘(] + az)s; , o (22)
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‘From equation (12)'it is noted that

ds' = (14 2¢)V s L (23)
' Hence,
dr . R , ~_
grotre Vi e
A]so,;
dr' ‘ :
dsT " & (25) |

Combining equations (22), (24), and'(25)'résu1ts in -

']/z[u e'. +- o, e + 1 + uz')gzj o ('26)

'Ez_é (1 +'?E) X~X 2

ThE'éboée equation gives the.direction of the unit vector tangent
to the deformgd e]astié axis fn terms of the dispiacements,‘initial
curvature, and unit vectors of therundqforMed rod..

Equation.(zs)kmay be différenfiated_with respectlfo-'s' " by
applying equation (23) ahd substitutiﬁg'equations (8). Doing this
yields | ' '

de,

. (1 + 2€)-1 (ae +b e, tce) | | (27)
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where

. do '
- . X t -1 dae
as= -aykz .+ (1 + az)ky + rrede ('I_ + 2¢) oy Ie
- ' da ' L T ‘
=0k - ¥ _n -1 de o $
b=k, -0 +_az)kx el - (1 #+2) o & (28)
do . . o
= - _Z -1 de 1
c uxky + uykx-+ i3 (1+2¢)  (1+ ‘az) el )
de

and from'eQUation‘(ZT),_ag "is given by

da da - . _
ot (o) =2 o (29

j= 8

ag .
ds

X
e ds T % ds

The direction cosines which define the orientation quthe trihedrons
of the undeformed and'qeformed‘beam relative to each other are identi-

- fied in the table below.

&y gy €
e I my - "
e 1, M Ny
e, 13 .M n3

The directfon cosines 13, M, and N, have been defined in terms of

the displacements by equation (26) and are
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_ \
-13 ={1 '+ 2€)f]/2 ay '

my = (14 2e)71/2 ay I }(30)
ng = (1 +'2€)-][2(1_+ “z)l'dh y :

In the same manner as before, a modified Darboux vector may also

be written for the deformed beam as

| d' = kxgx + k! ey + kzez | : c(31)

Using this vector, the derivatives of the'unit vectors of the deformed

beam are found to be

det N

-~ = (1P 1.

ds' kzgy, kygz

de' e S B
..,2 = _lk'nt [ | ’ '
ds' - szx ¥ kxgz" > (32) -

deé

ds' kyfx kxgy

From the third of the above equations and equation (27),

o -1 . '
- 1 J — .
koey - keey = (1 +2) (ae +tbe +ce) (33
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fhe transformation between the unit vectors in terms of thé direction

cosines is

= ' ™
e =g * ]2ey t 138,
-Ey_z 'Ie +-_m2?.y ¥ Mg . ; > (34)
7 = M8 * nzey "3, o _ )

..Subétitutﬁhg the‘above into equation (33) and rearranging.gives,
v i o B T
Kygx ~ Kiey = (1% 2e) (&l + bmy +ieny ey

+ (a1 + bm; + cn

2 v erley
+ (aly + bmy flti:n:;)g;.].. (35) :
Thus, |
kx = .—(_1 + 25)"1_(al2 + ;’mz +.cn2) _ “
k} = (1 + 25){(a11 f Sm1‘+_9n1)“'.." | )'(36)
0 ; 1+ 23}']fé15-; bm3l+.cné) | | 'J .
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Two of the curvature componénﬁs have now been expressed in‘terms'off

a, b, and ¢ (defined by equatfons {28)}) and thé'dfrection“cosinesg‘
It can be shown that the third of équations:(BG) is égactiyi§atiéfiéd
by the previously defined a, b,‘c, 1 mé;,ahd~ n3i'lAlso;.by squaring
equations (36),.adding, and apbiying the-transformation‘orthbgbnality:

relations it is seen that

2

Z k= (1 2e) Pl e nf ety (e
From the first of eqs. (32),1
' I
~ de! o R
Heel=ky - (38)

ds’ <y
Using equation (23) and subsfituting.the transformations

1]~ o+ m]e + n1e

(D
Il

X z o _
. y(39)

ey = 158, * mzfy e

into equatipn (38) gives

kz (1 + 2e )'”2[ds (119 + mle + n1e )] - [1 e + mye

¥

y 4 nze ]

Differentiating the above and'substituting'equations (8). for the .

derivatives of the unit vectors results in
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-1/2

ké = (1 + 2¢) [(eém] - mzn})kx + (10 - n21})ky

dy dm; dn, '
+ (my1 1 o)k, + 1y qg*+ My g+ Mo g5 - (40)

The table of direction cosines given on page 20 is an orthogenall
matrix. The inverse of an orthogonal matrix is equal to its transpose
»and its determinant is equal to unity. Thus, each element of an
| orthogonal matrix is equal to its cofactor. Applying this theorem to
the Tast row of the direction cosine matrix yields the following

‘orthogonality relations

35 M Ny -y fy

=<1y np + 1] (41)

3
[¥8 ]
H

2™

" The above relations may have been.obtéined by sUbstituting the trans-

~ formation expressions for e, ey. and e, into ex X ey ¢, and

carry1ng out the operation as Novozh1lov did in reference 9. Equatioh

(40} can now be rewritten as

T d1 dm: dn

=172
3y Pkt loge Tt mz as T s

kl = (1+2 ) (T3kx +m (425."
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Equations (36) and (42) give the curvature cempenents in terms of
the direction cosines,'the.initial curvatures, and the quantities a,
b, and ¢. The direction cosines ]3, M. and n3' have been expreesed
in terms of therdisp1acements u, v, and W. “These cosines (13, m3;.
and n3) define the orjentation of eé fe]attve'to_the trihedron‘of the

~

undeformed beam (i.e., e, e, and e ). Besides khowing the oriehtatiqn.'
of e., one additional angle (or direction cosine) is needed to fu]]y_'
spec1fy the orientation of the tr1hedron of the deformed beam re]at1ve
to the trihedron of the undeformed beam (1n other words, the or1entat1on
of ex‘ and ey heeds to be specified). Th1sjadd1t1ona1.rotat1on
jo1ns u, v, and w as one of the élastic disp]aeements (or variables).
of the probtem. The direction'cosines '11, m1, nys 12, Mss and Ny
'can be expressed in terms of the known cos1nes (13, m3, and 3) and
' the new elastic d1sp1acement wh1ch has not yet been deaned | o
when the beam is deformed the pr1nc1pa1 fTexure torsion tr1hedron;

at any‘generaT point on theee1ast1c axis undergoes ‘translation and
_rotation The rotation may be expkeesed 1n”terme of EuIertah angies.

It has been found that the most suitable Eulerian angle system for this'
application is that used in aeronaut1ca1 ‘and aerospace engineering

(see reference 10). For this system a]1 three Euler angles are small

if small deformations are assumed. This is not the case for the Euler’
_angle system of reference 11. | | |
Let xyz be the initial reference frame a11gned with the ex, e

~y’
ez trihedron and let x'y'z' be the final reference frame which is

~

aligned with the ex uy

, e trihedron. The three rotations will be
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| taken in the fo]]ow%ng'ordér; -

1. A pos{tive rotatioh ¢ about y axis resulting in. XYZ reference

2. A positive rotation © about X axis resulting in X'zt
reference | _

3. A positive rotation ¢ about Z' axis resulting in x'y'z’
reference | |

It is noted that the above is differehﬁ ffom reference 10 in that fhe-

axes are not named the same. The three transformations are

. . : - ~
X{ ~|cos vy 0 - -siny X
yy=\ o 1 o | (v
Z! siny- '.';O ‘I‘cos Y| z

. ' = N
Y'Yy = 0 co§ & .- sin @ < Y
Z' - 0 -gin 61' cos 6 1Z
o L . : C e \
N O . | T
X cos o. sin ¢ 0 - X'
y') =|-sin ¢ cos ' ¢ 0 < y'
2'| 0 0 L z'
. _ . - . -\

Substituting and performing the matrix operations. yields
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(%N [cos ¢ cos sin ¢ cos & ~cos ¢ sin Y ()
+sin ¢ sin 6 sin ¢ +sin ¢ sin 6 cos Y|
{ y'>= -sin ¢ cos ¢ cos ¢ cos 8 sin ¢ siny < y ? (43)
+€cos ¢ sin 8 sin y +cos ¢ sin 8 cos Y '
z' cos 8 sin y -sin 8 - COs 8 cos Y z
_\..-/ e ' ‘ . B —-l "~ S

The-above gives the previously discussed &irection cosine matrix
in terms of vy, O, and ¢. The angle ¢ will be taken as the needed ad-
ditional displacement variable.The angle ¢ 1is the rotation about the
z' axis {or elastic axis) that brings the. X; and Y' axes fo the
final x' and y' ﬁosifion. . | | i |

From the direction cos{ne matrix of gquation'(43),

cos 6 sin ¢

e
w
n

“

-sin &

Ny = cos @ cos ¥

or,

) (a4)

=
1
—+
A
=
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By substituting equations({30) the above expressions for © and

v may -
be rewritten in terms of the disp]acéments as
: ‘ ~
6 - e -1 ay ] _
(1 + 2¢) J '
_ o Y ws)
a - .
‘4’=ta"'](l +xa) |
. Z . | : J
Using the direction cosines defined by equation (43}, the-expréssiOns<
for k; and k& given by equation (36) become
A | \ | L . ' ~\ )
kx --Tfrjz;[1-51n ¢ cos ¢ + cos ¢ sin & sin yYla + {cos ¢ cos e)b
+ (sin ¢ sin y + cos ¢ sin 6 cos y)c] b
. S(46)

_‘k§_f T~;l§E-[(cos b cos Y + sin ¢ sin q sin yla + (sin ¢‘cos‘B)b '

* (-cos ¢ sin y + sin ¢ sin 0 cos y)c] |

From equations (44),'(30).2and'(2T),'the following expressions for '

the trigonometric functions in terms of the displacements are obtained:

sin 8 = ~—-;Jiﬁnﬁ? ‘ : ‘ w
- (1 + 2e) o |
o 1+ 2 -(qg .1/?
cos 6 = T+ 7% |
(1 + 2 - o)
: Y
T + a,
cos P =
(1 + 2¢ - a§ 172
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Substituting the above into equations (46) gives o )

k; = (1 + 2;)_3/2(1 + 2 - ai)']/Z{[(1‘+ 25)1/2(j + az)sin b +'qxay cqs ¢la

2, sin ¢+ ay(I + az)cos ¢]c}

- [+ 2 - ai)COS ¢lb + [~(1 + 2¢) X
(48)

XY

'kQ = (1 +2e)¥27 4 2 - uz)']/z{[(l + 2 )]/2(1 +a,)cos ¢ - oo sin ¢]a

lea cos ¢ - a (1 + uz)sin‘¢]c}

+ [(1 + 2 - u5)51n ¢]b + [-(1 + 2¢) y
| (49)
The expression for k; .in'terms of the directibn cosines is given
by equation (42). The last three terms of thiélequation may ﬁe expfesséd
in terms of the Euler angles by substituting the direction cosines as’ |

defined by the matrix of equation (43). Performing the operations ahdr

combiniﬁg terms yields the éurprising]x simple result

1

d1 o dny T
Lo My I _de gaede
2ds TMds TMpgs T gs - sn® | - (50)

* Substituting equations (30) and (50) into equation. (42) gives

= (14 2e) Ty, * ke F k(1 +a)] 4 (14 2) ‘/2@g§--_s1n 0 _90
' - (51)
The last term of equation (51)'may-5e'rewritten in terms of the dis-

placements as
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1
-5 . 4 -1 3
sin 8 o= = my oo [tan (n3)]
m - dl dn
.M 3 4, 93 | -
7,2 Mm% hw) - (52)
3 3 .

Using equations (30) it can be shown that

dn da

dl da
3 3 -1 X 4
g -y = (M +2)7 [0 +a) 25 - o 7571 - (53)

Substituting the above and equations (30) into equation (52} gives

(0 + 2e)" 2, da
' L1+

(1 + az)2 + o

do : o
-<1 g—lp-= X . _Z - )
sin © az) ds % ds . (54) _

ds

Noting from eguation (21} that

2,2 _. 2
(1 +_qz) + o =14 2 - oy
and substituting equation (54} into équation»(51) gives the third

curvature component as

rké = (1 +2€)_]{kxax‘* k.o + kz(l +;u;):+ (1 + 26)]/2 do

Yy ds
o] do | Cdo_ - :
¥ 1+ 2 - a2 L0+ az) ds % T I : (55)
y

“Equations (48), (49), and (555 are the equations for the curvature

components of the elastic axis of the deformed beam in terms of the
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elastic displacements and the initial curvature. The quantities

x? Gys O €,.a, b, and ¢ appearing in'the equations are defined as

functions of ‘the dwsp1acements u, v, and w by equations (20) (21),

and (28)

O

It is noted that the expressions derived for k' k;, and k' are
exact. No assumpt1ons whatever have been made.

Also, it is observed that different forms of the7curvature‘compq4
nents can be obtained by altering,the ordef of‘the EuTerian.retatfons.
For example, "if the rotations are taken in the order
1. A pos1t1ve rotation e about x axis resulting in XYZ reference
2. A pos1t1ve rotation y about Y axis resu1t1ng in X Y! Z' | ?

' reference | |
3. A position refation ¢ about Z' axis resulting in";ﬂy’z’
reference |

then the curvature components are given by

k; = (1+2)7%2(0 4 3¢ - 2)'”2{[(1 + 2% - o) )sin ¢]a |

+ [-(1 + 25)]/2(1 *a, )cos ¢ - aqu s1n ¢]b + [(1 + 25) /Zay cos ¢

- a1 + g, )sin ¢Jc} | | R (56)
= (1 + 26)-3/2(1 + 2e - az)-]/2{t(1 + 28 - o )cos ¢]a
1/2, i 2 .
+ [(1 +2e) 71 + a, )sin ¢ - a ay cos ¢]b + [-(1 + Ze) a, sin ¢

- ax(l + az) cos ¢]e} o _ o  ‘, o : (57)



k) = (1_"' ?e)'._l{kxax koo +k(T+a)+ (14 2&:)1/2 —g

Yy
o | da. l da '
B . Y4 X P
(1 +a, )2 + a2 .[U o) T Y E } , , (58)

As a check on the expressions giﬁen'for k, - and k;' it can be
" shown that they do satisfy equation (37).

The exact curvature express1ons, which are h1gh1y nonlinear, may
be apprqximated to any desireQ degree_by applying the:binomial theorem
anq §ubstituting thé trigonometric expansions for _sin'¢. and cos ¢.
Using eqdation# (48), (49), and (55), the'nonlinear approximations which_:
contain terms of order no higher than pfoducts of two displacements (ori _

squares of_disp]acéments) are

‘ '2" 1
X X xx T2 X y zZ 2°X
‘ dd; " da dax' L
f2kaa-ka¢-ku¢+a E_+2uzds+¢'&h§“_' (59) -
- ' ‘ Gy 12 221
k; =k -ka, -ka «Kko¢+~=--kao Ko +Kas - ﬁ'k $-

y zy yz X' ds T2yxT Cyyyz y
- | - dn,  do do,
- k o,y + 2k o, + k o ¢ f k o ¢ &, ds ‘ 2az ds + ¢ & _(60)

- | A do _ 2
k:,! k+kon +ky°‘y kcx+ zx kay+kzaz
. do. . ' - | ‘
- - X _ . 40
Zkyae, - &Ko, oy ds "% ds ' ‘ - (e1)
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It is seen from the above that the Tinear approximations for the curva-

ture components are

. o : do R
I - - 1 _...1.

kx kx kzux kxaz * ky¢ - ds (62)

' ' . dax' ‘ ‘ ..
1= k - -k - k +-—-—- : 63)

ky v kzqy ,kya ¢ (63)
o : » Q_Q o

kz kZ + kxux + kyay ko + ds (64)‘

It has been found that thé order of-the'Eu]erian rotations has no :‘;-

feffect on the 11near1zed equat1ons $0 10ng as there is a rotation aboutg'
each of the body axes. A]so, it is noted that the 11near re]at1ons can
be obta1ned most- easily from equat1ons (46) and (51) by mak1ng smaI]
_ ang]e assumptions for 1, O, and . ' ;

Us1ng equat1ons (20) the 11near1zed curvature components may be

expressed exp11c1t1y in terms of wu, v, w, and ¢. as

' 48y o dk

' -d g—g— &-_—_-Z-;
ke =y ds? Zkz ds (kxky & v

o+ (-k2 AE, (-k k. + Efﬁdw +k , (65)' ‘
X z Yz ds y¢ ' :
. 2 )

- ~dy dv . 2 K2

ky ky + W 2kZ st (k Z)g

dk_ dk; -
z o | . ‘
B (kxky Yas vk, t EEXJW = ket o (68)
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. du dv _, dw
Ky =kt ko g+ ky ds kz s

_C_[_(E - » . . u ' '
e Zkykzu 2Kk kv _(67)

B. Discussion of Curvature Relations .

A development is presented for the exact expressions of the curva-
ture components of a deformed beam which is initia]]y curved in'any
arbitrary manner. The exact equations have not been derived heretofore
The curvature relations are developed using a vector approach In con-
trast to nearly all previous work the beam is not assumed to be inex-
tensible. The principa? cross-sectional axes'are'assuoed to have a
variable orientation'relative to the. curve's horma] and binormal. Also,
nonlinear and Tinear approximat1ons of the curvature equatwons are g1vent

In reference 1, Love gives expressions s1m11ar to the 11near1zed
equations presented herein, However there is one term in each of
equations (62), (63), and (64). that Love does not obtain The presented
vector derivation yields these additlonal terms wh1ch are apparently of
the same order of magnitude as the other terms .The new terms in the
k', k', and k'_ expressions are (- kX az). (-ky dz); and (—k; dz),
respectively. ' | | |

There are two aspects of tove‘s work on curved beams uhich have
been questioned previously. First there is the anomaly in Love's
work that his direction cosines do not sat1sfy the orthogona11ty

relat1onsh1ps. In part1cu?ar, the sum of the squares of the d1rect1on
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" cosines relating e; to e ey, and e, is not equal to unity,

Secondly, the validity and applicability of'Lové'é inextensibility
relation for curved beams is questioned.
In the presented development all of the direction cosine ortho-

gonality cond1t1ons are, of course, satisfied exact]y., For.exampié, it_

2. 2. 2
13 * my + ny

after equation (21) is subst1tuted

. is seen that =1 is satisfied exact]y by equat1ons (30)
The vector approach can be used tolexp1a1n Love's dlrect1on cos1ne
anomaly which has not been fully understood beforg. It shows that
products of deformations must Be included jﬁrthe‘deve1opment‘if the
direction cosines are to be conSistent; Also, the reason for £hg‘exactﬁ
' Formulation yielding additional terms in thé linearized equations'één bé‘:
shown. | o
Love denotes the directidn cosines of tﬁe §ngles between e, and
each of e, ey, and e, by L3, M3, and N3; respective1y, Expressed

in the notation used in this paper, Love finds the direction cosines

to be .

It is obvious that these direction cosines do not satisfy Lg + Mg +
ug = 1, but give | -

.2 pd 2 _ 2, 2 2
L3 + M3 + N3 1+ 2az + o + ay + o,

1 + 2;
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In arkivfng at his curvatufe expressions, Love applies an inextehst;'"'
bility condition which he takes to mean that the elastic axis is un-
strained; It is not thought that such a eondition is appTicab1e tb
cur#ed beams. In general, the elastic axis will extend since ]oading at
one point along the beam will create at some other point en ihteﬁnal f
force component which is parallel to- ‘the elastic axis at that po1nt if
the beam is curved. In the presented formu]ation there was no need for
imposing an 1nextens1b111ty re]at1on

If a curved beam were assumed to be inextensible, then the
inextens;b111ty condition is given by setting ¢ of equet1on (lelequa]
to zero. That is, . | .

Y2, 2, 2y T

Love deduced the inextensibi]tty-conditioh to be

From equation (68) it is seen that the exact inextensibility assumption .

actually requires that

If the 1nextensib1]1ty cond1t1on, € = 0, were app11ed to equat1ons

(48), (49), and (55), then the 11near1zed equat1ons become
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- ' - da
' o= - ‘ - -——l
.kx kx kzux * kxu'z + ky¢ ds .
' o ] ' dux
k' = - + o - + —=
ky ky_ kzay. 'kya 'k ¢ ds

' : 7 L de .

k; k? +'kxax'+ kyay +_kzaz_f ds .

By comparing the above with equat%ons (62);thf0ugh'(64) it is seen that‘
iﬁposing the inextensibility conditioﬁ =0 dhdngés ﬁhe5sjgn‘of the
terms containing a, .

From the.definitions of s Ay and a, (equat1ons (20)) it appears'
that the terms k o, ky-“z’ and k, o, are. of the same order of j é'
magnitude as the other deformation terms 1n the curvature express1ons ?

" However, if the beam were assumed to be 1nextens1ble then 1t 1s ‘seen
from equat1on (68) that az would be a higher order term since so]v1ngi

equat10n {(68) for &, gives
o, T - %-(ai_f ai) A o (69)

Hence, if the beam wéré as;umed inextensible then the o, terms Cbﬁ]ﬂ:'*
be neglected aﬁd the 1inéarized curvatﬁre equations reduce to'Love'§.5‘
But there is no reason to impose the inextensibility condition; the
'curvaturé equations can be derived without using it. Also, the elastic
axes of curved beams do, in fact, extend. 1In addition, o, is c
apparently of ‘the same order as ux and u (see equations (20))
Moreover, the 1nextenszb111ty assumption imposes a constraint re]at1on
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between u, v, and w as is given by equation {69).

Using the notation of this paper, Love gives the direction cosines

as
_ du -
L3 =ds - kzv + kyw (= ux)
- dv -
My = g5 * kU - ko (= qy)
Ny=1+¥ vy (=1+a)
3 ds y P z
and states
"The equation Lg + Mg + Ng = 1 Tleads, when we neglect squares and

products of wu, v, w, to the equation

g—‘g-'kyu+kxv=o,
which expresses the condition that the central-line is unextended. In
consequence of this equation we have N3 = 1",

It appears that Love creates his inextensibility condition to
explain away the anomaly that his sum of the cosine squares is not
equal to unity. Regardless of the correctness or incorrectness of
Love's inextensibility relation, the manner in which it is deduced
does not seem to be a logical method for arriying at it. It shduld come
from a strain expression. Love should nqt,have coﬁcluded from

Lg + Mg + N§ = 1 that the elastic axis of a curve beam does not
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extend. The problem was that his direction cosines were in slight
error.

It is interesting to note that the direction cosines developed
herein satisfy ]g + mg + ng = 1 for the inextensible case as well as
for the extensional case.

It was mentioned earlier that Love's direction cosine problem
arises because products of deformation are not considered. This can
be illustrated by using the presented vector approach with‘Love's
assumptions applied. Neglecting products of deformation in the

extensional strain expression of equation (18) gives

d(aR) ‘ ‘
where dé‘ is given by equation (19). Substituting yields

The above result is, of course, Love's inextensibility condition when

set equal to zero. Equation (22) is repeated below for convenience.

dR'

T Fa + g8
d XX GyZy

P e

For inextension of the elastic axis, ds' = ds. Thus,

dR'  dR'
ds
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and the above becomes

-
P 0‘x§x_+ a8y ¥ (1 +a)e,
The above is Love's result in vector notation since the direction
cosines defined by the above are the same as Love's. Next, Love reasons
that «_, = 0 (inextensibility condition) and the above becomes

Zz

{ =

€2 T HE T e T e

Although the orthogonality condition on the direction cosines is still
not satisfied exactly, it is now satisfied to a higher order when

a, = 0 is assumed. It is seen that Love's inextensibility condition

Zz

(a, = 0) and his direction cosines are a conSequence of neglecting -

z
preducts of deformations and assuming ds' = ds. It is‘noted that the
latter expression above fqr gé is the same that Ojalvo and Newman
obtained in reference 12. 0Ojalve and Newman derived Love's expressions
for the curvature components in the appendix of their paper.

A close examination of the presented derivation shows that the
additional linear terms are due to the combination of not setting
_ds' = ds and not setting @, = 0. Consider, for example, how the

term (- ky @,) arises in the ki relation. In the second of equations

(46) there appears the product

(1 +2e)7! cos ¢ cos ¢ [(1 + az)'ky]
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where the factor inside the brackets comes from the definitidn of a.

1/2 ds when

The term (1 + 28)-] arises from setting ds' = (1 + 2¢)
derivatives were taken. The fourth of equations (47) gives the
expression for cos ¢ in terms of the displacements. If the binomial
theorem is applied and equation (21) is substituted, it is seen that
cos Y doeé not contain a linear term. Assuming ¢ to be small the

lTinear approximation of the above product is

(1 + 25)'] cos ¢ cos ¢ [{1 + az)ky]

i

(1 -2)(1 + az)ky

i

(1= 20,)(1 + o)k,

HH
>
!
~

2

Thus, it is seen that this additional Tinear term, - ky A, comes from

setting ds' = (1 + 25)1/2 ds and not letting a, = 0, If equation
(63) is considered to be the correct linearized equation for k}, then
the assumptions of ds' = ds and a, = 0 cause an error in k& which
is equal to (+ ky az) since the term does not appear when such assump-
tions are made. The additional linear terms do not arise from the
Eulerian rotations.

Another aspect of the development which should be mentioned con-
cerns the rotation angle ¢. In the present derivation the angle ¢7 .
is precisely defined as the Eulerian rotation about the body axis
that is tangent to the elastic axis. Love's equations contain the

rotational displacement B which, evidently, is equivalent to the
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angle ¢ when the exact equations are linearized, Love defines g to
be the direction cosine of the angle between g; and gy. From Love's.
direction cosines (L1 =1, M, =B, Ly = -8, M, = 1) it is seen that B
is essentially a small rotation about the elastic axis with the
direction of the elastic axis unchanged. Other authors (see, for
example, references 3 and 12) have followed Love's work in defining
the rotation angle 8. However, this definition is not satisfactory
when considering the exact expressions or the nonlinear approximations
for the curvatures.

Now consider an untwisted circular Beam of radius R whose normal
is in the e, direction such that ky =1/R and k =k, = 0. The
linearized curvature of the deformed beam as given by equation {66)
reduces to

k§=-1R-+-‘c“;—:%+§-2- (70)
The above is the well known formula for the curvature of a circular
beam deformed in plane (see, for example, reference 13). This result
is often associated with (or identified as) inextensible deformation.
However, since the above is not based on inextension the above formula
should be properly regarded as the linearized extensional curvature
relation for a deformed circular beam.

Aside, it is noted that if the beam formed a planar curve instead

of a circle then the linearized curvature would be
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2 dk.
'k;,=ky+§—;%+k§u+wds
Love arrives at the same expression (equation (70)) for the
curvature of a circular beam and this seems surprising at first in
view of the fact that equation (70) was obtained utilizing the addi-
tional term which Love's equation for k; does not contain. The
reason why Love obtained the same result can be explained. Using the
notation of this paper, Love's curvature expression for the circular

beam reduces to

1 1 dw

which he substitutes into k; when considering applications. This is

the same as subtracting %-(g%-- %0, or k o, from the right hand

¥

side of equation (71). This, of course, Love can do since a, =0

from his point of view (but from'the extensional point of view this
could not be done since o, is not equal to zero and is not of higher

order). Subtfacting %-(%g-- %J, or k, o,, from equation (71) gives

y
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equation (70). It was pointed out earlier that if the extensional
linearized expression for k; js considered to be correct then Love's
expression for k} would be in error by the amount (+ ky o) (this is
not saying that Love's work is in error - he'assumed inextension).
Continuing to examine Love's work from an extensional point of view,
the subtraction of %-(%g - %J causes an error of (- ky az). Thus, the
two errors cancel each other and this is the reason the curvature resuits
are the same.

In equations (65) through (67), the linearized curvature components

are given in terms of u, v, w and ¢. Love's inextensional results

are presented below in the same notation for comparison.

2 dk

[ _ d du g_\:l_ - _Z
kx kx d52 2kz ds kx ds ~ds Y
2 dkx
+ kzv + (-kykz + E‘g—)w + kytb (72)
ok s QU g v w2
y ;;Z z2ds yds z
dkz dk -
ds"+("k+s)“"‘x¢ (73)
- dv _¢. -
kz k + Ky ds k‘y &t + kyk u k k N (74)

Depending upon‘the problem, one applying the first two of Love's
curvature equations may likely apply Love's inextensional relation

which 1is



45

-d__;
= ds kyu + k v 0

But it is seen that subtracting k# a. from equatibn (72) and

Zz

subtracting ky o. from equation (73) yields equations (65} and (66),

z
. respectively, which are the linearized extensional results. Also,

subtracting 'k, a from equation (74) gives equation (67); however,

z
one using equation (74) would not be expected to do this since the
equation does not contain a %g- term. 7

| Thé reason for Love's exbressions_for k; and k} (after Love's
inextensibi]ity condition is app]ied) beiné identical to';he linear
extensional expressions is the same as that given earlier for the
circular beams. For'exténsional behavior, Love's equafion for ,k}.‘
for example, is in error by the amount ky - Then, when vaé'sl_
_1nextens1b111ty condition is applied to his equaiipn, k} 1s'redUCEd
by the amount .ky az,“which ié not zero from the extensionaT point of:
view. ‘

It has been shown that love‘s expressions‘fqr -k, and k& with
his inextensibility relation applied afe the same as the 1ineqrized
' ‘extehsiona1 relations for ky and ‘k‘ Thus, authors who have used
'Love S equat1ons (with his 1nextensib111ty relation applied) in the
past have m1staken1y assumed that an 1nextens1b111ty restrict1on Wwas.
imposed and that their results described -inextensional behav1or.

It is noted that although the longitudinal strain e of the

-elastic axis is defined using the definition of the nonlinear strain
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tensor for curvilinear coordinates (see equation (11)),. the know]edge
that ¢ 1is a strain is not needed in the deve1opment since e is
eventually expressed in terms of the displacements (see equations (21)
‘and (20)). The derivation of the curvature relations is purely a
geometry problem. The developmeht could have begun with the qdantity '
given by equation (13} being denoted as e. Although ¢ does abpear

in the fina1'expressions for the exact curvature components; it may be
eliminated by substituting equation (21). For the curvature expreSsions
" to be mathematically correct the extensional strain ¢ must not be set

equal to zero.

C. Development of Strain-Displacement Re]ations

The stra1n-d15placement relatlons w111 be developed w1th the
follow1ng assumptions being made regarding the d1sp1acement of poxnts
w1th1n the cross-section.

1. Torsional deformation causes warping of the cross;sectionrand
the out-of-plane disp]écements‘are proportional to the Sdint-Venan#
warp1ng function.

2. The cross~ sectional body-axxs coord1nates of po1nts off the
elastic axis do not change during deformation. This “assumption is in
agreement with Saint-Venant torsion_theory that cross-sections dq not
change in size or shaﬁe dﬁring defcfmatidn

3. Shear deformation is a negI1gib1e effect Thus, excepf for
warping due to tors1on. £ross- sect10ns rema1n normal to the elastic¢

axis during deformat1on
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Letting x and y be the cross-sectional body-axis coordinates
of a point in the beam and letting r and r' 'be position véctors,to

the.point before and aftér deformation, respectively, then
rixyss) = R(s) + xe, (s) v ye (s) - ) 75)
£ (xy,s) = R'(s') + xels') +*y‘g;,(s + w(x,y> ﬂrle (s*)
(76)
where w(x,y) is the Saint Venant warping d1sp1acement function. Taking

the differentials of the above relations and substituting equat1ons (8),

(17}, (25), and (32) for the derivatives.of the vectors gives-

= {dx - ykyas)e, + (dy + xk,ds)e,

+ (1 - xky + yk, )ds e, | o (77)

= - e 1
(dx ykyds' + ka

+ (dy + xkéds' - Wk
U ylktde! N
+ (ds xkyds + yk.ds

L oud + W do_ d%_ o
xa-%rdxf dy dom 4y + W st (78)

The magnitudes of dr and dr' are the lengths of an arbitrary
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differential 1ine element in the beam before and after deformatidn,

respectively. If the differential length is denoted by d§, then

()% = dr -« ar
(79)

Substituting equations (77) and (78) into the above and replacing ds',

by

= (14 2e)”2 .
in the second of the resu]ting equationS'and.then collecting terms
yields

Y- 2 2 . . ' - 2, 2
= + - -+ . -
(d§) dx +_dy + {1 Zxky; 2ykx + X ky 2xyk k

2.2 . 2.2

+ Yok + YOk xzkg)dsz - ?ykzdxds.+ Zxkzdyd§ | (80)."
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()2 = 11 + (& ( ) (1 + 2¢)"17dx°

+01+ ( ) ( ) (1 + 2¢)” ]dy

#[1+ 2¢ + yzk' (A + 2¢) - 25MK K, gf-(1 v 2¢)1/%

+ W k' g ) + x k' (1 + 2¢) - 2xHK}K} gg_(] + 25)1/2

2, .2,d¢ . . _q,_
+ Wk, (ds) - zxyky(1 +2e) + 2k (1 + 2¢) + 2M "
4%
+ X k' 201 + 2) - 2xyk ky(1 .+ 2e) - 2xUk; —5
Y dst -

¢ yzk' (1 + 25) + 2y} g-SM W Lﬂiﬁ) (1 + 2¢) Vds?
ds .

_ ds
N
‘L2 = gy ( ) e 2e) ‘]dxdy

it Pkt (1 4 9 1/2 de gﬂ_gg oW, dg -
+ [-2yk, (1 f 2e) + 2wk§ s T 250ds T P Ky ds

M 0 dd , oy M _g__ig |
oy M kgt 2W & | 1+ 2e)]dxds

. 1/2 @ W do _ W, dd
. [Zxkz(1 v2e)C - 2w R 2 qe - ags k)

: ggﬁ I d - '
yoy M ay ky e+ M5y H%"'i'(‘ + Ze)]dyds (@)

Equations (80) and (81) define the metric coefficients 93 ahd

Gij for the undeformed and deformed beam, respectively, since the
metric tensors g.jj and Gij are, by definition, given by.
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2 _ 1,.d
(82)
2 . onldelidyd
(d§8')" = Gijdx dx

Being that
92 - 482 - (6. - o dxidd
(ds') (d8) (Gij gij)dx dx

is @ measure of the deformation, the covariant strain tensor is defined

to be

Yij = 58

j - 9;5) o (83)

i %)

However, the physical components of the infinitesimal strain tensor
~are needed for expressing the stress resultants in terms of the
displacements.

The normal strain'components are defined by

i i
o d8'(i) - (i) _VEHi%X -9y

. . (84)
1 ds(1) N |
and the shearing strain components are given by
e:. = 8.. -85 (1£3) - (85)

ij il Al

J

where eij and G%j are the ang]es between the x' and «x
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coordinate curves before and after deformation, respectively. These

angles are related to the metric tensor components by

-
) (86)
cos 9 ij = G.ij/VGi-iGjJ

J
It is noted that in. equations (84) and (86) and in the fo1low1ng ‘
expressions the repeated subscripts do not denote summat1on Beg1nn1ng
with the def1n1t10ns of equations (84) and (85) it is shown in reference
8 and other texts that the normal and shear1ng strains are g1ven by

s = ¥4/ %; '_ o (en)

= [2y,. - Yii , Vi '
%5 = (235 913(911 * 933)]/411 %3 (913 - (88)

Using'équations (83) and (87) the above may be rewritten as

| —

e.. =

it =7 Gy = 945)/94 | | (89)

e.. = [G,. )?7 - (90}

ij 95 7 9% T gij(e11 € )] 11 %3 (gij

As noted earlier, Gij and g5 are defined by equations (80)

and (81). In the infinitesimal strain theory, products of deformation

are neglected in arriving at equations‘(87) and (88). Thus, deformation
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products will not be ing]uded_in'the‘expressiohs for the metric
coefficients. " The 11nearizea-expressions for the curvature combonents
| k;, k&, and ,ké are given'by_equations (62), (63), énd (64). A150,'.
e is defined by eqpatibh‘(ZT). These equations may be substituted
into equation.(Bl),to give (d?‘)z"in.terms of the displacements Oy s
| ays oy, and -¢. Letting -

1

dx = dx
dy = dx®
dz = dx3

and compariﬁg equations (80) and (Bi)lwith equations (82), the metric

coeffjcients for the undeformed and deformed beam are found to be

~

91 = 1

9 =1 |
. o i 2 2. 2. .2

9a3 1 +l2(y kx X ky) + (y kx X ky) + (x° + y°) kz $(9])

9 =0 |

913 = Y kz

93 = X kg J

Gyq =1

=
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33 = 933 F 2(1 + yk - xk )(onZ + xkk¢ +'yk ¢

G y Y
do do 2
- x 2oy X a9
Xqs ~Yg M y %)
s .
o+ Z(fy +‘X2kx + xyk )k a, + Z(x + yak + xykx)kzqy )
+ 2(x2 + yz ~ xk W - yk N)k .
o X y "z
= _j_ A
S13 7 913 - ylkoy + kyoy + 50
Sy Mde g de
(s yk Xk ) sx ds * ”ky'ds
= g ' _Jt
Sa3 = 923 * X(kyoy _" ky“y * 45
N Ly oWde o de
* (1 4k, - xky) 55 ds T ¥Ry ds

From the above relations and equations (89) and (90) it is

immediately seen that
=0 | (93)

It is assumed that the curvatures are small such that the product
of a cross-sectional coordinate and a curvature éomponent is much 1es§_

than unity (i.e., x; K << 1). In other words, x and 'y are -small

J
comparéd to the radius of curvature and the angle obtained by
multiplying tﬂe twist curvature kz (fadians per unit 1engtﬁ of beam)

by"x (or y) is much less than one radian. With this assumption the -
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guantity. al—- appearing in equat1on (89) when i =3 can be approxi-
33 | )

mated using the binomial theorem to give

1 2 iy

L =1 - + -
T3 1 2(yk xky) 3(ykx xky)

2, yz)kg

- Ay, - %)+ 8ok, - 16y 22 . oufid) (94)

Similariy, when e]3 and e, are determined, the inverse of the

denominator of equat1on (90) is approx1mated by

2 ~1/2

9104, - ( )] 1o vk, - xko) + Gk, - xk )2 - 382+ 0033
9193 7 i3 (yky = xky )+ kg = xky )7 - g x0Tk + Olxgky

<172 S 2'
1 iy - k) + (kg - k) - 3y

[922933 - (923)23 + Q(X )4'

. hﬂ

(95)

Besides giving more accurate strain expressions, the retain1ng of
higher order terms allows the ana]ys1s.to.be app11ed to prgb]ems hav1ng .
larger curvatures. In the stra1n=expréssidns terms’ of order ‘x$ kg o

{or ¢) will be kept. Equations (20) and"equations (62) through.(ﬁé)

, o ) . do,
indicate that ki % is of the same order of magnitude as EEl"
Thus, for terms involving derivatives of a , «,, or ¢, terms of order

X
3 k will be kept.' Also, W will be taken toybé O(xf) sinte for all
known solutions for the warping funﬁfion, W is of the same order of
magnitude as the product of fhe cross-sectipna] coordinates or sma]TeE.
Substituting equations (91), (92), (94), and (95) into equations (89)

an§ (90) gives the strains ezz(=933), and exz(?e]3), and eyz(=ez3) as -
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2. 2.2 .22
kx - X yky - 3y kx

. o fov .
e, [-y gyky + 2y kx + X

i
3 2.2 2, . 2 2.2
+.2x kxky - 2x%yk, + dxy kxky‘+ y(x= +y )kz]kzax
2.2 3,2

+ [x - x'ykx +'2x2ky + yzky + Xy kx + 3x ky

i zy3kxky + 2xy2k§ - 4x2ygxgy -.*(xz + Qé)kg]kzay
+.[1 + Xky - ¥k, +.%2k§.7 nykxky + kai T t*Z + yz)kg R
+ x3k3 - 5x2ykxg§ + sxyzkiky -y3ki ;:3(x2 +‘y2)(ykxf- xk#)#i]u?z

2 2 a2 23 32, i 2 L 202
Zx ykxky,TIny kxky + xy Ky +_ylkxky - (ka + yky)(x +y )kZ]¢.

oo . ' :" . ‘ da
vk Ay 2 .2 2y, 2 X
x{1 - (yky - xky) + vk, - xky) - (x7+ ¥k, ] T

o

vk o I S S N LY
YE‘.._(ny xky) + (yky = xk )" - (x" + {_)kz] &

A
S
i
i

+ [0 - 2yk, +J2xky)(x2 + y%) - (ﬁkg + ykg)wlkz g%;f W

~nN

g ,(96)‘

5

-
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e,. = -ylk, - {yk. - xk )k + yk2 + (yk, - xk )zk
Xz X X ¥UK z X ¥y X

v (- 3 o8y + axky - WPk,

_ _ okl e 2
_,y[k‘y (ykx xky)ky xkZ + Fykx kay) ky

2

o+ (- %-x k& + 2xyk, - yzky)kg]ay

+

. : 2 !
rykz[l - 2(ykx - xky) + 3(ykx -.xky) ( x + Y )k ]u

oty . 2 2 _ 2 |
+ ok Dk, + yky +20x7 - ¥k * (kg - K)o o

. . B _dax 2 da
vk L1 - 205k, - xk)] gg* - ¥k, [T - 20k, - xk )] g5t

| - E 2 3.2 2
y[l - ¥k, * xky + (ykx - xky] - (2 x© + y© )k 1 E%

| | 2
(1 - Zk)gms N -yk + xk, )Wk —9+ka d

y ds Z e

+

(o7)
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e, = x[k, - {yk, - xk Jk_ + yk2 + (yk QIXk )2k
yz X X v/ x z X y' vy

+ {- %-yzkx + nyky - xzkx)kg]ax

+

]

s vk - 2 Y
xlky, - (vk, Xk Kk, = xkZ + (vk, xk, )k,

2

a2y V2T,
+ Y ky +.2xykx Ix ky)kz]ay

noje

: 2 2 .3 .2,,2
xkz[? - Z(ykX - xky) + 3_(ykx - xky) - (x° + 5y )kZ]qz,

2 2 ‘e 2
xkz[x}cx + yky + 2(x° - y )kxky + 2xy(ky - kx)]¢

' - da da
2 -
x-kz[l - Z(ykx - xky)] ds + xyk [1 - 2(yk - xky)J E§¥'

+

+

ek h b w2 23 25,21 db
x[1 ykx+.xky+(ykx-xky) (x 5 ¥)k;] 5

2 .
(1 - )g;" a% - (1 - gk, + xk WK g% - xhk, :;g (98)
. . s

.In the above strain-displacement retlations terms have been collected
on each variable. ‘If the cufvatures are very small it is obvious thqt“
the majority of the terms are negligible. When retaining only the-
~largest terms associated with each variable the strain expressidn§

are approximatéd by



o do
" ' - X
e,, =0 - x(- kzay - kyaz - ko + T
+ y{-k_a, - k + k ¢ - do )'+ ( + )k -JQ + W QEQ (99)
A=K 0y x*z y x y z ds d52 :
= —ylk S do, , oW d¢.
e, = ~ylko, + kyay = ko, * as) * 9% ds
: do do, : : 2 : '
M S : d o
- xyk, B ¥k, H§¥’+_ykz(XKx + vk )o + vk, W e (100)
-y ) doy _ W d
e_yz x(kxux + k_yuy kzaz + ds) 3y ?‘E
do do : . 2
X ¥ | - d’¢ 1)
+ X kz i xykz T XKz(.Xk,x + yky‘)(b _ xsz dsz .(10])5

D. D1scuss1on of Strain Displacement Relations

' In the expression for‘ e as given by equation (99), the first

2z
term is the linearized form of the stra1n of the elastic axis that was
given in the dévelopment of the curvatures. The quantities inside the -
first two sets of parentheses are equal to (k& - ky) and (ki - kx),
respectively, and these are thelchanges in the curvatures of the elas-
tic axis due to deformatfon. The term (x2 + yz)kz d¢/ds -is due to

the initial twist of the beam. " This term has been obtafned previously
By Houbolt and Brooks (see reference 14) in their analysis of a

straight pretwisted propél]er. The last term in equation (99) arises

" because uniform torsion has not been assumed.
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The quantity enc]bsed in the first set_ot’pérenthesesfin each of
equat1on {100) and (101) is equal to the change in ‘the torsional |
curvature component (i.e., ky - k,). The terms gﬁ %% and %g-%%
contribute to the Saint-Venant torsional stiffness‘constant that appears
in the torsional stress resultant. Based on the previous observation
that k o may be of the same order of magnitude as %;l and the
assumpt1on that k xJ << 1, the remaining four terms in each of ,
equations {100) and (101) may be sma11er than those ment1oned above
However, these terms cannot be assumed negligible since there may be

_instances where, for exampie, o, may be zero while its der1vat1ve is
nonzero. The last four terms in each of equations (100) and (101) | ?
appear because of the beam's in1t1a1 twist curvature. .. 7

It is noted that since shear deformation was neglected the stra1ns_
e and e__ do not ref1ect the strain arising from. transverse ‘shear.

XZ vz
The expressions for e and eyz are used to determine the tors1ona1

xZ

moment stress resultant. The omission of the strain due to transverse
shear does not affect this stress resultant since moments are taken
about the shear center of the cross-section.

" In the development of the strain re]ations it was eSSumed that the
warping disp]acement was proportional to the Saint-Venant warping
function W. The solution for the Saint-Venant warping function of a
cross-section assumes that the torsion is uniform (constént torque,
conetant .d¢/d§). Since this analysis:is not restricted to uniform

torsion there is an inconsistency. However, for many problems in which

the torsion is nonuniform, it is common practice to determine the
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torsional stiffness using the Saint-Venant theory.._This is esﬁecia]ly
true for natural vibration probTems.-'Tﬁe effecf of nonuniform torsion
" on the torsional stress resultant becomes impqrtant for f1ah§ed thin-
wall bpen sections such as I-beams. For such beéms the theory has been
developed to cbrrect the streSs%resu]tant expreésion for nonuniform
torsion (see referencé 15). For,beaﬁs which are not thin-walled, a
general theory for nbnuniform'forsion has;not'yeﬁ been developed. For
this analysis, it ﬁi]] be assumed that the'torques actihg on the beam
are distributed loadings (such as inertial loads) and that the dgrivae

tives of d¢/ds are small such that the effects of nonuniform torsion
2.

are negligible. With this assumption, thé termé'proportiona] to d2¢/ds
inlthe strain expressions may be dropped.  However, for the examples
presented ﬂerein these terms have no effect on the stress re$u1tants

" since the cross=section is assumed to be doub1y symmetric.

The stréin-disp]acement relations have been deve]obed for the puf;
pose of obtaining expressions for the stress resu]taﬁts in terms of -
the displacements. In the classical theory for turved space beams the
strain-disp]aéement relations are not derived. The stress-resu}tants
are assumed to be equal to the changes ih.the curvatures'(withoutﬂthe
exteﬁsional effects included) times a cross-sectional stiffness
property. The importance bf using the strain-displacement relations
instead of“the classical app}oach will be seen when the stress resul-
tants are compared since the é]aﬁsfcal approach can lead tb considerable

error.



61

1t was noted earlier that the accuracy of the strain expressions
depends upon the number of terms kept in the binomial expansion of the

denominatars of equations (89) and (90). The strain e, as ‘given by

equat1cn (96) can be compared with the w1nk1er theory for curved beams ‘

The Winkler theory, which is valid for large curvatures,. appIies to
untwisted beams lying in a plane, having a constant radius of curvature,

and with the deformations being in-plane. Thus, cons1der1ng a beam of

" constant curvature which lies in and is d1sp1aced in the x, z p]ane

such that ky =1/R and k, = k. =y=v=¢=0a =0, ‘equation (96)

gives '
2 .3 2 do - -

= X o X_4+ 2 3q - XXy X " {1C

€2z © (0 + 3 +’E§ * RB)az x(T+g* E?)_ds . (102)
. Substituting equations (20) for Oy and @, yie]ds-
: 2 3 . 2 g2 -
= O X R X LXKy U X, xydu

ez s~ UFRP 2P 3R SURS Sl 3 (103)

'It is noted that acéording to the sign conyention established py
figure 2 and equations (1); X and.‘u are positive in the direction
toward the center of curvature when y.= 0. |

In reference 16 Langhaar gives the fo1lowing express1on (notation
and s1gns have altered to conform to that presented here1n) for the

stra1n according to the w1nk1er theory

' 2 2
_dw _ __u/R x d-u/ds
€z Tds TV - x/R™ T -x/R _ (104).
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The above gives a parabolic distribufion of strain over the cross-
§ection instead of the familiar linear-distkibﬁtioh associated with the
bending of’straight beams. This distribution is broubht about becaﬁse
equation (104) was obtained by taking into account the differences in
the initial lengths of the 1ongitudin§1 fibers in a differential segment
‘of the beam. The strain distrfbution given in equation (103) appears
because approx1mat1ons were made for the complicated denomrnators of
the strain expressions for space beams

From the binomial theorem it is seen that equat1ons (103) and (104)
are essent1a11y the same when x is small compared to R. In fact,
since the higher order terms were kept, the strain expressions can be
app]1ed to beams having moderately large curvatures. For examp]e,

suppose that x.= 0.2 R. Then, equation (103) gives

2
= W u p du

From equation (104), which is the expre551on for large curvatures, 1t
is found for x/R = 0.2 that

e d—"-1ésoi-02sond2“

zz  ds ’ R : 3"3?
\ s

If X =0.2 R 1is largest cross-sectional coordinate of a point in the
beam, then it is seen by comparing the two above resuylts that the
largest error in the strain as given by equation (103) is less than

. one percent (the same error is obtained at x = -0.2 R). Eqdation (103)
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'_ is extremely accurate for x/R < 0.1 and does not give grossly
fnaccurate results until x is about one-half of R..
- Equation (99) gave the expression fok -ézz with higher order terms

droppéd. For the exémp]e being considered it reduces to

2

- Ow _ xyu_ o dou

€2z T ds 1+ R) R~ * d 2

o 5"
At x = 0.2 R the above becomes

dw u’ d™u
e.=+—=-1.25-0.2 —
zz ds R ,dsz

When compared to the result oflthe Winkler theoryg'the last term is o
seen to bé ZO% in error. . | | -

In the deﬁe]opment of thé‘stresslresu1tqnts the more.accurate
strain expressions confainingithe higherforder'terﬁs wiTI bg_used (i.e.,
equations (96), (97), and_(QB)); o | |

| It is recalled that in the classical théory the elastic axis is

assumed to be inextensible such that a? = 0. From equation (102) ft

is observed that the extensional strain -a, of the elastic axis must
be included. Otherwise, the str&ih-diﬁp]acement re]dtion bears no
resemblance to what it should be. _ |

In reference 17 Oden gives an expression for the strain of a
curved planar beam qf radius R. His result is different from that
‘given by Langhaar and from that presented herein. Oden arrives at the

I
total strain by summing strains that arise from three| types of

i
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- displacement (i.e., extensional, radial, and rotational). The strain

due to the radial displacement is given as

(egh = T“-‘L"y/n 7

where v is the inward radial displacement. The'Strain.due to a radial
d15p1acement is actually the second term of equation (104) By
considering the strain due to the radia] d1sp1acement of a c1rcu1ar
ring it is obvious that the above resu]t is in error. The error of
reference.17 was cauSed by taking the fiha1f1eﬁgth.bf'an incrementall

‘ fiber at a distance y from the cqnfroid to be: as{1 - y(R ; v)]
instead of As[1 - (y + v)/R] asﬁitfshou1d~be,

E. Development of Stress Resultants

The stress resultants are determined in the:usua1 manner by
summing bver'the cross-section the stresses that are actih§ on it, But
first it is noted that in general the x, y, and Z curvilinear
coordinates (s and z are used interchangeab1y) and not orthogona1
When the beam is tw1sted (k # 0) tne coordinate 1ines are orthogonal
only at po1nts along the elastic axis. The x and y coordinate 1ines'§
“are orthogonal at every point in‘the cross-sect1on before deformat1on
(g4, = 0) and after deformation (G, = 0 when néQ]egting'product 6f
deformatioﬁ). But the z coordinate line passing tﬁrough a po{nt in

the cross-section off the elastic axis is not normal to the xy plane

(915 7 0,'923 70, Gy £ 0, Gy # 0). This can be visualized for a
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twisted beam since the* z coordinate line is defined by the inter-

section of the coordinate surfaces x = constant and } = constant.
Figure 3 shows the stress 0,y acting at'pofnt P in the cross-

~section and in the direction of the z: coordinate Iine_passing through

that point. Also shown are the components of' o in the'difeqtiqns

F¥A

' ] ] l : . B | '[ 1
of e, gy,,gnd e,. The components of o,, in the eys &y and e,

directions contribute to the torsional moment stress resultant. This
effect, which occurs in twisted béams, is discussed by Goodier in
reference 15. The bending moment stress resultants about the x  and
y axes and the axial force stress resultaﬁt éré:détermihed frdm-fhe

component of . in. the eé direction.

The component of o, 1in the e, direction, for example, is o,

2z z
cos 9i3 where cos 953 is defined 1n.térms of the metric coefficients

G by the secbnd of equations (86). However, since products of

i .
deformations will not be included in the stress resultant expressions,

the reference of the undeformed beam will be used.' If'the'subséripts'

Xor Yoo and z, are used to denote the components of Uzz‘ at pbint P
in the ek, gy,-and e, -directions, respectively, then
(Uzz)xo = 0y, €08 B13 - 022913/ 933 : :
_ (105)
(Ozz)y6 " %22 c°5_823 - U2'2_923/'933 _

t o

since g1]‘= 9yp = 1. Letting '12 be the direction cosine of the angle

between S and e s the orthogonality relation .
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Figure 3.- The stress o, at a point in the cross-section.
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2 2. 2.

- gives R
| | 1/2
2 2
3 ( 913 * 923)
z 933
Thus, _
 92 +'g2 '_1/2 - 3
- 213 23 : .
_.ZZ Z0 . 22 933‘ . ' -

" From these components of o and the shear stresses écting‘in:

zz
the x, ¥ plane, the stress resu]tants are g1ven by the fo1low1ng." .

1ntegra1s. ‘
eEyr
f E y( -T) ezsz _(107)-
g 2 Ve -
ja G-08) o
933 -
. ' Y913 |, X923 o
M =_f G(-ye, + xe__)dA +J’ E (- e_dA (109)
z vXZ yz'o , zz
A A Y933 Y933 -
S 2,2 12
F =IE . st % e. dA  (110)
z )y . 22 B

933

Using the binomial theorem, it is found from equations‘(91) and

{96) that
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2 . 2
R ) B
933 &z

_ | 2 . 2 2.2 .32
-[-y-gyky+2y K +.x kx—x,y:ky)-ay‘kx_

gy - o aoh, e e,
Foceon st o B eadE

i Zyskxky * zxyzki i AXEykxky - % i +_'y2)k§_]k‘z“‘y |
+ ['] + xky - yer + X2k§ ) ZX_yklxky +- yZKE |

) % (xZ + ‘yz)kg + x3k3 - 3x2yk ké + 3Xy2k,2{k¥.

2y

y‘3ki + -g— ():2 + yz)(.ykx  -- xky)kg]uz‘
- B 2 2,
[kax + yky + X kxky + xyky - ;(_ykx -y kxky

+

3, 2. 2.3 2.2 2
X k-xky+xyky-2x ykxky-ny

+

2
keKy

xy?k3 + y3k2k - %(xz + yz)(xkx + yky)k-s]cb«

+

X Xy

: do :
. 2 3,2, 2,21 9%
x[1 -~ ykx + xky + (ykx.— xky) -5 (x" +y )kz] T

: o . : 5 do '
vll - ykx + xky + (‘ykx - :vcky)2 - % (xz + yz.)ki] EE!'

. 2 B .
(x 2 - - do { 49
+ [(x_ + ¥ 1 2yk, + Zxky) (xkx + ykyJW}kz T w-dsz . (H].)
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- e
e 4 4

= -y ~'2xyky + 3y2kx + xzk*)(xz + gz)kgux

+ (x - 2xyk, *+ 3x2ky + yzky)(x2 + yz)kiuy

+[1 4+ Zxk - Eyk + 3x2k2 6xyk K,
* 3y2 2.3 (xZ+y )kzl(x +y )ku
(xk + yk )(1 - 2yk + 2xk )(x + y )k ¢ :

T o*

.dax
- x(1 - Zyk + 2xk )(x + y )kz ds
do,
- y(1 - 2yk + 2xk, Y (xZ + y )kz d—gi
¢
| 2
242,24 _Q_ 2., .2 d°¢
‘+(x +y) Ky @s * (7 + y7)uk, . (112)

From fhe above equations it is seen that the stress resultant
expressioﬁs will be rather léngthy when'the aboye and the;éhear strains
are.substituted; Solely for the.purbose 6f reduc1ng'the‘siie!of~fﬁe
stres§ resultant expressions it is assumed that the cross—section'has

two axes of symmetry. Thus, the following integrals are zero.
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_ . } 3.0 B
fdi-fydA«-fxydA—fdi—fydA
A A A A AT

| ) 2. _ N 3.
fxydA fxy dA IxydA -J-xy dA = 0

A1so, the warping function w(x y) is an odd function of both x

0 |
> (113)

J.;
and y since the warping dvsplacement must be ant1symmetr1c with

respect to both the x and ¥ axes for doubly symmetric cross-

sections. Thus, Ce

fwdA=fxwdA fywdA'-'wadA“fywdA 0 (Mm4)
A | |

Even if the cross-section is not symmetric the1second ahd third
_1'ntegra'lls_abov_e ére zero since x  and ‘_y' gre‘measwed from 'th‘e'f'she‘ar'
center (or center of twist). This was.provén by Goodier in'réference :
1. | |

It is assumed that the elastic modu]us E and the sheér modu1us‘
G are constant over the cross-section. The integrals which_appear 1n

. the stress resu]ténts are denoted as fo]]ows'



(511) .
S

fx .t
X =
VPZ 2 f 9
¥ ‘
£l =9
VP,V ) g8
oy l
VPVX = g
Iy 3
Vp(xeﬂ—ﬁ%x+zﬁ+zx)"-_p
v
‘dP( £+ X) J‘
VP « J‘ M
XX
.y Mo
Y,
P =Y

¥4
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fn the above, J 1is the well-known Saint—Venant-torsional stiffness
constant. '
SubstitUting equations (97), (98), (111), and (112) into equations 
{(107) through (110} and applying equations (113) through (115} and

replacing o, by its definition

= dw _
o, = - kou + kxv

z - ds Yy
yields the following expressions for the stress resu]tants.

o2 2 . .2 3. .2
Mo = EL-(Ly + By + 3BKE + 283kE - 3 BkDlk,

o 2 2 9. .2\ dw
- (T + Bk + B - 3Bk

x ds

3 2, 0.2 94,2
Iy ¥ BSKy * szx B ?'Bskz)kxkyu

| 2 2 9. .22
- (L + Byky + Byke = 5 Bk )kv
2 o2 o002 3a .2y
+ (I + B.k_ - 2B,k + B,k f'EBskz)k¥¢

XX 3y 3 X 2"

- do o ' _ : da
+ 2B,k X ¥ BakE + B k2 - 3 B.k%) X

3"x'y ds (L 3y T2 T 275

gk R - e



My = EL-2(8y + 2By ko
- (1, BkC + 3B1k§ + 233k§ - %—B4k§)kéay |
-1+ B]k§,+ 384K - g-a4k§)ky v
v (1, +.B1F§ * 333k§ - 7 Bykg)ksu
- (1, + B]k§ + 38,k2 - g;B4k§)kxkyv
- (1, + B,k i 233k§ + Byk - %-B4k§)kx¢.
+ (1, + Bk + Baki - 3 840) ggﬁ
do o
- 2Bk oL - (2B, - By)kk, g%Q
M, = G{Elplflﬁéks + Bgk? - (B + 38, + S8,)kC + & (385 + By)kcIk,a,

2 2\ qap
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'f11q5‘

2 E .o 2. ;
+ SBa)kZ + & (334 + Bs)kzlkyay :

2 2 2
+ -1, - 3Bk - 3Bgky + (By + Bglky
E 2 2 3o 02vq, dwo
tg (L + 3B4ky + 3Bk, - 3 3skz)]kz s
2 an 2 | 2
- [*Ip - 3Bk - 3Bgkl + (Bg + Bglk; |
E 2 2 3, .2 '
+ g (Ip + 3Bk, + 3Bgk, - §'Bskz)]kykz“
# [-1_ - 38,2 - 3Bk +.(B + B
p 4%y 5% 3 6’2
E 2 2 3.2 .
gl 3Bgky *+ 3Bk, - 3 Bokz)Ikyk,v
+ 2[By - By + 5 (By - Bg)lkk k ¢

yz o
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+2(1 - EJB4kykz ds ~ 2(1 - EJBSkxkz ds
.2 2 1. L law?
+ LI+ By - Bydky + (Bg + Byl - (B + Bg - 5 B * 7 Bylky

., E 21 d ;

‘_ FZ = E[.(Ip + Ixx‘)k k.a, + (Ip + 1 Yk k.o

X2 X - Yy y‘z hJ
(A8 Ixxk.)z(‘ -3 g *
.‘ ; (A +.Iyyk§ * Ixxki ) %'kag)kxv
; -+ (I, - Ixx)kxkyd’ -1 k.-d—t-!}-+ Ik -dfl+ kaz ?j% o (119) ‘

Ylyy o yy y ds XX'x ds

F. Discussion of Stress Resuitanis‘ff

Equations (116} through (]19) give tﬁe.sirESs reSujtantslin7terms‘
of the displacements. These expressions iqc1udeexten§ioﬁai effects |
which have not been taken into accouht‘préviously iﬁ'sﬁress rg§g1fants
‘forfspace beams. Also, the_expreséibns‘confajﬁ termﬁfwhigh 3116W,thg
equations to.be applied to beams havinqcﬁrvétures:Targgr.fhanl'
woul& otherwise be permitted. o o

It was noted ear]ier'that iﬁ‘the c1assica1'approaCh‘the stress re-
sultants are not derived from strain-disﬁ]acement re]étions but ‘are as-
sumed to be proportional to the changes in the curvatures. Thus, aécord;
ing ‘to the classical theory; which also assumes the elastic axis to be

inextensible (azz= 0), the three moment stress resultants are giveh by
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S do 3.
= - ' - '
Mx EIxx( kz“x +_ky¢ ds )
- du.x
M, = EL (ko - ko + a-;) (120)_
M, = BI(ka, + ko +—¢)
-

It is obvious that the more rigorous approach for determiming.thé
stress resultant yields many additional terms. In equations (116)
through (119) the dw/ds, u, and v terms-appeér because of éxtensioh
of the elastic axis. The‘terms invelving the Bi ‘cross-sectidnall |
constants ariﬁe because of tﬁe more accurate represéntation of the strain - .
distribution over'the Ccross- section - The f1rst two of equat1ons (120) |
essentially assume a linear strain d1str1but1on When the cross-
_sectiona1 dimensions are very, very sma]? compared to the rad1us of
curvatqre_(j.e., xi kj is much, much-less than unity) most of.the,merms"
in the stress resultants which contain 2 B, constant can be neglected:

A‘comparisbn of the third of equations (120) with equatibnf(118)m
s points'pmt that a very common mistake,lwhich has:not been noted before,
has been made in previous analyses that déa1t with torsional and 3
out-of—plane&deformations; Thé comparison Shows that in the thifd 6%”
Equatfbns (120) only the displacement d¢/ds. should be mu1t1p11ed by
the torsional stiffness J. The variabies‘ oy and o appear1ng 1n

y

this equation should be mu1t1p11ed by the polar moment of 1nert1a Ip{

~ Unless the cross-sect1on is circular, the use of the stress‘resultant

Mz as given by the c1assica1 approach can lead to COnsiderab1e<érrbr
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since Ip may be many times Targer than J when the cfoss—séctﬁdn-fs'
not compact. Consider, for example, a recténguiar cross-section. The
ratio of Ip to J s given below for various ratios of the cross-.

sectional dimensions a and b.

a/b 1/4

1.19
1.82
3.17
5.04
7.44
26.98

O N WP -

'The easily made mistaké described éboﬁe has often been made.ih_5f§
papers pertaining fb torSiona] and ouf-of—plané'vibratibns:and out-ofé .
plane buck11ng (for examp]e, see references 12, 19, .20 21,_22.'ahd o
23). In the classical formuiat1on the fact that the o, and o

X Y
terms should be multiplied by I. instead of J .s not at all dbvibus.

p
Th1s error ‘'shows the need for determining the stress resultants from ,
strain- d1sp1acement relations. '

In reference 15 Goodier showed that for a stra1ght twisted beam
the pretwist contributes to the tors1onal stiffness since the d1sp1ace4
ment d¢/ds causes a longitudinal stress which opposes thé motion. fn

the notation of fhis paper, -Goodier gives the stress resultant as

. 2,40 , g W
M, (GJ{EBk)dS EL K, s
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These terms, which appear in equation (118), are shown to be eignifieant
‘ fof slender cross-sectton,.such as propellers, even whenl kz times tﬁe
1argest cross-sectional coordieate is as'sma11‘as 0.1. In the strees
resd]tant deveiopment, the inclination of Gze causes terms chef.thqn
those above to appear in Mz since the treated beam also has.the
curvature components k, and ky.

In reference 24 Den Hartog gives an interesting observatiohfthat
he made in his experiments with bendihg of pretwisted straightrbeams o
and cha]ienges the reader for an ekp1anattoh; It was found that the
bending stiffness of doubly symmetrtc beams having equal cross- sect1ona1“
moments of inertia is reduced when the beam is pretw1sted The cruc1—
form cross-sect1on is cited as an example. According to the conven-
tionaT theory for straight'pretwisted beams (for -example, see “
| reference 25), the pretwist has no effect on the bend1ng st1ffness (nor o
. on the bending displacements) when the moments of 1nert1a are equa]
In reference 26 the reduction in stiffness is attributed to_distort1on
of the cross-section and anticlastic effecte; Equations (116).end (117)
show that there is also alreduction in the bending stiffness due to the |
‘pretwist-itseIf. For a straight pretwisted beam having‘enly‘the dis-

placements u and v, the equations give-

| y do
= o - .3. 2 _._l
Mx E(Ixx 2 BSkz) ds

et L 3g .2
My = (1, 284k)
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It can be shown that for the cruciform cross-section,'B4 and 'Bs are
equal, as well as I, and Iyy' and do not depend upon the orientation v
chosen for the x and y axes. Thus, it is seen that the pretwi;t

does indeed affect the bending stiffness even when the moments of inertia

are equal.

 G. Development of Equilibrium Equations ' ~

The equilibrium equations are derived by considering the forces -
- and moments acting on an incremental segment of the beam. The equations.
are obtained using a very expedient vector approach.

'
i

The internal moments (or moment stress resu]tants) act1ng in the

e‘, ey, “and eZ directions were prev1ous]y denoted by M y’ and
M, respectively. Similarly, let F e Fy, and F, denote the 1ntekna1'

forces acting in these diréctions Also, let p s py, Py Gy» q » and
qg' be the applied drstr1buted forces and moments act1ng in the e x* ey
~and ez directions per unit length of therextended rod. From fhese‘.

components mentioned above the fo110wing vectors may be defined.

in
u
-
m-

+Foel + Fe,

i 4
1]

=
®

s
=
m—

+
=
m-..

121

'+pe

[ =]
]

-]

b

t (D

p

+q.e

LD

i}
B = |
>

t
> -

+ q_e!
¥y * 928 g
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Figure 4 shows an incremental segment 6f the beam of length As'.
Thus, the aﬁplied force and applied moment vectors acting on thefincre—
ment are p As' and g As'. The changes in the internal force and
‘ 1ﬁterna1 moment vectors from one side of increment to other are denoféd
by AF and AM as shown. To establish the sign convention, conéider
an imaginary cross-sectional cut of the beam taken At s"=,si. The ;
sign convention is chosen such that the internal force and moment
. components acting on the cross-sectional face of the materia1 onlther
s' < si side of thg cut are posftive in the e/, g}, and gé‘
directions. | N

‘The summation of forces and the summation of moments about the L'

left hand end of the increment give

F+aF+pas' -F=20

© e e ~

. M+ M+ gas’ + (As'e;) x (F + AE)-f

+(ghste) x(past) -H=0

Dividing each of the above equations by aAs' and taking the 1fmit as

As' approaches zero gives the equilibrium equations in vector form as

ol O
quﬂ1
+
i
L
o

(122)

al &

'(ﬂ_ltz
+
1

xF+q=0 (123)
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Figure 4.~ Incremental segment of beam.
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Substituting equations (121) into the above, performing the indicated
_ operations; and substituting equations (32) for the derivativeé of the.

unit vectors yields -
X t =
G KF O e =0 o A

dF .
_a—-Y-+k k!F_+p =0 ._}(12.4)

t
S ZFX Xz

dF
4 t I : -
ds' ~ kny f kxFy * pz" q_

[=%

M - o
. - Lt ! - =N - -
gor - KMy + kM, - Fy g, = 0 |

R I 1L

i
o

"2 o
ds' k.YM.X ¥ 'kXM}’ *9

The above equilibrium equations are the same as those given by
Love in reference 1 except that ds' appears in the above derivatives'
instead of ds since extensional behavior is considéred. Replacing

‘ds' by
ds' = (1 + 2 ¢)1/2 gs

in the above gives equatiphs_of'the type
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dF

2+ 0+ 20)EKiF, K

ds

sz pk) =0 (126)

As noted before, p, is the force acting in the g; direction per

unit length of the extended rod. Let dPx be the force acting on ds'.

That 1is.
i dPx
Py = Gt
Therefore,
L |
(1 + 25)1’2 =1+ 22X -
X . as Pl
s |
C O |
ds

Let dPx/ds,kwhich is the force acting in the e; diréttion per unit

length of the dndefonned beam; be denoted by lﬁx' Thus ,

(1+ 26)1/2 =P

e (127)

X.

There‘arg §1m11ar relations for py, Py Qs qy, gnd 9,- Hence, the

equilibrium equations as typified by equation (126) take the form

“dF
X (1 + 2e)2(kF, 4 KiF,) * By = 0 (128)

ds zy
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Suppose that Py is the inertial load given by (-m'i) where m'

is the distributed mass of ;he extended beém. Then,
Ce2e)tp =1 28)]/2 m'i

Let. dM be the mass of the beam in the differential lengths ds and

ds'. Using equation {127), the above becomes

1]

dM
ds

where 'm. is the distributed mass of the undefofmed beam. Therefbfé;.:
when cons1der1ng 1nert1a Toads the dlstributed mass in the p s py.
etc., expressions is that of the undeformed beam.

In th1s ana1ys1s only . 11near so1utions are being cons1dered Fbr
free v1brat1on problems the internal forces and moments are proportional
~to the d1sp1acement var1ab1es In the k'. k}, and ké expreSSjons, . f
the initial curvatures are the on]y constant terms. Thus, from eduétion

{128) and those s1m11ar to it, the linear equ111br1um equations for

natura1 v1brat1ons are found to be
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dF
X : -
3o - KFy R B, =0 3
=t kFy = K F  + B, =0 , > (129)
dF, - )
-k F_ +kF +p =0 4

X o=
pralie kzMy + kyMz - Fy tg, =0 3
dM - -
For t kM kM Ry o (130)
M B e
2 kM +kM +q =0 J

ds yx xy

H. Summary of Governing Differential

Equations for Natural Vibrations

A1l of the eqhations needed for §c1ution have now been developed.
It is.p1anned for the natural vibration so]ufion to be obtained‘uﬁing
_a'transfer materix techniqué. Thus, the first-order equations thatrhave |
been derived will not be‘combined to form higher-order equations. The
pfob]em has twelve variables: wu, v, w,'¢, dx, Oy M. My, M,» Fx’ Fy’
and F,. The twelve equations are: the first two of equations (20)
which relate o, and o to wu, v, and equations (116) through
(119) which are the four stress resultant relations; and equations
(129) and (130} which are tﬁe six equi]ibrium equationé.l

The first two of equations (20) may be rewritten as
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du _ _
ds kzv kyw + Gy |
(131)
dv _ _ '
S kzu + kxw + uy

The four stress resultant relations can be written in matrix form

as

(Y ah £
d
'ﬁ;} u E%
v _
. , d
My & - E% I
- (132
R I B
" : - TR .
z o ds
X
da
1%z SRR Y E'sl
..“ s | \ J N

where the matrix eIeﬁents 344 and bij' are defined by équatibns (116)
through {119). 1t can be shown that the matrix [b] is always non-

singular. Thus, the above becomes
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| ' ” Y R
Al >
ds u X
d¢ | v
ds ‘ M_y T
( de-rrtal (o bemr? ) (133)
dax _ o
- ds i M,
%
do
y
ds ldy o FZ
. J : . J . S

The distrfbuted applied loads Bxi ﬁx, ete., aﬁpearing_in-the
equilibrium equations consist of inertial'IoédS'and'e}éstic foundation!
forces and moments. Rotary ihertiaiéndfeiastic foundation effects are
“included in the equations since they do_not‘comp1icatefthé tkansfgri
matrix solution in any wéy. - - :
| The distributed masS' m s equal to . pA Qﬁere‘ p 1is thé maés
density and ‘A is the éross-éectioné1 aréa_of thé.beam;. The reversed _
effective inertial force in the x-direction, for example, is {-pA 32 u/at?)}

Thus, for harmonic motion

= _ 2 ™

Py = w pAu -~ c,u

p, = Loy - C.v ' ”

Y P y >_(134)
- _ 2 ‘ 7

P, = w pAw - c,W
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where w 1is the natural vibration frequency and the ci' are the eiastic
foundation constants for trans]ationa1-disp]écements.

In the deve]obment of the curvature relations the EQ]erian rota-
tions about the x, y, and z axes were denoted by e,‘w,'and ¢;
respectively. The rotations © énd ¢ are given in terms of the-e]éétic

axis displacements by equations'(45). In the linearized analysis ©

and ¢ are small and are approximated by

<

The rotary inertias about the-‘x. y,-and 2z axes, respéctive]y,'are
J‘ pysz.
A
w3
- X
[ oiten = o1,

f' p(x2 +-y2)dA = pl
A

fi
. ]
—

H
©
—

p

. . -0 .
Also, 1t is assumed that the elastic foundation can resist rotations

about the X, ¥, and 2z axes, and these foundation constants are
"denoted by . di'. Thus,‘using the above relations for the rotations ©

and 1y, the app1ied moments are given by
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..__2 ' -

q, = -w pIxxay,+ dxay _

. = wiol o - do . ) (135)
y vy~ Sy s
q, = wol ¢ - g ¢

z p z J

Substituting equations (134) and (135) into the equilibrium réTa—

tions as given by equations (129) and (130)'and rearraﬁging yields

TXoyM -k 2.1 .
kM kyMz + Fy + (w pIxx d

ds zYy X

y

CLLQ-
n] =
n

_kzMx + kxMz - Fx - (9 pl = dy)ux

yy

-

: e '
TS kny - kxMy - {w pIp - dz)¢

kzF

2 .
y - ksz.- (w"pA - cxiu

. . |
L= - F + K F, - (wPoh - e v

Tz _ s (el R o
3 - kny kxFy (w .pA cz)w - J

)u. ..- _ | ’ j

3 (136)

';I (137)

Equations (131), (133), (136), and‘(137) are the twelve first-

order differential equat1§ns which describe the natural vibration

motion of space beams. The motion consisfsiof-bénding 1n_two
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directions, extgns1on. and.tofs1on. The degree to which these motions
are coupled depends dpdn the application. It 15 noted that the usual
beam bending-torsion coupling arising from the noncoincidence of the
elastic and centroidal axes does not appear because of the assumption of

double symmetry for the cross-section.

I. Numerical Solution Method

As noted earlier the solutions for the natural vibration character-
" {stics will be obtained using a transfer matrix method. This method,
which is based on second-order Runge-Kutta integration, does not |
discretize (1.e., 1ump masses and assume constant a]hstic properties
for a beam segment) the beam as most other transfer matrix metheds do..
Instead, distributed mass values and‘eiastjc_properties at selected
stations are used. The method assumes that the mass and all other
'propert1es'vafy.linehrly from station to station. Also, any diScbn-
't1nu1t1es in the beam's properties are convgn1enﬁ1y handled by assign=
| ing two stations to the point at which the d1§cont1nu1ty occurs. In
additfion, the method can be applied tO'Ejngs as well as to beams.

Matrix differential equatio e Let {Y} be the column vector
consisting of the twelve variables. Thit.{s.




o
S

-\
=

1Y(s)} = } ~ (138)

N
mEz X e X <
-‘<'><3’<Q'><

-n
> N
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| .Also, Tet {Y'} be a similar vector defined by the derivatives of the
variables. The set of differential equations given by equations (1315,.f

(133), (136), and (137) may be expressedlin matrix notation as
(Y (s)} = [H(s, w)1(¥(s)} o (139)

Subscripts will be used to denote stations. Thus, at station -i

the above is written as

) = [  (u40)

- Development of transfer matrix.- The value of {Y} at station

(i + 1) may be approximated as follows.

As1

() = 013+ =5t foy « o b (a1)
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Equation {139) may be written at station (i + 1) and substituted, along

with equation (140), into equation (141) to give
As'i‘
o) = 001 + = M0 + T 0000 (142)

Now, the {Yi+1} on the right hand side of the above equation may be

approximated as

W) = 013 + as,0v1)

i

(¥} +as, [H YT
Substituting into equation (142) gives

. is, . _ : ;
{Yi+1} = {Yi} = [Hi]{Yi} +_[Hi+1]{£Yi} + Asi[Hi]{Yij}i (143)

The above may Ee rewritten as

My = INIOYD (144)

where

a0 = [0+ os [0y + T, 0] + 3 asd T, 000 (149)
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The above matrix, [Ai]' is the desired transfer matrix. It is used to

relate the variables defined by {Y} evé]uated at station (i + 7) to

'those at station 1.

Beam solution.- Letting 1 = 0 ahé i = n denote the statiohs at

the ends of the beam, {Y,} may be related to {Y,} by repeated use of
‘equation (144). Hence,

{¥,} = [BI{Y,} 1 - - (146)

where

81 = TA AL L) - - DAIIANAY (D)

The six homogeneous boundary conditions at each end of the beam
may be expressed in matrix form as
[CI{Y,} = {0} (148)
[D}{Y,} = {0} ' (149)
‘where [C] and [D] are 6 x 12 matrices. Equation {146) may be

substituted into equation (148) and fhe result combined with equation

(149) to give

1Y } = (0} . (150)
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where

[U] =f----=--- | o . (151)

For a non-trivial solution to equation (150) the determinant of
- [U] must be zero. In the usual fashion for the transfer matrix method,

the values of w which make

[lul] =0 (152)

are found by iteration. For;each natural frequency the solution for

{Yi} at every station is obtained by first setting ong_e1ement of {Yo}
équa]\to unity &nd solving equation (}50) for the remaining elements of
{Yo}. Then the {Yi} are given by equation (144). Also, the derivatiﬁes,

{Y%}, at each station may be computed from equation (140).

Ring Solution.- For rings and other curved beams which do not have

endpoints the "boundary conditions” are appiied in a different manner
than that above. One.arbitrafy point‘on the ring is chosen to be both
station i1 =0 and 1 =n. The variables of {Y} at these stations

~are related by

{v,} = [E}{Y,} (153)
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where E is a 12 x 12 matrix. When the total twist of a ring is zero

or a multiple of 2m radians the matrix [E] is the identity matrix. If

the total twist of a ring is an odd numbered multiple of = radians
then the matrix [E] is the negative of the identity matrix. Substitut-

ing equation (146} into the above gives

(B30} = [EICY,}
Or, )

[[B].- [Ej]{.vio}} (0} | o (154)
For solutions other than the trijia] éo]uti;n;"
ltBi- te]| - 0 '_ ‘ 55
As before, the values of .w “which makéithe abové detefTinant equal to

zero are found by iteration. The modal characteristics are determined

ﬁsing equatioﬁs {154), (144), and (140).



VIII. NUMERICAL EXAMPLES

~ Two numerical examples are given which utilize the deformation
theory and numerical method presented in this dissertation. A twisted
curved beam and a twisted ring are considered. It is thought that
natural vibration solutions have not been obtained previously for beams

which are both cur&ed and twisted.

Twisted curved beam. - The natural vibration characteristics were

computed for a beam whose elastic axis forms a semi-circle as shown in_
figure 5. Both ends of the beam have cantilever boundary conditions
u=v=w=y ='ax = o, = 0). The radius of curvature is chosen to

be 10 inches (K = 1/R = 0.1) and the torsion t 1is zero since the beam
lies in a p]ané..‘The beam is uniformly twisted and has a total twisf
rof ™ radians (in other words, as the beam is traveled from oné end to
the other the cross-section rotates about the elastic axis a total of
180 degrees). Thus, from equations (5) the curvature components of the

undeformed beam are

= (0.1 1n_]) sin vy

kx =

k ‘=-(0.1 fn']) cos.y

y N
.kz = 0.1 rad/in

where the angle 'y ‘defines the orientation of e, relative to the

curve's normal ﬁ (see figure 2). As shown in figure § . the beam is

95.
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— — r— — —

- elastic axis

Figure 5, Twisted curved beam,
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assumed to have a rectangular cross-section of dimensions 1 inch by 2
inches. The elastic moduli are taken to be E = 107 1b/1n and
G=4x 106 1b/in2 The Saint-Venant warping function and torsional
stiffness constant for a rectangu]ar cross -section as given by Nang in
: reference 27 were used in the computations.

The so]ut1ons were obtained using a computer program based on the
previously dgscr1bed transfer matrix technique. Twenty-one equa11y‘
.spaced statidns (including the endeoiﬁts) along the beam's length were
uti]iiedf The first four natural vibration frequencies were found to

be the following:

Mode . | Frequency
First 939 rad/sec
~ Second | 2160 réd/sec.'
Third | 4490 rad/sec

Fourth | 7535 rad/sec _ | » |

Because of the twist the modai‘displacemeﬁts d and v (dis—
placements in e, and-‘gy directions)'are coup1eq. The mode shapeg
are easier visualized by considering the displacements in .the directions
of the normal n and binormal b of the elastic axis (see f1gure 2)
Lett1ng n and ¢  be the displacements of the elastic axis 1n the n
and b directions, respectively, then n -is the inward radial dis-
placement and 7 is the out¥of-p1ane displacement. The first mode

has predominantly out-bf-plane motion. The modal disp]acement g is

“given in figure 6 as a function of the beam's axial coordinate 5. The
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‘Figure 6.- Modal disp1acement g for first mode of twisted curved
" beam example. '
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other displacements are not shown since_they are very small compared to
g. _ |

Since theré is no experimental or calculated data for a beam such
as the one considered, the results can only be compared to those of an
untwisted beam. In reference 28 Den Hartog givés expressions for the
first out-of-plane frequency and for the first in-plane frequenty of
an untwisted cantilevered ring segment. For an untwisted beam having
" the same dimensions as those of the numerical exampie and having ifs
cross-section oriented the same as the one at the ends of the beam of
'figufe 5, the first out-of-plane fréquency is 1049 rad/sec and the
first in-plane frequency is 5218 rad/sec according to reference 28.
For the same untwisted beam the analysis and §01ution method presented |
herein gives the first out-of-plane fréquency as 981 rad/sec and fhe

first in-plane frequency as 4670 rad/sec.

Twisted ring.~ The natural vibration characteristics were also

‘computed for a twisted beam whose elastic axis forms a complete
_.circu1ar ring. This beam ﬁas the same cross-sectional dimensions and
the same curvafurés as the previous example. The total twist of the
ring is- 2r radians. Also, fbrty-one statibns were utilized in thé
computations. The first four natural frequencies were found to be

the'fo110wing:
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Mode ' Frequency

Fifst . 1981 rad/sec
Second ‘2307 rad/sec
-Third 5782 rad/sec

Fourth 5927 rad/sec

Figure 7 gives the mﬁda] displacements for the first mode.
As before, the ca1¢u1afed frequencies may be compared with those .
of an untwisted ring. For an'untwisted ring the out-of-plane and in-
plane motions are not coupled. Consider an untwisted ring having the
same dimensions as the numerical example and with the longer sides of
the cross~se¢tion parallel to the plane of the ring. According to '
referenée 15 the first two out-of-plane and in-plane frequencies for

the untwisted ring are

Out-of-plane In-plane
Mode frequency . | frequency
First 1485.rad/sec 1 3044 rad/sec

Second | 4252 rad/sec 8610 rad/sec

Discussion.- For an untwisted curved beam lying in a pTane such
l-that kx = kz =0 and Ky # 0, the fwe]ve governing differential
equations uncouple into two sets of equations with each set consisting
‘ of-six coupled equations. The variables associated with each séf of

equations are
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s, inches

Figure 7.- Modal displacements for first mode of ;wisted ring examb]é.



and
(b): v, 0, o M W, Fy

The variables. of set {a) describe the in;p1ane béndfhg'and éxfensional
vibratioﬁ_ques. The ouf—of-p]ane bending and torsfona1rvibration
modes are described by the'variabies of set (B).‘;'”A | |

For snch,a beam the uncoupling of the-tweivé first—drder equation§
can cause trouble in the numerical solution for the quallfuhétions.
As noted ear]ier,‘after determining a_frequency the first step for
obtaining the associated modal displacements is to set 6h§ element (dr
variable) of {v,} edual to upity and theh\ﬁqlve equation (150) for tﬁe-
remaining elements. For examb]é, if the last element of‘{Yo}, wﬁich"_‘

is Fz’ is set‘eqdal to unity then equation (150) may be writtén as. _

e i - ——
[}
]
1
[
1
|
L}
1
1o -
1
]
D

where‘ Uyq is an 11 x:11 matrix. The first eleven equations contained

in the above may be written as

which can be solved for {?0}, the remaining elements of {Yd}' For the

case of the untwistéd beam the variable which is set equal to unity
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must be non-zero. For ekamp]e, if the'frequencx hag.been determined
for an out-of—p1ane mode, then the variable which 1s'chosen télﬁe -
| equal to unity must be one of the vériables of set (b) (sgttinglF; = 1
~ for this case yie?ds modal displacements which do-not.safisfy the
boundary conditidns).‘ Howéver, the computer progrﬁm'cannétrbe told |
ahead of_time which frequencies will be 1n-p]$he mode freqdencies and
which will be-but-of—p]ane mode frequencies, .Ihstead of.writing
separate computer programs for the in-plane and out-offplane modes, it
- 1s thought that for cases in which the eguations uncoup1e|£he problem
is best remedied by obtaining two modal solutions for each frequency.
Thi§ is done by setting équal to unity, in turn, one variable from
each of the variable sets (a)-and (b);. Of course; only one of the

modal solutions obtained for each freguency is valjd;



IX. SUMMARY

Developments have been presented for the.extension§1 equations

, 'which govern the deformation of curved and twisted spacé beams: Also,

discussions of the equations in view bf prévious work wefe given.
. First, the exact 6urvature.equations.f0r the'deformed beams were
derived. It is shown that allowing extension of thé'elastic axis
instead of assum{ng inextension results in an additional term in each

of the Tinearized curvature expressions. These equations. were used in

‘the developmeht of the normal and shearing compbnents of the strain
' tensor. - The stress resultants were derived from the strain-displacement

relations ihstead‘bf'aSSUming the resultants to be proportional to

changes in the curvatures. It was shown that the classical approach

g could lead ﬁo considérable error in the torsional stress:reéuTtani;'x '

. Also, for the same cfoss—sectipn thé presented stress resu1tants‘arev

applicable to beams having larger curvatures than'thosé a]10wed'by the

“classica] theory. Moreover, by.develobing the stress resultantslfrOm

the strain - displacement relations, additiona]ftefmslappear'due to
the initial twist of the beam. A vector derivation of the equilibrium
equations was given. | | L

| The governing edu§tions for natural vibrations were summéfized-in'
the form of twelve first - order differehtiélequations; Altréﬁsfef
matrix method was described for obtainihg the so1utions} Numeriﬁ&]
examples were presented whiéh 111ustrate_the effect that twist has on

the natural vibration frequencies of curved beams.
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