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ARBITRARILY CURVED AND TWISTED SPACE BEAMS

by

William F. Hunter

(ABSTRACT)

A derivation of'the equations which govern the deformation of an

arbitrarily curved and twisted space beam is presented. These equations

differ from those of the classical theory in that extensional effects

are included. Other departures from the previous theory are that the

strain - displacement relations are derived and that the expressions for

the stress resultants are develOped from the strain - displacement

relations instead of assuming that the resultants are.proportional to

changes in the curvatures. ,It is shown that the torsional stress resul-

tant obtained by the classical approach is basically incorrect except

when the cross-section is circular. '

Using a vector approach the exact expressions forthe curvature

components of a deformed space beam are developed. BecauSe inextension

of the beam is not assumed an additional term appears in each Of the

linearized curvature expressions. These exprešsions are utilized in

the derivation of the strain - displacement relations. The normal and

shearing physical components of the strain tensor are given. These

relations are not restricted to beams whose cross-sectional dimensions

are very small compared to the radius of curvature. Next, a develop-

ment of the stress resultants is presented. Effects arising from the



initial twist of the beam are obtained which are not reflected in the

classical theory. Finally, the six equilibrium equations are derived

using a vector approach.

The governing equations are given in the form of twelve first-

order differential equations. A numerical algorithm is given for

obtaining the natural vibration characteristics and example problems

are presented.
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V. INTRODUCTION 

The-work presented herein arose from the need to better understand

the elastic and dynamic behavior of twisted uand curved propeller blades.

It has long been recognized that the stresses in propeller blades can be

reduced by designing the blades to be. slighfly curved so that the centri-

fugal forces are used to counteract the bending moments arising from

lift and drag. This technique can be especially beneficial to the design:

of wind tunnel blades. However, an adequate.theory foe accomplishing 

this has not yet been developed. Alto, there was the need to study the

effects of curvature on the vibration characteristics of rotating

blades. In addition, there is muchcurrent interest in analyzing the

Darrieus windmill (sometimes called the vertical-axis windmill).

Although these specific problems are not treated in this paper, much of

the needed analytical development work is presented.

A review.of the classical theory for curved and twisted space beams

as presented by A. E. H. Love in reference I led to an interest to ex-

tend the theory to include additional effects and to. present a fresh

and more rigorous derivation of the governing differential equations.

The classical theory was developed by Kirchoff, Clebsch, Michell,

and Basset in the latter part of the'last century (in reference 1 Love

discusses the development and lists references). However, Love is

responsible for presenting the theory in an organized fashion and his

work is most often quoted.
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In the classical theory, the central line of the beam is assumed

to be inextensible and the cross-sectional dimensions are assumed to be

very small compared to the radius of curvature. Love gives a develop-

ment for the curvature expressions of the central line of a deformed

beam. Love's work contains an irregularity in that his direction ,

cosines do not satisfy the orthogonalityrelations. The inextensibility

assUmption and the direction cosine anomaly, which are related, have

been questioned by Waltking (see reference 2) and by Philipson (see

reference 3).

In this paper the exact expressions for the curvature components

of a deformed beam, which is initially curved in space in any arbitrary

manner, are derived using a vector approach. No assumptions are made in

the development and, thus, the resulting equations are applicable to

large, as well as small, deformations. When the three curvature rela-

tions are linearized an additional term, that Love does not obtain,

appears in each one. It is shown that these terms arise because exten-

sional deformation is included.

A development is presented for the Strain-displacement relations of

space beams. Since the strain distribution is not linear over the

cross-section, the relations can be applied to beams having much larger

curvatures than that permitted by the classical theory. The strain-

displacement relations are used to determine the Stress resultants.

In the classical theory the strain-displacement relations are not

derived. The stress resultants are assumed to be equal to changes in

the curvatures times an elastic cross-sectional constant. It is shown



that this approach yields an incorrect stress resultant which can lead

to considerable error.

A vector derivation is presented for the six beam equilibrium equa-

tions. These equations are essentially the same as Love's equations

when linearized for natural vibration solutions.

The analysis developed for curved beams is applied to natural vibra-

tion examples. The governing equations consist of twelve first-order

differential equations and the solutions are obtained by using a

transfer matrix method. Included in the equations are rotary inertia

and elastic foundation effects.

Reference 4 is a survey paper by Royster on the subject of curved

beam vibrations. Practically all studies have been on rings or beams

whose central lines lie in a plane. In fact, in the summary of his

report Royster states "Only two papers on the vibrations of a curved

beam of double curvature have been published." Also, regarding solu-

tions he lists the conclusion "In general, solutions for the coupled

in plane and out of plane vibration problem, as is the case if the

central-line of the unstressed beam is not a plane curve,"are extremely

rare." In references 5 and 6 Volterra applies the Method of Internal

Constraints to beams of double curvature. He obtains nine coupled

second-order differential equations having variable coefficients with

the derivatives being of the nine unknown displacement functions, A

solution method is not presented.

In papers pertaining to the vibrations and buckling of circular

rings the governing equations are arrived at by other methods, as well



as from Love's work, when the deformation is in the plane of the ring.

However, for coupled torsion and out-of-plane bending deformation the

equations of Love's classical theory are invariably used. For such

deformation the classical theory should be modified because of the pre-

viously mentioned error associated with one of the stress resultants.

It is the intent of this dissertation to present a new development

of the equations which govern the deformation of space beams rather than

tO present a study of the vibration characteristics of curved beams.

However, a numerical solution method is_given for such beams. Compre-

hensive discussions are presented on the developments of the curvature

relations, the strain-displacement relations, and the stress resultants

in view of the clasical theory according to Love and other literature.



VI. LIST OF SYMBOLS 

A Cross-sectional area of beam

a, b, c Quantities defined by equations (28)

[Ai] Transfer matrix defined by equation (145)

[a] Matrix appearing in equation (132)

B
i 

Cross-sectional constant defined by equations (115),

(i = 1, 2, ... 9)

[B] Product of the transfer matrices as given by equation

(147)

b Binormal vector of the space curve formed by the axis of,

undeformed beam

[b] Matrix appearing in equation (132)

cx, cy, cz Elastic foundation constants for linear displacements

[C] Matrix defined by equation (148)

d, d' Modified Darboux vector for undeformed and,deformed

beam, respectively

[D] Matrix defined by equation (149)

dx' dy' dz 
Elastic foundation constants for rotational displacements

dM Mass of differential lengths ds and ds' of beam

dP Force acting on differential length ds'

dS, dS' Lengths of an arbitrary incremental line elenent before

and after deformation (see equation (11))

ds, ds' Differential lengths along elastic axis before and after

deformation

5



dt, dt' Differential lengths defined by equations (80) and (81)

E Elastic modulus

eii Normal components of the strain tensor

eij Shearing components of the strain tensor

2)(' 2y' 22 Orthonormal vectors at point on elastic axis of undeformed

beam

Orthonormal vectors at point on elastic axis of

defomed beam (defined by the rotation of the imbedded.

2x, 2y, 2z vectors)

F Vector of internal forces

Fx, Fy, F
z Components of F

G Shear modulus

Gij, ,Metric coefficients for deformed and undeformed beam,

respectively

Matrix defined by equation (140)

Moments of inertia about the cross-sectional axes

Polar moment of inertia of cross-section about elastic

axis

Denotes station along beam

[I] Identity matrix

J Saint-Venant torsional stiffness'constant defined by one

of equations (115)

kx' ky' 
k
z 

Components of curvature of the undeformed beam

' y' zk'x k' k' Components of curvature of the deformed beam

L3, M3, N3 Direction cosines defined by reference 1

[H]

Iyy
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1., m. n. Direction cosines relating eX, eY, e' to e e e
z x' y' z

(i = 1, 2, 3)

lz Direction cosine of the angle between the z coordinate

line and e'
z

M Vector of the internal moments

M. My' Mz 
Components of M

m, m' Mass per unit length of the undeformed and deformed beam,

respectively

n Normal vector of the space curve formed by the elastic

axis of undeformed beam

P, P' Denotes position of point before and after deformation,'

respectively

p Applied distributed force vector per unit length of

deformed beam

px, py, pz 
Components of p

- - -
Px' Py' Pz 

Applied distributed forces per unit length of undeformed

beam

q Applied distributed moment per uhit length of deformed

beam

qx' qy, qz 
Components of q

qx' qy, 4z 
Applied distributed moments per unit length of undeformed

beam

R Radius of curvature

R, R' Position vectors to pOint on elastic axis before and after

deformation, respectively
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r, r' Position vectors to point in cross-section before and

after deformation, respectively

s, s' Coordinate along elastic axis of undeformed and deformed

beam, respectively

t Unit tangent vector of the space curve formed by the

elastic axis of the undeformed beam

[U] Matrix defined by equation (151)

u, v, w Displacements of the elastic axis in the ex, ey, and e
x' y' z

directions

Second partial derivative of u with respect to time

W Saint-Venant warping function

x, y Cross-sectional coordinates.

{Y} Column vector of the varieb1es of the vibration problem,

defined by equation (138)

{Y'} Column vectors of the variable derivetives, defined by

equation (139)

z Coordinate line defined by the intersectien of the

coordinate surfaces x = constant and y = 'constant

a
x' y 

a
' az 

Quantities defined by equations (20)

Direction cosine of reference 1

Orientation of e
x 

relative to n (see figure 2)

Yii Strain tensor

AR Displacement vector of a point on the elastic axi.s

As' Incremental length of deformed beam

Tensorial extensional strain of the elastic axis



0 Eulerian rotation

0 Curvilinear coordinate

Oij Angle between the xi and xJ coordinate lines before

and after deformation, respectively

Curvature of the elastic axis of the undeformed beam

p Mass density of beam

zz 
Normal stress in direction of the z coordinate line

T Torsion of the undeformed beam

Rotational displacement of the beam about e'
z

Eulerian rotation

Natural vibration frequency



VII. ANALYSIS 

In this chapter developments will be presented for curvature

relations, the strain-displacement relations, the stress resultant

expressions, and the equilibrium equations for arbitrarily curved and

twisted space beams. Each of the first three developments is followed

by a discussion of the development.. These discussions are included in

this chapter since they are an in-depth analysis of the developments

in relation to previous work instead of being of a general discussion

nature. Besides being convenient to the reader, it is thought that

the placement of the discussions in this chapter will give the reader

a better understanding of the developments which follow each.

Also, a summary of the governing differehtial equations for natural

vibration is given. This is followed by a desCription of a numerical

method for solving them. '

A. Development of Curvature Relations:

Consider a curved beam whose elastic axis forms any general space

curve. The elastic axis of the-beam before and after deformation is

showh in figure 1 where primes denote the deformed state: In this

figure, R is the position vector to point Lp on the elastic axis,

s is the coordinate along the elastic axisj, AR is the displacement

vector of point P, and ex , ey, and

e
z 

tangent to the curve s.

are orthonormal vectors with

The unit vectors e
x 

and e are taken to be aligned with the

principal axes of the beam's cross-section. The orientation'of ex

10
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Figure 1.- Elastic axis of bqam before and after deformation.
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and e
Y 

is specified relative to the space curve's normal, n, as shown

in figure 2. The vectors t, n, and b are the tangential, normal,

and binormal unit vectors, respectively, of the space curve. They

are related to ex' ey' and e
z 

by the transformation

n ex cos y - ey sin y

b = ex sin y + eY 
cos /

t e-z

The shape of a space curve can be completely described by two

parameters: the curvature K(t) and the torsion 'T(s). The deriva-

tives. of t, n, and b with respect to s are given by the well

known Frenet-Serrett formulas as

dt

ds = Kn

dn

ds 
-Kt + Tb

db

dt

Similar expressions can be obtained for the ex , ey' z
e trihedron.

They are mostsimply obtained by modifying the Darboux vector (see
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t, ez

Figure 2.- Orientation of ex, ey, ez trihedron relative to n, b, t
trihedron.
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reference 7 or any other book on differential geometry) and operating

with it. The Darboux vector is the rotation rate of the trihedron at

point P as P moves along the curve at unit velocity. Or, At can be

viewed as rotation per unit length of the curve. Since

to be constant, the modified Darboux vector is

d = (T g) hKz

Substituting equations (1) into the above gives

is not taken

(3)

d = (T + 4I)e
z 
+ K sin y ex + K COS y e 

(4)
ds -y

The quantities (7 511), (K sin y), and (K COS y) are known as the
ds

components of curvature. Letting

k
x 
= K sin y

k = K cos y

511k
z 
= T 

ds

the modified Darboux vector may be rewritten as

d=ke +ke +
xx yy z-z (6)
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In the manner used in dynamics to obtain the derivatives of unit

vectors with respect to time, it can be shown that the derivatives of

ex, !y, and !z with respect to s are

Hence,

de
x -dx

ds 
e x

de
- dxe

ds y

de
z - d e

ds ,z

de
x- ke -k

ds zy y
e
z

de
-

ds
e + e

z-x x-z

de
z 

ke -keds y-x xy

It is noted that in the preceding equations, kx, ky, and kz are

the curvature components before deformation. The goal is to arrive at

expressions for the curvature components of the deformed beam in terms

of the elastic displacements.

As shown in figure 1, position vector to the displaced point P'

is



where
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'R' = R + AR (9)

AR =ue +ve + wPey z
(10)

and u, v, and w are the elastic displacements of-point P in the

directions of the reference unit vectors of the undeformed beam.

If dS is the length of an arbitrary indremental - line element in

an elastic solid and dS' is its length 'after deformation, then (see

reference 8 or other book on elasticity or continUumMechanics)'

(w)2_,(cis)2.2 
Yij

.cleide
j 

(i, J = 1, 2, 3) (11)

wherethe.Yli .are the components of the strain tensor and the are

the curvilinear coordinates.

Applying this equation to a curved beam with the incremental line

element being chosen to lie along the elastic axis such that

del = de2 = 0, de3 = ds, and y
33 

= c gives

(ds')
2 
- (ds)2 = 2E ds

2

Or,

(12)
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1 ds'
e = fE(ai—) 1 (13)

where e is tensorial extensional strain of the centroidal axis. Since

(ds' 2 = dR' • dR' (14)

the above may be rewritten as

dR' dR'
= — 
2 
[ 
ds ds

Differentiating equation (9) with respect to s,

Also, it is noted that

dR' dR d(48)

ds ds ds

dR
__
Os 

e 
-z

(16)

Substituting the above into equation (16) and the result:into equation

(15) leads to

d(AR) 1 d(AR) d(AR)
  • e +
ds • -z 2 ds ds
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Differentiating equation (10) with respect to s and applying

equations (8) yields

d(AR)

ds x-x 
+a y-e +

ay z-ez

where

Substituting equation (19) into equation (18) gives

(19)

(21)

which is the nonlinear expression for the extensional strain of the

elastic axis. The significance of the- above result in view of

previous work will be discussed later.

Equation (16) may be rewritten by substituting equations (17)

and (19).

dR'

ds
-ae

xx +ayy
e + 1 +az )e (22)



From equation (12) it is noted that

Hence,

Also,

19

ds' = 1 4 01/2ds

dR' dR I
1 + 2c) 'ds' d;

dR'

cfs-17- !.;

Combining equations (22), (24), and (25) results in

(23)

(24)

(25) 1

(26)

The above equation gives the direction of the unit vector tangent

to the deformed elastic axis in terms of the displacements, initial

curvature, and unit vectors of the undeformed rod.

Equation (26) may be differentiated with respect to s' by

applying equation (23) and substituting equations (8). Ooing this

yields

de'

ds
z -1-

x
(1 + 2c) (a e +be +ce) (27)
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da
a = -a k + (1 + a

z 
)k
y 
+ x (ds

da
b = a k - (1 + a )k +

X Z Z x ds

da
—
d e

c = -axky 
+

y
k
x 
+ 
ds
z (1 + 2c 1 + 

a 
z) ds

,dE
+ 2c) k ds

and from equation (21), 1-;4:- is given by

da da dot
z

s ax ds
+ 

y ds 
--I + (1 + az ds

(28)

(29)

The direction cosines which define the orientation of the trihedrons

of the undeforMed and deformed beam relative to each other are identi-

fied in the table below.

Y z

e'
-Y

e'
z

1
1

1
2

13

m2

m
3

n1

n
2

n
3

The direction cosines 1
3'
 m3, and n

3 
have been defined in terms of

the displacements by equation (26) and are
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In the same manner as before, a modified Darboux Vector may also

be written for the deformed beam as

d' = k" + k'e' + k'e'x x y,y z-z (31)

Using this vector, the derivatives of the 'unit vectors of the deformed

beam are found to be

Ae'
-x - _
ds' "z.5. ytz

de'
-

ds'

de'
-z
ds

k'e' + •
z-x x-z

- k'e' k'e'
y-x x-y

From the third of the above equations and equation (27),

(32)

k'
y
e'
x 
- k'

x
ey = (1 + 2c) +be

y 
+ce

z
) (33)
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The transformation between the unit vectors in terms of the direction

cosines is

,=eX  + 12e '
Y 
+ 1 e'

e = m ' + m e' + m e'y 2-y z

e + n e' + n e'z 2y 3z

Substituting the above into equation (33) and rearranging gives

Thus,

k'
y
e'
x 
- k'

x
ey = (1 + 207 [(al 1  + bmi +..cni )e;(

(34)

k' = -(1 + 20-1(a12 + bm2 + cn2)

k' = (1 + 2c)
-1 
(al1 + bml

 
+ cn

1 
) (36)

0 = (1 + 2e)- (a + bM3 + cn3)
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Two of the curvature components have now been expressed in terms of 

a, b, and c (defined by equations (28)) and the direction cosines:,

It can be shown that the third of equations (36.) is exactly satisfied

by the previously defined a, b, c, 13, m3, and n3. Also, by sqUaring

equations (36), adding, and applying the transformation orthogonality,

relations it is seen that

kx2 + k'
y
2 
= (1 + 2E)2(a2 + 

2 
+ 
2 
)

. 

From the first of eqs. (32),

de'
-x e' = k'
ds -y z

Using equation (23) and substituting the transformations

into equation (38) gives

k' = (1 + 2
6 -1 2 d
) [cTs- Le m e n e )x ly 2ex + m2ey + n2ez]

Differentiating the above and substituting equations (8) for the

derivatives of the unit vectors results in

(37)

(38)



k' = (1 + 20-1/2E
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1 - m2n x (12n1 n21 1)ky

dl
1 

dm1 , 
dn

i 4. 11
(m21 - 12m1 )kz '2 ds m2 ds n2 ds J

(40)

The table of direction cosines given on page 20 is an orthogonal

matrix. The inverse of an orthogonal matrix is equal to its transpose

and its determinant is equal to unity. Thus, each element of an

orthogonal matrix is equal to its cofactor. Applying this theorem to

the last row of the direction cosine matrix yields the following

orthogonality relations

= m1 n2 - m2 nl

The above relations may have been obtained by substituting the trans-

- formation expressions for ejc !.;,, and e:z into ex x e' = e' and

carrying out the operation as Novozhilov did in reference 9. Equation

(40) can now be rewritten as

dl
1 

dm
k' = (1 + 2E)

1 2
( 

x 
+m

3
k
y 12 ds + - +

nk  
m2 ds - 1 + n2 ds 

dn
1) (42).
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Equations (36) and (42) give the curvature components in terms of

the direction cosines, the initial curvatures, and the quantities a,

b, and c. The direction cosines 1
3' 

m3, and n
3 

have been expressed

in terms of the displacements u, v, and w. These cosines (13, m3,

and n3
) define the orientation of e'z 

relative Ao the trihedron of the

undeformed beam (i.e., 2x, 2y, and 2z). Besides knowing the orientation

of eZ, one additional angle (or direction cosine) As needed to fully

specify the orientation of the trihedron of the deformed beam relative

to the trihedron of the undeformed beam (in other words, the orientation

of e'x and e'
Y 

needs to be specified). This additional rotation

joins u, v, and w as, one of the elastic displacements (or variables)

of the probTem. The direction cosines 1 1, ml, nl, 12, m2, and n2

can be expressed in terms of the known cosines, (13, m.3, and n3) and

the new elastic displaCement which has not yet been ,defined.

When the beam is deformed, the principal flexure-tOrsion trihedron

at any general point on the elastic axis undergoes translation and

rotation. The rotation may be expressed in terms of Eolerian angles.

It has been found that the most suitable Eulerian Angle system for this

application is that used in aeronautical and aerospace engineering

(see reference 10)'. For this system all three Euler angles are sthall

if small deformations are assumed. This is not the case for the Euler

angle system of reference 11.

Let xyz' be the initial reference frame aligned with the ex, ey,

e
z 

trihedron and let x'y'z' be the final reference frame which is

aligned with the eX, ey, e; trihedron. The three rotations will be
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taken in the following order:

1. A positive rotation 0 about y axis resulting in XYZ reference

2. A positive rotation 0 about X axis resulting in X'Y'Z'

reference

3. A positive rotation about Z' axis resulting in

reference

It is noted that the above is different from reference 10 in that the

axes are not named the same. The three transformations are

cos sin 0

= -sin cos ¢ 0

0 0 1

ow%

Substituting and performing the matrix operations yields

:1

X

:

X'

Y'

Z'



cos cos

+sin sin 0 sin

-sin 0 cos

+cos sin e sin

cos e sin

27

sin 0 cos 0 -cos 0 sin

+sin 0,sin 0 coS

cos cos 0 sin 0 sin

+cos sin e cos

-sin e cos e cos *

(43)

The above gives the previously discussed direction cosine matrix

in terms of 0, 0, and 0. The angle will be taken as the needed ad-

ditional displacement variable.The angle 0 is the rotation about the

z' axis (or elastic axis) that brings the X' and Y' axes to the

final x' and y' position.

Or,

From the'direction cosine matrix of equation (43),

13 = cos 8 sin

m
3 
= -sin 0'

. n3 = cos 6 cos 0,

e = -sin-1 m
3

-1 
1
3= tan (r—)
"3
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By substituting equations(30) the above expressions for 0 and may

be rewritten in terms of the displacements as

a
e = -sin

(1 + 201/2

tan-
ax

(1 + a
z
)

(45)

Using the direction cosines defined by equation (43), the expressions

for k' and k' given by equation (36) become

-1k
x 
' 

= 1 + 2E 
[( sin ¢ cos + cos sin e sin Oa + (cos cos e)b

1- (sin q5 sin + cos 4) sin 6 cos 0)c]

(46)

1 
k'y ' 1 + 2E 

[(cos 0 cos + sin 0 sin 0 sin 0)a + (sin 0 cos 0)6

+ (-cos sin + sin sin I) cos 0)c]

From equatiOns (44), (30), and (21), the following expressions for'

the trigonometric functions in terms of the displacements are obtained:

-a
sin 0 -

cos 0 =

(1 I. 201/2

(1 + 2E - y/2
ay

1 + 2e

a
sin =

(1 + 2E - a;)1/2

1 + a
cos =

z

(1 + 2E a2)1/2
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Substituting the above into equations (46) gives

,,k' + 20-3/2(1 + 26 - a2)-1/2{[(1 2E)1/2kl + a
z
)sin ¢ + a

x 
a
y 
cos 0]a

- [(1 + 26 - a2)cos S]b + [-(1 + 26)1/2ax sin 
+ a (1 + a

z
)cos 0]c}

(48)

k; 
= (1 + 20-3/2(1 + 26 - a;)-1/21[(1 + 26)1/2(1 + a )cos - a 

x 
a
y 
sin 0]a

+ [(1 + 26 - a2)sin 0]b + [-(1 + 26)1/2a cos 0 - ay(1 + az)sin 0]c}

(49)

The expression for k' in terms of the direction cosines is given

by equation (42). The last three terms of this equation may be expressed

in terms of the Euler angles by substituting the direction cosines as

defined by the matrix of equation (43). Performing the operations and

combining terms yields the surprisingly simple result

dl
1 

dm
1 

dh 
1 + n - sin -di+ m12 ds 2 ds 2 ds ds ds

Substituting equations (30) and (50) into equation (42) gives

(50)

+ 26
)-1

[kxax + kyay + kz(1 + az)] + 
,=1/2fa_

sin 6 L.k' = 1 + 2E)
z `cis ds

(51) .

The last term of equation (51) may be rewritten in terms of the dis-

placements as
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1
-sin e 

ds = m3 ds 
[tan-1 (3)]

3

m
3 

dl dn
3 - 1 ---1)

n- 2 
+ 1

2 
(n 
3 ds 3 ds

3 3

Using equations (30) it can be shown that

(52)

dl
3 

dn
3 da da

n
3 ds 

1
3 ds

- 1 + 2e)
-1 
[(1

az) ds
x 
- ds J 

zi (53)

Substituting the above and equations (30) into equation (52) gives

(1 + 2e)
-1/2

a da da
i-sin 0 

ds 2 
-   [(1 + a

z) ds
x ax ds

z (54)_2 
Y 

J
0 'Az'

% 

Noting from equation (21) that

and substituting equation (54) into equation (51) gives the third

curvature component as

k'
z = 

(1 + 2e) fk a +  ka + k (1 t 1 + 2e) ds
-1 1/2 di
xxyy zz

+   
dax da 1a”

1 + 2e
j
- a

2 E° + az) ds x ds J
zi

(55)

Y

Equations (48), (49), and (55) are the equations for the curvature

components of the elastic axis of the deformed beam in terms of the
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elastic displacements and the initial curvature. The quantities

ax, ay, a , e, a, b, and c appearing in the equations are defined as

functions of the displacements u, v, and w by equations (20), (21),
and (28).

It is noted that the expressions derived for 
'
'
x 

k' and k' are

exact. No assumptions whatever have been made.

Also, it is observed that different forms of the curvature compo-

nents can be obtained by altering the order of the Eulerian rotations.

For example, if the rotations are taken in the order

1. A positive rotation o about x axis resulting in XYZ reference

2. A positive rotation

reference

s about Y axis resulting in X'Y'Z'

3.. A position rotation

reference

s about Z' axis resulting in x' ' '

then the curvature components are given by

xu' = (1 + 20-3/2(1 + 2e - a!)-1/2fr " 1(1 + 2e )sin fla

+ [-(1 + 20
1/2

(1 + a
z)c°s 0 - ax y a sin db + [(1 + c)

1/2
a cos 0

- ax(1 + az)sin SS (56)

k'
Y 
= 1 + 2e -3/2(1 + 26 - a!)-1/2f [(1 + 2e - a!)cos 0]a

+ [(1 + E)
1/2

(1 + az)sin 0 - a
x y 
a cos db + [-(1 + 201/2a

Y 
sin 0

- a
x 
(1 + a

z 
) cos O]c) (57)
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k' 1 + 2e)-1 + k a + k (1 + ayyzz
1 + 2-)1/2 Itds

ax 
da da

2 [(/ az) ds ay an(1 az)2 a
(58)

As a check on the expressions given for k' and k' it can be

shown that they do satisfy equation (37).

The exact curvature expressions, which are highly nonlinear, may

be approximated to any desired degree by applying the.binomial theorem

and substituting the trigonometric expansions for sin o and cos O.

Using equations (48), (49), and (55), the nonlinear approximations which_

contain terms of order no higher than products of two displacements (or

squares of displacements) are

k =k -kzax x x

da ' da da
+ 2kaa -kacp-kaO +a --A + 2a --at +0 (59)zxz zy yz yds zds ds

_ ci 1( 
Li!

6.- 1 L 
F' 

2 4.
y 
.k 

y 
k 
zay 

_k 
yz - x

0+ 
ds yax

2 _ 
r‘yay Kyaz-2 ky¢2

da da da
a + 2k a a (4) —1 (60)zyz + a +z x ds z ds ds

k' = tka+ka- + - k a - k a+ a2z z xx yy X ds zx. zy zz

da
- 2kaa- 2kaa+a xx x z Yyz y ds az ds (61)
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It is seen from the above that the linear approximations for the curva-

ture components are

da
k =k -ka-ka+kOx x zx xz y ds

dax
k
y
 
=ky 

-kza
y kya-kx ds

. + —

k' =k +ka+ka -ka+
z z xx yy zz ds

(62)

(63)

(64)

It has been found that the order of the Eulerian rotations has no

effect on the linearized equations so long as there is a rotation aboutl

each of the body axes. Also, it is noted that the linear relations can

be obtained most easily froM equations (46) and (51) by making small

angle assumptions for 0, and

Using equations (20) the linearized curvature components may be

expressed explicitly in terms of u, v, w, and as

ey du zik = - 
_ 

2k — + (k k
dk
.

ds2 7 ds x y ds I"

dk
(-k + k2 (-k

y z 
+ + kx z ds

y
d2u dv 2 2k' = k

y ds2 
+ 2k

z ds 
— + (k

y z 
- k )u

dk dk
- (kx k + --L)v (k k k y ds x z + ds x

(I)

(65)

(66)
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k, = +k du dv _ k dw
z "z x ds yds z ds

+ 
ds 

+ 2kykzu - 2k
x 
k 
z
v (67)

B. Discussion of Curvature Relations 

A development is presented for the exact expressions of the curva-

ture components of a deformed beam which is initially curved in any

arbitrary manner. The exact equations have not been derived heretofore.

The curvature relations are developed using a vector approach. In con-

trast to nearly all previous work the beam is not assumed to be inex-

tensible. The principal cross-sectional axes are assumed to have a
variable orientation relative to the curve's normal and binormal. Also,
nonlinear and linear approximations of the cukrature equations are given.

In reference 1, Love gives expressions similar to the linearized

equations presented herein. However, there is one term in each of.

equations (62), (63), and (64) that Love does not obtain. The presented

vector derivation yields these additional terms which are apparently of
the same order of magnitude as the other terms. The new terms in the

' y'
k'x k' and k' expressions are (-lc

x 
az ), (-ky az ), and (-k a ),

respectively.

There are two aspects of Love's work on curved beams which have

been questioned previously. First, there is the anomaly in Love's

work that his direction cosines do not satisfy the orthogonality

relationships. In particular, the sum of the squares of the direction
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' cosines relating e; to ex, ey, and ez is not equal to unity.

Secondly, the validity and applicability of Love's inextensibility

relation for curved beams is questioned.

In the presented development all of the direction cosine ortho-

gonality conditions are, of course, satisfied exactly. For example, it

is seen that 12
3 
+ m  

3 
+ n2 = 1 is satisfied exactly by equations (30)

3

after equation (21) is substituted.

The vector approach can be used to explain Love's direction cosine

anomaly which has not been fully understood before. It shows that

products of deformations must be included in the development if the

direction cosines are to be consistent. Also, the reason for the exact

formulation yielding additional terms in the linearized equations can be

shown.

Love denotes the direction cosines of the angles between e'
z 

and

each of 5x, 2y, and ez by L3, M3, and N3, respectively. Expressed

in the notation used in this paper, Love finds the direction cosines

to be

L
3 
= a

x' 
= a , N3 = 1 + a

z

It is obvious that these direction cosines do not satisfy

N  = 1, but give
3

L  + M  + N  = + 2a + a2 + a2 + a
2

3 3 3 x y z

= 1 + 2c
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In arriving at his curvature expressions, Love applies an inextensi-

bility condition which he takes to mean that the elastic axis is un-

strained. It is not thought that such a condition is applicable to

curved beams. In general, the elasti.c axis will extend since loading at

one point along the beam will create at some other point an internal

force component which is parallel to the elastic axis at that point if

the beam is curved. In the presented formulation there was no ne6d for

imposing an inextensibility relation.

If a curved beam were assumed to be inextensible, then the

inextensibility condition is given by setting c of equation (21) equal

to zero. That is,

Love deduced the inextensibility condition to be

From equation (68) it is seen that the exact inextensibility assumption

actually requires that

az < 0

If the inextensibility condition, c = 0,4ere applied to equations

(48), (49), and (55), then the linearized equations become
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da
k' = -ka+k+k. —a-

x x
a
z y ds

da
ky =ky -kzay +kyaz kxcp + ds x

k'z =k +ka+ka+ k 4--xx yy z ds

By comparing the above with equations (62) through (64) itis seen that

imposing the inextensibility condition c = 0 changes the si§n of the

terms containing az. .

From the definitions of a
x' 

a
y' 

and a
z 
(equations (20)) it appears

that the terms kx az' ky az' and kz az are of the same order of

magnitude as the other deformation terms in the curvature exprMsions.

However, if the beam were assumed to be inextensible, then it is seen

from equation (68), that az would be a higher order term since solying

equation (68) for a gives

az 2 x y z - (a2 + a2) (69)

Hence, if the beim were assumed inextensible then the az terms could

be neglected and the linearized curvature equations reduce to Love's.-

But there is no reason to impose the inextensibility condition; the

curvature equations can be derived without using it. AlsO, the Blatic

axes of curved beams do, in fact, extend. In addition, az is

apparently of the same order as ax 
and a

y 
(see equations (20)).

Moreover, the inextensibility assumption imposes a constraint relation



38

between u, v, and w as is given by equation (69).

Using the notation of this paper, Love gives the direction cosines

as

L3 ds 
 -k

z
v+k

y
w ax )

M3
 

+kzu-kxw (= ay)ds 

N
3 
= 1 + ds -ky

u+k
x
v (= 1 + az)

and states

"The equation L  
3 

+ M2 + N  = 1 leads, when we neglect squares and
3 3

products of u, v, w, to the equation

dw -
kyu+kx

v=0,

which expresses the condition that the central-line is unextended. In

consequence of this equation we have N3 = 1".

It appears that Love creates his inextensibility condition to

explain away the anomaly that his sum of the cosine squares is not

equal to unity. Regardless of the correctness or incorrectness of

Love's inextensibility relation, the manner in which it is deduced

does not seem to be a logical method for arriving at it. It should come

from a strain expression. Love should not have concluded from

2 2 2
L3 + M3 + N3 

= 1 that the elastic axis of a curve beam does not
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extend. The problem was that his direction cosines were in slight

error.

It is interesting to note that the direction cosines developed

herein satisfy 1
2
3 3 
+ m

2 
+ n  

= 1 for the inextensible case as well as3

for the extensional case.

It was mentioned earlier that Love's direction cosine problem

arises because products of deformation are not considered. This can

be illustrated by using the presented vector approach with Love's

assumptions applied. Neglecting products of deformation in the

extensional strain expression of equation (18) gives

-
d(AR)

ds 
 • 

- 
e
z

d(AR)
where 

ds 
- is given by equation (19). Substituting yields

= 
az

The above result is, of course, Love's inextensibility condition when

set equal ,to zero. Equation (22) is repeated below for convenience.

dR'
ae +ae + (1 + a )eds xx YY z -z

For inextension of the elastic axis, ds' = ds. Thus,

dR' dR'
- - e'ds ds' z
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and the above becomes

e =ae +ae + (1 +a )ez xx yy z z

The above is Love's result in vector notation since the direction

cosines defined by the above are the same as Love's. Next, Love reasons

that az 0 (inextensibility condition) and the above becomes

e =ae +ae + ez xx y-y z

Although the orthogonality condition on the direction cosines is still

not satisfied exactly, it is now satisfied to a higher order when

az = 0 is assumed. It is seen that Love's inextensibility condition

(az = 0) and his direction cosines are a consequence of neglecting

products of deformations and assuming ds' = ds. It is noted that the

latter expression above for e; is the same that Ojalvo and Newman

obtained in reference 12. Ojalvo and Newman derived Love's expressions

for the curvature components in the appendix of their paper.

A close examination of the presented derivation shows that the

additional linear terms are due to the combination of not setting

ds' = ds and not setting az = O. Consider, for example, how the

term (- ky az ) arises in the k' relation. In the second of equations

(46) there appears the product

(1 + 2e)-1 cos v cos V [(1 + az)ky]
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where the factor inside the brackets comes from the definition of a.

The term (1 + 2e)-1 arises from setting ds' = (1 + 2e)1/2 ds when

derivatives were taken. The fourth of equations (47) gives the

expression for cos * in terms of the displacements. If the binomial

theorem is applied and equation (21) is substituted, it is seen that

cos * does not contain a linear term. Assuming * to be small the

linear approximation of the above product is

(1 + 2e)-1 cos * cos * [(1 + az)ky] (1 - 2e)(1 + az)ky

z (1 - 2az)(1 + az)ky

zk -kay y z

Thus, it is seen that this additional linear term, - ky az, comes from

setting ds' = (1 + 201/2 ds and not letting az = O. If equation

(63) is considered to be the correct linearized equation for ky, then

the assumptions of ds' = ds and az = 0 cause an error in lc.; which

is equal to (+ ky az ) since the term does not appear when such assump-

tions are made. The additional linear terms do not arise from the

Eulerian rotations.

Another aspect of the development which should be mentioned con-

cerns the rotation angle *. In the present derivation the angle

is precisely defined as the Eulerian rotation about the body axis

that is tangent to the elastic axis. Love's equations contain the

rotational displacement B which, evidently, is equivalent to the
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angle when the exact equations are linearized. Love defines 13 to

be the direction cosine of the angle between e'x 
and ey. From Love's

direction cosines (L1 = 1, M1 = 0, L2 = -O, M2 = 1) it is seen that 0

is essentially a small rotation about the elastic axis with the

direction of the elastic axis unchanged. Other authors (see, for

example, references 3 and 12) have followed Love's work in defining

the rotation angle A. However, this definition is not satisfactory

when considering the exact expressions or the nonlinear approximations

for the curvatures.

Now consider an untwisted circular beam of radius R whose normal

is in the ex direction such that ky = 1/R 
and kx = kz 

= O. The

linearized curvature of the deformed beam as given by equation (66)

reduces to

' _ 1 d2u uk - — + — +
y R 2 7

ds R
(70)

The above is the well known formula for the curvature of a circular

beam deformed in plane (see, for example, reference 13). This result

is often associated with (or identified as) inextensible deformation.

However, since the above is not based on inextension the above formula

should be properly regarded as the linearized extensional curvature

relation for a deformed circular beam.

Aside, it is noted that if the beam formed a planar curve instead

of a circle then the linearized curvature would be
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2 dk
k' = k + k2u + w

dsY Yd 2 Y

Love arrives at the same expression (equation (70)) for the

curvature of a circular beam and this seems surprising at first in

view of the fact that equation (70) was obtained utilizing the addi-

tional term which Love's equation for k' does not contain. The

reason why Love obtained the same result can be explained. Using the

notation of this paper, Love's curvature expression for the circular

beam reduces to

1 
da

xk' = +y R ds

. 1 d2u 1 dw
R 2 lidsds

Love's inextensibility condition reduces to

dw u n dw _ u- = u or --ds R ds R

(71)

which he substitutes into lc; when considering applications. This is

1 dw uthe same as subtracting 1-1-' - 0, 
or ky az, from the right hand

side of equation (71). This, of course, Love can do since az = 0

from his point of view (but from the extensional point of view this

could not be done since az is not equal to zero and is not of higher

1 dw uorder). Subtracting 12- (FR - .1t)' or ky az, from equation (71) gives
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equation (70). It was pointed out earlier that if the extensional

linearized expression for k' is considered to be correct then Love's

expression for k' would be in error by the amount (+ ky 
a
z 
) (this is

not saying that Love's work is in error - he assumed inextension).

Continuing to examine Love's work from an extensional point of view,

1 dw 
the subtraction of ( a 

u 
- causes an error of (- ky az). Thus, the

two errors cancel each other and this is the reason the curvature results

are the same.

In equations (65) through (67), the linearized curvature components

are given in terms of u, v, w and O. Love's inextensional results

are presented below in the same notation for comparison.

k' = k - d
2v - 2k du + k dw dkz .

x x ds2 
z ds x ds ds "

dk
+ k2v + (-ky kz ds + --I)w + ky

d2u
= k + - - 2k dv dw 2

k
Y Y ds z ds + k y ds

k 
z
u

dk, dk

ds
v + (k x 

k 
z ds 
+ --X)w kx0

"z
= 

"z 
u

x ds 
du 4. k

y d 
dv + 

ds 
+k

y
k
z
u-kxkz

v
"s 

(72)

(73)

(74)

Depending upon the problem, one applying the first two of Love's

curvature equations may likely apply Love's inextensional relation

which is
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_ dw
az - 'ET 

- kyu +
 kxv =

 0

But it is seen that subtracting kx az from equation (72) and

subtracting ky az from equation (73) yields equations (65) and (66),

respectively, which are the linearized extensional results. Also,

subtracting kz az from equation (74) gives equation (67); however,

one using equation (74) would not be expected to do this since the

dw
equation does not contain a E term.

The reason for Love's expressions for k'
x 

and ky (after Love's

inextensibility condition is applied) being identical to the linear

extensional expressions is the same as that given earlier for the

circular beams. For extensional behavior, Love's equation for ic;,

for example, is in error by the amount ky az. Then, when Love's

inextensibility condition is applied to his equation, k' is reduced

by the amount ky az, which is not zero from the extensional point of

view.

It has been shown that Love's expressions for k' and k' with

his inextensibility relation applied are the same as the linearized

extensional relations for k' and 
.

k'
Y 

Thus, authors who have used

Love's equations (with his inextensibility relation applied) in the

past have mistakenly assumed that an inextensibility restriction was

imposed and that their results described inextensional behavior.

It is noted that although the longitudinal strain c of the

elastic axis is defined using the definition of the nonlinear strain
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tensor for curvilinear coordinates (see equation (11)), the knowledge

that e is a strain is not needed in the development since c is

eventually expressed in terms of the displacements (see equations (21)

and (20)). The derivation of the curvature relations is purely a

geometry problem. The development could have begun with the quantity

given by equation (13) being denoted as E. Although e does appear

in the final expressions for the exact curvature components, it may be

eliminated by substituting equation (21). For the curvature expressions

to be mathematically correct the extensional strain e must not be set

equal to zero.

C. Development of Strain-Displacement Relations 

The strain-displacement relations will be developed with the

following assumptions being made regarding the displacement of points

within the cross-section.

1. Torsional deformation causes warping of the cross-section and

the out-of-plane displacements are proportional to the Saint-Venant

warping function.

2. The cross-sectional body-axis coordinates of points off the

elastic axis do not change during deformation. This assumption is in

agreement with Saint-Venant torsiontheory that cross-sections do not

change in size or shape during deforMation.

3. Shear deformation is a negligible effect. Thus, except for

warping due to torsion, cross-sections remain normal to the elastic

axis during deformation.
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Letting x and y be the cross-sectional body-axis coordinates

of a point in the beam and letting r and r' be position vectors to

the point before and after deformation, respectively, then

r(x,y,$) = R(s) + xex(s) t y!y(s) (75)

r1(x,y,s1) = R'(s') + xe 1-x( ') + ye'(s') W(x4) cl(dsq) e1
z
(S1)

(76)

where W(x,y) is the Saint-Venant warping displacement function. yaking

the differentials of the above relations and substituting equations

(17), (25), and (32) for the derivatives of the vectors gives %

dr = (dx - ykzds)% + (dy + xkzds)ey

1 - xky + ykx)ds !z

dr' = (dx - yys' + Wk; grds!)!;

+ (dy + xys' - Wkx' dd r ds')ey'

+ (ds' - k'ds' + yk'ds'

A2,
+ dx dy + W 'ads' )

z
el

ax ds ay ds' 
51L- 

-2ds'

(8),

(77)

(78)

The magnitudes of dr and dr' are the lengths of an arbitrary
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differential line element in the beam before and after deformation,

respectively. If the differential length is denoted by dg, then

(d02 = dr • dr

(79)

(dgi)2 = dr' • dr'

•

Substituting equations (77) and (78) into the above and replacing ds',

by

= (1 c 1 2 ds

in the second of the resulting equations and then collecting terms

yields

+ 2ykk + x 2xykxky

- 2ykzdxds + 2xkzdyds (00)
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2 2

3x ds"r-) (") (1 + 20-1]dx2

2 2
+ El + 

aw 
(ds
(It 
) (1 + 20-11:1Y2

4. [1 4. 2c 4. y2k;24
1 + 20 - 2yWkifk; 1-t (1 + 

2e)1/2

2 2 dth 
2 ,

+ W " L—T-N + xcie ctl + 2e -) 2 Wk'k' L (1 + 201/2
"y `cis' z ̀ ' x z ds

2 d2th
+ W

2
k'
2
(-41) - 2xyk;(1 + 2e) + 2y1c(1 + 20 + 2W ---

x ds 
ds
2

+ x2k'2(1 + 2e) - 2xyk'k'(1 .4- 2e) - 2xWk' d

2

.y x y
Y ds

2

4. ,,2k, . 2d2, 4. W2 ,At, -1 2
2(1 + 2e) + 2yWk' --x' x x 

ds
2 

• 
`
ds
2) ki + 

2c) s

2

+ 
1-9 aw aw a.1 (1 + 2e)-1]dxdyax ay 'cis'

+ + 26)1/2 + 2Wk' + 2 3W L - 2x k'ds 3x ds 3x y ds

3W c-1/ + 2W 3W ik+ 2y k L (1 + 20]dxds
ax x ds ax ds ds

2

91_th_ + 2 aw _ 
2x 3W k'+ [2x1C(1 + 201/2 - 2Wk!

x ds 3y ds Dy y ds

+ 2y  kz fltds + 2W W Ps dci-ts2 (1 
+ 20]dyds (81)

Equations (80) and (81) define the metric coefficients gij and

G
ij 

for the undeformed and deformed beam, respectively, since the

metric tensors gij and Gij are, by definition, given by.
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(dg)2 = giidx,dxj

(d3')2 = Gijd dxj

(dg')2 - (dg)2 = (Gij - gij)dxidxj

) (82)

is a measure of the deformation, the covariant strain tensor is defined

to be

1
yij 2 

= 
ij ij 

- g..) (83)

However, the physical components of the infinitesimal strain tensor

are needed for expressing the stress resultants in terms of the

displacements.

The normal strain components are defined by

dv(i) mi) i
11 

i

eii 
dg(i) 1.17dxi

and the shearing strain components are given by

,7 J
e..ij = 61

.. - 6!. (i j)
1 

where Oij i and Otj are the angles between the x
i 

and xj

(84)

(85)
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coordinate curves before and after deformation, respectively. These

angles are related to the metric tensor components by

cos Ou = gii/41,15TT

cos 0ii = Gii/Vicai;

(86)

It is noted that in equations (84) and (86) and in the following

expressions the repeated subscripts do not denote summation. Beginning

with the definitions of equations (84) and (85) it is shown in reference

8 and other texts that the normal and shearing strains are given by

eij = [2-1,
ij 

- g .(ii 111)140ii (gijgii gjj

Using equations (83) and (87) the above may be rewritten as

e.. = — 2 (Gii 
- 

.11.)/91.1
.

(87)

(88)

(89)

e..
1J 

= [G
1
..
J 
- j gij(eii ejj (gij)2 (90)

As noted earlier, Gl.i and gl.j are defined by equations (80)

and (81). In the infinitesimal strain theory, products of deformation

are neglected in arriving at equations (87) and (88). Thus, deformation
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products will not be included in the expressions for the metric

coefficieRts. , The linearized expressions for the curvature components

' y'k'x k' and k' are given by equations (62), (63), and (64). Also,

c is defined by equation (21). These equations may be substituted

into equation (81), to give (dt')
2
 in terms of the displacements a ,

ay, az, and 0. Letting

dx = dx
1

dy = dx2

dz = dx3

and comparing equations (80) and (81) with equations (82), the metric

coefficients for the undeformed and deformed beam are found to be

gll =

g22 =

g33 =

g12 =

g13

923

1

1

1 + 2(y kx - x ky) + (y kx

0

-y kz

x kz

G
11
=1

G22 = 1
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= 933 + 2(1 + ykx - xky)(az + xkx4, + ykycp

da da
x u w 1.24))ds J ds ds2

+ 2(-y + x2kx + xyykzax + 2 x y2k +

+ 2(x2 + y2 xk W - yk
y 
W)k
z ••

G12

G
13 

= g
13 

- y(k
A 
a
x 
+ k

y 
a
y ds 
+ Ai)

+ (1 + yk - xk ) -aw + Wk
x y axds. y ds

G23 = g23 + x(kxax + kyay Ccift)

+ (1 + yk ay ds "" — xky) -aw U6x ds at

From the above relations and equations (89) and (90) it is

immediately seen that

ell = e22 =
(93)

It is assumed that the curvatures are small such that the product

of a cross-sectional coordinate and a curvature component is much less

than unity (i.e., xi kJ « 1). In other words, x and y are small

compared to the radius of curvature and the angle obtained by

multiplying the twist curvature kz (radians per unit length of beam)

by .x (or y) is much less than one radian. With this assumption the
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quantity 1 appearing in equation (89) when i = 3 can be 
g33

mated using the binomial theorem to give

1 - 1 - 2(yk - xk ) + 3(yk xk )2 (x2 
+ 

Ju2)1,"2

g33 
x y x y' z

- 4(yk - xk )3 4(ykx - xk 
4 4(x2 + y2)k2 + 0(x.k.) (94)x y i J.

Similarly, when • e13 and e
23 

are determined, the inverse of the

denominator of equation (90) is approximated by

)2 -1/2 33
Eg11g33 - (gl ) J 

= 1 - (yk - xky. tykx - z 
0 

1
1( 
J

Eg22g33 - 1'2 '
21 
J
-112th 1  = 1 - (yk - xky) + (yk - xky) c 

1 y, 2 27.- + 0(x.k..)
z J J

3 3

(95)

Besides giving more accurate strain expressions, the retaining of

higher order terms allows the analysis to be applied to problems having

larger curvatures. 3In the straincexpressions terms'of order x3 k. a
k

(or cli) will be kept. Equations (20) and equations (62) through (64)
da4

indicate that ki aj is of the same order of magnitude as ds' .

Thus, for terms involving derivatives of ax, ay, or O, terms of order

x.
3 

k. 
2 

willbekept.Also,Wwillbetakentobe0(.xi)since for all
2

known solutions for the warping function, W is of the same order of

magnitude as the product of the cross-sectional coordinates or smaller.

Substituting equations (91), (92), (94), and (95) into equations (89)

and (90) gives the strains ezz(=e33), and (=e13), and eyz(=e23) as



(ykx - xky)2 - (x2 + y2

da

y
2 x
)kz ds

d a

z
21

ds
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2
e
zz 

= [-y - xyky + 
y2k

x 
+ x2

 kx - x
2 yky - 3y2k2

+ 2x3kx ky 
- 2x2ykX + 4xy2kxky + y(x2 + y ) z2ikzax

x kx + 2x2ky + y2k + xy + 3x
3k2x y

- 2y
3 k k + 2xy

2 k2 - 4x
2 yk k - x(x

2 
+ y2)k ]k a

x y x y z z y

+ [1 + xk - yk x2k2 2xyk k 
u2k2 

(x2Y x Y x y x  
y2)k2

▪ x3k:f 
- 
3x2ykxk; 3"2kx2ky _ y3k3x 3(x2

[xk + yky + x2kxky + xyky2 - y
kx 

y

2 2 2 3k2- 2x y xy k + xy k3 +yk - (xk + yk )(x
2 + y

x y x y x x y x y

Y2)(Ykx.,- xky)k2z]a

- xEl - (ykk - k ) + (ykx - xky)
2 - (x2

- YC1 - (ykx - xk

+ C(1 - 2yk + 2xk y2) - (xkx 
+ ykx )W kz ds + W  

 (96)
ds
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e
xz 

= -y[kx - (yk - xk )k + yk  + (yk - xk )2kx yx z x y x

+ (- 2 x2kx + 2xyky - 3y kok2z,,

- y k
y 
- (yk

x - xk )k - xk  (yk
x - xk )

2kyy z y y

7 2x ky + 2xyk - y2ky)kDay

+ ykz[1 - 2(ykx - xky) + 3(ykx - xky)

+ ykz[xkx + yky +

(3_ x2 + y2
)k
2z]az

2 _ 3,2)kxky 2xy(ky2 kx2)j.

da da
ykz[1 - 2(ykx - ky)] 

dsx 2kz.[1 - 2(ykx - xky)] c-is

- y[l - yk + xk + (yk - xkx y x y x

A2
+ (1 2 - 1 x2kz2) ax 3W 

ds + (1 vkx + xky )Wky ds + yWkz (97)
ds
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= x[kx - (ykx - xky)kx + yk; Cykx -

+ (- 7 y2 kx + 2xyk -e 

+ x[ky - (ykx - xky)ky -
z

k )k ]ax z x

+ (- 3 y2k + 2xyk - x k )k ]ay x y z y

3- xkz[l - 2(ykx - xky) + 3(ykx - xky)2 - (x2 y+ y2 )kz2]az

- xkz[xkx + yky + 2(x2 - y2)kxky + 2xy(ky - kx2)](1)

da
x2 kz[1 - 2(yk - xk )] + xyk [1 - 2(yk - xk )]

da

x y ds
x 

x y ds

+ x[1 - ykx + xky + (ykx - xky )
2 x 2 Y 

2
)kz] ds 
2 cit.

1 y 2kz2)a It d2c 
2

+ (1 - 2 j) 
(98) 

rw -dy ds - ykx + ,cky )Wk - xWkz x ds ds

In the above strain-displacement relations terms have been collected

on each variable. If the curvatures are very small it is obvious that

the majority of the terms are negligible. When retaining only the

largest terms associated with each variable the strain expressions

are approximated by
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da

ezz = az - 
x(-kz ay - 

ky az - kx 
* + ds--I)

da
+ y(-kzax - kxaz + ky* ds

y 
(k 
2 
+ Y 

2
)kz ds + W S2

4)

d 

e = -Y(k a +ka -ka + At) + -31 S-tixz X x yy zz ds ax ds

da dau
- xyk --I y`k --L+ yk

z ds z ds z
2+ yky)* + yk, W d 

ds

x(ka+ka -ka + g±) - aWeyz  3y ds

dax dau d2* 
z ds+ x

2
k + xyk --L xkz 

+ yk )* - xk W
z ds y z ds2

(99)

(100)

( 1 01 )

D. Discussion of Strain-Displacement Relations 

In the expression for ezz as given by equation (99), the first

term is the linearized form of the strain of the elastic axis that was

given in the development of the curvatures. The quantities inside the

first two sets of parentheses are equal to (k'Y 
- k

Y 
) and (kx - kx ),

respectively, and these are the changes in the curvatures of the elas-

tic axis due to deformation. The term (x
2 + y2)kz d*/ds is due to

the initi.al twist of the beam. This term has been obtained previously

by Houbolt and Brooks (see reference 14) in their analysis of a

straight pretwisted propeller. The last term in equation (99) arises

because uniform torsion has not been assumed.
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The quantity enclosed in the first set of parentheses in ea
ch of

equation (100) and (101) is equal to the change in the torsion
al

aW 
curvature component (i.e., k' - k ). The terms

z z 
Al and 

ax ds ay
aW 

ds

contribute to the Saint-Venant torsional stiffness constant
 that appears

in the torsional stress resultant. Based on the previous observation

that k.
1 
a.
J 

may be of the same order of magnitude as ds
--a- and the

assumption that ki xi « 1, the remaining four terms in each of

equations (100) and (101) may be smaller than those mentioned 
above.

However, these terms cannot be assumed negligible since the
re may be

instances where, for example, ax may be zero while its derivative is

nonzero. The last four terms in each of equations (100) and (101)

appear because of the beam's initial twist curvature.

It is noted that since shear deformation was neglected the strains

exz 
and eyz 

do not reflect the strain arising from transverse shear.

The expressions for e
xz 

and e
yz 

are used to determine the torsional

moment stress resultant. The omission of the strain due to transverse

shear does not affect this stress resultant since moments are 
taken

about the shear center of the cross-section.

In the development of the strain relations it was assumed that the

warping displacement was proportional to the Saint-Venant warp
ing

function W. The solution for the Saint-Venant warping function of a

cross-section assumes that the torsion is uniform (constant
 torque,

constant dip/ds). Since this analysis is not restricted to uniform

torsion there is an inconsistency. However, for many problems in which

the torsion is nonuniform, it is common practice to determi
ne the
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torsional stiffness using the Saint-Venant theory. This is especially

true for natural vibration problems. The effect of nonuniform torsion

on the torsional stress resultant becomes important for flanged thin-

wall open sections such as I-beams. For such beams the theory has been

developed to correct the stress-resultant expression for nonuniform

torsion (see reference 15). For beams which are not thin-walled, a

general theory for nonuniform torsion has not yet been developed. For

this analysis, it will be assumed that the torques acting on the beam

are distributed loadings (such as inertial loads) and that the deriva-

tives of dO/ds are small such that the effects of nonuniform torsion

are negligible. With this assumption, the terms proportional to d2./ds2

in the strain expressions may be dropped. However, for the examples

presented herein these terms have no effect on the stress resultants

since the cross-section is assumed to be doubly symmetric.

The strain-displacement relations have been developed for the pur-

pose of obtaining expressions for the stress resultants in terms of

the displacements. In the classical theory for curved space beams the

strain-displacement relations are not derived. The stress-resultants

are assumed to be equal to the changes in the curvatures (without the

extensional effects included) times a cross-sectional stiffness

property. The importance of using the strain-displacement relations

instead of the classical approach will be seen when the stress resul-

tants are compared since the classical approach can lead to considerable

error.
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It was noted earlier that the accuracy of the strain exp
ressions

depends upon the number of terms kept in the binomial ex
pansion of the

denominators of equations (89) and (90). The strain e
zz 

as given by

equation (96) can be compared with the Winkler theory for 
curved beams.

The Winkler theory, which is valid for large curvatures,.ap
plies to

untwisted beams lying in a plane, having a constant radius 
of curvature,

and with the deformations being in-plane. Thus, considering a beam of

constant curvature which lies in and is displaced in the x, z plane

such that k = 1/R and kx =
kz 
=y=y=0=a = 0, equation (96)

gives

e =
zz

2 3
I x
R x3 z

2 da
x x %

1 4- 7) ds
x

Substituting equations (20) for ax and az yields

dw
ezz 

_
2 3

1 + 21;-,
R` R" "

2 2
k(1 d

R R2
 As2 '

(102)

(103)

It is noted that according to the sign convention establish
ed by

figure 2 and equations (1), x and u are positive in the direction

toward the center of curvature when y = 0.

In reference 16 Langhaar gives the following expressi
on (notation

and signs have altered to conform to that presented herein)
 for the

strain according to the Winkler theory

e
zz ds 1 x/R 1 - x/R

_ dw  u/R  x d2u/ds2 (104)
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The above gives a parabolic distribution of strain over the cross-
section instead of the familiar linear distribution associated with the
bending of straight beams. This distribution is brought about because
equation (104) was obtained by taking into account the differences in
the initial lengths of the longitudinal fibers in a differential segment
of the beam. The strain distribution given in equation (103) appears
because approximations were made for the complicated denominators of
the strain expressions for space beams.

From the binomial theorem it is seen that equations (103) and (104)
are essentially the same when x is small compared to R. In fact,
since the higher order terms were kept, the strain expressions can be
applied to beams having moderately large curvatures. For example,
suppose that x = 0.2 R. Then, equation (103) gives

dw d2ue _ - - 1.248 — - 0.248 Rzz ds 
ds2

From equation (104), which is the expression for large curvatures, it
is found for x/R = 0.2 that

d2ue
zz ds R 

= Ati - 1.250 IL - 0.250 R --2-
ds

If x = 0.2 R is largest cross-sectional coordinate of a point 4n the
beam, then it is seen by comparing the two above results that the
largest error in the strain as given by equation (103) is less than
one percent (the same error is obtained at x = -0.2 R). Equation (103)
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is extremely accurate for x/R < 0.1 and does not give grossly

inaccurate results until x is about one-half of R.

Equation (99) gave the expression for e
zz 

with higher order terms

dropped. For the example being considered it reduces to

e dig _ (1 4. 
R 
lc) g _ x d2u

zz ds ds
2

At x = 0.2 R the above becomes

(I2u_ dwe - — - 1.2 1 .1 - 0.2
zz ds R ds2

When compared to the result of the Winkler theory, the last term is .

seen to be 20% in error.

In the development of the stress resultants the more accurate

strain expressions containing the higher order terms will be used (i.e.,

equations (96), (97), and (98)).

It is recalled that in the classical theory the elastic axis is

assumed to be inextensible such that az = O. From equation (102) it

is observed that the extensional strain az of the elastic axis must

be included. Otherwise, the strain-displacement relation bears no

resemblance to what it should be.

In reference 17 Oden gives an expression for the strain of a

curved planar beam of radius R. His result is different from that
1

given by Langhaar and from that presented herein. Oden arrives at the

total strain by summing strains that arise from threeitypes of
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displacement (i.e., extensional, radial, and rotational). The strain

due to the radial displacement is given as

(Es)1 1 :Yy/R

where v is the inward radial displacement. The strain due to a radial

displacement is actually the second term of equation (104). By

considering the strain due to the radial displacement of a circular

ring it fs obvious that the above result is in error, The error of

reference 17 was caused by taking the final.length of an incremental

fiber at a distance y from the centroid to be. As[1 - y(R - v)]

instead of Asp - (y + v)/R] as it should te,

E. Development of Stress Resultants 

The stress resultants are determined in the usual manner by

summing Over the cross-section the stresses that are acting on it. But

first it is noted that in general the x, y, and z curvilinear

coordinates (s and z are used interchangeably) and not orthogonal.

When the beam is twisted (kz 0 0) the 
coordinate lines are orthogonal

only at points along the elastic axis. The x and y coordinate lines

are orthogonal at every point in the cross-section before deformation

(g12 = 0) and after deformation (G12 = 0 when neglecting product of

deformation). But the z coordinate line passing through a point in

the cross-section off the elastic axis is not normal to the xy plane

(g13 0 0, g23
 0, G/ 0, G23 # 0). This can be visualized for a
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twisted beam since the z coordinate line is defined by the inter-

section of the coordinate surfaces x = constant and y = constant.

Figure 3 shows the stress azz acting at point P in the cross-

section and in the direction of the z coordinate line passing through

that point. Also shown are the components of azz in the'directions

of eZ, 2;, and e
z'. The components of a

zz ' ' in the e' e and e'x y z

directions contribute to the torsional moment stress resultant. This

effect, which occurs in twisted beams, is discussed by Goodier in.

reference 15. The bending moment stress resultants about the x and

y axes and the axial force stress resultant are determined from the

component of
zz 

in the e' direction.z 

The component of azz in the e; direction, for example, is azz •

cos 013 
1 where cos 0'3 is defined in terms of the metric coefficients

Gii by the second of equations (86). However, since products of

deformations will not be included in the stress resultant expressions,

the reference of the undeformed beam will be used. If the subscripts

xo, yo, and zo are used to denote the components of azz at paint P

in the ex' ey' and ez directions, respectively, then

z x = a 
zz cos 613 = azz g13 33 /1--

(105)

(a
zz 
)
yo 

= a
zz 

cos e
23 

azz g23 33 
/Vg--

since g11 
a
22 = 1. Letting lz be the direction cosine of the angle- 

between a
zz 

and ez' the orthogonality relation
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Figure 3.- The stress azz at a point in the cross-section.
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Thus.
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2cos 6 + cos2 e23

2 + 2 
1/2

_ (1 913 
g
23 

933, /

2 
1/2

(Gzz)z = ( g13 g2 )0 zz 933
(106)

From these components of

the x, y plane, the stress resultants

integrals.

Mx 
=IA

022

(1

and the shear

are given

2

913 + 

2 

g23

stresses acting in

by the following

1/2

ezz dA 
(107)

933

2 4. 2 1/2

923)-
Y

E
A

913a e
zz 
dA (108)

433

M, =f G(.1e .x2 + xey2)dA +f E
(

xY913 + 923 e
zz

A ' (109))
/6--;;

2 2 1/2

923F2 =Jr (1 913 ) e dA (110)
933A

zz

Using the binomial theorem, it is found from equations (91) and

(96) that
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( gLI2

g33 zz

, 
2[-y - xyky + 2y-2 kx +x2kx - x2yk 

- 3y3 kz y x

+ 2x3k k - 2x2yk + 4xy2k k + v(x2 + 2)k]kx y x xy 
1 
2 - -zztx

+ [x - xyk + 
u2k 4, u2k + xv2k2 + 3x3k2

x 
o 
'" Y ly'xy

- 2y3k k + 2xy2k 2 - 4x2yk k -  x(x2 + 2)k2]k
x y y x y 2 Y ' 2 Zay

+ [1 + xky x - yk + x2k2 - 2xykx ky + y

3 2 2 3 2 2- x + y )kz + x k - 3x yk k + 3xy k2ky x y x y

3  y2- y k3 + 9 — (x2 + )(yk k )k ]ax 2 x yzz

+ [xkx + yky + kxky + xyk; - xyk! - y2kx

k + x2yk - x2ykk - 2xy2k k2x y y x y x y

+ xy2k3 + y3kky - (x2 + y2)(xkx + 
yk
y z 
)k].x 

y

- x[l - ykx + xky + (ykx xky)

- y[1 - ykx + xky + (ykx - xky )

+ [(x2 y2)(1 - 2ykx + 2xk ) - xkx + yk )W]k W (111)y z ds et 
ds2

da2 2-2- (x + y )kz] ae-
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yg13 
zz 

xg23)e _ (x
2 

Y
2
)kz e

ig-33 
3 zz

= (-Y 2xyky + 3y2kx + x2kx)(x2 + y

1„ _ Nix
+ (x - 2xyk 416

21, 
7
2k 
y/.

2 
j z Y

[1 + 2xk - 2ykx + 
x - 6xykxky

+ 3y2 kx
2 3 x 2 2 2y )kzEx + y )kzaz

+ (xkx + yky)(1 - 2ykx + 2xky)(x2 + y2)kz(17,

da
- x(1 - 2ykx + 2xky)(x y2)kz ds

"

- y(1 - 2ykx + 2xky)(x
2 + y2)kz ds

do.

2
+ (x2 + y2)2 k2 + (x2 + y2)Wk_ -d4,

z ds 
4 ds4

(112)

From the above equations it is seen that the stress resultant

expressions will be rather lengthy when the above and the shear strains

are substituted. Solely for the purpose of reducing the size of the

stress resultant expressions it is assumed that the cross-section has

two axes of symmetry. Thus, the following integrals are zero.
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jrA xdA = Jr ydA = Jr xydA = Jr x3dA = Jr y3dA = 0
A A A A

JA
x2ydA = Jr xy2 Jr dA = x3 ydA = Jr xy3dA = 0

A A A

Also, the warping function W(x, y) is an odd function of both x

and y since the warping displacement must be antiymmetric with

respect to both the x and y axes for doubly symmetric cross-

sections. Thus,

WdA = Jr xWdA = Jr yWdA = Jr x2wdA jry2WdA = 0 (114)
A A A

Even if the cross-section is not symmetric the second and third

integrals above are zero since x and y are measured from the shear

center (or center of twist). This was proven by Goodier in reference

18.

It is assumed that the elastic modulus E and the shear modulus

G are constant over the cross-section. The integrals which appear in

the stress resultants are denoted as follows
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In the above, J is the well-known Saint-Venant torsional stiffness

constant.

Substituting equations (97), (98), (111), and (112) into equations

(107) through (110) and applying equations (113) through (115) and

replacing az by its definition

dw -az = k
y
u+ kxvds 

yields the following expressions for the stress resultants,

2 2 3 2Mx = E[-(Ixx + B3ky + 382kx2 + 2B3kx - 7 B5kz)kzax

- 2(82 + 2133)kxkykzay

+ 2 9 2 dwk - — B k )k --
Y 2x2 5z x ds

+ (Ixx + B3k; B2q( - Bsk!)kxkyu

2- (Ixx 
+ B

3 
k
y 
2 + B x -

+ (Ixx + B3 y 
k2 - 2B

da
x (I + + B

XX 
2 2

+ 2B3kx
k
y ds y 2

k x - —

2 2
5kz)kxv .

- (2B5 7)kxkz

da

z ds

(116)
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My = EL-2(B1 + 2135)kxkykzax

(I
yy 

+ 6
3 
k
x 
2 + 361ky + 265ky - —

z z
2 2

2 2 9 2 dw(Iyy + 61ky + 3135kx - -2- 64kz)ky ds

+ (I
yy 

+ B
ly 
k2 + 36

3x 
-9- k2 - B
4zy 
k)k2u

2 

(I
yy 

+ 6
1 
k
y 
 
+ 36

3 
k
x 2 
2 
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da dat,
+ 2(1'- t-04kykz dsx  - 2(1 - t)Bskxkz ds
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"13 '

SD 
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rt 

- 2 "8 ' 2 "

+ B k]G 
6 z ds

F -4 + I )k k a + (I + I )k k az p xx xzx p yy y z y

+ (A + I k2yy y + Ixx kx I 2 - 3 Ip k) -cl2Lz ds

2 3 2- (A +I
yyy 

k2 +Ixx kx 2 - Ipkz)ky u

+ (A + Iyy ky + Ixx kx 2 -  Ip 
kz)k

x 
v

da da
-Ixx )kxkyO-Iyy 

k
y ds 

+I
xx 

k
x ds --2-+Ip

k
z a qt] 

(119)(IYY

F. Discussion of Stress Resultants 

Equations (116) through (119) give the stress resultants interms

of the displaceMents. These expressions include extensional effects

which have not been taken into account previously in stress resultants

forspace beams. Also, the expressions'contatn terms which allow the

equations to be applied tot, beams having curvatureslarger than .

would otherwise be permitted.

It was noted earlier that in the classical approach-the stress re-

sultants are not derived from strain-displacement relations but.are as-

sumed to be proportional to the changes in the curvatures. Thus, accord-

ing to the classical theory, which also assumes the elastic axis to be

inextensible (a
z = 0), the three moment s.tress resultants are given by
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dat,
Mx xx = EI (-kz ax + ky ds 4 - --L)

da
M = EI -k a - k 0 +y yy z y x ds

Mz = GJ(kx a + ky ay ds + 11-t)x 

It is obvious that the more rigorous approach for determining the

stress resultant yields many additional terms. In equations (116)

through (119) the dw/ds, u, and v terms appear because of extension

of the elastic axis. The terms involving the Oi cross-sectiOnal

constants arise because of the more accurate representation of the strain,

distribution over the cross-section. The first two of equations (120)

essentially assume a linear strain distribution. When the Cross-

sectional dimensions are very, very small compared to the radiuS of

curvature (i.e., xi kJ is much, much less than unity) most of the terms

inthestressresultantswhichcontaina B1 constant can be neglected:

A comparison of the third of equations (120) with equation (118)

points out that a very common mistake, which has not been noted before,

has been made in previous analyses that dealt with torsional and

out-of-plane deformations. The comparison shows that in the third of

equations (120) only the displacement d4/ds, should be multiplied by

the torsional stiffness J. The variables a
x 

and a
y appearing in

this equation should be multiplied by the polar moment of inertia I

• •
Unless the cross-section is circular, the use of the stress. resultant

Mz as given by the classical approach can lead to considerable errOr
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since Ip may be many times larger than J when the cross-section is

not compact. Consider, for example, a rectangular cross-section. The

ratio of Ip to J is given below for various ratios of the cross-.

sectional dimensions a and b.

a/b I /J

1 1.19
2 1.82
3 3.17
4 5.04
5 7.44
10 26.98

The easily made mistake described above has often been made in

papers pertaining to torsional and out-of-plane vibrations and out-of-

plane buckling (for example, see references 12, 19, 20, 21, 22,. and

23). In the classical formulation the fact that the ax and a

terms should be multiplied by Ip instead of J is not at all obvious.

This error shows the need for determining the stress resultants from

strain-displacement relations.

In reference 15 Goodier showed that for a straight twisted beam

the pretwist contributes to the torsional stiffness since the displace-

ment do/ds causes a longitudinal stress which opposes the motion. In

the notation of this paper, Goodier gives the stress resultant as

Mz = (GJ + EB k) + EI kz ds p z ds
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These terms, which appear i.n equation (118), are shown to be significant.

for slender cross-section, such as propellers, even when kz. times the

largest cross-sectional coordinate is as small as 0.1. In the stress

resultant development, the inclination of azz causes terms other than

those above to appear in M
z 

since the treated beam also has. the

curvature components kx and k
Y.

In reference 24 Den Hartog gives an interesting observation that

he made in his experiments with bending of pretwisted straight beams

and challenges the reader for an explanation. It was found that the

bending stiffness of doubly symmetric beams having equal cross-sectional

moments of inertia is reduced when the beam is pretwisted. The cruci-

form cross-section is cited as an example.. According to the conven-

tional theory for straight pretwisted beams (for example, see

reference 25), the pretwist has no effect on the bending stiffness (nor

on the bending displacements) when the moments of.inertia are equal.

In reference 26 the reduction in stiffness is attributed to distortion

of the cross-section and anticlastic effects. Equations (116) and (117)

show that there is also a reduction in the bending stiffness due to the

pretwist itself. For a straight pretwisted beam having only the dis-

placements u and v, the equations give

da
-E(I - 1Mx xx 2 z ds

da
My E(Iyy 2 - 1 84 kz

2) 
ds

x
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It can be shown that for the cruciform cross-section, B4 and B5 are

equal, as well as IXX and I
YY' 

and do not depend upon the orientation

chosen for the x and y axes. Thus, it is seen that the pretwist

does indeed affect the bending stiffness even when the moments of inertia

are equal.

G. Oevelopment of Equilibrium Equations 

The equilibrium equations are derived by considering the forces

and moments acting on an incremental segment of the beam. The equations

are obtained using a very expedient vector approach.

The internal moments (or moment stress resultants) acting in the

2:0 !;, and !Z directions were previously denoted by Mx, My, and

M . respectively. Similarly, let F. Fyl and Fz denote the internal

forces acting in these directions. Also, let px, py, pz, qx, c y, and

qz be the applied distributed forces and moments acting in the %lc, e4,

and e'z 
directions per unit length of the extended rod. From these

components mentioned above the following vectors may be defined.

F = F e' + F e' + F e'x-x yy zz

M = M e + M e + M e'xx yy zz

e = pxex + pye; Pze;

q = clx2ic `lye; gzei
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Figure 4 shows an incremental segment of the beam of length As'.

Thus, the applied force and applied moment vectors acting on the incre-

ment are p As' and q As'. The changes in the internal force and

internal moment vectors from one side of increment to other are denoted

by AF and AM as shown. To establish the sign convention; consider

an imaginary cross-sectional cut of the beam taken at s' . 1 
s'
. 

The

sign convention is chosen such that the internal force and moment

components acting on the cross-sectional face of the material on the

s' < ' ' s' side of the cut are positive in the e e and e'1 x y z

directions.

The summation of forces and the summation of moments about the

left hand end of the increment give

F + AF + p As' - F = 0

m + OM + q As' + (AS'e;) x (F AF)

+(i As ez) x (p As ) - M = 
0.

Dividing each of ti-;'e above equations by As'. and taking the limit as

As' approaches zero gives the equilibriumequations in vector form as

dF
Er p 0

dM
—r + e'z xF+q= 0ds - 

(122)

(123)
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Figure 4.- Incremental segment of beam.
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Substituting equations (121) into the above, performing the indicated

operations, and substituting equations (32) for the derivatives of the

unit vectors yields

dF

ds
x kzF 

y 
+ k

y
F
z 
+ px = 0

dF”

ds
—4 + 10

z
F
x x 
- k'F

z + py 
0

dF
 ' =kifFx + kxFy + p z

dM
dSi k;My + k'yM

z 
- F

y 
+ q

x = 0

dM

ds' z
+ k'M

x x 
- k'M

z 
+F

x 
+q

y 
= 0

dM

ds'
z 

y 
kim 

x "xfly

The above equilibrium equations are the same as those given by

LoVe in reference 1 except that ds' appears in the above derivatives

instead of ds since extensional behaviot is considered. Replacing

As' by

ds' = (1 + 2 c)1/2 ds

in the above gives equations of the type
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dF
d'sx ( 1 + 2c)1/2(-k1zFy y + k'Fz x+ p ) = 0 (126)

As noted before, px is the force acting in the e;( direction per

unit length of the extended rod. Let dPx be the force acting on ds'.

That is,

Therefore,

dPx
Px = ds

(1 + 2c)1/2 pX = (1 + 201/2 ;').

dPx
ds

Let dPx/ds, which is the 
force acting in the ex direction per unit

length of the undeformed beam, be denoted by Fix. Thus,

(127)

There are similar relations for py, pz, qx, gy, and qz. Hence, the

equilibrium equations as typified by equation (126) take the form

'dFx
ds.

1 2E)1/21.0F
zY Y 

k I F z) 
x 
= 0

` 
(128)
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Suppose that px is the inertial load given by (-Wil) where mt

is the distributed mass of the extended beam. Then,

1 + 201/2 px = - E)1/2

Let dM be the mass of the beam in the differential lengths ds and

ds'. Using equation (127), the above becomes

rx ds'= 4. 201/2 dM n

dM --
ds 

u

px = -mil

where m is the distributed mass of the undeformed beam. Therefore,

when considering inertia loads the distributed mass in the px, py,

etc., expressions is that of 'the undeformed beam.

In this analysis only linear solutions are being considered. For

free vibration problems the internal forces and moments are proportional

to the displacement variables. In the k;, icy, and k; expressions,

the initial curvatures are the only constant terms. Thus, from equation

(128) and those similar to it, the linear equilibrium equations for

natural vibrations are found to be
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dF

ds
x
 

kz
F
y 
+ kyFz 

+ 5x 0

dF

ds +kzFx 
-kxF

z 
+ 5

Y 
0

dFZ
kyFx 

+kxF
y 
+ 5z 0

ds 

dM

ds
x kz

M
y 
+ k

y
Mz - Fy 

+ 1:1x 0

dds 

M”
+kz

M
x 
-kxzM 

+F
x 
+

dM

ds
z - kyMx 

+ kxMy + 
qZ = 0

(130)

H. Summary of Governing Differential 

Equations for Natural Vibrations 

A11 of the equations needed for solution have now been developed.

It is planned for the natural vibration solution to be obtained using

a transfer matrix technique. Thus, the first-order equations that have

been derived will not be combined to form higher-order equations. The

problem has twelve variables: u, v, w, 0, ax, ay, Mx, My, Mz, Fx, Fy,

and Fz. The twelve equations are: the first two of equations (20)

which relate a and a to u, v, and w; equations (116) through

(119) which are the four stress resultant relations; and equations

(129) and (130) which are the six equilibrium equations.

The first two of equations (20) may be rewritten as
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du
ds = kzv kyw ax

dv
ds = -kz

u + k
x
w + ay

The four stress resultant relations can be written in matrix form

(132)

where the matrix elements a and b
ij 

are defined by equations (116)

through (119). It can be shown that the matrix [b] is always non-

singular. Thus, the above becomes
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- [b]-1[a] + [b]-1 (133)

The distributed applied loads px, rix, etc., appearing in the

equilibrium equations consist of inertial loads and elastic foundatioW

forces and moments. Rotary inertia and elastic foundation effects are

included in the equations since they do not complicate the transfer'

matrix solution in any way.

The distributed mass m is equal to ..pA where p is the mass

density and A is the cross-sectional area of the beam. The reverSed

effective inertial force in the x-direction, for example, is (-pA 32 uat

Thus, for harmonic motion

5x = w
2 pAu - cxu

5 wgpAv - c v

pz = w2pAw - czw ,

(134)
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where w is the natural vibration frequency and the ci are the elastic

foundation constants for translational displacements.

In the development of the curvature relations the Eulerian rota-

tions about the x, y, and z axes were denoted by 0, *, and *,

respectively. The rotations 0 and * are given in terms of the elastic

axis displacements by equations (45). In the linearized analysis

and * are small and are approximated by

6 = -a

The rotary inertias about the x, y, and z axes, respectivelY, are

py2dA = pIxxA

px2dA = pIyy
JA

p(x2 + y2)dA
'A

pIp

Also, it is assumed that the elastic foundation can resist rotations

about the x, y, and z axes, and these foundation constants are

denoted by. di. Thus, using the above relations for the rotations 0

and *, the applied moments are given by
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x = 
-w2pIxx a + d ay x y

iy  w2pIyyax - dyax

z = w2PIp * - dz *

Substituting equations (134) and (135) into the equilibrium rela-

tions as given by equations (129) and (130) and rearranging yields

dm
x .i. m u u m + F

ds "z"y "y"z y ẁ2P4xx dx)ay

dM
-Y- = -k M + k M - F - (w2pI _ d )a

ds zx xz x yy yx

ds

dM
z 2=kyMx -kxMy 

- (w pI
p - 

dz 
)4)

dF
x

ds 
- k

zFy - kyFz - (w2pA -

dF
-Y- - kz Fx +ds xFz - (w2pA - c )v

dF

ds
z - 

ky
F
x 
- k

x
F
y 
- (w2pA - cz)w

(136)

(137)

Equations (131), (133), (136), and (137) are the twelve first-

order differential equations which describe the naiural vibration

motion of space beams. The motion consists of bending in two
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directions, extenslon, and torsion. The degree to which these motions

are coupled depends upon the application. It is noted that the usual

beam bending-torsion coupling arising from the noncoincidence of the

elastic and centroidal axes does not appear because of the assumption of

double symmetry for the cross-section.

I. Numerical Solution Method 

As noted earlier the solutions for the natural vibration character-

istics will be obtained using a transfer matrix method. This method,

which is based on second-order Runge-Kutta integration, does not

discretize (i.e., lump masses and assume constant elastic properties

for a beam segment) the beam as most other transfer matrix methods do..

Instead, distributed mass values and elastic properties at selected

statlons are used. The method assumes that the mass and all other

properties vary linearly from station to station. Also, any discon-

tinuities in the beam's properties are conveniently handled by assign-

ing two stations to the point at which the discontinuity occurs. In

addition, the method can be applled to rings as well as to beams.

Matrix differentlal eauation.- Let (V) be the column vector

consisting of the twelve variables. That is,
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(138)

Also, let {Y'} be a similar vector defined by the derivatives of the

variables. The set of differential equations given by equations (131),

(133), (136), and (137) may be expressed in matrix notation as

{Y'(s)} = [H(s, w)]{Y(s)} (139)

Subscripts will be used to denote stations. Thus, at station i

the above is written as

{Y
i} = [H ]{11.1

Development of transfer matrix.- The value of {Y} at station

(i + 1) may be approximated as follows.

Asi f
{Yi+1

}
 = {Yi

}
 —2 1lYi l 111+14

(140)

(141)
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Equation (139) may be written'at station (i + 1) and substituted, along

with equation (140), into equation (141) to give

As.
{lm} = {Yi} + 21 i[H1]{Yi} + [Hi+1]{Y14.1}} (142)

Now, the {Yii.1} on the right hand side of the above equation may be

approximated as

"1+1) = 
{Yi} 

Asi{yi}

Substituting into equation (142) gives

As. i
".14.1) = 11"0"0

The above may be rewritten as

where

+ Asi[Hi]{Yi l

Hi+1]{{Y0 + Asi[Hi]{V.} (143)

{Y } = [A1]{Yi} (144)

[Ai] = [I] + 2 As. [ i] + [Hi ] i+l][Hi] (145)
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The above matrix, [Ai], is the desired transfer matrix. It is used to

relate the variables defined by {Y} evaluated at station (i + 7) to

those at station i.

Beam solution.- Letting i = 0 and i= n denote the stations at

the ends of the beam, {1111} may be related to {Yo} by repeated use of

equation (144). Hence,

where

{Yn} = [8]{Y0} (146)

[B] [An_1][An_2] . . . [A ][A ][A0] (147)

The six homogeneous boundary conditions at each end Of the beam

may be expressed in matrix form as

[Q{YA} = {0} (148)

[D]{10} = {0} (149)

where [C] and [D] are 6 x 12 matrices. Equation (146) may be

substituted into equation (148) and the result combined with equation

(149) to give

= la} (150)
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[D]

(151)

For a non-trivial solution to equation (150) the determinant of

[U] must be zero. In the usual fashion for the transfer matrix method,

the values of w which make

= 0 (152)

are found by iteration. For .eech natural frequency the solution for

{Yi} at every station is obtained by first setting one element of {Yo}

equal to unity and solving equation (150) for the remaining elements of

{Yo
}. Then the {Y.} are given by equation (144). Also, the derivatives,

{Y!}, at each station may be computed from equation (140).

Ring Solution.- For rings and other curved beams which do not have

endpoints the "boundary conditions" are applied in a different manner

than that above. One arbitrary point on the ring is chosen to be both

station i = 0 and i = n. The variables of {Y} at these stations

are related by

{Yn} = [E]{Y0} (153)
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where E is a 12 x 12 matrix. When the total twist of a ring is zero

or a multiple of 2ff radians the matrix [E] is the identity matrix. If

the total twist of a ring is an odd numbered multiple of ir radians

then the matrix [E] is the negative of the identity matrix. Substitut-

ing equation (146) into the above gives

[B]tvol = [E]lYol

Or,

{[B] [E]]{110} = {0} (154)

For solutions other than the trivial solution,

[B] - [E] = 0 (155)

As before, the values of w which make the above determinant equal to

zero are found by iteration. The modal characteristics are determined

using equations (154), (144), and (140).



VIII. NUMERICAL EXAMPLES 

Two numerical examples are given which utilize the deformation

theory and numerical method presented in this dissertation. A twisted

curved beam and a twisted ring are considered. It is thought that

natural vibration solutions have not been obtained previously for beams

which are both curved and twisted.

Twisted curved beam.- The natural vibration characteristics were
computed for a beam whose elastic axis forms a semi-circle as shoWn in
figure 5. Both ends of the beam have cantilever boundary conditions

(u =v=w=0...ax =ay 0). The radius of curvature is chosen to
be 10 inches (K = 1/R = 0.1) and the torsion r is zero since the beam
lies in a plane. The beam is uniformly twisted and has a total twist
of 7 radians (in other words, as the beam is traveled from one end to
the other the cross-section rotates about the elastic axis a total of
180 degrees). Thus, from equations (5) the curvature components of the
undeformed beam are

k = (0.1 in-1) sin y

ky ..(0.1 in-1) cos y

kz = 0.1 rad/in

where the angle y defines the orientation of ex relative to the
curve's normal. n (see figure 2). As shown in figure 5 the beam is

95
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I
2" R = 10"

elastic axis

Figure 5.- Twisted curved beam,
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assumed to have a rectangular cross-section of dimensions 1 inch by 2

inches. The elastic moduli are taken to be E = 10
7 lb/in2 and

G = 4 x 106 lb/in2. The Saint-Venant warping function and torsional

stiffness constant for a rectangular cross-section as given by Wang in

reference 27 were used in the computations.

The solutions were obtained using a computer program based on the

previously described transfer matrix technique. Twenty-one equally

spaced stations (including the end-points) along the beam's length were

utilized. The first four natural vibration frequencies were found to

be the following:

Mode Fre uenc

First 939 rad/sec

Second 3169 rad/sec

Third 4490 rad/sec

Fourth 7535 rad/sec

Because of the twist the modal displ.acements u and v. (dis-

placements in ex and e
Y 

directions) are coupled. .The mode shapes

are easier visualized by considering the displacements in the directions

of the normal n and binormal b of the elastic axis (see figure 2).

Letting n and c be the displacements of the elastic axis in the n

and b directions, respectively, then n is the inward radial dis-_

placement and c is the out-of-plane displacement. The first mode

has predominantly out-of-plane motion. The modal displacement c is,

given in figure 6 as a function of the beam's axial coordinate s. The
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Figure 6.- Modal displacement c for first mode of twisted curved
beam example.
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other displacements are not shown since they are very small compared to

Since there is no experimental or calculated data for a beam such

as the one considered, the results can only be compari.ed to those of an

untwisted beam. In reference 28 Den Hartog gives expressions for the

first out-of-plane frequency and for the first in-plane frequency of

an untwisted cantilevered ring segment. For an untwisted beam having

the same dimensions as those of the numerical example and having its

cross-section oriented the same as the one at the ends of the beam of

figure 5, the first out-of-plane frequency is 1049 rad/sec and the

first in-plane frequency is 5218 rad/sec according to reference 28.

For the same untwisted beam the analysis and solution method presented

herein gives the first out-of-plane frequency as 981 rad/sec and the

first in-plane frequency as 4670 rad/sec.

Twisted ring.- The natural vibration characteristics were also

computed for a twisted beam whose elastic axis forms a complete

circular ring. This beam has the same cross-sectional dimensions and

the same curvatures as the previous example. The total twist of the

ring is 2r radians. Also, forty-one stations were utilized in the

computations. The first four natural frequencies were found to be

the following:
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Mode Fre uenc

First 1981 rad/sec

Second 2307 rad/sec

Third 5782 rad/sec

Fourth 5927 rad/sec

Figure 7 gives the modal displacements for the first mode.

As before, the calculated frequencies may be compared with those

of an untwisted ring. For an untwisted ring the out-of-plane and in-

plane motions are not coupled. Consider an untwisted ri.ng having the

same dimensions as the numerical example and with the longer sides of

the cross-section parallel to the plane of the ring. According to

reference 15 the first two out-of-plane and in-plane frequencies for

the untwisted ring are

Out-of-plane In-plane
Mode fre uenc fre uenc

First 1485 rad/sec 3044 rad/sec

Second 4252 rad/sec 8610 rad/sec

Discussion.- For an untwisted curved beam lying in a plane such

that kx = kz = 0 and k # 0, the twelve governing differential

equations uncouple into two sets of equations with each set consisting

of six coupled equations. The variables associated with each set of

equations are



1.0

0.8

0.6

0.4

0.2

0.0
-0.2

-0.4

-0.6

-0.8

-1.0

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

101

127r

s, inches

16x 20x

Figure 7.- Modal displacements for first mode of twisted ring example.
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(a): u, w, cx, My, Fx, Fz

(b): v, S, ay, Mx,

The variables.of Set (a) describe the in-plane bending and eXtensional

vibration modes. The out-of-plane bending and torsional vibration

modes aredescribed by the variables of set (b).

For such a beam the uncoupling of the twelve first-order equations

can cause trouble in the numerical solution for the modal functions.

As noted earlier, after determining a frequency the first step for

obtaining the associated modal displacements is to set one element (or

variable) of {Y0} equal to unity'and then solve equation (150) for the

remaining elements. For example, if the last element of {Y0}, which

is F , is set equal to unity then equation (150) may be written as

[ 1111 i U12 
1

921 
U22

where U11 
is an 11 x 11 matrix. The first eleven equations contained

in the above may be written as

[U ]{90} = -{U12}

which can be solved for {70}, the remaining elements of {Yd. For the

case of the untwisted beam the variable which is set equal to unity
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must be non-zero. For example, if the frequency has been determined

for an out-of-plane mode, then the variable which is chosen to be

equal to unity must be one of the variables of set (b) (setting Fz = 1

for this case yields modal displacements which do not satisfy the

boundary conditions). However, the computer program canna be told

ahead of time which frequencies will be in-plane mode freqUencies and

which will be out-of-plane mode frequencies. Instead of writing

separate computer programs for the in-plane and out-of7plane modes, it

is thought that for cases in which the equations uncouple the problem

is best remedied by obtaining two modal Solutions for each frequency.

This is done by setting equal to unity, in turn, One variable from

each of the variable sets (a) and (b). Of course, only one of the

modal solutiOns obtained for eaCh frequency is valid.



IX. SUMMARY 

Developments have been presented for the,extensional equations

which govern the deformation of curved and twisted space beams: Also,

discussions of the equations in view of previous work were given.

First, the exact curvature equations fOr the deformed beams were

derived. It is shown that allowing extensjon of the elastic axis ,

instead of assuming inextension results in an additional term in each

of the linearized curvature expressions. These equations were used in

the deVelopment of the normal and shearing components of the strain

tensor. The stress resultants were derived from the strain-displacement

relations instead of assuming the resultants to be proportional to

changes in the curvatures.. It was shown that the classical approach

could lead to considerable error in the torsional stress:resultant.

. Also, for the same cross-section the presented stress resultants are

applicable to beams having larger curvatures than those allowed by the

classical theory. Moreover, by developing the stress resultants from

the strain - displacement relations, additional terms appear due to

the initial twist of the beam. A vector derivation of the equilibrium

equations was given.

The governing equations for natural vibrations were summarized in

the form of twelve first - order differehtial equations. A transfer

matrix method was described for obtaining the solutions. Numerical

examples were presented which illustrate the effect that twist has cin

the natural vibration frequencies of curved beams.
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