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NUMERICAL SOLUTION OF THE HYPERSONIC
VISCOUS-SHOCK-LAYER EQUATIONS FOR LAMINAR, TRANSITIONAL,
AND TURBULENT FLOWS OF A PERFECT GAS OVER
BLUNT AXJALLY SYMMETRIC BODIES

E. C. Anderson® and James N. Moss
Langley Research Center

SUMMARY

The viscous-shock-layer equations for hypersonic laminar, transitional, and turbu-
lent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies
are developed and presented. The resulting equations are transformed to a shock-body
oriented coordinate system and solved by an implicit finite-difference scheme. The eddy
viscosity is approximated by a two-layer model which has been used extensively in
turbulent-boundary-layer analyses. Methods for defining the boundary-layer-thickness
parameters' (required in the eddy-viscosity model) which are consistent with boundary-
layer theory are presented. '

Numerical solutions of the equations of motion for turbulent viscous shock layers
are compared with those of a turbulent-boundary-layer analysis which is not corrected
for the entropy variation of the inviscid flow outside the boundary layer. The two solu-
tion procedures are in good agreement in the region of flow where the effects of stream-
line swallowing by the boundary layer are negligible. For the downstream regions, where
streamline swallowing effects are present, the expected differences in the two solution
procedures are evident. However, to establish the accuracy of the downstream solutions,
comparisons with a boundary-layer analysis which accounts for the effects of streamline
swallowing are necessary.

INTRODUCTION

The nose blunting required to reduce the surface heat-transfer rates to an accept-
able level in the stagnation region of a hypersonic vehicle results in strong entropy gra-
dients through the boundary layer in the downstream region. In the stagnation region,
the vorticity interaction between the boundary layer and the external inviscid flow must

*Research associate, Old Dominion University Research Foundation, Norfolk,
Virginia.



be considered in the analysis if the Reynolds number is sufficiently low. Mayne and
Adams (ref. 1) present detailed comparisons of a number of boundary-layer analyses with
the viscous-shock-layer analysis developed by Davis (ref. 2). The results presented by
Mayne and Adams show that the viscous-shock-layer analysis correctly accounts for
viscous-inviscid vorticity interaction, streamline swallowing, and viscous-induced pres-
sure effects. Although the viscous-shock-layer analysis was found to be the more accu-
rate solution technique, Mayne and Adams demonstrate that a conventional boundary-layer
analysis corrected for streamline swallowing is sufficiently accurate and is computation-
ally more efficient than the viscous-shock-layer analysis. The comparisons presented
by Mayne and Adams are restricted to laminar flows of a perfect gas.

As a result of the increased boundary-layer thickness in turbulent flows, the effects
of viscous-induced pressure and the strong entropy gradients produced by the bow shock
are more pronounced. For turbulent flows, the solution of the viscous-~shock-layer equa-
tions should provide a substantially more accurate result than would be obtained with a
boundary-layer analysis corrected for streamline swallowing without additional correc-
tions to include interaction of the boundary layer with the external inviscid flow.

For flow conditions in which heat transfer from the shock layer by radiation must
be considered, the formulation of the viscous-shock-layer equations provides an impor-
tant simplification. The presence of the radiative heat flux term in both the inviscid and
viscous governing equations necessitates an iterative solution procedure of both sets of
equations to achieve the required coupling. Since the necessary coupling of the inviscid-
and viscous-flow equations is contained within the viscous-shock-layer equations, the
solution of this set of governing equations should be more accurate and computationally
more efficient than an iterative ‘solution technique which uses a boundary-layer-type
analysis. However, applications of the viscous-shock-layer equations to turbulent flows
have not been reported. An independent investigation of the viscous-shock-layer equa-
tions for turbulent flow has been developed by Eaton and Larson (ref. 3) concurrently with
the present study. The results presented by Eaton and Larson are restricted to the thin-
shock-layer assumption and to pointed bodies, as a result of their definition for the loca-
tion of the boundary-layer edge. The present study considers the complete viscous-shock-
layer equations for turbulent flow and presents definitions for the boundary-layer thickness
and incompressible boundary-layer displacement thickness which are consistent with
boundary-layer theory. Both the present study and that of reference 3 are applicable to a
perfect gas. Either analysis can, with minor modifications, be applied to equilibrium
flows.

It is noted that the boundary-layer-thickness parameters are introduced into the
solution by the two-layer eddy-viscosity model used in the present study and would be
unnecessary if an invariant-turbulence model were available. The eddy viscosity is
approximated by use of the formulation proposed by Cebeci (ref. 4).
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Numerical solutions of the viscous-shock-layer equations for turbulent flow are
compared with solutions from the boundary-layer analysis developed by Anderson and
Lewis (ref. 5). The two solution procedures show acceptable agreement over the portion
of the body where the effects of streamline swallowing by the boundary layer are negligi-
ble, and the expected differences are obtained in the region far downstream of the nose.
The boundary-layer analysis does not account for streamline swallowing.

SYMBOLS

At damping factor (eqs. (23) and (24))
ag quantity defined by equation (A9e)
ay quantity defined by equation (A10f)
aq quantity defined by equation (A10g)
Cf skin-friction coefficient
Cp specific heat at constant pressure

. u?
H defined quantity, h + T

v2
H total enthalpy, H + 5
. * /1 x\2

h specific enthalpy, h/(Uoo)
j flow index: O for plane flow; 1 for axisymmetric flow
k thermal conductivity
kT eddy thermal conductivity
2 mixing length (eq. (21))
M Mach number
Npr Prandtl number, [.L*C;ﬁ{*



! * ok *
NPr,T turbulent Prandtl number, cp“’T kT

NRe Reynolds number; ,t):;U:;r;"1 /u:‘o
n coordinate measured normal to body, n"/r; ‘
nt normal coordinate (eq. (22))
pt pressure-gradient parameter (eq. (25))

* ’— * [k \2 —
p pressure, p pw(Uoo)

L ]

q* wall heat-transfer rate
r radius measured from axis of symmetry to point on body surface, r*/r;
re nose radius
S coordinate measured along body surface, 's’"/r;"l
So s at beginning of transition
s transition damping factor (eq. (35))
T temperature T"/T*

’ / “ref
T* temperature (U* )2 ck

ref _ ’ <)/ 7P,

u’ free-stream velocity .
u velocity component tangent to body surface, u”/U:o
u, friction velocity (eq. (27))
v velocity component normal to body surface, v‘/U:‘o
vt scaled mean velocity component (eq. (26)), VW/UT
X transition length scale



a shock angle defined in figure 1

al,az, s . :
coefficients in equation (A8)

0,0,
B angle defined in figure 1
Y ratio of specific heats
i,n normal intermittency factor (eq. (30))
", ¢ streamwise transition intermittency factor (eq. (34))
) boundary-layer thickness
o) incompressible displacement thickness (eq. (29))
et normalized eddy viscosity (eq. (4)), “T/“
& eddy viscosity, inner law (eq. (20))
eg eddy viscosity, outer law (eq. (28))
n. transformed n-coordinate, n/ng
0 body angle defined in figure 1
K body curvature
u molecular viscosity, “%“*<T:ef>
Ko eddy viscosity (eq. (1))
£ coordinate measured along body surface, £=s
P density of mixture, p*/ px
1/2
o Reynolds number parameter, —Lf*—(’rﬁ

* TTkK %
PLUTR



¢ quantity defined by equation (11a)

X vorticity Reynolds number (eq. (33))
Xe vorticity Reynolds number at beginning of transition
17 quantity defined by equation (AlQe)
’ Superscripté:
i . 0 for plane flow; 1 for axisymmetric flow

time-averaged quantity
* dimensional quantity
! total differential or fluctuating component

" shock-oriented velocity component (see fig. 1)

Subscripts:

e boundary-layer edge
S shock

w | wall

0 free stream |
Abbreviations:

BL boundary layer

VSL viscous shock layer



ANALYSIS

Governing Equations

The equations of motion for turbulent viscous shock layers are derived by methods
analogous to those presented by Dorrance (ref. 6) for the turbulent-boundary-layer equa-
tions. The resulting equations for the shock-body coordinate system shown in figure 1
are presented in nondimensional form. For turbulent flow, time-averaged quantities are
implied by the nomenclature, and the laminar-flow equations are obtained by neglecting
the turbulent eddy viscosity and eddy thermal conductivity.

The eddy viscosity is expressed in time-averaged fluctuating components as

(ev)'w

2 du
gé —
on

Ko (1)

and the eddy thermal conductivity is

(ov) h'
Ko = - 2
T (2)
[o
on
From the definition of the static turbulent Prandtl number
C, MU
__p'T
Npr 1= . 3)
and the definition
[
ef = —L (4)

U

the governing equations for the flow in laminar or turbulent viscous shock layers can be
expressed as

Continuity:

2

as[(r +n cos G)jpu} + —;—-n[(l + nk)(r + n cos e)jpv] =0 | (5)



s-momentum:

+ nK 9s on 1 + nk 1 + nk 3s on 1 + n«k

P(—l—ll-—-a—u+vﬂ+ uve >+ 1 % _ 2 -:—)rli(l+e+)ﬂ‘—yu—KJ
n

L

j cos 6 )
+< 2« P u(1+e+)@-———uuk
l+nk r+ncosé on 1 + nx

(6)

n-momentum:

2
p u EX+V2!-——uK +§B'=0 (7
1 + nk 8s n 1l +nk/ on :
Energy:
w ®H _ 0H 3p pudvk o) 8l Npr \ on
pl———5—+va—-v5—-+-1——=0 ?N—1+€+§-——'a—+¢
n .
+ NK 98 n + K n Pr Pr,T n
- | N
+ K _ . jcos 6 'u 1+€+_p_r_a§+¢
l1+nk r+ncos Ginr Npy 1/9n
(8)
State:
_y-1
=L -~ pT 9
p=— | | | . (9)

" In these equations, the molecular viscosity as given by Sutherland's law is

1+C .3/2
:T+CT/ (10)
where
+ .
€N 2
__M Pr( du MUk
=—— N -14—— N -1 — - 1
¢ Np, Pr NPr,T Pr,T /uan 1+ nk (112)



(11b)

and

C* = 110.33 K (11c)

The governing equations have a hyperbolic-parabolic nature (ref. 2), the hyperbolic
nature arising from the normal-momentum equation. If the thin-shock-layer approxima-
tion is made, the normal-momentum equation becomes

2
9p _ _pufk (12)
on 1 +n«k

When equation (7) is replaced by equation (12), the resulting set of equations is parabolic.
Consequently, the equations can be solved by using numerical methods similar to those
used in solving boundary-layer problems. Equation (12) is used for an initial iteration;
then for the final flow-field solution, equation (12) is replaced by equation (7), so that the
thin-shock-layer approximation is removed.

Boundary Conditions

Conditions at the body surface.- The no-slip boundary conditions are used in this
study. The surface conditions for n =0 are

u=v=0 ' (13)

and for this study the temperature and enthalpy at the wall are specified as
Ty = Hy = Constant (14)

Conditions at the shock.- The conditions imposed at the shock are calculated by

using the Rankine-Hugoniot relations. The nondimensional shock relations are as follows:
Mass:

psvg = -sin o (15)

ug = cos « (16)



Momentum;:

ps=;2+sin2a<l-pL> S 17)
Y Moo S
Energy:
[ZyMooz sin? @ - (y - I)J[(y - 1)M°o2 sin? @ + 2:'
T, = (18)
S 2.4 . 9
(y - Dy + )"M,_, " sin“ &
State:
P
pg = ——— (19)
(v - 1)Ts

A transformation is applied to the previous nondimensional viscous-shock-layer
equations and boundary conditions to simplify the numerical computations. The transfor-
mation relations and the transformed equations and boundary conditions are given in the
appendix. '

Eddy-Viscosity Approximations

A two-layer eddy-viscosity model consisting of an inner law based upon Prandtl’s
mixing-length concept and the Clauser-Klebanoff expression (based on refs. 7 and 8) for
the outer law is used in the present investigation. This model, introduced by Cebeci
(ref. 4), assumes that the inner law is applicable for the flow from the wall outward to the
location where the eddy viscosity given by the inner law is equal to that of the outer law.
The outer law is then assumed applicable for the remainder of the viscous layer. It is
noted that the eddy viscosity degenerates to approximately zero in the inviscid portion of
the shock layer. The degeneracy is expressed in terms of the normal intermittency fac-
tor given by Klebanoff (ref. 7). The expressions used in the present investigation are
given in the following sections.

Inner-eddy-viscosity approximation.- Prandtl's mixing-length concept is stated in

nondimensional variables as

+=PQ2

€ = —
i
02;1

du

o (20)
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The mixing length ¢ is evaluated by using Van Driest's proposal (ref, 9) stated as

- n+

£ =kqnil - exp{-— (21)

At
where

1/2

+_ np |Fw(ou

nt = ——2|— (22)

o2u| P Pn/y '

Here, ki is the Von Kirméin constant, which is assumed to have a value of 0.4, and A%
is a damping factor.

Cebeci (ref. 4) suggests that for flows with a pressure gradient, the damping factor
be expressed as

A* = 26(1 - 11.8p+)"1/2 23)

and for flows with both a pressure gradient and mass injection,

-1/2
+
a* =26 -Elexp(11.8v4) - 1] + exp(11.8v¥) (24)
v
where
p* - -oz(gn> b (25)
S/e pZuT3
V.
vt =Y (26)
T
and
1/2
Hw (au
= | ———
L <an> @)
w

Outer-eddy-viscosity approximation.- For the outer region of the viscous layer the

eddy viscosity is approximated by the Clauser-Klebanoff expression

11



_KPuedti g | | (28)
o2y

where
i} u '
5 =§ 1 -5\ dn 29)
k 0 < ue) )
kg = 0.0168
and
-1
6
[ n
. =11 I
Yl,n s. +5 5(6) (30)

Equation (30) is Cebeci's approximation (ref. 4) of the error-function definition presented
by Klebanoff (ref. 7).

The boundary-layer thickness 6 is assumed to be the value of n at the point

.where

H, .
—L=0.995 | (31)

and is determined by linear interpolation in an array of local total enthalpies. This
definition is approximately equivalent to the usual boundary-layer definition

2 - 0.995 (32)
Ue

/
where ug is the local value for the undisturbed inviscid flow outside the boundary layer.

The values of the parameters ky and kg in equations (21) and (28) depend on the
flow conditions being considered, as does the constant represented by the value 26 in
equations (23) and (24). The values given are used for convenience in developing the
numerical method. For a discussion of these parameters, see reference 10.

Transition Models

Provisions for both continuous and instantaneous transition from laminar to turbu-
lent flow have been included in the present investigation. Instantaneous transition is

12



initiated when the local Reynolds number or momentum-thickness Reynolds number
exceeds a preselected value. Continuous transition is effected by defining a streamwise
transition intermittency factor Vit which modifies the composite eddy viscosity €*

2

over an interval X. The factor Vit is initially set to zero and is evaluated when the
H

vorticity Reynolds number (proposed by Rouse, ref. 11, as the stability index)

25 9
x =5 = (33)
02, 8n
exceeds a critical value y.. For the evaluation of EWT the relation
. b
Vi< 1 - exp(-0.4125) (34)
’ ) ’
was used, where
4(s - s
S = ;_(-___i) (35)
so(x - 1)

This model was developed by Dhawan and Narasimha (ref. 12) on the basis of the experi-
mental data presented by Owen (ref. 13). Approximate values of Xe and X are

2000 = x, = 4000
and
X =2

The values of x, and X are strongly influenced by the body shape and flow conditions
being considered and are more appropriately defined by comparison with experimental
data. A discussion of these parameters is given by Harris (ref. 10).

Method of Solution

The procedure for solving the viscous-shock-layer equations is presented herein.
First, the finite-difference expressions used to transform the differential equations to
algebraic equations are presented. Then the solution procedure is discussed.

Finite-difference expressions.- The derivatives are converted to finite-difference
form by using Taylor's series expansions. A variable grid spacing (fig. 2) is used in the
n-direction so that the grid spacing can be made small in the region of large gradients.

13



Three-point differences are used in the n-direction, and two-point, fully implicit differ-
ences are used in the {-direction. Truncation terms of order A, (first-order accu-
racy) and either An,An, _q or An - Ann_l (second-order accuracy) are neglected. A

typical finite-difference expansion of the standard differential equation (see eq. (A8))
gives '

ApWm n-1+BnWmy n + CoWm nse1 = Pn _ (36)

The coefficients A, B, C,and D are used to represent the coefficients after the
finite-difference expansion of equation (A8). The subscript n denotes the grid points
along a line normal to the body surface, whereas the subscript m denotes the grid sta-
tions along the body surface. Equation (36) along with the boundary conditions constitutes
a system of the tridiagonal form, for which efficient computational procedures are avail-
able. (See ref. 14.)

Overall solution procedure.- For specified free-stream conditions and body geom-
etry, a stagnation-streamline solution is obtained. With the stagnation-streamline solu-
tion providing the initial conditions, the conditions at the shock providing the outer bound-
ary conditions, and the conditions at the wall taken as the inner boundary conditions, the
numerical solution is marched downstream to the desired body location &. The first
solution pass provides only an approximate flow-field solution, because the following

assumptions are used in the first solution pass:
(a) The thin-shock-layer form of the n-momentum equation (eq. (A12b)) is used.

(b) The stagnation-streamline solution is independent of downstream influence
(approximation of local similarity where ng g = 0).

(c) The term dns/dg is equated to zero at each body station.
(d) The shock éngle o is assumed to be the same as the body angle 6.

These assumptions are then removed by making one or more additional solution
passes. For the current study, a total of two solution passes are used since the two
passes resulted in a converged flow-field solution. For the second solution pass, the
thin-shock-layer form of the normal-momentum equation (eq. (A12b)) is replaced by equa-
tion (Al2a). The v component of velocity that is used in equation (A12a) is the value
from the previous solution pass. Also, once the first solution pass has been computed,
the values of ny g and dng/d¢ are calculated and used in the second solution pass to
remove approximations (b), (c), and (d). Hence, the viscous-shock-layer equations are
solved as parabolic equations, and yet retain effects which are elliptic and hyperbolic in
nature. This solution procedure is programed for the Control Data Cor_porétion 6600 com-
puter. The execution time is approximately 0.03 second per grid point for a converged
solution. (This includes all local iterations and solution passes.)

14



Shock solution.- The shock solution procedure at any location is identical for the
first and subsequent solution passes. However, the shock angle « is defined differently
for the first and subsequent solution passes and is set equal to the local body angle 6 for
the first solution pass. For subsequent solution passes, the shock angle is defined as

nl
o=60+tan 1 S 37
1+ Kns

Solution procedure at station m.- The viscous-shock-layer equations are solved at

any body station m (see fig. 2) in the order shown in figure 3. The governing equations
are uncoupled and the dependent variables are solved one at a time, also in the order
shown in figure 3. First, the shock conditions are calculated to establish the outer bound-
ary conditions. Then the converged profiles at station m - 1 are used as the initial
guess for the profiles at station m. The solution is then iterated locally until conver-
gence is achieved. For the stagnation streamline (m = 1), guess values for the profiles
are used to start the solution. '

The first-order equations are numerically integrated by means of the trapezoid
rule. Each of the second-order partial differential equations is individually integrated
numerically by using the tridiagonal formalism (eq. (36)). The global-continuity equa-
tion is used to obtain both the shock standoff distance and the v components of velocity.
By integrating equation (A11) between the limits of n=0 and 7 =1 at station m, an
implicit equation for ng is obtained. For the v component of velocity at 7, equa-
tion (All) is integrated with respect to 7 between the limits of 0 to 7. The pressure p
is determined at station m by integrating the normal-momentum equations (A12) with
respect to 71 between the limits of 1 to 7. The equation of state is used to determine
the density.

DISCUSSION AND RESULTS

Comparisons are made between the present viscous-shock-layer analysis and
turbulent-boundary-layer solutions obtained with the computer program described in ref-
erence 15. For the data presented, fully developed turbulent flow without mass injection
has been assumed. However, provisions have been included for the analysis of continuous
or instantaneous transition and for mass injection at the surface.

Results are presented for a Mach 19 flow about a 45° (total angle) hyperboloid with
a nose radius of 0.3048 meter for free-stream Reynolds numbers of 3.1 X 106 and
12.4 x 105, The wall temperature is taken to be one-tenth of the stagnation temperature,
and the free-stream temperature is 256 K. The Prandtl number and the turbulent Prandtl
number are assumed to be 0.72 and 0.90, respectively.

15



The combination of high Reynolds numbers and low-wall-temperature results in
boundary-layer thicknesses which are less than 10 percent of the total shock-layer thick-
ness and imposes severe resolution requirements upon the numerical method. The solu-
tions presented have been obtained with 150 grid points across the shock layer, the ratio
of adjacent step sizes being a constant value equal to 1.08 (geometric progression). This
choice of the grid-point distribution results in approximately 80 points within the pre-
dominantly viscous portion of the shock layer. More recent calculations have shown that
100 grid points across the shock layer having the same constant step-size ratio provide
adequate resolution. The differences in the solutions obtained with 150 and 100 grid
points are less than +1 percent. However, the use of 75 grid points across the shock
layer results in solutions which differ by as much as 30 to 40 percent for the wall meas-
urable quantities. For laminar flows with low Reynolds number and a higher ratio of
wall temperature to stagnation temperature, as few as 50 grid points can be used.

Distributions of boundary-layer thickness, incompressible displacement thickness,
heat transfer, and skin friction calculated by the present analysis and by boundary-layer
theory are shown in figures 4, 5, 6, and 7, respectively. Inspection of these results shows
that maximum differences between the two methods are less than +10 percent for all
parameters. The heat-transfer distribution corresponding to a Newtonian surface pres-
sure distribution as input to the boundary-layer computer program is shown in figure 6
for a free-stream Reynolds number of 3.1 X 108. Less severe conditions than those for
the cases presented result in essentially identical solutions from the two methods of
analysis.

Representative comparisons of the eddy-viscosity profiles for a free-stream
Reynolds number of 3.1 X 108 are shown for body stations s"/r;‘l of 0.5 and 3.5 in fig-
ure 8. At the downstream location, maximum differences in the eddy viscosities are less
than +10 percent. For the body station in the nose region, differences as large as 30 per-
cent are noted for n*/r;*1 near the boundary-layer edge. These differences were found
to have little influence upon the solution. Transition criteria indicate that the flow at the
station in the nose region is laminar. '

Figures 9 and 10 show velocity profiles calculated by the viscous-shock-layer and
boundary-layer solution methods for Ngg = 3.1 X 106 at s"‘/r;‘l =2 and s*/r; = 80,
respectively. The data shown in figure 9 for s"‘/r;"1 =2 correspond to a location where
the effects of streamline swallowing are negligible. For this body station, the profiles
corresponding to boundary-layer and viscous-shock-layer solutions differ by less than
+5 percent for n"‘/r}"1 £0.85. At the downstream body station s*/r;; = 80 (fig. 10), the
agreement between the profiles calculated by the two methods is poor, since the boundary-
layer analysis does not account for the effect of streamline swallowing. The edge condi-
tions for the boundary-layer solution correspond to an isentropic expansion of the gas
from the stagnation point of the body. For the viscous-shock-layer solution, the edge

16



conditions correspond to the flow which crosses the weaker portions of the bow shock,
where the entropy jump across the shock is much less than at the stagnation streamline.
For the 45° (total angle) hyperboloid considered, the asymptotic limit approaches the
solution for an equivalent cone. For the body station s%; = 80, the conditions at the
edge of the boundary layer as calculated with the viscous-shock-layer analysis differ
from the cone solution by less than 1 percent. The surface pressure corresponding to
the viscous-shock-layer solution at this station is approximately 15 percent higher than
the corresponding inviscid cone solution. However, as previously mentioned, in the outer
inviscid region the solution is approximately the same as the asymptotic cone solution.
The increase in pressure through the ‘predominantly viscous layer was also noted by
Mayne and Adams (ref. 1) for laminar flow. For laminar flows, the viscous—shock—layér
solution used in the present analysis is the same as that used in reference 1. Results for
laminar flows are not presented.

Heat-transfer distributions corresponding to the viscous-shock-layer and boundary-
layer solutions for NRo = 3.1 X 108 are shown in figure 11. The two solutions show the
expected differences, and the viscous-shock-layér analysis appears to account correctly
for streamline swallowing. However, the boundary-layer analysis used in the present
study does not account for streamline swallowing, and the accuracy of the viscous-shock-
layer analysis must be assessed by comparison with an appropriately modified boundary-
layer analysis. '

For the solution of the turbulent-viscous-shock-layer equations, the use of
Klebanoff's intermittency factor (ref. 7) is essential, whereas in boundary-layer solutions,
the intermittency factor may be assumed unity without significantly influencing the results
obtained. (See ref. 16.) For the viscous-shock-layer equations, the use of a unit inter-
mittency factor results in an increase in heat transfer and skin friction of 30 to 50 percent
for s"‘/r;:‘1 > 2. This difference in behavior of the viscous-shock-layer and boundary-
layer solutions is the result of the nonvanishing tangential velocity gradients in the
normal-coordinate direction. (See fig. 9.) For the boundary-layer equations, the bound-
ary conditions imposed ensure that the gradients in the normal-coordinate direction
approach zero at the boundary-layer edge.

CONCLUSIONS

Equations describing the turbulent viscous shock layers over blunt axially symmet-
ric bodies of analytic shape are presented for hypersonic flow of a perfect gas. A two-
layer eddy-viscosity model consisting of an inner law based upon Prandtl's mixing-length
concept and the Clauser-Klebanoff expression for the outer law is used in the present
study. Methods for defining the boundary-layer thickness and incompressible boundary-
layer displacement thickness which are consistent with boundary-layer theory are pre-
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sented. An implicit finite-difference technique for solving the equations is given. Com-
parisons of the present results with previously reported boundary-layer solutions are
made for a Mach 19 flow over a 45° hyperboloid. The free-stream Reynolds numbers
are 3.1 x 106 and 12.4 x 106, whereas the wall temperatui‘e is one-tenth of the stagnation

temperature.
Results of the study lead to the following conclusions:

1. The present results are in good agreement' with classical boundary-layer results
in regions where the effects of streamline swallowing are negligible. However, for the
downstream locations, where streamline swallowing effects are présent, expected differ-
ences between the present results and the classical boundary-layer results are evident.

2. For the solution of the turbulent-viscous-shock-layer equations, the use of
Klebanoff's normal intermittency factor is essential. This is in marked contrast with
turbulent-boundary-layer solutions, where the normal intermittency factor may be
assumed unity without significantly influencing the results.

3. For the flow conditions considered, a boundary-layer thickness (required in the
eddy-viscosity model) based on a total-enthalpy ratio provides good agreement with
boundary-layer results.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., January 21, 1975.
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APPENDIX
TRANSFORMED VISCOUS-SHOCK-LAYER EQUATIONS

This appendix presents the transformed viscous-shock-layer equations and boundary
conditions. First, the relations defining the transformed variables and coordinates are
given. Next, the general equations and boundary conditions are given. Then, the special
form of the equations for the stagnation streamline are developed along with the stagna-
tion shock relations.

Transformation Relations

To simplify the numerical computations, a transformation is applied to the viscous-
shock-layer equations. This transformation is accomplished by normalizing most of the
variables by their local shock values. When the normal coordinate is normalized with
respect to the local shock standoff distance, a constant number of finite-difference grid
points between the body and shock are used. This procedure eliminates the need for
interpolation to determine shock shape and the addition of grid points in the normal direc-
tion as the computation moves downstream.

The transformed variables are

n - _ P TR w
T] = —_— p = = I“L =
g Pg Kg
- _ P = _ 9
E=s p=L ap = ——
Ps 0 0,8
(A1)
- — - a
u =E~— T :l al __1_
Ug Tg al,s
- — - a
v=2 -1 -2
Vs Hg a9 s

where bars over the quantities denote normalization with respect to the shock value. The
transformations relating the differential quantities are

2.2 5,2 (A2)
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APPENDIX - Continued

where
dn
S
=2 A3
LY. (A3)
8 _138 A (A4)
9n  ng 97
and
22 _ 1 82 (A5)
on ns2 an

The transformations used to express the shock-oriented velocities u's' and vy in

terms of the body-oriented coordinate system (fig. 1) are

ug = ug sin (@ +B) + v's' cos (o + B) (A6)

and

vg = -uy cos (@ + f) + vy sin (a + B) (AT)

Transformed Equations
After the governing equations are written in transformed variables and coordinates,

the second-order partial differential equations are written in the following form:

2

"W W oW

i Lt aWraq+a,—=0 : (A8)
3772 1377 2 3 4 ¢

The quantity W represents u in the s-momentum equation and H in the energy equa-
tion. The coefficients a; to o4 are written as follows:

s-momentum, W =u:

o, - 1 850 . ngK - [T . jng cos 6 . ngPgugny pun NgP Vg éi
ag o 1 +ngnk ag gdg/ T +Ng COS 6 CzaO,S(l + ngnk) 20 UzaO,s 50
(A9a)
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APPENDIX -~ Continued

= 2 -
oo 1 fag  ngk k__,__dcos?® Hgh
2 l+ngnkag 87 1+ngnk\l + ngnk T +ngn cos 6 aO,sio
2 - 2 --
) pgng u's W Ng“P VK pv (a9b)
ozao,s(l + NgNK) a9 ozao,s(l + ngnK) ag
p ns2 55 PP nim 5z
(13 = - 5 p + S . 8.°% (AQC)
GzaO,SuS(l +ngnK)ag\?é Ps Ts
p_u.ng2 o=
- sis’'s . pu (A%d)
4~ 7 -
ozao’s(l + ngnk) g
where
ag = p(1+€) (A9e)
Energy, W=H
93 . p_n n'u nup .
o= L 1 s at 4 Jcosb + s S s S - VoV (A10a)
aj om 1 +ngnk r +ngn cos § Uzal sél 1+ ngnk
o, H!
oy = 4’s (A10b)
Hg
ns2 198 " j cos 8
a3 = —— | _aw_. + + (A].OC)
al,sale Ng an 1 +ngnk r +ngn cos 6
nszpsusab A10d
=" ( )
g

al"s(l + NgnK)ay
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APPENDIX — Continued

where

2, Ay a- KL _
poulil-2Ss 2% s gy (A10e)
) ng  9n 1+ nngk A
etN
ay =2 (142~ (A10f)
Npy NPr,T :
etN
_H _ Pr _ » :
Pr Pr,T\ =’ ’

The preceding energy equation is for the thin-shock-layer approximation. When equa-
tion (7).is used for the n-momentum equation, the following term must be added to
equation (A10c¢): '

)
~ ngu P_K .
=2 |p, 9p 85 7s 532 (A10h)
o al’SH_.:_;a1 on 1+ mngk

nsvsv

The remaining equations are written as follows:

Global continuity:

3 j -~ b2 i - . -
a_g{ g(r + ngn cos G)Jpsuspu} + % (r + ngn cos 9)][(1 + nsnx)psvspv - n'snpsuspuJ =0

(A11)
n-morﬁentum:
P v' - - n'n il V Ay <7 u - — p -
L_qu.ﬂ—iﬂ +_sﬂﬁ—_s__,<_.pu2+—s_22:0 (A12a)
1 + ngnk\Vs 8¢ nNg 3] UgNgdn Vg l+ngnk PgugngVg 37
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APPENDIX - Continued

which, if the thin-shock-layer approximation is made, becomes

2 R .
o nP u . “«Kk __
B__588S 52 (A12b)
an  p (1 + ngnk) :
State:
~  p=pT (A13)

Equations (A8) to (A13) along with the appropriate boundary conditions are the gov-
erning relations used to describe the viscous shock layer for a perfect gas.

Boundary Conditions

Conditions at the body surface.- The surface boundary conditions in terms of trans-
formed variables are

1=v=0 (A14)

T, = Hy, = Constant (A15)

Conditions at the shock.- The shock conditions are determined by solving equa-
tions (15) to (19). The transformed shock conditions become

Uu=T=H=v=p=p=p=3ay=23a;=2ag=1 (A16)
at n=1.

Stagnation-Streamline Equations

When downstream numerical solutions are required, it is necessary to have an
accurate solution for the flow along the stagnation streamline. A truncated series, which
has the same form as that used by Kao in reference 17, is used to develop the stagnation-
streamline equations. The flow is assumed to be laminar along the stagnation streamline.
The flow variables are expanded about the axis of symmetry with respect to the nondimen-
sional distance & along the body as follows: '

p(§,m) =py(n) + p2(n)£2 T (Al7a)
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APPENDIX - Continued

u@,m =uyme+. ..

viEm =vim) +. . .
p(&,m) =py(m +. .

T(Emn) =Ty +. . .
h(&,n) =hy@m) +. . .

plEm =pym+. ..

The shock standoff distance is written as

ns=n1’s+n2852+. ..

(A17b)
(Al7¢)
(Al17q)
(A17e)
(A171)

(Al7g)

(A18)

Furthermore, ¢ is small and the curvature « is approximately 1 in the stagnation
region. Consequently, the geometric relations (see fig. 1), including terms of order &,

can be written as

v B=E
and
2n
a =g + £ T———Z-ZE— 1
+ nl,s
Therefore,
sin (@ + B) =1
and
2n2 S‘g’

cos (@ + B) = —=——
1+nls
)
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APPENDIX — Continued

The shock relations (egs. (15) to (19)) in terms of expanded variables become

L M2 -1+2 :
vS=vls+...z—p = - (A23)
’ 1,s Mooz(y+ 1)
2n
Ug=uy Ed. L TEL 2,8 1-p1 : (A24)
’ tMs 1,s '
2n 2
D =Dy +Py L2 4. . .7 1, ——1—--521- L\[1- 2,8 (A25)
S 1,s 2,s 2 p p 1+n
YM 1,s 1,s 1,s
and
1 1 1
Ta=Ty +...5— > 11 _2 (A26)
5 1
»S M!XDZ(.),oo _ 1) 2( pl,S>

An examination of these equations shows that the equations for ug and pg con-
tain n2,s’ This term cannot be determined from the stagnation solutions, since it is a
. function of the downstream flow. Consequently, a value must be assumed for ng s In
this study, it is assumed to be zero to start the solution, but this assumption is then
removed by iterating on the solution with the previous shock standoff distances used to
define ny g- The effect of the downstream shock shape on the stagnation-point solution
is elliptic rather than parabolic.

Along the stagnation streamline, the second-order differential equations are written
as

2
il—W-+ozl‘—3!‘/-+cv2W+a3=0 (A27)
n

dn2
The coefficients are defined as

s-momentum, W = u:

DV
Ms  MsP1sVls PV

' 1 dug
0y =——+ G+1 — (A28a)
My dn S U
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APPENDIX — Continued

n [ du n Py Ny Uy PUy Nq Pq Vi _ PV
a, =_1 1s _:1_ - 1+1 1,5 G+1)+ 1,s"1,s"1,s _1 1+ 1s"1s"1,s _} 1
+ nl,sn[ 1 9n | + n1,s77 . 02“1,5 K1 Uz“l,s My
(A28D)
-2f n2 Py P n, .7 dp
_ P1s"1,s = 2,sP1 2.7 9Py
Aq = 2 - (A28c¢)
3,2 -\"2  p n dn
o p‘l,s(l + “1,s’7)“1,s“ 1,s = "1s
Energy (enthalpy), W =H:
0. =1 dp 1 WNppg N G+ 1)nlls _MsP1s <NPr,1> sV1,s plNPLlel ES (A292)
1= B , = ‘
By dn Nppy dn Llemygm %y g Hy
ag =0 . ' (A29¢)

The preceding energy equation is for the thin-shock-layer approximation. When equa-
tion (7) is used for the n-momentum equation, the following term must be added to equa-
tion (A29c): ’

n1,sV1,sP1s (NPr,1>s Npr,11 dp
dn

2 : v
o ul,sH 1,5 #1
The remaining equations are written as follows:

'Global continuity:

d j+1 - = _ . 1 - -
a{o M nl,sn) pl,svl,splvl =0+ 1)nl,s (1 * n1,s77) pl,sul,splul (A30)
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APPENDIX — Concluded

n-momentum:

- ) -
d v dv
P1 _ V1sP1s B, (A31a)
dn ~ 1'1 dn

pl,s

When the thin-shock-layer approximation is made, the n-momentum equation becomes

; |
P1 (A31b)

—1-0

dn

The 132 term that appears in equation (A28c) can be expressed as

_ 2 5. 5.2 pu v :
Wy _P1s¥sMs Prti | PPret1e2s1s Pt i PosPreVls s o i

11
dn pl,s 1+ my s pl,s 1+ my s dn p% ] dn

For the thin-shock-layer approximation, this term is

- 2 - -2 :
dp p, _uy _.n pqu
dn P1s 1+mny o

These equations along with the equation of state constitute the nonlinear ordinary differ-
ential equations that are solved along the stagnation streamline.
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Shock solution at station m

!

Initial guess for all profile quantities

Y

Solve equations (A8) and (A10) for H

!
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Transport properties

!

Solve equations (A8) and (A9) for u
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Solve equations (All) for n and v
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Figure 3.- Flow chart for solution sequence of viscous-shock-layer equations.
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