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ABSTRACT

ICE PACK HEAT SINK SUBSYSTEM - PHASE II

by

George J. Roebelen, Jr.
and

Jordan D. Kellner

Contract No. NAS 2-7011

This report describes the design, development, fabrication, and
test at one gravity of a prototype Ice Pack Heat Sink Subsystem to be
used eventually for astronaut cooling during manned space missions;
the investigation of thermal storage materiel with the objective of
uncovering materials with heats of fusion and/or solution in the range
of 300 Btu/1b (700 kilojoules/kilogram); and the planned procedure for
implementing an Ice Pack Heat Sink Subsystem Flight Experiment.

In normal use, excess heat in the liquid cooling germent (LCG)
coolant is transferred to a reusable/regenerable ice pack heat sink.
For emergency operation, or for extension of extravehicular activity
mission time after all the ice has melted, water from the ice pack is
boiled to vacuum, thereby continuing to remove heat from the LCG cool-~
ant. This subsystem incorporates a quick disconnect thermal interface
between the ice pack heat sink and the subsystem heat exchanger.
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FOREWORD

This report has been prepared by the Hamilton Standard Division of
the United Aircraft Corporation for the Nationel Aeronautics and Space
Administration's Ames Research Center in accordance wita the require-
ments of Contract NAS 2-7T0l1l, Ice Pack Heat Sink Subsystem -~ Phase II.

Appreciation is expressed to the NASA Technical Monitor, Mr. James
R. Blackaby of the Ames Research Center, for his guidance and advice.

Hamilton Standard personnel responsible for the conduct of this
program were Mr. F. H. Greenwood, Program Manager, and Mr. G. J. Roebelen,
Jr., Program Engineer. Appreciation is expressed to Mr. J. S. Lovell,
Chief, Advanced Engineering; Mr. P. F. Heimlich, Design Engineer; and
Mr. E. H. Tepper, Analytical Engineer, whose efforts made the successful
completion of this program possible.

United Aircraft Research Laboratories personnel responsible for the
Thermal Storage Materials Evaluation portion of this program were Dr, Jordan
Kellner, principal investigator, and D. G. McMahon, Chief, Chemicel Sciences.

A Flight Experiment Plan has been prepared as a result of effort expended
during the period covered by this report. This plan, which outlines the steps
necessary for developing the Ice Pack Heat Sink Subsystem into a Shuttle/
Spacelab flight experiment, is contained under separate cover, Ice Pack Heat
Sink Subsystem - Phase II, Flight Experiment Plan, SVHSER 6526,
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INTRODUCTION

Future manned space exploration missions are expected to include
requirements for astronaut life support equipment capable of repeated
use and regeneration for many extravehicular activity sorties. In an-
ticipation of these requirements, NASA ARC funded two contracts (NAS
2-6021 and NAS 2-6022) for the study of Advanced Extravehicular Pro-
tective Systems. The purpose of these studies was to determine the
most practical and promising concepts for manned space flight operations
projected for the late 1970's and 1980's, and to identify areas where
concentrated research would be most effective in the development of
these concepts.

One regenerative concept for astronaut cooling utilizes an ice pack
as the primary heat sink for a liquid cooling garment (LCG) cooling
system. In an emergency, or for extended operations, water from the
melted ice pack could be evaporated (boiled) directly to space vacuum.
NASA ARC funded contract NAS 2-7011 Phase I to design, develop, febricate,
and test at one gravity a functional laboratory model of such an Ice Pack
Heat Sink Subsystem.

This report describes the effort funded by NASA ARC under contract
NAS 2-7011 Phase II whereby the Ice Pack Heat Sink Subsystem prototype
system was designed, fabricated, and performance tested at one gravity.
Further, this report describes the work expended to uncover a material
or materials that might be substituted for water/ice as the thermal sink
thereby reducing system weight and volume.

Calculations and date pertaining to the execution cf this program
were made in U.S. customary units and then converted to SI units.

1/2
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SUMMARY

The objectives of the Ice Pack Heat Sink Subsystem - Phase II pro-
gram are to improve the design and performance of the ice chest/heat
exchanger interface; to design, fabricate, and performance test at one
gravity a prototype system; to investigate thermal storage material with
the objective of uncovering materials with heats of fusion and/or heats
of solution in the range of 300 Btu/1b (700 kilojoules/kilogram); and to
prepare a plan for a candidate Shuttle/Spacelab flight experiment capable
of demonstrating the performence of an Ice Pack Heat Sink Subsystem for
astronaut cooling in zero-gravity, as well as providing data on the physi-
cal phenomena associated primarily with the heat transfer aspects of the
operation of such a system.

The basic purposes for conducting the Interface Development portion
of the program were to develop a heat transfer interface surface combina-
tion that is sufficiently durable in comstruction to allow many (100 plus)
couplings and uncouplings without degradation of performance, and to
investigate surface configurations and preloading pressures with the in-
tent of generating sufficient date to allow selection of optimum surface
configurations and preload pressure. Additionally, a computer progrem
has been prepared to allow optimization of Ice Pack geometry.

Based on the results of the Interface Development effort, as well
as on the experience gained in the laboratory model development progrem
(NAS 2-7011 Phase I), a prototype system has been designed, fabricated,
and acceptance tested. Two prototype ice chests were designed and
fabricaeted: one with and one without the requirement that the ice chest
function as a water boiler for emergency cooling. A heat exchanger has
been designed and fabricated to be capable cf mating with each of the
ice chests developed in this task. Performence requirements for this
subsystem consist of providing a heat sink for the LCG coolant for one
hour at a 1500 Btu/hr (1600 kilojoules/hr) heat rejection rate and with
an LCG inlet temperature compatible to astronaut comfort. The tests
completed during this series have confirmed the adequacy of the design.

Math model correlation has been established and has been utilized
to create a simple procedure to schedule ice chest water flow as a
function of heating rate, inlet water temperature and fraction of ice
melted.

The thermal storage material work has shown that a 30 percent solu-
tion of potassium bifluoride (KHF,) in water can be used to provide ap-
proximately 52 percent more heat absorption than an equal weight of
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vater-ice, and approximately 79 percent more heat absorption than an

equal volume of water-ice. The regeneration of the KHF, water system

can be accomplished easily by the same technique used presently for
water-ice. Heat absorption begins at & lower temperature, however, than
that for water-ice, 10.4°F (261K) as compared to 32°F (273K) for water-ice.
Results of measurements of the heat of fusion of some likely candidate com-
pounds and eutectic mixtures are also included in this report; however,
none were found to approach the heat of fusion of water-ice in the tempera=-
ture range of 14° to 158°F (263-343K).

Resulting from the effort to prepare a plan for a candidate Shuttle/
Spacelab flight experiment is a comprehensive outline, Ice Pack Heat Sink
Subsystem - Phase II, Flight Experiment Plan, SVHSER 6526,which describes
the steps necessary to develop the concepts to flight experiment status.
This report is contained under separate cover to allow its circulation
independent of this final report.

Based on the results of this program the Ice Pack Heat Sink Subsystem
prototype hardware has been developed to a point where it has shown itself
to be acceptable for astronaut cooling during EVA.
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CONCLUSJIONS

Completion of the hardware portion of this program has led to the
development of a prototype Ir~e Pack Heat Sink Subsystem with the follow-
ing characteristics:

. The unit holds 10.45 lbm (4.75 kg) of water.

. Cooling loads of 750, 1500, and 2000 Btu/hr (800, 1600, and
2130 kJ/hr) can be satisfied for both the normal melting ice
and emergency water boiling modes of operation.

. The interfaces between the ice chest/boiler and the heat

exchangers are sufficiently durable to withstand repeated
removal /installation eycles.

Completion of the thermal storage materials portion of this program
has shown that a 30 percent solution of potassium bifluoride (KHF2) in
wvater can provide approximately 52 percent more heat absorption then
an equal weight of water-ice, and approximately 79 percent more heat
ebsorption than an equal volume of water-ice, with heat absorption be-
ginning at 10.4°F (261K) as compared to 32°F (273K) for water-ice.

5/6
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COMMENDATIONS

The studies and test results of this program evolved the follow=-
ing recommendations.

. Continuation of the basic hardware configuration generated
by this program phase is recommended.

. Additional effort is recommended to study the impact of
replacing water with a 30 percent solution of potassium
bifluoride (¥HFo) in water as the heat sink meterisl in
the ice chest/boiler.

7/8
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NOMENCLATURE
Btu British thermal unit
Btu/hr British thermal unit per hour
Btu/hr-OF British thermal unit per hour-degree Fahrenheit
Btu/hr-ft2-oF British thermal unit per hour-square foot-degree
Fahrenheit
C connection
cm centimeter
cp water specific heat
EVA extravehicular activity
op degree Fahrenheit
e gram
g/s gram per second
gpm gallons per minute
H/X, HX heat exchanger
hr hour
Hy0 water
in inch
J Joule
J/s Joule per second
J/s-K Jjoule per second-degree kelvin
J/s-m2-K joule per second-square meter-degree kelvin
K degree kelvin
k thermal conductivity
kg kilogram
kN kilonewton
KN /m? kilonewton per square meter
kJ kilojoule
kJ/hr kilojoule per hour
KN/meA kilonewton per square meter delta
ks kilosecond
LCG liquid cooling garment
lbm, 1b pound mass (avoirdupois)
i1tm/hr, 1b/hr pound mass per hour
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mm Hg

min

psi
psia
psid

Q,9
rpm

Tin
Tout
torr

UA

Re

meter, milli

millimeter

millimeters of mercury

minutes

newton

pounds force per square inch

pounds force per square inch absolute
pounds force per square inch delta

heat transfer rate, heat load
revolutions per minute

second

temperature

water inlet temperature

water outlet temperature

pressure measured in millimeters Hg

overall subsystem thermal conductance

vater mass flow rate
watts per meter-degree kelvin

fin height, length of heat transfer path
temperature difference

fin efficiency, dimensionless cnnductance
pressure measured in micron Hg

effectiveness, heat exchanger or ice chest

10
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The basic purposes for conducting the Interface Development portion
of the program were to develop a heat transfer interface surface combina-
tion that is sufficiently durable in construction to allow many (100 plus)
couplings and uncouplings without degradation of performance, and to
investigate surface configurations and preloading pressures with the
intent of generating sufficient data to allow selection of optimum sur-
face configurations and preload pressure.

SURFACE CONFIGURATION SELECTION

Eight surface configurations were selected for test:

l. Plain aluminum on plain aluminum - this configuration is to be
used as a baseline.

2. Lead plated aluminum on plain aluminum - this configuration
represents the Phase 1 configuration.

3. Lead plated aluminum on plain aluminum with the lead plated
part grooved to produce sqQuare pads approximately 0.25 in.
(0.635 em) x 0.25 in. (0.635 cm). Figure 1 illustrates this
configuration.

L. Same as (3) but with every other pad removed to produce a
checkerboard pattern. Figure 2 illustrates this configuration.

5. Same as (3) but with square pads epproximately 1.5 in. (3.81 em)
x 1.5 in. (3.81 cm). Figure 3 illustrates this configuration.

6. Same as (5) but with every other pad removed to produce &
checkerboard pattern. Figure 4 illustrates this configuration.

7. Lead plated aluminum on plain aluminum, displaced 0.062 in.
(0.157 cm) laterally after pressure mating.

8. Lead plated aluminum on hard-coated aluminum.

Configurations 3 through 6 were designed to evaluate the self-cleaning
effect of grooves in the lead plated surface. These grooves allow bits of
grit to drop off the mating surface without being dragged across the entire
surface. Further, these configurations were intended to help evaluate the
improvement, if any, gained by allowing the lead plate to more easily flow
(into the grooves) and thereby obtain better surface conformation.

11
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Configuration T was designed to evaluate the improvement, if any,
gained by scuffing the plates together under pressure.

Configuration 8 was intended to evaluate what loss, if any, would
be encountered by hard-coating the plain aluminum surface. The hard-~
coating would be desirable to provide protection for the plain aluminum
surface since this surface will be somewhat exposed in the actual hardware.

12
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TEST PROGRAM

The interface development test progrem was revised after its initia-
tion to make the most efficient use of available funding in light of con-
tract change #9 which reduced the prototype design heat load to a meximum
heat rejection rate of 2000 Btu/hr (586.7 J/s), and a total heat absorption
of 1500 Btu (1584 kJ). The revised heat loads were lowered to the point
vhere the required heat transfer surface size is approximately 8 inches
(20.3 cm) by 12 inches (30.5 cm) as compared with the previous heat trans-
fer surface size of 12 inches (30.5 cm) by 12 inches (30.5 em). This new
heat transfer surface size was sufficiently close to the 6 inches (15.2 cm)
by 6 inches (15.2 cm) small scale test samples thet the results of the
small scale testing are sufficient to allow full scale configuration eval-
uation. Hence, the full scale testing was eliminated ard a complete test
sequence was run on each of the eight 6 x 6 configurations.

The Smali/Large Scale Interface Development Test Plan is included in
this report as Appendix A. Figure 5 shows the small/large scale interface
development test fixture. Figures 6 and 7 show the 6 x 6 interface surfaces
of the heater block and heat exchanger. The surfaces shown in these figures
are hard-coated aluminum. Figures 8, 9, and 10 show thermocouple locations
on the heater block, heat exchanger, and 6 x 6 configuration plates. The
test fixture is designed to produce two interfaces in series, each interface
with the same combination of surfaces in contact. This arrangement is par-
ticularly convenient because it allows the configuration to be changed by
merely changing the configuration plate, since the heater surface and heat
exchanger surface are plain aluminum (or hard-coated for the final tests).

Figure 11 shows the 6 x 6 configuration plate which, when installed with
the test fixture, produces the plain aluminum on plain aluminum interface.

Figure 12 shows the lead-plated aluminum on plain aluminum configuration
plate.

Figure 13 shows the lead-plated aluminum with 0.25 in. (0.635 cm) x
0.25 in. (0.635 cm) square pads on plain aluminum configuration plite.

Figure 14 shows the lead-plated aluminum with 0.25 in. (0.635 cm) x
0.25 in. (0.635 cm) alternate square pads on plain aluminum configuration
plate.

Figure 15 shows the lead-plated aluminum with 1.5 in. (3.81 em) x
1.5 in. (3.81 cm) square pads on plain aluminum configuration plate.

Figure 16 shows the lead-plated aluminum with 1.5 in. (3.81 cm) x

1.5 in. (3.81 cm) alternate square pads on plain aluminum configuration
plate.

17
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FICIRE 6 SMALL/LARGE SCALE INTERFACE DEVELOPMENT
TEST FIXTURE HEATER BLOCK (SHOWN INVERTED)

FIGURE 7 SMALL/LARGE SCALE INTERFACE DEVELOPMENT
TEST FIXTURE HEAT EXCHANGER




Hamilton___ .Y
Standard

SNDLIVD0T T14NCOGWTHL ONIMOHS D01 YALVAH 1SHL TIVOS TRVT/TIVWS 8§ RdMOLd
MAIA dOL ¥IH

bt 00°9

e 00°2 i 00°¢

gt 05°0 ‘I£ % m'oo.ﬁl'

as ]

20

~-x N4

it TA TR Sy |

m\.m.nllllj



U

OF UNITED

Ae

Hamilton

Standard

SNDIIVOOT TIINOOOKAHEHL ONIMOHS WIONVHOXH IVEH ISAl TTVOS TRIVI/TIVIS 6 TiMOId
MIIA dOL YEONVHOXH LViH

00°9

00°¢

| g

09°

o1°¢

09't

e G * T cvolinnd

- 92°¢

r-——072

et O T .uu

- INOYd

21



SNOLIVDOT TIANOOWSAHL ALVId NOLLVINOLANCD 9X9 ISAL TIVIS INYT/TIVWS 01 TOId
(dn STAOCHD NOILVINSWMISNI) ALv1d NOLLVMNOIINGD HOVRINS

00°9 T

00° o~ 00°'2 e

TEQ yclnn
A

00°1

jretioe=()() * | =2 ﬂE w% jestgmee ) * T =t
00°¢

Hamilton__ .
Standard

22



Hamilton

b O g s

iy

S )

it

o

e
o

G
. ..
R

2
:
—
:
E
A
&
s
:
&
8
2
e
e

G

¥

S

.

L

T

. j/,
g

=

.
g
..

it
e

s

SR

.
%

o
-

:
-

INSTRUMENTATION
GROOVES (TYPICAL)

o G
S
, i”w:,g;// ..

v L ,
.

e




Hamilton
Standard

S

L
o

.

.
i %@/ G .

W -

e

2
=
:
:
[~

6X6 CONFIGURATI

2

e i
i e
S e

TGURE |

5

i

NTATIUN

s

o

i
)

INSTRIME




\ WINIMNTY QAIVId Qv - Savd RIVACS
(u> §£9°0) NI SZ°0 X (W 6£9°0) NI §7°0 - HIVId NOLIVIMDLANOD 9X9 ¢l BRI

NOLIOH

Hamilton




WANTHNTY QHIVId QviIT - SOVd RIVNOS SLVNIHLTY
(u> 6£9°0) NI §7°0 X (WD §50°0) °NI 270 - HIVId NOLIVMNOIANOD 9X9 ¢1 RUDI4

i
3
s
2
o
s

2
=
P
|
-
>

&

Dezits B8 h Samy

PN B T R R

i

Hamiiton
Standard




WINDNDTY QAIVId OVT1 - SIvd Dvnos
(uD 18°¢) NI S'I X (W2 18°¢) NI §°1T - AIvId NULIVINOTINOD oXg S dpld

5a

S e M

S

SHAOQND NOILIVININIILSNI

Hamilton
Standard




WOININTV (4LVId aQvaT - Savd THvNOS ALvNydLTY
(D T8°¢) NI §°T X (wd 18°¢) NI §°T - HIVId NOLLVINOLINOD 9X9 91 WNOId

_
25
=
g8
Ih




Hamiiton___ ... VY. . .
Standard As

The six configurations represented by figures 11 thru 16 were tested
utilézing a preload (bladder) pressvre of 8 to 30 psid (55.3 to 206.9
kN/m“A). In addition, the heater block and heat exchanger surfaces were
hard-coated and the configurations of figure 12 and figure 14 were retested
at 8, 16, and 30 psid (55.3, 110.6, and 206.9 kN/m?A). Hard-coating was
used because it has superior hardness and is easy to apply uniformly.

Interface assembly was accomplished both at ambient pressure levels
of 760 mm gg(loo KN/m?) and at vacuum conditions of less than 10~ mm Hg
(1.3 x 1072 kN/m?).

A ninth configuration, plain lead plate against aluminum, was to be
tested for durability when subjected to lateral "scuffing" under pressure.
This configuration was abandoned as impractical due to the extremely high
force levels required to produce the lateral scuffing under preloed, in
the order 500 pounds (2.22 kN).
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TEST DATA EVALUATION

Analytical Predictions

When two surfaces are brought together forming an interface across
which heat must flow, a discontinuity in the system temperature profile
(figure 17) will occur at the interface. The temperature profile within
materials (1% and (2) will be a direct function of their thermal conduc-
tivities, k; and ko, but the definition of the contact temperature dis-
continuity is not so easily described. Considerable attention to this
definition has been generated since the late 1950's due to stringent
aerospace requirements. In the ice pack, the contact resistance will
comprise a major portion of the total system temperature drop and was
the subject of considerable attention during Phase I. Although this
problem could be avoided through the utilization of a one plece ice
chest/LCG heat exchanger, the inherent drawbacks of that configuration
(logistics, performance and potential L(G freeze-up) would produce
problems with substantially higher development risk.

The actual area of the two materiasls in contact is 8 rather small
fraction (possibly cne to ten percent) of the projected area and is &
direct function of the contact pressure or force holding the joint to-
gether and the hardness of the materials. Roughness and flatness of
the two contamcting surfaces result in peaks which jein to form the
effective heat flcw area of the joint. The valleys between the peaks
produce a gap which essentially insulates that portion of the heat flow
path (especially in a vacuum environment). Conductance can be increased
by increasing the contact pressure, which produces plastic deformation
of the peaks thus increasing the effective heat flow area. Also, soft
materials may be applied to the interface to deform under iow load and
fill the valleys providing parallel paths for heat flow. Obviously,
the higher the plasticity and thermal conductivity of the interstitial
material, the greater the effect.

For this design, the greatest hurdle lies in the extrapolation of
reported data down to a range of contact pressure achievable by a crew-
man during EVA. Much data is reported at loadings above 100 psi
(689.5 kN/m2) while loadings for this effort will be 30 psi (206.86 kN/m2)
or less. Data from reference 1 are presented in figure 18 and were the
basis for the following conclucions:

(1)

References are presented in Appendix H.
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® Contacts assembled in a pressured environment will have substantial
conductance at low applied loads as a result of gas trapped in the
interface. This gas persisted in the joint throughout a one-week
period during the reference 1 testing.

@ Materials having a very fine finish, which are assembled in vacuum,
have essentially zero conductance at zero contact pressure.

® Rougher materials, assembled in vacuum, exhibit some conductance
at low contact pressures but verification of extrapolations to very
low loads is required. The rate of conductance drop-off apparently
is quite high in this region.

A contact conductance of 200 Btu/hr-ft2oF (1152 J/s-m2-K) was assumed
for the assembly. This value was considered conservative for contacts

assembled in a pressurized environment such as the lunar base or spacecraft
cabin, but mey be unrealistie for a vacuum assembly such as resupply during
EVA.

To attack this problem and improve conductance for all modes of
assembly, the inclusion of an interstitial material will be required. Data
presented in reference 2 and shown in figure 19 show an order of magnitude
improvement in contact conductance through the application of silicone
vacuum grease and substantial improvements with indium, lead or gold.
Although the grease appears to hold the highest performance potential, it
poses the practical problems of contaminetion during assembly and excessive
force .equirements for disassembly. Data presented in reference 3 and shown
in figure 20 substantiates the findings in reference 2 with contact pressures
in the range of 20-300 psi (136-2040 kN/m?).

The develorment assembly has lead plating applied to the relatively
rough, approximately 32 micro-inch finish of the test specimens. A rough
finish will provide the peaks necessary to load and plastically deform the
lead with the intended aim of filling the valleys and voids b-.iween the
two contacting surfaces.

Several other materials and applications were considered in Phase I
because of their effect on contact conductance. Copper was eliminated by
corrosion and storage requirements. Aluminum was disregerded because
identical materials will cold weld under vacuum conditions. Although indium
has a des.rable effect on contact conductance, its cost is prohibitive when
compared to lead. A plating procedure for the lead was deemed more appli-
cable than leafs and foils, as leafs and foils will tear, necessitating
replacement when the ice chests are removed and repleced. The lead plat-
ing is thus the most effective means of improving contact conductance by
use of interstitial materials.
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Prior analysis had indicated that the data of reference 3 and figure 20
would predict that the use of lead plating could increase the contact con-
ductance by approximately 200 times - a conclusion not in keeping with the
data of figure 19. Reevaluation of the data of reference 3 would indicsate
only a three to six-fold increase in contact conductance through the applica-
tion of lead in the interface area - a level correleting directly with
figure 19. Current design analysis is based on contact conductances rang-
ing between 96 and 152 Btu/hr-ft2-oF (553 and 875 J/s-m°-K) obtained from
Phase I test results (reference L).

Test Results

Test data acquired during the period October 9, 1973 to December 5, 1973
have been reduced to engineering design units and are presented in Table I
and figures 21 and 22. The actual log sheets are reproduced as Appen-
dix B of this report. Because the interface area is not equal for all
samples (area is reduced by grooves and removed squares), two bases were
utilized for data correlation. In one (figure 21), the overall appa~ent
area of 36 in.2 (232 cm®) was assumed applicable and the thermal contact
conductance was derived utilizing this value. In the second (figure 22),
the actual contact area was employed in the analysis and both contact con-
ductance and pressure loading were adjusted to be representative of the
interface area.

Differences in the correlations of figures 21 and 22 are most apparent
for those interfaces assembled in a precsurized environment. As expected,
the data correlation is substantially improved when actual contact areas
are considered and derived contact coefficients and pressure lcadings are
representative of the conditions present at the interface.

Interestingly, this improvement does not appear for that data obtained
when the interfaces are assembled in vacuum. The difference lies in the
variation in slope between the two correlations. The nearly one to ore
slope of the vacuum assembly data produces the unique result that removal
of contact area has no net effect on the relationship between loading pres-
sure and overall thermal conductance. For example, if the contact area
A, is halved then both contact coefficient, h,, and contact pressure, Py,
are doubled but the product hq.A. remains a constant. This translates into
the result that overall conductance will remain a constant for vacuum
assembly regardless of the actual area in contact. A gross reduction in
contact area, while maintaining the desired conductance could, however,
produce gross irregularities in the ice melt profile resulting in secondary
increases in thermal resistance. The data for bare aluminum are substantially
below values interpolated for the 32 micro-inch (0.81 micro-meter) finish on
the test specimens. Achieved conductances are approximately one-third those
anticipated.
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TABLE 1 INTERFACE DEVFLOPMENT TEST RESULTS

NBIENT BASED (N EXTERNAL AREA RASED ON INTERFACE AREA
TEST | SAMPLE PRESSURE T THERL

DATE | CONFIGIRATION oy . _.“.E&mé‘&]%__
(/) | ps Y [Btusnr- £e2-or B/s-wf- K ipsi w2) | Brufhr-£22-°F] (J/s-nt- Q

10-9-73 S 760 104 8] sd.4- 388 2235 8.75 | 5.95 424 2442

‘ 16 1 108.8 442 2546 17.5 | 1.9 482 2776

1 s8] s4.4 280 w3 | - - - .

16/] 1088 338 1947 - - - .

; 16 | 108.8 344 1981 - - - N

3 8] 54.4 250 1440 13.8 9.38 436 2511

3 | 16| 108.8 29 1708 27.6 | 18.77 516 2972

2 8] S4.4 482 - - "

16 | 108.8 536 3087 - B N p

10-29-73 4 1o 8] 54 80.4 463 - N - "

16 | 108.8 112.3 650 - - - -

30 | 4.0 223 1284 - - - _

1 ] 54.4 16.6 [ - - - -

16 | 108.8 23.2 134 - - - -

3 | 204.0 57.8 333 . - N -

3 3 544 46.8 270 3.8 ] 9% 81.2 468

16 108.8 83.6 482 27.6 18.77 144.8 834

) 30 | 20400 173 996 $2.0 | 35.36 300 1728

s :r“ s | s 37.2 218 8.75 1 5.95 0.4 233

16 | 108.8 63.2 363 17.5 | 11.9 ©9 397

30 | 204.0 128 737 .7 | a.n 136.4 786

11-2-73 8 54.4 44.8 258 8.7 5.92 48.8 281

16 | 108.8 72 415 17.5 | 11.9 78.6 453

| 30 204.0 139.2 802 32.7 22.27 151.8 874

[} 54.4 42.4 244 8.7 5.92 46.2 266

16 | 108.8 78.2 450 17.5 | 11.8 85.4 492

30 | 204.0 163 939 3.7 | 22.27 177.8 1024

760 100 8 4.4 429.2 2472 8.7 5.92 468.2 2697

16 | 108.8 555.8 3201 17.5 | 11.9 606- 4 3493

11-5-73 4 8 54.4 169.6 977 27.7 | 18.84 $87.2 3382

16 | 108.8 238.2 1372 55.4 | 37.67 824.4 4749

103 Jiaxo-S, 8] 4.4 68 392 27.7 | 18.84 235.2 1355

16 | 108.8 115.6 666 55.4 | 37.67 400 2304

30 | 204.0 191 1100 103.8 70.58 661.2 3809

3 54,4 36.6 11 27.7 | 18.84 126.8 730

16 | 198.8 66 380 $5.4 | 37.67 228.4 1316

30 | 204.0 126.6 729 103.8 | 70.58 438.4 2525

11-7-73 6 760 100 s | s3.4 231.6 1334 17.5 | 11.9 505.2 2910

[} ] 16 | 108.8 299.4 1725 uo | 23.73 653.2 3762

104 hhaxaoS s8] s4.4 51.4 296 17.5 | 11.9 12.4 647

16 | 108.8 80.2 462 4.9 | 2173 174.8 1007

30 | 204.0 136.4 786 65.5 | 44.54 297.6 1714

8] 54.4 46.4 267 17.5 | 11.9 101.2 583

16 | 108.8 76.4 440 4.9 | 23.73 166.8 961

30 | 204.0 137.8 794 65.5 44.54 300. 4 1730

12-5-73 8 8| s54.8 5.8 206 - - - -

16 | 108.8 40.8 238 - - - -

] } 30 | 04.0 58.6 338 - - . N

7 8] s54.4 19.2 11 27.7 | 18.84 66.4 382

16 | 1088 27 156 $5.4 { 37.67 93.4 538

) 0 | 204.0 44.8 258 103.8 | 7o.58 158 893
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The addition of lead plating has produced a two to five-fold increase
in conductance for interfaces assembled in a vacuum. This result provides
excellent correlation to the improvements predicted from the literature.
Absolute values of the conductance remain at approximately one-third those
presented in figure 19 and approximately one-half those achicved in Phase I
testing (reference L4). This anomoly may be traced to the effect of the
rigid double interface test specimens rather than the single contact semi-
flexible interfaces reported in the literature and utilized in the actual
ice pack design. Contact resistances derived from the test data assume
that the total system resistance is attributable to the two contacts. If
the actual area in contact is substantially less than anticipated and the
contacting areas are not directly opposed on the test specimen then an
added resistance thru the test specimen (from one contact area to another)
will be present. This type of error will produce low values of contact
conductance and can be avoided only by utilizing a single contact test
configuration as is done in the actual prototype configuration.

Testing accomplished with the bare aluminum parts hard anodize coated
(for wear resistance) produced inconclusive data. The hard coat produced
a surface finish which appears smoother than the substrate - a factor which
would decrease the ability to penetrate the lead coating and thus increase
thermal resistance. Test results for this configuration produced results
varying from those equivalent to lead at low pressures to bare aluminum at
high pressure. This is exactly opposite the trend anticipated - the higher
pressures should improve penetration of the lead thereby producing lower
resistance.

Conclusions
The following conclusions may be derived from this test series:

1. For the limiting operating conditions for ice pack design
(vacuum assembly), total interface conductance is indeperdent
of actual contact area. Configurations which remove surface

area to incorporate self-cleaning effects are feasible.

2. The application of lead plating to the contact interface has
produced an improvement in thermel conductance equivalent to
that reported in the literature.

3. Literature values for conductance of bare aluminum junctions are
approximately three times those measured in this test program.
This anomoly may be due to other undefined resistances present
in the test specimen - resistances which can only be eliminated
thru the use of a single contact test assembly.

40



Hamiiton

DEVIRION (F UNITED 160 1A T CORPORATION

PRELOAD STUDY

As part of the interface development program a study was undertaken
to determine the most desirsble method for providing pressurization to
the interfeace joint. The following general categories were examined and
are listed in order of increasing desirability:

Electromagnetic
Permanent Magnetic
Mechanical
Prneumatic
Hydraulic

Electromagnetic

In order for an electromsgnetic preload to be utilized it would be
necessary to build in electromagnetic strips or coils and utilize a mag-
netizable surface on the mating part., Further, and more important, a
continuous electric power drain would be required to maintain the preload.
Therefore, this category has been eliminated from further consideration.

Permanent Magnetic

A preloading force can be generated and ungenerated by utilizing
permanent megnets that can be criented either to produce a magnetic field
or to produce no field. This concept would require a magnetizeble surface
on the mating surface. The magnets would add approximately 25 to 30 lbs.
(5.05 to 6.06 kg) to the weight of the subsystem. Further, a different
method of transferring heat to or from the magnets would have to be devised.
This category has been eliminated from further consideretion due to the
added complexities and weight.

Mechanical

Various methods for utilizing a mechanical preload were examinegd,
including cams, ramps, and screw threads. Even though this method is
potentially suitable for preloading, no method could be devised that
would produce uniform preloads utilizing a practical mechanism.
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Pneumatic

Pneumatic pressurization devices can be categorized into two basic
types: self-contained and expendable., The device used in the Phase I
portion of this contract is expendable in thet it utilizes a separate
gas supply for pressurization, and the gas is dumped to ambient to vent
the bladder. An example of a self-contained pneumatic device is one where
there is & separate accumulator into which the gas from the bladder can
be pumped to relieve the bladder pressure. The primary drawback to this
system is the requirement for a separate pump to transfer the compressible
fluid between the bladder and the accumulator. This system is completely
feasible with the pump being manually operated. The drawback lies in the
fact that the fluid is compressible, thereby requiring almost complete
emptying of the bladder to change the ice chest during vacuum conditions.
Further, the bladder pressure is not able to self-compensate as the ambient
pressure changes.

gxdraulic

A hydraulic pressurization device, to be self-contained, also requires
a separate accumulator into which the bladder fluid can be transferred.
However, unlike the case with the compressible fluid, only small quantities
of incompressible fluid must be removed from the bladder to relieve the
pressure. The accumulator can be equipped with a diaphragm and a spring,
thereby sasutomatically producing a preload pressure. To relieve the bladder
pressure the accumulator diaphragm is equipped with a mechanical override
that allows the operator to remove the spring force from the diaphragm,
thereby unpressurizing the fluid. Furthermore, the bledder pressure is
self-compensating to changes in ambient pressure since the accumulator
diaphragm is referenced to ambient. This configuration is represented by
the schematic shown in figure 23 and is the one incorporated into the
prototype design.
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ICE PACK GEOMETRY OPTIMIZATION COMPUTER PROGRAM

The purpose of generating computer models of the Ice Pack Heat Sink
Subsystem is to provide an accurate analytical tool to correlate sub-
system performance test data. Normal analytical procedures are insuffi-
cient to model the melting phenomenom because of constantly varying
subsystem internal resistances.

The prediction of the overall heat transfer coefficient of the Ice
Pack Heat Sink Subsystem can be expressed by equation 1.

VA = ! (1)
1, 1, 1
hy he hice

where,
UA = overall heat transfer coefficient

hy = conductance from LCG water to the heat exchanger

he = interface contact conductance between the heat
exchanger and the ice chest plate

hi.e = conductance between the ice chest plate and the heat sink.

This overall heat transfer coefficient can then be used to determine
the effectiveness of the system by use of equation 2.

¢ = f (UA/wCp) (2)
where,

- @actual hest transfer
maximum theoretical heat transfer

€ = effectiveness

W = LCG water flow rate

Cp = .CG water specific heat
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However, the normal aralytical proc_.dure which considers heat ex-
changer effectiveness as nearly constant is complicated by the fact that
the ice chest conductance, hjce, varies as a function ot the amount of
ice that has melted. Thus, the system effectiveness will vary as a
function of the total amount of energy transferred.

To simplify this predictive procedure, and also provide a means of
analyzing test data, two computer models ha.e been generated. The first
model is of one-half of an ice chest cell. This model is used to deter-
mine the conductance from the heat exchanger plate surface to the liquid/
ice melt interface as a function of the amount of ice which has melted.
The model utilizes a generalized heat transfer program which was developed
several years ago at United Aircraft Research Laboratory and subsequently
expanded and refined at Hamilton Standard in late 1i972.

The resultant conductance from the above model is then used as in-
put to the second model, which consists of the full size Ice Pack Heat
Sink Subsystem. This model uses a special Ice Chest Computer program
recently developed at HSD. Both of these models are discussed in detail
below.

Ice Cell Melt Model

Since each ice cell is symmetrical about the cell and fin center-
lines, a one~half cell model is adeguate to determine the melting char-
actaristics of the ice. The ice melt model therefore consists of one-
half of one ice cell over a full cell length.

The nodel break-down of the melt model is presented in figure 2k.
The ice and half-fin portion of the cell is divided into 10 nodes.
10 nodes is sufficient to determine an accurete melt characteristic
while also keeping computer execution time within reasonable limits.

In the generalized heat transfer program, each node is assigned a
therr ' mass equivalent to the mass of the node times its specific heat.
To model the heat of fusion of each ice mode, a dimensionless tempera-
ture dependent thermal mess multiplier is used. This multiplier is
determined from equation 3.

Multiplier = .mice h
mice CPice

—-— (3)
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where,
m = mass
h = heat of fusion
Cp = specific heat

T = temperature range of melt

The actual physical melting process occurs at 32°F (273.16K). How-
ever, it is impossible to model the melt process as an instantaneous step
function with H-179 because not enough heat can be sbsorbed by the model
node as the computer preocesc moves forward in time. The model thus as-
sumes that the ice melting process occurs over a range of 31°F to 33°F
(272.60K tc 273.72K). This insures that the proper amount of heat is
absorbed by each ice node to model the heat of fusion.

Within the computer model, each node is connected by a conductance.
In the connection between nodes HX and PLATE (see figure 2L), the conduc-
tance used was an assumed minimum contact conductance of 96 Btu/hr-ft2-0F
{sLk.3 J/s-me-K) which was determined from Ice Pack Heat Sink Subsystem
development testing conducted at HSD from February to March 1973.

Several heat loads were then impressed on the node, HX, to simulate
Ice Pack Heat Sink Subsystem loads of 475, 2000, and 4000 Btu/hr (139.3,
586.7, 1173 J/s). The resultant conductances from node PLATE to the ice/
liquid interfece were then plotted as figure 25.

From figure 25, it can be seen that the computer model ice cell con-
ductance is approximately equal for Tce Pack Heat Sink Subsystem loads of
475, 2000, and L000 Btu/hr (139.3, 586.7, 1173 J/s). For use as input in
the full system computer model the ice cell conductance will therefore be
assumed to> be independent of the heat load.

Also depicted on figure 25 are the analytical calculations of ice
cell conduct:ince for the present design. These values are approximately
one-half of the analytical calculations presented in reference 5 for the
ice cell conductance. The difference between the two sets of analytical
calculations is caused by differences in geumetry between the two units
and by use of a nore accurate thermal conductivity of the metal for the
analytical ice conductance calculations of the present design.

47



Hamilton

ORiaOMN OF UMNTED AMBCINAS T COBAONA PO

Standard e
‘ "'-*’-“r‘"f'*"“"‘“t‘“'r"“ A S
H . {
; R I
! -0 i ‘ l o ! %
' (12§ ot P - -—AMDEL, 475 BTUMR (139.3 J/s)-

CONDUCTANCE FROM PLATE TO ICE Btu/Hr - °F (J/s-K)

280 4F>
(147.8)

240 |
(126.7)

! MBDEL, 2000 BTU/HR(586.7 J/s)

MODEL, 4000 BTU/HR (1173 J/s)
ANALYSIS, 3/25/74

[ S

CONDUCTANCE RELATION FOR EgLL“s;gg;pgg!%L

[

'
H . i ' i
| ! i

200 |
(105.6)
100 1
(84.5)
120 |
(63.4)
- .80—<>
(42.2)
& ®
a
40 i ‘
40 ] . e .
(1.1 { : ;
; i ;
+ ; -t + +
0 20 40 6? 80 100
! PERCENT OF ICE MELTED . ‘ |
2 ] 1

FIGURF 25 ICE CELL CONDUCTANCE DURING MELT PROCESS

48



Ham"tm DHAMON OF UMTED AHICEAE T COMMOINA ¥10M
Standard As

Comparing the analytical calculations of the present system with
the results of the computer model, a difference in slope can be noted.
This discrepancy is to be expected as the computer model treats the melt
process and multi-d_mensionsl heat transfer more accurately than analytical
approximations. Tnis difference is discussed in detail in Appendix C.

The conductance results of this ice cell melt model are now used in
the full Ice Pack Heat Sink Subsystem model described below.

Full Size Ice Pack Heat Sink Subsystem Model

A computer program was recently developed to model the full size Ice
Pack Heat Sink Subsystem thermal performance. A new program was neces-
sary because the generalized heat transfer program used with the melt
model cannot handle conductance as & function of the total heat input to
a node.

Since the LCG water traverses a patn consisting of two single passage
four pass heat exchangers connected in series, the model is set up into
eight major segments (see figure 26) with each major segment consisting
of one full pass of the LCG water through the heat exchanger. Each major
segment is then subdivided intc four ncdes (see figure 27) to simulate
the LCG water; heat exchanger; ice cell plate and supports; and the ice
cell itself. As can be seen from figure 27, each LCG pass width encom-
passes five ice cells and fins.

Each node is assigned an appropriate thermal mass, as discussed in
the melt model section. However, this model becomes 1~re complex than
the melt model when Jetermining node connector values.

Each LCG water node is connected to the appropriate heat exchanger
node by heat transfer coefficients determined from heat exchanger theory.
The values of this transfer coefficient as a function of LCG water flow
rate in the heat exchanger is presented in figure 28. This curve was
generated from data in reference 6.

Each heat exchanger ncde is connected to the adjacent plate node
by the same contact conductance described previously.

The plate node is then connected to the ice cell node by the ice
cell ccnductance determined from the ice cell melt model that was pre-
sented as figure 25. During the computing process, the temperature of
the ice cell node is maintained at 32°F until enough hest has been added
to the node to completely melt the ice and the connection from the ice
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cell to the plate is calculated anew during each interaction as & func-
tion of the percentage of ice melted. This relation (determined from
figure 25) can be expressed as

¢ = 255 - 184 (;ercent melted\ ()
100 /

where
C is in units of Btu/hr-°F (1.89 J/s-K).

Furthermore, sideways connections (i.e., from major segment 2 to
major segment 3, etc., from figure 26) are used for the heat exchanger,
plate, and ice cell nodes. These values are all straight conductance
terms, kA/Ax. Each water node also conducts heat to each subsequent
downstr=am water node with a connection equivalent to the LCG water
weight flow times the specific heat of water.

Computer runs of this model indicate correlation greater than 98%
between analytical predictions of the time to melt all the ice and com~
puter model calculations of the time to melt. A sample print-out of
this model is contained in Appendix D.

Results

By using the ice cell conductance relations of Tigure 25, the full
gsize Ice Pack Heat Sink Subsystem model was run for LCG water flow rates
of 120, 180, and 240 1bm/hr (15.1, 22.7, and 30.2 g/s). The conductance
from the LCG water to the heat exchanger was calculated by use of figure
27 with a segment primary area (Ap) of 0.158 ft2 (0.01L7 m2). The contact
conductance between the heat exchanger and plate nodes was assumed to be
96 Btu/hr-ft2-CF (544.3 J/s-m®-K). The effectiveness of the Ice Pack
Heat Sink Subsystem was then calculated by use of equation 5 at various
ice cell percertage melt points.

Ts,, - T
€ = in out (5)
Tyn = M Piee
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€ = effectiveness
Tin = LCG water inlet temperature

T

out LCG water outlet temperature (segment 8)

R Pice Melting point of ice

The results of this computer/analytical procedure are presented in
figure 29. From figure 29, the dependence of the overall thermal perfor-
mance upon the amount of ice that has melted is readily apparent.

With the use of the computer models, this type of prediction can be
made for various LCG water flow rates and various contact conductances.
Each computer run also requires an input of the LCG water inlet tempera-
ture and the amount of time that the melt process is to cover. In this
manner, it will be possible to compare predicted performance with Ice
Pack Heat Sink Subsystem test data by actually inputting the test condi-
tions into the computer mogdel.
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PROTOTYPE DESIGN, FABRICATION AND ACCEPTANCE TEST

DESIGN AND FABRICATICN

Based on the results of the Interface Development effort as well as
on the experience gained in the laboratory model development program
(NAS 2-7011 Phase I), a prototype system has been designed, fabricated
and acceptance tested. Two prototype ice chests were designed and fabri-
cated: one with and one without the requirement that the ice chest
function as a water boiler for emergency cooling. A heat exchanger and
mounting assembly has been designed and fabricated to be capable of
mating with each of the ice chests developed in this task.

The prototype hardware was designed to meet the following require-
ments:

Ice pack water weight: approximately 4.75 kg (10.L5 1b)
Maximum heat rejection rate: 2000 Btu/hr (2130 kJ/hr)
Average heat rejection rate: 1500 Btu/hr (1600 kJ/hr)
Minimum heat rejection rate: 750 Btu/hr ( 800 kJ/hr)

LCG coolant flow rate: 0.48-0.53 gpm (108-120 kg/hr)
Ice chest #1: normal mode, no emergency mode
Ice chest #2 (Boiler): normal mode, emergency mode

The internal configurastion of the ice chest and boiler is identical
to that developed during Phase I of this effort and is documented in
reference L.

The prototype hardware consists of the following assemblies:

Boiler Assembly SVSK 88482-500, Rev. C
Ice Chest Assembly SVSK 88482-600, Rev. B
Mounting Assembly and Harnesses SVSK 87308-100, Rev. B

A functional schematic of the prototype system is shown in
figure 30.

Appendix E contains a complete set of prototype hardware parts
lists.

57



Hamilton

QIVIBION OF WNTED AMBCRAFT CORPOM A THION

Standard Ae

vl ABDER
CHARGE
PORT

REPLACEABLE DUAL

MECHANISM

l
l
l
PRESSURIZATION }
SHUT OFF VALVES {

I

WITH INTEGRAL
ORIFICE

|
|
l
| 3 E
l 4
|
I
: ICE CHEST OR
BOILER
l \ 7O _—17 EXCHANGERS
I .
I
|
|
|
|
|
|
|

|

DUAL HEAT
PRESSURIZATION|
BLADDER {
/ ‘
, |
! .uH ] |
______________ N 1

t }
HEAT EXCHANGE "
FLOWMETER
R | P | ATTACHMENTS

{_ COOLANT —1,
| ACCUMULATOR |
| t INTERNAL i
l e o FLOW ‘ HEAT I
' CONTROL E'XCHANC-}ERl
| Q) VALVES I
: o~ l
, COOLANT |
| PUMP }
| ! |
| i |
| |
|
I |
e e —_——— e J

COOLANT LOOP

FIGURE 30

LIQUID COOLING
GARMENT ATTACHMENTS

LIQUID COOLING GARMENT

ICE PACK FUNCTIONAL SCHEMATIC

58

PROTOTYPE

| ICE PACK
: SUBSYSTEM

ICE PACK
HEAT SINK
SUBSYSTEM
CONSOLE



Hamiiton

DIVIBION OF UNITEE ABCIAF T CORPORA TION

Standard Re

Boiler Assembly

Figure 31 1llustrates a view of the boiler assembly with the cover
removed and prior to installation of the wicks and expansion compensa-
tion assemblies.

Figure 32 shovws the boiler assembly with the wicks and expansion
compensation assemblies installed.

Figure 33 shows the boiler assembly completely assembled.

Ice Chest Assembly

Figure 34 is a view of the heat transfer surface of the ice chest
assembly.

Figures 35 and 36 show the ice chest assembly completely assembled.

Mounting Assembly and Harnesses

Figures 37 and 38 show frontal views of the completely assembled
mounting assembly.

Figure 39 shows & side view and figure 40 shows a bottom view.

Figure Ll is a rear view of the mounting assembly showing the mount-
ing rings for the harnesses (not shown).

Figure 42 shows the mounting assembly with a boiler assembly
installed.
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ACCEPTANCE TEST

Performance requirements for this subsystem consist of providing
a heat sink for the LCG coolant [coolant flow rate is 240 1bs HyO/hr
(1814 g Haqhmin)] for one hour at a 1500 Btu/hr (1600 kiloJoulesahr)
heat rejection rete and with an LCG inlet temperature compatible to
agstronaut comfort.

Test SM

Two configurations of the lce chest were tested, one a pure ice
chest and the second an ice chest with emergency capability to operate
in a water boiler mode. Test runs are summarized in Table Ii. Tests
completed during the series have confirmed the adequacy of the design.
A Performance Test Plan 1s included in this plan as Appendix ¥. The
actual log sheets are reproduced as Appendix G.

Test Results

Figure L3 presents the test results as heat exchanger effective-
ness, € vs fraction of ice melted. All the data are consistent except
for the ice chest test at 1500 Btu/hr (1600 kilojoules/hr) which ex-
hibited thermal sink exhaustion at epproximately 80% of nominal capacity.
This anomoly has been explained as an incomplete ice freeze at the begin-
ning of the run, with subsequent loss of heat sink cepacity. This ex-
planation is consistent with all the remaining data obtained during this
series and would produce excellent correlation if the questionable data
were transposeu to the right by a coustant increment of 20 to 30 percent
of the ice melt fraction.

Several inflections are noted in the test data plots, primarily in
the runs at 1500 Btu/hr (1600 kilojoules/hr). These discontinuities
reflect changes in the flow rate thru the ice chest heat exchanger and
are to be expected since overall effectiveness is reduced as flow rate
incresses.

Unit effectiveness vs heat exchanger flow rate at the point of zero
ice melt is important since this is also the system effectiveness in the
emergency boiler mode. These data, taken from the six ice melt tests,
are shown in figure L4 and are compared to analytical predictions. The
results are excellent and deviate from analytical predictions only in
the high effectiveness or low flow regime. This result is not unusual
in that the heat exchanger flow passages are designed to meet performance
and pressure drop for the high flow case and flow maldistribution cen be
expected when flow rates are reduced by an order of magnitude. Unit
performance at the low flows is substantielly above system requirements.
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TABLE II ICE CHEST TEST RUNS
Log Confi ation Heat Sink Heat Rate
Test Sheet Ice Ice Chest, Mode
Date No. Chest Boiler Melt | Boiler Btu/hr| (kJ/hr)
10-1-Th 10509 X X 1500 (1600)
10-2-Th 10510
10511 X X 750 (800)
10-2-Th 10512 X X 2000 (2130)
10-3-Th 10516 X X 1500 (1600)
10-3-7h 10517 X X 750 (800)
10-3-Th 10518 X X 2000 (2130)
10-L4-Th 10520
10521 X X 750 (800)
10-L-T4 10522 X X 1500/ | (1600/
2000 2130)

~t
Wt




Hamiiton
Standard

OF WNITED T TN

e ”?M IR A . M; ‘*4. :
g l? fj" I i ' . 1 ‘!:"!
Loof ol .

| o ' :

n . 750 Btu/hr|

(800 kJ/hr) - -
! l 1 !

|
N
N

N

.
|
'

\
1500 Bew/hr \
(1600 kJ/hr)’ \

Do ————
. .

~ 2000 Btu/hr
. |/ (2133 kj/hr)

— N - I ,

' ' : ﬂ' \ ~ 4 {

0.3 ——— S L. i —- [ S b e e ]

| 0.3 -——f«i i | ‘ ~ ;

: ' L Co ‘

| ' '1 . ‘. e . l' _,L.. ..
t ' * ;

0.2 smbmq—e—. - ICE CHESTrmmbed
‘ ICE CHEST/BOILER™ == =

. i

|
I DR A
+011 I - | — B
N f .20 ' |

1 i i
' 400 0 .60
FRACTION OF ICE MELTED
FIGURE 43 ICE (HEST ACCEPTANCE TEST RESULTS

74




Re

Hamilton____ U
Standard

LTIW 901 oydz 40
INTOd FHL LV 41VY¥ MOTd YFONVHOXd IVAH SA SSINFAILHLAT ¢v TANOIL

Lo (utwys) E\mﬂ IV MOTE MEONVHDKE v | i [ o ]
Lo (oesT) - - Qac m. ¥ ?2: o les) Lt (ses) : o
T T 002 fost [ B 1 2 SR I 1~ _ _
‘ : H A . _ ! a ol
- Lo m o M :
!_ e ol o T
: ] | . i
R S o N
: P m
i

|
SRS N N
O o

P R PR T SN PR

75



Hamiiton

OABION OF IR0 SMBCRAS T ( (NIPORA TION

Standard As

ANALYTICAL CORRELATION

Math model correlation has been established and has been utilized
to create a simple procedure to schedule ice chest water flow as a
function of heating rate, inlet water temperature and fraction of ice
melted.

Jce Melt

A math model of the ice chest/water boiler was presented in refer-
ence T and has been utilized to correlate the datas of Table II. Within
the heet sink subsystem the three areas that are considered in the
resistance to thermal transfer are:

1) Heat exchanger resistance.
2) Contact resistance between the ice module and the heat exchanger.
3) Resistance between the contact interface and the ice melt boundary.

The first two resistance should be constant within any one test while
the third will increase as the ice/water boundary recedes from the aluminum
contaimment. Overall system resistance between the LCG water and the melt-
ing ice will therefore increase with run time and can be described as a
decrease in component effectiveness with run time or fraction of ice melted.
This characteristic is evident from the data of figure k3. Comparison to
the analytical predictions of reference 7 is, however, not precise. The
reduction in effectiveness forecast with the original model was not as
severe as experienced in test. This was corrected when the ice cell con-
ductance during the melt process wes modified from a linear decrease be-
tween 255 and 71 Btu/hr-OF (490 and 136 kilojoules/hr-K) to a linear
decrease vetween 255 and 0 Btu/hr-°F (L90 and 0 kilojoules/hr-K). Original
predictions of contact conductance, 96 Btu/hr-°F (184 kilojoules/hr-K),
and heat exchanger conductance (figure 5 of reference 7) were cornfirmed by
this test series as evidenced by the data of figure Li. Revised math model
results are presented in figure 45 and incorporate corrections for flow
maldistribution at flows below 75 1bs. H20/hr (567 g H20/min.). The same
data without the flow maldistribution corrections is shown in figure 46.

Boiiing Mode

In the boiling mude the total ice chest thermal resistance includes
only those value~ ~ -ibuted to the heat exchanger, the interface contact
and the resistance .etween the interface and the boiling water. This
total is identical to the ice chest value at the point of zero ice melt.
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Utilizing the data of figure LU, the approximate heat sink temperature
experienced in test cen be calculated as follows:

€ = Tin - Tout
Tin = Toinx

or,
- (Tsn = Tout)

Tgink * Tin €

For heet loeds ranging from 750 to 2100 Btu/hr (800 to 2237 kilo-
Joules/hr), heat sink or water boiling temperature in test has been
estimated as 4C ¢ 1.0°F (L.L * 0.5°C). This is approximately 10°F

(5.5°C) below the values predicted during component design. This anomoly
has been traced to the intentional omission of the steam vent orifice in
the assembly. Insteed of the desired orifice restriction diameter of
0.381 inches (9.7 mm), a 0.47 inch (11.9 mm) diameter restriction was
present in the exhaust fitting. This difference in diameter would permit
the saturation pressure to seek a level of 0.25 inch Hg (846 N/m2)

[4b0°F (L4.L4OC) dew point] rather than the predicted 0.37 inch Hg (1252 W/m2)
[50.5°F (10.3°C) dew point] at heat loads of 1000 Btu/hr (1067 kilojoules/hr)
per orifice (there is one orifice in the vent line from each ice chest or
two per system). PRack pressure provided by this fitting will reduce to
0.186 in. Hg (629 ¥/m?) at a heat load of 750 Btu/hr (800 kilojoules/hr)
and provide a heat sink of 32.8°F (0.4°C).

Mission Performance Prediction

Results of the math model and the test results have been combined to
provide a procedure to enable prediction of ice chest operating cciditions
throughout its mission life. The working chert is presented in f.gure LT
and is utilized as follows:

Q = flcp (Tin - Tout)

and,
€ = Tin ~ Tout
Tin - Tsink
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vhere,
Q = heat load, Btu/hr
°} = jice chest water flow, lb/hr
cp = water heat capacity 1.0 Btu/1bv°F
€ = ice chest effectiveness, dimensionless
Tin = 1ice chest water inlet temperature, op
Tout = 1ce chest water outlet temperature,°F
Tgink = 1ice chest sink temperature = 32°F
Rearranging,
. Q
W =
€ T, - 32

in

Now for any given heat loed and water inlet temperature, ice chest
water flow may be determined as a function of unit effectiveness. This
relationship is shown in figure 48 for a heat load of 1500 Btu/hr
(1600 kilojoules/hr) at a water inlet temperature of 56°F (286.5K) and
for one of TO°F (294.3K). The plot is used as follows:

What is the ice chest flow rate 45 min. into a run at
1500 Btu/hr with a water inlet temperature of S56°F?

(heat load) (run time)
(wt. Ice) (latent heat of fusion)

(1500 Btu/hr) (45/60 hours)
(10.45 1bs.) (144 Btu/1v)

Fraction of ice melted

0.75

Working off the S6°F inlet temperature isotherm (figure 48),
the intersection at 0.75 fraction of ice melted indicates
unit effectiviness will be 0.56 and a water flow rate of
112 1v/hr is proper. Similarly, at T0°F inlet temperature
the proper flow would be 60 lbs/hr at 45 minutes.

This procedure may now be followed thru an entire preplanned
mission to provide prior knowledge of operating conditions.
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THERMAL STORAGE MATERIALS EVALUATION

ANALYTICAL INVESTIGATION
Introduction

This portion of the study has consisted principally of a literature
search and analysis of available data on various thermal storage materials
that were candidates for use in thermal storage systems.

The overell target of this analytical investigation was the doubling of
the cooling capacity per unit weight of the heat sink material over that
provided by water ice, while maintaining a low volume change and a density
equal to or greater than that of weter ice. Other target criteria for candi-
date materials were as follows:

1. Materials must be regenerable.
2. Primary concern is heat absorption per unit weight.
3. Thermal conductivity must be at least 0.3 BTU/hr-ft°F
(0.52 W/mK).
k, Heat absorption and rejection temperatures should be within
18°F (10 K).
Se Vapor pressure of material should be less than 1000 psia
(680 kN/m® abs).
6. Materiel must be safe to handle under operational conditions.
T. A non-corroding container must be possible.
8. Material must be non-explosive.
9. Material should have no toxic effects down to 20 ppm concentration.
10, Material must be non-radioactive.

None of the literature sources revealed any compounds that would simultaneously
meet all of the acceptance criteria targeted for the thermal storage material.
The work performed in this analytical investigation has resulted in establishing
techniques for predicting classes of molecules which may have large heats of
fusion.

The processes consideredi in the liter.ture search and subjected to
analysis were:

heat if fusion;
heat ol sol ition plus heat of fusici; end
solid-solid transitions.
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Literature Search

The initial program of study by the United Aircraft Research Laboratories
has comprised a canvass of eight major sets of abstracts of chemical literature
plus seven major sources of data for heats of fusion of chemical compounds.

The search included study of references to thermal storage systems as well as
to compounds with high heats of fusion. The sources searched are listed below
along with the earliest year searched. In all cases, the search was carried
through October 1973.

Chemical Abstracts (1937)

International Aerospace Abstracts (1961)
Scientific and Technical Aerospace Reports (1963)
Metals Abstracts (1968)

Nuclear Science Abstracts (1948)

Physics Abstracts (1950)

Engineering Index (1962)

Applied Science & Technology Index (1958)

In addition, the following data compilations were searched for suitable
materials with higher heats of fusion than water:

Handbook of Tables for Applied Engineering Science - p. 398-403

Circular 500 - Bureau of Standards

Bulletin 393 - Bureau of Mines

Physical Prcverties of Chemicel Compounds - R. R, Dreisbach -
Amercian Chemical Society

International Critical Tables - Vol. III, p. 131-13k

Results of the following two searches conducted by NASA and the Defense
Department were also reviewed:

NASA Literature Search #23680 - Heat of Fusion
Defense Documentation Center - Compoundis with Heat of Fusion
Greater Thaun Ice

One review article was found on the subject of heat storage (Ref. 8) at
lov temperature and others (Refs 9-16) were found which described materials
unsuited to the present epplication, but which included design data which
might be found useful in oversll system design.

Table III lists the heats of fusion and melting temperatures of the fifty
materials that were found to have heats of fusion per gram greater than ice.
Of the compounds on this list, there are only five that melt below 392°F
(473 K), and only one, hydrazine (Ref. 1T), that melts in the required temper-
ature range. The small improvement over ice (19%) makes hydrazine unattractive
because of its toxicity and corrosive properties.
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TABLE III
COMPOUNDS WITH HIGHER HEAT OF FUSION THAN WATER
Material Formula Melting Point AH,
°c (K) cal/gm | (J/g) ‘
Magnesium oxide MgO 2800 (3073) 460 (1925)
Beryllium oxide BeO 2547 (2820) 680 (2846)
Boron _E 2170 (2uh3) 490 (2051)
Aluminum oxide A1504 2045 | (2318) 260 (1088)
Magnesium silicate MgSiO3 1525 {1798) 156 (611)
_Silicon Si__ __1koo (1673) 433 (1804)
Cobalt silicide CoSig 1306 (1579) 238 (996)
Beryllium Be 1280 (1553) 250 (1046)
Calcium borate Ca0B,03 | 1162 | (1u435) 141 (590)
Magn~sium silicide MgoSi 1106 | (1379) 279 (1130)
Sodium fluoride NaF 995 (1268) 180 (153)
Lithium fluoride LiF 850 (1123) | 250 . (1046)
Sodium chloride NaCl g8oo | (1073) 116 (485)
Vanadium oxide Va0 2077 ] (2350) 22k (937)
Aluminum Al 660 (933) 96 (401)
Magnesium Mg 650 (923, 89 (3712)
Lithium Li 189 (453) 150 (627)
Carbon dioxide €O, -109.5 | (163.5) 137 (573)
__Barium oxide Ba0 -~ 1923 (2190) 93 (389) —
Calcium carbonate CaC05 1282 (1555) 126 (527
Calcium metasilicate CaSi0;, | 1512 [ (1785) 115 (bg1
Calcium oxide Ca0 2707 (2980) 218 (912)
Copper oxide Cus0 1230 (1503) ol (393)
Germanium Ge 959 (1232) 114 (W77)
Iron oxide FeO 1330 (1653) 107 (LL7)
Iron oxide Fe30), 159€ (1869) 142 (594)
Lithium hydroxide LiOH 462 (135) 103 (431)
Lithium nitrate LiNO3 250 (523) 88 (368)
Magnesium fluoride MgF, 1221 {(149L) 95 (397)
Manganese oxide MnO 1784 (2057) 183 (766)
Manganese oxide Mn30h 1590 (1863) 170 (YlQ
Nickel chloride NiCio 1030 (1303) 143 (L08)
Potassium fluoride KF 875 (11LR) 112 (L58)
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TABLE III (continued)
Material Formula Melting_ Point Ale
oc (K) cal/gu (a/g)
Sodium borate NaBO, 966 | (1239) 135 (
Sodium cyanide NaCN 562 (835) 89 (372)
Strontium oxide Sr0 2430 2703 161 ‘6[%}
Tantalum pentoxide Tas0g 1877 (2150) 109 (456)
Thorium dioxide ThO, 2502 (2865) 02 ()
Titanium T 1800 | (2073) 10 (435
Titanium dioxide Ti0, 1825 2098) _1u3 (598)
Titanium oxide T1i0 991 | (126h) 219 (916)
| Yttrium oxide Y503 2227 2500 111 (Lob)
Zine Sulfide ZnS 1745 | (2018) 93 (389)
Zirconium oxide Zr0, 2715 (2938) 169 (707)
{Hvarazine Niﬂh < (L) 22 gt
Lithium hydride LiH 686 929, 1110
Ammonium carbarate NH,COoNH), | L ___JY?lB" | 105 (690). —
fluoride
Lithium aluminum LizAlFg 785 (1058) 147 (615)
fluoride _
Potessium aluminum K3AlFg 1020 (1293) 173 (724)
fluoride
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Although the governing criterion for selecting the compounds listed in
Table III has been a large heat of fusion per gram of material, it might be
useful to consider one material that was found to have a larger heat of
fusion than water on a volume basis. Gallium (Ref, 18) is such an element,
melting at 84°F (307 K) w:ltg a heat of fusion of 19 cal/gm (80 J/g) having
a solid deneity of 5.9 g/ and a 1iquid density of 6.1 g/cm3. Taking an
averag density 05 6 g/cm gallium has a heat absorption capability of 114
cal/cm (480 J/cm®) which is a 43% improvement over ice on a volume basis.
Further advanteges of gallium are its low toxicity and its high thermal
conductivity. Although heat absorption per unit weight of gellium is only
one~-fourth that of ice the volumetric improvement might permit advantageous
trade-offs for certain applications, particularly vhere complex regeneration
systems may lower the overall effectiveness of materials with a higher
intrinsic heat of fusion per unit of weight. Although no further work in
this directionr was done under this program, such trade-off studies mey prove
profitable in the future.

A number of references concerning heat storage applications to solar
energy (Refs 19-2L4) at higher temperatures were found, which report design
features which might have some value in the design of lower temperature heat
storage hardware. However, no use was made of these references in the
present study and they are reported for completeness only.

Various methods for the estimation of heats of fusion were found (Refs.

25-35) with the method of Turkdogan and Pearson, (Ref. 35) described later,
as the most useful.
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Heat of Fueion of Pure Materials

Thermodynamic Consideration

The molar heat of fusion is relited to the melting point and to the molar
entropy of fusion (Ref. 36) through the expression:

AHf = ‘I'fASf

vhere Tf is the melting temperature in degrees absolute at one atmosphere pres-
sure. Thus, a high molar heat of fusion may result from either a high melting
temperature or a high molar entropy increase on melting. Since the melting
temperatures of compounds to be considered in this study are restricted to the
range of approximately 23 to 149°F (268 to 338 K ), the candidates with the
highest molar entropy of fusion will be expected to result in the highest
nolar heat of fusion.

The molar increase in entropy that occurs upon the melting of a solid is
given by the Boltzmann expression (Ref. 37),

AS Rl WL
= n—.

f
Wg

whe:r2 Y; and Wg are the number of states possible in the liquid phase and in
the solid phase respectively, and R is the gas constant. The entropy of the
liquid phase is always greater than that of the solid phase because of the
additional degrees of freedom or number of states that are possible. These
additional states arise from four principal sources. First, the positional
entropy increase is the result of the loss of long distance order that existed
in the crystal., Second, additional modes of vibration and rotation may be
possible in the liquid state and if these states do not also occur in the
crystal, a large entropy increase can occur on melting. Third, the more varied
orientation possible for large assymetric molecules in the liquid state can
cause an entropy increase., Finally, for large linear molecules such as ne-
butane, the extra configurations possible in the liquid state that are not
possible in the closely packed solid, will cause an entropy increase on melting,
Thus a large molar entropy increase is likely to be assouciated with large,
multi-atom molecules that have rigid, restricted solid structures. Since there
is a weight consideration for space applications, a larpe entropy change per
mole must be accompanied, for purposes of this study, by a low molecular weight
in order to insure that the entropy chenge, and thus tlie heat absorbed, on a
per granm Lasis will be large.
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Prediction of Promising Compounds

The preceding considerations were used to formulate a list of com-
pounds (Table VI) which might have high heats of fusion. In estatlishing this
list, the first step was the tabulation of positive radicals shown in Table
IV primarily from the first three periods of the Periodic Table. The only
multi-atom radical in the list is WH,*. For this type of radical, the mean
atomic weight is defined as the radical's molecular weight divided by the
number of atoms in the radical., For single atom radicals, the mean atomic
veight is identical to the radical's molecular weight.

A similar list (Table V) was made of negative radicals and their mean
atomic weights were calculated., A listing was then made of compounds which
could be formed from the positive and negative radicals with the lowest mean
atomic weights (Table VI).

It is interesting to note that many compounds on this list are known to
have large heats of fusion. These are water, ammonium carbamate, ammonia,
lithium hydroxide, lithium hydride and hydrazine. There are other compounds
on the list that have suitable melting points for which no heat of fusion data
is available, These are lithium acetate, ammonium biacetate, and hydroxylamine.
There are other compounds on the list for which melting point data are not
available., The three compounds with suitable melting points all have estimated
heats of fusion that are higher than ice.

Estimate of Heat of Fusion
The method of Turkdogan and Pearson (Ref. 35) allows the heat of fusion
to be calculated from melting point, molecular weight and number of atoms
present in the molecule. For this calculation, first AT is determined from:

AT‘Tf-298

where Ty is the melting point in °K. Then, Lg/Ty is determined from a plot
of Lf/Tf vs AT according to the following empirical list of data:

AT Le/Ty
0 1.9
300 2.5
700 3.0
1200 3.2

vhere Lf = cal/mean gram atom. The mean gram atomic weight is the mole~
cular weight divided by the number of atoms. In Table VII the experimentally
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TABLE IV
POSITIVE RADICALS
|_Radica) Hamg J.M__&m
-Atomic Veight
Ii : lithium 1
lla’ sodium : ggg 5.9
:Ij‘h gEmonive ; 18 2
2 6
Be ¥* 1 ; L
hadi T 1 9 "
— borol 1 10.8 49_9 Q
i earb:: 1 12 12.
Mg Hagnesiua 1 2
Al aluminum 1 - —£1.a
Si** | gilicon 1 g o
phosphorous 1 2
S v [ gulfur 1 g; =
32
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TABLE V
NEGATIVE RADICALS
Radical Mean
| Radical | Neme £ Atoms | Molecular Weight Avomic Weight |
CoH30o acetate T 59 8.4
H(C,H30,) | hydrogen acetate 15 19 7.9
c1- chloride 1 35.5 35.5
AsQ, = argenite 3 107 35.7
N3~ azide 3 42 1k
B 50§~ pentaborate 13 182 1k
BoL; peroxyborate h 58.8 k.7
B0, i' tetraborate 11 155.2 1k.1
Broz bromate n 128 32
Br bromide 1 80 80
NH,CO, carbamate 6 60 10
coy = carbonate L 61 15.25
11003' hydrogen carbonate 5 62 12.2
= chlorate N 83.5 20.9
_Emhl- perchlorate 5 99.5 19.9
Croy, = chromate 5 116 23.2
Cro07 = dichromate 9 216 24
CrO_e.i peroxychromate 9 180 20
OCN_ cyanate 3 b2 1k
CN —— cyanide 2 26 13
BF), fluoborate 5 86.8 17.3
PFg~ fluophosphate T 1L5 20.7
_1-=‘_=__- fluoride 1 19 19
HF, hydrogen fluoride 3 39 13
CHO, - formate L ks 11.25
No;- - nitrate 4 62 15.5
No; - nitrite 3 L6 15.3
C}h = oxalate 6 88 1.7
BP0 = [hypophosphate 10 160 16
Asol‘ = arsenate 5 139 27.8
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mABLE V (continued)
Radical Mean
Radica) Hame #_Atoms Moleculer Weight Atomic Weight
HPO), ™ orthophosphate 6 96 16
ﬁ;ﬁf orthophosphate 7 97 1h
HyPO5= hypophosphite 6 65 13
HoPO3™ | orthophosphite 6 81 13.5
NH,8037 | sulfamate 7 98 12.6
80y © | sulfate 5 96 19.2
HSO) - bisulfate 3 97 6.2
550 = peroxydisulfate 10 192 19.2
S = sulfide 1 30 30
HS ™ hydrosulfide 2 31 15.5
803" | sulfite 13 78 19.5
[ HS03~ bisulfite 5 79 15.8
SCK = | thiocyanate 3 56 18.1
KHy amide 3 16 5.3
Bollg ~ | diborane 8 21.6 3.5
BgHg _ pentaborane 14 63 .5
“B"eﬂ, Tluoberyllate 5 85 17
[~ SiFg = | fluosilicate T 142 20.3
i hydride 1 1 1
—"Wg = T mangenate 5 119 _2h
HCo0) = | hydrogenoxalate 7 89 12.7
0 = oxide 1 16 16
AlH), - Aluminum Hydride 5 31 6.2
OH - hydroxide 2 17 8.5
T - fodide 1 127 127
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COMPARISON OF EXPERIMENTAL AND CALCULATED
VALUES OF THE HEAT OF FUSION OF SELECTED COMPOUNDS

:

Mole Wt
¥ Atams

8
13

N

T.1

T.1

5.3

®
TABLE V1I

Tp Le cal/

|_Compound K_JAT JLg/Ts Atom
LiOH 694 | Lu6 2.5 1730
LiF 1121 | 873 3.0 3370
LiH 959 | T11 | 3.0 2050
NHoCOoNH), 418 | 170 2.3 962
NH)HFo 398 | 150 | 2.26 835
NH), ena | -21 | 1.9 520
Ho0 213 | -25 | 1.9 518

216
259
T20
136
126

o8

-

86.3

_Cajc
L U/g) [Cal /e

(90k)
108L)
3010)
(569)
(528)
(k10)
(362)

208
2ho
1110
165
275
95
79

(691)
(1150)
(376)
(331)
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determined values for heats of fusion of selected compounds are compared
with values calculated by the method of Turkdogan and Pearson.,

Although the inaccuracy of the method for ectimating heats of fusion in
this set of comparisons ranges from 4% to about 54%, it should be noted that
those cases for which the theory predicts too high a value for the heat of
fusion are in error by less than 10% while the large errors occur in under-
estimating the value of heat of fusion. It would thus appear that use of this
estimating technique will in general give a reasonably accurate or conservative
result. This method was therefore used to estimate the heats of fusion of
lithium acetate, smmonium biacetate and hydroxylamine as listed in TableVI,
The estimated heats of fusion for each of these compounds is somewhat higher
than that of ice.

Supplementary Compound Select:ion

The preceding paragraphs have emphasized the desirability for searching
the literature especially for compounds with low mean atomic weights and this
activity has constituted the major portion of its search., In addition, com-
pounds that were iknown to melt in the proper range were screened for hign heat
of fusion that might occur due to unforeseen anomalous effects. Those compounds
for which no heat of fusion data were availasble are listed in Table VIII, in-
spite of their relatively high mean atomic weights. Measurement of heat of
fusion of such compounds would be desirable.
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TABLE VIII

SELECTED COMPOUNDS MELTING IN THE HEAT SINK TEMPERATURE RANGE

Melting
Molecular Mean Atomic —noint
Compound Weight #Atom Weight °C (K ]
NS, 188 T 27 10 | (283)
POC1,Br 198 5 39.6 13} (286)
POC1Bro 242.5 5 48.5 30 (303)
PI; 412 b 103 61.5] (334.5)
PSBr 303 5 60.6 38 | (311)
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Butectic Mixtures

A eutectic mixture acts as pure(or single) materiel in that it has a
well defined melting point and its freezing and melting temperatures are the
same, Table IX contains 2 list of mixtures that form eutectics with melting
points in the proper temperature range for this study. Since some of the pure
components in this list have large heats of fusion but do not have suitable
melting temperature, the formation of a eutectic melting in the desired range
could result in a material having both a large heat sbsorbing capacity and a
satisfactory melting temperature.

In addition to the mixtures shown in Table IX the thermodyneasics of two
other systems appears promising. The eutectic mixtures possible in one of these -~
the ammonium fluoride system - are indicated in Table X,

Ammonium bifluoride is a white translucent solid availeble at about $1/1o as
vhite flakes. It is used in industy for metal pickling and cleaning, glass
frosting, 0il well acidizing, building cleaning, and removel of iron stains from
textiles. This compound has a heat of fusion over three times that of ice (Ref.
38) but its melting point is outside the target temperature range. However,
some of the eutectic mixtures shown do have suitable melting points, and perhaps
they retain a high heet of fusion also.

The compound smmonium carbamate (NH2COoNH)), melting at 145°C (418 K), has
a heat of fusion of 165 cal/gm (690 J/g) (Ref. 39). This compound may form
eutectic mixtures with water or ammonie that have sultable melting points,
although the literature search has failed to discover them.
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TABLE IX

MOLTEN SALT EUTECTIC MIXTURES WITH I(W MELTING POINTS

Sal‘t stt.em Melting Point
°C (k)
SnBr),-SnI), 19.4 (292)
AlBry-SnBr), 20 (293)
AsBr,-PBrg 23.5 (296.5)
AlBry-AsErs 25.5 (298.5)
Sbbr,-SnBr), ) 27—4“”* (300)
Ca (NO; ),=Na (NO, ) -NH),NO, k2 (315)
Ca(NO3)2-NHhNO$- - - by A*W 317)
LiNOg-N,Hy, + HNO3 25 (298)
LANO5-AgNO .-NH, N0 | 52 (325)
GaCl,-Ni),C1 o 58 . (331)
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TABLE X
MELTING POINTS AND HEATS OF
FUSION FOR THE AMMONIUM FLUORIDE SYSTEM
‘ o1n : | Densit
Butectic Cal/gm | !JZE! glca ‘

NH),F 230 (503)
NH), F-NH)HF, 109 (383)
NH)HF, 125 (398) 275 (1150) 1.5
NH),HF p=NH),H3F), -6 (267)
NH)H<F), 23 (296) 49 (205)
NH)H 3F),~NH),H5Fg -1k (259)
NH)HFg -8 (265)
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Systems Combining Heat of Fusion end Heat of Solution

Some solids dissolve in water with the absorption of large amounts of
heat. Table XI shows those salts with known values for heat of solution above T1.T
cal/gm (300 J/g). In this case, as in the fusion process, entropy is increased
because of the destruction of the ordered arrangement of molecules in the solid
state, and the formation of new arrangements having a greater degree of randome
ness then the original. The dissolution of the s80lid requires that the lattice
energy be overcome, as it is in fusion with thermal energy. This energy is
supplied by the solvent through solute-golvent interactions. The formetion
of these solute-golvent structures is an ordering process and therefore results
in the evolution of heat. The relative magnitude of the randomization of the
golid molecules by dispersion and the ordering by solvation will determine if
the overall process will absorb or release heat. In addition, the order that
exists in the solvent is disrupted by the eddition of solute and this contri-
butes an endothermic effect to the total.

The magnitude of these effects depends in a complex manner upon the size
of the solute particles and thelr charge, as well as the degree of order that
existed in the solid. Hydrated selte, compared to their anhydrous counterparts
always have a large endothermic heat of solution due to the elimination of
entropy decreasing solvent ordering. A procedure for obtaining a large heat
absorption from a salt-water system could involve the melting of water at 32°F
(273 K), followed by dissolving the salt in the water to obtain added heat absorp-
tion from the heat of solution. The regeneration of these salt-water mixtures
may be accomplished by nothing more complicated than & slow cooling to precipi-
tate cut the salt-hydrate, then further cooling to freeze the water. The regen-
eration step when carried out under zero gravity conditione may result in a more
uniform, dispersed mixture of hydrate and ice and therefore a more uniform and
reproducible heat absorption capacity.

Table XI shows that only a few compounds are known to have & heat of solu-
tion greater than the heat of fusion of water, 3C cal/gm (333 J/g). It is
necessary to exceed this value, since otherwise the salt could simply be re-
placed by more water to obtain the same absorption capaclity. The salt must
also have a high solubility in water in order to use as little water as possible,
and not diminish the overall effect of the large heat of gsolution. The table
shows that potassium thiocyanate has the largest heat of solution, and a very
large solubility in water. This compound is soluble in water to the extent of 1
mole of solute (97 g) to 3 moles of water (54 g). The heat of solution is
126 cal/gm (528 J/g) of solute. However, if the weight of water needed is con-
sidered then it ig 81 cal/gm (339 J/g) of water-salt mixture.
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TABLE XI

COMPOUNDS WITH HEATS OF SOLUTION
APPROXIMATING THE HEAT OF FUSION OF WATER

Name

AH

Formula Cal/gm | (J/g)
ammonium acid carbonate NHyHCC 84,6 (354)
ammonium chloride NH),C . T6.5 (320)
amonium cyanide NH),CN 98.7 (%13)
ammonium nitrate NHLNO4 79.1 (331)
ammonium nitrite NH),NOo Th.3 (311)
ammonium oxalate hydrate (NH), ) 5Co0L*H0 81.0 (339)
ammonium thiocyanate NH,,CNS T4.6 1312)
boric acid H3BO4 87.5 (366)
potessium chlorate KC103 83.7 (350)
potassium acid fluoride KHF 76.5 (320)
potassium nitrate KNO3 83.9 (351)
potassium acid oxalate KHC,0), 74.8 (313)
potassium tetraoxalate KHC,0) *H2C50,| T2.4 (303)
potassium thiocyanate KCNS 126 (528)
rubidiuwm thiocyanate RbCNS 100 (b19)
sodium cyanate NaCNO 72.9 (305)
sodium cyanide hydrate NaCN*2H,0 90.3 (378)
sodium acid oxalate hydrate NaHC,0), *H 0 73.6 (308)

Solubility at 32°F
(273 K)gm/100 ml

100pm 3 ))H.,0
11.9

29.7

118.3

128
1.95
T.1

41 (21°F)
13.3

2.5

1.8 (13°F)
177.2

1.7
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The heat of fusion allows ice to adsorb 80 cal/gm (333 J/g) of ice or
28.5 cal/gm (119 J/g) of ice-salt mixture. This brings the total to 109.5
cal/gm (458 J/g) of ice salt mixture which is a 30% improvement over the use
of ice aloue. Thus, a powdered salt and ice mixture is placed in the heat
exchange vegsel, the ice melting and absorbing heat, then the salt dissolving
in the water to absorb more heat.

It is well known (Ref. 36) that the heat of solution is concentration-
dependent, and the values given in the literature for potassium thiocyanate
and other salts are for the infinite dilution case. The heat of solution is
measured at several successively smaller concentrations until the heat of
solution per gram of solute no longer changes with concentration. This value
is taken as the heat of solution at infinite dilution, and is very useful
for theoretical camparisons of salts in a single solvent, since it contains
no perturbations due to solute-solute interactions. However, for heat sink
applications, concentrations of salt near the saturation point must be used
to gain maximum advantage from the process. Tb :-refore, if KCNS, for example,
is added to water to make a saturated solution, the first salt added absorbs
an amount of heat essentially equal to that for the solute dissolving in
pure water, whereas the last KCNS is added to a solution that is highly con-
centrated. It is impossible to predict how much smaller the total heat of
solution will be because the concentration at which solute-solute interactions
begin to be important cannot be predicted. There will be a concentration
before the saturation point is reached at which further additions of solute
will no longer be justified due to the decreased heat of solution. The data
necessary to make the various trade-offs are accessible only by experiment,

102



So0lid-Solid Transitions

These transitions typically are not associated with large entropy changes,
and therefore do not have large heat absorbing capability. The increase in
degrees of freedom from one solid form to another, does not have the same
potential for large effects as does the transition from solid to liquid. The
Bureau of Standards Table in Circular 500 lists 18 solid-solid transitions in
the temperature range from 230°F (268 ) to 149°F (333 K). These have heats
of transition ranging grom 0.5 cal/gm (2.1 J/g) to 43.5 cal/en (182 J/g) and
pressures up to 5 x 100 mm Hg (667 MN/m2) are necessary.

Solid-solid transitions are important only in that some solids undergo
premelting transitions where some entropy changes take place before the solid
undergoes fusion.

The solids with transitions close to their melting points were checked
for high combination transition-fusion heat absorption and none were found.
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Conclusions

The results of a literature search for a material or process with a heat
absorption capability greater than ice, 80 cal/gm (333 J/g) lead to the
following conclusions:

1. There is no data reported in the available literature that defines
a suitable candidate thermal storage material which offers a sub-
stantial improvement over ice in heat absorption capability per
unit weight in the temperature range 23 to 149°F (268 to 333 ).

2. There sre several pure materials, and several eutectic mixtures
melting in the proper range, that offer promise of higher heat
absorption capability than water-ice but for which no data is
currently available,

3. A combination of two heat absorption processes, the melting of
water-ice, followed by dissolving a salt in water, may be able to
supply a heat absorption 30% greater per unit weight than that
obtained from the use of water-ice alomne.

There appear to be no other phase changes or processes described in the
available literature which will equal or even approach the heat absorption
currently available from heat of fusion in the temperature and pressure ranges
of interest.

In the following section the heat of fusion has been experimentally
determined for certain compounds that appear to offer a good possibility of
having substantially higher values than water-ice.

The heat absorbing capability of a combination of two heat absorbing
processes - heat of fusion of water-ice followed by heat of solution of salt
in water, and methods for the regeneration of the water-salt mixture to achieve
ice-salt separation are investigated.
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EXPERIMENTAL INVESTIGATION

Introduction

The analytical portion of the study, comprising a canvass of eight major
sets of abstracts of chemical literature plus three major sources of data for
heats of fusion of chemical ca.pounds, did not reveal any compounds that
would simultaneously meet all of the acceptance criteria targeted for an
improved thermal storage material. The survey did, however, reveal certain
areas where acquisition of experimental information which was not available
might provide a way to significently increase the present heat storage capabil-
ity. One of these areas was the use of the heat absorption available from
dissolution of salts in melting water-ice. The study revealed that an
extremely soluble salt capable of dissolving in water with a heat absorption
greater than 80 cal/gm (333 J/g), the value for the heat of fusion of water-
ice, would upgrade the heat sink absorption capability. For example, a
salt with a heat of solution of 120 cal/gm (500 J/g) that dissolved to the
extent of 100g of salt to 100g of water would result in 25 percent more heat
absorption over the use of an egquivalent amount of water-ice, It was expected
from the literature search of the previous portion that there were salts which
fit the dual criteria of high heat of solution and high solubility.

In addition to the combined heat of fustiun-heat of solution absorption
process of a salt and vater-ice, an investigation was undertaken to explore
the possibility uf using fused salt eutectic mixtures that melt in or near the
temperature range -5 to 65°C (268 to 338K). Also, compounds that seemed to
satisfy certain common characteristics of materials with high heats of fusion --
that is, low molecular weight, high number of atoms and rigid solid structure --
were investigated.
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Experimental Methods

Two experimental techniques for measuring heat absorption were used in this
study. First, a Beckman Model DSC-1 differential scanning cal rimeter was
used for measurements of the heat of fusion of single compounds and eutectics.
Second, a Paar rotating bomb calorimeter was used for the measurement of heat
of solution and regeneration experiments. This section describes the operation
of these instruments and the procedures used to obtain the data in the following
sections. It was the intent throughout this work to adhere to the tecbkbaniques
required to achieve a level of accuracy necessary to determi:e if the neat
absorption of the compound or process was significantly grester than that of
water-ice. Emphusis was placed on verification of concepts, evalaation of a
larger number of candidate materials, and identification of most promising
candidate materials for development and application rather than an achieve-
ment of high precision in measurement for a small number of materials.

The Beckman Differential Scanning Calorimeter

The operation of the Differential Scanning Calorimeter (DSC) is based on
the temperature control of two miniature sample holders, one for the sample and
one for a reference located in the sample holder assembly (see Fig. 49). The
system consists of two separate control loops, the first for average tempera-
ture control and the second for differential temperature control. 1In the
average temperature loop the electronic programmer provides an electrical
signal proportional to the temperature desired. This signal is compared to
the average signal from platinum resistance thermometers permanently embedded
in the sample and reference holders. When this feedback signal culls for heat,
both reference and sample holder are brought up to the proper temperature
together.

In the differential temperature control loop, signals representing the
sample and reference temperatures measured by platinum resistance thermometers
are fed to a circuit which determines whether the reference or sample tempera-
ture is greater. This error signal will cause a heater output sufficient to
equalize the temperature of sample and reference. A signal relating the
difference in heater power between sample and reference is fed to a recorder.
The integral of the resulting signal is the internal energy change, and the
direction of the signal indicates whether the process occurring in the sample
chamber is endothermic or exothermic.

For the series of runs whose results are reported here, a standard com-
posed of 5.81 mg of Indium metal was run in the sample holder while the
reference holder was empty. The resulting endothermic peak occurring at
152°C (b25K) was integrated by tracing the peak and weighing the tracing paper.
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This calibration procedure was repsgted each day the DSC was run. The samples
vere run as the standerd was, with the reference pan empty, at a temperature -
scan rate of 10K/minute. Each run was repeated at least once, and five sam-
ples of each material were prepared. Therefore, each heat of fusion’'is the
result of at least ten determinations.

For those samples whose melting points were close to room temperature,
a dewar attachment allowing the cooling of the ssmple holder to below ambient
temperatures was used. The dewar filled with liquid nitrogen enabled runs to-
start at about 30K below the expected melting point.

The eutectic samples were made up in a dry box since many of the compo-
nents are hygroscopic. The sample containers and covers are made of aluminum
and were weighed before being placed in the dry box. After the samples were
placed in the containers they were sealed with a crimping device and removed
from the dry box for weighing. The samples used varied in weight from 5 to
L0 mg. ‘faterials that are not nygroscopic were prepared in a fume hood.

The Rotating Bomb Calorimeter

The apparatus consists of a stainless steel, platinum lined combustion
bomb, calorimeter, thermometric system, power input measuring system and
liquid nitrogen cooling system. The calorimeter schematic is shown in Fig.

50 and a photograph of the apparatus is shown in Fig. 51. The bomb mav be
rotated inside the calorimeter and thus is suited to measurements of heats

of solution and mixing. The bomb has an internal volume of 331.8 ml (Paar
Instrument Co. Catalogue No. 1004), teflon head gasket and velve packing and
a Kel-F valve seat. In the present work the valves were kept closed during
all measurements. All internal parts of the bomd are plated with 10% iridium-
platinum. A »latinum crucible containing the sample salt was mounted in an
offset gimbal so that the bomb can be set at a 45° angle for filling. About
35 grams of salt can be accommodated in the crucible. The ralorimeter can
surrounding the bomb cantained about 2 liters of a 50-50 by volume methyl
alcohol-water mixture that freezes at -100°C(173K). During operation the bomb
was completely immersed in this liquid vhich was kept at a known level for

all runs by veighing the calorimeter can and contents before each run on a

5 kg capacity Seko 1LO series balance. The calorimeter can also contains a
stirrer, rotating mechanism, platinum resistance thermometer, and a T5 watt
heater. The stirrer is operated at a constant 450 rpm using a belt drive from
& synchronous motor. The rotation mechanism operates from & synchronous

motor through a drive gear at a constant 10 rpm.

The thermometric system includes a platinum resistance thermometer of the

flat calorimetric type (Leeds & Northrup type 8160B), a G-2 Mueller bridge
(Leeds & Northrup type 8069B), and a high sensitivity gelvonometer (Leeds &
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=)
(D) SPUIT JACKET LID N
(1) BomB () LID WATER LINE

(3) ROTATING GEAR MECHANISM () BOMB DRIVE SMAFTY

(¢) CALORIMETER CAN (%) JACKET STIRRER MOTOR

(5) JACKET WELL (1) SYNCHRONOUS DRIVE MOTOR

() CALORWMETER JACKET (1) POSITIONING SOLENOID

(1) JACKET STIRRERS (1) CALORIMETER CAN STIRRER MOTOR

FIGURE 50 SCHEMATIC OF ROTATING BOMB CALORIMETER
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Northrup type HS2284d). The ralvonometer is mounted on a Julius suspension and
the light beam is projected vertically over a pvath of two meters. "he thermo-
meter was certified by L&N in April 1974 and the bridge was certified in 1962.
Both the thermometer and bridge are periodically checked using a triple point
cell and standard resistor. The sensitivity of this svetem is .001K/mn of
galvonometer movement.

The calorimeter can is surrounded by a Jacket containing 10 gallons
(3.785 x 10-2M3) of fluid that completely enclosed it on all sides (see Fis.
50). A 50% by volume methyl alcohol-water mixture was used in this Jacket
in such a way as to minimize the heat flow to or from the calorimeter can.

By adjusting the Jacket fluid temperature to within 1K of the calorimeter can
temperature, the calorimeter was effectively under adiabatic conditions. A
liquid nitrogen cooling system permitted operation at jacket temperatures
below 0°C. This system consisted of a 50 liter dewar, a high pressure nitro-
gen bottle to pressurize the system, insulated polyflow tubing and & copper
tube suspended near the bottom of the Jacket €luid. Bv “orcing LN2 through
this system it was possible to reduce the jacket temperature from 20°C

(293K) to -15°C (258K) in one hour. After the run had begun the jacket
temperature was regulated manually by short bursts of LNo or by activation

of heaters located within the Jacket fluid.

The temperature of the calorimeter fluid in the can was lowered to the
starting temperature for a run by the use of dry ice lumps, about one pound
being sufficient to lower the temperature of the calorimeter fluid to -15°C
(258K). The temperature of the filled bomb was lowered by placing the bomb
itself in a styrofoam chest surrounded by dry ice. The bomb was then placed
in the calorimeter and allowed to come to temperature equilibrium with it.

If this temperature was satisfactory for the run desired, then the jJacket
temperature was adjusted to within one depgree of the temperature of the calori-
meter can whose value was monitored everv two minutes as the run proceeded.

A cartridese heater immersed in the calorimeter fluid was used to raise the
temperature of the bomb, its contents and the calorimeter cen and fluid to a
temperature above that of the melting point of the water-ice or salt-ice mix-
ture used in the bomb. The amount of electrical energy in watts applied to
the calorimeter was monitored with the use of a Weston wattmeter Model L432.
he energy balance is:

Electrical Fnersy in (J) = AT (C.o1 * Cpomp * Cfluid) + heat absorbed (1)
where C.,15 Cpomps 8Rd Criuiq represents the heat capacity of the calcrimeter
can, the bomb and its contents, and the calorimeter fluid respectively, in

J/K and AT is the temperature rise of the calorimeter. When the electrical
energy applied to the calorimeter is not equal to the temperature rise term,
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then the difference represents a heat sbsorption process that is occurring
in the bomb.

Calibration and Checkout of Bomb Calorimeter Technique

In order to test the validity of equation (1) the experiments whose
results are reported in Table XII were carried out, In these experiments there

was no heat absorption process occurring in the bomb and consequently the
electrical energy input should have been exactly equal to the temperature
rise term. For convenience of notation, the temperature rise term, AT
(Ceql * Cpomb * Criuiq) has been designated "Enerey out" .

TABLE XII

HEAT BALANCE TESTS ON RQTATING BOMB CALORIMETER

Electrical Energy
Energy In AT CroTAL Out %
Run # Joules K J/K Joules Difference
1 108,000 7.60 14,340 108,983 .9
2 72,00C 5.15 1h,3k2 73,861 2.6
3 108,000 9.00 11,820 106,462 1.b
L 72,000 5.05 11,822 70,340 1.5
5 108,000 9.50 11,753 111,700 3.4
6 72,000 6.15 11,764 72,350 .5

In runs 1-0 sho'n in Table XII, the bomb contained 100g of water and the
temperature was varied from about +5°C (278K) to +15°C (288K). Equation (1)
vas used to calculate the energy output from the specific heat capacity of
the calorimeter can, Ccal’ the bomb, Cbomb and the calorimeter fluid, Cfluid‘
Thus, the CmOTAL in Table I was calculated from:

Coorar = Ceal*Weal * Coomb” “bomd * Ceiuia Wrluid (2)

vhere wcan’ wbomb and wfluid are the weights of the calorimeter can, bomb,
and fluid, respectively. !ater was used as the calorimeter fluid in runs

1 and 2 and in runs 3-6 a 50-50 by volume mixture of methanol and water

vas used. This difference accounts for the change in Cpgrpr after the second
run. The average difference between the electrical energy input and the
energy output as measured by the temperature rise was 1.0%.

The heat of solution measurements described in the next section were

made in the same way as were the experiments leading to the results of Table
XII, Rotation was started to mix the salt and water after a stable temperature
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had been reached. ODuring the dissoluticn, the temperature of the celorimeter
dropped by a few tenths of a degree. 'hen the temperature was again stabilized
the heater in the calorimeter was turned on for 60 seconds at 60 watts to
inject 7,600 Joules of energy. The temperature rise caused by this energy
served to calibrate each run and was fairly sensitive to the amount of celori-
meter fluid present. The figure calculated from the heat capacity of the cal=-
orimeter and the amount of celorimeter fluid used in the heat of solution runs
was 12,150 Joules/K.

At this pouint in the experimental progrem several runs were made using
100 ml of water in the bomb and starting at sub-freezing temperatures in order
to determine the heat of fusion of water-ice as a calibration check on the
calorimeter procedure. The results of these tests are shown in Table XIII.

The electrical input from the cartridge heater ranged from 30 to 60
watts, vith on-times from 60 to 100 minutes. The temperature changes ranged
from about 6 degrees to almost 19 degrees. The average value obtained for the
heat of fur.on is T8.7 cal/gm (329 J/g) which is 1.3% below the literature
value of 79.8 cal/gm (333.5 J/r). The standard deviation of these runs is
3.8 cal/gm (15 J/g). The largest uncertainty in evaluating the heat of fusion
is in the determination of CTOTAL vhich is defined as:

CTOTAL = cbom.b + Ccalorimeter + cfluid (3)

The first two tarms on the right in (3) are invariant and since the bomd
and calorimeter are nearly all stainless steel and their combined weight is
7,976g, the total heat capacity for bomb and calorimeter can be calculated.
?sing i 3p (specific heat capacity at constant pressure) of UuL5 J/kg-K

Ref. 40).

c +C = 3549 J/K (%)

bomb calorimeter

In the runs of Table XIII, the bomb contained 100g of water at 4,180 J/ke-K
for a total of 418 J/K which must be added to the value from Eq. (L) to give
a total of 3967 J/K. The third term Cp1uig 18 very sensitive to the amount
of alcohol-water mixture in the calorimeter can. Those runs that exhibited
a CpopaL that was low, were run with less calorimeter rluid than those showing
a high Cpopar,. The average amount of fluid used was 2245 cm3, and this varied
by about -125 to +400 em3. The Cporap, calculeted from c, for the alechol-

water mixture of 3550 J/kg-K is 11,500 J/K, when 2122 gms of fluid is used.

“he experimental determination of Cqpqoppp, was made in two ways. First
the initial slope of a plot of electrical energy input versus temperature rise
was determined. Secondly, at the end of the run, when it was certain that no
more phase changes would be taking place, a known small amount of electrical
erergy was injected and the subsequent temperature rise measured from the
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difference between the equilibrium temperatures before and after the heater
was activated. B3oth of these methods gave Cpopa;, ranging from 10,500 J/K
to 13,000 J/K, depending on how much calorimeter fluid was present.

TABLE XIII

HEAT OF FUSION OF WATER-ICE

lectrical Enerayv AH
Energy In AT CroTaL Out HoO
Run # Joules K J/K Joules [Callem | (J/8) |
1 108,720 6.85 11,06¢C 75,761 | 78.8 (330)
2 108,000 6.70 11,060 Th,102 81.1 (339)
3 108,360 6.80 11,060 75,208 79.3 (332)
4 158,400 2.70 12,900 125,712 | 78.2 (327}
5 115,200 6.23 12,200 80,367 | 83.3 (3:8)
6 172,800 10.89 12,900 140,481 77.3 (323)
T 233,179 17.189 11,500 197,67k 84.9 (355)
8 220,884 10,49 11,500 180,681 .6 (312)
9 2k6,015 18.608 11,500 213,992 76.6 (320)
10 220,020 16.260 11,500 186,290 78.0 (330)
11 220,158 16.249 11,500 186,864 79.7 (333)
12 212,552 15.926 11,500 183,149 70.3 (20h)
13 235,179 17.590 11,500 202,285 8.7 (329)

Measurements of Heats of Fusion

Heats of Fusion for Selected Compounds

The compounds for which heats of fusion were measured as part of this

program are listed in Table XIV.

This list was supplemented by selection

of additional compounds known to melt in the proper range for space suit
applications since on occasion anomolous effects have resulted in occur-

rence of unexpectedly large heats of fusion.
reported in Table XIV are the average of at least four runs.
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TABLE XIV

HEAT OF FUSION OF SELECTED COMPOUNDS

Melting Point Molecular
terature) Weight/ 8H
Compound oc _{x) ! of Atoms g
heptadecanol 54 (327) L7 60
octadecyl acetate 29 (302) 5.0 38
acetophenone 19 (292) 7.1 32
1-Naphthyl acetate Lh (317) 7.8 28
trimethyl pentandiol L6 (319) 5.2 LS
trilaurin L5 (318) 5.4 56
dicyclohexs1 adipate 3k (307) 6.0 36
benzoruroxan 69 (342) 9.1 30.L4
benzhydrol 67 (3u0) 7.1 30.6
arachidic acid T (3u7) 5.0 57.9
didecyl sebacate 28 (301) 5.2 35.8
adiponitrile H (274 ) 6.8 L4 .8
dibutyl tartrate 18 (291) 6.6 2.7
bix-2 ethoxy ethyl -2 (eT1) 6.0 31.5
sebacate
didodecylamine LY (17) 4.2 52,7
bicyclohexyl 3 (276 ) 4.8 21.6
butyl carbamate 53 (326.) 6.2 45.9
2 amino 2 methoxy 5.8 27.3
propanol
3 amino 1 propanol 10 (283) 5.b 50.1
1 amino 2 propanol -2 (271) S.h 28.4
" pentamethyl benzene 5.5 5.12
tert butyl isothiocyanate 8 (281) 7.2 31.2
2,h-di-tert-pentylphenol 25 (298) 2k
2,5-dimethoxytoluene 19 (292) 6.6 17
a,a=dimethylbenzyl alcohol 19 (292) 6.2 2
aya=-dimethylphenethyl alcohol 22 (295) 6.0 14
diacetyl ~6 (267) 7.2 28
dimethyl adipate 9 (262 ) 6.7 52
piperazine hydrate L2 (315) 8.8 64
1-tetradecanol 35 (308) L.8 L5
pivalic acid 32 (305 ) 0.0 36
l-pentadecanol 5] (1% ) L.8 66
1-phenoxy-2-propanol 13 (86 ) 6.6 10
1,k-butanediol 15 £88 ) 5.6 43
lithium acatate 70 B43) 6.3 67
ammonium bifluoride 126 399 ) 7.1 73
lithium biacetate 7.9 32

(250)
(159)
(13k)
(127)
(188)
(234)
(150)
(127)
(128)
(2u2)
(150)
(187)
( 11)
(132)

(220)
( 90)
(192)
(11L)

(209)
(119)
( 21)
(130)
(102)
( 71)
( 95)
( 56)
(117)
(216)
(268)
(189)
(148)
(275)
( u2)
(181)
(278)
( 306)
(135)
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The compounds tested exhibited heats of fusion ranging from ~ 3 cal/gm (11 J/g)
to T3 cal/gm (306 J/g), compared to the values for water-ice of 79.8 cal/gm
(333.5 J/g). The table also includes the value of the molecular weight

divided by the number of atoms for each compound. The compounds for which this
value is low, between 4.2 and 5.4, exhibited an average heat of fusion of U6
cal/gn (192 J/g) and those compounds for which this value is high, between 6.0
and 9.1, exhibited an average heat of fusion of 29 cal/gm (121 J/g). The
standard deviation for each of these meens is 13 cal/gm (Sk J/g) and a "t"
statistical test shows that, et the 99 percent confidence level, the two means
are different. Although compounds that have low molecular weight and larger
numbers of atoms do have higher specific heats of fusion, none was found that
exceeded the value of water-ice.

The heat of fusion of NH\HF,, ammonium bifluoride is given in a Russian
paper (Ref. 38) as 275 cal/gm (1150 J/g), a figure more than three times that
for water-ice. Because this material melts at a temperature beyond the back-
pack coolant rarge, 126°C, (399 K), we would have to form mixtures with hydro-
gen fluoride which are known to form eutectics with lower melting temperatures.
However, as the value in the table shows, we could not reproduce the Russian
work, and the material was consequently dropped from further consideration.
Lithium acetate showed a heat of fusion of 67 cal/gm (278 J/g) only on the
first run through the DSC, subsequently failing to freeze when the temperature
was brought down. Apparently meling is accompanied by decomposition. Lithium
biacetate made by evaporation from a water solution of the acetate and acetic
acid exhibited the same behavior. Attempts to run ammonium biacetate did not
result in reproducible results, probably because of decomposition on melting.

The compound ammonium carbamate is reported (Ref. 39) to have a heat of
fusion of 165 cal/em (€90 J/g) with a melting point of 145°C (418 K). It was
hoped that eutectic mixtures using this compound could be found to bring the
melting temperature below 70°C (343 K). However, it was not possille to deter-
mine the heat of fusion of ammonium carbamete on the DSC. The problem may be
that of tealing the sample pans so that higher pressures can be attained. It
is probable that many of the compounds for which measurements were made would
exhibit high heats of fusion only in sealed systems at higher than atmospheric
pressure,

Heats of Fusion for Eutectic Salt Mixtures

Table XV lists the results obtained on 8 molten salt eutectics ranging in
melting points from 3.5°C (276.5 K) to 70°C (343 K). These mixtures were
found t» have very low heats of fusion, well blow the range of interest.
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TABLE XV
HEAT OF FUSION OF SOME MOLTEN SALT EUTECTIC MIXTURES
Melting Point AR
| Salt System — f:m::
LiNO3-AgNO3-NH),NO03 52 (325) 7.45 (31.1)
SbBr3-SuBrl 27 (300) 6.96 (29.1)
SnBri-SuIl 19.b (292.4) 5.21 (21.8)
A1Br3-SnBrj 20 (293) 5.Th (24.0)
AlBr3-AsBr3 25.5 (298.5) 1.65 (6.9)
AsBr3-SnBr), 3.5 (276.5) 8.62 (36.0)
AsBr3-PBrs 23.5 (296.5) 5.3 (22.2)
LiNO3-[lail03~KNO3 70 (343) 1.2 ('5.02)
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Measurenents of Heats of Solution

Some solids dissolve in water with the absorption of large amounts of
heat. The combination of any solid and liquid will absorb heat if a pre-
existing ordered arrangement of particles gives wvay to a new formation that
contains less order than the original. The solid during dissolution, as in
the melting process, undergoes an entropy increase because of the destruction
of the ordered arrangement of molecules in the solid state, and the formation
of arrangements having a greater degree of randomness than the original. The
energy necessary to disperse the solid throughout the liquid is essentially
the same as the energy necessary to melt the solid, namely, the lattice
energy. In the dissolution process, the energy to overcome the lattice forces
does not come from thermal energy as in melting, but in solvent-solute inter-
actions. The dissolution process actually consists of three separate pro-
cesses: 1) the destruction of the lattice; 2) the formation of solute-solvent
structures; and 3) disruption of the solvent structure. The first process
results in an absorption of heat and a large increase in entropy from the
dispersion of the particles naking up the crystal lattice. The second process
reduces entropy and releases heat since structures of more or less permanency
are formed. The third process increases entropy since the solute modifies the
hydrogen bonded solvent-solvent interaction occurring among the water mole-
cules. This effect is smaller than the first two, and for our limited pur-
poses here, can be ignored. Therefore, the total heat of solution q mx Can
be represented as (Ref. 36, p.412),

+ -

Uy = Upy = (W + W, ) (1)

vhere the term Upy is the lattice energy of the solid mx and the term in the
parenthesis is the hydration energy. We can see from equation (7) that the
heat of solution will be a maximum for salts that have large lattice energies
and low hydration energies. However, if the lattice energy is too large, the
compoun s will not dissolve in the solvent at all. Small hydration energy
will be favored by ions with low charge density (large size) and a charge
of unity. Hydrated salts, compared to their anhydrous counterparts always
have a larger endothermic or smaller exothermic heat of solution due to the

elimination of the entropy decrease which accompanies solvent-solute structure
formatinn.

¥When a large amount of soiutc is added to a solvent, the heat of solution
per gram of salt added is not the same as when a cmall amount of solute is
added. The reason for this is that the first amount of solute &dded sees an
essentially pure solvent, while the last solute added sees a concentrated sol-
ution. The differential heat of solution is the heat evolved or absorbed when
no change of concentration takes place, in other words, the "instantaneous"
heat of solution at a particular concentration. The integral heat of solution
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which is the one of interest in the present application is the total heat ab-
sorbed or evolved wher an amount of salt is dissolved up to the saturation

point.

The heats of solution given here are the integral heats as measured

in the bomb cslorimeter and represent the heat absorption to be expected in
practical application.

Table XVI shows the heat of solution of poiassium thiocyanate (KCNS).

TABLE XVI

INTEGRAL HEAT OF SOLUTIOKN, AHS, OF KCNS

Concentration

+500
2.015
5.019
9.266
11.39
20.00
25.08
L8.4o
111.2
147.0
213.9

g KCNS/100g H,0

AHg NBS Circ. 500
cal KCNS J/g KCNS cal/gm KCNS](J/g KCNS

58.4 (2uk) 57.9 (242)
68.5 (286)

63.2 (264)

58.6 (245) 56.7 (237)
6L4. b (269)

65.4 (273)

55.2 (231)

53.1 (222) LL.3 (185) 67g
41.8 (175)

38.5 (161)

36.1 (151) 32.6 (136)

This salt was originally thought to have a heat of solution of 126 cal/gm
(528 J/g) because of an errorzous listing in the International Critical Tables,
The NBS circular 500, page 505 lists the heat of solution
as 57.9 cal/gm (242 J/g) at infinite dilution, which would correspond to the
first 'value given in Table XVI. This determination served as a check on the
experimental procedures involved since the last column in Table XVI illustrates
the close sgreement between the NBS data and the data obtained in the present

Vol. 5, Page 205.

work.

Since KHFp, potassium bifluoride is known to have a high negative heat of
solution (Ref. 40) 76.6 cal/gm (320 J/g) as high dilution, and a fairly large
solubility (Ref. 4l) 39 g/100 g water, the heat of solution of ammonium bi-
fluoride N'Y3HFp, unavailable in the+literature vas expected to have an even
higher heat absorption since the NH; cation is larger than the K* cation.
Ammonium fluoride, NH,F, also has a heat of solution of 40.9 cal/gm (171 J/g)

and the HF; anion is larger than the F~ anion,
ve expected ©0 exnivit a lwge niga
solute-solvent interactions should be at a minimum.
dissolves to the extent of about t0 g to 100 g of water.
results of measurements of the heat of solution ¢.

vaw
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TABLE XVII

INTEGRAL HEAT OF SOLUTION, AH_, OF NH, HF,

Concentration ! AHg
g NHJHF,/100g Ho0 w— e NENREA (L o NHLHFD) |
10.0 99.6 (b16)
20.0 96.6 (Lok)
50.0 95.3 (398)
58.9 92.6 (387)
66.7 86.0 (359)

The data in Table XVII indicate that not only is the heat of solution at
low concentrations large (25 percent greater than the heat of fusion of water-
ice) but that the high concentration of 58.9 g/1l00 g water still exhibits a
high heat of solution. Since this concentreted solution contains about 60g
of salt that can absorb 16 percent more heat than an equal amount of water-
ice, the solution should be about 10 percent more effective in absorbing
heat than water-ice. The regeneration experiments whose results are described
in the following section revealed that even better performance is attainable
vhen starting with the hydrate rather than the dry salt.

The heats of solution of potassium bifluoride (KHFQ) and sodium bifluoride
(NalF,) were also measured and the results are shown in Table XVIII.

TABLE XVIII

INTEGRAL HEATS OF SOLUTION, AHS, FOR KlF, AND NaHF,

Concentration | AHg | Number of
g KHFEZJ.OO £ Hao cal KHF»> (J?g IG{FQS Determinations | olegz
5.0 58.9 (246) 3 22
10.0 88.4 (370) 2 70
15.0 76.6 (320) 3 1l
20.0 T34 (307) L 2
E NaHFzleOE H20 cal‘sg NalF» .1/ NaliFs)
5.0 90.0 376) 3 T0
10,0 8L,2 (352) 1 -—

Although the scatter in some of the data in Table XVIII is large, enough values
for the heat absorbed were obtained that were above the heat of fusion of
water ice (79.8 cal/gm) to warrant further study of the hydrated salt.
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Heat Absorption by Combined Heat of Fusion and Heat of Solution

Rereneration experiments were run in the rotating bomb calorimeter to
simulate the actusl use of the salt and water mixtures. The salt was dis-
solved in the water and then the solution was frozen at dry ice temperatures,
about -40°C (233K). A cooling curve was determined for a concentrated solu-
tion of ammonium bifluoride (NHhHFa) and showed that melting and heat ab-
sorption begin at a temperature of -14L.5°C (258.5K). This curve is shown in
Figure 52. Because of this, all runs were bepun at abouc -15°C (258K). The
results for ammonium bifluoride are shown in Table XIX.

TABLE XIX

COMBINED HEAT OF FUSION PLUS HEAT OF SOLUTION FOR NH)HF, SOLUTIONS

%
L

Electrical Energy | Heat Ment

dun] Concentration |Energy In AT | CooraL Out Absorbed] AH Over
# |g NHHF>/100g Ho0] Joules K J/K Joules | Joules |Cal/gm (/g) Ho0
1 18.8 184,800 {11.10] 12,578 139,616} 45,184 1 jB8o] 1k
2 18.8 201,600 }12.30) 12,578 J 154,709 46,801 | 9t (399} 18
3 18.8 277,200 |18.00| 12,578 | 226,404} 50,796 102 |@og} 28

4 18.8 230,500 |15.00] 12,578 | 188,670 41,699 | 84 I3s51)| 5.3
5 39.9 273,600 |17.50] 12,578 | 220,115f 53,485 { 92 (383 15
6 39.9 273,600 {17.02} 12,578 | 214,077} 59,522 [1G62 |M29] 27
7 39.9 273,600 ]15.861 12,962 | 218,532 55,068 | 94 (39| 18
8 39.9 217,200 }17.15) 12,959 | 222,251| Sk,949 | 9k |(393] 18
9 4s 326,400 |22.73] 11,883 270,102] 56,298 | 93 (388 | 16
0 4s 302,400 }21.r2] 11,159} 239,028] 63,372 J105 J@B3D] 31
11 45 310,800 |22.74} 11,235 255,474] 55,326 | o1 38y 14
12 50 331,800 (2ok.12} 11,107 1 267,912] 63,888 102 Ju29] 27
13 50 310,800 [22.43] 10,940 | 245,383] 65,417 J104  j36) 31
14 50 310,800 {22.44| 10,981 | 246,8k0] 64,378 1103 {(29] 29

The third column of Table XIX gives the heat input from the electrical
heater, 60-80 watts for U45-T70 minutes. This input was sufficient to raise the
calorimeter temperature the amount indicated in the next column of Table XIX
Figure 53is a plot of both the calorimeter temperature and the jacket tempera-
ture during the course of run #4. This pnlot shows how close it was possible
to maintain the jJacket temperature and calorimeter temperature, the length of
time and range of temperatures used. The Cpgppar, in column four of Table XIX
for the firat 6 runs was from the values obtained from tests using pure water.
In subsequent runs, the Cpgmpp used was the initial slope of the curve of
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temperature rise vs. time. The first three points of such curves, it can be
assumed, represented temperature rise of the calorimeter before any of the
bomb contents could have altered it by heat absorption.

In eddition to these runs, a solution of 60g NHyHF, in water and a solu-
tion of 55.4g NH,HF, in water were determined to have a 67.5 cal/egm (282 J/g)
and a 64.8 cal/gm (271 J/g) heat absorption, respectively. At the end of these
determinations, at a temperature of 273 K, some salt was still undissolved.
Since the solubility is greater at 10 - 20°C (283 - 293K), this salt would
dissolve if the experiment was run to higher temperatures, and large values
for the heat absorbed per gram would be expected.

Table XX shows the average velues for the four compositions along with the
standard deviation o and the average percent improvement over water-ice.

TABLE XX

AVERAGE VALUES OF HEAT ABSORBED - NH)HF,

Concentration AH Absorbed g Average
g NHLHF,/100g 10 | Cal/gm | (J/g) | Cal/em | (J/g) | % Improvement

18.8 93.0 | (389) 7.6 (32) 16
39.9 95.4 (399) 4.3 (18) 20
45 96.1 (402) 7.4 (31) 20
50 103 (430) 1.k {6) 29

The solution containing the highest amount of NH,HF, in Table XX
50g/100g H,0, exhibited an average of a 29 percent greater heat absorption
than would have been possible by using 150g of water-ice. A possible explana-
tion of the fact that the heat of solution of the dry salt in water indicated
that only a 10 percent improvement could be expected is discussed in the
following paragraphs.

Since equation (7) indicates that the heat of hydration must be a nega-
tive influence on the total heat of solution, it is apparent that compounds with
no heat of hydration would be expected to have larger heat absorption upon
dissolution. Certainly a hydrate would be expected to have e zero heat of
hydration as long as the hydration number remains the same.

The effect of the heat of hydraetion upon the heat of solution can be
seen in the following table of data taken from Ref. L2),
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TABLE XXI
HEAT OF HYDRATION OF ALKALI METAL JONS
AND HEAT OF SOLUTION OF ALKALI METAL FLUORIDES

Kadius AH of Al of

Crystal Hydration Sclution of Fluoride
Ion () keal/mole J/mole) m | (J/g) | kcal/mole] (J/mole)
Li+ .60 121.2 (506,616)] 39.8 (166) 1.03 (4305)
Na+ .95 9k .6 (395,428) 11.4 (47.8) .48 (2006)
K+ 1.33 75.8 (316,844) ] -T2 (=287)) -=k.12 (~17222)
Rb+ 1.48 69.2 (281,256) ] -56 (-234)] -5.85 (-2L453)

The cations are listed in order of their ionic radius, and the heat of
hydration is seen to decrease as the size of the cation increases. 1In the
last columns the heat of solution of the corresponding fluorides can be seen
to go from releasing heat in the lithium and sodium fluorides to absorbing
heat in the potassium and rubidium fluorides. Thus, on a per mole basis, the
compounds with high heat of hydration will exhibit less heat alsorption upon
dissolution, and high heat absorption upon dissclution is favorea by large
ionic size. However, one can argue that the water molecules tied up with the
salt are unavailable for absorbing heat by melting. The magnitude of these
two effects can be studied by looking at some examples of this effect from
the literature,

It can easily be established that salt hydrates have higher heat absorption
values than the dry salt. The following Table XXII shows the heats of solution
of some anhydrous salt-hydrated salt pairs (Ref. 40) that will serve to illus-
trate this point.

In every case, the heat absorbed is larger for the hydrated salt than for
the anhydrous salt. For compounds with one water molecule associated with
them, an average increase in heat absorption of 69 percent is observed. Also
in general, as the number of water molecules in the hydrate increases, the
heat absorption ratio between hydrate and anhydrous forms increases, As an
illustration of the magnitude of the hydrate effect, let us assume that each
molecule of NH)HF2 has one molecule of water associated with it as the hydrate.
Then the 39.9 g of dry NH)HF, combines with 12.6 g of water on a mole to mole
basis. This leaves 87.4 g of water that is not effected by the hydrate. This
amount of water will absorb 29,148 J upon melting. The average mono-hydrate
in Table XXII absorbs 117.5 J/g more heat than its anhydrous counterpart. The
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TABLE XXII

HEAT ABSORPTION OF ANHYDROUS-HYDRATED SALT PAIRS

M o1n Hydrated AHs01n %
Anhydrous Salt | cal/am| (J/g) Salt Cal/gm | (J/g) |Higher |

K2S50¢ 29.9 | (125)] Ko8506°1/2 Ho0 | 38.3 | (160) | 2
NaHC,0) 49.3 | (206) | NaliC50y,i50 73.7 | (308) | 50
NaHC),H),0¢ 33.0 | (138)] HaHC),H0g+H0 k5.0 | (188) | 3¢
(WH) ) oC0), 36.4 | (152)] (NH,)oCo0,*Ho0 )] 81.1 | (339) | 123
Ba(C103); 45.8 | (191)] Ba(C103)5°H0 77.0 | (322) | 68
NapS50¢ 27.8 | (116)] NapSp0g° 2Ha0 48.3 | (co2) | T
sr(iio3); 22.0 | ( 92)| sr(NO3)p-UHR0 k3.3 1 (18L) | 97
NapHoPo07 10.3 | (43 )| NaphoPp07-6H0 | 42.1 | (176) | 300

heat of solution of a solution of 39.9» of NHYHF, in 100g of water can be
interpolated from Table XXII to be 398 J/g. Therefore, for the NHyHF2°H50

we have 398 + 117.5 = 515.5 J/g for 52.5¢ or 27,064 J. The combined heat
absorbed for hydrate and uninvolved water-ice is 56,212 J. This amounts to 402
J/g for the 139.9g of NHLHF, solution compared to 399 J/g actually measured.

In the case of the solution containing 50g of NH\HF, we have 66p of hydrate and
Bug of water-ice. The heat absorbed for the hydrate would be 34,023 J and

for the water-ice, 28,014 J, for a total of 62,037 or 413 J/& compared to 430
J/g actually found. Thus, although the calculated increase in heat absorp-
tion for the 50g/100g Ho0 solution is only 6.6% based on the dry salt heat of
solution, the calculated increase is 24% based on the hydrated salt. In view
of the fact that the actual increase in heat absorbed for the monohydrates
listed in Table XXII vary from 50 to 187 J/g, this simple arithmetic exercise
cannot be considered definitive, but it does reveal how it is possible for the
hydrate-water-ice system to absorb so much more heat than the anhydrous salt-
water-ice system.

The question now arises -- vhat is the effect of changing the cation on
the heat of solution of the hydrate. The potassium and sodium bifluorides
have large heats of solution and their cations are both smaller than the
ammonium cation. As shown earlier, the smaller the ion, the greater the field
intensity surrounding it for a constant charge, and therefore, the greater
the energy of hydration since the solvent-solute interactions will be stronger.
"herefore, one would expect a greater difference in the heat absorption between
the dry salts KHF, and NaHF,> and their hydrated counterparts than between
dry NHjHF»> and its hydrate.
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The heats of fusion plus heats of solution for these compounds are given
in Table XXIII. The Cpgppp used in the first six runs was calculated from the
initial slope of the curve of temperature versus heat-energy input with the
bomb rotating. Variations in Cpgmpy, for these runs are due primarily to
differences in the amount of fluid in the calorimeter can. Runs T through 13
were made with no bomb rotation. The solution was frozen in the bottom of the
bomb, and it was melted in that position with no stirring or disturbance at all,
in order to more closely approach conditions as they would occur in actual
use of the material in a backpack cooling system. The calorimeter stirrer
alone was unable to bring the temperature into equilibrium while the heater
was on in a short enough time span, and the initial slope was distorted.
Therefore, the Cpgpa;, used in the runs 7-13 was the value obtained from the
calibrating experiments noted in the section on Experimental Methods. Since
the Cpgppar, was sensitive to the amount of fluid present in the calorimeter, the
amount used was very carefully measured to a constant 2,122g for these runs,
Both the calculated Cpgppp, and the value obtained from the calibrating runs
using water-ice in Table II were 11,500 J/K within & 200 J/K.

The runs #5 and #6 were also part of an experiment to determine if a
slower cooling cycle would result in significantly different performence due
to a change in the separation rate of salt hydrate and water-ice. Run #5 used
a slow cooling regime for freezing the bomb, shown in Fig. 54 along with the
fast cooling schedule. Since no significant difference was found, the first
six runs heve been averaged together to obtain a mean vaiue for the heat
absorption. A cooling curve, shown in Fig. 55, showed that the 30g KiiF,
solution began to melt at about -10°C (263K), and, therefore, in runs 1-10 the
initial temperature was ebout -12°C (261K). Runs 11, 12 and 13 were begun at
higher temperatures than the preceding four runs, in order to test the loss of
heat absorption capability when the salt-ice slush was not completely frozen.
Tuble XIII contains a summary of the datu presented in Table XXIII. For the 20%
solution, the average heat absorption in runs 1-6 in Table XXIIT was L2% more
than that of water-ice and for the 30% solution, the average heat absorption
in runs 7-10 in Table XXIII was 121 cal/gm (507 J/g) which is 52% more the
value of 79.8 cal/gm (333.5 J/g) for waker ice. The density of the 30% KHF
solution was determined to be 1.18 g/em”, Thus, the increase in heat absorbed
over that of water-ice on an equal volume basis is T9%.

Table XXIV also shows the effect on the 30% concentration data when a
higher value is used as the initial temperature, At an initial temperature of
«6.9°C (266.1 K) 88 cal/gm (367 /g) was absorbed, only a 10% improvement over
water-ice.

Another salt that has a large heat of solution (79.2 cal/gm®331 J/g), and
& large solubility (118 g/100g Hp0) is NHyNO3, ammonium nitrate. Two regenera-
tion type experiments were run to determine if a larger effect would be possible
when starting with the wet salt. The results of these runs are in Table XXV,
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TABLE XXIII

HEAT OF FUSION-HEAT OF SOLUTION OF KHF,

4
Improve-
ConcentrationfElectrical .Enﬁrlfgi ﬂ“ o o  Ment
Run] g KHF,/100g | Energy In AT CroTaL] Out Absurbed AH | Over
L2l _Hio Joules K J/K Joules | Joules (J/dlHater-ice
1 20 297,600 |25.48 } 9,570] 243,856] 53,784 | 107 Jus§ 34
2 20 350,400 | 24.80 f12,000} 297,600] 52,800 | 105 J&LuO 32
3 20 310,800 |23.78 J10,400] 247,31, 63,481 | 127 l6529 59
b 20 316,800 {2u.34 {10,545] 256,710| 60,090 | 120 [0 50
5 20 252,000 |20.21]9,538 | 192,763} 59,237 | 118 Ja9k) 48
6 20 312,000 }21.79 |12,000] 261,480] 50,520 | 101 2D 26
7 30 336,000 }23.12 11,500 265,846} 70,155 | 129 |5u0 62
8 30 297,906 |20.54 |11,500} 236,233} 61,673 | 113 J&7W) L2
9 30 272,964 |17.92 }11,500] 206,080| 66,884 123 |51l 5k
10 30 316,953 [21.91 {11,500] 251,071] 64,982 120 }(00) 50
1 30 240,000 |16.72 |11,500} 192,280f L4T,T720 88 1367 10
12 30 240,000 |16.k0 J11,500] 188,600] 51,400 95 1299 18
13 30 278,400 ]19.19 J11,500] 220,685] 57,715 | 106 J@bk) 33
TABLE XXIV
AVERAGE VALUES OF HEAT ABSORBED - KHF
Temp.
Concentration Average Run
g KHF,/100g AH Absorbed o | Percent | Started
Ho0 Ca.l/gm' U/e !Cal/gm . U/e) | Improvement % (k)
20 113 ] 479 10 (42) 42 -12 £61)
30 121 | 6o7) 7 (28 52 -12 e61)
30 88 | B67 - - 10 -6.9hL €66 .206)
30 95 3995) - - 18 -6.583 £59.623)
30 106 | Guk) - U - 33 -8.8L4 e6h . 306)
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TABLE XXV
HEAT OF FUSION PLUS HEAT OF SOLUTION OF NhuNO3
Percent
Concentration ]} Electrical Energy Heat Improvement

g WH)NO4/ Energy In AT | co Out Absorbed “H Over
TOTAL .

k{af) Joules K J/K Joules Joules [Cal/gm|(J/p){Water-ice
50 288,000 20.80 | 11,282 ] 234,53 | 53,342 85 1(355) 6
50 352,800 25.12 | 11,998 } 301,392 | 51,408 82 |(3u3) 3

The average value of 83 cal/gm (349 J/g) is only S5 percent better than
can be obtained through the use of 150g of water-ice.
the heat of hydration does not plavy as large a rcle, and the heat of solution
does not increase as much as with the bifluorides.

In space operation the heat absorbing moterial may not be under

the influence of gravity,so its operation may be different.

In this case apparently,

However, the in-

fluence of 1 zero gravity field on the melting and solidification of salt
solutions is not expected to be much different than its effect on water-ice.
Jince segration of particles due to density differences is not vossible in zero
gravity, the salt will be more uniformly dispersed through the ice after the

regeneration procedure.

melting.

This can result in a higher dissolution rate upcn

The e“fect of the wicking material on the dispersion of the salt in water
upon freezing may be pgreater than the effect of zero eravity, and while it was
cutside tiie scope of the present work, this effect should be measured.
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Conclusions

1. The heat absorption available using a solution of 30 g of potassium bi-
fluoride (KHFp) in 100 g of water (H20) is 121 cal/gm (507 J/g) which is
approximately 52 percent greatcr than the heat absorption available from
an equal weight of water-ice, and approximately 79 percent greater than
the heat absorption available from an equal volume of water-ice.

2. The heat absorption for the KHF,-H 0 system begins at a temperature of
-12°C (261 K)and continues through about 10°C (283 K).

3. The regeneration of the KHFy-H,0 mixture is extremely simple -- a lowering
of the temperature at virtually any rate with no stirring will produce
the required separation of salt hydrate and water-ice. The maximum
number of regcneration-melting cycles performed in this work was 4, No
degradation as a function of repeated regeneration was noted.

L., A literature search has failed tc uncover data relating directly to the
corrosivity or toxicity of KHF,. The following facts are known:

. Repeated exposure of the platinum lined stainless steel calori-
meter bomb to the KHF»-H20 solution produced no noticeable
metal corrosion.

. Overnight exposure of the aluminum differential scanning calori-
meter sample holders to the XHFo- HoQ solution produced no
noticeable metal corrosion.

. Exposure of laboratory personnel, including direct skin contact,
to the KHF2- H20 solution produced no noticeable effects.

. The Merck Index lists KHF? as being similar in toxicity to
sodium flouride, which is toxic in amounts over k grams and
causes severe symptoms when 0.5 gram is ingested. One ppm
is commonly used in drinking water and a 2% solution is applied
to the teeth routinely.

5. Based on the results of the KHF2- Ho0 testing, an ice chest containing a
solution of KHF, in H50 could conceivably be designed that would weigh
30 to LO percent less than an equivalent ice chest containing pure H0.

6. Measurements of the heat of fusion of likely candidate compounds and

eutectics has failed to reveal any with a higheg heat of fusion than
water-ice in the temperature range of -10 to 70 C (263 to 343 K).
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FLIGHT EXPERIMENT PLAN

A Flight Experiment Plan has been prepared which outlines t%e steps
necessary for developing the Ice Pack Heat Sink Subsystem into a candidate
Shuttle/Spacelab flight experiment. This plan breaks down the effort into
three phases:

Phase I - Configuration Support and Engineering Development, which includes
concept generation and development.

Phase II - Flight Hardware Manufacture and Qualification,which includes
manufacture, qualification, refurbishment, and acceptance testing of a
qualification/flight backup unit; manufacture and acceptance testing of
a flight unit; and design, manufacture, and test of Flight and Preflight
checkout equipment.

Phase III - Field/Flight Test Support, includes effort required in support
of the actual flight experiment.

This plan, Ice Pack Heat Sink Subsystem - Phase II, Flight Experiment

Plan, SVHSER 6526, is contained under separate cover to allow its circulation
independent of this final report (Ref. L3).
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ICE PACK HEAT SINK SUBSYSTEM - PHASE II

SMALL/LARGE SCALE INTERFACE DEVELOPMENT TEST PLAN

PREPARED UNDER CONTRACT NAS 2-7011

by

HAMILTON STANDARD
DIVISION OF UNITED ATRCRAFT CORPORATION
WINDSOR LOCKS, CONNECTICUT

for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER

MOFFETT FIELD, CALIFORNIA

OCTOBER 1973
Prepared by;
belen
Approved by: M
F. H. Grefn
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SCOPE

This plan of test defines the development tests to be performed
by Hamilton Standard on several small scale (6'x6') ice chest/
heat exchanger interface umits as part of the effort to enhance
thermal perfommance and life characteristics of this interface
for the full size Ice Pack Heat Sink Subsystem. This testing

will investigate different surface configurations.

TEST iTEM

This test program will consist of testing the following 6x6 inch

surface configuration plates, inserted in the instrumented test

fixture (figure 1), at pressure loadings of 8, 16, and 30 psi.

I. Plain aluminum on plain aluminum - this configuration
is to be used as a baseline.

II. Lead plated aluminum on plain aluminmum - this config-
uration represents the Phase I configuration. '

ITI. Lead plated aluminum on plain alumimm with the lead
plated part grooved to produce square pads approximately
0.25 in. (0.635 cm) x 0.25 in. (0.635 cm).

IV. Same as (.II) but with every other pad removed to pro-
duce a checkerboard pattern.

V. Same as (III) but with square pads approximately 1.5 in.
(3.81 am) x 1.5 in. (3.81 cm).
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(Continued)

VI. Same as (V) but with every other pad removed to
produce a checkerboard pattemrn.

VII. Llead plated alumimm on plain alumimm, displaced
0.062 in. (0.157 cm) laterally after pressure mating.

VIII. lead plated aluminum on chrome plated aluminum.

TEST MEDIA
The test media for all portions of this test will be:
Ambient: Pressure = Vacuum (~0.1 micron)

Temperature = Room Conditions
Coolant Liquid: Water (~40°F)

TEST EQUIPMENT

A1l portions of this test program will be performed in the
Hamilton Standard Space Systems Department Space Laboratory
(Reference Test Schematic Figure 2).

DEFINITION OF TESTS

TEST SETUP - The following steps will be taken for each
sample plate test setup.
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(Continued)

A. With the test fixture installed within the vacuum chamber,
insert the surface configuration plate between the heater
plate and the coolant plate and connect thermocouples.

B. Allow N; to slowly pressurize the test fixture bladder.
Check squareness of test interface.

Adjust to obtain maximum surface contact.

C. Vent bladder and evacuate it with external vacuum source.

D. Close test chamber and evacuate. Slowly vent the test
fixture bladder to the chamber ambient. Evacuate chamber
to 104 mm#+ (0.1 micron).

TEST RUN - The following test runs will be performed on each

surface configuration plate.

A,
B.
C.

Load coolant reservoir with water and ice chips.

Slowly pressurize bladder to 8 psia (check squareness).

Close coolant by-pass valve and fully open heat exchanger
valve.

Adjust the coolant pump power supply to 25 volts. Turn on
pump and readjust power supply to 25 volts.

Close heat exchanger coolant valve to obtain 0.5 gpm flow.
Turn on heater and adjust powerstat to obtain 3.0 amps (AC).
Maintain this condition until the temperatures of the coolant
water flowing into and out of the heat exchanger have stabil-
ized. (Coolant water reservoir should always have sufficient

ice present in it).
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5.2 (Continued)

H. Take one complete set of data recordings. (Reference
Sample Tog Sheet Figure 3).

I. Turn off heater.

J. Slowly decrease test fixture bladder pressure.
Evacuate with external vacuum supply before venting to
chamber. There should be a gap between the test plate
and the test fixture after bladder depressurization.

K. Slowly pressurize test fixture bladder to 16 psia
(check squareness).

L. Repeat steps 5.2 (F) thru (J).

M. Slowly pressurize test fixture bladder to 30 psia
(check squareness).

N. Repeat steps 5.2 (F) thru (J).

0. Tum off pusp and pump power supply.

P. Slowly increase pressure in chamber to room ambient and
open chamber door. Disconnect test plate themmocouples

and remove test plate from test fixture.

5.3 TEST REQUIREMENTS - During each of the tests the coolant

flow must be run for a sufficient length of time with the

heater energized to allow the entire loop to come to equilibrium.
This condition is achieved when the heat exchanger inlet and
outlet temperatures remain unchanged for a period of at least

five minutes.
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5.3 (Continued)
For each test run record the following steady state parameters:
1. Surface configuration plate type
2. Heat exchanger flow
3. Bladder pressure
4. Chamber pressure
5. Chamber wall temperature
6. Heater thermocouple readings (T} thru Tg)
7. Heat exchanger thermocouple readings (T-, thru T13)
8. Surface configuration plate thermocouple readings
(T4 thru Tpy)
9. Heat exchanger inlet thermocouple reading (T,3)
10. Heat exchanger outlet thermocouple reading (T;j)
5.4 INSTRUMENTATION
Quantity Item Range Accuracy
1 Flowmeter 0-0.6 gpm 0.025 gpm
1 AC Ammeter 0-3.0 amp 0.1 amp
1 AC Voltmeter 0-120 volt 2 wolt
1 Pressure gauge 0-45 psia  %0.1 psi
1 LEN Thermocouple Readout 0-90°F 0.5°F
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APPENDIX B

SMALL/LARGE SCALE INTERFACE DEVELOPMENT TEST LOG SHEETS
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APPENDIX C
ICE CELL CONDUCTANCE VARIATIONS

SINGLE VERSUS MULTIPLE NODES
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To correlste the difference between snalyticel end computer calculetions
of the ice cell conductance s a function of the emount of ice wnhich has
melted, the folloving discussion is presented. Bear in mind, however, thst
the discussion below does not represent the asctusl model size of conductance
valueg but rather demonstrates the expected trends on the ice conductance
as the number of nodes in tne model vsries.

Consider two generslized ice cell models, esch of constant volume and
cross-sectional sres, per figure A-I. With the sssumption of equal cross-
sectional ereas for the same msterisl, esch connector can be defined as

follows:

c= 1 where A x 1s the distence from the pleste to
AX node.
At the start of the melt cycle, the conductence C t5 the single node model

is
1

- ()

However,the conductance st the start of the melt cycle for the 4 node model

= (2/u).

is

(1 \.
c ('178/" (8/1).

Thue, 8t the stert of the melt cycle, the conductance to the L node model
is grester tnan to the single node model.

Now, consider the case where the ice has almost completely melted. 1In
this cese, the conductance to the single node model is still (2/L) but

the conductance through the four node model is spproximstely

C-1
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A) SINGLE NODE
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B) MULTIPLE NODE (4)

FIGURE A-1

C-2
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Therefore, at the end of the melt cycle, the conductance to the single
aode model is larger than that of the 4 node model.
The result of these nodsl effects is a chenge in slope of the ice cell

conductence curve, per figure 25 of the main text.
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APPENDIX D
SAMPLE ICE PACK HEAT SINK SUBSYSTEM

PRINT-OUT
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The attached print-out is a partisl run of the full size Ice Pack Heat
Sink Subsystem model with an LCG *wter flow rate of 240 lbm/nr et an LCG
water inlet temperature of TO'F.

The time heading of each serles of numbers is the time in minutes
since the start of the melt cycle. All nodes of a major segment (reference
figures 4 snd 5, main text) are printed together on one line. All numbers

under any time heading should be read per Tsble B-I.

TABLE B-I

PRINT-OUT LEGEND

** TIME = X300

TG TICE Fraction of
Line 1 (Segment 1) Weter  THX TpLATE Cell jce melted
. . (°F) (°F) °r) °F) in cell

. . . 3 . .

COoe o ¢ o o o o
¢« e o o » »
» & 9 & » ¢
® o e s 9 o
e« ©® o o @+

.

QDe o ¢ o o
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end

READY

losdan icecest

INPUT BA OT LCG ""ATFR
>

326.35
INPUT “'ATER INLET TF'1P, AND STOP TIME (MINS.)

by

70. 40,

INPUT TIME STEP(MIN.), PRINT LOOPS, %CP OF LCG

2?

.001 8990 240,

¢ TIMNC = 3,99872
67.880 6%.252 34,178 32,001 0.173
€5.824 68,381 348,148 - 32,001 0.161
€3.921 62,522 35,027 32,001 0.151
62.139 60.828 33.916 32,001 0.142
60.827 59,169  33.761  32.001 0.129
58.825 S7.687 33.661 32,001 0.122
57.313  56.201 33,562 32,001 0.113
55.896 54,855  33.877 32,001 0.107

€& TIME = 7,9898%
67.855 66.278 368.825  32.001 0.368
65.859 64.391 38,897 32,001 0.339
63.973 62.587 34,388 2,001 0. 321
62.205 60,004 38,210 32,001 0.305
60,504 59,258 35,005 32,001 0,279
58.910 57.738  33.877  32.001 0.265
57.808 56.297  33.7548  32.001 0.289
55.993 58,955  33.651 32.001 0.236

¢ TIME = 11_98007
67.876 66.311 348,781 32,001 n.557
65.905 64,857 38,978 32,001 0.512
€6.082 62.673 308,778  32.001 n.890
62.293  61.007 38,603  32.901% n.866
60,606 S°.366 38.326 32,001 n.u28
59.022 57.858 34.158 32,001 n.408
57.526  56.823 36,000 32.001 n.388
$S6.118 55.085  33.871  32.001 0.365

% TTVE = 15.07210
67.90C  6F.356  35.165  32.001 0,750
65.970 64,552 35.665  32.001 0.677
64.139 62.7°3  35.378  32.001 n.656
€2.817 61.150 35,157  32.001 n.626
60.748 59,522 38,760  32.001 0.573
59,178 58.023  34.523 32,001 n.549
57.689 56,59 36,323 32,001 n.s18
56.290 55,262 38,157  32.001 0,494

*¢ TIME = 19,96321
67.937 66.420  35.771  32.001 0.986
66.069 64.696 36.748 32,001 n.830
64.238 62,072  3F.253 32,001 0.819
62.602  61.3€5 35.786 32,001 0.783
60,950 50,751 35,372 32,001 n.716
56,406 58,264  35.M35 32,001 n.690
57.930 56,885 34,768 32,001 n,652
$6.53% 55,517  34.547 32,001 0.623

e TIMD = 23,95435
66.397 67.220 43.52z 41.862 1.000
66.659 65,382 30,395 32,001 n.992
66,008 63.681  38.058 32,001 0.934
63.312 62,113  37.54n  32.0m n.93g
61.683  €0,4%7  36.377  32.9%01 n.858
A 1317 52,993 35.%36 32,001 n.830
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APPENDIX E

PROTOTYFE HARDWARE PARTS LIST
ICE PACK ASSEMBLY
BOTLER ASSEMBLY

ICE CHFST ASSEMBLY
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PAGE

oo\l

Ionv: F-1 l Aapnov;sg,,( el

NO.REQ°D. LI ERLEERNERK] l 7_:!:[_:-— - —.. PART 1DENTIFICATION E2¥.'g':‘.'."‘9 FEML- FINIIHEQ NO. [aa_E
) slviclkls|7] o+3 ASSY. ICE PACK .
- + = — L
/ SIViSiK 83_:3 0 8~100 ASSY MNTC $MARNESS
] SIVISIK[3]7[308 200 ASSY MOUNTING —
i <lvisiklajz7 206 AS3Y _MAMIFOLD
/ S|vIsSIkKiAT1306-10Y PLATE GUIDE
/] SQvlsii87206¢-108 STEM ACTUAT IR
] 2171elX| R 300106  MOUS ING
# sSjivicIxi187730e -10}) TUBE
2 l/i15el 80204 -108 TZRE
2 SJVISIKI © 713946 -109 [ers
/i Sl7]<IN| 22206 -0 3s€AL O-RING
1 slvisli<lg 7306 -1l scAacL SeIPPER
/ AlMIEL |~ -2, rPLUG
1 Mis 1?0l D~-0cY o O-RIN "~
/ mis (2222 -2 ST L D-Rirr
1 MLl w292 -270 ol R ad,
/ S12 4i7r| -4+ -4 f/‘: p= wEek A
/ Li€|-10I¥TH ~1S3 SPRING. B
{ slvizlxlzl72z207 ASSY FCCeAT R FPLATE
{ “1/1c]kigD2077- "306 ASSY ACCUMULATIR
A SIVISIKET2L0)-102 BRACCET, MT G
1 cl/IS|IK 4300103 PRACRET, LEVER
/ Slvlslk B9 365 -10¥Y tEVER
{ SIVISIK 87307 <105 BRACKET, LEVER
/ Sl/{SIX 89 2097-106 LINK
1 SIVIS|XK 872092101 ACCUMULATOR
l slvis ik 399309 -198 Zr~irife
/ sl/]cs v _“12e-1id ROD
! SIvis K 97307~ 13 SPRING
Y AN S OI1ADIO~-8 SCPEN MACH
L d ANSO?HAD.0-10 <CREV _MACH
2 A1510 <aR10 Screw rncid F i,
! ANIQLOoC B L WASHER
9 A1 s9 & 0 2L WASWER
i MS 21245 -22 PIN, COTTER
[ 15{?21279-94So PIN,  ZTRAIG VT < HDLELS]
{ M szl O¥32-08 NYT, “ELF-LOCKIN G
s Mmisl2l) 04233 NUT <€ELF-LocXKING
{ $i12|9/1c4-18 PIn, STEAIHMT - HD'D
{ PIXIZ2]|5-06"1H LOLT, SHIIL LE I C
l 1?9 IX|2]ls-03u8 20LT. SHOUL SER C
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woos. /CE PACK WEAT SiniK_SUBSYSTEM - PHASE IL sace
—_——————— R T3 T
NO.REQ O, vjafsfalafelr{e o .. _®amvioEnTiricATiON D o ho] SEMI-FINISHED NO. an [teem
/] vl___FK+8730‘1-zoo AssSY, PLATE
7 s v;_xg”ji_o‘l—nl "PINTE , MOUNT ING
{ S5(Y.5IN877300-122 PATE, LPACER
2 $lv]slk 873071230 BASE tr1c i
3 S{2]l 209 -Fj-10 (nS€RT MELICOIL
] SlZ1sikl81120a8 100 LtATCH .
AR SIVISIK]I[7203 -0 TURIrSF>, FLEXIBLE
12 slviz|xt=lr o -10 LAMP ACRD SEAL
2 SI/1S <12 202~ 1CY  PLUG
] SlVisix|e|zr02-108 TU¢BE
! sizls i<zl n--106 TEE
l szt s=-101T PLUG
' SVis|x]|212 38714 ADAAPTER
2 <iviZ a7 208 -1 LW
_ 1 SlZ1Stel T T HIG TUEE
_AR SIVISINIZIT T =p) T ARIrrGe FLEXISLE
! sivisikld|™ v 2324128 TUZE
! VRN TN BRACCE T MOUN~ IA (
— -
1 slvicixlig~-14- LBRACKET
Ly S VSK'83314~2 RING FCLI™
10 VIslt|o|%70AD6-5 RivET, R MD
! sivisl<lsiz«18 ASSY HX/ILAPER
2 Sl sik{g247¢ ASSY HCAT CACHAVGER
2 slVis lkagqga2 NiPPLE, MOSE
) SSLARNLEEL AR COVER , MX
/ SIV|5jK 3374 HOUSING  NX
3 S{IVISI38495-103 FiNv, RUFFLED
2 131K ®39I5-10% Fi~v RUFFLED
y 2 SIV|SIK 8§8Y75-10S FIN RWFFLLED
{ visikl88477 FRAME , HX RETAINER
l SV S|ri89929 AsSSY, BLADLDER
{ SIv]{sin23419-102 RLADDER
/ SIVISiIk2dem9- 104 NIPPLE 3LADLER
L 'S|VISIKE89YI9 - 08 TURE, JVeET
/ civle il 32-:92-0¢ FLAnNG E
AR SITISlYo30-2 THREAD
AR Sivislvogg-i TARE SEALING
[A Slvisikl|g8dPn SPRING
2 AlN|SIO|rALR.§ SCREWN, MACH
2 NI 60300 WAS HER
2 Mmsta 1loyz-ng MyT CeF LocainG
PRE w ey OATY CHECKED B8Y OATE PRELIMINARY DRAFTING APPR, D‘:"‘
/r( e be b I 10 7/V/1 VJ_[ l
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PLSvrSK87308

wanrsLsreon /C & PACK ASSEMELY
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wone [CE PAC kK HEAT SINK SupSYSTEM- PrASE IL

003

NO.AEQ*D. I R . ] 0‘7 [ ] e PARY IDEN TIFICATION SEMI- FINISMED NO. ’[ON
1/ AlNIsTol1 A 10-12 SCRENW, MACH .
[ AlNIsSlo 1 1AD 10 =14 SCREVM, MACH
] Alnialg 2106 C ceamp , custion

1l AWML OIC DL WASHER
24 Ainialelolc iot WASHCER
8 MIS it Ye-14 SCREW INT HEX

_AR Imis21o]7[*sc20 L OCKWIRE
8 MIS1211101¥3-03 NUOT , . SELF LoCKiNG
1] Misj2|rjo]|¥43 -3 NUYT  SELF LOCKING

C171218l5]-258 SCREW, INT MEX
18 £$92 60:¢1-5 WASHER  SHOUL DER
¥ SIVISIKIZIT1309 ASSY, HARNESS
! S|VisixIg|INz09-) WEB ADTJUSTARLE
! sivisiklglnzes -2 WEB FIxED
2 SISl ca- 2 FITT 105 m)I0 END
l slvlsix|si71049-d ADTUSTE R VER

_AR slrlslyloisz-« THREAD

slvlsin]={2l-[52-500 ASSY ROILER ad ]
<IV]SIKislY[=]d2 - 62D ASSY . 1CE CHEST Pl
YOTE A-OBTNA'NABLE FROM TAMES
POND F CLARK 1N C
NOTE B-ORTAIAINIILE CLoM (LEE
SPRING (O, LKLY N Y,
: +
NOTE € - ORrAwWHZLE FRom
STOC AN LF:VE PRODUCTS | INEW
HYDE FRARE, MY
— F/mnral  Pa 5 < —
—rif_’?z:g‘(k - lll;).%:/-;?\/w"tog = DaTE Ivuu.mmnnv ORA®TING An;ﬁ:-
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NO.REQ D, slals]e _n_o::_n—r_.-._:f:_._ PART IDENTIFICATION e ] sEmt- mintsMED NO. MR | Ttem

1 sivlsiklalelelglz-500 Assy, Bot €R
4+ .
2 SIVISIKIRIT 2{iS~100 FITTING _CAP
L
i VI T RS- 170 FITT. NG AUic< bIscon.
] AIN]|ALLI31-|2 D PLYG, PIPE
2 VK[ O25-200 FITTiNG, P76
2 sl/]six]ela]+sle?2-100 B0/t €R
/ Slvisik|-i=2l A2 =101 AT E, BOWLER
9 slvilslw|gle[s22-103 pPANEL D1YI1DER
20 slvicik|Bl|8lwEZ-104 PLATE  PREFUORATED
2 Slv it 2lell.s2- 108 PArf:  END
} St lcIcieic|we-1006 PAaNEL
1 sivicixlslele-72-,297 pArrSL, REAR
¢ slrjclal=l=]i92. 102 poss
] i P4 08 R KA R DT k. I L
1 sjvicsikjels|9&7-41t kAL R
190 WA D Bl Bl R EROR - S . & i
8 slrlsle] (o fraz2-199 o0
] clzislclelcj«s2-12! 202 s
{ M 8 ML N B A Ay B
{ Voo ]e e T vt2-10 ScREW < ET
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/ AN 12 i Ol AFE ) - 1S S SR T Ml Licol L
2 Sl/jelloiv|vi@2-110 CUYER
108 siV]S [x]el@2f7]82 -t wit
R sivizjrlalalelaa-tim wick
2 siv]six|al=|v]|82-120 s5PACER
2 slvlsjelaglafiler-ine SEAL
2 SivisiK|8i21¥4132-1203 41 dhE
2 sivisi«<|zly|~|22-12Y KHOOK
36 Stvisik]|gl9l4182-300 ASSY, LAPANSION LM
2 siviclrigle|4s2-112  PLATE, EXxPANSION LIM
{ Sl/iSsik'st<(~82-112 SPACER, KRB RER
AR slrloi/izqel2-20 THEREAD
12 SIVISIK|S[S|4[87 -H00 Assy ExvhArisipnal LiIM
2 sl{vislk]8lgl“¥g2-11Y PLATE £xPANSI N LIAY
] slvislk; 8 YB-11Y LSPACER LUBELER
AR, slrlstivio2{8]3-20 IHREAD
AR sivinprirls 2°¢ CABLE STRANMDEL FLEx
8 ViT71211 471812 LEEVE Compl s L ON
Y
i —
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PARTS LISY NO. f#SVSK88452~S'°O
sanvsLsrron RO/ L ER ASSeEmniLY
CODR 10ENT. NO. 73030
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SCOPE

This plan of test defines the performance tests to be per-
formed by Hamilton Standard on the Phase II Ice Pack Heat
Sink Subsystem, SVSK 87308. The acceptance test program

is intended to verify the functional operation of the Phase
I1 Ice Pack Heat Sink Subsystem.

TEST SEQUENCE

The pertormuance test program consists of the following tests
performed in the sequence defined:

1. Evaluation of ice chest freeze/thaw performance. .
2. Evaluation of water boiler freeze/thaw performance.
3. Evaluation of water boiler boiling performance.

Deviation from the test sequence or test procedure requires
approval of the cognizant program engineer.

TEST FNVIRONMENT

The test environment for all portiors of this test will be
vacuum.

TEST EQUIPMENT

All portions of this test program will be performed in the
Hamilton Standard Space Systems Department Space Laboratory.
Except for the Rig 25 vacuum facility, portable equipment
compatible with the test unit and the test requircments as
defined by this plan of test will be utilized.

DEFINITION OF TESTS

Fvaluation of Ice Chest Freeze/Thaw Performance

F-2
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Instrumentation and Equipment

€

B bt e et e O e el et e e b e

Item Range Accuracy

DC Power Supply O0-30 VdC @ 3 + 0.1 volt
ampere

DC Voltmeter 0-30 VX + 0.05 volt

DC Ammeter 0-3 ampere + 0.05 ampere

AC Voltmeter 0-120 VAC + 1.0 volt

AC Ammeter 0-10 amp + 0.1 ampere

Flowmeter 0-0.1 gpm + 0.005 gpm

Flowvmeter 0-0.425 gpm + 0.025 gpm

Flowmeter 0-0.58 gpm + 0.025 gpm ®

Pressure Gauge 0-30 psia + 0.05 psi

Pressure Gauge 0-20 mmHg ABS + 0.05 mmHg

Coolant Pump 0.48-0.53 gpm + 0.02 gpm

Heat Load 0-2000 Btu/hr + 20 Btu/hr

L&N Thermocouple 0-100°F + 0.40F

. Readout

Thermocouple 0-100°F + 0.1°F

Test Set-up

This test is perfcrmed on Rig 25 in the Space Systems Depart-

ment Space Laboratory.

the

Figure 1 schematically illustrates
test Set-up.

Test Procedure

a.

Install the ice pack heat exchanger assembly in the vacuum
chamber of Rig 25 and plumb the hardware and wiring per
Figure 1.

Close the vapor passage valve.

Set the power supply to 27 vdc and start the pump/motor,
Close the bypass flow valve. Open the flowmeter .ypass °
valve. Adjust the heat exchanger flow valve to obtain a
system flow of 0.5 gpm. Fill system with water through
water fill port. Bleed air from system utilizing water
£f111 port valve and air bleed vent valve and pressurize
pump inlet to 5 psig.

Check thermocouples T1, Tj, T3, T&'
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Test Procedure - Continued

€.

Switch the bladder control valve to vacuum.

Chill the system to 45CF using an externmal cooling pack
applied to heat exchanger.

Install an insulated frozen ice chest on the heat exchanger
assembly. Close the vacuum chamber and evacuate to 10-4
mmHg (0.1 micron).

Adjust the heater control to apply 2000 Btu/hr (587 volt
amperes) to the LCG simulator.

When the outlet temperature of the LCG simulator reaomes
587 pressurize the lLladder to 20 psia.

Adjust the heat exchanger flow valve and bypass flow
valve to maintain the LCG inlet temperature

at 50°F and the system flow at 0.5 gpm. Vhen the bypass
flow reaches zero, continue running until the heat ex-
changer outlet temperature reaches 65°F. Shut off the
heater and the pump/mctor. Repressurize the chamber and
remove the ice chest. Refreeze the ice chest.

Repeat c., d., e.,.and g..

Adjust the heater control to-apply 1500 Btu/hr (440 volt~
amperes) to the LCG simulator.

When the outlet temperature of the LCG simulation reaches
76°F pressurize the bladder to 20 psia.

Adjust the heat exchanger flow valve and bypass flow
valve to maintain the LCG inlet temperature

at 70°F and the system flow at 0.5 gpm. When the bypass
flow reaches zero, continue running until the heat ex-
changer outlet temperature reachos 80°F. Shut off the
hezater and the pump/motor. Repressurize the chamber

and r-move the ice chest. Refreeze the ice chest.

Repeat k., 1., m., n., except adjust hecater control to
75° Btu/hr (220 volt-ampcre-) and pressurize the bladder
vhen the outlet temperaturce of the LCG sirulator reaches
B88°F. Adjust valves to maintain the LCG in -

lot temperature ot 85°F and shut dovn when the heat eox-
changer (.L.et temperature reachcs 900F.

F-5
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5.1.4 Test Requirements

Each of the tests must be run until the heat exchanger out-
let temperature cannot be maintained at the specified tem-
perature. For each run record the following condition vs
time:

1. Heater voltage

2. Heater amperage

3. System flow

4. Heat exchanger flow

5. Pump inlet pressure

6. Bladder pressure

7. Heat exchanger inlet pressure

8. Heat exchanger outlet pressure .
9. Heat exchanger inlet temperature
10. Heat exchanger outlet temperature
11. LCG inlet temperature
12. LCG outlet temperature
13. Vacuum chamber pressure

5.2 Evaluation of Water Boiler Freeze/Thaw Performance
5.2.1 Instrumentation and Equipment
Qty Item Range Accuracy
1 DC Power Supply 0-30 VDC @ 3 + 0.1 volt
ampere
| DC Voltmeter 0-30 VDC + 0.05 volt
1l DC Ammeter 0-3 ampere + 0.U5 ampere
1 AC Voltmeter 0-120 VAC + 1.0 volt
1 AC Ammeter 0.10 ampere + 0.1 ampere
1 Flowmeter 0-0.1 gpm + 0.005 gpa
1 Flowmeter 0-0.425 gpm + 0.025 gom
1 Flowmeter 0-0.58 gpm + 0.025 gpm
4 Pressure Gauge 0-30 psia + 0.05 psi
1 Pressure Gauge 0-20 rmllg ABS + 0.05 =rHg
1 Coolant Pump 0.48-0.53 gpm + 0.02 gpm
1 Heat Load 0-2000 Btu/hr + 20 Btu/hr
1 L&N Tharmocouple  0-100°F + 0.4°F
Readout

4 Thermocouple 0-100VF + 0.1°F
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This test is performed on Rig 25 in the Space Systems Depart-
ment Space Laboratory. Figure 1 schematically illustrates
the test set-up.

5.2.3 Test Procedure

a. Install the ice pack heat exchanger assembly in the vacuum
chamber of Rig 25 and plumb the hardware and wiring per
Figure 1.

b. Close the vapor passage valve.

c. Set the power supply to 27 vdc and start the pump/motor.
Close the bypass flow valve. Open the flowmeter bypass
valve. Adjust the heat exchanger l.w valve tu obtain a
system flow of 0.5 gpm. Fill system with water through
air bleed vent valve. Close water fill port valve and
air bleeu vent valve and pressure pump inlet to 5 psig.

d. Check thermocouples T1, T2, T3, T,.
e. Switch the bladder control valve to vacuum.

f. Chill the system to 45°F using an external cooling pack
applied to heat exchanger.

g. Install an insulated frozen water boiler with the two
vapor passage vents plugged onto the heat exchanger
assembly. Close the vacuum chamber and evacuate to 1074

mnHg (0.1 micron).

h. Adjust the heater control to apply 2000 Btu/hr (587 volt
amperes) to the LCG simulator.

i. When the outlet temperature of the LCG siwmulater reaches
58°F pressurize the bladder to 20 psia.

j. Adjust the heat exchanger flow valve and bypass flow
valve to maintain the LCG inlet temperature
at SO°F and the system flcw at 0.5 gpm. VWhen the bypass
flow reaches zero, continue running until the heat ex-
changer outlet temperature reaches 65°F. Shut off the
heater and the pump/motor. Repressurize the chamber and
remove the ice chest. Refreeze the ice chest,

F-7
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Test Procedure - Continued

k.

1.

Repeat c., d., e., and g..

Adjust the heater control to apply 1500 Btu/hr (440 volt-
awperes) to the LCG simulator.

thn the outlet temperature of the LCG sinulation reaches
76 F pressurize the bladder to 20 psia.

Adjust the heat exchanger flow valve and bypass flow
valve to maintain the LCG inlet temperature

at 709F and the system flow at 0.5 gpm. When the bypass
flow reaches zero, continue running unitl the heat ex-
changer outlet temperature r :hes 80°F. Shut off th%
heater and the pump/smotor. I .ressurize the chamber

and remove the ice chest. Refreeze the ice chest.

Regeat k., 1., m., n., except adjust heater control to
75°F Btu/hr (220 volt-amperes) and pressurize the bladder
when the outlet temperature of the LCG simulator reaches
88°F. Adjust valves to maintain the LCG in -

let temperature at 85°F and shut down when the heat ex-
changer outlet temperature reaches 9QOF.

Test Requirements

Each of the tests must be run until the heat exchanger out-
let temperature cannot be maintained at the specified tem—
perature. For each run record the following condition vs

time:

1. Heater voltage

2. Heater amperage

3. System flow

4. Heat exchanger flow

5. Pump inlet pressure

6. Bladder pressure

7. Heat exchanger inlet pressure

8. Heat exchanger outlet pressure
9. Heat exchanger inlet temperature
10. Heat exchanger outlet temperature
11. LCG inlet temperature
12, 1CG outlet temperature

13, Vacuum chamber pressure
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Evaluation of Water Boiler Boiling Performance

Instrumentation and Equipment

Qty
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Item Range Accuracy
DC Power Supply 0-30 VDC @ 3 + 0.1 volt
ampere
DC Voltmeter 0-30 VDC + 0.05 volt
DC Ammeter 0-3 amperec + 0.05 ampere
AC Voltmeter 0-120 VAC + 1.0 volt
AC Ammeter 0-10 ampere + 0.1 ampere
Flowmeter 0-0.1 gpm + 0.005 gpm
Flowmeter 0-0.425 gpm + 0.025 gpnm
Flowmeter 0-0.58 gpnm + 0.025 gpm
Pressure Gauge 0-30 psia + 0.05 psi
Pressure Gauge 0-20 mmlg ABS + 0.05 mmHg
Coolant Pump 0.48-0.53 gpm + 0.02 gpm
Heat Load 0-2000 Btu/hr + 20 Btu/hr
L&N Thermocouple  0-100°F + 0.4°F
Readout
Thermocouple 0-100°F + 0.1°F

Test Set-up

This test is performed on Rig 25 i) the Spaca Systems Dcpart-

ment Space Laboratory.

the

Figure 1 schematicall; illusirates

Test Procedure

a.

Install the ice pack heat exchanger assembly in the vacuum
chamber of Rig 25 and plumb the hardware and wiring per
Figure 1.

Close the vapor passage valve.

Set the power supp’y to 27 vdc and start the pump/motor.
Close the bypass flow valve. Open the flowmeter bypass
valve. Adjust the heat exchanger flow valve to obtain

a system flow of 0.5 gpm. Fill system with water through
air bleed vent valve. Close water fill port valve and
air boeed vent valve and pressure pump inlet to 5 psig.

Check thermocouples Ty, Ty, T3, T4-
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Test Proccdur: - Continued

e. Switch the bladder control valve to vacuum.

f. 1lustall an insulated unfrezen water boiler on the heat
exchanger assembly. Unplug the vapor passage vents and
hook up to the vacuum line.

g. Close the vapor paszage vaive. Close the vacuum chamber
and evocuate to 10 7 rollp (0.1 micron). Pressurize the blad-
der to 20 psia.

h. Adjust the hcvater control to apply 2000 Btu/hr (587 volt
amperes) to the LCG simulator.

i. Open the vapor passage valve and run until the heat efR~
changer outl t temperature stabilizes.

j. Adjust the heater control to apply 1500 Btu/hr (440 volt-
ampercs) to the LCG simulator.

k. Run until the licat exchanger outlet temperature stabilizes.

1. Adjust the hcater contiol to apply 750 Btu/hr (220 volt-
amperes) to the LCG simulator.

m. Run wntil the hoat exchanger outlet temperature stabilizes
or reaches 32°F.

n. Shut off the heater and repressurize the chamber.

o. Switch the bladder control valve to vacuum.

p. Replug one of the vapor passage vents

q. Close the vapor pasiabo valve. Close the vacuum chamber
and evacuate to 107" mmHg (0.1 micron). Pressurize the btlad-
der to 20 psia.

r. Adjust the heater control to apply 750 Btu/hr (22C volt-
amperes) to the LCC simulater.

s. Run until the heat exchange outlet temperaturc stzbilizes.

t. Adjust the heater control to apply 1500 Btu/hr (440 volt-
amperes) to the LCG simulator.

u. Run until the hcat cxchante outlet tewmperature stabilizes.,

-
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Test Procedure - Continued

Ve

Shut off the heater and pump/motor.

chamber and remove the water boiler.

Test Requirements

ECS-2124-L-079

Repressurize the

Each of the tests must be run until the heat exchanger outlet
temperaturc has stabilized or reached 32°F. For each run

record the following conditions vs time:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11.

12.

13.

14.

Heater voltage

Heater amperage

System flow

Heat exchanger flow

Pump inlet pressure

Bladder pressure

Heat exchanger inlet pressure
Heat exchanger outlet pressure
Heat exchanger inlet temperature
Heat exchanger outlet temperature
LCG inlet temperature

LCG outlet temperature

Vacuum chamber pressure

Vapor passage pressure
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