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ABSTRACT

The thesis consists of an explanation of the similarities between

regular and structured microprogramming; an explanation of machine

branching architecture (particularly in the SUMC computer) required for

ease of structured microprogram implementation; the implementation of a

structured microprogram set in the SUMC to emulate the IBM System/360;

and finally a comparison of the structured set with a nonstructured set

previously written for the SUMC.
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CHAPTER I

INTRODUCTION

1.1 Scope

This thesis assumes the reader is familiar with computer micro-

programming. It is intended to be a practical document that bridges the

gap between computer architecture and microprogramming. It is written

so that it appeals to those interested in computer architecture,

computer languages, and microprogramming.

A summary of the similarities between regular and structured

microprogramming is given in Chapter II. The mathematical foundations

for these are discussed in depth in the works of Dijkstra, Glushkov,

Ito, and Mills given in the References. The basic architectural struc-

tures needed to implement structured microprograms are explained in

Chapter III. The SUMC, a versatile aerospace microprogrammable computer

developed by NASA, is introduced in Chapter IV. Then, the basic struc-

tured primitives for the SUMC are developed in Chapter V. These are

used, throughout Chapter VI, to implement a subset of structured micro-

programs which emulate the IBM System/360. Finally, the structured

microprograms are compared with the corresponding nonstructured micro-

programs.

1.2 Background of Thesis

The Data System Laboratory, Marshall Space Flight Center (MSFC),

Huntsville, Alabama, is engaged in the development of a family of
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computers known as Space Ultrareliable Modular Computers (SUMC). The

main guideline in the SUMC program is to develop a microprogrammable

computer family capable of emulating existing ground commercial com-

puters. As an employee of Sperry Rand, Huntsville, Alabama, supporting

Data Systems Lab (under contract No. NAS8-21812), the author was

assigned to write the microcode for the SUMC Breadboard (SUMC BB) used

in the emulation of an IBM System/360. The original microcode set [20]

occupied 1700 memory locations. Delivery delays of a similar micro-

code memory, to be used in the development of a SUMC input/output pro-

cessor (IOP), forced MSFC to require the SUMC microcode be rewritten

within a 1K (1024) memory module, to free the other SUMC BB memory

module for IOP use. The SUMC microcode was rewritten to fit within a

1K memory module. Careful attention was exercised so that not only

microcode size requirements were met, but also the resulting microcode

instruction set was faster in execution time.

The author has had an interest in regular expressions since 1968.

While reading articles on regular microprogramming, he noticed great

similarities between regular and structured programming. Structured

programming guidelines, have been issued by MSFC to be used in the

SUMC software development program. Similar guidelines, however, have

not been issued in the area of microprogramming. This thesis explores

the use of structured microprogramming in the SUMC Breadboard. This

objective was not brought about from a mere desire to illustrate

structured microprogramming implementation, but rather to illustrate

structured microprogramming implementation under realistic design

constraints. Most of the current literature on structured programming
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concepts deals with high level language implementation. Since high

level languages are, by design, machine independent, the application

of structured programming techniques to them is rather straightforward.

On the other hand, microprogramming is machine and real time dependent.

Thus, the application of structured programming techniques in this

area is more difficult. But most important, all design is subject to

unpredictable restrictions (such as those caused by the delivery delay

discussed above). Thus, the author's approach was to rewrite the

microcode used in the SUMC BB emulation of the IBM System/360, with

similar constraints. He purposely, preserved the sequence of events

within the microprograms whenever possible. In this manner (with the

algorithms as a fixed parameter), the two microcode sets could be more

easily compared. At the same time, he was insured that the structured

microprogram set was a valid one. That is, once this set is assembled

into machine language and loaded into memory, it will successfully

emulate an IBM System/360 in the problem state.

1.3 Objectives of Thesis

The objectives of this thesis are as follow:

Objective 1. To point out the similarities between regular and

structured microprogramming. This objective was fulfilled.

Objective 2. To study the branching architecture required for

ease of structured microprogramming implementation. This objective

was also fulfilled.

Objective 3. To write a complete structured microcode set for

the SUMC BB for the emulation of an IBM System/360.



This objective was partially but adequately fulfilled. Rather

than rewritting the complete microcode set, the author selected micro-

programs subsets which exemplify the implementation techniques and

point out the main differences between the sets. By doing this, he

eliminated many repetitious sections from the thesis.

Objective 4. To compare the size, speed, and ease of implementa-

tion of the structured and nonstructured microprogram sets. This

objective was fulfilled.
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CHAPTER II

MICROPROGRAMMING

2.1 The Microprogrammable Computer

Consider a simplified computer model consisting of two blocks: an

operational and a control automaton shown in Fig. 2.1. The output of

the operational automaton is the string of values of the logical condi-

tions (predicates) p1 ' P2' .. ' Pn. If the current state sj of the

automaton belongs to S, then the logical condition is taken to be

satisfied (pj = 1). Otherwise, the condition is not satisfied (pj = 0).

The output signals (microoperations) of the control automaton

(m, m2, ... , 'mn) are identified with certain transformations of the

set of states of the automaton. That is, m: S - S. Note that the

output of the control automaton corresponds to an input string of the

operational automaton.

A microprogrammable computer is a structure:

C= {S,I,O,MP

of partial functions for which there exist: The set of states, S; the

set of input sequences, I; the set of output sequences, 0; the set of

microprograms, M; and the set of predicates, P. The input function I

is related to S by a mapping of I into S. Thus, the input function,

I: I -* S. Similarly, for the output function, 0: S + 0; for the

microprogram set, M: S S; and for the predicate set, P: S + (0,1).
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Operational (ml m2, ..."' mn) Control
Automaton ( Automaton

(P ' P2' "" Pn)

Input Output

Figure 2.1. Microprogrammed Computer Model

2.2 Formal Definition of Regular Microprograms

A class of regular microprograms [8] can be defined recursively as

follows:

1. Individual microoperations (e, mi, m2, ... , mn) are

regular microprograms. The NO-OPERATION microoperation is e.

2. If x and y are regular microprograms, then regular micro-

programs are formed by the following rules:

a. Concatenation

x * y ; meaning x followed by y

b. Decision expressions

< x v y > ; meaning p * x v ~ * y
p

c. Iteration

[ x ] ; meaning while p do x
p
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3. Where p is a predicate term as defined below:

a. Individual predicates (T, F, pi,' 2 ' ..." pn) are

predicate terms.

b. If x is a regular microprogram and p is a predicate,

then x * p is a predicate term.

c. If p and q are predicate terms, then p v q, p A q,

P are predicate terms.

2.3 Regular Microprogram Meaning

A regular microprogram has meaning only when an interpretation is

given. An interpretation for regular microprograms is specified by a

computer C = {S,I,0,M,P} on which a regular microprogram is represented.

For any state s of S, regular microprograms will be given to the

following meaning:

1. e(s) = s

2. x * y(s) = y(x(s))

3. < x v y >(s) = if p(s) then x(s), else y(s)

p

4. [ x ](s) = while p(s) do x(s)
p

5. T(s) = true; F(s) = false

6. x - p(s) = p(x(s))

7. (p v q)(s) = if p(s) then true, else q(s)

8. (p A q)(s) = if p(s) then q(s), else true

9. (p - q)(s) = if p(s) then q(s), else false

10. (5)(s) = if p(s) then false, else true

11. p(s) . q(s) = q(s) * p(s) = p(q(s)) = q(p(s))
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2.4 Practical Aspects of Regular Microprogramming

But why should one be concerned with regular microprograms? As

it is clearly shown in the works of Glushkov [3, 4]: "Any microprogram

can be represented in regular form. There exists an algorithm for

transformation of arbitrary microprograms written in ordinary form into

regular form". Ito [8] has shown that any microprogram can be written

in an ordinary flowchart or an automaton diagram, and that this flow-

chart or automaton diagram can be represented by a linear system of

equations of regular microprograms. Furthermore, any linear system of

equations of regular microprograms can be solved and its solutions are

in the class of regular microprograms.

2.5 Structured Microprogramming

Structured programming is currently receiving a great deal of

attention. The theorems providing the mathematical foundations of

structured programming given by Mills [14] are: The structure Theorem

("Any flowchartable program logic can be represented by the expansions

of as few as three types of structures"), the TOP-DOWN Corollary

("structured programs can be written or read top-down"), the

Correctness Theorem (under certain conditions, "a program can be proved

correct by a tour of its program tree"), and the Expansion Theorem

which gives the rules for top-down decomposition. The three types of

control structures which are usually used as a basis for the control

structures of flowchartable programs are:

1. f then g

* f * * g *
***** ***x*
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2. If p then f, else g

Yes * * No
• . * p *

* f
S .**** . * **** . *

3. While p do f

* * Yes * * * * * ** * Yes*****
* p * .. .* f * .

* *****

* NO

Structured microprogramming is defined as the implementation of

microprograms utilizing only concatenation, decision expressions, and

iteration primitives.

It is obvious that the three structured microprogramming primitives

correspond to the expressions given under Rule 2 in the formal defini-

tion of regular microprograms. Note that f corresponds to x, and g

corresponds to y.

2a. Concatenation

x * y f then g
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2b. Decision expressions

< x v y > If p then f, else g
p

2c. Iteration Do while

[ x ] While p, do x

p

When implementating structured microprogramming (or programming

in general) it is common practice to implement the iteration primitive

[ x ] (while not p do x), instead of [ x ]. This is done because it
P P
is easy to load some iteration counter with a positive value (1 < v < N)

prior to entering the iteration. The iteration count is decremented by

a fixed number (usually 1) with each pass through the iterative loop,

until the iteration count is made zero (or sometimes negative) prior to

exiting the primitive. Refer to Section 5.3. Note that either [ x ]
p

or [ x ] can be used as a primitive without losing the validity of the

conclusions previously made. The iteration primitive when implemented

is always finite. That is, a finite number of passes are made prior to

exiting the iteration.



CHAPTER III

STRUCTURED MICROPROGRAMMING BRANCHING ARCHITECTURE

3.1 Machine Dependence

Microprogramming is machine dependent. Thus, the ease with which

one can implement structured microprograms in a given microprogrammable

computer is closely governed by the machines' branching architecture.

Implementation of the aforementioned control primitives is significantly

more difficult at the macro level because specific return addresses

must be saved within the macros.

3.2 Ease of Implementation

The relationship between branching architecture and ease of struc-

tured microprogramming implementation is best shown by example. In

the following pages three machines (X, Y, and Z) will be discussed.

A table summarizes the machine commands used in microinstruction

sequencing. Each control primitive is implemented for each machine

both at the micro and macro level. For each primitive, a microprogram

and a macroprogram are given. The programs are further illustrated by

the corresponding micro and macro flowcharts. The following abbrevia-

tions are used for the sequencer and alternate sequencer registers:

SEQ and ASEQ respectively. Two other utility registers LITERAL (LIT)

and TEMPORARY (T) are used.
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TABLE 3.1

Successor Commands for Machine X

COMMAND NEST INSTRUCTION ADDRESS RETURN ADDRESS

STEP (SEQ) + 1
SKIP (SEQ) + 2
SAVE (SEQ) + 1 (SEQ) - (ASEQ)
CALL (ASEQ) + 1 (SEQ) - (ASEQ)
JUMP (ASEQ) + 1
RETN (ASEQ) + 2
WAIT (SEQ)

The successor commands for Machine X [16], are given in Table 3.1.

The default successor command is STEP. The machine has two pointers

into control memory, SEQ and ASEQo It has subroutine capabilities

provided by the CALL and RETN commands. Both true and false successors

can be specified in each instruction. Figures 3.1 through 3.6 further

illustrate the implementation of structured primitives given in the

text for Machine X.

At the micro level, the structured microprogram primitives can be

easily implemented. However, implementation of these primitives at the

macro level is more difficult because specific return addresses must be

inserted within the macros.

Primitive: f then g

Microprogram
f, STEP
g
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* ENTRY

* f *

* STEP

* g *

Figure 3.1. Concatenation Microflowchart for Machine X

Primitive: f then g

Macroprogram
fl' STEP

f2' STEP

fn STEP

G - 1=: ASEQ

JUMP

G1: g
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* ENTRY *

*********

* fl **** * ****

Fl
STEP

f2* f2 *
*********

. F2

* f, *
*********

. Fn

*********

* Gl-1 t (ASEQ) *

JUMP

* g *

G1

Figure 3.2 Concatenation Macroflowchart for Machine X

Primitive: If p then f, else g

Microprogram
If p then SKIP, else STEP

G: g, SKIP

F: f, STEP
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* ENTRY

STEP NO * * YES SKIP

* * * - -

S** *

* g * * f *

* 2 3

SKIP STEP

*** **

4

Figure 3.3. Decision Microflowchart for Machine X

Primitive: If p then f, else g

Macroprogram
F1 - 1 =: ASEQ

If p then CALL, else STEP

G1 - 1 =: ASEQ

If (not p) then CALL, else STEP

F: f: fl

f2

fn-1

fn, RETN

G: g: 91

92

gms JUMP
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* ENTRY *

* F - 1 (ASEQ) *
* *1.........

STEP NO * * YES CALL

* * * *
* ** 9

* G - 1 + (ASEQ) * * f *

* * *F 1

* *****

* p * * * * *****

2
STEP YES

* * * * * *
E * G *
E *

E * ***** *****
R * * *fn-1 *

* ***** *****

T Fn-1
A
K.K * ***** *****
E * * 9m * * fn *
N* ***** *****

* * Gm Fn
JUMP* * * * * * * * * * * * * * * RETN

* *

3

Figure 3.4. Decision Macroflowchart for Machine X
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Primitive: While 0, do f

Microprogram
ROM - 1 =: ASEQ

ROM: If (not p) then STEP, else SKIP

f, JUMP

g

* ENTRY

* ROM-1 - (ASEQ) *

* ROM-1

* *

* * NO STEP * * * * * JUMP
• p *---.-* f *.....

* * *****

*ROM ROM + 1

YES *
* SKIP

* g *

ROM + 2

Figure 3o5. Iteration Microflowchart for Machine X
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Primitive: While 5, do f

Macroprogram

ROM: F1 - 1 =: ASEQ

If (not p) then JUMP, else STEP
G: g
F: f: fl

f2

n-l
ROM - 2 =: ASEQ
fn, JUMP

. ENTRY .

-* * * * * * * * * * *

* F1 - 1 (ASEQ) .

* ROM-1

STEP YES * * NO JUMP

* * * * *

S* * ** * *** *** ** ** *

* g . ROM . fl *
* * * * * * * * * * * * * * * * *

G=ROM+ * F1

* * * * ** * * * * * *

* fn-I *

* Fn-l

* ROM-2 - (ASEQ) *
* ** * * ** ** * * *

* * * * * * * * * **

* f *
S** * * ****

* F *n
JUMP

Figure 3.6. Iteration Macroflowchart for Machine X
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TABLE 3.2

Successor Commands for Machine Y

COMMAND NEXT INSTRUCTION ADDRESS RETURN ADDRESS

STEP (SEQ)+l
SKIP (SEQ)+2
SAVE (SEQ)+l (SEQ)+1 + (ASEQ)
CALL (LIT) (SEQ)+1 + (ASEQ)
JA (ASEQ)
JL (LIT)
JT (T)

The successor commands for Machine Y [17] are given in Table 3.2.

The machine has four pointers into control memory: SEQ, ASEQ, LIT,

and T. The STEP, SKIP, SAVE, and CALL commands are similar to those

of Machine X. Only one successor can be specified in each microinstruc-

tion. The default successor is always STEP. Machine Y has three JUMP

commands. At the macro level, the existence of multiple JUMP commands

simplifies returns from the function f and facilitates modular decomposi-

tion of the microcode. However, specific return addresses must still be

inserted within the macros.

Primitive: f then g

Microprogram
f, STEP
g

* ENTRY *

* f *

SSTEP

* g *

Figure 3°7. Concatenation Microflowchart for Machine Y
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Primitive: f then g

Macroprogram
fl' STEP

, STEP

G1 =: ASEQ, JA

G1 g

* ENTRY *

*******

* f *

. F1

:STEP

* f *

. Fn

:STEP

* Gi (ASEQ) *

JA

* g *

Figure 3.8. Concatenation Macrofowchart for Machine Y

Figure 3.8. Concatenation Macroflowchart for Machine Y
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Primitive: If p then f, else g

Microprogram
If p then SKIP, else STEP
g, SKIP
f, STEP

* ENTRY

STEP NO * * YES SKIP

* 1* p

* g f 1

* 2 . 3
* SKIP STEP

* * . * * * . * *

4

Figure 3.9. Decision Microflowchart for Machine Y

Primitive: If p then f, else g

Macroprogram
F1 =: LITERAL

If p then CALL, else STEP
G1 =: LITERAL

If (not p) then CALL, else STEP
F: f: fl

n-1
F , JA

G: g: gl1

gm, JA
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* ENTRY "

Fl (LIT)

CALL YES * * NO STEP

** * * * * ** * * * * * * * ****

* f * * G * (LIT) *

SF 1  *
F 1  STEP YES * * NO CALL

* * * * * * * * * * * . . * p * . . . . . .

* * * * * ************ * *2

. * g1 *** ** *

* * * * * * * * * * * *

F V * *E
F n-1  *V

E ****
*R********** *R

* (ASEQ)+1 (ASEQ) * :
*********** T *****

*A * 9gm *
*K
*E G*********** *E . G

* fn * N

F
* n *
* JA . JA *

*****

* *

3

Figure 3.10. Decision Macroflowchart for Machine Y
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Primitive: While , do f

Microprogram
ROM =: ASEQ

ROM: If (not p) STEP, else SKIP
f, JA
g

* ENTRY

* ROM (ASEQ) *

* ROM-1

* STEP NO * * YES SKIP

* . * * -.
* * *

S ** ROM
* * f * * g *S ***** **g **

* * ROM+l ROM+2

. . . JA

Figure 3.11. Iteration Microflowchart for Machine Y

Primitive: While , do f

Macroprogram
F1 =: ASEQ, STEP

ROM =: LIT
ROM: If (not p) then JA, else STEP

Fl: f: fl

n JL
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* ENTRY

* F1  (ASEQ) *
** *******

. STEP

* ROM - (LIT) *

* ROM-1

. *

S* * STE

* ***** * *****

* fl * ROM g
* ***** *****

* * F1  ROM+l

. *****

* *

* *****

* fn *

F
* . * n

* * * * * * *JL

Figure 3.12. Iteration Macroflowchart for Machine Y

The successor commands for Machine Z are given to Table 3.3. At

the micro level, the implementation of structured primitives is identi-

cal to that of Machine Y. However, at the macro level, the implementa-

tion of the decision primitive is considerably easier since this

successor set allows for multiple return addresses to be specified
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outside of the macro instruction blocks. Thus, substantial improve-

ments in microprogramming efficiency and a reduction in control memory

size are possible with Machine Z.

Microprogrammable machines are not easy to program structuredly

unless the branching architecture capabilities provide for easy

implementation of the structured primitives. In particular, a successor

set consisting of STEP, SKIP, SAVE, two CALL, and two JUMP commands,

should be sufficient to implement structured microprograms with ease.

TABLE 3.3

Successor Commands for Machine Z

COMMAND NEXT INSTRUCTION ADDRESS RETURN ADDRESS

STEP (SEQ)+l
SKIP (SEQ)+2
SAVE (SEQ)+1 (SEQ)+1 + (ASEQ)
CALLA (ASEQ) (SEQ)+1 + (ASEQ)
CALL (LIT) (SEQ)+l -P (ASEQ)
JA (ASEQ)
JL (LIT)

Primitive: f then g

Microprogram
f, STEP

* ENTRY *

* f *

* STEP

* g *

Figure 3.13. Concatenation Microflowchart for Machine Z
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Primitive: f then g

Macroprogram

F1  fl STEP

fn, STEP

G1 =: ASEQ, JA

G1: g

* ENTRY *

********

S fl *

* STEP F1

* STEP

* f_ n

*STEP Fn

* Gl  (ASEQ) *

* JA

* g *

GFigure 3.14. Concatenation

Figure 3.14. Concatenation Macroflowchart for Machine Z
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Primitive: If p then f, else g

Microprogram
If p then SKIP, else STEP

G: g, SKIP
F: f, STEP

* ENTRY

NO * * YES

* * *** p * * ***

S * **

S 2 * 3

SKIP STEP

4

Figure 3.15. Decision Microflowchart for Machine Z

Primitive: If p then f, else g

Macroprogram
F1 =: ASEQ

G1 =: LIT

If p then CALLA, else CALL

F1: f: fl

fn, JA

G1: g: 91

gm' JA
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* ENTRY *

• * * * * * * * * * *

* F (ASEQ) *
• ** *******

* 1

* G + (LIT) *

* 2
*

CALL NO * * YES CALLA

* **** ** *****

* 9 * 3 * f
S** * * * * *1

SG 
F1

• **** *****

* * * *

• **** *****

• **** *****

* , * * fn *
• **** *****

* G * F
*JAm JA * n

*****

* *

4

Figure 3.16. Decision Macroflowchart for Machine Z
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Primitive: While 1, do f

Macroprogram
ROM =: ASEQ

ROM: If (not p) then STEP, else SKIP
F: f, JA
G: g

* ENTRY *

* ROM - (ASEQ) *

* ROM-1

* * NO * * * * JA *
p * . * f * *

* ROM F=ROM+1

* g *

G=ROM+2

Figure 3.17. Iteration Microflowchart for Machine Z

Primitive: While 1, do f

Macroprogram
F1 =: ASEQ

ROM =: LIT

ROM: If (not p) then JA, else STEP
G: g, STEP

F1: f: f
.1

f , JLn
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* ENTRY *

* 0 *

S FF + (ASEQ) *

. ROM-2

• ROM + (LIT) *

. ROM-1

* *
NO JA

* *** 0

ROM *f
. * * *

YES

* STEP *

* g * * *

G=ROM+1 •

f *.

n- n-l* Fn-1 "

*f *

'JL F n

Figure 3.18. Iteration Macroflowchart for Machine Z
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CHAPTER IV

SPACE ULTRARELIABLE MODULAR COMPUTER (SUMC)

4.1 General Description

The simplified SUMC block diagram shown in Fig. 4.1 depicts SUMC's

logical construction. Six major logic blocks are shown and are briefly

described herein to provide the reader a better understanding of SUMC's

microprogrammed control. These logic blocks are the Main Memory Unit,

the Scratch Pad Memory, the Arithmetic Logic Unit, the Multiplexer

Register Unit, the Floating Point Unit, and the Control Unit.

The Main Memory Unit (MMU) is a 32 bit plated wire memory which

is used to store program instructions and data. The memory addressing

scheme allows access of up to 4 billion words.

Scratch Pad Memory (SPM) consists of sixty-four 32 bit registers.

Factors which determine SPM use and allocation are:

1. Instruction format and repertoire.

2. Memory addressing scheme.

3. I/0 and interrupt processing scheme.

Scratch Pad Memory register assignments for the 32 bit floating point

SUMC Breadboard are shown in Fig. 4.2.

The Arithmetic Logic Unit (ALU) consists of three multiplexers

and two parallel arithmetic units. Multiplexers are used to select

the data source(s) for the two arithmetic units which perform the

required logical or arithmetic operation.
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FLOATING
POINT UNIT

(FPU)

CONTROL

MAIN MEMORY ---- ARITHMETIC I MULTIPLEXER
UNIT I/O LOGIC UNIT I REGISTER UNIT I/0
(MMU) - (ALU) (MRU)

CONTROL 0 ONTROL

SCRATCH PAD
CONTROL UNIT MEMORY

(CU) (SPM)

CONTROL

CONTROL LINES

Figure 4.1. Simplified SUMC Block Diagram
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0

GENERAL REGISTERS

15 0 31
16

FLOATING POINT
REGISTERS (F) (4 DOUBLE REGISTERS)

23 0 31

24 0 0 0 7 8 PROGRAM COUNTER (P) 31

SYSTEM25 0 MASK(S 7 8 0 0 0 0 0 0 31MASK (S)
PROGRAM I

26 0M 3 4 0 0 0 0 0 0 0 31

27 0 0 0 7 8(C)11 12 0 0 0 0 0 31

KEY AMWP28 0 718 0 0 0 0 0 0 31

29 0 (Z) CHANNEL BUSY FLAG, (1) = BUSY, (0) = NOT BUSY 31

30 0 (V) TEMPORARY STORAGE 31

31 0 NOT USED 31

32

TEMPORARY STORAGE REGISTERS
(TO-T9)

41 0 31

42
NOT USED

47

MASKS
(K0 - KF)

63 0 31

Figure 4.2. Sample Scratch Pad Memory Map
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The Multiplexer Register Unit (MRU) consists of three multiplexers

and three registers. The MRU is used to transfer data from the ALU to

the Main and Scratch Pad Memory units, and to retain the results of

intermediate microinstructions during microprogram execution.

The Floating Point Unit (FPU) consists of a 32 bit multiplexer,

an 8 bit Exponent Arithmetic Logic Unit (EALU), and an 8 bit Exponent

Register (ER). The FPU is used for computing the characteristic, and

for normalization, of floating point numbers.

The Control Unit (CU) decodes the program instruction and provides

the ALU, SPM, MRU, FPU and MMU control required to execute the instruc-

tion. The major units within the CU and their function are:

1. Instruction Register (IR)

The IR is a 32 bit register which contains the computer

instruction currently being executed. The contents of

the 8 bit operation code field is used to address the

IAROM.

2. Instruction Address Read Only Memory (IAROM)

The IAROM is a 256 word 24 bit read only memory which

contains the starting addresses of the computer instruc-

tion microprogram stored in the MROM, and additional

instruction format control bits. The 8 bit operation

code of each computer instruction specifies the IAROM

location which contains the MROM starting address for

the microprogram that must be executed to perform the

computer instruction. The 10 least significant bits of

the addressed IAROM location are gated to the Sequence

Control Unit (SCU) for MROM addressing.
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3. Sequence Control Unit (SCU)

The SCU functions as an address register for the Micro-

program Read Only Memory (MROM). The value contained

in the SCU specifies an MROM location (microinstruction)

to be broadcast for SUMC control. SCU values are modified

during microinstruction execution to provide microprogram

sequencing.

4. Microprogram Read Only Memory (MROM)

The MROM is a 1024 word 72 bit memory which contains the

prestored sequences of microinstructions (microprograms)

required to fetch and execute program instructions, initiate

and control input/output operations, and respond to exter-

nal interrupts. A microprogram is executed by broad-

casting the contents of one or more MROM locations to the

ALU, MRU, FPU, SPM, MMU, and CU.

5. Iteration Counter (IC)

The IC is used to control microinstruction sequencing.

The contents of the IC may be interrogated and/or modified

under microinstruction control. Microprogram transfer or

microinstruction reiteration may be affected depending on

the value contained by the IC at the time of interrogation.

4.2 System Organization and Data Flow

A more detailed SUMC block diagram is depicted in Fig. 4.3. The

system is structured and interconnected to provide a versatile and

orderly flow of data between the arithmetic section and memory. The
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data path for information transferred between main memory and peripheral

devices (I/0) is through the Arithmetic and the Multiplexer Register

Units.

The hardware is organized into six functional sections Main

Memory Unit (MMU), Scratch Pad Memory (SPM), Arithmetic Logic Unit (ALU),

Multiplexer Register Unit (MRU), Floating Point Unit (FPU), and the

Control Unit (CU).

4.3 Functional Description

Main Memory Unit (MMU)

The main memory addressing scheme provides both base and index

addressing capability. Details of how instructions are read from

main memory and executed are described later.

Scratch Pad Memory (SPM)

The SPM consists of sixty-four 32 bit semiconductor registers.

The memory is divided into four groups of 16 registers each. Each

group provides nondestructive read storage for 8 general purpose

registers, 4 floating point registers, a program counter for instruc-

tion address storage, and other utility functions such as program and

machine status, interrupt return, and temporary storage.

The two high order bits of SPM address (register group select)

is provided by the interrupt source. The four low order address bits

(register select) are provided by the instruction being executed or by

the microcode.

Memory addressing and read/write operations are under micro-

program control. This control also provides for partial read/write

operations which allows floating point fractions to be accessed and

operated upon independent of their characteristics.
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Arithmetic Logic Unit (ALU)

The arithmetic section of the CPU consists of two 36 bit adder

units and three 36 bit multiplexers.

Normal operations consist of performing arithmetic or logical

operations on one, two, or three 32 bit operands selected by the input

multiplexers. Operand selection and the operations to be performed by

the arithmetic section are specified by the microcode stored in MROM.

Multiplexer outputs are zero when no operand selection is specified.

Four extender bits (least significant bit positions) provide the

capability for operating on 36 bit operands. These positions are used

during special arithmetic operations for multiply, divide and square

root algorithms, and when performing a long shift of the 64 bit word

contained in the multiplexer register section PRR and MAR registers.

MPXA1 is a two input 36 bit multiplexer which selects the data

for input A for the first adder unit (AD1). Only one of the two inputs

is used in this configuration. This input consists of the 32 bit

Floating Point Multiplexer (FPM) output and the four most significant

bits (sign and positions 1 through 3) of the multiplexer register

section MAR register.

MPXB1 is a three input 36 bit multiplexer which selects the data

for input B of adder unit AD1. The three inputs consist of two 32 bit

words and two partial word inputs. They are:

1. I/O is a 32 bit source input from external input/output

hardware.

2. SPM is a 32 bit source input from scratch pad memory.

Multiplexer control and internal connections allow
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selection of full word or half word scratch pad memory.

Half SPM is obtained by gating the SPM input shifted

right one bit position with a sign fill in the vacated

high order bit position.

3. MROM is a 10 bit source input (transfer field) from the

microprogrammed read only memory. The inputs are connected

to bit positions 22 through 31 of MPXB1.

4. Status inputs are various machine and program status bits

connected to the MPXB1 positions not used by the MROM

input. Selection of status information is independent

of MROM selection.

MPXB2 is a three input 36 bit multiplexer which selects the data

for input B of the second adder unit (AD2). The output of AD1 provides

the information for input A of AD2. The three inputs to MPXB2 are:

1. SPM is a 32 bit data source from scratch pad memory.

Input connections are made such that 1/4 or 1/8 scratch

pad memory words may be selected. This is accomplished

by gating the SPM input shifted right two and three bit

positions respectively with a sign fill in the vacated

high order positions. The least significant bits are

shifted into the extended bit positions of the MPXB2

output.

2. MM is a 32 bit source input from main memory. Multiplexer

control is implemented to allow either full or partial

word selection. Positions 8 through 31 can be selected
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for floating point fraction operations. Positions 20

through 31, the instruction displacement field, can also

be selected for computing main memory address.

3. EALU is an 8 bit input from the exponent arithmetic

logic unit. EALU inputs are connected to the most

significant 8 positions of MPXB2. This input provides

a data path for logically combining floating point

characteristics and fractions in the arithmetic section.

Multiplexer Register Unit (MRU)

The multiplexer register section consists of three 32 bit multi-

plexer register pairs.

These multiplexer register pairs control the flow of data between

the arithmetic section output and the main and scratch pad memory.

They also provide temporary storage for intermediate operands obtained

during a series of arithmetic or logical operations.

The multiplexer register pairs are shown in Fig. 4.3 and are

identified as follows:

1. Product Remainder Multiplexer/Register (PRM/PRR);

2. Memory Address Multiplexer/Register (MAM/MAR);

3. Multiply Quotient Multiplexer/Register (MQM/MQR).

Product Remainder Multiplexer (PRM) is a four input 32 bit gating

network which also has shifting capability. The arithmetic section

output is connected to the four PRM inputs in a manner that allows the

input to be shifted either right or left, or gated directly to the PRM

output.
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Depending on the microcode used, the input may be:

1. Gated direct to PRM output.

2. Shifted right 1 or 4 positions at the PRM output.

The vacated high order bits are either replaced with the

arithmetic sign or with zero depending on the specific

microcode used. This corresponds to an arithmetic or

logical right shift respectively.

3. Shifted left 1, 2, or 4 positions at the PRM output.

The vacated low order bits are either replaced with the

output of the four extended bit positions or with zero

depending on the specific microcode used. This corre-

sponds to a long or short left shift respectively.

As shown in Fig. 4.3, the PRM output is connected to the PRR and

MQM input and is also available externally. Information is entered

into the PRR only when specified by the microcode.

Memory Address Multiplexer (MAM) is a four input 32 bit gating

network with shifting capabilities similar to that of the PRM. The

output is entered into the MAR only when specified by the microcode.

Two data sources, the ALU and the MAR outputs, are connected to

the four MAM inputs. Depending on the microcode used, the MAM output

is:

1. The arithmetic section output (positions sign through 31).

2. The four extended positions of the arithmetic section

output and the contents of MAR positions 4 through 31.
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3. Same as for 2 right shifted 1 or 4 positions.

The vacated high order positions are either replaced

with the least significant bits of the arithmetic section

output (positions 28 through 31) or zero depending on

the specific microcode used. This corresponds to a long

or short right shift in the MAM.

4. Same as for 2 left shifted 1, 2 or 4 positions.

The vacated low order bits are replaced with zero.

Multiply Quotient Multiplexer (MQM) in a two input 32 bit gating

network that has shifting capabilities similar to that of the PRM and

MAM.

Inputs are provided by the PRM and MQR outputs. Depending on the

microcode used the MQM output is:

1. The PRM output.

2. The MQR output right shifted four positions. The sign

bit replaces the vacated high order positions.

3. The MQR output left shifted 1 or 2 positions. The

vacated low order positions are replaced with zero.

Floating Point Unit (FPU)

The floating point section contains logic for computing exponents

and for normalizing floating point fractions. These operations are

performed by three functional units interconnected as shown in Fig. 4.3.

These units are: Exponent Arithmetic Logic Unit (EALU), Exponent

Register (ER), and Floating Point Multiplexer (FPM).

Exponent Arithmetic Logic Unit (EALU)

Arithmetic operations are performed on data selected by three

multiplexers whose outputs are connected to two adder units. Data
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selection and arithmetic operations are specified by control memory

microcode.

Exponent fields from both the scratch pad and main memory outputs

are connected to the EALU input. Also connected to the input are the

exponent register output and the derived exponent (DEX) from the

floating point multiplexer. The derived exponent specifies the number

of hexadecimal digits the floating point multiplexer input must be

shifted (right or left) to produce a normalized fraction. Exponent

arithmetic logic unit outputs are connected to the ER and to MPXB2 of

the arithmetic section as shown in Fig. 4.3.

Exponent Register (ER)

The Exponent Register provides temporary storage for results of

arithmetic operations performed by the EALU. Exponent register outputs

are connected to the EALU input, and to the floating point multiplexer

for controlling fraction normalization.

Floating Point Multiplexer (FPM)

The Floating Point Multiplexer, provides logic for normalizing

floating point fractions. Normalization of long (64 bit) or short

(32 bit) operands can be performed depending on the specific microcode

used.

Outputs from the multiplexer register section PRR and MAR registers

provide a 64 bit input to the FPM. These two registers provide tem-

porary storage for the most and least significant words, respectively,

of the fraction to be normalized. Floating point multiplexer logic

generates a 5 bit derived exponent (DEX) which specifies the number

of hexadecimal digits the contents of PRR and MAR must be shifted to
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obtain a normalized fraction. The DEX value is transferred to the

ER (via the EALU) when specified by control memory microcode.

The exponent register contents provides control for the FPM

normalizing logic. This logic, when enabled by the microcode, shifts

the 64 bit input the number of positions specified by the value con-

tained in the ER. The FPM output is a 32 bit word connected to input

multiplexer MPXA1 of the arithmetic section (refer to Fig. 4.3). This

output consists of either the least or most significant half of the

normalized input, depending on the specific microcode used.

When not enabled, the FPM normalizing logic gates the specified

portion of the 64 bit input to the output without normalizing. This

provides a data path between the PRR or MAR output and the arithmetic

section during fixed point arithmetic or logical operations.

Control Unit (CU)

The control unit contains six functional units that control SUMC

operation and data flow. These units are: Instruction Register (IR),

Instruction Address Read Only Memory (IAROM), Sequence Counter (SC),

Iteration Counter (IC), Microprogram Read Only Memory (MROM), and

Control Logic and Timing (CLT).

Instruction Register (IR)

The IR is a 32 bit register. Each computer instruction to be

executed is first gated to the IR for temporary storage. The instruc-

tion operation code (8 bits) identifies the IAROM location containing

the instruction microprogram starting address.



45

Instruction Address Read Only Memory (IAROM)

The IAROM is a 256 word 16 bit memory constructed from read only

memory storage elements. Each IAROM word is associated with a specific

computer instruction operation code, thus allowing an instruction

repertoire of up to 256 instructions.

The 10 least significant bits of each IAROM word specify the

starting address for the microprogram that must be executed to perform

instruction operations. This information is gated into the sequence

counter for control memory addressing. The remaining six bits identify

instruction characteristics that allow functions to be implemented in

hardware which simplify firmware design. These characteristics are:

data addressing boundaries, register specification limitations, and a

memory operand flag which indicates an operand from main memory is

required for instruction execution.

Sequence Control Unit (SCU)

The Sequencer register is a 10 bit register. It functions as an

address register for the Microprogram Read Only Memory (MROM). Sequencer

register contents are modified under microinstruction control to provide

microprogram sequencing. Modification is conditional or unconditional

depending on the specific microcode used.

The value contained in the sequencer register can be incremented

by 1, or initialized from either of three sources. These sources are:

Arithmetic Logic Unit (ALU); Instruction Address Read Only Memory

(IAROM); and the Microprogram Read Only Memory (MROM). Both external

and internal status lines are monitored by sequence counter control

logic to provide microprogram sequence control. External status lines
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are: interrupt request, input request, and output request. Internal

status lines are: overflow, arithmetic section output sign, EALU sign,

and iteration counter status.

Iteration Counter (IC)

The Iteration Counter is a 6 bit counter. It is used to implement

microprogram loops for instructions requiring repeated operations such

as shift, divide, multiply, and square root. Depending on the specific

microcode used, the IC value can be decremented in either 1 or 4 bit

steps. It can also be initialized from either of three sources: the

PRM, the PRR, or the MROM.

Microprogram Read Only Memory (MROM)

The MROM is a 1024 word 72 bit memory. This memory contains the

prestored control words (microinstructions) required to fetch and

execute program instructions, initiate and control I/O operations, and

respond to external requests.

Each 72 bit control word is divided into fields where the control

bits in each field specify the operations to be performed by the associ-

ated SUMC sections. Table 4.1 shows the control word format.

4.4 Computer Control

The computer can be operated in either of two modes (normal or

manual) that can be selected from the computer operators panel.

In the normal mode of operation all I/O requests, input data, and

computer control signals are generated by external sources. In the

manual mode of operation, all external inputs are disabled and replaced

by similar functions which can be generated manually from the computer
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TABLE 4.1

SUMC Control Memory Word Format

BIT FUNCTION

1-10 ROM Transfer Address

11-12 Condition Selection

13-16 Sequencer and Iteration Control

17-18,59 FPM Control

19-24 EALU Control

25-26 Main Memory Control

27-30 Load Register

31-32 MQM Control

34-36 MAM Control

38-41 PRM Control

43-44 ALU Control

45-47 Adder 2 Control

48-50 Adder 1 Control

51-55 MPXB2 Control

56-58,60 MPXB1 Control

61 MPAX1 Control

62-63 SPM Access

64 SPM Read/Write

65-66 SPM Address Modifier

67-72 SPM Address

37,42,58,60 Special Control
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operators panel. The manual operating mode provides for manual loading

or modification of programs and for microprogram verification.

The following is a brief description of the signals which control

the computer and I/O operations:

1. Computer stop - Computer stop disables the timing logic

during fetch of the instruction following the computer

stop request. No SUMC operations are performed until the

computer stop request is removed.

2. Computer start - Computer start removes the computer

stop request and enables the timing logic

3. Program halt - Program halt disables the IAROM output

(IAROM output is forced to a fixed MROM address) causing

transfer to the program halt microprogram. This micro-

program decrements the program counter contents (instruc-

tion address) and returns to the fetch microprogram. All

I/O requests are processed in the program halt condition.

Normal instruction execution continues when the program

halt condition is removed.

4. Program start - Program start removes the program halt

condition and allows normal instruction execution to

continue.

5. Data output request - Data output request is detected

during the fetch microprogram and causes transfer to the

I/O microprogram. Data is accessed from the memory loca-

tion specified by the address on the I/O input bus.
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6. Data input request - Data input request is detected during

the fetch microprogram and causes transfer to the I/O

microprogram. The data to be stored is the second of two

words input from the I/O bus. The first word specifies the

memory location where the data is to be stored.

7. Interrupt request - Interrupt request is detected during

the fetch microprogram. The I/O microprogram performs

the operations required for the particular interrupt

identified by the data word on the I/O input bus.

4.5 Timing

The timing logic consists of an oscillator and logic for generating

six signals depicted in Fig. 4.4. Three of the signals (X, Y, and Z)

are used for control of basic operations while the remaining signals

provide for special control functions and timing variations. The basic

microinstruction cycle consists of five operations which are described

as follows:

1. Selection of the control word to be broadcast for opera-

tional control. This occurs at clock time Z when the

sequence counter contents are updated by the previous

microinstruction. The updated MROM address selects the

new control word that is broadcast for operational control.

2. Start memory read/write operation if specified by micro-

code. Scratch pad and main memory write operations are

initiated at clock time X. Address and data to be stored

must be loaded into the appropriate registers during a
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CLOCK

W

WD

XD

Y

MICROINSTRUCTION CYCLE

1 *(Start main memory read/write.)
*(Start SPM write.)

2 Update SPM address.
*(Set instruction register.)

3 *(Set MQR, PRR, MAR, ER)
Update sequence and iteration counters.

*These operations are performed only when specified by the microcode.

Figure 4.4. Basic SUMC Timing Signals
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previous microinstruction cycle. The SPM address register

is not updated until the SPM write operation is completed.

This allows an operand from SPM to be operated upon and

returned during the same microinstruction cycle. The SPM

address is updated at clock time Y.

3. Perform arithmetic or logical operations specified by

control word. These operations occur during the complete

microinstruction cycle. It should be noted however that

scratch pad memory operands are not available until

clock time Y where the address is updated as specified by

the current control word.

4. Gate results of arithmetic or logical operations into

temporary storage registers of multiplexer register

section for later use or for transfer to main or scratch

pad memories. This occurs at clock time Z.

5. Update the sequence and iteration counter contents, as

specified by the microcode and status signals, to maintain

the desired microprogram control. This occurs at clock

time Z.
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CHAPTER V

SUMC BRANCHING ARCHITECTURE

5.1 Sequence Control Unit (SCU)

The purpose of the SUMC Sequence Control Unit (SCU) is to provide

the address of the next microinstruction to be executed. To achieve

this purpose, selected data is brought into the sequencer register.

Data is selected from one of three sources as outlined below:

IAROM - The 10 least significant bits of the IAROM are loaded

into the sequencer. This value is the microprogram starting

address.

MROM - The 10 least significant bits of an MROM control word

are loaded into the sequencer. This value is the address of

the microinstruction to be executed next if a condition

checked for is met.

PRM - The 10 least significant bits of the PRM multiplexer

are loaded into the sequencer. This value is the address of

the next microinstruction to be executed.

5.2 The SUMC Conditional Checks

The SUMC has a number of conditional checks which are used to decide

which microinstruction is to be executed next [2]. These checks can be

grouped into two categories: The Decision checks and the Iterative
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checks. The Decision checks can be grouped into three categories: The

I/O checks, JI; the FALSE checks, JF; and the TRUE checks, JT.

The I/O Checks (JI).

For each of these checks, if the I/O condition checked for is true;

the sequencer register is loaded with the MROM transfer field; if false,

the contents of the sequencer are incremented. The I/O checks are

defined as follows:

JINT(N)-Jump on interrupt to N.

JIDOT(N)-Jump on interrupt or data out request to N.

JIO(N)-Jump on interrupt or I/O request to N.

The FALSE Checks (JF)

If the condition checked for is false, the sequencer is loaded

with the MROM transfer field; if true the sequencer contents are

incremented. The FALSE checks are defined as follows:

JNOF(N)-Jump on no ALU overflow to N.

JNXOF(N)-Jump on no EALU overflow to N.

JNZ(N)-Jump if FPM not zero.

JNRSX(N)-Jump on no register specification to N.

The TRUE Checks (JT)

For the TRUE checks, if the condition checked for is true, the

sequencer is loaded with the MROM transfer field; if false, the

sequencer contents are incremented. The TRUE checks are defined as

follows:

JN(N)-Jump if ALU negative.

JNX(N)-Jump if EALU negative.

JIA14-Jump if IAROM control bit 14=1.

JIA13(N)-Jump if IAROM control bit 13=1.
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The Iterative Checks (JC)

For the Iterative checks, if the count condition checked for is

satisfied, the sequencer is loaded with the MROM transfer field; other-

wise the count is decremented and the same microinstruction is executed

(for JCH); or the next microinstruction is executed (for JCA). The

Iterative checks are defined as follows:

JCZH(N) - Jump to N if iteration counter contents is zero.

Otherwise, decrement the iteration counter con-

tents by 1 and repeat microinstruction.

JCL4H(N) - Jump to N if iteration counter contents is less

than 4. Otherwise decrement the iteration

counter contents by 4 and repeat microinstruction.

JCZA(N) - Jump to N if iteration counter contents is zero.

Otherwise, decrement the iteration counter con-

tents by 1 and execute next microinstruction.

JCL4A(N) - Jump to N if iteration counter contents less

than 4. Otherwise, decrement the iteration

counter contents by 4 and execute next micro-

instruction.

The SUMC successor commands are summarized in Table 5.1. The

unconditional branching commands are STEP and J (Jump); the decision

commands are JI (Jump on I/0 Condition), JT (Jump on TRUE), JF (Jump

on FALSE); the iterative commands are represented by JCH (Jump on

count condition true or hold), and JCA (Jump on count condition true

of advance).
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TABLE 5.1

Successor Commands for SUMC BB

COMMAND NEXT INSTRUCTION ADDRESS INSTRUCTION ADDRESS

STEP (SEQ) + 1

J (MROM)X - (SEQ) -------------

JI I< (MROM)X + (SEQ) V (SEQ)+1 >

JT T< (MROM)X  (SEQ) V (SEQ)+l >

JF F< (MROM)X  (SEQ) V (SEQ)+1 >

JCH C< (MROM)X  (SEQ) V (SEQ) >

JCA C< (MROM)X  (SEQ) V (SEQ)+1 >

5.3 SUMC Structured Microprogram Primitives

In this section, the structured microprogram primitives are

implemented for the SUMC BB. A microprogram, a macroprogram, and their

corresponding flowcharts are given for each primitive. The decision

primitive is implemented for both True and False SUMC checks.

Primitive: f then g

Microprogram
f, STEP
g
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* ENTRY

* fi

STEP

* g *

Figure 5.1 SUMC Concatenation Microflowchart

Primitive: f then g

Macroprogram

fl' STEP

f2' STEP

fn' J(G1)

GI: g
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* ENTRY *

* *

fl

. F1

* STEP

Sf2*

. F2

* STEP

n f

n

G1

Figure 5.2. SUMC Concatenation Macroflowchart

Primitive: If p then f, else g

Microprogram for TRUE Checks

If p then JT(F), else STEP

g, STEP

F: f, J(G+1)

Microprogram for FALSE Checks

If p then STEP, else JF(G)

f, STEP

G: g, J(F+1)
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For TRUE Checks

* ENTRY *

STEP NO * * YES JT(F)
* p *

S* * 1

•~**** G-1 ****

* g * * f *
• **** *****

* G * F

STEP J(G+1)STEP

* *

G+1

For FALSE Checks

* ENTRY
0 0 g

JF(G) NO * * YES STEP

* g * * f *
*** * *****

* G * F

J(F+1) * STEP

* *

F+1

Figure 5.3. SUMC Decision Microflowcharts
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Primitive: If p then f, else g

Macroprogram for TRUE Checks

If p then JT(F 1), else STEP

G1: 91' STEP

g2' STEP

gn, STEP

F1  fl', STEP

f2' STEP

Sn' J(Gn+l)

Macroprogram for FALSE Checks

If p then STEP, else JF(G1 )

F1  f1 , STEP

f2' STEP

fn, STEP

G1: 1' STEP

g2' STEP

gm, J(Fn+l)
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For TRUE Checks

* ENTRY •

STEP NO * * YES JT(F1 )

S**** * * ** *

* 91* * fl *S* *** G * * * * F
STEP STEP* * * ** *****

Sg 2  * * f2  *
* * * * G2  *** * F

* STEP 2STEP
* **** *****

* m * * n
S****G ***** Fm n

STEP * J(Gm+l)

* * **Gm+l

For FALSE Checks

* ENTRY .

JF(G 1) NO * * YES STEP

* * * .

* * F1-1 *****
STEP1  

1STEP * STEP
S * *G * *F *

J(Fn+l* STEP

* * * *Fn+

Figure 5.4. SUMC Decision Macroflowcharts



61

Primitive: While j, do f

While [(IC) / 0], do f

Microprogram
If (not p) then f, else JCZH (X)

While [IC) { 4], do f

Microprogram
If (not p) f, else JCL4H (X)
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While [(IC) 0], do f

* ENTRY

* f

* 0***** f *

* * NO ********
* ** IC=O * * * * * * * (IC)-1+(IC)*
* * * * * * * * *

*JCZH(X)

YES

* *

*****X

While [(IC) { 4], do f

* ENTRY *

*****F* * * * *

* * NO * * * * *

* IC=4
* * ********

:YES

* *

Figure* * * *Iteration Microflowchart

Figure 5,5. SUMC Iteration Microflowchart
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Primitive: While P, do f

While [(IC) 0], do f

Macroprogram

F1-1: If (not p) then STEP, else JCZA(X)

F1 fl' STEP

f2' STEP

fn, J(F1-1)

X: CONTINUE

White [(IC) { 4], do f

Macroprogram

F1-1: If (not p) STEP, else JCL4A(X)

F1  f1 , STEP

fl' STEP

fn' J(F1-)

X: CONTINUE



64

While [(IC 0)], do f

* ENTRY

* * NO STEP
* IC=0 * * * * * * *

* *
,(IC -1 IC).

JCZA(X) . YES * l* * * *Fl

* * *******

X***** * 2 * F
* **** ***F 2

* STEP
******* *
* f n * *
* ****** *F •

J(Fl-l)

While [(IC) j 4], do f

* ENTRY *

* * NO STEP
* (IC<4)* * * . * *

* * *

JCL4A(X) 1- (IC)-4 IC)
* * * ** ** 1* * * *F •
* * 1

* * * * *X ** * * ** * * *

* 2 *
* * * ** * * *F2

* ******* *
f

* n * *
***** * * *Fn

* J(Fl-l)

Figure 5.6. SUMC Iteration Macroflowchart
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It is possible to implement other iterative loops by using the

SUMC hardware in the following manner. A positive iteration (refer to

Fig. 5.7) count, N, is initially loaded into a temporary register, T.

Subsequent microinstructions execute the desired process, f. Then,

the count is decremented by 1 and checked for zero. If the count is

not zero, the execution of f is repeated; otherwise, control is trans-

ferred to some other microprogram through a JNZ(X) microorder. This

technique is used to implement N iterations in the loop. The disadvan-

tage of this technique is that the PRR must be loaded at least one

microinstruction prior to making the check.

Another way of implementing an iterative loop is as follows: A

negative count, -N, is initially loaded into T (Ref. Fig. 5.8) subsequent

microinstructions execute the desired process f. Then, the count is

incremented by 1 and checked for negative. If the count is negative,

the execution of f is repeated. If the count is not negative, the

sequencer is advanced. This technique allows /N/+l iterations in the

loop. This technique is better because it frees the PRR.

A third type of iterative loop is used in the implementation of the

SI format instructions [6]. Formats are discussed in Section 6.2. This

technique uses a JIA microorder in conjunction with a flag (refer to

Fig. 5.9). During fetch, the flag is set to zero. Some time later in

fetch, the sequencer addresses the microprogram starting location as a

result of JIA microorder. Thus microprogram control is transferred to

this location. The first step of the microprogram checks the flag.

Since it is zero, the sequencer is advanced. Subsequent microinstructions

in the microprogram perform the desired process, f. Then, the flag is
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changed to a one. To form the loop, a JIA microorder is called.

Since the IAROM is still pointing to the microprogram starting location,

control is once again transferred to this location. Since the tag

is set to a one, the sequencer is loaded with the MROM transfer address.

Thus, control is transferred to some other microprogram. This tech-

nique implements a "one pass" iterative loop.

5.4 Subroutines

The SUMC computer does not have a hardware CALL. However it is

still possible to handle subroutines (and thus implement the CALL) by

using one of the scratchpad temporary registers to store the return

address.

In practice, the process is as follows: at some time during the

microprogram (at a cost of one microinstruction) the desired return

address is stored in a temporary register (usually T5), then at some

subsequent microinstruction the subroutine is entered through an

unconditional jump. The desired subroutine is executed. The last step

of the subroutine consists of gating the temporary register contents to

the sequencer, thus transferring to the previously selected micro-

instruction (return address). This technique, however, does not allow

for subroutine nesting. The SS format flowcharts in Chapter VI illus-

trate the technique.
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* ENTRY *

* N (T) *
* * * * * * * * * F1

*********

* f * 0

S********F
1

* (T)-l - (T) *
* (PRR) *
* * * * * * * * *F

* 2

* * NO JNZ(F 1)
* PRR=O * * * * * * * * * * * *

* *

*F3

*YES

* *
* * * * * * * * *F

* NEXT *

Figure 5.7. SUMC N-Iterative Loop
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* ENTRY •

*F

* f * 

* (T)+1 + (T) *

* * * * * * * * * F2

* * YES JN(F 1PRM .
.NEG,

* NO

* *

* * * * * * * * * F3

.3

* NEXT *

Figure 5.8. SUMC N+1-Iterative LOOP
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* ENTRY •

*****

**

* * * * *START
* 1ST PASS

FLAG YES* J N(NEXT)
*ON .

* *****

* *

S* * * * *NEXT
*****

* **

*****

*****

****

*********

* SET FLAG *
* IAROM (SEQ) *
*********

JIA

Figure 5.9. SUMC DO ONCE LOOP
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CHAPTER VI

SUMC BB MICROCODE IMPLEMENTATION

6.1 Emulation

One of the main advantages of a microprogrammable computer is its

emulation ability. Emulation is defined as the imitation of one

system by another such that the imitating system accepts the same data

and programs and achieves the same result as the initial system. There

may be a difference in execution time to achieve the same results.

6.2 IBM System/360 Instruction Formats

The length of an instruction format can be one, two, or three

halfwords. An instruction consisting of only one halfword causes no

reference to main storage. A two-halfword instruction provides one

storage-address specification; a three-halfword instruction provides

two storage-address specifications.

The five basic instruction formats [6] are denoted by the format

codes RR, RX, RS, SI, and SS. These codes express the operation to be

performed. RR denotes a register-to-register operation; RX, a register-

and-indexed-storage operation; RS, a register-and-storage operation; and

SS, a storage-to-storage operation.

6.3 Structured Microprograms

This section contains a subset of SUMC structured microprograms

in flowchart form which emulate the IBM System/360 instruction set [6].
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Decimal and floating point instructions are not implemented. The

author had intended to code the microprograms represented by the flow-

charts, and run diagnostics on them. However, since the available

hardware is undergoing expansion modifications it was not wise to do so.

A corresponding nonstructured microprogram set (contain floating point

instructions), previously written by the author [21] has been thoroughly

verified by the use of diagnostics. The author exercised great care

not to alter the emulating process; thus, the implemented structured

microprograms should be valid or sufficiently close to valid to allow

realistic conclusions.

The structured microprogram flowcharts shown in Figs. 6.1 through

6.68 are divided into the following groups: RR format, RX format, RS

format, SI format, SS format, and housekeeping. Housekeeping micro-

programs fetch instructions and operands to be executed, and store

program status information.

In the following flowcharts, instruction mnemonics correspond to

those used for IBM System/360 instructions. A microprogram name which

is formed by adding one or more letters to an instruction mnemonic

refers to a continuation microprogram. A continuation microprogram,

unless listed separately in the List of Figures, appears in the same

figure as the instruction mnemonic, the microprogram is listed in the

List of Figures. For example, SIF1 is listed as Fig. 6.27. Instruction

opcodes are shown in hexadecimal form in the upper right hand corner of

the instruction entry block.
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1A

* AR *

* * ** * ***** ** *

* (AR)+(PRR) + (AR) *
* (PRR) *
* 0 (MAR) *
* -1 + (ER) *

*

YES * * NO * *
* . O ALU , .* FTCH

• OF.

* *1 JNOF(FTCH)

* (CCR) - (CC) *

2
S J(OF)

* OF *

Figure 6.1. Add Register (AR) Microprogram
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1E
*ALR

* (AR)+(PRR) (AR) *
* (PRR) *
* O 0 (MAR) *

* J(ALRC)

* ALRC *

*R

* ALRC *

* Kg (ER) *
* -1+CL - PRM *

*

NO * * YES * * *
.... .. * PRM =1 * ........ ALRD *

+* J(ALRD) ~ . .

* (ER) - (ER) * 1
* (ER) RS4 (MQR)* *-1 PRR*
* + (CC) * *-1 +ER *
S******* * ** **

* JNZ(FTCH) * * YES
YES * * NO JNZD(FTCH) . . . . . * PRR=O * . . . . .

.... * DEX3 * .... NO * *
* * * * * *1 ******

S* * * *** * 2 ..... * O- PRR *
* (MQR) Ll1 (CC)* . FTCH * * *(ER) + (ER)*

*** * ** * *
* J(FTCH)3

* FTCH * * FTCH * FTCH .

Figure 6.2. Add Logical Register (ALR) Microprogram
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14

* NR *

* *** * * * **** *

*(AR)A(PRR) - (AR) *
* (PRR) *
* 0 + (MAR) *

* 1

* J(ALRD)

* ALRD

Figure 6.3. And Register (NR) Microprogram

19

* CR

* ARS V (PRR) PRM *
* (MAR) *

*

NO * * YES
. . . . . * PRM =1 * a * * *
* * * JN(CR+2) *
* *1 *

* ** * *** * * * ** * * ** * * * * * * * * *

(AR) - (PRR) + (PRR)* * ARS  (PRR) *
* 0 (MAR) * * *

2 3

*J(FTCH) J(FTCH) *

* FTCH *

Figure 6.4. Compare Register (CR) Microprogram
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* BALR

*[(IR) A (KD)]+1PRM*
* 8-15 *

R2 FIELD = 0 * R2 FIELD 0
NO BRANCH NO * * YES BRANCH

* *PRM =1 * * * * * *
S* * JN(BALR+2)

* (PC)+2 - (MAR)* * (PRR) + (MAR)*

2 3

* J(BAL) J(BAL) *

* BAL *

Figure 6.5. Branch and Link Register (BALR) Microprogram
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07

*R

*[(IR)8-15A K6]-1 + PRM* K6 = FFOFFFFF
1

* * YES R2 FIELD = 0 . . .
*PRM =1 * * * * * * * * * * * * * FTCH

* S * JN(FTCH) * * * *
* NO BRANCH
* NO

S(IR)-15 A (CC) -1PRM*

2

* * YES RESULT = 0
*PRMS=1 * . . . . - FTCH

* * JN(FTCH) * *
* NO BRANCH
* NO

* (PRR)-2 - (PC) *

3
J(FTCH)

* FTCH * BRANCH

Figure 6.6. Branch on Condition Register (BCR) Microprogram
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06

* BCTR

* * ** *** * * **

* (AR)-1 + (AR) *

* * ** ** ** ** *

*[(IR) IAK6]-+PRM*
S** -5*****2

S R2 FIELD = 0
* * 2 o *

* PRM=1 * * * * * FTCH
* S * J(FTCH) .....

*NO NO BRANCH

* * ** ** ** ** *

* (AR) + PRM *
* ** * ** * * * * *

3

YES * *
* * * * * * * * * PRM=1 *
* * S *

*

NO
* ** ** * ** * ** *

* * (AR)-1 PRM *
* * *** ** * * * * *

4

* * NO BRANCH
* * * YES (AR)=O .

* * PRM=1 * * * * FTCH
* * S * J(FTCH) *.. *

NO

* * ** ** * * * * *

* (PRR)-2 - (PC) *
* * * * **** ** *

5

J(FTCH) * BRANCH

* FTCH *

Figure 6°7° Branch on Count Register (BCTR) Microprogram
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5A

* A

*********

*(AR)+(MR) (AR) *
* (PRR)*
* 0 (MAR) *
* -1 -+ (ER) *
*********

YES * * NO * * *
* * * * * * * ALU * * * * * * * FTCH *
* * OF* JNOF(FTCH) * * * *

1

* (CCR) + (CC) *
*********

2

*J(OF)

* OF *

Figure 6.8. Add (A) Microprogram
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4A
* AH *
* A

*(AR)+(MR) + (AR) *
* SHW (PRR) *
* -1 ER *

YES * * NO
* * * * * * * ALU * * * * * * * FTCH

* OF* JNOF(FTCH)

* (CCR) - (CC) *

2
O J(OF)

* OF *

Figure 6.9. Add Halfword (AH) Microprograms

5E

* AL *

* (AR)+(MR) (AR) *
* (PRR) *
* 0 - (MAR) *

. :JI(ALRC)
F ALRC (

Figure 6.10. Add Logical (AL) Microprogram
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54

* N *

* ** *** **** *

* (AR) (PRR) + (AR) *
* (PRR)*
* 0 + (MAR) *
* * * * * ** *** *

* 1
:J(ALRD)

* ALRD

Figure 6.11. And (N) Microprogram

59

* C

S* ** ** ** * **

* ARS (MR) PRM *
* (MAR) *
* ** * * ** * * **

* * YES
..... . *PRM =1 * . . .

* * * JN(C+2)

* ** **** ** * ** * * *** * * * *

(AR)-(MR) - (PRR) * * *

0 - (MAR) * * ARS (PRR)
* * * * * * * * * * * * * * * * * * * * *

2 3

J(FTCH) ....... (TCH

* FTCH *

Figure 6.12. Compare (C) Microprogram
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49

* CH

* ** * * * * *

* ARS(MR) + PRM *
* SHW (MAR) *
* ** * * * * * ** *

* * YES
. . . . . *PRMS=1 * . * * * *
* * *JN(CH+2)

* ***** ** * * * ** ** * **** * *

(AR)-(MR) + (PRR) * * AR+ (PRR)
0 ->(MAR) * * S

* * **** *** ** ** ** **** **

2 3

* J(FTCH) J(FTCH)-

* FTCH

Figure 6.13. Compare Halfword (CH) Microprogram
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45

* BAL

*(PM) R4Lt PRR*
** ** ******

1

* (PRR)VPC+2(PRR) *

2
* * * * * ** * * **

* (PRR)V(ILC) - (AR)*

3
* ** * * ** * * * *

* (CC) LS2 (PRR) *
* -1 -+(ER) *

4
* * * * * * * * * *

* (PRR)N LS2 PRM *

5

* *

* *
NO YES CC=O

* * PRMS =1 * * * * *

* * * J(BCC) *
* * * * ** ** ** *

* [(PRR)AKg]-1 + PRM* * BCC
(ER) - (ER) * . . .

. 6

NO
*PRM=1 * . . . . . * *

* * +
* * * * ** ** ** **

. YES * (AR)V(PRR)N + (AR)*
* * * * ** * * * * * * * * (ER) - (ER) *
(PRR)V1/2(Kg)L 2(PRR) * * * * * * * * * * * *

(ER) (ER) * * * J(BCC)
* * * * * * * * * * * * * * * * * *

. 8 * * BCC

Figure 6.14. Branch and Link (BAL) Microprogram
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47

* BC *

*[(IR)8_i5A(CC)]-1PRM*
* **-1*

*

NO * * YES .....
* BCC . ...... *PRIS=1 * ...... FTCH *

.. . * S* J(FTCH) . . .

(MAR)-2 - PC *

. 2

* J(FTCH)

FTCH

Figure 6.15. Branch on Condition (BC) Microprogram

46

* CT
o

* (AR)-1 - (AR) *
* (PRR) *

S. . . YES * *

* BCC *. o . . . *PRMs=1 *
* * . * * J(BCC) * *

*NO

* * * * * NO * * YES
* BCC * * * * * * PRR=O * ......
* * .* * J(BCC) * *

2 ,

3
* J(FTCH)

* FTCH

Figure 6.16. Branch on Count (BCT) Microprogram
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* BXH

* (R3) - (PRR) *
* 0 - (ER) *

J(RXIHC) *

* BXHC *

* BXHC

*(PRR)+(RI ) - (PRR) *
* (ER) (ER) *

NO * * YES* **.................. * FRS *.......•

• ********** *1 ***********

,,,)-(PPR) DP' * *(R-41)-(PRR) - PRM *
* * **** * * * * * * * * * * * * *

* 2 * 4

NO * * YES NO * * YES. *PRM i1 * *PRMS * . * .
* * * JN(BXHC46) * * * JN(BXHC+5)*

* ***** * *** *** * * ***** * * *****

*(PRR)R+ ()* *(PRR) (R )* *(PRR)~ (R1)* *(PRR)~(R1)*
* * * 3 * * * 7 * ** * * * * * 63 7 5 6

.(CTCH) :JBC) .. .J(FTCH) * :J(BCC)
* FTCH * * BCC * * FTCH * BCC

Figure 6.17. Branch on Index High (BXH) Microprogram
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* BXLE

* (R3) (PRR) *
•* -1 (ER) *

J(BXHC)

* BXHC *

Figure 6.18. Branch on Index Low or Equal (BXLE) Microprogram
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91

* TM *

S** . .* .

*(ER) - (ER)*
* ****** *

* *YES ** * *
* ERS=1 * . . . * SIF * *

* * JN(SIF) * * * ** JIA

NO

* (To)A(MR) RSJL (PRR) *
* O0 (MAR) *
* (ER) - (ER) *

3

* (PRR) - 1 - PRM *
* (ER) - (ER) *

4

*1/2(To)V(PRR) L.SIA (PRR) *
* . (ER) (ER) *

5

* K9 RS4L (PRR) *
* (ER) - (ER) *

6

* *

YES * * NO JNZD(TM+7)
.* * . *(PRR, MAR) * * *

* * ZERO *

* *

* * ** * * * *** ****

* -0 (PRR) * *-I - (PRR) *
*-1 - ER * *-1 + ER *

7 8

* J(FTCH)

* FTCH

Figure 6.19. Test Under Mark (TM) Microprogram
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* MVI *

* ****** * **

* (ER) + (ER) *

** *****

* * YES * * * * *
* ERS=1 * * * * * * * * SIF * * *

* * JN(SIF) * * ** JIA

* NO

* (PRR)V(To) - (PRR ) *
* MEM WRITE *
* 0 - (ER) *

2

* DELAY *
*(ER) + (ER) *

3
. :J(FTCH)FTCHJ(FTCH)

Figure 6.20. Move Immediate (MVI) Microprogram
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* TS *

* [(MAR)AKo]-1 - PRM*
* * ** * * ** * **

1

JN(TS+3) YES * * NO
.* * * * * *. * PRM=l * .* * * . * *
* S **

* * ** ** * ** * * * * * ** ****** *

* (MR) RS4A (MQR) * * (MR) LS4A (MQR) *
* - (T2) * * . (T2) *
* * ** * * ** ** * ** ** ** * * ** *

4 2

S* * * * * * * * * * * * * * * * * * * * *

*(MR)V(Ki) + PRR * * (MR)V(K2) - (PRR) *
*MEM WRITE * * MEM WRITE *
* ********** ***********

5 3

* * * * * * * .* * * * . * * * * * * *

* (T2) L14 (T2) *
* * * * ** * * * *

6

* (T2 )s (PRR) *
* *

*0 (MAR) *
* -1 + (ER) *

* J(FTCH) 7

* FTCH *

Figure 6.21. Test and Set (TS) Microprogram
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* NI *

* ******** *

* (ER) + (ER) *

********

* * YES * * * * *
* ERS=1 * * * * * * * SIF * *

* * JN(SIF) * * * * * JIA
*

* NO

* * * * *** * * *** *

* (PRR)V(To)A(MR) -+ (PRR)*
* MEM WRITE *
* (ER) - (ER) *
* *** * * ** * ** **

2

*(To)A(PRR) R IL (PRR) *
* 0 -+ (MA) *
* (ER) (ER) *
* * * * * * * * * * * * *

* J(SIF2) 3

* SIF2

Figure 6.22. And Immediate (NI) Microprogram
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* CLI

* * * -* * * * C

*(ER) + (ER)*

* * YES

*ER=1 * * * * * * * SIF * * * * *
S* JN(SIF) * * * * * JIA

*

* NO

* * * * * * * * * ** * * * * * *

* (MR) - [(PRR)V(To)] (PRR) *
* (ER) - (ER) *
* * * * * * * * * * * * * * * * *

.J(FTCH)

* FTCH

Figure 6.23. Compare Logical Immediate (CLI) Microprogram
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* 01 *

***** * * *

* (ER) - (ER) *
* ******** *

* 1 
* * YES * * * * *

* ER =1 * * * * * * SIF * * * *
S * ** * * JIA

* NO

* (MR)V(To) - (PRR) *
* MEM WRITE *
* (ER) + (ER) *
* * * * * * * * * * * ***

2

*J(SIF1)

* SIFI *

Figure 6.24. Or Immediate (OI) Microprogram
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* XI

****** *

*(ER) -+(ER)*
* ******

1
* *

* * YES

* ER5 * * * * * * SIF * * *
* * JN(SIF) * * * * * JIA

* NO

*(To)*(MR) (PRR) *
* MEM WRITE *
* (ER) )(ER) *
* * * * * * * ** * * * *

-J(SIF1) 2

* SIF1 *

Figure 6.25. Exclusive Or Immediate (XI) Microprogram
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* SIF *

*(PRR) L14 (To) *
* * * ***** *

1

* [(MAR)AKO]-1 - PRM *

.2

EVEN BYTE ADRESS YES * * NO ODD BYTTE ADDRESS
/... . . * * * PRM =1* * * *

JN(SIF+4) * * *
S* *

*KIA(MR )  (PRR)* *K2A(MR) - (PRR)*
* * * * * * * * * * * * * * *

5 3

*(To) LS4A (To) * *(To) RS4L (To) *
* * * * ** * * ***

6 4

* J(SIF+6)

* (PRR) (T3) *
7

* IAROM - (SEQ) *
* -1 (ER) *

8

Figure 6.26. SI Format (SIR) Microprogram
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PRECEDING PAGE BLANK NOT FX"LMF9

D2 D1 D3

* MVC . * MVN * MVZ

**** **** **** **** *********

SK-(MAR) * * K4  (MAR) * * K (MAR) *

* 1 (R) * * 1 -(ER) * * (ER)
*** *** ******* * *********

: J(MVCD) : J(MVCD) : J(MVCD)

*MVCD * * MVCD . * MVCD

* MVCD . * MVCX *
. . . . .

S******* * *********

* MVCX (Tv) * * MVCY -+ (T5 ) *
* ER-~ (ER) * * * * * * * * *

SJ(VCW) * * * * * * *

, J(MVCW) o

*(PRR)V(T 3 ) - (PRR) *

* MVCW • * MEM WRITE *

J(SJb)

* .0 (T .. . . . MVCy MVCX + 2

...... SSFB

* MVC( W * "R ..

*********

* T) * * (T5 )-2 (T5 ) *
* 0 (T) * *** * *

* (ER) E R) *•********
* J(TRTB) * * * * * * * * * *

J(TRTB)
.* (T2) (MAR) *

* TRTB * * MEM READ *
. . . . *********

J(SSFA)

* SSFA *

Figure 6.28. Move Microprograms (MVC, MVN, MVZ)
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DD

* TRT *
S. . . . * TRTB

* ****** *

* -1 + (T) *
* 1 - (E * **********
* * * * * * (PRR)N R 4L (PRR) *

1 * (ER)+1 - (ER) *
J(TRTA) ** . . . .

* TRTA
S* * * * * * * * * *

* (PRR)N RS4L (To) *
* (ER)+1 (ER) *

* TRTA * ***********2.TRA 2

* * * * * * * * * * *

* * * * * * * (MAR) (T7)
*K2 + (MAR) * * (P R) *
*(ER) + (ER)* * -(ER) (ER) *

* * * * * * * * * * * * * * * * *

1 3
J(TRTB)

* * * * * * * * * * *

TRTB . *(PRR,MAR)N (PRR) *
. .. * (T6) *

* (ER) - (ER) *

4

* (B)+D2 (MAR) *
** * ******

5

* 0 (T) *
* *** ** ***

6

* J(TRA)

* TRA *

Figure 6.29. Translate and Test (TRT) Microprogram
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* TRTC

********

*(T 1 ) (MAR) *
* (MQR) *
* 1 (ER) *

YES * * NO
* . . .*............* PRR=O* * . . ..........
* * * JNZ(TRTC+2)

* *(PRR) RS4L (PRR) *
* * (ER) 1 (ER) *

**********

3

S**********

* (MQR) . (ARI) *
S* (PRR)N  (P

* * (ER)+1 - (ER) *
* **********

4

* **********

* * K7  (MAR) *
* * (ER)+1 - (ER) *
* ***********

* *********

* *(PRR)N RS4L (PRR)*
* (ER) ' (ER) *
**********

6

**********

* (MAR)A(AR2)-(AR 2)
* **********

7

**********

* *(AR 2 )V(PRR)-(AR2 )** * -1 - (ER) *
** * * * * * * *

8

* J(TRTC+1)

* -(ER) - (ER) *
* TRC - (T5) *
* 0 - (MAR) *

2

* J(TRTD)

* TRTD *

Figure 6.30. TRTC Microprogram
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* TRTD

* (ER) + (ER) *
*(To)-1 - PRM *

NOT LAST BYTE NO * * YES LAST BYTE
. .. ............ * PRM.I=1* . ............

* -* * JN(TRTD+3)
•****** * *******

(ER) (ER) * 0 (PRR) *
*(ER)** E*(ER)+(ER) ** * ** * * ********

* 2 4
JNX(SSFB) YES * * NO YES * * NO

S* ER =1 * . * . .. * ER * .....Ss* JN(FTCH) * *
* * * ******* * * * *

SSSFB * -1 * (PRR)* *I (PRR) *
S*-1 - (ER) * * *-1 * (ER) *

3 
5

*J(SSFB) .............
.J(FTCH)

SSFB FTCH

Figure 6.31. TRTD Microprogram
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DC

o TR

******

* 1 + (T9 ) *
* 1 (ER) *
*******

:JITRTA)
* TRTA *

* TRA

*[(T9)A(PRR)]-1*PRM *
* 1 (ER) *

.... YES * * NO . .

*SSF ** ** .. *PRM =1 * . TRB

*** *JN(SSF) * * .**

* TRB *

*** ** **

*(MAR) (Tv)*
*******

J(TRC)

Figure 6.32. Translate (TRTRC) Microprogram

Figure 6.32. Translate (TR) Microprogram
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* TRC *

* * e * * . * * * *

* TRD * *(T )+(MAR)*
* *. * * MEM READ *

* 1 - (ER) *
* ****** *******
*TRC + (T5) *
* ****** *

* *******

* *TRD + (T5) ** * * * * * * * * * * *(ER)+1 (ER)*
*(T3 )V(PRR) - (PRR) * * * * * * * *
* MEM WRITE * 2

*J SSFB) *[(MAR)AKo]-1 PRM *
SSSFB * * (ER)+1 - (ER) *

YES * * NO
* . . * * ... . *PRM =1 * * * * * *

JN(TRC+6) * S *
* * * * * * * * * * * * * * * * * * * * * * *

* (MR)AK1 RSAL (PRR)* * (MR)AKp (PRR) *
* (ER)+1 (ER) * * (ER - (ER) *
* * * * * * * * * * * * * * * * * * * * * *

7 4

* J(TRC+4)

* (PRR)N RS4L (T ) *
* (PRR) *
* (ER) + (ER) *

5

* (Tv) + (MAR) *
* 1 - (ER) *

6

* J(SSF)

* SSF *

Figure 6.33. TRC Microprogram
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* SSF

* (tAR)+(T2)(MAR) *
* (T) *

(ER) (ER *
* MEM READ *

* J(SSFA)

* SSFA *

Figure 6.34. SS Format (SSF) Microprogram
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* SSFA

* * *** * * * * **

*(MAR)AKF+1 PRM *
* (ER) - (ER) *

NO * * YES
S* * * * * PRMS=1 * * a * a *

* * * JN(SSFA+13)
* * * * * * * * * * * * * * * * * * *

* ((MAR)AKO)-1 - PRM * * *
* (ER) (ER) * * * * * ** 14

NO * * YES * ABERR *
* * * * * * * * *PRM =1 * * * * * * * *

* JN(SSFA+14) * *
S* * * * * * * * * * * * * * * * * * * * * *

*(MR)A(T 6 ) - (PRR) * *(MR)A(T 7 )L 4A(PRR) *
(E) (ER) * * (ER) (ER)

* * * * * * * * * * * * * * * * * * * * * *

15 3

* JN(SSFA+4)
* * * * * * * * ** * *

* *(PRR) L4A (PRR) *
* * (ER) - (ER) *

4
* *

*********

*(PRR) - (T3 ) *
* (ER) - (ER) *

5

* (Tg) - PRM *
* (ER) - (ER) *

6

YES * * NO * * * * * *
S *PRM =1 * * . SSFA+06

* J(TRTC) * * J(SSFA+O6)* . . . . *
* * a * * *

* TRTC *

Figure 6.35. SS Format (SSFA) Microprogram
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* SSFA *
* + 06 *

*(TI)*(MAR) *
* MEM READ *

7

*(MAR)AKF+1 (PRM) *

* *
NO YES. *NO *PRM =1 * * *.

* * S * JN(SSFA+13)
• * * * * * * * * * * * * * * * *

8
*((MAR)AKO)-1 + PRM * 8 * *
S* * * * * * * * * * ** ** *

14
• 'J(ABERR)

JN(SSFA+12) YES * * NO ABERR)
S .. .. . . *PRMS=1 * .* * * * * * * * ABERR *
. * * . * * **

(MR)A(T6 ) - (PRR) * * (MR)A(T7 ) - (PRR) *
. * * * * * * * * * * * * * * * * * * * *

13 10
* * * * * ** ****

JN(SSFA+11) * (T1) R4L (T3 ) *
S* Y * *4L ***

* *

* * * * * * * * * ** *

* * (T3) R.4L (T) *
S**** ** *

11

. . . . . . . . . . . . . . . . . . . .

*(T5) SEQ *
* * ** * * *

12

Figure 6.36. SS Format (SSF+06) Microprogram
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* SSFB

* (TO)-1 - (T) *

* 0 + (MAR) *

LAST

NOT LAST NO * * YES *
........ **PRM =1 * * *******FTCH *
* * 5* J(FTCH) * * *

* F* * * *

SSSFC *

Figure 6.37. SS Format (SSFB) Microprogram



105

SSSFC

S********

*(T2)+I , (T2 ) *
* (MAR) *
* (ER) - (ER) *

1

* (MAR)AKF+1 PRM *
* (ER) - (ER) *

* * YES ADDRESS EXCEPTION
*PRMS=1 * * * * * . *

* * JN(SSFC+5) *
*2 NO

* ******** * *

*(T1)+1 (T) * * * * * *6
* (MAR) * 6
* (ER) + (ER) * * * JAERR
* * * * * * * * * * ABERR

* (MAR)AKF+1 PRM *
* (ER) - (ER) *

NO * * YES ADDRESS EXCEPTION
o * * * * * * P =1 * O

* * JN(SSFC+4)
• ******** * **********

3

RETURN *(T5 ) - SEQ * 3 * *
RETURN *(ER) - (ER) * * *

* * * * * * * * * * * * * * * * * * *

4 5
J(ABERR)

* ABERR *

Figure 6.38. SS Format (SSFC) Microprogram
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* FTCH

* (ER) - (ER) *

NO * * YES JNX(FTCH+3)
* * * * * * * * * ER = * * * * * * *

S* ** ** * * * *1 * * ** ** ** *

*(PC)+2 (PC) * *(PC)+2 (PC) *
* (MAR) * * (MAR) *
* SET FW LATCH * * MEM READ *
* * * SET FW LATCH *
• ******** *********

2 4

. ******

* (CC) + PSW *
S*** ******

5
J(FTCH+2.

YES * * NO
. * I/0 * . .. . . .

J(IOG) * *
. . . . . * 0

SlIOG *

S**** ****

* (PC)-2 + (PC) *

******* *

* FTCH + (T2) *
* **** ** *

2
SNIO

Figure 6.39* * NIFetch (FTCH) Microprogram

Figure 6.39. Fetch (FTCH) Microprogram



107

SNIO

* * * * * * * * * * * **

* [(MAR)AKF]-1 - PRM *
* FORCE SPEC MASK TO 1*
* * * * * * * * * * * **

NO * * YES
* * * . * .* PRM *PM * * * * * . .

*(MR) - (IR) * 1 *(B)+D (PRR) *
*(MAR) (T1) * * (MAR) *

S2 *(MR) (IR) *
2 * SET ILC *

*J(EXCP) RX YES * NO SS+SI+RR+RS
.IAROM ......

16=0.
S* *3

*EXCP * * RX * NRX

Figure 6.40. NIO Microprogram
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* EXCP

*(PC)-2 (PC) *
* SET ILC *
*********

1

*********

* 0 + (PRR) *
* ILC (MAR) *
* -1 ER *
*********

2

*(PRR,MAR)NR~(PRR) *
* (ER) - ER *

3

* (PRR)+(PC) (PC) *
***********4

*********

*(T1 ) + (MAR) *
* * * * * * * * *5

* J(ABERR)

* ABERR *

Figure 6o41. EXCP Microprogram



* RX

*(X)+(PRR) + (MAR) *
* OPTIONAL READ *
* SET FW' LATCH *

*

YES * * NO
.IAROM. ........

* 5=1,
0 * . . .. * .*

* ABCHK 1
.. *(PC)+2 - (PC) *

. * IAROM SEQ *

*[(MAR)PFFSPAS]-1 PR * * * 4
S* * * * * * ' * * * * * * YES * * NO

.. * * * *.. .... * * RSE * * * * *
* * • * *

NO * * YES * * * * * * * * * * * * * * *
*p * PRPMS =1 * ..... *Ko+2 I.1A (PRR)* * EXECUTE

* JN(RX+3) * * * * * * * * * *INSTRUCTION*

2 r

3OFS * FTCH

S J(ABERR) ........

ABERR

Figure 6.42. RX Microprogram
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SNRX

* (X) -, (PRR) *

1

NO * * YES -
.. . .. * *. RSE * . . . . . .

* *

* ******** * * *** ***

*(mR)AK - (PPR)* * EXECUTE *
* OPTIONAL READ * * INSTRUCTION *
******** *********

* e

YES * * NO * FTCH
IARO!M

JIA15(ADCHK)* 5I

AICHK * *(MAR)-.(T 1 )*
* * ******

* 3

YES * * NO JNRSX(NRX+4)
* RSE *...

* k

*. * ** *At A * *

* NO OP * *1K+2 LlA (PRR)*
*** * * * * * * * * * *

J( ACHK) * J(OFS)

ABCHK * * OFS *

Figure.6.43. NRX Microprogram



* ABERR *

*** * * ***

*KO+2 L 1A (PRR)*

1

*[KFA(MAR)]-1 PRM *

2

NO * * YES JN(OFS)
* * * * * . * . *PRM =1 * * * * * * * *

* ******** *

*(PRR)-1 + (PRR)*

3

* J(OFS)

* OFS *

Figure 6.44. ABERR Microprogram
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* WAIT

* NO * *
****** INT *

1

*YES

* 10 *

Figure 6.45. WAIT Microprogram
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* * YES ....
* INT * .* * * * INT *

* * JINT * * * *
* NO

* I/O WORD (MAR) *
* MEM READ *

DATA IN NO * * YES DATA OUT
S* DOT *
.* * * JIDOT(IO+5)

********* * *********

*RESET I/O MUX * 2 * MEMORY READ *
* * * * * * * * * * DELAY *

3 *********
0 6

********* *

*I/0 WORD (PRR)* * * * * * * *

* MEM WRITE * * (MR) - (PRR) *
* SET I/O * * * * * * * * * *

4 *********
* (PRR) - I/0 *

7

* * * * * * *

* T2  SEQ *

5

Figure 6.46 10O Microprogram
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82

* LPSW

*(N) ~1A (PRR) *
* -1 (ER) *

.1

*(PRR)N L 4A (PRR) *
* (ER) + (ER) *

* 2

PROBLEM STATE YES * * NO SUPERVISOR STATE
* * . * . * * * * PRMS=1* * * * * * * *

* * * * * * * * * * * ** * * * * * * * * *

* * * NO OPERATION *
* * * * * * * * * * * * * * * * * * * * *

* J(OFS) 4 . 3

S* * * *** * * *

* SUBROUTINE OFS *
* * * * * * * * * * *

J(LPS)

* LPS *

Figure 6.47. Load Program Status Word (LPSW) Microprogram



115

* LPS~ •

SUPERVISOR STATE
NEW SYSTEM MASK

***********

* (MR) (PRR) *
* (MQR) *
* (SM) *

* (MAR)+4 (MAR) *
* MEM READ *
* 0 - (SM)M *
* -1 + (ER) *

2

* (PRR)N L 4A (MQR) *
* (N) *
* (ER) + (ER) *
* * * * * ******

3
S* * * * * **** **

* 0 (N)M ** ( (PRR) NEW KEY AND AWMP

* (MR) (MAR) *

4

* (MR) - (MQR) *
* (PC)M * NEW PROGRAM COUNT(PC)M *
* (MAR) LJ2L (MAR) *
* * * * ** * * *

5

* (MQR) - (PM) *
* (ER) + (PRR)+(PRR)*

6
***********

* 0 (MQR) *
* (PM)M *

7

* (PM) L 4A (PM) *

8

* LPSA *

Figure 6.48. LPS Microprogram
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* 1 - (ER) *
* (MAR) - PR:1 *
* (MQR) - (PM) *
******* ******

NO * * YES JN(LPSA+4)
........ *PR, =1 * ..... .

**

********* **********

*(MAR) LSI (MAR)* *(PRR)N RSIL (PRR)*
* * PRM * * (MQR)*
*(ER)+1 - (ER) * * (CC) *
* * * * * * * * * *(ER) - (ER) *

* **********
* * * 5

NO *PRM * ES JN(LPSA+3) * ** * * * * * * *
*.*PRM=1* *(MAR) LSI (MAR) *

* -* PRM *
d*** * ** *********

,(PR")N .SIA (kQR)* *PRR) N  *
* (CC) * * + (cc) * NO *PR YES JN(LPS+7)

* (ER) - (ER) * * (ER) (ER) * " S .

3 4. *

* * *(PRR) RSIL (MQRY
NO OP * (CC)*

LPSB 7 * 8

J'LPSB). ... JJLPSB):

LPSB

Figure 6.49. LPSA Microprogram
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* LPSB •

* (PC)-2 - (PC) *

* (Z) PRM *
* -1 + (ER) *

2

.NO, ,YES JN(LPSB+3)
*PRM =1*

* * CHANNEL NOT BUSY *

* * .* **. * *** * *** *****

*(N) LS2 (PRR) * *(K ) (PRR) *
* -1 4 (ER) * *
* ** ****** *

3

* LPSC * * (PRR) - (I/0) *
5

* . * . . J(LPSD)
* LPSC •

* ********

*(PRR)N - (PRR) * CHECK PSW
* (ER) - (ER) * WAIT BIT

1

* * YES * •
*PRMS = * FTCH *

* S * * * 9 * .

JN(FTCH) NO* *

* LPSD

*WAIT+O0 - (T ) *
* (SEQ)*

1

Figure 6.50. LPSB, LPSC, LPSD Microprograms
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* OF

** *******

*(PM) (PRR) *
*********

* * YES * * *

*PRMS=1 * * * * * * * * * * * FTCH
* S* * * * * *

*

*********

* (8) + PRR *
*********

2

* OFS

NOTE: SUBROUTINE OFS RETURNS TO FTCH

Figure 6.51. Overflow (OF) Microprogram
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* OFS

***********

* 40 (MAR) *
* * * ** * * * * * *

1

* * * * ** * * * * *

* (N) R 4L (MQR) *
* * * * * ** * * * *

.2

* (MQR) R4A (SM)
***** ** *

3

*(PRR)+(SM) + (PRR) *
* MEM WRITE *
* 1 + (ER) *
***********

4

* (MAR)+4 (TO ) *
* (ER)+1 - (ER) *

5

* * ** * * * * * * *

*(PM) R.4L (MQR) *
* (ER) - (ER) *

6

* (MQR) R4A (MQR) *
* (CC) - (MAR) *
* (ER) - (ER) *

7

* OFSA *

Figure 6.52. OFS Microprogram



120

* OFSA

* (ER) - (ER) *
* (MQR) -, (PM) *

* N PRM *
(MAR) MAR *

NO * * YES JN(OFSA+4)
..... *PRM =1 * . ........... .

* CC/8 * * CC=8

********* 1 *********
*(MAR) L1lL PRM * *(PM) L 4L (PRR)* CC=O
* (MAR)** * * * *5
* (ER) * (ER)*
* ** * * * * * *

* *J(0FSB)

NO * * YES JN(OFSA+5)
. *PPRM =1* . . . ...

SCC/4 **S CC=4. .
*********** * ***********

*(MAR) LSjL PRM " 2 * 1 (ER) CC=1
* (MAR) * *(PM)+(ER) L 4 (PRR)* CC=
* (r) (E) ****** *

* * YES JN(OFSA+6)
*PRMS=1 *. . . . * . . . . J(OFSB)

*P =I * CC=2 ..
* ***********
3

* * (ER) + (ER) *
CC=1 . NO *(PM)+(ER) Lq4L (PRR)k

* * * * * * * * * * J(OFSB)

* (ER)+1I" (ER) *
*(ER)+(PM) LS4L (PRR) * *
********** ** • .

* * .* J(OFSB)
* OFSB *

Figure 6.53. OFSA Microprogram
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* OFSB *

S*** *** * * ***

* (PRR)+(ILC)+(PC+2) - (PRR)*

*********

* (TO) (MAR) *
* MEM WRITE *
*********

2

*********

* NO OP *
*********

3

*********

*(MAR)+60(MAR) *
* MEM WRITE *
*********

4

*********

* NO OP *
*********

5
J(LPS)

* LPS *

Figure 6.54. OFSB Microprogram
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* * * * * * * * * * *

* I/0 (T9) *
* * (PRR) *
* o0 (MAR) *
* MEM READ *
* * * * * * * * * * *

1

*15 (PRR) (PRR) *
* * * * * * * * * * *

2

* (PRR)-8 (PRM) *

NO * * YES * *
. . .. . . *PRM =1 * * * * * * INTL

* * S* *****

*(PRR)-12 + PRM *

INT > 12 NO * * YES 8 < INT. <12
* * * * *PRMS=1 * * * * * * * * * *

* * *

* 4 * (PRR)-2 *(PRM) *
* * * * * ** * * * * * * ** *

*INTEG12* *
* * * * NO * * YES INT-dO

* * * * * *PRMS=1 * * * * * *

* ** * * * * * * * * * * * *

* (PRR)-3 PRM * 5 * * YES* o a
********** . PRR * INT8

* 6 ;ERO,

NO YES 7
*INT11 * * *PRM =1 * * INT10 * *

* * * * * * * NO

* INT9

Figure 6.55. Interrupt (INT) Microprogram
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'INTEGj2'

* 3A (PRR) (PRR)*
* * * * * * * * * * *

* (PRR)-2 - PRM *

* 2

NO * * YES INT < 14
* * * * * * * * *PRMS=I * . .
* * * *

* * . * * * NO * * YES *..
* * * * * * * * * INT13* * * * .... INT12*

*(PRR)-3 + PRM ** * ZER * Q

* 3 4

* * * * * * YES * * * * *

*INT15* * *PRMS=1 * * * * * * INT14 *
Figure * * INTEG12 Microprogram * *

Figure 6°56. INTEG12 MicroprOgram
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. INTL8 .

* (PRR)-4 PRM *

INT > 4 NO * * YES INT <4
S- . * PRM =1 * .......

* * * * * * * * * 1 * * YES * * * .

* 3A(PRR)- (PRR)* *PRR=O * . .... INTO
********* * * * .o .

2 *
S*6 O. < INT <4

* * * *** * * .NO
* (PRR)-2 - PRM * * * * * * * * * *
* * * * * * * * * (PRR)-2 -f PRM *

INT > 6 * INT < 6 * * * * * * * * *7
NO* * YES *

S*PRMS=1 * . " NO * * YES .....
* * .. . . *PRM =1 * * * * * *. INTI

** ****** * * * * *

* (PRR)-3 - PRM * 3
* * * * * * * * * * (PRR)-3 + PRM *

4 ** ***-**

* * YES
*PRM=1 * . ..... INT2

S* * . . . *

NO
.NO * * YES. .. *

INT6* * PRMS=1 * . . .INT7 *
.. * * INT3

* * * * * * * C * C

* INT5 . * . . *PRR=O * YES INT4
.mm . * * * **

*
5

Figure 6.57. INTL8 Microprogram
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* INTO

* (PRR)* I/O *

* (PRR) - I/0 *

* LPS

* INT1

*********

* (PRR) + I/0 *

1

* LPSC(T3)

* INT2 3

* 24- (T3) *
*********

1

* INT23 *

* INT3 , INT Microprogram

* 56 T3
*********

1

* INT23 *

Figure 6.58. INTO, INT1, INT2, INT3 MicrOprOgrams
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* INT23 *

* . Z *
* 0 + PRR *

* RESET I/0 *

2

* I/O + (MAR) *
* SET I/0 *

3

*(MARASM)-1 - PRM*
* 1- ER) *

* 4

CHANNEL ENABLED NO * *
* * * * * * *PRM =1 *
* * *

* ******** *

*K8 L 1A (PRR) * YES

5 8*

* (T)** ** *INTF*

* (PRR) + I/O * * * * * * * * * *
*(MAR)AK8 (PRR)* * (PRR) I/0 *
* * * * * * * * * * * * * * * * * *

6 9

* (T,3) MAR * * INTF *

7

* OFS *

Figure 6.59. INT23 Microprogram
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* INT4 * 0* INT5 *

* * ****** * **

* (PRR) - I/O *
* (PRR) - I/0 *0 (Z)

* *********

* INTF *I/0 WORD 2+(CC)*
* SET I/O *
* **** *****

* FTCH *

* INTF* * INT6 * * INT7 *

** *** * ********* ** ******

* WAIT SEQ * * (PRR) I/O * PRR I/O *
* (T2 ) * * * * ****** * 0 + (Z)

* * * * * * * * * *

* I/O WORD2  (z)* .
* SET I/O * * INTF *

2

* (T2 ) + SEQ *

3

Figure 6.60. INT4, INT5, INT6, INT7, INTF Microprograms
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. INT8 .

******* *

* 0 (PRR) *
* (T4) *
* MEM READ *
• 128 - (MAR)*

1

* 15 - (IC) *

2

* ********

• (PRR) + (IR) *
* 24-31 8-15 *

******** *
3

* ******** *

* (RX) (PRR) *
* MEM WRITE * DUMPSPM
.0 .. .BANK 0

4

******** *

* DELAY *
********

* * NO ********* °

* IC=O * * * * * * * * * (IC)-1 IC *
* *********CZA

*5
* * * * * * * * * (MAR)+4 *(MAR)*

* (T2) - SEQ * * MEM READ *
* * * * * * * * * * * * * * * * *

8 6

* (T4 )+1 (T4 ) *
* (PRR)*

7

Figure 6.61. INT8 Microprogram
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* INT9 *
*INT9

*********

* 0 (PRR) *
* (T4) *
* MEM READ *
• 128 + (MAR) *

* 15 + (IC) *

2
+ 9 9 * * * 9 9 9 9 9 * * 0 9 * * * * * *

• ******** *

(PRR) - (IR) *
* 24-31 8-15 *
• **** * ** *

3
S** ******

* (FX) + (PRR) *
* MEM WRITE * DUMP SPM

* * * * * BANK 1
4

• ******** *

* DELAY *

* * *********

* IC=O .NO* * * * * * (IC)-1 IC *

* * JCZA * * * * * * *

5 ****** ***

S * * * * * *(MAR)+4 - (MAR)*
S(T2) SEQ * * MEM READ *

* * * * * * * ** * ** ** * *

******** 6

* (T4)+1 (T4) *
* (PRR)*
******** *

7

Figure 6.62. INT9 Microprogram
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* INT10 *

* 0 (PRR) *
* (T) *

* MEM READ *
* 128 + (MAR) *

* 15 - (IC) *
*********

2

* **** *- * *

* (PRR) + (IR) *
* 24-31 8-15 *
• ******** *

. 3

* ******** *

* (T) - (PRR) * DUMP SPM
* MEM WRITE *
* * * * * * * * BANK 2

4
* * *** * *

* DELAY *
* ******** *

* * NO *********
* IC=O * * * * * . * * * (IC)-1 +IC *

* * JCZA * * * * * * * *

*5 *
* *********

* * * * * * * * * *(MAR)+4-+ (MAR)*
* (T ) SEQ * * MEM READ *
* * 5 * * * * * * * * * * * * * *

8 6
* ******** *

* (T4 )+l (T *
•* (PRR)*
******** *

7

Figure 6.63. INTO10 Microprogram
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* INT11 l

* 0 (PRR) *
* (T4) *
* MEM READ *
* 128 (MAR) *
*********

* 15 (IC) *

2

******* * * *

* (PRR) (IR) *
* 24-31 8-15 *
* ******** *

3
* ******** *

* (YX) - (PRR) * DUMP SPM
* MEM WRITE * BANK 3
* ******** *

4
* ******** *

* DELAY *
********

* * NO * * * * * * * * *

* IC=O * * * * * * * * * (IC)-I IC *
* * JCZA * * * * * * * * *

5 *

* * * * * * * * * *(MAR)+4 (MAR)*
* (T2 ) SEQ * * MEM READ *
* * * * * * * * * * * * * * * * *

8 6
S********

* (T4 )+1 (T4) * .
* (PRR)*

7

Figure 6.64. INT1I Microprogram
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* INT12 *

*********

* 0 (PRR) *
(T

* MEM REA *
* 128 - (MAR)*

1

* 15 + (IC) *

2

* ******** *

* (PRR) (IR) *
* 24-31 8-15 *
* ******** *

3
S******* **

* (MR) (RX) *LOAD SPM
* * * * * BANK 0

* ********

* DELAY *
* ******** *

* * NO * * * * * * * * *

* IC=O * * * * * * * * * (IC)-1 - IC *
* * JCZA * * * * * * ***

5 *********

*5
* * * * * * * * * *(MAR)+4 + (MAR)*
* (T2) SEQ * * MEM READ *
* * * * * * * * * * * * * * * *

8 6
S******** *

* (T4 )+1 (T )*
* (PRR)*
* ******** *

7

Figure 6.65. INT12 Microprogram
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* INT13 

0 (PRR) *
* (T4 ) *
* MEM READ *
• 128 - (MAR) *

1

* 15 + (IC) *

2

******** *

* (PRR) (IR) *
* 24-31 8-15 *

******** *
3

*********

(MR) (FX) * LOAD SPMBANK I
4

* *** ***

* DELAY *
********

* * NO *********
* IC=O * * * * * * (IC)-1 IC *

* * JCZA * * * ** * * * *
*5 . * *

*5
* * * * * * * * *(MAR)+4 (MAR)*

* (T2 ) SEQ * * MEM READ *
S* * * * * * * * * * * * * * * * *

8 6
* ******** *

* (T4)+1 (T4) *
* (PRR)*
* ******** *

7

Figure 6.66. INT13 Microprogram
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* INT14 *

* (PRR) *
* -(T4) *
* MEM READ *
* 128 + (MAR) *

1

* 15 IC *

2

* ******** *

* (PRR) (IR) *
* 24-31 8-15 *
******** *

3
* ******** *

* (MR) - (T) * LOAD SPM
* * * * * * * * * BANK 2

4
* * C*******

* DELAY *
* ******** *

* * NO *********
* IC=O * * * * * * * * (IC)-1 IC *

* * JCZA * * * * * * * * *

.5 *********

* * * * * * * * * *(MAR)+4 + (MAR)*
* (T2 ) - SEQ * * MEM READ *
* * * * * * * * * * * * * * * *

8 6

* ******** *

* (T4 )+l (T4)*
* (PRR)*
* ******** *

7

Figure 6.67. INT14 Microprogram
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* INT15 *

* 0 (PRR) *
* (T4) *
* MEM READ *
* 128 (MAR) *

* 15 - (IC) *

2

S** -*** * *

* (PRR) - (IR) *
* 24-31 8-15 *
* ******** *

3
* * * * * * * * * LOAD SPM

LOAD SPM
* (MR) (YX) * BANK 3
* ******** *

4
S******** *

* DELAY *
* ******** *

* * NO *********
* IC= * * * * * * . * * * (IC)-1 - IC *

* * JCZA * * * * * * * * *
*5 *
* *********

* * * * * * * * * *(MAR)+4 (MAR)*
* (T ) + SEQ * * MEM READ *

S* * * * * * * * * * * * * * * *

8 6
S******** *

* (T )+l (T) *
* (PRR)*
* ******** *

7

Figure 6.68. INT15 Microprogram
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CHAPTER VII

COMPARISON

7.1 Conclusions

A comparison of the structured and nonstructured microprograms

used in the emulation of the IBM System/360 by the SUMC BB brought

to light the following conclusions:

1. Structured instruction microprograms were essentially as

efficient as the corresponding nonstructured microprograms. That is,

execution time and microprogram size remained essentially the same.

2. The implementation of structured housekeeping microprograms

(Fetch, Overflow, Interrupt, etc.) was considerably more difficult.

In general, these structured microprograms were slower and occupied

more control memory locations than the nonstructured ones. For instance,

in the Interrupt microprograms the lack of a CASE (COMPUTED GO TO)

statement primitive forces the microprogrammer to use 15 decision

blocks rather than one to decide which interrupt to process. This

represents up to a 30 percent reduction in speed (execution speed varies

with each interrupt processed), and a 16 percent increase in the size

of the microcode memory portion which handles interrupts. Furthermore,

note that INT8, INT9, INT10O, INT11, INT12, INT13, INT14, and INT15 are

identical except for Step 4. These microprograms could be combined by
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using the forbidden CASE primitive. Because of this restriction, the

size of the structured Interrupt microprogram subset is 200 percent

greater than the size of the nonstructured Interrupt microprogram

subset. There were no significant changes in speed or size for Fetch

and Overflow microprograms. The author feels the housekeeping area is

the crucial one when implementing structured microprograms because real

time response limitations or control memory size restrictions may not

permit the microprogrammer to use structured primitives wholly in

housekeeping microprograms.

3. Structured RR, RX, RS and SI format microprograms were easily

implemented in the SUMC;speed and microcode memory size were not

sacrificed.

4. Structured SS format microprograms remained as fast as the

nonstructured ones. However, it was not possible to share microcode

memory locations, within these microprograms, as easily as it was with

the nonstructured microprograms. Consequently, the microcode memory

size was increased by 15 percent for the structured set.

5. Structured microprograms were better organized and thus should

be more readily and quickly understood by users.

One must not forget that microprogramming is machine dependent.

Thus, these conclusions apply only to the SUMC BB.

7.2 Further Research

The study of the branching architecture required for ease of imple-

mentation of structured microprograms is not complete. The branching

architecture of other microprogrammable machines and of the newly

developed microprocessors should be studied.
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APPENDIX A

NOTATION

Symbol Meaning

=: is loaded into

corresponds to or is related to

corresponds to

A - B mapping of A into B

+ loaded into

* concatenation

<a v b > if p then a; if not p then b
p

[b] while p do b
p

( ) contents of

V logical OR

V- exclusive OR

A logical AND

logical NOT

logical NOT

< less than

not less than

equal to

not equal to
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APPENDIX B

FLOWCHART. CONVENTIONS

* Entry or exit point.

* * Microinstruction cycle.

* * Decision block.

lower case letter => a function of process

within a micro-
instruction cycle
or decision block

upper case letter => MROM location

on lower right hand
corner of a micro-
instruction cycle
or decision block



142

EXAMPLES

Example Explanation

* * * * * Microinstruction cycle

fl * with decision block.
F1 refers to MROM location;

F1  
fl to some function per-

* *formed during Fl; dl refers

Sdl * to some decision performed

. . during Fl.

.. . . Microprogram begins at

* ENTRY * microinstruction cycle F1
is followed by decision

block F2. d2 refers to
some decision performed
during F2 ; if the condition

S f * checked for during F2 is

* * * * * * * true, a No-Operation cycle

F1  F3 is performed prior to

. going to EXIT; if the
* condition checked for during

NO * * YES F2 is false; f4 is performed

S. d2  * .... during microinstruction
S . . cycle F4 prior to EXIT.

*F2

* *** * *f4
* f4  * * *

* F4  F3

* EXIT
* • • a a
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APPENDIX B

FLOWCHART SYMBOLS

( ) Contents of

A Logical "AND" operation

V Logical "OR" operation

Logical "EXCLUSIVE OR" operation

+ Addition

Subtraction

-T One's complement

-( ) Negation (Two's complement)

- Data transfer or flow

N (Used either as a subscript or superscript). Normalized

LS4A Left shift four arithmetic bits

LS2A Left shift two arithmetic bits

LS1A Left shift one arithmetic bits

LS4L Left shift four logical bits

LS2L Left shift two logical bits

LS1L. Left shift one logical bits

RS4A Right shift four arithmetic bits

RS1A Right shift one arithmetic bits

RS4L Right shift four logical bits

RS1L Right shift one logical bits
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APPENDIX B

FLOWCHART ABBREVIATIONS

AR Accumulator Register

ALU Arithmetic Logic Unit

B Base Register

CC Condition Code

CCR Condition Code Register

D Displacement Field

DEX Derived Exponent

EALU Exponent Arithmetic Logic Unit

ER Exponent Register

IAROM Instruction Address Read-Only-Memory

IC Iteration Counter

IR Instruction Register

K SPM Mask Registers (see Appendix C)

M Program Mask

MAR Memory Address Register

MAM Memory Address Multiplexer

MQR Multiplier/Quotient Register

MR Memory Register

MROM Microcode Read-Only-Memory

N Interrupt Status Register

OF Overflow

PC Program Counter
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FLOWCHART ABBREVIATIONS
(Concluded)

PRM Product Remainder Multiplexer

PRR Product Remainder Register

R Register

ROM Microcode Read-Only-Memory

S System Mask

SPM Scratch Pad Memory

T Temporary Register

X Register
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APPENDIX B

FLOWCHART SUBSCRIPTS

M Mantissa

N Normalized * Also used as a superscript

OF Overflow

S Sign bit

SHW Sign Extended Halfword

V Used with Temporary register Tv

O-F Hexadecimal 0-15

+1 Register specified by selected IR field +1
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APPENDIX C

SPM MASK REGISTERS

K0 = 00000001

K1 = OOFFFFFF

K2 = FFOOFFFF

K3 = FOFFFFFF

K4 = FFFOFFFF

K5 = OFFFFFFF

K6 = FFOFFFFF

K7 = FFFFFFOO

K8 = 0000FFFF

K9 = 01000000

KA = OOFF0000

KB = F000000

Kc = OOFO0000

KD = 000FFFFF

KE = O000F000

KF = OOFF0000
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APPENDIX D

EXTERNAL INTERRUPTS

Name Function

INTO Power Up

INT1 Release CPU

INT2 External Interrupt

INT3 Channel 1

INT4 System Reset

INT5 Set Condition Code

INT6 Set Channel Busy

INT7 Initial Program Load

INT8 Store SPM Bank 0

INT9 Store SPM Bank 1

INTO1 Store SPM Bank 2

INT11 Store SPM Bank 3

INT12 Load SPM Bank 0

INT13 Load SPM Bank 1

INT14 Load SPM Bank 2

INT15 Load SPM Bank 3




