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1.0 INTRODUCTION

To provide a capability of highly accurate position and velocity

measurements during the approach and landing phase of VTOL aircraft, NASA

personnel at Langley Research Center are developing an RF Multilateration

System. The system uses an angle-modulated ranging signal to provide both

range and range rate measurements between an aircraft transponder and

multiple ground stations. Range and range rate measurements are converted

to coordinate measurements and the coordinate and coordinate rate information

is transmitted via an integral data link to the aircraft.

The objective of the work described in this report has been to conduct

error analyses of the planned multilateration system and to determine and

recommend data processing techniques that will provide highly accurate

position and velocity measurements within the constraints imposed by

computational speed and capacity. The initial studies have been concerned

with the investigation of various proposed processing techniques and an

investigation of errors associated with each of the techniques studied. In

developing the processing techniques, it was necessary to continuously keep

in mind the limitations of the ground computer, Cost and portability

requirements limited the complexity of the computations and consequently

also limited the computational scheme to be used.

The following sections of the report provide a brief system description,

describe investigations of various data processing techniques that have been

studied, and point out advantages and disadvantages of each. For the

techniques considered, error calculations are provided that permit a

comparison between the various techniques. A recommended data processing

technique is developed and error characteristics of this technique are

discussed in detail.

Finally, a ground-based mini-computer system is recommended which has

both the capability of performing the recommended computations and the

flexibility of performing additional computations (such as Kalman filtering)

if future requirements make such computations desirable.
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2.0 SYSTEM DESCRIPTION

The planned multilateration system configuration is as shown

generally in Figure 2-1. A single transmitter transmits a ranging signal

to an aircraft transponder where the signal is offset in frequency and

retransmitted to four or more ground receivers. The ground receivers

contain digital processors which provide digital outputs proportional

to the slant range between the receiver and the transponder and the

rate of change of slant range. The digital receiver outputs then go to

a central ground data processor which transforms the slant range measure-

ments to X, Y, Z position and rate data. In the operational system, the

position and rate data are then transmitted to the aircraft over a data

link at the same rf frequency as the ranging signal and are available at

the aircraft for use in navigation and guidance equipment.

The location of the ground receivers is chosen to provide high

accuracy throughout the touchdown area. For situations in which it is

desirable to have accuracy over a 360° azimuth range, a configuration such

as that shown in Figure 2-2A appears desirable. The central receiver is at the

touchdown point. For situations in which there is a preferred direction

of approach, a configuration such as the one shown in Figure 2-2B may be more

desirable. To provide higher accuracy over certain segments of the approach

trajectory, additional receivers may be used.

The functional operation of the system may be understood by referring

to Figure 2-3. The transmitter generates a ranging carrier, a phase modulated

tone for ranging, a reference carrier, and a data subcarrier. At the

aircraft transponder, the incoming signals are translated in frequency

coherently using the modulation on the reference carrier. The ranging

carrier and associated tone ranging modulations are then retransmitted to

the ground receivers. At the ground receivers, the Doppler shifted carrier

and ranging modulation are processed to derive digital signals proportional

to the two-way time delay (range) and the rate of change of time delay

(range-rate). These digital measurements are then transmitted to the coordinate
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computer for derivation of coordinate position and coordinate rates.

The theoretical operation of the system may be seen by examining the

mathematical expressions for the signals throughout the system. The trans-

mitted signal may be written as

v = V -sinf^o) t + gsinat] + V sinfN.u) t + ysin u t] (2-1)

where

N = multiplication factor (1760)

N_ = multiplication factor (1764)

a) = reference oscillator frequency (3.1 MHz)

a = ranging tone frequency (100 Hz)

3 = ranging tone phase deviation ( 5280 rad.)

Y = reference carrier phase deviation .

At the transponder in the aircraft, the signal received is similar to

equation (2-1) but is delayed by a time delay T,. At the transponder,

the signal is shifted in frequency using the reference signal, and is

retransmitted and received at a ground receiver after an additional

delay T^ as

VD = VD sin[N u> (t - T.. - T,) + 3sin ot(t - T, - TO)] (2-2)
K K X O - L Z J . . £

where

T, = uplink delay

T™ = downlink delay

N = N- - 32

and the other nomenclature is defined above.



At the receiver, the incoming signal is mixed with a. local reference:

VREF = VREF ̂ "̂ iV + Bsin a t] (2_3)

and the resulting first IF signal is given by

VIF1 ' VIF1[(N1 - V V + Vo<Tl + T2> - 3(sin at

-•sin a(t - (TX + T2))] . (2-4)

An additional mixing operation takes place with a multiplied version of

the reference oscillator signal to provide a second IF signal given by

VIF2 ' VIF2 S±n[V + Vo(Tl + T2>

a(x -I- T.) (T, + T_)
2g(sin ^^ — cos a (t L )) (2_5)

where the form of the last term has been modified using a trigonometric

identity for the difference between two sinusoidal signals.

The instantaneous frequency of the IF signal may be determined

by differentiating the argument of the sine function above and is

given by

(T.. + T,)
u__ = u + N u (T. + T ) + 2Sa[sin a(t = )
Lc O X O J- ^ £.

°̂ T1 + T2^sin -= ] + 3otT cos a(t - Tn - TO) (2-6)

where T is the rate of change of the propagation delay. The last term in

equation (2-6) is an error term and system parameters are chosen to make this

term small in comparison to the desired terms in the expression. Thus, the

IF frequency is given approximately by



w
o-
w
OS

ONE MODULATION PERIOD

f
TT/CX 2ir/a 3-n/a

TIME

Figure 2-4. Sketch of IF frequency showing range and range rate (Doppler) terms,

+ N a) (T, + + 23a sin sin a(t - (2-7)

A sketch of this equation is shown in Figure 2-4. As shown on the sketch,

the deviation of the IF frequency over a modulation cycle is proportional to

the total time delay or two-way range, and the average IF frequency is equal

to the reference oscillator frequency plus a Doppler offset proportional to

the two-way rate of change of delay, or range rate.

A technique of cycle counting is used to obtain measures of two-way

range and range rate. Three gated counters are used to count the IF

frequency over the first and second halves of the modulation cycle and the

reference frequency over a full modulation cycle. The sum of the counts

over the first and second halves of the modulation cycle is proportional to

the average frequency and the difference in these counts is proportional to



the frequency deviation. The reference frequency counter is used to obtain

the difference between the average received frequency and the transmitted

frequency.

The number of counts over the first half cycle is given by

TT/O + T/2

Cl = k/ UIF dt - el (2-8)

T/2

where eJ is a fractional number 0 _<_ e1 < 1 selected to make the number of

counts>C, be an integer value. In the integration, T = T_ + T_ is assumed

constant over the duration of the modulation cycle. Over the second half

cycle,

+ T/2

C2 = fc / "IF dt - 62 (2-9)

ir/a + T/2

where 0 < e_ < 1. The reference counter gives

where 0 < e_ < 1.

Evaluation of the integrals using equation (2-7) and summing and differ-

encing the counters gives, for the range rate count,

CR - Cl + C2 - Cr - ~ <*! + ̂ 2) -1 -2 + e3 <

and for the range count

AO T. + T

CR = Cl ~ C2 = w Sina( 2 } " el + 62 ' (

10



Since T. = R./c and f. = R./c, where c is the propagation velocity and

R. is the distance corresponding to the delay T , there is obtained,

and

CR - Cl - C2 ' S±n (R1 + V

where (-2 < e- < 1) and (-1 < eD < 1).
K K

Thus, the counters provide digital outputs proportional to the two-way

range and range rate. These digital outputs are then used to calculate the

one-way ranges and range rates and the coordinate position and velocity

components of the aircraft. Conversion of the range and range rate measure

ments to coordinate position and velocity is accomplished in the ground

computer.

11
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3.0 SOLUTION TECHNIQUES

3.1 General Discussion

As seen in the previous section, the basic system measurements are the

range and rate between the ground stations and the airborne transponder.

These basic measurements will contain random and bias errors due to

system characteristics, quantization errors, and calibration errors. It

has not been within the scope of the present work to investigate the

sources of these errors in detail, but to consider only the effect of the

basic measurement errors on the solution for coordinate velocities and

position. The central data processor in the system has the function of

converting the basic measurements to coordinate rates (x, y, z) and

coordinate position (x, y, z). These coordinate positions and rates are

then transmitted to the aircraft for use in the navigation and guidance

system. The basic measurements will be taken at a data rate of approximately

ten per second.

The overall accuracy achievable with the multilateration system will

depend strongly on the data processing techniques used. For example, with

four or more ground stations, a redundant measurement is available which

may be combined with other measurements to improve the system accuracy.

It is also possible to provide in-flight calibration so that a sequence of

measurements is used to correct for bias in the system during the initial

stages of an approach path. In general, it is desirable to use all of the

basic measurement information available to provide the most precise position

and velocity estimation possible.

Since a fast-time response is desired in the system, it is preferable

if possible to use point estimation techniques; that is, to calculate

coordinate position and velocities each sample instant based on the

measured data. While the accuracy can be substantially improved by using

the time history of the measurements in a filtering technique (e.g.,

Kalman filtering), these techniques have not been considered in this study.

They will, however, be considered in future work.

13
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The equations necessary for conversion of range measurements to

coordinate positions are non-linear, hence the determination of the best

solution technique is not a straightforward problem. In this report,

several solution techniques have been developed and the advantages and

disadvantages of each technique have been determined. For convenience,

the solution techniques developed have been broken down as follows:

A. Solutions for position coordinates.

1. Explicit solutions for three ground stations.

2. Linearized minimum variance solution.

3. Iterative minimum variance solution.

4. Explicit minimum variance solution for N ground stations.

B. Solution for coordinate rates.

1. Explicit minimum variance solution for N ground stations.

C. Bias (system time delay) removal techniques.

Solutions combining rate estimation with position estimation have not

been considered because of the computational complexity involved.

The following sections discuss the above solution techniques and outline

the considerations that lead to the determination of the recommended solution

technique discussed in Section 6.0.

3.2 Explicit Solutions for Aircraft Position
Coordinates with Three Ground Stations

In vector terminology, the range vector from a receiver i to the

aircraft transponder may be written as

R± « R - p± (3-D

where the vectors are defined in Figure 3-1. The magnitude squared of the

vector R. is

Ri = ̂  + pi ~ 2* ' P!

15



Thus, one equation of the above form will be obtained for each ground

receiver in the system. A minimum of three stations is required to solve

for the three unknown position coordinates of the aircraft (x ,y ,z ) where
3. 3. 3.

z is assumed positive in all cases and the station locations are known.
3

For three stations, the coordinate system can always be chosen so

that one station defines the origin of coordinates, one station defines the

X axis., and the third station defines the XY plane. Therefore, let the

station locations be as follows.

Station Coordinates

1 (0, 0, 0)

2 (0, y2, 0)

3 (x3, y3, 0)

With this choice of coordinate system, the following equations apply:

o o o T
R l = X a + y a + Z a (3'3)

R2 - xa +>a + Za + A ~ 2 V2 °-4)

R^ = XJ + j\ + z
2
& + x^ + y2 _ 2 x^ - 2 y^ ; (3-5)

and the solution for x , y , z is straightforward. First solve for y ,
3 3 3 3

- R2

then solve for. x ,
3

xa = 2x (R1 - R3 + X3 + ̂ 3 - 2

and finally, solve for z
3

16



This solution in the coordinates x, y, z can then be obtained in

another coordinate system X, Y, Z by using a linear transformation

X [K] x (3-9)

where

x =
X

y
z

X =

X

Y

Z

and [K] is a 3 x 3 matrix for the linear coordinate transformation.

A completely general explicit solution for the three station case in

an arbitrary coordinate system is derived in Appendix A. A technique for

error analysis of this type of solution is given in Appendix B.

3.3 Linearised Minimum Variance Solution for N Ground Stations

3.3.1 The weighted least squares technique.— With more than three

ground receivers, redundant information is available which may be used to

improve the accuracy of the aircraft position estimate. For example, with

four ground receivers, four estimates of aircraft position may be obtained

using all combinations of three of the equations relating the measurements

to the position coordinates. To combine the measurements in some optimal

manner, the technique of weighted least squares estimation is used. This

technique provides a means of linearly combining solutions so that the

resultant estimate has minimum variance.

To demonstrate this technique, consider for example two measurements,

y. and y2, of a parameter y and of uncertainty implied by their

respective known standard deviations a. and a_. To determine an estimate

of the parameter y given the measurements, we form a linear weighted average,

2 y2 (3-10)

where w. and w_ are weighting factors and w. + w« = 1.

The variance of errors associated with the estimate y is calculated from

the above equation as
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W
2 2 2 2

W

where, for simplicity, y1 and y_ are assumed independent with zero
2

correlation. To determine the w. that minimizes the variance a~, dif-i y'
ferentiate eq. (3-11) with respect to w-ĵ  and set the result equal to zero.

2 2 2 2
(3-12)

3w, W (3-13)

Therefore the weighting factors are

w. 2 '

and

min variance

2 '2
(3-14)

The variance of y is minimized and is given by

2 2
al °2
2 ̂  2
1 +02

min

(3-15)

The above result can also be obtained by selecting y to minimize the

weighted mean square error risk function R, where
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(3-16)

Minimizing with respect to y gives

3 R " 1 '
(y - y)3 l 2

mean
square error

y2 • (3-18)

The matrix formulation of the weighted least squares or minimum variance

technique provides results as shown above in a very compact notation. In

ref. 1 it is shown that if the measurement vector y is related to the

estimator vector b by an equation

y = [A] b + v (3-19)

where v is the (zero mean) measurement noise vector, then the estimate vector

which minimizes a weighted least squares risk function is

b = (AT tjT1 A)'1 AT ijT1 y (3-20)

where ty is the weighting matrix. For minimum covariance, the weighting

function fy must be the covariance matrix of the measurement errors ('t',"

If this is the case, the covariance matrix of the estimate error is

The matrix technique can be demonstrated by applying it to the example

previously discussed. For the two measurements y, and y_ we have
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yl a y + vl

y2 • y + v2

Var Ay1 = Var v, = a.

Var Ay_ = Var v2 - o

Cov Ay.. , Ay - = Cov v.. v~ = 0

(3-22)

(3-23)

Thus in this case

(3-24)

and the answer follows directly from eq. (3-20).

obtaining the solution are as follows:

The various calculations in

0

'2 .

.T -1
A \i> =

1 1
2 2

°2

(3-25)

(3-26)

T -1
A ^ A (3-27)

,.T ,-l.v-l(A i|« A)

2 2
Cl CT2 2

= °Ab
(3-28)

2
T -1 -1 T-l-

b = (A1 41 XA) A ij) y =
2- 2I 'l'V + .2

!
(3-29)

which is the same equation obtained previously.

The advantages of the matrix notation in dealing with four or more

equations and correlated measurement errors should be evident.
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3.3.2 Linearized solution for the special case of all ground stations

in a plane. — For all ground receivers in a plane, the range equations (see

Figure 3-1 for definition of vectors),

1C = R + p. - 2R • p 1, n (3-30)

2 2
can be linearized by treating R as an independent variable. Letting u = R /2

and

qi =
= -x±x - y±y + u (3-31)

gives the equation

[P]x (3-32)

where, for n = 4,

qi

q3

_
x =

x

y
u

[P]

"x y
"V VX2 y2
V V

3 y3

-l"

-1

-1

-1

The solution is given by

— T -1 -1 T -1 —
x = (P\J P) X P\Q Q (3-33)

where ¥.- is the covariance matrix of errors in the q.. Since

Aq. £ R± AR± and AQ = [T] AR (3-34)
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we have

(3-35)

where ¥.„ is the covariance matrix of the slant range measurements (derived in
uR

Appendix C) and

T =

0 0 0

0 0 0

0 0

0 0 0 R'4J

After calculation of x, y, and u the z estimate is found as

<• _ - *?. -2.1/2
z - l^u - x ~ y ) (3-36)

An error analysis of this solution technique is given in Appendix D.

3.3.3 Linearized solution for the special case of all ground stations

not in a plane. — For four or more ground stations not in a plane, a linear

solution can be found using range difference equations. Using the same

nomenclature as before, define

qi =

2 n2
Ri - Rn Pn - (3-37)

By subtracting the nth range equation from the remaining equations, we

obtain

<P± - Pn) (3-38)

or in matrix form

Q = [P]x (3-39)
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where

Q = [P]

xrxn
X2~xn

yryn

,-x y ,-y
n-1 n Jn-l 'n

Z--Z1 n

Z2'zn

z ,-z
n-1 n

x

y
z

For four ground stations not in a plane, the solution is unique and is

given by

T —1 T—
(P P) PTQ (3-40)

T -1
Note that if the stations lie in a plane, the inverse (P P) does not exist.

For more than four ground stations not in a plane, the weighted least

squares solution may be used. This solution is

fp _i
= (P Y

_i _
Q (3-41)

where YAT: is the covariance matrix of the errors in the vector Q (see Sec. 3.3.2)

An error analysis of this solution is given in Appendix E.

3.4 Iterative Minimum Variance Solution

The derivation of an iterative minimum variance solution is given in

Appendix F. The technique is summarized as follows.

The two-way range measurements (R, + R.) are related to the coordinate

positions as follows:

A± = [(x - (y - V) + (z -

i ^(z - z±)
21l/2

+ [(X - Xi)
2 + (y - y.)2

i = 1, n ,
(3-42)
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or

The above equations are expanded in a Taylor's series around an initial

estimate of the solution to obtain

3f 3f 9f

Az = A, (3-43)

Thus,

AA. = A± -
3f

Ax
3f

Ay
3f1Az (3-44)

The set of equations above can be written in matrix form as

AA = [D] Ax (3-45)

where

AA

AA1

AA2

*

f Ax =

Ax

Ay
Az

and [D] is a n x 3 matrix of partial derivatives of the f .

Solving for Ax from eq. (3-45) gives the least squares form,

Ax = (DTD) -1 DT AA (3-46)

and an improved estimate of x is obtained over the initial estimate where

= xk + (3-47)

This improved estimate is then used as the initial solution and the process

is repeated.

Thus, the iterative solution procedure is :

1. Determine initial solution by some means.

2. Calculate D matrix.
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3. Calculate AA.

4. Calculate Ax.

5. Calculate improved estimate of x.

6. Go to step 2. and repeat calculations until JAx| is smaller than

some predetermined value. This indicates the solution has

converged to the value for x within the limit preselected.

The covariance matrix for the estimation errors is, from eq. (3-46),

\> = E(Ax AxT} = (DTD) 1 DT ip D̂ D)"1 . (3-48)
Ax AA

3.5 An Explicit Minimum Variance Solution for n Ground
Stations in an Arbitrary Coordinate System

For n ground stations, n equations of the form

R±
2 = R2 + P±

2 - 2R • pt i = 1, 2, .... n (3-49)

are obtained where R^ is the measured slant range and p. is the vector

from the origin of coordinates to station i. R is the slant range vector

from the origin to the aircraft.

Now, subtracting the n equation from the other n-1 equations gives

2 2 2 2
R. - R - p. + p

2 = R ' (Pn - P±) i - 1, 2 (1-n) (3-50)

or q^ = R ' (pn - p.^ (3-51)

where q. equals the term on the left-hand side of equation (3-50).

The set of equations (3-51) can be expressed in matrix form by

Q = [P]x (3-52)
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where

qn-l

P = -

xl-xn
- Xn

yl -
y-> ~

x , - x• i A J tn-1 n 'n-l

zn - z1 n
Z2 - Zn

- z
(n-1) x 3

Now partition [P] and x as follows:

where

and

Q-

A = -

xl - xn
X2 - xn

z- - z
1 n

z - - z
n-1 n _ (n-1) x 1

y * y

• i ~ x y , - yn-1 n 'n-1 'n (n-1) x 2

(3-53)

With this partitioning, we have

Q = Ap + Bz (3-54)

To obtain a least squares estimate of p, we assume that Q - Bz is the

observed data. Under this assumption,

= CQ - (3-55)
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where C = (A%~J A)"1 A%~J . (3-56)
(40 QB

The expression ^~_ is the covariance matrix of errors in (0 - Bz).
QB

(Note: For all ground stations in a plane, B = 0 and equation (3-44) is

considerably simplified. In this case, the covariance matrix ̂  becomes
_ ^B

the covariance of errors in Q only.)

The original equations (3-49) may be written in terms of p as follows:

Ri = (P ~ Pi)T <P ~ PI> + z2 - 2z±z + z± i = 1, 2 n (3.57)

where p.

Any of the n equations may be used to solve for z by substitution of

the estimate for p, equation (3-55), into equation (3=57). VThen this is

done, the resulting equation can be solved for z to yield:

-b. + Wb. - 4ac.
,.. 1 — * 3. _ 1 . _ ,
z(i) = - • - 2!" - i - 1, n (3_58)

where a = 1 4- BTCTCB

b± = -2z± - 2Q
TCTCB + 2p±

TCB

c± = -R±
2 + p^^ - 2p±

TCQ + QTCTCQ
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The z estimate z can be obtained as a weighted average of the n

z(i) values obtained above. Thus, we have for 2

(u'V (3-59)

where U

1

1

1

n x 1

z =
z(2)

z(n) n x 1

and i|/ is the covariance matrix of the errors in z(i). This matrix is

derived in Appendix G. The standard deviation of the z estimation error is

(3-60)

The x and y estimates now determined from eq. (3-55) are

•C!= CQ - CBz . (3-61)

Error covariances associated with this solution technique are derived in

Appendix G.

3.6 Minimum Variance Solution for Coordinate Rates
in an Arbitrary Coordinate System

For the velocity components, the measurements made by the receivers

are (for four receivers)

M. = R, + R. i = 1, 2, 3, 4 (3-62)

where R. is the range rate between the transponder and receiver i. In

vector terminology, the magnitude of the range rate is given by
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_ J.
R * x

(3-63)

where x = 1 x-i-1 y-i-1 z and R is the range vector from receiver i to

the transponder. Since the estimate of R. can be calculated first, the

velocity estimate can be obtained from

R • x
i = 1, 2, 3, 4 (3-64)

where
A± = M± - i = 1, 2, 3, 4

In matrix form.

A = [S] x (3-65)

where

A =

1
£

2

A3
*

x =»

X

y
z

4 x 1

3 x 1
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[S]

x - x.

x - xr

X - X,

y - y.

y - y.

y - y.

Z ;- Z,

z - z.

z - z.

2 - Z

4 x 3

and the solution is given by

- T -1 -1 T -1 —
* = (ST <K: S) X SL i//.:1 A (3-66)

where iji^- is the covariance matrix of the range rate measurement errors.

The explicit form of this matrix is derived in Appendix C and, for the case of

equal error variance in each two-way measurement, is given by (for four

ground stations):

1 -1 -I -1

- 1 5 1 1

- 1 1 5 1

- 1 1 1 5
KAA

(3-67)

where a.A is the variance of the two-way range rate measurement error. The
AM

error covariance matrix for coordinate rates is derived in Appendix H.
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3.7 Time Delay Bias Removal Techniques

3.7.1 General technique.— The measured ranges from the ground receivers

to the aircraft transponders will contain bias due to unknown time delays in

the transmitter, transponder, and receivers. For the four-station case,

measurements (M ) made by the four receivers are

Mi = Rl + Ri + Ei 1 - 1. 4 (3-68)

where e^ is an error corresponding to an uncompensated delay in the RI,

R. path.

A suggested technique for removal of the uncompensated bias errors

involves the estimation of the error from the equation

ei = U± - M± , (3-69)

* • * , * < .

where M^ = R + R is the calculated estimate of the two-way slant range. The

estimate is then smoothed by using a long time constant low-pass digital

filter such as

£ k+1 = £ k + M /£ k _ - k, (3-70)
ei ei * T Ui ei } '

where T is the filter time constant and At is the calculation increment.

A flow chart of this calculation technique is shown in Figure 3-2.

3.7.2 Variance of errors in time delay bias estimation.— The variance

of errors associated with this estimation technique can be determined as

follows. A small change in the estimate is written

Ae± » AM± - AM± . (3-71)
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" ~ 2 *• 2 2 1/2 *
Also, a small error in M = [(x - x ) + (y - y ) + (z - z.) ] + R may be

written in terms of errors in x, y, z

3M ^ 3M. ^ 3M
AM. = — - Ax + — - Ay + — - Az (3-72)

3x 3y 9z

or in matrix form

AM± = [E±] Ax (3-73)

where

and

Ei =

Ax =

3x

Ax

Ay

Az

3y 3z

Thus,

Ae. = AM. - E Ax (3-74)

An upper bound on the bias estimation error can be determined by

assuming unity correlation between errors in an individual measurement M
A

and errors in the estimated value of the measurement M. This upper bound

is given by

1/212
T) 1 / 21

i / J
(3-75)

where a is the variance of the two-way range measurement and ijr— is the

covariance matrix of the estimation error. The expression ty— is derived in
AX • •

the appendices for the various solutions considered.
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A more exact estimate of the bias error estimation can be obtained

if the relationship between the two-way measurement errors AM and the Ax

is known. This relationship depends on the solution technique used; for

example, for the iterative method described in Appendix F, we have

Ax = G 1 DT AM (3-76)

where AM in the above equation corresponds to AA in the nomenclature used

in the appendix. Using eqs. (3-74) and (3-76) we have

Ae± = AM£ - E± G"
1 DT AM (3-77)

or in another form

where

Ae± = e± AM - E± G'
1 DT AM (3-78)

= (1, 0, 0, 0} , B2 - (0, 1, 0, 0} , etc.

Thus, the variance of a single measurement of a time delay bias is

given by

- Ei G °J ^M [3i - Ei

where tjrrr: is the measurement error covariance matrix. This variance can be
AM

considerably reduced by filtering as is shown in the following section.

3.7.3 Reduction of time delay bias estimation errors by filtering.—

Using the digital low-pass filter given by eq. (3-70), the variance of errors
*• k + 1

in the smoothed estimate e. is given by

Var £±
k + X = (1-a)2 Var e±

k + a2 Var e±
k , (3-80)
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where a = At/T. For times t » T the smoothed variances will not change

with time so that for t « T

Var e±
k + 1 ss Var e* (3-81)

and the variance of the filtered output may be written in terms of the

variance of the unsmoothed estimate of e. .

Var £± = 2 g Var e± ; t » T (3-82)

* Ator approximately, Var e. as -=— Var e. ; t » T » At. Thus, for a calcu-

lation increment of .1 second and a filter constant T of 2 seconds, the

variance of the smoothed estimate is 2.5% of the unsmoothed estimate. Longer

filter time constants provide correspondingly better variance reductions.

It should be noted that instead of a conventional low-pass filter, a

minimum variance (i.e., optimal) filter could be used. For this type of

filter, the parameter a in the filter equation is recalculated for each time

increment, starting with an initial value of unity. The recursive relation-

ship for minimum variance is derived as

k + 1 ak 0 . ,, __.a = —r ; a =1. (3-83)
" i ia + 1

In using this technique, the value of a will eventually converge to zero,

corresponding to an infinite time constant filter. For this reason, it is
k

desirable to limit the minimum value of a to a small number on the order

of .01 (i.e., the number .01 corresponds to a low-pass filter of 10 second

time constant when using a calculation increment of .1 second). The advantage

of the optimal filter is that initial values of the estimate are more

accurate than those from a conventional low-pass filter with its inherent

transient buildup to the steady state.
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4.0 ERROR STUDIES

4.1 General Discussion

This section considers the errors associated with the various solution

techniques discussed in the previous section. The error variances associated

with the solution for position coordinates as a function of the slant range

measurements are a function of the following system parameters:

1. Basic slant range measurement errors,

2. Station location,

3. Aircraft location,

4. Solution technique,

5. Number of ground stations.

The errors in estimation of the coordinate rates are functions of all

the above parameters plus the additional parameters:

6. Aircraft velocity.

7. Range rate measurement errors.

In order to present the results of the error studies in a useful form,

several techniques have been used. For the position errors, contour plots

are useful for visualizing the rms errors that will be found at various

geometrical locations. For presenting results on errors associated with

coordinate rates, specific trajectories must be defined and used in the

error calculations. In this section, several specific trajectories have

been defined and the position and rate errors associated with these

trajectories have been calculated. These results are shown in the following

sections.

4.2 Comparison of Position Error Variances

for Various Solution Techniques

To compare the efficiency of the solution techniques discussed in

Section 3.0, tables have been prepared to compare the solution techniques

for specific station locations and aircraft locations. The derivation of

the error equations is given in the appendices.

In addition to the theoretical error variances, computer simulation

techniques have been used to determine actual variances that might be

encountered under experimental conditions. For these computer simulations,
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the technique shown on the flow chart of Fig. 4-1 is used. A random number

generator is used to calculate random perturbations on the slant range

measurements and the various solution techniques are used to solve for the

coordinate positions. These coordinate positions are then compared to the

true coordinate positions to determine coordinate errors. Five hundred

samples of this calculation are made, and the mean and variance of the

coordinate errors are determined. This simulation technique gives confidence

in the theoretical results in cases where the numerical values compare

favorably.

Table 4-1 provides a comparison of various solution techniques for an

aircraft at the position (1000 ft, 1000 ft, 100 ft) and for the station

locations given in the table. In this case, the position of the aircraft

is somewhat out of the operational range of the system (i.e., below 15°

elevation); however, an extreme case was desired to provide large errors

for comparative purposes. As may be seen, the iterative solution, explicit

solution and the linearized minimum variance solution provide the same

standard deviations of coordinate errors. The three-station trilateration

solution is the worst of the solution techniques considered, as would be

expected. Values from the computer simulation compare favorably to the

theoretical values, and it should be noted that the iterative solution con-

verges quite rapidly (i.e., only a few iterations are required).

Table 4-2 provides the same type of comparison, except that two of the

ground stations are elevated by 100 ft. Notice that the standard deviations

in the z coordinate are considerably improved over the values with all ground

stations at z = 0. Standard deviations of x and y are also improved by

elevating the ground stations. Tables 4-3 and 4-4 provide the same type of

comparison, except for an aircraft position of (1000, 1000, 500). Notice

that at reasonable altitudes, the standard deviation in the z coordinate

improves dramatically. Tables 4-5 and 4-6 provide the same comparison for

the aircraft located at (100, 100, 50). As the aircraft approaches the

landing position, the benefit of elevated stations decreases. In all cases

with elevated stations, the iterative solution provides the best accuracy,

followed closely by the explicit minimum variance solution. For non-elevated

stations, all solution techniques give the same accuracy.

All of the above calculations were made with a fixed-station configuration

as given in the tables. The effect of changing station locations is considered

in the following section.
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PRINT MEAN AND
STANDARD
DEVIATIONS OF
ERRORS

Figure 4-1. Flow Chart of Technique for Direct Computation of Mean and
Standard Deviation of Coordinate Errors by Computer Simulation.
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Table 4-1. Comparison of error standard deviations for various solution
techniques for an aircraft at the position (1000,1000,100)
and for the station locations indicated.

Solution Techniques and
Station Locations

Station Locations

#1 ( 0, 500, 0)

#2 (-433, -250, 0)

//3 ( 433, -250, 0)

#4 ( 0, 0, 0)

1. Three station (trilatera-
tion) solution (//I, #2, #3)

2. Linearized m-im'miim
variance solution

3. Explicit minimum variance
solution

4. Iterative solution

Standard Deviations of Error Assuming
2 ft rms Two-Way Range Measurement Error

Theoretical
Values

a
X

5.46

5.42

5.42

5.42

ay

4.84

/. -JQ
~T * * V

4.78

4.78

a
z

70.7

70.3

70.3

70.3

Values From
Computer
Simulation

a
X

5.18

C A "7 .
-f • V *

5.07

4.06

ay

4.31

4.20

4.20

3.80

a
z

45.9

95.4

43.7

41.79
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Table 4-2. Comparison of error standard deviations for various solution
techniques for an aircraft at the position (1000,1000,100)
and for the station locations indicated. (2 Stations Elevated)

Solution Techniques and
Station Locations

Station Locations (ft)

#1 ( 0, 500, 0)

#2 (-433, -250, 100)

#3 ( 433, -250, 100)

#4 (0, 0, 0)

1. Three station (trilatera-
tion) solution (#1, #2, #3)

2. Linearized minimum
variance solution

3. Explicit minimum variance
solution

4. Iterative solution

Standard Deviations of Error Assuming
2 ft rms Two-Way Range Measurement Error

Theoretical
Values

(ft)

o
X

5.45

5.45

5.83

4.69

0y

4.22

7.61

3.93

3.88

a
z

42.4

49.7

36.6

34.0

Values From
Computer
Simulation

(ft)

ax

5.17

5.08

5.45

4.62

oy

4.40

7.52

3.67

3.61

o
z

45.3

49.7

36.2

32.6
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Table 4-3. Comparison of error standard deviations for various solution
techniques for an aircraft at the position (1000,1000,500)
and for the station locations indicated.

Solution Techniques and
Station Locations

Station Locations

#1 ( 0, 500, 0)

//2 (-433, -250, 0)

//3 (433, -250, 0)

M (0, 0, 0)

1. Three station (trilatera-
tion) solution (#1, #2, #3)

2. Linearized minimum
variance solution

3. Explicit minimum variance
solution

4. Iterative solution

Standard Deviations of Error Assuming
2 ft rms Two-Way Range Measurement Error

Theoretical
Values

0
X

5.69

r r. e
J .OJ

5.65

5.65

a
y

5.10

r t\ r
_> .UD

5.06

5.06

a
z

14.7

14.7

14.7

14.7

Values From
Computer
Simulation

o
X

5.53

5.71

5.71

5.71

ay

4.61

4.41

4.41

4.41

a
z

15.4

15.3

15.4

15.3
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Table 4-4. Comparison of error standard deviations for various solution
techniques for an aircraft at the position (1000,1000,500)
and for the station locations indicated. (2 Stations Elevated)

Solution Techniques and
Station Locations

Station Locations

#1 ( 0, 500, 0)

#2 (-433, -250, 100)

#3 (+433, -250, 100)

#4 (0, 0, 0)

1. Three station (trilatera^
tion) solution (#1, #2, #3)

2. Linearized minimum
variance solution

3. Explicit minimum variance
solution

4. Iterative solution

Standard Deviations of Error Assuming
2 ft rms Two-Way Range Measurement Error

Theoretical
Values

o
X

5.60

5.60

5.69

5.57

ay

4.07

8.11

4.20

4.07

az

12.9

52 = 4

12.8

12.7

Values From
Computer
Simulation

a
X

5.45

5,64

5.74

5.20

a
y

3.44

7,26

3.49

3.50

az

13.5

50.6

13.25

12.17
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Table 4-5. Comparison of error standard deviations for various solution
techniques for an aircraft at the position (100,100,50)
and for the station locations indicated.

Solution Techniques and
Station Locations

Station Locations

01 ( 0, 500, 0)

#2 (-433, -250, 0)

#3 (+433, -250, 0)

#4 ( 0, 0, 0)

1. Three station (trilatera-
tion) solution (//I, //2, #4)

2. Linearized minimum
variance solution

3. Explicit minimum variance
solution

4. Iterative solution

Standard Deviations of Error Assuming
2 ft rms Two-Way Range Measurement Error

Theoretical
Values

o
X

2.48

1.81

1.81

1.81

ay

1.28

1 O~7
a. • *. i

1.27

1.27

a
z

5.3

5.2

5.3

5.2

Values From
Computer
Simulation

0
X

2.69

1.91

1.91

1.91

ay

1.77

i y* /\
J- .O?

1.69

1.69

a
z

7.34

7.46

7.12

7.46
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Table 4-6. Comparison of error standard deviations for various solution
techniques for an aircraft at the position (100,100,50)
and for the station locations indicated. (2 Stations Elevated)

Solution Techniques and
Station Locations

Station Locations

#1 ( 0, 500, 0)

#2 (-433, -250, 0)

#3 (+433, -250, 0)

//4 ( 0, 0, 0)

1. Three station (trilatera-
tion) solution (#1, #2, //4)

2= Linearized tainimuni
variance solution

3. Explicit minimum variance
solution

4. Iterative solution

Standard Deviations of Error Assuming
2 ft rms Two-Way Range Measurement Error

Theoretical
Values

a
X

4.21

1.86

1.98

1.84

ay

1.28

1 OQa. • «.w

1.31

1.25

az

9.9

9 .3

6.2

6.0

Values From
Computer
Simulation

a
X

4.33

1.92

2.12

1.85

ay

1.77

1.77

1.65

1.94

a
z

9.9

10.3

7.95

6.61

45



I I

S -100. -80.0 60.0 80.0 100.

Fig. 4-2. Plot of normalized equal rms error contours in the x coordinate
(°X/OR) in the plane z = 100 ft. The ground station locations
are shown on the plot.
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From the above comparisons it may be concluded that the iterative

solution always provides the lowest value of coordinate standard deviations.

This is as would be expected. However, the iterative solution causes

calculation difficulties in that several iterations must be made each

calculation increment. The linearized minimum variance solutions provide

good values of standard deviation; however, separate solutions are required

for the case where all ground stations are in the plane z •= 0, and the case

where ground stations are elevated. Standard deviations for the explicit

minimum variance solution are close to that of the iterative solution, and

since the solution is completely general and straightforward, the

advantages may outweigh the slight disadvantage of increased error standard

deviations.

4.3 Position Error Contours

Error contours have been generated for particular cases to indicate

the geometrical regions where equal errors occur. These error contours

have been generated from the theoretical standard deviations of the minimum

variance iterative solution.

Figure 4-2 shows a contour plot of the errors in the x coordinate at

a constant z plane (z = 100 ft). For this and all plots, it has been

assumed that the two-way slant range measurements have equal random error

variances, and the plot gives the ratio of the coordinate standard deviation

to the two-way range measurement standard deviation. In this particular

figure, contours showing error multiplication factors of unity and two are

the only integer contours which appear on the plot within the region plotted

(-1000 to +1000 ft in x and y).

Figure 4-3 shows a similar plot of the x coordinate error, except at an

elevation of z = 500 ft. Figure 4-4 is similar except for an elevation of

z = 1000 ft. Figures 4-5, 4-6 and 4-7 show similar plots for the y coordinate

error. The y coordinate error appears comparable to the x coordinate error

at all elevation planes.

Error contours for the z coordinate are shown in Figures 4-8, 4-9 and

4-10. The z coordinate errors, as indicated in Tables 4-1 through 4-6, are

much more severe than those in x and y. At higher elevation angles, however,

as indicated in the z = 500 ft plane, the z axis errors become considerably

smaller.
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S -100. -80.0

Fig. 4-3. Plot of normalized equal rms error contours in the x coordinate
(ax/OR) in the plane z = 500 ft. The ground station locations
are shown on the plot.
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S -100. -80.0

Fig. 4-4. Plot of normalized equal rms error contours in the x coordinate
(OX/OR) in the plane z = 1000 ft. The ground station locations
are shown on the plot.
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-100. -60.0

Fig. 4-5. Plot of normalized equal rms error contours in the y coordinate
(a /aR) in the plane z = 100 ft. The ground station locations
are shown on the plot.
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1
-100. -80.0 -60.0 -»0.0 -20.0

-I 1-

1 1 1
20.0 tO.O 60.0 80.0 100.

Fig. 4-6. Plot of normalized equal rms error contours in the y coordinate
(OY/OR) in the plane z = 500 ft. The ground station locations
are shown on the plot.
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-100. -80.0

Fig. 4-7. Plot of normalized equal rms error contours in the y coordinate
(oy/<JR) in the plane z = 1000 ft. The ground station locations
are shown on the plot.
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o -100. -80.0

Fig. 4-8. Plot of normalized equal rms error contours in the z coordinate
(az/ô ) in the plane z = 100 ft. The ground station locations
are shown on the plot.
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-100. 80.0 100.

Fig. 4-9. Plot of normalized equal rms error contours in the z coordinate
(az/0R) in the plane z = 500 ft. The ground station locations
are shown on the plot.
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-100. 60.0 80.0 100.

Fig. 4-10. Plot of normalized equal rms error contours in the z coordinate
(az/aR) in the plane z = 1000 ft. The ground station locations
are shown on the plot.
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3 -100. -80.0

Fig. 4-11. Plot of normalized equal rms error contours in the z coordinate
(OZ/OR) in the plane z = 100 ft. The ground station locations
are shown on the plot (stations #2 and #3 elevated 100 ft).
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Figures 4-11 and 4-12 show the effect on the position error contours

when two of the ground stations (#2 and //3) are elevated 100 ft. Comparing

Figure 4-11 with Figure 4-8 we see significant improvement in the z axis

accuracy. The improvement has a larger effect at positions distant from

the ground stations. Comparison of Figures 4-12 and 4-9 leads to the same

conclusion. In Figure 4-12, the area of the contours has increased from

those in Figure 4-8, with the outer contours increasing more than the

inner contours.

Figures 4-13 and 4-14 show the effect of changing the ground station

location to a configuration that favors approaches from the positive y axis.

The ground station location for this new configuration is shown on the plot.

All stations are in the plane z = 0 for this configuration. Notice that

the regions of good accuracy are moved out along the negative y axis,

whereas the accuracy near the landing point (0,0) is not greatly affected.

These error contour plots showing the effects of elevating stations

and moving the ground location of the stations indicate the flexibility

of the system in tailoring the accuracy to particular approach paths.

The situation is somewhat analogous to that of obtaining directivity in

the proper direction with a series of antenna dipoles. If approaches

will be from a preferred direction, the accuracy in that direction can be

improved by tailoring the ground station locations accordingly.

4.4 Position and Rate Errors for Specific Aircraft Trajectories

4.4.1 General discussion.— As previously discussed, an analysis of

the coordinate rate errors requires definition of specific trajectories

because the coordinate rate errors are dependent on aircraft velocity and

heading, as well as aircraft position. In order to investigate the

coordinate rate errors, specific straight-in approach trajectories have

been defined with glide slope angles of> 1.3 and 15 degrees. The velocity

and acceleration profiles of the trajectories are defined in the following

section.

The trajectory with the glide slope angle of 1.3 degrees is not within

the design range of the system, but was included to investigate the

severity of errors at extreme low angle approaches.
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-ICO. -60.0

Fig. 4-12. Plot of normalized equal rms error contours in the z coordinate
(CTZ/CTR) in tne plane z - 500 ft. The ground station locations
are shown on the plot {stations #2 and #3 elevated 100 ft).
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5 -100. -80.0 80.0 100.

Fig. 4-13. Plot of normalized equal rms error contours in the z coordinate
(OZ/OH) in the plane z = 100 ft. The ground station locations
are shown on the plot.
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5 -100. -80.0

Fig. 4-14. Plot of normalized equal rms error contours in tne z coordinate
(az/a%) in the plane z = 500 ft. The ground station locations
are shown on the plot.
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4.4.2 Measurement errors in coordinate positions and coordinate rates

for a straight-in approach trajectory with glide slope angles of 1.3 and

15 degrees.— This section provides calculations of errors in coordinate

positions and rates for the four-station multilateration system using a

straight-in trajectory similar to the Wall St. approach discussed in

ref. 2. The placement of the ground receivers was varied to determine the

variation of coordinate errors as a function of ground station location.

The trajectories considered are shown in Fig. 4-15. The top curve plots the

velocity profile as a function of distance along the y axis. The velocity is

constant until a distance of 553 ft from the touchdown point is reached, at
2

which point a deceleration at a constant rate of 6.15 ft/sec takes place.

The final velocity is 1.7 ft/sec at the touchdown point. A plot of altitude

vs. distance along the y axis is shown in the bottom plot of Fig. 4-15. For

comparative purposes, two glide slopes are used in the calculations: a

1.3° glide slope, which represents the Wall St. trajectory, and 15°, which is

representative of a higher angle approach. The final altitude at the touch-

down point is 10 ft in both cases. Note that the low-angle glide slope only

reaches an altitude of approximately 50 ft at 1800 ft from the touchdown point.

Figure 4-16 provides a sketch of the receiver locations for four different

cases. The first ease is a symmetrical configuration with the receivers

located on a 500-ft radius circle from the origin of coordinates. Case 2 is

an L-shaped configuration with three stations located along the axis of the

trajectory and one station offset along the y axis for a distance of 500 ft.

Case 3 is a staggered situation with the four receivers offset slightly from

the ground projection of the trajectory. Case 4 is a diamond-shaped configura-

tion with one ground receiver placed 1000 ft out along the y axis. In the

sketches, the location of the transmitter is located by the circled dots.

In all cases, the ground projection of the trajectory lies along the y axis

and the touchdown point is at the origin of the coordinates (station 4

location).

The error calculations are made in accordance with the techniques outlined

in Section 3.4. In all cases, a standard deviation in range measurement

of 2 ft and a standard deviation in range rate measurement of .1 ft/sec are

assumed. Plots are then made of the standard deviation of the errors in the

x, y, and z coordinates, and the corresponding standard deviation of errors

in the x, y, z coordinate rates. Figures 4-17 through 4-20 show the error
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Fig. 4-15. Velocity and altitude plotted vs. distance along the y axis
for assumed trajectories.
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1 (0,500)

2 (0,1000)

5 ) 1 (0,500)

3 x
(500,0)

2 (-433,-250) 3
(433,-250)

CASE 1 CASE 2

(-100,500)

3 (100,800)

2 (100,200)

y «

(-400,500)

3 (0,1000)

• 2
(400,500)

CASE 3 CASE 4

Fig. 4-16. Sketch of receiver locations for various cases considered.
The trajectory is along the y axis. The transmitter is
circled.
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RG S.O. 2.0 VEL S.D. 6 1

6€1

se
Co

Case: 1

Station Coordinates:

#1 (0,500)
t2 (-433,-250)
#3 (433,-250)
#4 (0.0)

Glide Slope Angle: 1.3°
0)•a

4-1
C/i

690 800 1806 1206 1400

Distance Along Y Axis, ft

1660 1886

Fig. 4-17. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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plots for the four cases considered for a glide slope angle of 1.3°. As may

be seen, the standard deviation in the altitude coordinate (z) is larger than

that for x and y, as would be expected.

Figures 4-21 through 4-24 plot the standard deviation in the coordinate rate

errors as a function of distance along the y axis for the various cases

considered. The standard deviation of z has a rather large variation in

most cases, with several peaks and valleys. In all cases, however, the

standard deviations become small at the touchdown point.

Figures 4-25 through 4-32 plot similar curves except for a glide slope angle

of 15°. This glide slope angle is more consistent with the design objectives

of the multilateration system. For all station locations considered, the

coordinate position errors remain small (approximately 5 ft rms), and the

coordinate rate errors are under 1 ft/sec for the most part. For this

glide slope angle, the errors are not a strong function of receiver location;

however, it is possible to attain better accuracy over certain portions of

the trajectory by judicious location of the ground receivers.

4.4.3 Measurement errors in coordinate position and coordinate rates

using elevated ground stations.— Figures 4-33 through 4-40 plot the standard

deviation of errors in range and range rate using receiver locations

similar to those shown in Fig. 4-16, except that certain stations are

elevated 100 ft. The receiver locations for the various cases are

specified on the figures. For all cases, a 1.3° glide slope is used and

the basic measurement errors are 2 ft rms in range and .1 ft/sec rms in

range rate.

Elevation of one or more of the receivers improves the position

measurement accuracy significantly in the z coordinate. The major improve-

ment is achieved at ranges outside the region of station location (greater

than 1000 ft from touchdown). For example, compare Figure 4-19 with Figure 4-35.

Measurements of coordinate rates are also more accurate at longer ranges

with elevated receivers. However, there are locations along the trajectory

at which large range rate errors occur. For example, see Figure 4-39, where

the errors peak at a y axis distance of approximately 650 ft.
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Case: 2

Station Coordinates: //I (0,500)
#2 (0,1000)
#3 (500,0)
#4 (0,0)

Glide Slope Angle: 1.3°

6.1

1686 1268 1466 1668

Distance Along Y Axis, ft
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Fig. 4-18. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft nns in
range and .1 fps nns in range rate.
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#1 (-100,500)
#2 (100,200)
#3 (100,800)
04 (0,0)

Glide Slope Angle: 1.3°

It-L U.
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Distance Along Y Axis, ft

Fig. 4-19. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Case: 4

Station Coordinates: #1 (-400,500)
#2 (400,500)
#3 (0,1000)
i?4 (0,0)

Glide Slope Angle: 1.3°

468 688 888 1888 1288 I486 1688 1388

Distance Along Y Axis, ft

Fig. 4-20. Standard deviation of errors in coordinate positions plotted vs.
ground projection ol slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rma in range rate.
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. Case: 1
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Distance Along Y Axis, ft

Fig. 4-21. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-22. . Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-23. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-24. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-25. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps in range rate.
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Fig. 4-26. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-27. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-28. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-29. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-30. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in .range rate.
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Fig. 4-31. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.

79



o
<0tn

•M 5

0)

c _
•8 3
cd
4-1
tn

RG S.O.

Case: 4

Station Coordinates

2.8 UEL S.O. 9.1

#1 (-400,500)
#2 (400,500)
//3 (0,1000)
#4 (0,0)

Glide Slope Angle: 15'

a.

st:: s t •
: s « t • i t i » t i t i » » • * t• I • • • o.

zee eee teee
Distance Along Y Axis, ft

1298 1488 1688 1888

Fig. 4-32. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft nns in
range and .1 fps rms in range rate.
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Fig. 4-33. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-34. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-35. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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4-36. Standard deviation of errors in coordinate positions plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-37. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-38. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant.range for the specified.trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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Fig. 4-39. Standard deviation of errors in coordinate rates plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rtns in
range and .1 fps rms in range rate.
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Fig. 4-40. Standard deviation of errors in coordinate rates.plotted vs.
ground projection of slant range for the specified trajectory.
Dots are .5 sec apart. Measurement errors are 2 ft rms in
range and .1 fps rms in range rate.
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4.4.4 Summary.— It should be kept in mind that the curves presented

are for a specific trajectory as given in Fig. 4-15, and that the error

characteristics are a strong function of the trajectory. It may be

concluded, however, that within the ranges considered (up to 1800 ft),

and with glide slopes on the order of 15°, the error characteristics are

not strongly dependent on specific receiver locations on the ground. For

glide slope angles of 1-2°, the ground receiver location can

be used to improve accuracy in the z coordinate. The best ground station

configuration for the flat trajectory of this type appears to be Case 3,

in which the ground receivers are staggered along the path of the trajectory.

Using this configuration, it was possible to maintain the standard deviation

in the z coordinate near 10 ft for the last 700 ft of the trajectory. It is

possible that other ground station configurations (or more ground receivers)

will improve the z measurement accuracy for flat trajectories, and this

will be investigated in future work.

4.5 Errors in Estimation of Uncompensated Time Delay Bias

The technique for removal of unknown time delays in the two-way path

is described in Section 3.7. Numerical calculations have been made of the

estimation errors to be expected, assuming initial acquisition of the

aircraft at various points. The results of these calculations are shown

in Table 4-7, which gives the initial standard deviation of the time

delay bias estimation error at four coordinate points. Table 4-8 provides

the same information except that two of the stations (no. 2 and no. 3) have

been elevated 100 ft.

As may be seen, the numerical values of the standard deviation of the

errors in the bias removal change considerably depending on the coordinate

point at which initial acquisition takes place. However, the values are

generally under 3 ft rms on a single calculation basis. Using optimal

low-pass filtering with a minimum equivalent time constant of 10 sec

will reduce these initial standard deviations to 1/10 of the values

shown in the table. If a longer equivalent time constant proves feasible,

additional reduction in the standard deviation may be achieved. Figure 4-41

is a plot of the reduction in standard deviation of the time delay

bias estimation error plotted vs. time, assuming a 10 sample/sec data rate.
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Table -̂7. initial standard deviation of time delay bias estimation
error at various coordinate points (all stations in z = 0
plane).

Point (ft)

Initial Standard Deviation of Error
in Paths Specified (ft)

2R,

(1000,1000,100) .18 .59 .31 2.93

(1000,1000,500) .19 .56 .31 2.94

(500,500,100) .07 .86 .34 2.73

(100,100,50) .08 1.89 1.09 .94

Station Locations;
(ft)

#1 (0,500,0)

92 (-433,-250,0)

//3 (433,-250,0)

/M (0, 0, 0)
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Table 4.3• Initial standard deviation of time delay bias estimation
error at various coordinate points (two elevated stations)

Point (ft)

Initial Standard Deviation of Error
in Paths Specified (ft)

2R,

(1000,1000,100) 1.08 .24 .78 1.91

(1000,1000,500) .49 .12 .49 2.90

(500,500,100) .59 .02 1.24 2.16

(100,100,50) .17 .73 3.09 .006

Station Locations:
(ft)

#1 (0,500,0)

#2 (-433,-250,100)

03 (433,-250,100)

#4 (0, 0, 0)
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Minimum Value = .1
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1.0 1.2

Fig. 4-41. Reduction in standard deviation of time delay bias
estimation error plotted vs. time (10 samples/second
data rate) for an optimal filter.
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The initial standard deviation drops quite fast during the first second and

then slowly approaches an asymptotic value of .1 in approximately 10 sec.

From the above calculations, we may conclude that with four or more

ground stations, it is feasible to determine the two-way uncompensated time

delay bias to an accuracy of .3 ft using an optimal filter with an equiva-

lent time constant of 10 sec. This conclusion is based upon an assumed

measurement error in the two-way path of 2 ft rms.
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5.0 COMPUTATIONAL REQUIREMENTS FOR THE MULTILATERATION SYSTEM

5.1 General Requirements

This section describes an investigation into the computer hardware

and software requirements for the multilateration system. The basic goal

is to solve for position and rate ten times per second, using data from

four or more stations. This should be done on a minicomputer system costing

approximately $10,000. Use of the weighted least squares algorithms

described in Section 3.0 is assumed. These require floating point

arithmetic.

The input to the minicomputer will consist of 16-bit digital data

from the four ground receivers. It is anticipated that the ground

receiver data will be multiplexed so that the received data will consist

of 8 16-bit words for each measurement cycle. These words will consist of

the four range measurement words and four range rate measurement words

(or counts) to be transmitted as fast as possible during each measurement

cycle (.1 sec). Output from the computer system will consist of a 16-bit

digital line plus a data ready line for providing output to the navigation

computer via a data link. In addition to the digital I/O channel, it is

necessary to provide analog outputs to drive x-y plotters and strip chart

recorders. Eight channels should be sufficient for monitoring the

operation of the system. The eight analog output channels could be

utilized as follows:

Output Analog Channels and Function

1. x coordinate output

2. y coordinate output

3. z coordinate output

4. x coordinate output

5. y coordinate output

6. z coordinate output

7. ground projection of slant range

8. slant range.

For convenience in programming the minicomputer, a teletype system and

high-speed paper tape reader are desirable as input devices. Computer

timing requirements are considered in the following section.
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5.2 Timing Tests on a Representative Minicomputer (PDP-8/E)

To determine rough estimates of computation time, timing measurements

were made on the weighted least squares computation of position only,

using the following equation:

— T —1 —1 T —1
x = (P * P) P * Q (5-1)

where P is a 4 x 3 constant matrix, Q is a 4 x 1 vector of modified measure-

ments and

Here,

and

"AQ

T =

! ~ T

"Al
0

0
Q

1
-1
-1
-1

*AA lT'

0 0 0 "

A2 0 0

0 A3 0

0 0 A

-1 -1 -1

5 1 1

1 5 1

1 1 5_

(5-2)

(5-3)

(5-4)

Some initial simplifications in this algorithm were made to reduce the

required computation. Note that

(5-5)
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where

M 1Al
0

0

0

0

1
A2

0

0

0

0

1
A3

0

m

0

0

0

1
\

was also found to have a relatively simple closed form:

(5-6)

tf1
2

°A

" 7

1

1

1

1

1

0

0

1

0

1
0

l"
0

0

1

(5-7)

Thus

1
2

7 1

A2 A1A2

1 1
A1A2 A2X £. Art

1 n

A1A3

1 0
A1A4

1 1
A1A3 A1A4

0 0

1 n
2

n l

A2
4

(5-8)

Note also that the variance a. cancels out in (5-1), so it need not be
t\

included in the calculation.

A Fortran program was written to solve for x with the following steps

repeated a specified number of times in a DO loop to allow timing with the

sweep second hand of a clock.
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1) Using precomputed values of AI through A,, compute the non-zero

entries in the ty~ matrix, equation (5-8) .
T -1JL2) Call the matrix multiplication subroutine GMPRIT to form P .

T 1
3) Call GMPRD*to form P tK P.

T T
4) Call GMPRD*to form P ty~f. Q. (Computation of the q fs from the

A. 's was not included in the timing test.)
T —1

5) Call the matrix inversion routine MINV to invert P 1(1 P.

6) Call GMPRD*to compute x.

7) Compute z from the equation

«• "? ~2 1 /2
z = (2u - x - yV • (5-9)

When this program was run under the Fortran II system on the PDP-8/E,

the time per position computation was found to be approximately 0.9 seconds,

clearly an unacceptable figure and somewhat greater than expected. An

investigation of the Fortran II software revealed that it was not making use

of the Extended Arithmetic Element (EAE) , and thus required approximately 900 ys

to perform a floating point multiplication. A call to the manufacturer revealed

that no version of Fortran II is available which does employ the EAE.

Next, the program was run under the new Fortran IV system, which does

employ the EAE. Quite surprisingly, the time per position computation was

still almost 0.9 seconds. This was traced to the fact that all variables,

including integers , are represented and operated upon as floating point

numbers in PDP-8/E Fortran IV. The gain in speed for each floating point

operation was offset by the many additional floating point operations for

array indexing, etc.

To overcome these difficulties, a third version of this program was written

in PAL-8 assembly language. The required subroutines GMPRD and MINV (matrix

inverse) were also manually translated to assembly language. Floating point

operations were performed by calls to the EAE Floating Point Package sub-

routines described in Chapter 8 of ref. 3- Time per position calculation

with this software was improved by a factor of ten to approximately 90 ms .

This is still not acceptable, since both position and rate must be computed

in 100 ms. However, this time is within a factor of two of being acceptable,

so that use of the PDP-8/E might be possible with further algorithm simplifi-

cation (see next section) . (During the course of using the EAE Floating

Point Package, which is distinct from the floating point routines used by

the Fortran systems, a "bug" was discovered: If a number less than one in

*Matrix product subroutine.
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magnitude and a zero are added or subtracted, unnecessary roundoff error

results. A patch to the Floating Point Package was written to correct

this, and a letter sent to the manufacturer informing him of this problem

and the suggested solution.)

5.3 Increasing Algorithm Efficiency

Reference 3 quotes the following "typical times" for floating point

operations on the PDP-8/E with the EAE Floating Point Package:

Add 160 jjs
Subtract 180 us
Multiply 200 ys
Divide 160 ys or 190 \is .

Since these are almost two orders of magnitude greater than the average

single instruction time, it is reasonable to compare algorithms

on the basis of the number of floating point operations they entail.

A count of floating point operations for the position computation

algorithm described in the previous section is given below:

Multiplications Additions and
and Divisions Subtractions

Direct computation of
• -1 * A • 12 0
*AQ fr°m YS

PT t|>~ via GMPRD 48 48

(p *7 p via GMPRD 36 36AQ

(PT IK*) Q via GMPRD 12 12

Inversion of PT iK* P 30 26

(PT IT1 P)-1 PT l£ Q , 9

via GMPRD

Computation of z from eq. (5-9) 10 2
(Square root counted as 7
multiplications based on
times given in ref. 2)

TOTALS 157 133
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If one assumes an average time of 180 ys per floating point operation,

then the total of the 290 operations in this algorithm takes approximately 52 ms

The remainder of the 90 ms is taken up by various other operations. Note

that the inversion of the 3x3 matrix takes only about 20% of the total

time, with matrix multiplications accounting for the bulk of the time.

The efficiency of this algorithm could be improved in several ways.

Note first of all that the matrix ^An, equation (5-8), has several zero entries,

and that the matrix P (see Section 3.0) has one column of 1's. Taking advantage

of these facts reduces the number of multiplications and additions required
T -1

in forming the various matrix products. Also the matrix P ijt P is symmetric,

so that only six of its elements, rather than all nine, need be computed.

Finally, it is more efficient to solve a system of linear equations by a

method such as Gaussian elimination than by inverting the matrix and then

multiplying by the right hand side vector. The Gaussian elimination algorithm

is also simpler when the matrix is symmetric, as in the case here.

An algorithm employing the above ideas is described below and the number

of required floating point operations tabulated. It involves direct computa-

tion of the elements of the matrix

I
A

-1

L 1

1_ hi-fi"

~A4LA1 V

43j
(5-10)

As before, it is assumed that both the q^'s and the A 's are available
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Multiplications Additions and
and Divisions Subtractions

1 Xi yiCompute — , — , — ,
i Ai Ai 12 0

i = 1, 4

Compute directly each element

of o* PT i|i~* , equation (5-10) 15 18

Compute OA P
T ij;~J Q

via conventional matrix 12 9
multiplication

Compute the six distinct elements
of the symmetric matrix
2 T -1

CTA P ^Af) P, taking advantage

of the column of 1's in P to reduce
the number of multiplications 12 18

Solve for x via symmetrical
Gaussian elimination algorithm 17 12

Compute z from (5-9)
(Square root counted as 7
multiplications) 10

TOTALS 78 59

Note that the number of floating point operations required, 137, is

approximately one-half of that in the algorithm used for timing tests. A

quick look at the weighted least squares algorithm for calculation of rates

indicated that it would require approximately the same number of operations

as the above position algorithm. It appears, then, that it is probably

possible to meet the required 100 ms. time limit for both position and rate

calculations, with careful assembly language programming. However, there

would be very little margin for any future program changes or additions.
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Some additional time could be saved by not updating the weighting matrix

for the position calculation at each measurement, but rather, say, at every

other measurement. However, it does not appear that this is possible for

the rate calculations. The use of an iterative algorithm is another

possibility.

5.4 Conclusions and Recommendations

It appears that weighted least squares calculation of position and rate

ten times per second is just marginally possible on the PDP-8/E with the

Extended Arithmetic Element with careful algorithm pruning and assembly

language programming. However, this would place a limitation on future

algorithm expansion, and would require a significant amount of programming

time to make program modifications.

Barring the discovery of a significantly faster iterative algorithm, it

appears that the best solution would be to purchase a minicomputer with a

floating point processor. Although it is believed that this option for the

PDP-8 costs approximately $7,000, the cost for a floating point processor

for the Data General Nova series of computers is only $4000. With this

option, a floating point arithmetic operation can be performed in roughly

10 ys. This would allow an ample time margin with the existing algorithms,

and might even permit the operational program to be written in Fortran. A

complete system (Nova computer with 8K of memory, teletype, floating point

processor, and necessary interfaces) should not cost significantly more

than $14,000.

Floating point operation times for other minicomputers without a floating

point processor are hard to obtain. However, it is believed that neither the

Data General Nova 800 with hardware fixed-point multiplication nor the Honeywell

716 can improve upon the PDP-8/E times.
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6.0 RECOMMENDATIONS AND CONCLUSIONS

6.1 Recommended Solution Techniques

The accuracy studies of the solution techniques indicate that while

the iterative solution described in Section 3.4 provides the minimum

variances in the coordinate errors for all cases, it has the disadvantage

of requiring several iterations within a computational cycle. Possibilities

of convergence problems also exist if the initial solution is considerably

in error. For these reasons, it is recommended that a slight amount of

accuracy be sacrificed in order to use the completely general explicit

solution described in Section 3.5. Advantages of the explicit solution

are as follows:

1. Completely general station locations can be used. The station

survey positions are entered into the solution as constants,

without consideration of whether the stations are in a plane or

not. Elevated stations are handled with ease.

2. The solution is straightforward and requires no iterations.

3. The accuracy of the solution differs only slightly from the

minimum variance obtained from the iterative solution.

4. Computation times should be reasonable, since a number of

the matrices and matrix multiplications do not need to be

recalculated in real time.

For range rate calculations, the minimum variance solution outlined

in Section 3.6 is straightforward and is recommended for use. For the

time-delay bias removal, the technique described in Section 3.7 is

recommended with an optimal low-pass filter as described in Section 3.7.3.

This technique provides for calculation of the time-delay in each separate

two-way path, but does not separate transponder delays from transmitter

and receiver delays. To date, no way of separating the delay into transponder,

receiver, and transmitter delay has been determined, except by using a

separate calibrated transponder at a ground location.

The solution will have the capability of providing coordinate and

coordinate rate outputs for three stations in case one station is not

receiving data. Also, provision can be made for utilization of more than

four ground stations if desired.
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A flow chart Indicating the recommended calculation scheme is shown

in Figure 6-1.

6.2 Recommended Computer Specifications

In Section 5.0, the general considerations for the system minicomputer

were discussed. Based on these considerations and known operational

requirements, it is recommended that a minicomputer with the following

characteristics be purchased:

1. A minicomputer with 16,384 words of memory, a memory cycle time

of about 1.0 ys, and a preferred word length of at least 16 bits;

2. A floating point processor to perform floating point arithmetic

operations in 10 to 20 ys each;

3. A digital I/O channel providing 16 digital lines plus an interrupt

line for input, and 16 digital lines plus a data ready line for

output;

4. Eight (8) analog outputs for plotter drive;

5. A teletype interface;

6. A high speed paper tape reader; and

7. FORTRAN IV software capability.

Surveys of various manufacturers were made to determine which mini-

computer system would provide the above characteristics for a minimum price.

Based on this survey, it appears that a Data General Nova 11/10 system will

meet the specifications at a minimum price. The total cost (GSA) of the

Data General System meeting the above specifications is approximately $14,060.

6.3 Recommended Future Work

During this study, geometrical errors were determined for trajectories

consisting of straight-line segments. In future work, more complex trajec-

tories should be considered, including spiral descents and curved, decelerating

approaches. In addition to the study of more general trajectories, additional

study should be made of the effect of station location on the system

accuracy. Using existing programs, additional error contours can be

generated for a large number of hypothetical station locations.
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The benefits to be achieved by using more than four ground stations

should also be investigated. Since ground stations are anticipated to

be low cost, and the added computational burden is not great, it is felt

that additional stations may prove worthwhile in cases where the geometrical

accuracy requires improvement.

In the studies discussed in this report, a basic measurement error has

been assumed. This assumption has been based on analyses accomplished by

LRC personnel, slanted toward the determination of hardware-associated errors.

Additional analytical work is required to complete some of the hardware

error studies. In addition, results from field checks of the equipment

should be incorporated in the error studies to provide firm numbers for the

basic two-way path measurement errors.

Additional consideration should be given to the integration of the

multilateration system into the VALT navigation system. The solutions

discussed in this report are all point estimation techniques; that is,

smoothing of data based on the sequential measurements has not been recom-

mended. This has been done to prevent time lags in the output data that

may detrimentally affect the operation of the navigation and guidance

systems on board the aircraft. It is felt, however, that in'some cases,

smoothing of the output data may be feasible and that the associated time

lags could be made compatible with the navigation system. For this reason,

navigation system personnel should define the transient characteristics

that are necessary in the basic measurement data for compatibility with the

navigation and guidance algorithms.

In future work, extensive simulations of the solution technique

recommended in Section 5.0 should be conducted to assure that there are

no points in the coverage volume where the solution fails. In addition,

considerable work is necessary to determine the most efficient algorithms

for providing the necessary computations in real time. The associated

software must be developed and checked out for the minicomputer selected

for use in the system.
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APPENDIX A

An Explicit General Solution to the Trilateration Position Location

Problem in an Arbitrary Coordinate System

The general solution outlined in this appendix is similar to a

solution given in algorithmic form in ref. 4, except that matrix techniques

are used to permit extension to the case of redundant ground stations.

For three ground stations, three equations are obtained:

R2
2 = R2 + p2

2 - 2R • p2 (A-2)

R3
2 = R2 + p3

2 - 2R • p"3 (A-3)

where the nomenclature is defined in Fig. 3-1, page 14.

The solution is started by subtracting (A-l) from both (A-2) and (A-3)

to obtain:

R 2 - R 2 - p 2 + p 2 _ _ _
-± - ^-2 - — = + R • <PI - p2) (A-4)

R 2 - R 2 - p 2 + p 2 _ _ _
-^ - 2 - — = + R • (Pl - P3) . (A-5)

Now let the left-hand side, which contains the measurements and surveyed

values, be designated as q1 and q« so that the equations become

ql = + R • (px - p2) (A-6)

q2 = + R • (px - p3) . (A-7)

These equations can be written in matrix form as:

Q = [P] x (A-8)
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where

- ix
x - 4 y

/ z

IP] K - X2 yl - y2 21 *

LX1 ' X3 yl - y3 21 '

Now partition the matrix [P] and x as follows:

Q " tA B]

where

and

[A]

IB]

fxl " X2 yl "
^ *

LX1 ' X3 yl '

With this partitioning, we have

(A-9)

Q = A p + Bz (A-10)

and for A nonsingular, it is possible to solve for p as

p = A'1 Q - A"1 Bz

or p = CQ - CBz

(A-ll)

(A-12)

where [C]
yl - y3 y2 -

D = - x3)(7l -

From the above equation, x and y are found in terms of z as
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x = le. - d^z (A-13)

y = k2 - d2z (A-14)

where di = ^ l(yi ~ y3)(zl ~ Z2* + (y2 "

d2 = - [(x3 - KI)(ZI - z2) + (KI -

kl = r (yl * y3> + / (y2 - yl>

ql q2
k2 = D~ (X3 * xl> + D~ (X1 ~ X2) •

Now, writing eq. (A-l) in terms of x, y, z,

Rx
2 = x2 + y2 + z2 + p.^ - 2xLx - 2y;Ly - 2ẑ z (A-15)

and substituting equations (A-13) and (A-14) gives the equation

az2 + bz + c = 0 (A-16)

2 2where a = 1 + d, + d»

b = -2(Zl + kxdL + k2d2 - Xldx - y]d2)

c = k2 + k2 + P
2 - R - 2Xk - 2Yk .

Thus, it is possible to solve for z as

-b 1 Vb2 - 4ac

and x and y are given by

x = kl ~ dl2 (

y = k2 - d2z . (A-19)

The sign of z in (A-17) is chosen to make z positive.
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APPENDIX B

MATRIX FORMULATION OF COORDINATE ERRORS

The Taylor Series expansion for the errors in coordinates can be written

as a function of the measurement errors AR as

where for four stations,

Ax =

Ax

Ay

Az

Ax = [D] AR

and AR

AR

AR,

(B-l)

(B-2)

and [D] is the matrix of partial derivatives:

[D]

" 3x
9R1
3y
9R!

3z
_3R1

3x
3R2

3y
3R2

3z
3R2

3x
3R3

3y
3R3

3z
3R3

3x
3R4

3y

3R4

3z
3R4_

(B-3)

To obtain the variance-covariance matrix, multiply Ax by its transpose and

take expected values.

Ax Ax T = [D] AR AR T[D]T

E{Ax Ax T} = (B-4)
AR

where \l>̂ r- is the variance-covariance matrix of the range errors (see Appendix C)
AK

and i|/r— is the variance-covariance matrix of the coordinate errors. In cases

where a coordinate transformation is used of the form

X = [K]x
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then the covariance matrix in the new coordinate system is related to the

covariance matrix in the old system as

(B-5)
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APPENDIX C

DERIVATION OF THE COVARIANCE MATRIX OF THE RANGE MEASUREMENT
ERRORS FOR THE PLANNED MULTILATERATION SYSTEM

The planned system uses two-way range measurements from a single

transmitter to four or more ground receivers. Thus the measurements

are of the form, for four ground receivers,

Ml ' 2R1

+ R2 (C-l)

M, = R, + R,4 1 4

where the M. are the measurements assuming the transmitter and receiver

#1 are colocated. The one-way ranges are given by

MlRi= T
Mi

R2 = M2 " 2
Mi

R3 = M3 - ̂
 (C-2)

Ml
R4 * M4 - I" '

If it is assumed that all two-way range measurement errors have equal
2

variance a , then

<AR1 ARX> = 2- (C-3)

AR.j> = -f- J j = 2, 3, 4 (C-4)
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<ARj AR^-J- ; j = 2, 3, 4 (C-5)

<ARj ARk> = f- ; J - 2, 3, 4. ; k > J (C-6)

Thus, the covariance matrix for the one-way range errors may be

written as (for four ground stations)

2
lh = — —
MR 4

1

-1

-1
_i

-1

5

1

1

-1

1

5

1

-1

1

1

5

(C-7)

A similar expression is obtained for the range rate errors if it is

assumed that all two-way range rate measurements have equal variance.
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APPENDIX D

COVARIANCE MATRIX OF COORDINATE ERRORS FOR A LINEARIZED SOLUTION
FOR THE SPECIAL CASE OF ALL GROUND STATIONS IN A PLANE

In this solution as given in Section 3.3.2, the solution is given by

<PT (D-l)

where ip is the covariance matrix of the range difference measurements.

The covariance matrix of errors in the vector x is found by taking the
^ ̂  m

expected value of Ax Ax to obtain:

(D-2)

where

"AQ (D-3)

and the matrix T is defined in Section 3.3.2.

Since in this case, the vector x is

x =

x

y
u

where u = R /2, the variance of the z coordinate errors must be found from

a Taylor Series expansion of the equation for zt This equation is

? 21/2
z = [2u - x^ - y I1' = F(x, y, u) (D-4)

Thus we have

Az = [D] Ax (D-5)
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where D is a matrix of partial derivitives given explicitly by

i« •{?•?• 7} •
This variance of errors in the z coordinate is therefore

CTA
 2 = D tjr- DT (D-7)
Az rAx
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APPENDIX E

COVARIANCE MATRIX OF COORDINATE ERRORS FOR A LINEARIZED SOLUTION
FOR THE SPECIAL CASE OF ALL GROUND STATIONS NOT IN A PLANE

For this solution, as given in Section 3.3.3, we have for four ground

stations:

- T —1 T —
x = (PXP) P Q (E-l)

The covariance matrix for errors in the vector x is

T — 1 T(PXP) P1 T — 1P(PTP) (E-2)

where iKQ is found as shown in Appendix D and

x =

x

y

For more than four ground stations, the weighted least squares

technique may be used, and the associated covariance matrix is

(E-3)
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APPENDIX F

THE OVER-DETERMINED (ITERATIVE) SOLUTION FOR THE DATA OBTAINED
FROM THE RF MULTILATERATION SYSTEM

F.I Over-Determined Solution for Four Ground Stations

The methods for obtaining the following are given below:

(1) The over-determined solution for x, y, z — as

obtained from four direct (basic) measurements,

A, B, C, and D.

(2) The variance-covariance matrix for the errors in x, y, z.

Since the errors in A, B, C, and D are assumed to be uncorrelated

and to have equal standard deviations (viz 10 ft), it is believed to be

advantageous to derive (1) and (2) above from A, B, C, and D directly—

and hence from the ellipsoids which they represent.

That is,

+ (y-yx)
2 + (z-Z;L)

2 = A! (F-l)

(y-Yj)2 + (z-ẑ 2 +V(x-x2)
2 + (y-yj2 + (z-z2)

2 = A2 (F-2)

V(x-X;L)
2 + (y-y;L)

2 + (z-Zl)
2 + V(x-x4)

2 + (y-y4)
2

Note: If the attitudes of the transmitter and receivers are zero, then z.. =

z_ = z_ = z, = 0. For "exactness", the survey positions should be used.

Now expand the left-hand sides of the above equations in a Taylor

Series expansion around an initial estimate, e.g., the presently available

solution, neglecting all except the first-order terms. The results are

as follows:

3f 1 3f "I 3f]
f1(x,y,z)]0 + ̂Q Ax + ̂Q Ay + ̂io Az - A (F-5)
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a f - I af2l afi
TT-L Ax + ̂ rrL Ay + ^r- AZ = B

3f- | d f ] 3 f
(F-7)

f4 ( x>y>z )}0
 + dirJoAx + JhTJo A? + TT\O

 Az - D
,"]
-\
j

In the above,

f1(x,y,z)]o = 2\f(x-x1)2 + (y-yp2 + (z-z^2 (F-9)

is evaluated at (x,y,z) = (x y z ), which is the initial (starting)
o, o, o

estimate for x,y,z. Similarly, f (x,y,z)] and the others are so defined.

Now define the following:

AA1 = Al ~ fi^x»y»z^0

AA2 - A2 - f2
(x'y'z)50

AA3 = A3 - f3(x,y,a)]Q (p-

4 ~ 4 4 ' ' ° ' 3f "I 3f 3f
Also, simplify the notation from T— to -— and so on. Thus, T— is

d X - J O d X d X

to be evaluated at (x,y,z) = (x ,y ,z ) — or at new (improved) values

in subsequent iterations.

The notation can be further simplified to the following:

(F-ll)

, .3x1

where
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[D]
4x3

Matrix
of

Partial
Differentials

a

L -*4x3

~ 3 f l

ax

3 f2
3x

3f3

3x

3 f4
3x

9fl
9y

3£2

8y

3f3

3y

3f4
3y

3 f l~

3z

3f2
32

3f3
3z

3f4
3z

(F-12)

For further simplification of notation, let

'Ax

Ax =I Ay
s^ I ^ i

3x1

AA =

(F-13)

(F-14)

D^ tD]4x3 '

Consequently,

D. Ax = AA. n4x3 ~ 3x1 ~ 4x1 (F-15)

Therefore,

where

DT D Ax = DT AA , (F-16)

D E the transpose of D.

The least-squares solution for Ax is thus obtained from the following:

Ax = (DT D)"1 DT AA ,

-1 T
= G D AA ,

(F-17)
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where

and

T
G = D D

G = the inverse of G.

(F-18)

The value so obtained for Ax provides an improvement over the original

estimate of (x,y,z) = (x ,y ,z ) and the above process is repeated until no

further change (improvment) in Ax results.

F.2 Variance-Covariance Matrix of Errors in x, y, z

In the above expression for Ax, let us multiply both sides by their

respective transposes and then take the expected values. The result is

the following:

-IT -1 T
V. = G A D V. . D(G -"•)
Ax AA

where

and

where

Hence,

—1 T —1= G D V D G (since G is symmetric),

V. - the variance-covariance matrix of Ax
Ax ~

VAA = the variance-covariance matrix of AA

= aAA

1
0

0

0

2 Ta IAA

0

1

0

0

0

0

1
0

0

0

0

1

(F-19)

(F-20)

I = the identity matrix.

VAx
a2.. G-1 DT I D GAA
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Since

G = I ,

(7-21)

*
Ax

rj G- (F-22)

F.3 Calculation of the Partials

Define

(F-23)

for i = 1, 2, 3, 4.

Consequently,

2(x-X;L) 2(y-yx) 2(z-2;L)

x-x x-x y-y y-y z-z z-z~
•*• i *• -*• i ^ ̂ .. r. „ _ ,̂ ^

R. R^ R- R2 R-. R«

Z"Z1 , Z"Z3
, RM K-| KA R, -

Rl R4 Rl R4 Rl R4

(F-24)
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F.4 Advantages of the Over-Determined Solution

The following are advantages of using the over-determined solution:

(1) All of the observational data get used in a valid least-squares

solution.

(2) It provides the standard (i,e=, the best attainable solution)

against which all simplifications and shortcuts can be compared.

(3) It indicates whether a particular computational simplification

is warranted, or whether a more nearly exact solution is essential.

(4) The variances and also the covariances of the errors in x, y, and

z are readily obtained via matrix algebra in the calculation of the GDOPs

associated with the over-determined solution. It is believed that the

correlation structure (and hence the variance-covariance "picture") may

change significantly throughout the track of the helicopter. This implies

that the "uncertainty ellipsoid" associated with x, y, z is changing its

orientation throughout the track. In fact, if the variance-covariance

matrix at one point cannot be obtained at another point via the multiplication

by a single scalar, a case for Kalman filtering can be made. Depending on

the speed with which the correlation structure changes, Kalman filtering may

produce spectacular improvements in accuracy.

(5) The matrix algebra used in obtaining GDOPs for the over-determined

solution can also readily be used to obtain GDOPs for the exactly determined

solution.

F.5 Disadvantages of the Over-Determined Solution

(1) The major disadvantage is the necessity of using iterative

techniques with associated loss of computational time.

(2) Problems of convergence of the solution may arise if the initial

solution is considerably in error.
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APPENDIX G

DERIVATION OF ERROR VARIANCES FOR THE EXPLICIT MINIMUM
VARIANCE SOLUTION GIVEN IN SECTION 3.5

In this solution, the variance of the z estimate is given by

(G-l)

where U is a n x 1 unit matrix and (b. is the covariance matrix of therAz
n z(i) solutions obtained from the equations

a z (i) + b. z(i) + c. = 0 . (G-2)

To determine t|> , the first step is to obtain an expression for the
A Z

variation in z(i) in terms of variations of the coefficients a, b, and c.

Taking differentials in eq. G-2 and solving for Az(i) gives, since Aa = 0,

Az l,n . (G-3)

In the terms in parentheses, z is used instead of z(i) as an approximation.

In matrix form

Az = [K] [zAb + Ac] (G-4)

where

[K]

2az + b]

0

0

0

1
2az + b.

ETC
n x n
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Ab

Ab]

Ab,

Ab

Ac

n n x 1

Ac
1

Ac2

•

Ac
r\

, and Az =

n -u- 1

Az(l)

Az(2)

•

Az(n) n x 1

The differentials Ab and Ac are found from the expressions for a

and b. (see Section 3.5)

b± = - 2BTCTCQ + 2p1
TCB

Ab =

Ab =

Ab =

T T
- 2B C CAQ

- 2UBTCTCAQ

- 2UBTCTCTAR

C± =

AG. - 2R.

AC = - 2R AR - 2yC AQ + 2UQC AQ

(U = n x 1 unit matrix)

T T Ti

0 AQ + 2QTCTCAQ

T T

AC = 2 {-R + (UQ C C - yC) T} AR

where

[R] =

R 0

. O R , ,

n.

[T]

n x n

• • R i *~Rn-1 n
-Rn .

(G-5)

(G-6)

(G-7)

(G-8)

(G-9)

(G-10)

(G-ll)

(G-12)

(n x 1) x n

Xl yl

x yn n
n x 2

132



Now, letting

V = -2UBTCTC (n x n) (G-13)

S = 2 {-R + (UQTCTC - yC) T} (n x n) (G-14)

and

we have

Az = K[z V + S] AR (n x 1) (G-15)

and

E { A z } = K[zV + S] i [zV + S]T KT

where i|r-̂- is the covariance matrix of the one-way range measurement errors.
u Z

The covariance matrix of p is found as follows. Since

p = CQ - CBz (G-17)

then

Ap = C "AQ - CB Az (G-18)

Ap = CT AR - CB Az . (G-19)

but

A; = (û u)-1/̂ ^ (G_20)

Az = F Az

therefore

Ap = CT TR - CBFK [zV + S] AR

Ap = {CT - CBFK [zV + S]} AR . (G-21)

Let

W = CT - CBFK [zV + S]

then

* ' w * wT ' (G-22)

where, as previously indicated rjrrr- is the covariance matrix of the one-way
uK

range measurement errors (see Appendix C) .
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Error Variances when Matrix ijr-— cannot be Invertedoz

In some cases, it may be impossible to invert the matrix ij*—- because of
AZ

high correlation between errors in calculation of the z(i). (i.e., roundoff

errors in computation may preclude the inversion.) In this case, a procedure

as follows is suggested:

1. Use the average (unweighted) value of the z(i) to calculate \b—.
Az

2. Select the z estimate z as the value of z(i) which has the minimuir.

variance. Variances are determined from the diagonal of \b-—.
Az

3. Calculate x and y as before, using the estimate z in the equation

for p.

When the above procedure is followed, the variance of errors in z will be

as determined from the selected diagonal term of (Jr—, and the variance of the
ii Z

x and y estimate is calculated as follows:

Since

Ap = CAQ - CBAz (G-23)

and now,

2 a < z > + b±
 ( < z > A b i

where the nomenclature has been previously defined. The variations in b.

and C. are given by (i is index for selected z(i) value)

Ab± = - 2B
TCTCT AR (G-25)

^ = [ - 2 R' - 2pi
TCT + 2QTCTCT] AR , (G-26)

where B' = [a, & a.
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1, j = i

= 0, j i i .

For simplicity in notation, let

k, =
-1

i 2a<z> + b, (G-27)

S' = [ - 2R1 - 2p TCT + 2QTCTCT] (G-28)

and
V - - 2BC C T . (G-29)

Then we have,

Az = K [ <z>V + Sf ] AR (G-30)

and

Ap = {CT - CBk [ < z > V + S ' ] > AR (G-31)

or

Ap = W AR , (G-32)

so that we have for the covariance matrix of errors in x and y estimates,

- w' (G-33)
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APPENDIX H

ERROR COVARIANCE MATRIX FOR COORDINATE RATES

In Section 3.6, the solution for coordinate rates in terms of the

range and range rate measurements is given as

x - (ST * S)-1 ST A

where the A are the measurements and the remaining matrices are defined

in the text. For simplicity, define

[H] = (ST 4,-| s)-1 ST ̂  (H_2)

so that

x = H A (H-3)

Now, recalling that [H] is a function of the position (x, y, z) estimate,

small error in x is given by

• • •

Ax = HAA + AH A . (H-4)

•

Since A = Sx, eq. (H-A) may be written as

Ax = H AA + AHSx . (H-5)

Also, postmultiplying eq. (H-2) by S gives

HS = I (H-6)1

where I is an identity matrix. Thus

AHS + HAS = 0 (H_7)
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or

AHS - - HAS . (H-8)

Therefore,

••• —- * (H-91Ax = H AA - HAS x v *'

.*. .&
and since x « Ax/At we can also write

Ax = H AA - HS Ax . (H-10)

The covariance matrix of the errors is found by taking the expected
— -T

value of Ax Ax as follows :

= E A* A* = H * R + H ^ (H-ll)

— -T
where it is assumed that the covariance terms E{AA Ax } are zero (i.e., no

correlation between range rate measurements and position estimates) .

The first term in eq. (H-ll) can be reduced to obtain for the coordinate

rate error covariance matrix,

where \b- is the covariance matrix of the coordinate position errors and the
Ax

remaining matrices are defined above.
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