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SYMBOLS

o a/aQ fluctuation (relative) sound speed in back-
ground medium

a sound speed, ambient

S(k) energy spectrum for velocity fluctuations

f. blade force/unit volume

f^ axial blade force/unit volume
rt

-£0 torque blade force/unit volume

x u force distribution, V th blade
(~i

< ±£) mean square force fluctuation

f ,g scalar correlation functions in R-JJ
(isotropic form)

H( ) unit step function

&, k wave number

/ scattering-direction (unit) vector
UoMQ = free stream Mach Number
ao

N number of blades

p pressure

r, 0 ,x coordinates (cylindrical)

rin' rout inside and outside wall radii

normal velocity correlation

i^-^j . velocity correlation tensor

R ( ) cylinder functions

s energy flux

t time



u1 velocity vector

u -normal velocity

U free stream velocity

x,y,z coordinates (Cartesian)

_O_ rotor angular velocity

£.(f) blade local twist angle

]) blade identification number

• VT eddy viscosity

2. TT

n eigenvalues of Rm(/< r) corresponding to
\ vanishing derivative at rin and rOû .

^\ Fourier transform variable for s

Fourier transform variable for t

generic frequency

wave number power spectrum for scalars in
background m

O ( ) Dirac delta function

.j- Kronecker delta

( ) blade force correlation function

ij (Ic) fluctuation velocity power spectral tensor f<->r
background medium

D density, also distance in fluid-fixed coordinates

density (relative) fluctuation in background
medium

A turbulent velocity integral scale

vi



VijT. coordinates in fluid-fixed system

TT time in fluid-fixed system

^ p P components of distance ^ , defined in eq. (39)

—».
( ) evaluated at xi»t,

( )9 evaluated at X>t

( )m 1/2 (( ), + ( )

( )d ( >! - ( )2

^ /> expectation or ensemble average

Vll



I. INTRODUCTION

This report presents the results obtained for the first
three tasks under a program whose objective is to analyze
aspects of the broadband noise generated by rotor or stator
blades subject to inflow turbulence, in an annular duct.
The first technical section (Section II) introduces dissi-
pation, in the form of a generic eddy viscosity, into the
Green's function relating radiated pressure to blade fluc-
tuation forces. This adds an element of physical realism
to the analysis and serves to eliminate the singularities
or resonance effects which would otherwise occur in the
output power spectrum. These singularities occur at the
cutoff frequencies and become dense at higher modes, thereby
completely dominating the output power spectral behavior.
The introduction of dissipation eliminates these singular-
ities and smears out the neighboring peaks so that the
resulting output power spectrum should be well-behaved.

The next section (III) then relates the aforementioned
eddy viscosity to actual dissipation losses experienced by
waves propagating in a turbulent medium. This is carried
out in two ways; first by means of a perturbation technique
of J. Keller'*' for waves propagating in a medium with ran-
domly variable index of refraction, and second by means of
scattering losses in a single-scattering treatment of waves
in a random medium. The second method is carried out by
integrating over-all scattering angles the single-scattering
cross-section corresponding first to fluctuations in density
and sound speed in the background medium and, next, to
velocity fluctuations in the background medium. These
scattering cross sections are due to the work of Batchelor'^)
The results from the two appraoches are shown to agree in
the scalar-fluctuating case where the background fluctuations
are the same. They give a wave-number dependence to the eddy
viscosity, involving the energy spectrum of the background
fluctuations at all wave numbers less than twice the incident
wave number. The method of incorporating these results into
the Green's function for radiated pressure is developed at
the end of Section III.

Section IV develops the space-time correlation function
for the normal component of the turbulent inflow velocity
fluctuations, assuming an isotropic, frozen turbulent inflow
velocity correlation tensor. The normal-velocity correlation
R^^ is derived for distinct times and distinct points on
a single blade or on two different blades. The derivation is
performed admitting radially varying blade twist angle.



Then the last two sections V and VI are aimed at develop-
ing an insight into the qualitative behavior of the blade
force fluctuation correlations in terms of the normal velocity
correlation developed in Section IV. Section V derives
simplified approximate expressions for R̂ j. in terms of three
components of the distance function in the case of zero or
small radial variation of blade twist angle. Then Section VI
utilizes these results to infer the temporal stationarity
of the blade-force fluctuations, the homogeneity with respect
to blade number, and the inhomogeneity with respect to radius.
These conclusions should then serve as the basis for subse-
quent developments of output power spectra for radiated
pressure.



II. INTRODUCTION OF DISSIPATION INTO ANALYSIS OF ACOUSTIC
PRESSURE FIELD

We consider the linearized (acoustic) compressible flow
equations for an annular domain in the presence of a uniform
flow UQ in the axial (x) direction, a force distribution
f£ (per unit volume), and a dissipation in the form of a
simple eddy viscosity VT . Later the eddy viscosity will
be considered in detail and made wave-number dependent. We
retain the simple density-pressure relation

J * *•' - (1)
a p - A,*P

despite the presence of dissipation.

The linearized equations are then as follows:

t- , 7'U =0

where D = - -h d . (4)

Then, eliminating ur and j> , we find the following
equation for the pressure perturbation p:

t Vr/\
a,



We then introduce the cylinder functions

V

which are linear combinations of Jn,(/Wmq
r) and Ym^ t*

such that the normal (radial) derivative vanishes at both
inner (rin) and outer (rout) radii of the annulus. Further,
we normalize such that

'V
The R then constitute an orthonormal system with

respect to weighting function r, over the domain (rin,

Next we operate on eq. (5) with the operator,

-
• I I

(8)

and define pmq (>y cO ) as

v-v^

"iwA^i^- | i , j

e e dxcit-d@d«-.

(9)



The result of this operation is as follows

*. .

Y r . <*c V cv
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Y

(10)

Now we recognize that f has only axial and torque
components fx, fd , respectively, and we perform the inte
gration on the right hand side of eq. (10) by parts with
respect to XQ and 0 o. The. right hand side then becomes

Y

l\ f-, v; 4- ,- v
(11)

With the geometry as shown in Fig. 1 and with light loading,
the resultant force f is closely normal to the blade. Hence

£60

- f cosCCv (12)



where C. (r) is the local blade twist angle. Then the
bracketed term in eq. (11) takes the form

\ = {(*„?*,&<,+„) ( l* ^^£K) I" < M C o 5

(13)

In the absence of the dissipation term, we can write the
left-hand side of eq. (10) in the form

(14)

where X, XL are the roots of

+- yM^, ~—t ^ ZM^A '=d

or

/\ j •= — Mtf ul h
» /*/

( I-
(15)

Then p would result from the four-fold inversion of expression
(11) divided by (14). That is, in the nondissipative case,
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(16)

Now if the integration with respect to A is carried
out by residues, it is clear that the difference forms

(x , -xO-
(17)

will occur in the denominator for each 6J,m,q,



For each combination m,q the value U) of a)
which annihilates the radicand in (17) is the well-known
cut-off frequency which separates propagation from non-
propagation of the m,q mode. These zeros b) become
extremely dense as m and q get large. Furthermore,
when we proceed to form power spectra of pressure p, the
cross terms (involving m̂ inĝ )̂ are integrable with
respect to tj , but the self -terms are not integrable.
Instead, they lead to infinities or resonances in the output
or response power spectrum. These resonances become so dense
at large m and q that they completely dominate any output
power spectral considerations.

It is for this reason that the dissipation ( VT )
term is introduced. With the dissipation included, we expect
that these resonances, which occur at the cut-off frequencies
CJ mq, will be rounded off and, for large m,q smeared to-
gether, leading to a finite, continuous output power spectrum.
Moreover, since the origin of the blade fluctuation forces
is presumed to arise from the turbulent character of the
inflow to the blade row, therefore it is consistent to assume
that the dissipation should be of a turbulent character,
and VT is to be considered in the sense of an eddy viscosity.
Subsequently, Vr will be related directly to the dissipa-
tion experienced by acoustic waves in a turbulent medium and
will be given wave-number dependence. For the present,
however, we treat VT as a parameter and return to the full
expression (eq. 10) for evaluation of the poles in the A
plane in the presence of nonzero Vr

Now the full equation for the roots of \ is as follows:

y

(18)

8



As it stands this is a cubic in X . However, we make use
of the fact that the dissipation W is small and that the
only places where IV plays any significant role are at
the cut-off points (or singularities in the nondissipative
spectrum). Thus we solve eq. (18) for two roots
as follows:

ffe treat the VT term as a small correction to the
quadratic equation for A and lump it in with the constant
terms, giving A (where ever it appears in this term)
its nondissipative cut-off value, since these are the only
points where this term matters. This may be formalized
somewhat as follows: Consider the generic equation for A

T f =0 (19)

where f( A) is any regular nonlinear function of \ .
Assume ^ is small and expand A in powers of VT .
(Actually, this should all be done in dimensionless form,
but the argument would proceed in the same fashion.)

\- K, -v- v>TX, v- Vr x.t 4- - -
(20)

Then the nondissipative roots are

(21)

And the first order (in Vj- ) corrections are given by



- o

or

(22)

Then

i
L

(23)

We see that the VT term enters just as it would if it were
lumped with the c term and given the argument ̂  (o). 'Now
we simply give A(o) its values at cut-off inside the function
f ( A (o))» since these are the only points where the V term
enters significantly.

10



i
7.

x, -- -I. ± <l
*^ Ov

(24)

ifhen we apply this recipe to eq. (18) we find

- vr -

(25)

where

- ui- U
(26)

or

(27)

and the radicand combines into the form

(28)

11



Thus our final expression for the roots \. X, becomes
' *•

\
"̂ «

- I = .
K-5

(29)

And, at cut-off Cj—t.h) , the difference ( X i ~ X t) Becomes

2.

(30)

Since \ AZ. are always complex, one of them will be in the
upper half plane and the other will be in the lower half
plane. In order to avoid confusion we simply call the
upper root X up and the lower, A lo.

Note that the form (29) makes it easy to locate A,
and /\j_ in the upper or lower half planes, depending upon
the value of <X> . In fact, this form, in the limit Vr ~* o

4"
provides the best way (from a physical standpoint) to
evaluate the pole-locations with respect to the real A axis
in any residue calculations for the nondissipative case.

Then we may write the expression for the radiated
pressure field (See eq. 10) in the form

12
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dly., I dv. I

o —a>

7 .
v '

.) ( AV0

(31)

Here, the notation

at ~ ̂ l> \ » when / ° j respectively.

is used to signify that all terms involving X are evaluated

~ ̂ l> \- A I O y
If we concentrate the blade forces onto rotating lift-

ing lines located in the plane xo = 0, then

13



(32)

where f ̂ (rp,to) is the (radius -and time -^dependent) force
per unit span on the V th blade and N is the number of
blades. Then eq. (31) takes the form . a , *

be tx> _H-

•CO ' — OO

,

ci v^0 ^ t- (vV K ] ( \u ~

, ^,
r V

± . . . . - c r / w M - - . - . - <33>

14



Here \ up
 an<* ̂  i0

 are simply computed from the A( , At.
of eq. (29), depending upon which lies in the (upper, lower)
half plane of complex A .

15



III. COMPUTATION OF WAVE-NUMBER DEPENDENCE OF DISSIPATION
OR EDDY VISCOSITY

If we consider plane waves propagating at frequencyco
in a quiescent (Uo = 0) free field, in the presence of a
simple eddy viscosity Vf , we find for an "incident" ^
wave oe1"*1**"^ (referring to eq. (5) with Uo=0, f = 0)

(34)

or

l r '

VTU) ,< j (35)
for —-—• ^ '

Hence

k. -IIK a0 xa{

where L ̂  _ . ,^-

(36)

Hence the wave amplitude exhibits an exponential attenuation
as it propagates in the direction of positive x. This is
of the form,

(37)

16



Now J. Keller^ ' considers a wave propagating in a
random medium whose scalar index of refraction is given by
the expression

( ! 4-L M ± UL (38)

Here JU is a centered random isotropic process with /M con-
sidered small relative to unity, and only weakly time-dependent
relative to the time dependence (43t) in the "incident signal."
He finds that the medium can he characterized in terms of
an effective wave number k which is complex. Moreover, the
imaginary part of k is shown to be given by

(39)

where
and fy
for

) is the mean square value or intensity of /,{
is its power spectrum, and isotropy is assumed

M -
oo

-co

Translating Keller's K;
via eq. (36) leads to

(40)

into an equivalent eddy viscosity,

17



/*
(41)

Thus we find an equivalent eddy viscosity which de-
pends upon the power spectrum of the random index of refrac-
tion at all wave numbers less than twice that of the undis-
torted incident wave.

Now G. K. Batchelor^) considers single or Born
scattering of an incident plane wave in a medium with ran-
dom fluctuations in density and sound speed. If we temp-
orarily supress the actual relationship between „„
c, £ a oaQj and ° and consider only the random fluctuation 5-—
y. ao

in sound speed, Batchelor's result can be interpreted as follows;
For a stochastic system satisfying the equation,

~~;TZ t-t i _ra/ ̂  a, a^ ^
(42)

with ^ /a0 given as a centered, random process, an incident
* (~T "* \ i-}wave £>' V«I»'A—<J try gives rise to a Born or single scattering

cross section <T(Jf) » in the direction / , equal to

erf/) - XTT lc/<£(£>-^^ <(I? f> •*- ̂  ^^0' /

Q° (43) •

\K

Here

is a unit vector,

is the power spectrum of the fluctuations ^-^

18



and (T(y( ) is the scattered energy flux per unit volume per
unit solid angle at direction ^ , normalized by the incident
energy flux per unit area.

Thus, since only the I^A term in Keller's index of re-
fraction (38) contributed to kim (39), we should find a closely
related expression derivable from <r(£) (43) with Batchelor's

• playing the same role as Keller's $

The relation is derived as follows: The integral over
the unit sphere of CT/'jf)

(44)

gives the energy scattered out in all directions, per unit
volume, per unit incident energy flux. Thus we have an energy
transport equation for the energy flux S .

•= - Ts

s = s e
"1C.

(45)

But

a.
(46)

19



Therefore we should find

- i -

(47)

where we now assume; as did Keller, that 2?gr/ is isotropic
l^Vi.

\~1* "* I /and thus depends only on / kQ - kQ^ {= 2kQsin a . Here Q

is the angle between incident and scattering directions,

ko and ̂  .

Integrating (47) with respect to <^ and letting
2k sini - k', we find

I'M ' <(%t)k"? (k''yJk'-.KS\*% C6S|

« k Co 5 It

or

k ̂
t
c»

(48)

(49)

20



And this agrees exactly with Keller's result (39), with
r

playing the role of Keller's 14
ao

Now Batchelorv ' shows the relation between fluctuations
in sound speed and those in density,

(50)

and gives a more complete form of the stochastic wave equation
(42) which includes both effects simultaneously. The net
result, after invoking single scattering, is to modify the
scattering cross section O*(J(.) from the relation given by
(43) to the following:

*£
fo

-U)

(51)

— •-
The angle Q is, as before, the angle between ko and f . The
spectrum $if/f is now that of the relative density variation.
Repeating the preceding development for this new scattering
cross section and again invoking isotropy, we find

21



r

W--O

9c

O —«• nt

(52)

Hence, finally, the equivalent eddy viscosity for isotropic
fluctuations in density, with related fluctuations in sound
speed, is given by

-JL' die

(53)

22



And again, in this more complete case, the effective eddy

viscosity depends on the power spectrum of $f/ for all
wave numbers less than twice that (kQ) of the incident wave.

The relation (53) for a wave-number dependent equivalent
eddy viscosity holds for fluctuations in the related scalars,
density and sound speed, in the background turbulent medium.
A similar, but more complex treatment can be given for the
single scattering approximation to. fluctuation-velocity-
induced dissipation. Batchelor^2' also treats this case and
arrives at a scattering cross section

<T { % ) given by (in our notation)

cr(T) --

(54)

where the notation is as before, with the additional quantities

/ V' } = mean square fluctuation velocity (in one direc-
' tion)

rfj = fluctuation velocity power spectral tensor
*£-j

-9
We integrate 0" over the unit sphere (over J( ) as pre-

viously, to find T for an isotropic velocity fluctuation field
in the following sequence of steps:

23



(55)

Here E(k) is the normalized energy spectrum. Then

ko ko $ij (ko " kof ̂  is givcn ^

24

J

f rr (tk,si*|?

(56)



Thus

2-TT

31 !<
I- x..,t, i F -^ °

4-irq.2-

.

(57)

Then using

- i (47)

and

Yr =

25



we find, for the equivalent eddy viscosity resulting from
velocity-induced (single) scattering losses,

(59)

Thus, once again, we have an equivalent eddy viscosity
dependent upon the energy spectrum of the background fluctuations
(in velocity, for the present case) for all wave numbers up to
twice the incident wave number.

The actual eddy viscosity to be used in our expressions
(e.g. eq. 29) for A should include both contributions (59)
and (53). If coupling exists between scalar Sf/f^and vector
SO? fluctuations, then there should also be cross spectral terms
in Vr . However under isotropic assumptions if we invoke
an additional assumption of nearly solenoidal velocity fluctua-
tions, then velocity fluctuations are uncorrelated with scalar
fluctuations

U > =• O (60)

We invoke this approximation herein and merely add the contribu-
tions (53) and(59) to VT .

The foregoing has been developed for a quiescent free field,
To find the value of ko appropriate for our application (eq.
29) we proceed as follows: First in fluid-fixed coordinates

26



the frequency i*JA is related to that Cx> in our
(casing-fixed) (xyzt) coordinate system by the equations,

(61)

Therefore we have the equivalence,

(62)

Hence the relation between <-% and uJ is simply,

(63)

and

~ <^ - X
a° (64)

At cut-off

(65)

27



and

I~M< (66)

This, or rather its absolute value, is the value of ko to be
used in applying eqs. (53) and (59) to the evaluation of \,

L. Up

This result can be shown in a different manner. Our wave
functions are of the form

(67)
in transverse (y,z) or (r,o) planes. These satisfy an equation
of the form

^--kTi. *-±V^ fX^-y-o <68>
or

' (69)

Thus our three dimensional modes or wave forms

(70)
28



satisfy the equation

(71)

Hence each of the modes, from which our pressure expression
is synthesized, has a wave number ko satisfying

i ^ \ *- 2-
*o - A /̂̂ ""l (72)

But, from the first of eqs. (15) we have, (in the nondissipative
case)

(73)

This agrees with our expression (64) for the value ko to be
•tisfltri in AViiliia'f.Ino' I/used in evaluating J/

29



IV. CORRELATION R FOR BLADE-NORMAL VELOCITY FLUCTUATIONS

In forming output power spectra or related quantities
from the expressions developed in sections II and III, it will
be necessary to have available the space-time correlation of
the forces

oh blades X , H, at radii rlfr2 and at time instants
*1»*2» respectively. In order to perform an actual computation
of such correlations it would be necessary to invert the inte-
gral equation for three-dimensional, nonsteady compressible
cascade aerodynamics under sinusoidal gust entry conditions.
Since this is beyond the present state of the art, we proceed
as follows: First, in the present section, we compute the
space-time correlation RJ.I for blade-normal velocity compo-
nents Ua on one blade or on two distinct blades. Then, since
the blade force fluctuations are induced by the inflow normal
velocity fluctuations, we use the results for R.IJ. , or simplified
approximations thereto, to infer certain facts about the ex-
pected general behavior of the required blade force correlations.

We refer to the blade-row geometry as illustrated in
Fig. 1, and develop the correlation RJ.J. in terms of the
velocity correlation tensor RAj of the inflow. Moreover, we
assume that the inflow correlation tensor is isotropic in fluid-
fixed coordinates and frozen in casing-fixed and blade-fixed
coordinates. This means that, in fluid-fixed coordinates

• R is

r

(74)

30



R. . is considered normalized, so that f and g are dimensionless,
with unit values at V= 0.

(75)

Now

y-1h 'i
- L (76)

and thus for the V th blade lifting line located in the
plane x = 0,

I

? ^ y- t-

(77)

Therefore, for two blades Y. V^ and two different times
and radii rl»r2> we find tne following:

(78)

31



where

< ).. - U -

c,

5,

Also

f *

where

(79)

, Vi.Co.SA

(80)

Af
(81)

From Fig. 1 the normal fluctuation velocity component
can be expressed as follows:

~ Uy COS £.

(82)

32



where

£ = £(v] - blade local twist angle as
defined by reference to Fig. 1.

Since we are going to form a second order correlation and since
(ux,u,uz) have zero mean values, therefore, it is unnecessary
to correct for mean velocities -Q. t and UQ.

Now we form Rĵ  from eq. (82) evaluated at (r-ĵ tp on
blade Vx and at (r2,t2) on blade V %.

4-

(83)

Here the R±j are given by (74) with f and f as given by (78)
and (80), respectively. <V*> is the (unidirectional) mean
square velocity fluctuation.

33



Thus

R,, - (

(84)

Inserting the relations (84) into (83) we find

RA.L -

*" J — L__

(85)
-v, c^ c o s

34



where f and A are given in eqs. (80) and (81). For zero
or small twist variation

(86)

and

R.i. - «j

/.

\

(87)

35



V. SIMPLIFIED OR APPROXIMATE FORMS FOR

Utilizing the notion

- (

(88)

we may rewrite eq. (80) for p2 in the form

Uc' f Z- v Z^

*- ^ (89)

If we assume that f(f> ) g( j> ) decay sufficiently fast with

P that we may neglect terms in p2 of higher than second order
in difference quantities ( )d, then we may approximate P1" by
the expression,

f r 4- f

(90)

36



iso the constant- £.forra (87) for RiJL can be approximated
by

r

(91)

Now we can decompose f into 3 components. P , f , and f
J * 1. J H J a

as follows:

(radial)

f,"-- 4- tvMS«afe,« }
"U

?„ ~

(blade-normal)

(92)

(chordwise)

37



Then j? 2, as given by approximation (92) is equal to

(93)

and

(94)

For solenoidal velocity fluctuations,^3)

5 f f l = y fVyJ f f f j )
'Z.

(95)

Hence, in this case

4- 1

(96)

38



For example, if f ( f ) is approximately expressible by

f (f ) =
(97)

and if the condition (95) is met,

Then

f ..
%̂f A (98)

where A is the integral scale for f. The correlation

6L ' leads to a k~^ type power law in the power spectrum
E(k) and hence is not a bad approximation in the universal
equilibrium range where k"*'** is the correct dependence. The
simple exponential fails at y = 0 where it has a discontinuous
slope.
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VI. INFERRED BEHAVIOR OF BLADE FORCE CORRELATIONS

In accordance with the plan outlined at the start of
Section IV, we use the simplified forms of RJ.J. developed in
Section V to infer something about the general behavior of the
blade-force correlation in the absence of a full inversion of
the integral equation for three-dimensional sinusoidal gust
entry for a cascade in subsonic compressible flow.

We define the normalized correlation r as follows

< k K *-, ' ̂  K h) ) - < f'^ >."* < ̂  > ̂  ;

(99)

The forms given in eq. (94), together with the definitions
(92) of j*,, f^ and J>d , are the most suggestive for purposes
of inferring the general behavior of Y" . First 'V' should
obviously depend on r^ and r% through both rm and rd, since Px
and P,, exhibit this behavior. Second, Y' should depend on
tj and t2 only through td, since tm enters nowhere in f
or RJ.I and since the boundary value problem for the nonsteady
blade pressure distribution is invariant under translation in
time. Thus "/" is stationary (independent of tm) . Finally, "^
should depend on blade numbers V, and j^. only through the
difference |̂  , since only Ĵ  (and not î , ) enters into
R i-i (through A ) and since the boundary value problem for
pressure is also invariant under translation in O . Hence
we expect

(100)

and A , in turn, depends on ^ and t^ . Thus should be
stationary in time and homogeneous in blade number, but not in
radius.
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In order to invoke the best available estimate of
a wave-number dependent transfer function between upwash

and blade lift per unit span, we revert temporarily to

a two-dimensional cascade geometry and utilize thesingle-
wing transfer function developed by Filotas^4' for airfoil
response in a gusty atmosphere, together with the inter-
blade cascade effects developed by Lane Friedman^*' for
subsonic compressible oscillatory aerodynamics. The
Filotas analysis treats three dimensional sinusoidal gust
entry in terms of the effective inflow wave number ampli-
tude and direction. The resulting transfer function
relates lift per unit span to upwash as follows:

Lift
unit span . U

Here v\/(0,o,O,t:) is the inflow upwash at midchord at time t,

Then T is given as

T- (inrtb,

(101)

Here ko is the magnitude of the blade-plane component of
inflow turbulent (Fourier component) wave-number vector
"* n -*kQ and ^ is the angle between kQ and the blade mid-chord
line. If we express the turbulent inflow velocity

in the usual Fourier-Stieltjes form
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(102)

then for each Fourier component , q j?. ( k ) , k is given by

(103)
.-» '

where N is the unit normal to the blade plane. Then the
angle ft is the angle between kQ and the blade mid-chord
line.

The interblade dependence of the transfer function
may then be estimated by use of the oscillatory aerodynamic
influence coefficients developed by Lane and Friedman^5'
using an interblade phase lag angle G~ which is expressible
as

-a -»

w H

(104)

Here j? is the vector from the mid-chord point in the n
blade to the mid-chord point on the (n+l)th blade, in a
plane normal to the blade mid-chord lines.

In this way the best available estimate of wave-
number dependence and blade-to-blade influence can be
incorporated into the blade force correlations (or the power
spectrum thereof) for use in subsequent radiated-field
power spectral estimates.
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