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1. INTRODUCTION AND SUMMARY

. Two measures of the relative performance of satellite based data
collection and location systems are the precision with which platforms can be
located (and/or their velocity estimated) and system capacity (average bit rate
handled by the satellite)., This report im«"estigates two concepts whereby im-
provements in location precision and system capacity can be achieved relative
to cwrrent systems. One of these concepts (TRILOC) can provide zither or both
improvements in location and system capacity by utilizing three measurements
acquired during a single transmiésion from a platform for location purposes.

The other concept is to increase system capacity by means of directive antennas
on board the satellite for the purpose of reducing interference (either between
platforms or from RFI) and/or reducing platform power.
‘ .
e TRILOC concept is evaluated in Section 2. The location algorithm
\. is developed§m9;\'ange -rate, radial-acceleration, and range differences
are measured on-board the satelhte durmg a transmission from a platform. An
error anali’sis of this algorithm is then derived from which platform location
errors are related to the precision with which the three measurements are ‘made.
An example TRILOC processor is then postulated to e;t—lrhqate he three measure—

ment precisions ECE R '\/ 2 A )
L

Ld

Particular conclusions related to the TRILOC concept ca‘ be summ-

arized as follows

° If all measurements contribute equally to the precision
of the location estimate, the improvement in location '
" precision 1s basically due to a greater number of measure=
ments being a:vailaBIe for noise suppression rather than
an inherent advantage assoclated with combinations of

different types of measurement.
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. Prom the analysis of the example TRILOC processor,
the errors in measuring radial acceleration cause much
larger location errors than either measurements of

range-rate or range difference.

e The value of range rate and radial acceleration measure=~
ments decrease rapidly with increased satellite altitude
(e.g. from a two to three hour period) while the value of
range difference measurements does not change appreci-

ably.

An overa_ll'characteristic of a TRILOC system is the opportunity to
improve location precision without sacrificing system capacity or alternatively,
to increase system capacity without degrading location precision. ff system
capacity is dominant, then the acquisition of three measurements of location
_‘ parameters during a single transmission provides a nearly' threefold increase in
system capacity compared to current data collection and location systems. On
the other hand, if precise location is most important, then the additional loca=~
tion parameter measurements acquired during each transmission can bé utilized
to improve location accuracy without reducing system capacity of current

systems.

The potential advantages and disadvantages of both sweeping and
fixed directive antennas on-board the satellite for random access systems are
analyzed in Section 3. These analyses! indicate that there is no advantage
(and probably only disadvantages) in having a sweeping antenna on~board the
gsatellite compared to multiple directive antennas from either a perfoi'mance or a
system capacity viewpoint, This conclusion is based upon a necessary in-
crease in mutual interference between platform transmissions as the gain of
a sweeping antenna increases. However, directive antennas do offer advantages
in system capacity improvement by decreasing interference, platform power

reduction, and/or RF] suppression.
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To achieve the advantages of the directive antennas, the beams must
be of elliptical cross section and maintained in orientation relative to the’
satellite’'s direction of motion. In particular, the major axes of the beams
must be parallel to the satellite's sub-~track and be able to receive trans-
missions from platforms from one edge of the satellite's visibility circle to
the other. System capacity will be directly proportional to the number of
these beams (from an interference standpoint) that are used to completely
illiminate the visibility circle-i.e. the minor axes of the beams determine

the number of beams required and also the improvement factor.

To determine antenna size, the minor axis of the beams and
operating frequency must be specified. To estimate required sizes for a

low altitude satellite (Nimbus or TIROS), a synthetic aperature or érray is
assumed at an operating frequency of 400 MHz. This leads to the approxi~
mate relationship that the maximum antenna-dimension in meters ig about .32

times the number of beams.
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2. TRILOC CONCEPT

2.1 " Position Determlination

The bases for satellite referenced location systems is the accurate
knowledge of satellite position and velocity throughout its orbit and the ability
to‘measure range or range rate between the satellite and the platform to be
‘located. For example, in the case of the JRLS system, range {s measured at
two points during an overpass of "che satellite. At each point, this measured
range plus known satellite position establishes a sphere centered at the
satellite upon which the platform is known to lle. Assuming the platform lies )
on the earth’s surface, then the two range spheres and the earth's surface have
two points of simultaneous intersection—one of which corresponds to the geo-

graphic coordinates of the platform.

An entirely analogous location technique is that utilized by the RAMS
system. Here, the measured quantity between satellite and platfoi-m is rangé-
rate which give rise to cones with apexes at the satellite (instead of spheres).
The location is accomplished in th'e same manner, however, by determining the
two points of simultaneocus intersect‘ion of two cones and the earth's surface.

A third example is the TRANSIT navigation system that measures the differences

in range between satellite and platform to estimate location.

The TRILOE concept is to measure not jus(orygemdiﬁer-

;er\we) or’'ra but to measure both of these quant es and\radial acceleratio
,'ﬁ- e ot -

during any single transmission from a platform. For example, if range and range-
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/ rate were measured during a single transrhission from a platform, then its loca~
ViR
N

tion could be estimated by determining the two points of simultaneous intersection

\\ of a sphere (range), a cone (range-rate} and the earth's surface {assumed
r

altitude of the platform). Based on this alone then, addition of a range measure-

.\ment during each transmission of a RAMS platform would effectively halve the

‘ “\number of transmissions required for location purposes.
s
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As ‘mentioned, radial acceleration 1s also capable of being measured
and is as equally useful as range or range-rate for location purposes. In this
case, the geometric surface upon which the platform is known to lie can be
shown to be shaped like a doughnut with no center hole and whose center is

at the satellite's position when the measurement is made.

Conceptually then, as many as three measurements could be obtained
from a single platform transmission for purposes of location. Whether this is
possible, particularly, in the case of the range measurement, depends upon the
communication link between the satellite and platform~-i.e., range measurement
requires -a two way link, as in the IRLS system. On the oﬁher hand, measurement
of range difference between two transmission points can be accomplished with -

one way communication links.

2.2 Position and Velocity Determination

The above discussions indicate platform position can be det_ermined
with at most half the number of platform transmissions of current location sys-—
tems by utilizing the TRILOC concept. The more general need, however,
{particularly when increased precision of location is required) is the ablility to
estimate platform velocity as well as locatibn. Fixrthermore . precise location
requires correction for center _frequency drift and perhaps drift rate during a
satellite overpass. Instead of two measurements being required, then, preciée
location probably requires four to six measurements during an overpass (if not
more to permit noise suppression filtering). Because three measﬁrements are
acquired for each transmission received in a TRILOC system, the necessary four
to six measurements can be obtained with as few as two transmissions per over-
pass. Therefore, implementation of the TRILOC concept can result in a factor
of three reduction in number of transmissions required per overpass.

A



2.3 Location/Velocity Estimation

e T W T P
—— o

\ 3-..! P While a geometric interpretation of satellite—referenced location
f“ _-'f'_ljgcilitates description of the TRILOC concept, the actual method of deriving
1 iocation and velocity estimates is accomplished in a different manner. This
e - e R AT T e [ < T A e s ¢ *""WM

will be desori.bed first by limiting disoussion to a system ignoring platform
velocity and relying solely on range measurements to estimate location.

e}
o

[

Secondly, the description will be extended to a TRILOC system ignoring platform
velocity. These discussions will then be used as the basis for describing
a TRILOC system estimating position and velocity while correcting for

long term drift in platform transmitted frequency.
2.3.1 Range Measurement Location

If two measurements of range between the satellite and platform are .
obtained, the above discussions indicate the location of the platform to be one
of two points of simultaneous Intersection between two raz'ige ~spheres and the
earth's surface. Another way to establish the platforms location is to compute,
a priori, for each possible location of the platform the two corresponding values_ ;
of range that would have been measured if, in fact,.the platform were at that
location. When the actual pair of range measurements 1s acquired, ‘the location
of the platform can then be determined by matching the measured pair to a com~ .
puted pair. Note, except for a usually resolveable ambiguity, only one of the

computed pair will match the measured pair.

Actually the necessity to pre-compute all possible pairs of range
measurements isn't necessary if the following procedure is followed. First,
establish an estimate of the geographic coordinates of the platform X, V.

This estimate can be as crude as requiring the position to be within view of the
satellite when both of the range measurements are made. Secondly, for this
estimated position and the position of the satellite when the actual range mea«
surement were made, compute the palr of measured ranges that tivould have
occurred if the estimated location were correct. Thesel will of course differ from

the measured range's——uniess the guessed location 1is correct.
' 2-3
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" The difference between the measurea and computed ranges are then
used to correct the X,Y estimate of platform location to more closely correspond
to the actual platform location. This is accomplished by equating the difference
in each case to the sum of two terms. One of these terms is that portion of the
(measured-computed)range difference occurring because the guess of the X
coordinate is in error and the other term is the increment caused by the error

in the estimated Y coordinate of the platform. Symbolically, this may be
written as

(AR) s" + "V“)%\Y nm = F?‘c:aunnﬁw

(855 + (88 = R,

MERSURESS % SoMPUTE D

where 0x and Oy are the errors in the X and Y estimates of platform location

(—%—};{l) is the difference in(measured minus computed}range that
will occur at the first measurement point if the position
estimate were in error by A_x

(AR, /AY), (AR2/8X) ---~ analogous to (AR, /AX)

(%) 0%  ts that portion of(R; measured - Rlcomputed)caused by a 6X error .
' in estimating the X coordinate of platform location.

However, if these two eguations are solved simultaneously for 6X and
8Y and these values are used to correct the original X,Y estimate of platform loca-

tion,then the result will be a better estimate if not the actual location of the platform.

An important extension of this type of solution process concemns those

conditions wherein the number of range measurements is greater than two—
i.e., the number of measurements is greater than the number of unknowns. If
there are no errors present in the range measurements or satellite position,

such redundant measurements cannot of course gerve any purpose. However,
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with errors presenf, redundant measurements can be utilized to suppress the -~
effects of the errors provided they are random with negligible bias. This is
accomplished by forming a sum of the squares of the differences between
measured and computed {i.e., based on estimated lwainn) ranges at each
measurement point and then determining the location of the platform that
minimizes this sum. For the case where the errors are normally diatributed,
this procéss can be shown to decrease the error in locating the platform in

proportion to the reciprocal of the square root of the number of measurements.
2.3.2 TRILOC Location

Analogous to the above, assume a TRILOC system acquires range and
range-rate measurements between the satellite and platform. For the case wherg

two measurements are acquired, the location process described above for a two

4
T
L]

range-measurement process is equally applicable. However, the extension

 to the redundant measurement solution is not quite as stra_g-ght forward.

'

In thé case with redundant measurements of the same typef—i.e.,
all range or all range-rate) minimizing the sum.of the squares of measured
minus computed difference is conceptually. valid. However, for the case
where different measurements are involved~e.g., range and range-rate—)
minimizing the algebralc sum of the squares of differences is not valid without -
assigning relative weights to the different measurements:let alone adjusting

units to make the sum meaningful.

One means of accomplishing this weighting of the different measurements
is to divide each difference by the standard deviation of the error for that measure-
ment. This will, in effect, magnify those differences that correspond to low
error measurements relative.to those of high errcr—additionally, the sum of the
squares of these quotients becomes the sum of non-dimensional terms—{.e.,
6ompatib1e units. This enhancement of the more precise measurement differ-

ences serves to drive the location solution to that indicated by these measurements
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Note this also méahs that when the standard deviation of one type of measure~
ment error is large relative to others, then this measurement is effectively
ignored in the solution process. This can be seen in the data presented in

Figure 1.

Figure 1 is a presentation of the errors in measuring range differ~
ence between successive transmissions from a platform, range rate, and
'acceleratlon normalized by the resulting mean location error—i.e., ‘the average
magnitude of the location error. A basic assumption utilized to develop these
data is that the measurement errors are normally digtributed with zero mean.
Furthermore, there are no errors present except the measurement errors.

These data correspond to a satellite orbit similar to the Nimbus spacecraft.

Additionally, the measurements are acquired over two successive overpasses of
the satellite wherein the transmissions are separated by five minutes. The
geometry of the overpass is such that the sub-u'acks are evenly spaced to each
side of the platform and under these conditions a total of 3 transmissions are
received on each overpass. Note, this means a total of 3 measurements of
range-rate and acceleration are received per overpass,but only 2 measurements

of range difference are obtained,for a total of 8 measurements per overpass.

The first point of interest for these data are the @siimptotes noted in
FTigure 1. These boundaries cori-espond to the éonditic;n wherein the contribution _
of two of the three measurements to the location estimate are ignored because
thq standard dev!ations for these meas’urementg are large relative to the third_.
" Note, the asymptote for large errors in range difference and range-rate cannot -
be shown in Figure 1. For example, if the standard deviations of range-rate
and acceleration are large, then the standard deviation of range difference
measurements establishes location error —i.e., mean location =°AR/'55-
gimilarly, if range difference and acceleration errors are large, then the loca~

_ tion error boundary is aR/3 48* 10 -3,

-

A more important result obtainable from Figure 1, however, is the re-
duction in mean location error when both range difference and range-rate

measurements are used—assuming acceleration is not used.
' 2-6
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To demonstrate the advantage, assume ¢ AR is equal to .56 kilometers
and c}i is equal to 3.48 meters/second. For the asymptotes discussed above,

the mean location error, , for systems using one or the other of range-rate

_ Hioc
or range difference measurements is found from:
e Range-rate—the asymptote is described by
n /b1 = +00348 per second. With 0y equal to
> 3.48 meters/second, Biog is then 3.48/.00348 or
1 kilometer. ' ‘ |

e Range-difference—the asymptote is described by
UAR/”'LOC = .56. Witho ,, equalto .56 k%lometers ,

B1og is then .56/.56 or 1 kilometer.

- To determine the mean location error when both measurements are used simul- -

taneously, manipulation of the data provided in Figure 1 is necessary.

With ¢ Ap 2nd O3 fixed at .56 kilometers and 3.48 meters/second and
with Uﬁ large {or ignored), the point on Figure 1 that establishes mean 19ca-
tion error is the intersection of two lines . One of these lines is the O'R =
line of Figure 1. The other line i{s one which must be drawn and is that line
along which the ratio b'e-tween c AR and ¢ is a constant—in this case, ¢ A /

R R

“;'{ = ,56/.00348 ~ 160 seconds. This line is sketched on Figure 1 and the

intersection between this line and the o i = o line is noted by the symbol @ .
At this point, the ordinate and abcissa are:
—_C .
ordinate AR/‘“LOC = .75

abcissa -~ UI.{/“LOC = 4.6 per second

with either the .56 value of UAR or the 3.48 value of éﬁ, the mean location
error is then determined to be about .75 kilometers.
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In the asfrmptotic case using range-rate measurements, a total of
six measurements acquired during two successive overpasses are used. By
adding the range difference measurements, of which there are four, there is a
total of ten measurements being utilized. If the assumption is made that the
reciprocal of the square root of the number of measurements determines location
error, then the location error would be one kilometer divided by the square root
of 10/6 or .77 kilometers. Because this is nearly equal to the .75 kilometer
error derived from Figure 1, this indicates that the number of mea;surements is
the major cause of error reductiqn instead of an inherent advantage assoclated
with different types of measurements. However, it should be noted that if the .
number of transmissions from a platform are fixed, then the location precision '
is improved because of the multiple measurements acquired during each

transmission. : .

As another example, the location error resulting when all three
measurements are used can be determined in a manner analogous to the above.
The assumption is again made that each measurement has a standard deviation
of error such that if it alone were used for Iocat_ion, the mean location error
would be 1 kilometer. The standard deviation of the acceleration error is _
therefore as noted in Figure 1— .85x10 -B/sec. The standard deviations for .-
range difference and range-rate are as before .56 and 3.48 x 10 -afsec |
respectively. With these values, the location errqf is found to be about .6
kilometers. This {s established by the mtersec;'éibn of the ¢ 4‘."R/ o4 " 160 sec
line and a curve (not shown) of constant o'.Ii /cré = .85x10°%/.00348 =
.0025 sec. This corresponds to the use of 16 measurements—six range-rate,
six acceleration, and four range difference. Note again that 1//16/6 also

glves an estimated error of about .6 kilometers.
2.3.3 TRILOC Performance

Extenslon of the previous discussions to the case wherein platform
velocity and mean frequency of the platform transmitter during an overpass are

2-9



also estimated is not significantly different.* Instead of the relationships
given in Section 2.3.1 for X, Y determination only, each (measured-computed)
difference is now equated to the sum of five terms corresponding to two velocity
coordinates {e.g., east and north under the assumption of negligible or known
vertical velocity) , mean transmitted frequency and again the two position
coordinates. Additionally, a parameter held congtant in previous performance
d'escriptions is satellite altitude. Because of the potential varlations in satel-
lite altitudes, the effects of this parameter should also be evaluated. There-
fore, discussions and data provided below are concerned with TRILOC

performance in two ways:

e The variation of platform location error with the
standard deviations of range dlfference, range-
rate, and acceleration measurements—the units
in this case being anticipated units of the actual
measurements to be made,namely micro-seconds for
range difference, Hertz for range-rate, and Hertz/

second for acceleration

e The varlation of location error with satellite altitude,
holding the number of platform transmissions con-
stant by Increasing the interval between transmissions

for higher altitude orbits.

To evaluate the effects of satellite altitude on the location errors of
a TRILOC system, three altitudes are considered for sun-synchronous orbits—
108 minute, 2 hours, and 3 hours. For these orbits, the number of frans-

missions during which range-difference, range-rate and acceleration are measured

Section 3.4 provides the mathematical derivation in detail, while Section
3.5 analytically describes the means by which location error is computed
as a function of measurement errors. .
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is held fixed at four per overpass with two overpasses. This means there
are a total of four acceleration, four range rate and three range difference
measurements per pass or a total of 22 measurements over the two successive
overpasses. The overpass geometry for these three orl:;its are sketched in

Figures 2, 3, and 4.

In Figure 2, the overpass geometry for the 108 minute orbit is shown.

The platform to be located is taken to be at 0° latitude and 0° longitude and,

for the computations of the location error, has zero velocity. As noted, the in-
clination of the orbit is 1000. The successive passes are seen to be symmetri-
cally placed east and west of the platform position and the circles denote the
satellite sub-point at the eight transmissions. The transmissions are separated
by four minutes. Pigures 3 and 4 provide similar information for the geometries
of the two and three hour orbits. For the conditions of these figures, little if any

geometric dilution of precision should occur in deriving location of the platform.

Figures 5, 6, and 7 present the variation of location error for a TRILOC .
system operating with the three different orbit altitudes and geometries des-
cribed in Figures 2, 3, and 4. As previously mentioned, these data correspond
to estimation of two position coordinates, two velocity coordinates and the
mean.transmission frequency of the platform. The presentation is entirelir the
same as that described in Figure- 1 when only platform position coordinates
were estimated from the measurements (except for ;he introduction of the units _ -

noted}.

As a first point of interpretation, the improved location accuracy of
a TRILOC system can be derived from these Figures at the three different
altitudes. 'i'his is accomplished by assuming the standard deviations of the
measu;ement errors are equal to those for the single-type—-measurement system
that- has the performance of a one kilometer mean location error. For example,
in the case of the 108 minute orbit, Figure 5, these standard deviation asymp-
totes are .89 hertz for frequency (range-rate) measurements, and .0116 Hertz/

second for frequency rate (acceleration) measurements. In this case, a TRILOC

‘ © -1
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system would yield a location error of approximately .53 Km which égain is
not significantly different than one kilometer divided by /22/8.

The variation of location error with altitude may be determined by
comparing TRILOC systems with equal measurement errors. For example,
if the errors in the above examples are used to enter Figures 6 and 7, then
the location errors are found to be .66 Km for the two hour orbit and .81 Km
for the three hour orbit. These should then be compared to the .53 Km loca-

tion error for the 108 minute orbit,

An interesting side light of Figures 5 through 7 concerns the varia-
tions of the asympt_otes—-i.e. ., the variation of location errors for those
systems utilizing only one type of measurement. In the case of both range-
rate and acceleration, increa sing satellite altitude degrades location per-
formance. For a range rate system, the required standard deviation of error
for one Kilbmeter location error is 2.1 Hertz at 108 minutes and .67 Hertz at
3 hours—or, for given measurerhent error an increase by a factor of morzs
than three in location error. For an acceleration only system, this factor
of increase is about 14. On the other hand, an increase in satellite al-
titude for a range~difference-only system results in a decrease in location
error. This discrepency in location error trends with altitude for; the single

measurement systems can be qualitatively justified by the following argument,

As the satellite altitude increases, the total variation of both range-
rate and acceleration during an overpass will decrease. Furthermore, the
variation in acceleration will decrease more'rapidly with altitude than range-~
rate. Therefore, holding. measurement errors constant result in relative pre-
cision of measurement to the variation of the quantity being measured to de-

crease~—-i.e., larger location errors.
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This is not true for range difference and in fact, the reverse is
true. In this case the total variation of range differenc¢es during an overpass
increase in going from a 108 minute orbit to a two and three hour orbit.

Therefore, the location error for given measurement error should decrease.

A more important aspect of these variations to a TRILOC system is
that the higher the satellite altitude, the less advantageous a TRILOC system is.
The trends suggest that at some altitude, depending upon measurement
errors that are achievable, ;he location error will be solely determined by
the range difference errors—i.e., operation will be limited to the asymptote
where the étandard deviations of range-rate and acceleration are very large

relative to the precision of range difference measurements.

2.3.4 TRILOC System

While the previous discussions indicate the advantages inherent in
the multiple measurements of the TRILOC concept, estimates of attainable
location precision can only be r_nade by postulating actual mechanisms for
measuring the three parameters. To obtain these estimates, a system is
suggested in the following discussions regarding the processer on-board
a satellite capable of making the requisite measurements. From this, estimates
of actual measurement errors are determined and the data of Figure 6 is used
to evaluate location precision as a function of system capacit?—-i.e. , humber
of platforms. . . o

The signal spectrum of this example TRILOC system is a carrier with ‘
20 kHz sub-carriers that are modulated with data. The three parameters
necessary for TRILOC location are m‘easured during a transmission interval as

fc_)llmgs:r o -
® Received frequency and frequency rate are

computed from a least square error regression
of measured time 1ntervals between a successive
number of positive zero crossings of the carrier

while it is tracked by a narrow band phase lock

- loop
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® The fange difference measurement is performed by
measuring the phase of the 20 kHz sub=-carrier
relative to a standard on-board the satellite, and
comparing this phase to that measured dﬁring a suc-
cessive transmission—~phase ambiguities are not a problem
in this case because the major portion of any change

in range is due strictly to known satellite motion. _

To obtain estimates of the errors that can be anticipated in measuring
these parameters and the resultihg estimate in platform location precision,

several assumptions will be made.

e The significant system errors are those assoclated

with the measurements due to noise

t

® The standards on-bbard the satellite do not cbn-

tribute significant error to the measurements'

® The overall signal power to noise density ratio
is 40 dB~-Hz,equally distributed between the

" ecarrier and the coheré;ltly demodulated subcarrier

e The carrler s tracked with a 20 Hz loop and the

subcarrier {s measured through a 400 Hz fiiter

® The measurement period for the carrier is .5

seconds and for the subcarrier is 5 milliseconds.

With these assumptions, the signal to noise ratio for the frequency
and frequency rate measurements will be 24 dB while the signal to noise.'r'atio
for the subcarrier measurement will be 11 dB. The phase neise in these two

channels can then be determined from

. o1 22
For carrier channel: phase noise variance m .002 rad

r subcarri l: = =,
For subcarrier channe | phase nolse variance m 04 rad
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Utllizing the regression analysis provided in Appendix F , the standard
deviations of the errors in estimating received frequency and its time rate

of change are
Standard deviation of frequency error:, .0022 Hz
Standard deviation of frequency rate érror:' .0117 Hz/sec

Where the assumption is méde that the nominat
frequency is 4 kHz and the period of every cycle
is measured and used in the regression analysis

to estimate frequency and frequency rate.

Similarly, if the relative phases of 100 positive zero crossings of
the 20 kHz subcarrier (5 milliseconds measurement period in order to be able
to demodulate the data on the subcarrier during the majority of the transmission
period) are measured and utilized to estimate the relative phase, then the
standard deviation of the side tone phase measurement will be -{_021755‘ or
.02 radians. This translates into

‘Range difference error =-r2‘x range error = -r':‘.‘x E%fg ¥ wavelength
Fora 20 kHz sﬁbcarrier,- the wave length i{s approximately 15 km so that the
standard deviations of the range difference error is approximately 70 meters.
For purposes of utilizing the data of Flgure 6, this is equivalent to .23 micro-
seconds error (i.e_. , the case where measurement of range difference was

based upon signal transit time).

These three errors — .002 Hz, .01 Hz/sec and .23 microseconds—
coupled with the data presented in Figure 6 indicates the .002 Hz standard
deviation in measuring received frequency will dominate in the location
algorithm followed by the range difference measuremer;t and lastly the frequency
rate measurement., Therefore, implementation of a TRILOC system versus
systems wherein only one parameter is used for location will depend upon the

relative values assigned to precise location of platforms and the number of
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simultaneous users in a system. Another equally important consideration is
the ability to service a mixture of user platforms wherein location precision is

important for some and not for others.

For those users requiring precise location, acquisition of a relatively
large number of measurements during an overpass is important. If system
capacity is limited by interference between platform transmissions, then this
increased location precision necessarily results in a reduction in system
capacity. This is particulariy true for systems wherein only one location
parameter is measured during each transmission. However, in a TRILOC sys-
tem the degradation in sys‘tem capacity is much slower. Compared to the single

‘measurement system, a threefold increase in number of measurements is avail-
able in the TRILOC system for.the same number of transmissions. Furthermore,
if the example processor previously described is implemented, then the precision
with which platforms can be located should be considerably improved compared

fo current systems typified by IRLS and RAMS.

2.4 TRILOC lLocation Technique - Analytical

The general problem of locating a platform may be formulated as
follows: We want {0 compute a trajectory parameter vector :'-E, whose elements )
may include platform position, velocity, and acceleration, plus parameters
relating to transmission frequency. Parameters relating to transmission fre—‘
quency instabilities may include such items as the center frequency drift and
the center frequency drift rate on each satellite overpass. We take a set of
m observations, which will be denoted by the column vector z. In a Doppler
location system, for example, the jth compone'nt of z would be the {observed)
received frequency at time Yy Pinally, we assume the existence of an analy-
tical model relating the trajectory parameter vector to the measurement vector,

f.e., we assume that there i{s a known function F'such that F (X, tj) =z, the
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ith component of z. If the dimension (n) of X is equal to the dimension (m)

of Z, we seek the vector X for which

F (;E, tj) = Zj (1)
forj =1, n.

In practice, however, the dimension of z often exceeds the dimension
of fi, that is, there are more equations than unknowns, When this occurs, there
usually is no vector X for which Equation (1) holds for all § because there are
alw;ws some errors in the observations, and the analytical model represented
by the function F may only approximate the physical system. When the number
of equations exceeds the number of unknowns, the method of least squares

- {
may be used to compute x.

The least squares technique consists of minimizing the following

quadratic form: T O
~ [2-F0] ¢ '[7-Fx)] | o (2)

In equation {2), F (%) is a column vector with components f'j = P(}"c,tj) , and
Y  is a weighting matrix, which is the covariance matrix of the measure-

ment errors. A necessary condition for the quadratic form (2) to be a minimum

P I S Y T - - = A ]
2 IB(PeN] W[E-FR)]=3 | (3)
where D is the differentiation operator

-
M. ‘——a-.— - L 2
D= (ax, ’ )axn)

The equations (3) are nonlinear and may be transcendental, making
an analytical solution difficult or impossible. However, an iterative tech-
mique (Newfcon-—Raphson's me.thcl:ad) may be used to solve the system of Equa-
tions (3). If we have a sufficiently good estimate 3?0 of the trajectory para-
meter vector, we can expand F(x) into a Taylor series in a neighborhood of

X! e A
F() = FlR)+ D(F(xe))(X—X,)

where we have retained only linear terms.

-
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v
Equation /(3) then becomé |
[B(RGO] V' [2-FlX)~B(FGI(X-%)] = ()
To simplify the notation, letA = -15(?(;0)) . A is then a matrix with
elements oF(%,12) ‘

di; =
FXF

‘Equation (4) then becomes _

AT [ F(R)-A(R-%)] = D

or : ‘ '
[AT¢™'a](x-%) = [ AT¢ ' J(2-F (X)) (5)

In equation (5), X - ;‘.0 is the error in the estimate of the trajectory

parameter vector, i.e., the difference between the initial estimate and the

true value of the vector, provided ;o is sufficiently close to X. Similarly,

- - B

z - FiX o) is the error in the measurement vector, i.e., the difference between

the actual measurement vector (Z) and the value of the measurement vector

computed from the initial estimate (X ) of the trajectory parameter vector.

The solution may be iterated by beginning with the initial estimate

3?0 and ‘computing successive improved estimates of § from
Xig) = X¢ +] A"'w"ﬂj"[,q" ¢~ J(E~- Fx:))
The solution is. iterated until successive values of x remain
sub‘stantially undhanged. - ' '
2.4.1 Selection .of the Trajectory Parameter Set

If three platform position components and three platform velocity com-
ponents are to be computed at each time {t;) of transmission, then each trans-
migsion would have to supply at least six independent'gbservables from which
position/velocity can be computed. In most systems, only one observable is
provided per .tz'ansmission, and with the TRILOC system at most three are pro-
vided. Therefore, a position/velocity estimate at time t, cannot be obtained
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independently of a similar estimate at some different time tj. Instead, a model
of platform motion must be assumed which defines the relationship between
platform kinematic parameters at different times. Formally, the model of plat-

form kinematics must have the following form:
Bo(t) = R(Relts), Vg lts), Aig(2,), t=%,)
V. (2) = V (Ra (20), Vg (), A (40, £ = %5) (4)

;8{")—7;(%‘5 {f.)) Vg(f,) A {fg f {)

These equations are interpreted to mean that if the kinematic state
of the platform is known at time to, then its state at any time t may be com-
puted from the functions R, V, and A. In practice, the velocity and accelera-
tion may be assumed to be zero, i.e., the platform is assumed to be stationary.
Alternatively, the platform may have a finite velocity but may always remain

at a constant (known) altitude., It is this second case that is usually of interest.

A platform at constantﬂaltitude may be a stationary platform on the
earth's surface, a buoy, or a constant altitude meteorological balloon. If the
platform's altitude is constant, then one of its position components is a func~
tion of the other two, and it has no vertical velocity component. If'the plat-
form follows a great circle route, then its acceleration is a function of its
position and its velocity. Thus if the platform moves in a great circle route
at constant altitude, the kinemétic subset of the trajectory parameter vector
contains only two components of position and two components of velocity.
Specificélly, these corriponents are platform position/velocity components at
time t,. These components are then used to cbmpute the rémaining position
component, and the entire acceleration vector. Platform position/velocity/
acceleration at any other time t is computed from the position/velocity/accel-

eration at time t o using Equations (6).
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In addition to initial position/velocity estimates, the trajectory
parameter vector may also conta in-components identifying the platform trans-
mission frequency instabilities. Platform location is computed by the informa-
tion provided by the frequency received at the satellite. Location estimates
can be no better than the information on which they are based. Therefore,
unless the characteristics of the transmitted signals are known or can be com-
puted to a reasonable degree of precision, the estimates of position and velocity
will be inadequate. The instabilities can be computed by assuming an unknown
center frequency drift and, possibly, the éenter frequency drift rate. These
unknowns are then computed just as the (unknown) position and velocity are
computed. The center frequency drift and drift rate can be computed for each

satellite overpass.

2.,4,2 The Observables and Their Relation to the Trajectory
Parameter Vector

The TRILOC concept includes the measurementAthree quantities. These

4

are:
1) the received frequency of a signal
2) the time rate of change of the received frequency
3) the difference between the time of reception of
two signals (or successive measurements of side

tone phase).

These observables are directly related to the relative kinematics between the

satellite and the platform.

The first observable is the received frequency, £R. If the transmitted
frequency is ft' then the Doppler frequency is

b=ty fe
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The Doppler frequency- is proportional to the time rate of change of the

range between the platform and the satellite (VR):

£
Ve = ::‘-.:—?%I_— (-f--/_)é)
ar_, ]
‘fg = 1?1‘. (J - (7)

In Equation (7), ¢ is the speed of light, and f, is the actual transmitted fre-

quency, Wthh is computed from

ff +"€l"—‘n +fg_ (£-125)

-4 .
where fto is the nominal oscillator center frequency, ftB is the center frequency

bias at time t,, and f't is the center frequency drift rate. Vg is computed from

J/fs‘fal= (V&"Ve)'(ﬁ.s"ﬁs)
o 2 . | Ry Fp 1

Vx=‘

where -ﬁ s and —\-;S are the satellite position and velocity vectors at time t, and
RB and Vg are the platform position and velocity vectors at time t. Rp and Vu
are computed from the initial estimates of platform position and velocity and
Equations (6), Equation -(?) therefore expresses the observable £R as a function
of the trajectory pararneter vector, i. e. , all or any pa.rt of the elements of

RB . VB . AB ' ftB and ft‘ Each Doppler measurement produces a relationship
of the form of Equation (7).

The second observable is the time rate of change of the received
frequency. Its relationship to the trajectory parameter vector is found by taking
the time derivative of Equation (7):

fom G- Y)- f L - ()

. : )
Again, f, =f,  +fig+{,(t-tg), and c is the speed of light. A, is the time
rate of change of the relative range rate between the satellite and the plat-

form, i.e., L. L o .
JV@ (ﬂs"ﬂg)'(k;—fe).*lvs_vol - Ve
Ap = = - .
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. § - ' .
As and AB are the acceleration vectors of the satellite and the platform.

L
Equation (8) then expresses the observable fR in terms of the components
of the trajectory parameter vector. There is one equation of the form (8)

for each TRILOC transmission.

The third observable is the difference in time*between the recep-
' tion of transmissions( At). The time required for a signal to travel from
the platform to the satellite is proportional to the relative range (R } between
the platform and the satellite, where the constant of proportionality is assumed to
. be the speed of light. If the time (A ty) between transmissions from the platform
is known, then the difference in relative range (ARp) at two transmissions
is proportional to the difference in time between the reception of the two

signals,less the difference in time between the transmissions:

Af.\’= C{A‘é‘-ﬂ‘ét) .K

*The use of successive measurements of side tone phase achieves the same
purpose with an entirely analogous derivation.

A possible implementation of this measurement might be 'a platform ‘that counts

zero crossings of the signal provided by its oscillator and is programmed to send

a transmission when the number of zero ¢rossings reaches a predetermined num- -

ber N,. If the oscillator frequency is f; then the time between transmission is

N./fi. Wethenhave Af, = ¢ (at — Me /[ fe)

or,

ARe Ne

Lt = — + 7, ()

ARR 1s compﬁted from
" — - . -—
ARe = } ’?5" -~ IPB:' l - IP."E-: = ﬁei_, '

-

.where ﬁsi and 'ﬁgi are the _satellite and platform position vectors at time t.
Equation (9) then relates the observable At to the elements of the trajectory
parameter vector. The number of equations of the form of Equation {9) on an
overpass is one less than the number of transmissions on that overpass. This
is because for the first transmission on an overpass there is no previous trans-

mission from which At can be computed.

2-28



2.5 IRILOC Position Error - Analytical

"In Section 2.4 the weighted least équares solution to the TRILOC

location problem was derived as

SE = (ATy A ATYISE (1)
For convenience, we will write ; instead of é§ and % instead of 6 z. It is
important to remember, however, that X and z are now the errors in the estimate
of the trajectory parameter vector and in the measurement vector, not the
vectors themselves. If the measurement errors are sufficiently small, Equa-~
tion (1) expresses the errors in the trajectory parameter vector as a function
of the measurement errors. If ¥ - is the covariance matrix of the measure-

ment error vector, then
- -1 - ' - o
cov(®) = [ (AT¢A)AT¥ ™ ] cov (ZI[(A¢A)AT Y]

= (a‘?.r'p""f?)-l - : . .

The joint probability density function for the vector X is
Pl™ ' - -

! aexp(-¥fxTPx)
{zm)® :

where P = (AT?’ =1 )" and n is the dimension of X.

FX) =

We want to find the expected value of the location error, i.e.,
E (‘(xl + x2 ) j where we have re- arranged the elements of X (if necessary)

so that x] and Xg are the horizontal Qomponents of platform position. Then
3
E{ (x 427 )% 2

'IPI
= 2l / f(x,-fr,)‘-exp{-;,x Px}ax---clx,,

(2rm) <
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The integration is made easier by a transformation to hyperspherical
coordinates, (defined in Appendix C):
: et

= cos&, T cosé®
Y, ez K

_ n-t .
Y, = S 0;., 7T_ Cos &, (2 =c £ n-1)

)

"'sn - _ssné'.,,

xp = ¥/ (1= £n)
Then .
1 r 52 n-t o
fxi+ X |~ = r T cos b
e

- ST

XTPx = r'xg Piz

The determinant | Jn/ of the transformation from {r, 81, ..., 94.1) coordinates
to (x;, ..., x;) coordinates is (see Appendix C)

see) Xn) - A~
[dol = /a?i"';:“”: o / =" ;;z_, s 9
We then have ) !H{A ™ Th oo . ﬁf’_w.‘-‘-'rf,g
Ei(x.‘**’-‘)‘j - (z?ﬂ“z-. e Y 7Y '[ rli e 9;; € Ar dbpy ore b,
_ IPI% (nn) /Tr/'mrz T/ ﬂ??; s 9K]c/9n-' s,
= vz’ Te g -Tf/r. [gTPé‘J"—;-'
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Using the results from Appendices D and E, the number of integrations can be

further reducéd, so that
o L
Eé (Xrt"‘X‘ )l}

» ™

i Er (%) TE éns x } "y
= n Nyt - 31—
C 2r(%t) 14 [aina]”

"—I

el 2’ f 4
= [ts p, 517"

o+ n [ - .

— k=3 K = 3

- [a(:':u‘é,q 2T, 80, coff, 4 X, 3,,,",;.‘] =
2T o

The symbols oy ,8 2:Yg+ P2, and‘ ?2 are defined in Appendix E.

A closed form solution to the integral was not found, but its value
was numerically computed to obtain the results of Figures 5 through 7

previously discussed in Section 2.
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3.0 DIRECTIVE ANTENNAS

* A directive antenna on-board the satellite may have distinct advantages

for data collection and location systems relying on random access. Two such

advantages would be the suppression of RFI and/or the ability to reduce radiated

power from the platforms. Thirdly, becaus~ these systems are limited in

capacity by interference between platform transmissions, the use of a directive

antenna may serve to alleviate this restriction also.

The analyses that are réquired to'determine the advantages and con—~

sequences of the use of a directive antenna(s) can be divided into three categories.

Sweeping Directive Antennas

‘the antenna related to the _duty cycle of the'platforms'?

Given that a specified number of transmissions
from each platform is required during an overpass .

of the satellite how are sweep rate and gain of

H

Given the relationship between duty cycle and
antenna gain, how does increased antenna gain
effect the probability of mutual interference

. I
between platform transmissions?

Fixed Directive Antennas

Antenna Size

Determine beam shape, gain and number of beams
to achieve those advantages apparent from sweeping

antennas without the complexity of beam motion,

For those antenna gains found to be pract_ical, what
are the nominal sizes of antennas that provide. the

desired gains and beam shapes?
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3.1 Sweeping Directive Antennas

3.1.1 Sweep Rate, Gain and Duty Cycle

Referring to the sketch shown in Figure 8, if a satellite is assumed to
be at a radius RS from the center of a spherical earth whose radius is RE . then
the satellite is in line-of-sight view of all platforms within a circle on the
earth's surface defined by a cone with apex at the center of the earth with

semi-apex angle of € where cos € = RE/R .

Having defined this viewing circle, the total solid angle subtended
from the satellite to the circumference of this circle defines all directions
from which platform transmissions can be received. If this solid angle at the

satellite is called A_, then

antennas of different gain. In particular, an ideal antenna with a circular beam .

AT =27 (l-sin¢)

This solid angle défines a reference point for comparing directive

whose dimensions just cover the visibility circle would have a gain of 41r/AT.
As a numerical example, for a Nimbus satellite, this is an antenna with a gain

of about 6 dB.

e

For a single directive antenna of higher gain than 41r/A . complete
coverage of the visibility circle will require a sweeping pattern. However,
this pattem must be time and position ordered for random access systems. In
particular, with platforms transmitting randomly in time from unknown positions
within the viewing circle, the motion of the beam cannot be such that by chance,
transmissions from a particular platform are missed throughout an overpass.
More importantly, where multiple transmissions separated by nominal intervals
of time ¢ Are necessary, the sweeping pattern becomes further res‘a'icted/orderegi .

The manner in which these requirements can be satisfied is by the imposition of

the following:
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® A directive beam must dwell in any given direction
for a period of time greater than the interval between
trénsmissions . This assures receipt of at least one
transmission from each platfform in the visibility
circle during one complete sweep of the visibility
circle by the beam.

® The number of complete sweeps of the visibility circle
must be no less than the minimum number of trans-
missions required per overpass from the platforms near

the horizon—i.e., those with minimum viewtime.

Satisfaction of these two requirements implies the following. The total view-
time divided by the minimum number of transmissions {plus one) must be equal
to the product of the number of diécrete positions of the beam and the time
interval between transmissions from the platforms. Analytically, these require~

ments may be written as:

where
Ty = period of time the platform {s in view of the satellite
during an overpass

n = minimum number of transmissions which must be
received from the platforms during the viewtime Ty

G = gain of the directive antenna ‘

- = (4w /a) where "a" is the solid angle subtended by
the beam of the directive antenna.

T —= Tiir'fe between transmissions.
e fne Si
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In writing' these expressions, scveral simplifying assumptions are
made. The ratio (AT/a] 1s the number of distinct positions of the beam neces-
sary to completely cover the visibility circle. This means, there is no overlap
of coverage from one beam position to another. Furthermore, the shape of the
direétive beam is such that each beam position is equally effective .in cover-
ing an area as any other beam position in terms of the projected area of

platforms.

For practical antennas, these assumptions are very optimistic in view
of the relative geometry let alone the ability to shape beams arbitrarily.
However, this assumption. does place a lower bound on the number of beam
positions and therefore total time required to completely sweep the visibility

circle,

By substituting, in the previous expression, the relationship for A’l‘ is

AT‘ = ?JT(\-‘SNQ G) - 27C {'\ _.'_J |- (RE/RJ}}

The time between transmissions can be specified as a function of the

namely

gain of the directive antenna beam. That is:

2Ty ‘
R N

As mentioned previously, the minimum gain antenna that can be

T=

considered is that one which just covers the visibility circle which is

2
Gmmg{\-ml

Therefore, the time between platform transmissions that assures

receipt of at least n transmissions during the viewtime Tv' may be written as:



Ancther bound on the gairlf G, of the difect1Ve antenna can be derived
from this_; expression, While Gy Is defined by the antenna that just covers
the visibility circle, the maximum antenna gain possible is when the time
between transmissions is equal to the duration of transmissions—i.e., the
platforms radiate continuously (CW). The possible spread of the antenna gains may

then be defined as being between GMIN and the gain value Gpmax . comresponding.

to CW platforms. A numerical example is interesting.

For the Nimbus orbit, the minimum antenna gain is about 6 dB. If
RAMS parameters are assumed, -:-1.e. + Ty - 5 minutes, n = 4, and transmission
duration of 1 second—then the maximum (CW platforms) antenna gain is about
15 dB. Therefore, the maximum advantage of directive antennas in the RAMS
system for purposes of RFI suppression and/or decreased platform power is

about 9 dB.
3.1,2 Antenna Gain and Interference

While CW f:latforms establish an upper bound on antenna gain from
the viewpoint of acquiring the requisite number of transmissions, interference
between transmissions occurring in the same beam may further 1imit antenn'a
gain. To evaluate this interference, an aséumption regarding distribution of . -~
platforms is made. In palrticular, the platforms are assumed to be uniformly

distributed as seen fron'1 the satellite.

With this assumption, the number of platforms within the antenna béam
of solid angle "a" is Na/AT—-where N is the total number of platforms within
line~of-sight of the satellite. The rate at which transmissions from within a
beam reach the satellite is then (Na/ATT);which upon substitution of the above'

expressions for T, A.,, and "a" lsads to:

T
Na " _ N {n+1) _ tant
T ~~— = constan
T _ v
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The conclusion, therefore, is that the time rate at which platform transmissions
reach the satellite within a given beam is independent of the width of the beam
itself. However, this can imply increased interference with higher gain beams

as can be seen from the following.

A rough approximation to the dis'tribution of received frequencies at the
satellite for platforms uniformly distributed on the earth is that these frequencies
are uniformly distributed over a band, FT. If interference between simultaneously
transmitting platforms occurs when they are closer than Af in frequency,.and the
transmission arrival times are poisson distributed, then the probability of a

given transmission being interfered with can be written as

- o 268

PI = probability of interference =1 - e T Ay =

where T is the duration of platform transmis sions. Note, the same a'ssumption
is made here, namely the number of platforms that can possibly communicate
with the satellite is Na/AT—-i.e ., only the fraction (a/AT) of the total number

of platforms as defined by the solid angle "a" of the antenna. L -

At first glance, this ex_pression would then indicate that the probability '.
of interference would be reduced in d‘irect proportioh to the gain of a directive
antenna. This is true only if the othex; parameters remained fixed as antenna
gain is varied. However, as shown in Section 3.1, the time between trans-
missions must be inversly proportional to antenna gain in order to insure receipt
of a specified number of transmissiofxs during 2 given minimum viewtime. By
substituting this time and gain relations hgp, the probability of interference may
be rewritten as: ‘ ‘ )

- 4N{n+1)T Af
T T
Y T

PI=1'-e
T

Assuming the probability of frequency overlap, (Af/FT)) , remains the same, this

expression then indicates by the lack of terms describing directive antenna gain,
. ’

that directional antennas will not influence the probability of interference be-

tween platforms.

3-7



LATITUDE

25
%
20 N /
| NN
15 /
; \ N
.w/ﬂ’f"’ ;
» A - l .
10 N \
- : . a3
) 2 ~—— /| 4000 HZ _ \ i
5 T "l 1y 'I :
’ S |_~3005" 1z DOIPPLER SHIFT ,J‘_"’T
. / | '
o o / _ =2000 Hz . ! X ! i_.- L
T i
.s ,\.*\ :
10- " N : ———
T~ "’ﬁctzcu\-ﬁﬁ:_ Eeam / \
15 - ‘ . ' T
5 0 5 10 15 20 . 25 30 1
ORIGINAL PAGE IS DEGREES LONGITUDE

DEGREES

—c s

30-=

OF POOR QUALITY!

900 N.M., SUN SYNCHRONOUS orair

FIGURL 9

402 MHZ FRIQUENCY 3-8



Regarding frequency overlap, Figure @ indicates that the probability
of overlap depends upon the shape of the beam of a directive antenna as
opposed to the gain., This figure shows, for a platform transmitting at 401 MHz,
the locus of platform positions on the earth's surface giving rise to constant
doppler shifts in received frequency at the satellite. Also noted are the areas
encompassed by two different shaped antenna beams—one circular in shape

and the other elliptical with its major axis parallel to the satellite subtrack.

For the elliptical beam, the total range of doppler frequencies can bel
seen to be about + 7000 Hertz or just about the total spectrum of frequencies
received if theré were a single antenna giving complete coverage of the visibility
circle.. In this case then, the ratio Af/PT—the probability of frequency overlap~
would not be expected to change significantly. Therefore, the probability of

interference between platform transmissions would be independent of antenna

gain as indicated above.

. This conclusion is not true, however, for the circular beam shown
in Figure 9. The total spectrum of received frequencies is on the order of
+ 3500 Hertz or about one half the spectrum of frequencies for full coverage.
In this case then, :.\f/FT would be about twice the value for the elliptic or

full coverage beams and the interference between transmissions would be

correspondingly higher..

From these considerations, the use of directive antennas implies the
requirement to employ beams that are wide parallel to the satellite’s subtrack
and narrow perpendicular to the subtrack. Otherwise, mutual interference

between platforms will Increase monotonically with antenna gain.

Because of the rather optimistic assumptions mentioned in the
analysis of Section 3.1, it is apparent that sweeping directive antennas
cannot basically change mutual interference for random access systems.
However, other advantages are possible. In particular, the use of a directive

antenna offers at least three opportunities to:

. 3~-9



@ Maiﬁtain platform power and transmission duration constant
- which, in effect, means utilizing the increased direc-
tivity of the antenna strictly as a means to suppress
interference from concentrated RFI sourceé—-—this might
be advantageous even if losses associated with .

obtaining a directive beam negated any gain increase

o Reduce platform power in inverse proportion to

" antenna gain in order to simplify the platform

@ Reduce the duratio}l of transmissions from platforms
in inverse proportion to antenna gain by proportion-
ately increasing platform data rates. This can be
shown for random access systems of the RAMS type to

simplify signal processing on-board the satellite. .

3.2 Fixed Directive Antennas

From the analysis of s'Weeping antennas, the possibility of reducing
interference between platform transmissions is seen to be non-existent _
because of the necessity to decrease the interval between transmissions in
direct proportion to increased gain. Furthermore, because of the optimistic _
nature of the assumptions regarding coverage of the visibility circle, a
sweeplng antenna beam would inevitably result in performance degradation
in that increased interference could not be avoided as the gain increased. To
alleviate this problem, an array of fixed antenna beams might be more advantageous
Howgver, the preferred orientation of these fixed beams may be dictated by con-

siderations other than mutual interference.
3.2.1 Beam Shape and Orientation

The orientation and shape of ﬁxed beams will be seen to be governed

by two considerations that are conflicting.
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° From the viewpoint -ef satellite signal processing,
the antenna patterns should provide coverage such
that transmissions are received in a narrow frequency

band from each antenna

o From the viewpoint of mutual interference between
transmissions, the antenna patterns should provide

full coverage of the received frequency spectrum.

In essence, the shape and orientation of fixed beams is a problem of compro-
mise between system capacity in terms of the number of platforms to be
serviced and the complexity of satellite processing equipment—basically the

complexity of the signal detection function on-board the satellite.

To simplify the detection of transmissions, each fixed antenna should
be elliptica‘ in shape with ma]or axis parallel to the zero doppler line—i.e.,
the major axis of the beam should be perpendicular to the directicn of motion
of the satellite. The minor axis of the beam's cross section will then deter-
mine the band of received frequencies from the platforms within the beam.
From the relationship for mutual interference glven in Section 3.1.2, this type
of beam shape and orientation would not change the probability of mterference
between platforms compared to an antenna providing full coverage of the visi-
bility circle~—i.e., the antenna will accept all those transmissions that . can
potentially overlap in frequency. However, the detection process is simplified
in this case because of the narrower spectrum which needs to be searched for

amriving transmissions.

On the other hand, t.o reduce interference between érriving transmissions
the antenna patterns should reject in a geometric sense those platforms which
give rise to similar frequencies at the satellite. This can be achieved by
orienting elliptic beams with major axis parallel to satellite motion. If the
separate beams stretch from one edge of the visibility circle to the other, then

the exponent in the relationship for determining probability of interference will
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To analytitally evaluate these two orientations of fixed beams . several
éssumptions analogous to those used to analyze the sweeping antennas will be
made, First of all, the band of frequencies received from an antenna is
assumed to be proportiorial to the angular width of the antenna in the direction
parallel to the motion of the satellite. Secondly, the number of platforms '
within a given beam is, as before, assumed to be proportional to the solid

angle of the antenna beam.

With these assumptions, the prbbability of interference may be

approximated by

. _ EC
‘P:: - \ - T 61‘ 4 “l\
where ’
.oE_L - is the angular width of the beam cross-section
perpendicular to the motion of the satellite
a“ is the angular width of the beam cross-section
parallel to the motion of the satellite
so that A is the solid angle subtended by the

visibility circle of the satellite as before
but approximated by a sguare in this

expression whose sides are (w/z—é);
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%I is the fraction of the N platforms within
the viewing ‘circle contained within the

beam of the antenna

oy /{n/2-€) is the fraction of the.total band of frequencies,
PT' received at the satellite that will be con-
tained within the beam of the antenna.
From this expression the probability of interference is then only a function of
the width of the individual beams in a direstion perpendicular to the motion of
the satellite—~i.e., the a, terms cancel. Therefore, for the case where beams
have major axes parallel to satellite direction of motion and equal to (m/2~¢.

the probability of interference may be written as . =

_ - 2NT aa:-
‘ | where b 1is the number of beams.
3.3 Size of Directive Antenna Arrays C\

The half power beamwidth of a directive antenna array can be related to

size by means of the approximate relatlonshl

L is the necessary antenna size perpendicular to the plane within which#§ is mea-

.75 -

sured. With this relationship and assuming an operating frequency of 400 MHz {
meter wavelength), the maximum antenna dimension is .32b where b is the num=-
ber of antenna beams of the fixed type recommended in Section 3.2. Note,

this last relationship is obtained by assuming a low altitude satellite {Nimbus
or Tiros) wherein the total angle which must be covered by the b beams to com-
pletely cover the visibility circle is about 120 degrees. As an example then, if
there are three equal width antenna beams to each side of the satellite subtrack
(i.e., b = 6), then the maximum dimension of the antenna arrays will be nearly

two meters.

* Reference-Koelle-Handbook of Astronautical Engineering, page 16-42,
McGraw Hill, 1961,
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APPENDIX A
PARTIAL DERIVATIVES OF THE MEASUREMENTS

Section 2.4 shows how a platfofm may be located using an iterative
technique for solving certain non-linear equations., Section 2.5 showed how
the mean location error may be computed from the measurement errors. Both
of these computations involve the use of the partial derivatives of the mea-
swements with respect to the trajectory parameters {e.g., equation {5) of
Section 2.4 and equation (1) of Section 2.5}. These partial derivates are
computed in this Appendix. '

A.l With Respect to Transmission Instabilities

A.l.l Doppler

In a Doppler location system, the received frequency (f ) is measured.
The relationship between the received frequency fR1 at time t; and the trans-

mission instabilities is

'ff‘- = t;, (f - ‘l'/“i‘ . . ﬁ:l

where fi; is the frequency transmitted at time t;, ¢ is the speed of light, and
Vfi is the time rate of change of the distance between the platform and the
satellite at time t{. The transmitted frequency, f;,. is approximated by

fuo mhoa +hey #he (time)

[

where f is the nominal transmission center frequency, ftB is the center fre-
quency drift ft is the center frequency drift rate, and to is a reference time.
The reference time ty may be chosen as the time of the first transmission on
an overpass. In the case of a multiple overpass geometry, the frequency drift

and drift rate may then be computed for each overpass.

The partial derivatives of fp, with respect to f, and ft are

B
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A.l1.2 Doppler Rate

In a Doppler rate-location system, the time rate of change of the
received frequency (fR) is measured. The relationship between t:R at time tj

and the transmission instabilities is

-

‘ r,-ff" - Vel _f.'g.o
_?%._, e ='fg_.(}"'_ — 4L Lo

- a3 c o . ﬁ' 2..
dyy - |
where AR = It L is the radial acceleration between the satellite and the
i
platform. Then
3 ff’" __ ﬂfg' = O
9'/15,3 . < .
Sfes . . N FAes
o (- ) (et B
o <

A.1.3 Range Difference

In a range difference location system, the difference in time (At}
between received transmissions is measured. The relationship between Ati
at time tf and the transmission instabilities is

Afﬂ"’ NC
.ﬂ f(. = c. + {ﬁ "

A.3

where ARRi is the difference in range at times t.i and ti—l and Nc is the number

of cycles between transmissions. Then
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A.2,0 With Respect to Platform Kinematics

Define the following symbols:

-t - -t
1) Rp. Vg, Ap; - platform position, velocity, and acceleration

T

vectors at time ti

R :
2) 'ﬁSi' Vs, ﬁs i — satellite position, velocity and acceleration

vectors at time ti .

3) RR i’ ‘VR:[,..'!L},{i = relative range , relative range rate, and

relative range acceleration at time ti.

Platform position, velocity and acceleration at time ti are functions

of the initial state of the platform, i.e., its position/velocity/ acceleration

at time tO:
- -~ - - —d .
Re; = R(’?Bo;‘/eo)‘qao;f""t’)
- - - - L
VG: b~ V(EGO )Vea )ﬁaa.) f“q'ta)

ﬁﬂ'c.r ﬁ (‘&)50_; VBO 2 ”60) _EL'— t’)

Each cornponent of all vectors RB ., and A By are functions

Bi
of each component of the vectors RB ' VB , and ABO It is the initial state of

the platform that is to be estimated. It will be convenient to use the notation
D ﬁﬁ;
a *x

* to denote a component of the initial state of the platform. For example,
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would refer to the partial derivitive of platform position with respect to Ron

when * =R with respect to R when * =R eic.
on: P BYO Byo'
A.2,1 Doppler
The relative range rate is

(Vs; ~Vac)e ( Rsy — oy )

£r

Vf‘ =

[
L
4

The partial derivatives of Vg, are
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A.2.2° Doppler Rate

The relative range acceleration is

-t - - - - . — X *
(ﬁ"t""qal')'(ﬁ'—f{"fﬂf) I Vse = Vel ]l - VA;;;
»'qﬁ-:‘ ‘
[ 4 ﬁ:ﬁ-&_"
The partial derivatives of Ap ; are
— -
Her . - -2 > a X
P A —— __’_ [Qﬂﬁa v (ﬁs"" ‘9‘3‘.) '+(qu4—ﬁe,:)' ‘;;Fr.
o F e IF
a.-.e - Q 'fl'- apf’
+2 S e (Vai=Ves) + Ve 5 +Ag, St
then
3fe _ £ oV Loy Dmp
sr T T T o
-~ - i"". V! féo ;),qf‘.
“« oA & o

A.2.3 1 Range Difference

The relative range at time t is



The range difference is then

- —

- -
A‘P;r,' = 16, Fa,s [ -/ fs‘-_. "‘ﬁe,:-, /

The partial derivatives of RRi are

——
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- fﬁ'"
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APPENDIX B
MODEL OF PLATFORM MOTION

This Appendix presents the model of platform ‘motion used in the

TRILOC location error analysis. In this model of platform motion, the plat-

form is at constant altitude with an initial horizontal velocity {(which may be
zero) and an initial horizontal linear acceleration (which may also be zero).
This model approximates a great circle trajectory. The following symbols

are defined as:

'13, \7, A - platform position, velocity, and acceleration
at time t.
i;o' \7’0,5\0 - platform position, velocity, and acceleration

at time toe
bt - t-tg
C - platform altitude (constant)

Then
Py = Py, + Vg, T + 4y, (S2)7

Po, + Veo $C +* Az, (ST)™

P = {‘kl" P‘:“P:f"“

V, = Vﬁo*‘gl’o,‘sf ﬂ.,:ﬂ_.,a

vz =Ugav‘ﬁ;,5f ‘qi:"’#z‘o

T T =
KAVt Vz s P Byt Faty

P\ +Pl/
F Sl 4 & Va -
,ﬂx-—.

VX = -
Px Px
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The partial derivatives of P, V, and A with respect to the components
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APPENDIX C

n DIMENSIONAL HYPERSPHERICAL
COORDINATE TRANSFORMATION

In Section 2.5 the expected location error was written as a multiple
integral. It was stated that by performing a transformation from Cartesian
coordinates to hyperspherical coordinates the integration could be performed
over all varisbles except one, 1.’9‘. . the multiple integral could be reduced
to a single integral. This Appendix defines the hyperspherical coordinate
system and eva luétes the determinant of the Jacobian of the transformation

from hyperspherical coordinates to Cartesian coordinates.

Define a transformation from n dimensional hyperspherical coordi-

nates (r, 85, « . «, 8q-1) to n dimensional cartesian coordinates () C ey xg)

as follows:

e e FREpp——

et e+ e X COS 8, T COS Epe

e . R e S

e _— . o X;.__':‘-_AF‘S",/?,&‘.-_;_ 77-, ::9-{__5{?.-_ . _(a-‘-:: & £ 7 f)A .
A=

XKn =X S/ Cltrmt o e



The inverse transformation is

“ T o, = f;r;" ‘ )

P N ——

_ f R
: . - ~7 ' =
e e B an__ ng-f NSV IR Ay B ¢

The range of the hyperspherical coordinates is

_._..-.._..__.H,‘.,,.,.,._,..,‘-.:.77‘-_. ""E .~ é/ “é .,77- [

et =TT 2 2B =

The Jacobian ], of the transformation is the matrix

Ll

e Xy ey X0 )

T —----Hd._______-_w L an - e o e
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e e e | €05 6,.C056, SN, CotE. . .

We want to show that the determant of [ is

/J_; /_ : SN 8, €oS &y X cos &, cos by

e e I n:.l__ oz T i e e —
S / J / 7T _COS. 1.95,‘., e 7/;»» h S
L=7
‘Forn =3, we have
e e K EL X C08 By €O B C o
_ SR o S SNV Y. N- PR -1 % o -2 S e e
e e e e ..‘,_.___Xg - S Y 5‘2._ - .__;.__ e e - — .
and '

Bl of L — 2

J/ﬁé’ Sim 6':

e o St Go _ I”) COS En

N __--3 2 .- T et
- 3
e = 77— <cos 5'”, e e - —

L=

Therefore, the formula holds forn = 3.
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Now suppose

for n-1 = 2. Define

: s
e S =L 03, [77‘?_ CotBr . — e

e [P [V S -

. e T
o O rSinef, T s (2S5l En-2)

e e e e et e Y . . S

KL

- — _— Yn-1— . rsm Op g R e

_— Then X{=Yyjcosfp-] foris n-1 and Xn =rsinfh-1. The t_ra_nsfof—
mation from (r, 81, . . ., 6p-2) coordinates to (yl ¢+ o « «s ¥,.1) coordinates

is an (n-1) dimensional hypersph_erical coordinate transformation . Therefore,
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This determinant is easily evaluated by observing that the cofactc-nrs of

of the first two elements of the last row are
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APPENDIX D
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| gl . Cos &€
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The mean location error was written as a multiple integral in Section

2.5. In Appendix E the multiple integral 15 reduced to a single integral.

Reginning with en-—l . the integration over each 9 i leaves an integral of the

form

where &, B, and A are functions only of 8, , 85, and 91_2. The integral D-1 .

is evaluated in this Appendix. This result is then used in Appendix E to com~

pute the mean location error.

For convenience, we shall denote the iniééral to bé e\—raluatedv byI (9)

D-1
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Let t = tan®

Then
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APPENDIX E

' .. 74} A =1
. .. . Ceees - . K - . .
. [Zr Casl&k]clgn-,..'db’f
- Evaluation of o i

=P/ -T2 L TP 'SJ

In Section 2.5 the mean location error was written as a multiple

integral. This Appendix shows how the multiple integral is reduced to a

single integral. No analytic expression for this single integral was found

but its value can be numerically computed.

_;_m,_ﬂ_w_,m_.P.-.-.__Aj_".f:_’__ﬂ.__f-__[c,p-u_,(_;?_)_]_._"' . B

ﬂ“’ n-!
‘.'7" 3 co, S0 6, T, COSGry 0 0e, Sin 90-._7
[ €058 £ ‘5'rJ. 22 20 O LGOSy o2y T

Thus P isannxn dimensional matrix and y isann dxmensmnal column vector.

Define
P.=P

and
- . -
5, S



Then for j =3, 7, define
z =< —_T o
PJ-‘-’ — YJ‘ PJ‘ _— rJ‘ A,.KJ'_. — e — o = s i -
and e+
T
- N t
J'... = [ ':SJ--; Cos 6".}.....; : i 6,_, -1 j-_ - —
~ where CoTT T T e e T
* b s v - e -
P 1 e
P\ = J e )
O e tte e
rJ. f yJ‘ i

*
_That is, P]- is a j % j dimensional matrix. Pj is the (j-1) x (j-1) dimensional

matrix derived from P]- by striking out the jth row and the jth column of Pj .
Fj is a {j~1) dimensional row vector which consists of the j= row of Pj, but
without the lth (last) element of that row. y?j is the jth element of the jth

ron of Pj.‘ Yj is a j dimensional rbw vector such that .

- -
1) yy =V

2) yj.] is computed from 3?1 by striking out the last element
of ;j and dividing the remaining j-1 elements by cos 9]'-1 .
Dashed lines in the expressions above are used to indicate partitioned matrices

and partiticned vectors.
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Then, if 3 £j <n, we have
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where 2
= gi_, Cdg
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Note that 053 and g are scalars.,
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_Letn =3. Then (see Appendix D)
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Therefore, the formula holds forn = 3.

Then

Now suppose it holds forn-123.
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Thus we have shown by induction that the formula holds foralln= 3.
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APPENDIX F.
MEASURING FREQUENCY AND FREQUENCY RATE

This appendix describes one technique whereby the frequency received
by a satellite and its time rate of change can be estimated and determines the
precision to which these two parameters can be measured. The basic assumption
throughout the analysis is that white noise- is the only error source corrupting

the measurements.

The measurements from which frequency and frequency rate are esti-
mated are the series of elapsed times between positive going zero crossings of
the received frequency {after down converting the r.f. signal to several thou-
sands of Hertz). FPor present purposes, the resolution and precision of these -
time interval measurements is assumed to be much smaller than thev equivalen;:

phase jitter of the signal itself as caused by noise.

Assuming the received frequency is varying linearly with time, then
the period of time (Ti) between 1 positive zero crossings can be related to
frequency (w) at a given point in time and the time rate of change of frequency

{a) by

W +oaT; =210



y
If perturbations are taken from this equation, then the errors in @, w, and Ti

(6, 6w, 6Ti) are related by
T
T W +5T Sx = —(w ﬁ-acTE,)QT‘:

or for-an ensemble of measurements of T, this may be written in

| | Y_A] {Sx} = {T-L

where for the ith measurement

agy = =T /[ raT)

Qig = - -‘51-421/(\:« +oTL)

E& - &4
STy |F
)

With k>2, the errors in 6w and 6¢ can he determined if the solution
for w.and o is assumed to be based upon least square fitting or regression,

In this case, the solution is

Sx - (ATA)-lATST

By assuming the 8§ T's are independent (which they are not strictly speaking} of
zero mean and equal standard deviation of O, then the covariance matrix of

6 x becomes

Cov (Sw,gu. = 0;2 (ATA)-\ ‘
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This relationship can be used then to evaluate the standard deviations
of w and x (namely G, and oa) as a function of w and &®. This has been done by

means of a computer program with the following results.

With frequencies (w) and frequency rates (&) between 1 to 10 kHz and
2 to 100 Hz/sec, the standard deviations of frequency and frequency rate are
essentially independent of frequency rate and approximately proportional to
reciprocal of the square root of the frequency itself when measurement duration

is fixed. For a duration of .5 seconds,

O;V-JS/N‘ = o7/ Wz

O = '%7/-1}WL Hafsec

where { {s the nominal or average frequency in units of kilchertz and O is

replaced by the relationship between signal to noise ratio and frequency —

O - — for w in radians/sec
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