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INTRODUCTION

_This final technical report describes the results of

.work performed at this Laboratory under NASA Grant
' No. NGR-009-033. This Grant was one of the earliest Govern-

ment supported research projects in the area of amorphous semi-'

.conductors. Until recently, solid state physics had been

concerned primarily with crystalline materials - a concern
which has led to a revolution in electronics technology.

The study of the fundamental properties of disordered semi-
conductors indicates that many of these properties responsible
for the huge technological success of crystalline materials

are still present in the disordered materials. In addition,
the disordered systems hold much promise for contributing their
own unique attributes to the development of semiconducfor tech-
nology. For example, their insensitivity to structural changes,
wrought by exposure to hostile ambient conditions such as
temperature fluctuations and radiation fields, immediately
suggests their application to certain classes of hardened

- devices. But, as in the case of crystalline Semiconductor =

technology, the fundamental physical properites, materials
chafacterization and basic theory must establish a firm
foundation before there can be much chance of significant
technological advance.

During the two years covered by this report, we have
investigated the optical properties of carefully prepared
amorphous silicon and boron. Much has been learned about
characterizing these materials and measuring their purities. '
The gfoundwork has been prépared for understanding the behavior
and properties of amorphous semiconductors and for the fabrica-
tion of useful devices based upon such an understanding. A

number of technical reports have appeared in the scientific



literature (see Appendix iisting 6 references published with

NASA support) and a paper on the bptical properties of amorphous
" silicon and boron films is being prepared. Our work on dis-
ordered semiconductors has developed a firm foundation under
NASA sponsorship and further work is being continued under

alternate sponsorship.

. This report covers three areas of investigation into the
proﬁerties of noh—crystalline materials: (1) optical properties
of elemental amorphous semiconductors, (2) Mossbauer studies
of disordered systems, and (3) theoretical aspects of dis-~
ordered semiconductors. ‘These will be described briefly
below. B?iﬁground material has been provided in the original
1

or will soon be, published. The detailed results which have

proposa . Detailed results of the completed work have been,

been published are attached to this report.

Optical Properties of Elemental Amorphous Semiconductors

Optical absorption studies of solids are a classic means
of determining fundamental properties of semiconductors such
as band gaps, density of states, and impurity levels. Optical
studies have, of course, accompanied and aided the development
of crystalline sémiconducting devices. In the investigation
of amorphous materials, optical studies are playing a similar
role, but a great deal of controversy surrounds the inter-
pretation of the results. The sharpness of the band edge,
for example, is still not entirely resblved. Some investi-
gators have observed sharp band edges in amorphous germanium
and silicon, while others have observed tails. Band tailing
is expected according to the presently accepted theory of
disordered systems.



Optical studies in amorphous materials are somewhat
more difficult than similar studies on crystalline systems.
The samples investigated in this report are in the form of
thin films;_ Thére are problems associated with sample purity
during fabrication, substrate influence, optical interference
effects, andtsurface contamination after the sample is removed
from the vacuum. Exploring the band tails in amorphous systems
‘also requires greater Sensitivity and lower background than is
usually émployed for normal crystal studies.

An optical apparatus was constructed to maintain the
sample purity and provide the sensitivity necessary to explore
" the spectral absorption of amorphous materials. The optical
facility developed under the NASA Grant includes a double-beam
spectrometer for recording transmission spectra over a wide
range of sample environments. The instrument is extremely
versatile in that almost any combination of energy sources,
gratings, and detectors may be used to obtain spectra over
the range from 2000 A in the ultra-violet to 4f in the near
infra-red. The novel electronic detection scheme allows

-—-accurate transmittance_measurements _to_ _be made down to 0.1%

of the reference signal, while the SPEX Model 1400-11 double
grating spectrometer provides excellent spectral accuracy
and high resolution,

The complex refractive index for each sample was
determined by a computer analysis of the transmission versus
wavelength data for a pair of similarly prepared thin films
of different thicknesses. A computer program was developed
which properly takes‘into account the multiple reflections
between the thin amorphous film and the air as well as those
_reffections between the substrate of known refractive index
(usually quartz) and the film on one side and air on the other.
Transmission data for two films identically prepared except
for thickness are analyzed to give the index of refraction n
and the absorption coefficient a for the ahorphous film.



Preliminary results for silicon (Appendix I) and boron
films (Appendix II) have been presented at appropriate technical
‘symposia. A comprehensive summary of our findings is being
prepared for publication in a technical Jjournal with copies
to be sent to NASA as an addendum to this report. Figure 1
shows the variation with photon energy of the refractive
index n and the absorption coefficient o for similarly
prepared amorphous and crystalliﬁe silicon films. These data
clearly show fhe presence of an absorptiVe tail in the amorphous
films and the absence of such a tail in the crystalline films.

The process of crystallization of'amorphous films is.notv
well understood. We ha&e investigated the crystallization
process in amorphous'silicon films by observing optical
transmission changes in the films as they are heated at various
temperatures for different iengths of time. A model for
describing crystallization process was formulated and the
silicon film data fitted to the model. We believe the result
to be applicable to other systems as well as silicon. A |
detailed report appears in the literature (see Appendix I11I).

L]

In connection with the optical investigations sponsored
by NASA, we have for some time been concerned with the pre-
paration and analysis of ultra pure silicon films. The
technique of sputter-ion source mass analysis of the films
has been used to characterize the purity of the films and
as an aid in obtaininé purer films. The technique is also
useful in determining bonding and clustering of atomic
neighbors in the films. This work has been described in
earlier Progress Memoranda to NASA (2). A more detailed
account of this work, which was not ?ggported by the NASA

samples were, of course, used in the NASA optical study.

Grant, has been published elsewhere The ultra pure
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Mossbauer Studies of Disordered Systems

The Mossbauer technique has been established as a useful
method for investigating the microscopic structure of matter.
Its application to the study of disordered solids is outlined

(1) «

in the proposal

Under NASA sponsorship, the experimental apparatus was
acquired and tested. Efforts were made to design a system for
investigating amorphous tellurium films by Mossbauer
spectroscopy. The NASA program was terminated before any

satisfactory amorphous tellurium films could be obtained.

Recently we have, however, succeeded in preparing amorphous
tellurium films which give good Mossbauer spectra. There.are
dramatic differences between the spectra of the amorphous and
crystallized samples. The experimental work and its interpreta-
tion are éontinuing at this Laboratory under alternate sponsor-
ship (AROD). Preliminary results indicate that, as we anticpated,
the Mossbauer technique is extremely sensitive to changes
in the structure of films.

Theoretical Aspects of Disordered Solids

Theoretical wbrk, in collaboration with scientists from
other institutions, has centered on the extension of the single-
site Coherent Potential Approximation to include the effects of
scattering from pairs of sites and off-diagonal randomness. Both
weak and strong scattering cases have been analyzed. The numer-
ical results for the density of states have been obtained for
various disordered binary alloys. Detailed results have been
published and are included in Appendices IV, V and VI. The
model has also been applied to‘investigate the effect of
magnetic disorder on the spin wave spectrum and the curie tem-
perature of a randomly disordered spin-3 Heisenberg ferromagnet.
In addition, computer programs for analyzing optical trans-
mission data were developed and modified for interpreting the

experiments performed on silicon and boron films.
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"Appendix I

~Abstract submitted for the Annual Meeting of
The American Physical Society, January 31-February 3, 1972

Published in Bull. Am. Phys. Soc. 17, 114 (1972)

Optical Properties of Amorphous Silicon
Films.* "N. A. BLUM, C. FELDMAN and K. MOORJANTI,
Applied Physics Lab. The Johns Hopkins U.-- |
Amorphous films (~ .5 To 1.0 m thick) of well
characterized pure Si were prepared by vacuum
deposition on fused silica substrates under
carefully controlled conditions. Sputter-ion
mass spectrometry has provided information con-
cerning the purity and composition of the films.
Optical transmission studies on films of various
thicknesses has yielded values for the complex
refractive index over the wavelength range
0.4 to 2.5 m, The absorption spectra clearly
show the presence of an absorptive tail at the
longer wavelengths relative to identically pre-
pared films which were subsequently crystallized.
The results will be discussed in terms of recent
models affecting the tailing of the density of
states in amorphous materials. A double beam

spectrophotometer—has—been—designed—for these
experiments and will be described briefly.

*Work supported in part by NASA Grant No.
NGR 21-009-033.




Appcudix 1L

Mass Spectrometry, Optical Abseorvition and Electrical

. . e *
Properties of Amorphous Ecoron Films

Charles Feldman, Kishin Moorjani and Norman Blum

Applied Physics Laboratory - The Johns Hopkins University
8621 Georgia Avenue, Silver Spring, Maryland 20910

-ABSTRACT

Electrical conduction and optical absorption in pure films
of émorphous boron are describedl Sputter-ion source mass spectro-
'metry wés used to investigate the purity of the films and showed
that the previous samples, deposited from-graphife cruciblcs,_
cohtained a large amount of carbon. Various sources of impurities
during vaéuum deposition were identified. The sputter-ion source
mass Spectrometry-also gives information about the boron ion-
clusters ejected from these films. The cluster spectra shows
peaks a% Bg, suggeéting a coordination number of 5 fof amorphous'

filmstpaigguggmpe ture_dﬁpendence_of_electiical—resistdwdﬂﬂf

identifies activation energies at 0.14 eV, 3.35 eV and 0.65 eV,
The optical absorption edge in amorphous boron is considerably

broadened and shifted toward lower energies as compared to the
i . ) :
crystalline case., The absorption coefficient «, for values

‘ 2104 cmﬂl, follows the expression (hv.-=Eg)2/hu and for lower

values can be fitted to an exponential éhV/Ea. The values of the

parameters Ea and Eg are determiﬂéd to be 0.12 eV and 0.62 eV
respectively. "These results are discussed and compared with
those reported in the literature.’

* L . . . )
" Supported by Naval Ordnance Systems Command
Contract NOOO17-72-C4401, Task A1l3B

-



If Introduction

'Effortsisince the pfévious Boron Cbnference have beeﬁ
'cbncenfrated on the improvement and refinement of techniques for
producing fhin'films. Refinements have been made in vacuum tech-
niques for producing the films and in optical techniques for
ﬁeasuring their optical properfiesf A sputter-ion source mass
spectrometer has been used to analyze the films from the étand-
Apoint of purity and ion clusters; and this information has beeq(,
used to impréVe the purity 6f the films. - The methods for'pro—j .
ducing purer films and the conditions during vécﬁum depositiqn
are‘describéd in the next section. The purity of these samples
vasAdetermined_by sputter-ion source mass analysis is discussed in
Section III. It is found that the films described in previous
reports'contain large amounts of carboh. Section IV deals with
the analysis of boron ion clusters in amorphous films as well as

in the bulk material. The électriéal conduction and the optical

absorption_in the purer samples are discussed and compared Witﬁ
; earlier results in Sections V and VI fespectively; Finally, the
last'section confains séme concluding remarks on the present
findings.

{

II. Film Preparation

Samples were deposited in a 12" water-cooled stainless steel: .
‘vacuum bell jar. The system was evacuated by means of a mechanical
pump, an oil diffusion pump and a titanium getter pump. Appropriate

zeolite and liquid nitrogen traps are included in the system. The



pre;deposition pressure was less than 5 x 10'"9 torr. Deposition

8 and 1 x 10”7 torr. The deposition

pressures were between 7 x 10~
parameters for the samples described here are given in Table I,
Sample B-44 was deposited in a carbon crucible at a pressure of

2 x 10-'6 in a similar manner tg that described in the previous
Conference.(l). An analysis of tﬁis film, to be discussed later,
showed that it contained a large quantity of carbon. Sample B-66
was.depositedlfrom a silver-plated copper, water-cooled crucible,
and Sample B-62 and subsequent films used water-éooled stainless
steel crucibles with molybdenum liners. A photograph of this
crucible and arrangement.in the system is shown in Fig. 1. The
large diameter (3.5 cm) of the source allowed‘oné to obtain a

fast deposition rate. The elimination. of the carbon crucible
brohght about a lowering of thé préssﬁre during depositipn since
the outgassing of the graphite cruciblé was difficult to eliminate.
Substréte feﬁpératures-between iOOOC_and 300°C represented the “

maximum temperature recorded by a thermocouple in contact with the

back of a substrate during the deposition. Except when hotéd, the

heating of the Subsfraté was due to radiation frpm the crucible.
In Samples 62 and 68, effort'was made to deposit at high rates in
“order to limit the occlusion of residual gases. The residual
atmosphere in the vacuum chamber was monitored with a mass
analyzer. Typical partiél pressures of major gases are shown in

Table II.

Bulk boron was obtained from United States Mineral Company
with the quoted purity of 99.99995. Attempts to crystallize the
boron‘films by. heating the samples in argon following the deposi-

tion have been unsuccessful. The films tend to crack and flake

&...,‘\
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‘off their substrate as they are crystallizing. Filums depoéited on
substrates mainfained at 900°C remain, however, confinuous and
smooth. Tﬁe X~ray diffraction pattern of these films still shows
diffuse rings.

I1I. Sputter—idn Source Mass Analysis

The films were analyzed by means of a sputter-ion source
mass spectrometer*. This spectrometer employs é 10 kev argon ion
beam which bombafds the‘béron film, ejecting boron ions, boron ion
clusters, ion éomplexes, and impurity ions from the film. The
ejected ipns are analyzed in ﬁ mass spectrometer. A tybicél
mass spectrometer trace ‘is shown.in Fig. 2. The analysis of boron
samples ishﬁery similar to that recently'reported for silicon
films {2). Impurity analysis was carried out using an energy

window of 100 eV and 250 eV. This allowed determination of atomic

impurities without interference from clusters and complexes.

The impurity analysis of the films is obtained from the

mass—spectra—by means—of—the followingapproximate equation:
Ix+ / Yx+
1B+ / YB+

where the I's represent ion_contents, and Y's the relative ion
yield. A knowledge of sputtering yields is thus essential for the
determination of impurity-content. Yields based on elements in
elemental form are given in Table III, along‘with impurity analysis

of the samples listed in Table I. If the impurities are assumed

GCA Ion Micfophobe Analytical Mass Spectrometer (IMS 101B),
GCA Corp., Bedford, Mass. ' :

~.



~to be in the oxidized state, the impurity content would be 10 -

- 15 times 1less.

The ﬁigh content of carbon in Sample ET-%4 is clearly due to
the graphite crucible. This is in contras" to statements found in
the literature that the vapor pfessure of =sz2rbon is much lower
than that of boron at the melting point a:xd consequently one does
not éxpect many carbon impurities in the =:zcron film (3). The 8%
carbon impurity in Sample 44 is considerat .y greater than the
. 0.2% equilibrium solubility of carbon in'ﬁ:lk boron. If the
sample'were crystallized, the cafbon‘would probébly residé on the
' grain boundaries as a separate-c or B4C pmzsé (4). Major ihpurities
in the films (see B-68) tend to be silicoz ard iron. As can be
seen from the tables, silicbn may arfive f>orm the source itself.

The source of iron is more difficult to e <ermine. Analysis of
a different piece of bulk béron sho&ed an -ron contamination in

~ small areas on the surface. The high sili.ron, oxygen, carbon and

iron content of B-62A probably represents the'Sioz showing through

in pinholes as fﬁese impurities do nof ap;eaf to the same extent

" -in samples deposited on tantalum substrafss. A direct comparison
_between series B-68_deposited on Sio2 (noz shown hére) and on
tantalum bears this ouf. " Sample B-71 was Zeposited on a substrate
held at 900°C. 1In.this sahple the silicex and iron as well as

" carbon and aluminum probably comes from &:i.“fusion from the sub-

i

strate into the film. The fused silica s..vstrate contains carbon

and iron impurities as determined by the :::me mass analysis

techniques. Care was taken.during this L-.7h temperature run to



avoid heating any stainless steel since it had been shown that
iron and chromium vapor could contaminate a’ sample at 900°C (2);
The samples do not appear to be contéminated with molybdenum

or silver from the deposition crucible.

The carbon and oxygen impdrities in all samples are difficult
tblanalyze since there appears to be a surface reaction with the
sample during sputtering in the mass analysis procedure., The
carbon and oxygen impurity conteﬁt in silicon films deposited by
the,samé technique and at somewhat higher pressures arevconsiderably
less. McElligott and Roberts have demonstrated that O, and CO
are chemisorbed strongly on a deposited boron film and tﬁis
‘chemisorption appears to be greater than on silicon surfaces (5),
The amount of oxygen and carbon_occlﬁded in the films during
depositién can not account for the large_quantity éf C and O
6bserved. Table II shows the calculated values of the'rafio of

gas molecules striking the substrate/cmz/sec,(v ), to the boron

gas
atoms striking the surface/cmz/sec,(uB). If all these gas

molecules_stick,which—is—unlikely;—the—sum—of—theoxygen=bearing

- species, assuming COqy and Oy do not decompose,.would give 434 ppm

oxygen'impurity in Sample B-68, while the mass analysis shows a

‘6000 ppm in Table III. The figures for O, C and perhaps N are-

- thus too high.

IV. Boron Ion Cluster Analvsis

The mass spectra shown in Fig. 2 show peaks corrz2sponding to

Bg ... Bf.  The peaks Bj to'B8 have nbt been observed in the mass



spectra when a fhermal source rather than sputter source is used (6),
The cluster peaks are complicated by the existence Qf two isotopes
of almost equal intensity. A cluster of three boron atoms, for
example, shews mass peaks at 30, 31; 32 and 33. The analysis of
the clusters was accomplished by convefting all peaks to an
averageAmain cluster 11B; peak through the prediction of relative
intensities. The results are shown in Fig. 3, which shows the
relative distribution of ion cluséer; ejected from the boron
target. Note the deviations in the films from the relatively
smooth distribution at Bt, which represents a cluster of 5 boron
atoms. Ie_the case of previously studied silicon films, the
SiZ’ion deviated from the smooth distribution (2). Using argu-
ments’discussed previously for silicon, and assuming that the
.distribution is felated to short range order, one would draw the
‘COncluéion from ﬁhese curves that the films coﬁtain a large
fraction of boron wifh five nearest neighbors. The shert range

order in the amorphous films may thus be related to the

a-rhombohedral—phase—as described by Badzian CZ). The cluster

distribution in the films appears to differ from that of the bulk
i . ’

crystalline phase, however the analysis of crystallized film

Samples must be completed.before more definite conclusions can

be drawn;

V. Electrical Measurements

‘Electrical measurements were carried out on the samples

described here.in an effort to distinguish differences between



(8)

these pure samples and the ones described previously .

Resistance versus 1/T measurements were made in a pure argon

atmosphere in a tube furnace with gravity contacts onto titanium

deposited electrodes. The results are given in Fig. 4 for samples

containing carbon, samples from a molybdenum crucible, and a

sample deposited on a hot substrate. In each case, the curves'

could be broken into three straightAlines representing three

activation energies. Above 700°K, all of the samples appear to

show an intrinsic slope of .65 eV, - This would lead to a band gap

of 1.3 eV, which is exactly that reported previously (8). The -

activation energy at around 0.3 eV and 0.15 eV was also slmilar

to those reported previously. There is thus little difference

between the values of activation energies of more pure films and

the films described earlier., These values are also similar to

those found by various authors in
LI X
source of the activation energies

be noted that the films may still

crystalline boron

(9). The

is unknown, however it should

contain a carbon impurity which

the energy levels

4)

All of the samples exhibit p-type conductivity and have a

A,resistivity of 103 - 104-6hmegm, measured by both a 2-contact and

a 4-contact technique. fThQ value is considerably lower than

1012

- reported for crystalline boron

ohm~cm reported previously.by us
(10)

(8) -

,. and even lower than that

. However, this low value of

resistivity is the same as that found in carefully prepared films

by "intrinsic thermometer method"

(11) -

The present films were

deposited at 1000i/min at less than 1077 torr in contrast to the

previous films deposited'at'200A/min at 2 x 10"5 torr. Also, as

h“’&'ﬁ

.

A



more pure films. The enormous decrease in resistivity with increased

. perhaps even in crystalline boron.

—beam-splitter and allowed to pass through identical optical

-8~

discussed in Section 111, these improved conditions have led to

purity could then only be accounted for by the presence of large

amounts of compensating impurities in the previous films and

The previous samples deposited at 10-5 torr would readily

switch from a low to a high conduction state in the manner previ-

a 12

ously describe The low reéitivity of the present sémples

makes switching difficult since it is hard to impose a high field.

At liquid notrogen temperature, héwever, some switching does occur.
. r
The effects of joule heating and the analysis of pre—switdhing

(13)

non-linear currents has been described elsewhere

VI. Optical Measurements

The spectrophotometer.used to measure transmission goefficient T

.is a double beam instrument in which the monochromatic beam from

a SPEX Model 1400 double grating monochromator is divided by a

elements before being recombined and focused onto the detector.

One legzéf the beam is passed through the sample and the other
through a reference absorber (usually air) before the beams are

recombined. The sample and reference beams are chopped at two

" different frequencies (175 Hz and 200 hz) by tuning fork light

choppers. The two frequency components of the detector signal are
separated by two lock-in amplifiers in a manner such that a voltage
prqportioﬁal to the ratio of the éample signal intensity to the

reference signal intensity is.available for display on a strip

chart recordert;_The;wavelength resolution of the instrument is a

LY

7
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function of waveléngth and slitwidth. in all cases it is 1ess
than 5‘§ 10—3pm and is usually about 10_3um. _The -photometric
Aprecisioﬁ is T+0.005 over most of the range of the instrument.
The photometric éccurécy in thé'visible region, for which

calibrated standards are available, is also Tz0.005.

The'optica1~éonstants wvere determined by measuring the

transmission through two samples, deposited at the same time, which

{

were identical except for thickness. The procedqre for obtainiﬁg
the optical constants from the transmiséion data has aiready been
~described elsewhere (1). The value of the refractive index n at

A= 2.5 pum was‘found to be 3.45, which is to be compared with the
value S.i for crystalline boron. This increase of approximately

10% is similar to the ones repofted for amorphous forms of

silicon (14’15), germaniﬁm(IG) and many other covalently bbnded
semiconductors which have the same short range order in their

crystalline and amorphous states.

The absorption coefficient & as a function of energy in the

range of 0.6—1}7 eV is shown in Fig. 5 and compared with earlier

(1)

For completeness, the data on
(17,18)

results Bn amorphous boron
single crystals of B-rhombohedral boron ié also included.
The fwé sets of samples used in the present work were from 0.13

to 0;43 Um thick,:allowing accuratelméasurements of transmission
up to 1.7 ev. The.absorption values in amorphous boron (Fig. 95)

are higher than in the crystalline boron and the absorption edge

is considerab1§ broadened and shifted towvards lower ensrgies. - The
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situation is again similar to that in amorphous silicon (14,15,19)

and germanium (16,20)

Cémpared to our previous data, the absorption‘coefficient
is somewhat higher in thé entire energy region; moreover, the
sharper rise in absorption starfing at 1.3 eV (see Fig. 5) is
not discernible in the presént data. The analysiscof the data

1

shows that the values of a2104cm_ , in the energy range 0.8 eV

—1.65 eV, can be fitted very well to the expression f
(b - Eg)?
A A

hy

with the "band gap" E, = 0.62 eV. For lower values of o, the

g .
hv/E

data can be fitted to an exponential e a with the characteristic

energy E; = 0.12 eV. In terms of the recent models introduced

to discuss the density of electronic states iﬁ disordered semi-
conductors, E# corresponds to allowed opticai transitions between.
band-like states, while E; is .an activation energy between states
inbthe exponentially decaying ta;lé of th¢¥§?ﬂ§iEX~9f;§§%£€S+-ﬁ .

induced by disorder. Though such models have been successfully

applied to explain optical absorption in disordered semiconductor
-alloys ;ﬁd even in amofphous germanium and silicon, with admittedly
less success, théir usefulness is still a subject of lively
controversy. |

°

Conclusions

In the pfesent ﬁdper, techniques for the produétion of
relatively bure_films of amorphous boron have been described. A

quantitative method fdr determining impurity content and ion-

R
~u,
e

~. : o
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clustering effects in the films has been discussed. Elimination
1of the graphite crucible and the combination of lower deposition
pressures and higher deposition rates has drastically feduéed

the carbon content of the films. The reduction in impurity
content has, hoWever, led to an.enormous drop in the value of
resistivity (by a factor of 103) as compared to the earlier
films, and the valués are even lower (by a factor of 102) than
those reported for crystalline boron. It is therefore postulated
that previous samples and perhaps crystalline boron contain é-
large amouﬁt of compensating impuritigs. This point needs
further confirmation by deliberate doping of pure films with com-
pensating_impurities and checking the purity of crystalline boron.
Such an/analysis would also throw light on the effect of compen-

sating impurities in the switching effect.

It should be noted. that the reduced impurity content has
not led to any significantvchanges in. the thermal activation
energies. The vaiués of the activation energies, 0.15 eV, 0.35 eV
and 0.65 eV are almost identical to those reported. previously.
This would indicate that the present films still contain the
impurities responsiblq for the levels associated with these
lactivation'energiés.but the densities of these levels have been ’
reduced. The highest activation energy for conduction (0.65 eV)
found at temperatufes excéeding 7OQ°K would lead to a thermal
gap of 1.3 eV. However, some caution should be exércised in the
interpretation of this value or the smaller one obtained from

-

optical measurements (0.62 eV) as a "band gap'". The relationship
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of these values to the concepts borrowed from band theory of
crystalline solids is not enfirely clear, Such lérge differences
betweeﬁ the.values of electrica1 and optical "band gap'" are
common when dealing with amorphous semiconductors and further

work, particulafly on the annealing of'the samples, is planned

to resolve then.
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TABLE II

RESIDUAL ATMOSPHERE DURING BORON DEPOSITION

SAMPLE B—68 -

APPROXIMATE vgas/ve

GAS MASS PARTIAL PRESSURE (opm)

: {torr) .
CHg 16 9x 108 1600
H20 18 4x10-9 70
CO + Ny 28 1x10-8 140
02 32 3x10-10 4

- CnHm 43 3x 1010 3
cO, 44 2x 108 220
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THE CRYSTALLIZATION OF AMORPHOUS
SILICON FILMS*

NORMAN A. BLUM and CHARLES FELDMAN

Applied Physics Laboratory, The Johns Hopkins University, 8621 Georgia Avenue, Silver
Spring, Maryland 20910, U.S.A.

Received 31 May 1972

It is well known that the heating of vacuum deposited amorphous silicon
films above about 700°C produces an irreversible transformation to the
crystalline state!-2). Films deposited on substrates near or below room
temperature may, furthermore, tend to contain voids3). At higher substrate
temperatures the relative volume of voids diminishes, but the films may
begin to crystallize. The lowest practical crystallization temperatures and
times should be used to avoid introduction of impurities. It is therefore im-
portant to know in some detail how deposition temperature and subsequent
annealing influence the approach to crystallinity in amorphous silicon films.
The crystallization process has been followed by observing optical trans-
mission changes in the films as they are heated at various temperatures. It
will be shown that the crystallization process is a gradual one which takes
place at any finite temperature. Heat treatment which is likely to anneal
away the voids is also likely to make the sample tend toward crystallinity.

The samples were prepared by electron beam vacuum deposition onto
pure fused silica substrates at about 2 x 10”7 torr at rates from 200 to 300 A/
/min with the substrate temperature rising from 200°C to 300°C during the
deposition. Pre-deposition pressure was about 5x 1072 torr. The source to
substrate distance was about 15 cm. For the experiments described here, the
film thicknesses were approximately 5000 A. Film thicknesses were measured
by a multiple beam interference technique and revealed a decrease in thick-
ness, and thus also in the volumeg, in going from amorphous to crystallized
samples, of about 8.2%. Samples were heated in a tube furnace flowing with
pure argon for a fixed time and temperature and then removed from the
furnace and examined optically.

* Work supported by NASA under Grant No. NGR 21-009-033 and by Naval Ordnance
Systems Command, Contract N00017-72-C-4401, Task A13B.

242
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For incident photon energies above about.2.0 eV both amorphous and
crystallized Si films are heavily absorbing. At 2.6 eV, for example, crystalline
films exhibit an absorption coefficient « of about 2 x 10* cm™!, while “as
deposited” (amorphous) films show an « at least three orders of magnitude
greater. Thus, the transmission of the films at 2.6 eV (4800 A) is a sensitive
indication of the degree of crystallinity or amorphicity. An arbitraty criterion
for “onset of crystallinity” used here is that 5000 A thick samples have a
total external transmittance of 5% (corresponds approximately to a =6 x 10%)
at a wavelength of 4800 A. Samples meeting this criterion are nearly crystal-
lized; further heating results in only a slight increase in transmission. The
results are independent of the exact details of the criterion as long as it
gives an indication of a phase state somewhere between the two extremes; a
criterion based upon maximum rate of change of the observed parameter
with annealing is clearly most useful. In practice, since the sample trans-
mission was not monitored during the annealing process, the times are
approximate. The operational procedure was to estimate the time to reach
the criterion and anneal for that length of time at constant temperature. If
the criterion was not met (i.e., the transmission at 4800 A was appreciably
different from 5% at 4800 A), then the anneal was repeated with another
sample at the same temperature for a shorter or longer time depending on
whether the sample was on the amorphous or crystalline side of meeting the
criterion. The procedure was repeated until a satisfactory result was obtained.

Using the above criterion, the time to reach “onset of crystallinity” ¢, was
determined as a function of annealing temperature 7 for a sample which
was divided into pieces, each annealed and analyzed separately. This assured
that all samples started out identical to one another. The plot of log ¢, versus
T-1, shown in fig. 1, gives a straight line, indicating that the simple rate
expression :

t, = 7 exp (Eo/kT) )

is areasonable approximation relating ¢, and 7. Above and to the left of the
line is the area of certain crystallinity, below and to the right lies the area of
amorphicity. Close to the line is the intermediate region where the sample is
in transition between the two states.

In eq. (1), 7 is associated with the characteristic time of a microscopic
interaction between neighboring atoms, while E|, is identified with the activa-
tion energy between the metastable amorphous state and the stable crystal-
line state. From fig. 1, t~5x 10" % sec and E,~3.1 eV, both figures are
reasonably consistent with the identification of t as an interaction time
between atomic neighbors and E, as an activation energy for self diffusion
in Si 4).
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Fig. 1. Plot of crystallization time versus the reciprocal annealing temperature, showing
regions where sample remains mostly amorphous and where it is crystallized.

The plot in fig. 1 applies only to films prepared between 200°C and 300°C.
The detailed behavior probably also depends on the nature of the substrate
and other preparation parameters. Films deposited on higher temperature
substrates show evidence of being already partially crystallized. For a film
deposited at 500°C we observed points below those shown in fig. 1, indicating
that preannealing had taken place.

Eq. (1) has a form common to many polymorphic transformations which
do not include nucleation5). The same short range order prevails in both
amorphous and crystalline form — both structures contain silicon tetrahedra.
The transformation consists of a displacement of silicon atoms from meta-
stable sites over a potential barrier .E, to lower energy crystal sites. In the
film, this produces a polycrystalline structure with small grain size.

If the volume of the film in the crystalline phase is ¥, and the volume
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transforming is proportional to the untransformed volume, then the rate
of transformation is

dav,
=k (V = V):
dl 0( c)’
so that
| Ve=V[1 —exp(—kot)], - @)

where V is the total volume; and k, is the rate constant,
ko =vexp(— Eo/kT). 3

From (2), the fraction corresponding to the crystallinity condition which is
untransformed at a time 7, is

V-7, :
g = v = exp (— kot.). €]

The time ¢, corresponds to the observed optical criterion for crystallinity
at a temperature 7, and thus determines some untransformed fraction g;
this constant fraction may be combined with (3) and (4) to give

t, =texp(E¢/kT), | ¢))

where T=v"!|logg| and has the interpretation mentioned previously.

A plot such as that shown in fig. 1 is very useful for experimenters wishing
to anneal films while: (a) preserving most of the amorphous character; or .
(b) crystallizing the sample without unnecessarily risking contamination or
physical damage by overtreatment. It should be emphasized that such a plot
applies in detail only to samples prepared under a given set of conditions;’
for other preparation parameters the slope and intercept of the logs versus
T~ line would be different from that shown in fig. 1. The results show that
the change from a-Si to ¢-Si is a gradual one which, to a first approximation,
may be described by eq. (1). At room temperature the amorphous film is
stable; using the experimentally derived constants, the time for crystallization
of an amorphous film at 300 K is ~3 x 1033 years!

The authors are pleased to acknowledge the capable technical assistance
of Messrs. K. Hoggarth and E. Koldewey in carrying out the work reported
here.
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ABSTRACT

The paper develops a self-consistent method for studying disordered
systems with diagonal as well as off-diagonal disorder. The method has
general applicability to any disordered system and in the present analysis
is applied to & monoatomic system where disorder arises due to a random
distribution of vacancies.

§ 1. INTRODUCTION

THE equilibrium and the non-equilibrium aspects of disordered solids
have attracted a great deal of attention recently, experimentally as well as
theoretically. (See various papers in the - proceedings edited by Mott
1970.) In particular, many different theoretical approaches are available
for discussing the properties of disordered binary alloys. The principal
among these is the recently introduced coherent-potential approximation
(CPA) by Soven (1967).

The application of the CPA to a disordered binary alloy is based on
replacing the atomic potential at each lattice site by an undetermined
coherent potential. The multiple scattering effects from the actual
potentials are described via a 7-matrix, where the scattering potential is
the difference between the actual potential and the coherent potential.
In an exact formulation the coherent potential can be determined self-

_ consistently from the condition that the configurational average of the
T-matrix must vanish. In the CPA this condition is replaced by a weaker
one requiring the configurational average of the atomic 7'-matrix to vanish.

t. Partially supported by Naval Ordhance Systems Command, Contract No.
NOw-62-0604—c, Task A13B, and NASA Grant No. NGR-21-009-033.

t Supported by National Aeronautics and Space Administration Research
under Grant No. NASA NGR-09-005-072.

§ Present address:
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The success of the CPA is evidenced by a number of recent papers which
have used the CPA to discuss the static and the dynamic aspects of
disordered alloys (Velicky, Kirkpatrick and Ehrenreich 1968, Velicky
1969, Velicky and Levin 1970, Kirkpatrick, Velicky and Ehrenreich 1970,
Economou, Kirkpatrick, Cohen and Eggarter 1970, Stroud and Ehrenreich
1970, Soven 1970). The method, however, is applicable to alloys possess-
ing diagonal disorder only, thus making it useful mainly for alloys com-
posed of isoelectronic atoms. Recently, attempts have been made to
include off-diagonal randomness in approximations similar to the CPA
(Berk 1970, Foo, Amar and Ausloos 1970).

In the present analysis a more general self-consistent approach is
developed which is capable of dealing with solids exhibiting diagonal as
well as off-diagonal disorder. The general ideas followed are similar in
nature to those in the CPA. The off-diagonal randomness arises due to the
randomness in the hopping energy of an electron between nearest-neigh-
bour atoms. This necessitates the introduction of a wave-vector depen-
dent coherent potential in contrast to the wave-vector independent co-
herent potential of the single-site CPA.

The model and the formalism are described in the next section and the
results are discussed in the last section.

§ 2. ForMALISM

The present formalism concerns itself with the effect of diagonal and
off-diagonal disorder on the electronic density of states of a one-band
system. The method has general applicability but we focus our attention
on a monoatomic system. The disorder in such a one-component system
can be simulated by removing a certain fraction of atoms at random, from
an ordered lattice. The probability of occupation of a given lattice site.
is then given by ¢(0<c¢ < 1), where ¢ =1 represents the completely ordered
lattice.

We write the total Hamiltonian for the above system as a sum of
Hamiltonians describing the pairwise interaction of a given particle with
its nearest neighbours.

H=D>He - -~ « o (D)

where the summation is over all nearest-neighbour pairs « and
H o= =W e+ W0, *a, + Winla*amn+an*a)). - (2)

Here W;=5u; and Wy,=Wuyp,=W,, The disorder is incorporated
through the variable u, which is unity for an occupied site and zero other-
wise. In the above definitions, ¢ denotes the potential energy at each
lattice site while W is the hopping energy between two nearest neighbours,
Finally z is the number of nearest neighbours.
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The equilibrium quantity of interesst is the electronic density of states
p(E), given by the well-known expression

p(B)= _1 Im Trace G(B), . . . . . (3

where the functlonal dependence of the Green’s function on the complex
energy E is given by

G(E)= (4)

E-#
and the bar denotes the average over all possible configurations of the
system.

To discuss the effects of multiple scattering of an electron from systems
represented by-the Hamiltonian (1), we introduce an effective medium
described by the Hamiltonian,

L=3 Zylata,+a,*a,)+ (a0, +a,%a), . . . (5)

where Zy(=2,;) and Z,(=1,,) are respectively the diagonal and the off- .
diagonal coherent potentials, as yet undetermined. It is desirable that
2, and X, be determined self-consistently.

The multlple -scattering effects are now easﬂy described by the 7-
matrix,

=(#-3)[1+GT), . . . . . . (6
where the configurationally averaged Green’s function is given by
= 1
= . (7
UB)= 5= KL
From the relationship
G=G+GTr&d, . . . . . . . (8).

we note that the configurational average of the T-matrix must vanish.
That is,

T=0. . . . . . . . .

The eqn. (9) represents the self-consistent condition which determines
the coherent potentials Z; and X, ; which in turn determine the density
of states via eqns. (7) and (3).

In the above analysis the problem has been treated exactly, but to
proceed any further some approximations are needed. In the CPA, the
condition represented by eqn. (9) was replaced by a simpler one requiring
the configurational average of the atomic 7-matrix to vanish. Such a
single-site approximation was adequate to determine the single, k-
independent, coherent potential introduced there. Below we discuss the
two-sites approximation appropriate to the system represented by the
Hamiltonian (1).
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The full T-matrix (eqn. (6)) can be written in terms of two-sites
t-matrices by the conventional expression, '

T=Yt,+ ;Bta@tﬁ+&;#ytathth+,... ... (10)

where the two-sites {-matrix is given by
t,=(,—SH1+6G]. . . . . . . (11)

In eqn. (10), the restricted summations imply that the successive pair
indices cannot be equal ; that is, in the third term «# 8 and B#y but
a =7y is allowed.

The self-consistent condition (9) is now replaced by a weaker one,

B=0. . . . . . . . . (12

This matrix equationieads to two equations, one for the 'di'agonal matrix
elements (f,,=0) and the other for the off-diagonal matrix elements

(t;,»=0) and they determine the two unknowns %, and Z,.
In Wannier representation, the matrix elements of the f-matrix are
written as
tlm = ( Wlm - 21) + ( Wll - Z:'0) [gotlm + 91tmm]
+ (Wlm—zl)[gltlm+gotmm] (13)
and

t

i

'mm = (Wm}n_zo)“l' (Wml_zl) [gotlm+g1tmm] .
+ (Wmm_ 20) [gltlm+g0tmm]’ (14)

where I and m are nearest neighbours. The quantities gy(=G,,,) and
g:(=G,) are obtained from the matrix elements of the Green’s function, .

~ 1 . exp [ik . (I—m)]

Gin(E) =% 2 B 25y ()%, (15)

In eqn. (15), the structure factor y(k)=) exp (ik.A), where A is the
nearest-neighbour vector. A _
Equations (13) and (14) can now be solved for ¢,, and ¢,, and the

requirement that their configurational averages vanish, leads to the

equations

o {for-sr-(e-m) s (-2
SE9 s, (o n e (-5 )

(1-¢)®
+ .

{(212_262)904‘20} (16)
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and
0= 2 A[or-zpe-(S-2) Jou- 0 -2}
+_2c(;) :c) {[212 5, (z_zo)]gl+zl} |
LR KRS RS EL)
3
where
Di=tgst—0 [ 7 -2ge- (2-2,) ]
+2(W—21)gl+2<§—20>96—1, (18 a)
and '

Dy=(gy®— 9.3 22— Zg?] — 2219, — 2Zg,— 1. .. (18¢)

The formulation is now complete since eqns. (16) and (17) can, in
principle, be solved for the two unknowns Z, and %, in terms of ¢, W and
the energy E. The density of states in terms of X and X, is easily
obtained by rewriting eqn. (3) as

N ~ N
pE)y=—-——Im@G,  (E)=——1Imgy, . . . . (19)
m - m™
or
1
pulBy===Tmg, . . . . . . (20)

where p,;, (E)is the density of states/atom and g, is obtained from eqn. (15).
The numerical solution of eqns. (16) and (17) for a three-dimensional
solid is not entirely simple. The corresponding calculations are now under-
way and will be reported in the near future. However, the simpler prob-
lem of one-dimensional disorder chain lends itself to an exact analytic
solution in the present formulation and is discussed in the next section.

§ 3. REsuULTS

For the case of one-dimensional chain, eqns. (16) and (17) can be
decoupled to obtain a quartic equation for p=(2Wg,)~1, written below in
the form of a dispersion equation,

ll: c? + c? 20(1—c)+2(1—c)‘_‘|_0
p Lp+z—1 p+z+l  p+x  ptz+d)

where x=FE—¢/2W and 8=¢/2W. In these units, the band for an

(21)
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ordered chain (c=1) is centred at the origin with the half-bandwidth
equal to unity.

The numerical values of the dens1ty of states/atom (actually
Par. =m2Wp,, ) obtained from the solution of eqn. (21) are plotted in the
figure. For ordered lattice (c=1), p(x) has the well-known symmetric
shape with singularities at the band edges (xt= +1). As soon as ¢ deviates
from unity the singularities disappear, the main band narrows and a band
associated with the vacancies appears below the main band. As expected
(figure), the increasing value of 8 leads to the shift of the centre of the
‘vacancy ’ band away from the lower edge of the main band and also
causes its broadening. The broadening also results from increasing
disorder represented by decreasing value of c.

Fig. 1
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The density of states/atom (in units of 27W) versus normalized energy
x=FE—¢/2W. The scale on the right refers to the main band and tha,t,
on the left to the ‘ vacancy ’ band.
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The important question of whether these states, for a three-dimensional
disordered solid, are localized in nature, can only be answered by calculat-
ing conductivity. Such a calculation, in the formulation presented here,
is now under way.
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COHERENT POTENTIAL THEORY OF
OFF-DIAGONAL RANDOMMESS: BINARY ALLOY
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The single-site coherent potential approximation (SS-CPA) for a disordered binary alloy
s extended in a self-consistent manner to the case of off-diagonal randomness. The density
>f states for a bec lattice is calculated in the split band limit for no correlation between
liagonal and off-diagonal randomness and compared with the ordered and SS-CPA density
of states.

1. Introduction

Ever since Sovenl) introduced the single-site coherent potential approxi-
mation (SS-CPA) for the study of disordered systems, many papers?2) have
applied the approximation to the calculation of the properties of disordered
solids. The SS-CPA is applicable only to the case of diagonal randomness,
and these results have been criticized by Stern3).

Previous attempts have been made to extend the CPA to off-diagonal
randomness4). A self-consistent extension is discussed here.

2. Theory

The disordered binary alloy A B, _, is characterized by the Hamiltonian
H =2 &l + ZigmlD) Wip (m, )

* Supported in part by NASA grant # NGR-09-005-072.

** Supported in part by Naval Ordnance Systems Command, Contract # NOw-62-0604-c,
Task A13B, and NASA grant # NGR-21-009-033.

t Present address: Harry Diamond Laboratories, Washington, D.C. 20438, U.S.A.
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where the atomic energy, ¢,, can take the value ¢, or ¢5 and the off-diagonal
matrix element, W,,,, can assume the values W,,, W,p, or Wgp.

In the spirit of the SS-CPA, a configuration-independent Hamiltonian is
introduced by

Hy =Z|DZo | + Z1pml> 2 (m], (2)

where Xy=2X,, and X, =2, are the diagonal and off-diagonal coherent
potentials, respectively. The index m in each of the Hamiltonians will be
restricted to the first nearest neighbor of /. The Green’s functions satisfy the
equations (E— H) G=1and (E— H,) Go=1 and are related by G=G, + G, x
x TGy, where I' = H— Hy and the scattering T-matrix is given by T=I"+ I'G,T.
The self-consistency criterion, {G) =G, yields {T)>=0, where the angular
brackets indicate a configurational average.

Since the operator I' consists of diagonal and off-diagonal components,
it is convenient to introduce two 7-matrix equations corresponding to the
scattering from the two components, i.e.,

T,=T;+TG,T;, i=1,.2, (3)
where
r, =Z,F(l)=2,|l>(£,~—20)<l|, (4)
and '
FZ =El¢mr(ls ’n)=zl$m|l> (VVIm_Zl)<’nI~ (5)
The total T-matrix can then be written as
T =T, + T, + (T,G,BV + T,G,AU + AU + BV), (6)
where
A = T1G0T2 s (7)
B = TZGOTI N (8)
U=(1-Go4)™", )
V=(1-Gy,B)". : (10)

The first two terms in eq. (6) represent independent scattering from I'; and I,.
while the last terms enclosed by parenthesis represent the correlated scatter-
ing of I'; and I,.

The two operators, I'; and I',, are written as sums over single entities, i.e.,
over single site and pair operators as in eqs. (4) and (5). Then

T, =T () + 2,0 (I;)Go T (1) +-+ (11)
This can be written in terms of the single-site t-matrix
t(D=r()+r)Get(l),
T, =2 () + 21,21, t (1) Go t (1) ++-+ .. (12)

as
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Since there are two coherent potentials, only two matrix elements of T are
needed, viz., T;; and T, / and m being first nearest neighbor pairs. Simul-
taneously, intermediate states appearing in these matrix elements are restrict-
ed to first nearest neighbor pairs. A set of terms consistent with this pair
approximation must be extracted from the /-/ and /-m matrix elements of
eq. (12). Hence, scatterings from / and its nearest neighbor site must be con-
sidered. The diagonal elements of { T;) in the pair approximation are

AT = <> + Z<t2g2,)(1 — g2ut,)>, (13)

where t,=(l|(/)|!), g, =(I]|Golm) and Z=number of first nearest neighbors.
Eq. (13) represents the SS-CPA t-matrix vertex corrected for scattering from
its first nearest neighbor. V

It can be shown that the off-diagonal matrix elements of { T;) are

i '<(T1)lm> =Z <gotltm/(1 - gftltm)> . (14)

If scattering off the nearest neighbor atom is neglected, i.e., g, =0, then
(T =<t and {(T}),,,> =0 which is the SS-CPA result.
Now, if a= (I, m) designates an (I, m) pair, then

=2, 0 () + 20y T (@) Go T (B) ++--, (15)

which can be written in terms of a pair-site -matrix, 7 (a)=1I"(a)+I (o) G X
x (), as ‘
T, =2 1(2) + Zanp 1 () Go t(B) +--. (16)

Then in the pair approximation

AT = Z<tw), an

and

<(T2)lm> =Z <tlm> ’ (18)

where #,=(I|t,|l) and t;,,=(/|t,|,,). The matrix elements, ¢,; and #,,, are
found by taking the diagonal and off-diagonal matrix elements of the pair-
site -matrix and solving the resultant set of coupled equations. Then

tll=F72nlgO/((1_legl)2_Frilgo)9 19
and
tw =T, (1 — Flmgl)/((l - Fmtg1)2 - Frznlgo)' (20) _

Given the matrix elements of T, and T, are known, the diagonal and
off-diagonal contributions to the correlation terms in eq. (6) can be found.
The self-consistency condition, { T;;> ={ T;,,» =0, results in two non-linear
equations for two unknowns, X, and 2.
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3. Results

These two equations without correlation were solved iteratively for a bec
lattice. The density of states is shown in fig. 1 and compared with the SS-
CPA. The incompleted part of the curve in the impurity band results from
the lack of convergence in the solutions. The novel feature is the appearance
of structure in the impurity band which is absent in the SS-CPA. Further
details and discussions will be published elsewhere.
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A one-band model of a random binary alloy AxBl-x

is analyzed in terms of a two-sites coherent potential approx-
imation. In the tight-binding Hamiltonian, the off-diagonal
- randomness is intrbduced via the composition dependeﬁt
hopping énergies between nearest neighbor sites. The in- -
clusion of the off-diagonai randomness correlates the
scattering from a given site to that from itélnearest
néighbors. Such a correlation is incorporated in the
handling of diagonal randomness (arising from the composi-
tion dependence of the atomic potentials) by treating the
diagonal randomness in the pair approximatibn. The theory
leads to the wave~vector-dependent coherent potentials and
previous approximations used in this problem are easfly
obtained in appropfiate limits. Tﬁe numerical results for
the electron density of states éré presented for a number
of different alloys and compared'with earlier-calcﬁlations.
For the case éf diagonal randomness only, the present
theory resulfs in the appearance of structure in the
density of states of the minority component band. This is
in contrasthto the results obtained from the single-site
coherent: potential approximation, but in agreement with
the recent work of Schwartz and Siggia. The présence of
thé off-diagonal randomness leads to further structure in

the density of states.

5
\



I. INTRODUCTION

The coherent potentiél abproach, based on the
multiplé scatfering formalism of Lax (1951), has proved
to be a useful method for the investigation of disordered
alloys. A simple and elegant Versioh of this approach,
referred to as the single-site coherent potential approxima-
tion (SS-CPA) (Soven 1967, Velicky et al. 1968) has been

fruitfully applied to a random binary alloy AxBl—x in which

disorder arises only due to the difference between the atomic
potentials of fhe two components of the alloy. The hopping
integrals in the tight-binding'Hamiltonian are assumedv

to be independent of the composition of the alloy and hence
are translationally invariant. Thus, only the diagonal

part of the Hamiltonian is assumed to be random.

The SS~CPA has been elucidated (Velicky et al. 1968)
and applied to various semiconducting and metallic alloys
(Stroud and Ehrenreich 1970, Levin and Ehrenreich 1971,
Economou et al. 1970). It has been.extended to the calcula-
tion of transport coefficients (Velicky 1969, Levin et al.
1970) and optical absorption (Velicky and Levin 1970) and
its equivalence to previous approaches. based on atomic
-picture (Matsubara and Toyozawa 1961, Yonezawa and Matsubara
1966, Matsubafa aﬁd Kaneyoshi 1966) (in contrast to the
CPA, which is based on strating from an averaged crystalline

solid) has been demonstrated (Leath 1970, Ducastelle 1971).
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However, a recent criticism of the SS-CPA is
~worth noting. _As Stern (1971) has pointed éut, the numer--
ical work based on the SS-CPA has very little applicability
to real alloys. The essential weakness of the model lies
in the perturbation (introduced by substituting a B-atom
for an A-atom) being localized i% each atom. Consequently,
it.ié imperative that an extension of the SS-CPA to include
non-localized perturbations should be formulated to discuss

the electronic properties of disordered binary alloys. One

“such extension is the subject of the present paper.

We consider. a tight-binding Hamiltonian X of a-
random binary alloy in which the atomichpotentiais as well
és hopping integrals are assumed to be dependent on the
composition of the alloyx*. Ih the spirit of the coherent
potential théory, an effective Hamiltonian M% is introducéd
via the diagonal coherent potential Z, and the off-diagonal
coherent'botential El. .The latter quantity is, however,
restricted to a pair of nearest neighbor sites.' This is an
important assumption and essential to keeping the formalism
tractable and the numerical work manageable. With this
éssumption, the diagonal and the off—diaéonal randomness (ODR)
can be treated sepafately. The presence of ODR necessarily
correlates a given site ¢ with any of its Z nearest neighbors.
Consequently, such a corrélation should be included in calcu-

lating the effects of diagonal randomness. This requires

Some aspects of the present work have been previously re-

ported by Moorjani et al. (1971) and Tanaka et al. (1972).



that the dlagonal randomness should be treated in the pair
'approx1mat10n within the framework of the coherent potential

theory.

The pair scattering, in the absence‘of ODR, has béen
discussed in the literature by various authors (Aiyer et
al. 1969, Freed and Cohen 1971, Cyrothackmann'and Ducastelle
1971, Nickel nnd Krumhansl 1971, Schwdrtz and Siggia 1972,
Leath 1972, Cyrot-Lackmann and Cyrot 1972, Schwartz and
Ehrenreich 1972). Leath (1972) has pointed out the differ-
ences which exist amongst various results. The main reaéon
for these differences is discussed in Sections II and III
which contain the general formulation of the problemn.
The detailed calculations are carried ont in the two
appendices. Section IV contains the main results of °this
work and its relationship to previdus npproximations The
numer1ca1 results are discussed and compared with earlier
calculatlons in Section V, and the conclusions are presented

in the final section.
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II. FORMALISM -

We consider the tight-binding model of a random

binary. alloy AXB which is characterized by the Hamil-

1-x

tonian,

:&c=Z|z>e‘z<zI '+le>w'm<ml' | (D).
' L : 4#m

The summation in the first term extends over all atomic

sites while that in the second is restricted td the nearest

neighbors only. The atomic energies €, as well as the
overlap integrals -Wzm are taken to be composition depend-
ent; €, assumes the values €A or EB depending on

" whether the zth site is occupied by an A-atom or a B-atom
and Wﬂ’m . takes the values WAA’ wBB or WAB (=WBA).

~

' The Green's function corresponding to the above

equation is defined by the relation,

G(E) = =2 (2),
Where E 1is the complex enérgy.
In the general spirit of the coherent potential
theory, we introduce an effective medium for the motion
of an electrén,'and assumé that the effective Hamiltonian
can be written as,
.
| X = Z | Z <a] + Z | Y2 (m| | , (3),
L 27 m S

where the summation conventions are the same as in Eq. (1).

‘The effective or coherent potentials Zé(=221) and



7=

‘iﬁ(=2£m) are as yet unknown, to be determined from an
appropriate self-consistent condition. We assuﬁe that the
' lafgest contribution to the off—diagonal coherent potential
comes from.the nearest neighbor sites; an aséumption which
is essential for keepingithe numericél work within reason-

able bounds. | |

The static properties of the system are determined
from the configurational average of the Green;s function
{Eq.(2)] over all possible configurations of the random
alloy. The electron density of states, for example, is

given by the well-known relationship,
1 : ‘ ,
p(E) = - = Im Trace (G(E)) oo (4),

whefe the angular brackets denote the configurational
average. When the'configufationally aVefaged.medium is
taken to be the effective medium defined by Eq.(3), then

one obtains the identity,

(G(E)? = G_(B) = - (5).

The exact G(E) [Eq.(2)] is then related to Gb(E) by

.the relationship
G = G0 + GOTGO- ' (6),
where the T-matrix is defined by,

T =TI + G T) : (7),



with T =3 -3 '- | (8),

If one now takes the configuration average of Eq.(6), one

obtains
(1) = 0 | (@),

a condition which can be used to determine the coherent
poteqtials "Z% and El. It should be noted that‘Eq.(Q)
represehts a generallexact-eondition; The various approxi-
matiens'beeome.elearer if’iﬁejphysieelﬁeonteﬁts of the
ébOve mathemafical formuiatiOn-erefmddedd bit more trans-—
parent.jd

r

The actual potentials j€z and Wzm whicﬁ an
electron experiences during its motion in a given disordered
alloy are replaced in the effective medium by the unknown
quantities,'Z% and El. "The multiple scattering of the
electron are described by the T-matrix (Eq.?) and.the-unknown
'potentials determined from rhe condition that there be no
further scattering in the effective medium. Sidbe there are

oniy two unknowns, we need just two equations; these are

obtained by taking the diagonal and the off-diagonal matrix

L4

elements between nearest neighbors of Eq.(9). One thus
obtains
(1) ,, = 0 ; (10-2a)



(), =0 _ | | (10-b),

At this point, a digression is essential to point out the

- relationship of the above formalism with the SS-CPA, and
more important to point out the subtle but significant
difference between our approach.and that of Foo; et al. (1971).
In SS-CP4 - one concentrates on a éingle effective atom
and requires that there be no further scattering from it.
The exact self-consistent condition (Eq.9) is thus replaced
by the one which requires that the configurational averagé
of the atomic t-matrix must vanish; this single equationr

| .béing adequate to determine the s%ngle unknown QD. Foo, et
al. (1871)carry out a straightforward exfension of the
SS-CPA, replacing a single atom by a pair of nearest.nbigh—
bor atoms réquiring4fhat there be no further scattering -
from the two—atom.cluster in the effeqtive medium. This
,cleérly does not treat the Z nearest neighbors.of a

"given atom on the same footing; a drawback realized but not
accounted for by Foo, et al.(1971). It is not corfect, as they
state, . that such a difficulty is an essential element of
. any self-consistent treatment of pair-scattering. As
discussed below, the difficulty can indeed be removed and
has the expected effect of multiplying all scat£ering matrix
eleménts from aipair of nearest neighboré by a factor of Z.

To illustrate this point, let us decompose the T-matrix as,
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‘.‘,

T - | |
T=,TWM +, Tmn) + ) T(Z,m,n) + .... (11),
2 # n# (£, m)

where, T(4) is an operator which accounts for scattering
" from the zth site, T(4,m) from all pairs ofrsites,
T(4,m,n) from all fhree;site clusters and so on. Thé first’
summation'is qver'éll sites, the second over all pairs and
'so on. . In.the approximatioﬁ, where the effects of three
afoms'and higher order clusters are neglected'aﬁd‘the two-

site clusters are restricted only to the nearest neighbors,

Eq. (11) can be truncated and written as,

T = T(8) 4+ T(m) | (12),
L mt g

where the second summation is only over the nearest neigh-

bors. Taking the configurational average, we obtain

(T) = E}(T(ﬁ)) + Zt(T(Z,m)) | ' (13).
L W L

The matrix elements in Wannier representation are therefore

given by,
4 - .
<T)£Z = <T(z)>££ + L;(T(Z,m)>£z | (14—a).
m# 2
and |
. < ’ ‘ .
<T>zm =) (T(Z,m))zm (14-Db)

w# 4
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Combining4Ean(14) with Eqns(lo), and taking advantage of

the fact that configurationally averaged quantities are

translationally invariant, one finally obtains,
<T(1&)>M + Z(T(E,m)))“. =0
and

z(’r(z,m))zm =0

‘Foo, et al. (1971) leave out the factor Z in the above

equations which as seen is important only in Eq. (15-a).
In relationAto the Qork of various authors on pair
scattering, this point is further discussed in the next
section where we obtain explicit expressions for the
diagonal and the off-diagonal matrix elements of the

T-matrix.

(15-a)

(15-b)
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111, MATRIXAELEMENTS OF THE T-MATRIX

The form of the actual and the effective Hamiltonians
[Eq™S (1) and (3)] suggest that the perturbation Hamiltonian
I' (Eq.8) can be conveniently separated into the diagonal

and the off-diagonal parts, as

r-r@® , r® o ~ (16)
where,
r .S rM gy o7 |23 (e = = )<ul | - ar-a
L 2 |
and |
F(Z) ='[\l_, r(z) (@) = /. [2).(Wzm_ 21)<ml (17-b)
() - m# g ‘

In the last equation, o« denotes a pair of nearest neigh-
bor sites (4,m).
Corresponding to T(l)v and T(z), one can now

define the T-matrices via the equation
. . . r . —]‘ :
(1) T(l)Ll + GOT(I)J.(i = 1,2) (18).

T(l) and T(z) describe the multiple scattering of an
electron from the diagonal and the off-diagonal perturba—

tion Hamiltonians respectively. 'The total T-matrix (Eq.7)
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-Can then be written in terms of T(l) and T(z) as,
T = [T(1)+ R]Q + [T(2)+‘S]P _ (19)
-where,
: T : .
Pp=1 —.GOS] | | (20-a),
. 1‘1 , . ' :
Q= [1 - G R | | : (20-Db),
R =13 () (20-c),
and,
s = T(l)GOT(z) . - (20-d).

It should be noticed that Eq.(lg) represents an exact
expression fof T 1in the nearest neighbor pair approxi-
mation and includes the sum of the scatteringé from- P(l)
and P(z) plus all the correlations where an electron is
alternati?ely scatteredlaﬁy number of times by 'P(l) and
F(z). To determine thé hatfix elements of T, one needs
to calculate the matrix elements of T(l) and T(z) only
since P, Q, R, and S are expressed in terms of these
quantities (Eq.Z20).

' 2(2)

To evaluate the matrix elements of , we com-

bine Eqns(174b) and (18) to write,

@ VP 4 ) T® @y 1@ ) 4L (21),

o o,

T
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which can be rewritten in terms of a pair-site t-matrix,

t(o) = F(z)(a)El + Got(a)] S _ (22),
as,
T - z:t(a) + z:t(a)Got(B) o (@3,
L B | |

Thus in the' nearest-neighbor pair approximation,

| <T(2')>M =z {t,,) | -  (24),
and,
<'1A‘\(2)_> g = 2 (g _ | | (255,
where, - : _ .
‘t“=’<z|t(a)|z>_‘and tzmli——U’,It(a)Im) (26).
The matrix elements 1:12“e and tzm aré obtained from

Eq.(22) and solving a set of coupled equations to yield,"

- T2 2 2 2]
tzz B rﬁzgo/[(l'_rhzgl) - rﬁzng (27)
and,
¢t =T (1-T. g )/r(i-r‘ V2. T2 g2 ] (28)
Zm fm =y 7L " Cma®y m 280 J O
ns _ _ .
Ip Eq 7 (27) and (28), sz = Fzm = Wzm— El and the

diagonal and the off-diagonal matrix elements of G
] o

are given by,
E'\
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g, = {zlGo|z> and g = <z|G0|m> A (29).

The presence of off-diagonal randomness,as seen in

Eqns(24—28), correlates the zth site to its nearest
neighbor sites via FZm. This further manifests itself
in the appearance of 'gl, which determines the propagation

of a single particle state from a given site to any of‘its
7 nearest neighbors. To be consistent this correlation
should also be included in the diagonal randomness. This

(1)

| requires that T be treated in the pair approximation, .

in contrast Fo the recent work of Blackman, et al. (1971).
The pair scatterihg treatment of ‘T(;) ‘has been

carried 6ut by various authors in the 1iterature. ,How—

evér, as Leath(lQ?Z)hasrecently_pointed out, some differ-

ences among various resulfs still exist} A éimple

' diégrammatic procedure outlined‘below leads to the express-

ion first reported by Cyrot-Lackmann and Ducastelle (1971).
Combining Eqns(17-a) and (18), T(l) can be

written as,
T -tV sy W 0e Py + . @0,

21"62

= 1

which in turn can be written in terms of the single-site

t-matrix,

NGO N )
t(4) = T ({1 + G t(L) ]| @D,



-16-

as, ,
(1) Z t(8) + Z t(z'l)Got('za')
2 I

1 2

«

+ ), t(L )G t(L )G t(L ) + ..., (32).
L4 F4
1 2 3

The summation convention in. the 1ast“equation implies thaf

: no.twb successive indices can be équal to each other. For
example, in the third term zl#zz and zéfzav but 4~ can
be equal to za. Diagrammatically, Eq.(32) can be written

- as shown in Fig.(1). If one now neglects the effects of
three-sites and higher order clusters, then one needs to keep
only»thoSe diagrams [Fig. (1)] whiéh invol;e one and two dis-
.tinct sites. -Thus, in the pair approximation, some of the
diagrams which contribute to T(l) are those shown in Fig.
(2). Summing this series of diagrams and taking the config-

urational. average, one obtains,

(p(y - z<t(z_)> + Z§t(zl)cot(zz)cot(zl)
L zl#ze
A -1
[I—Got(ga)Got(zl)_j + (26 t(2)

1

NERCRICRIRTERI @33,

Next, we restrict 22 to be the nearest neighbors of zl,

and take diagonal and nearest neighbor off-diagonal matrix
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‘elements in Wannier representation. Using the isotropy

and the'translational invariance of. the lattice we find

(1y  _F (D) | _
(T >diag =, AT >zz | | . (34-2a)
) .
where,
1)y _ > |
(0277, =Kt + 2 <titmgj/(1-t£tmgl} . ~ (34-b)
and,
(1), T (1) | —a
(T ots-qiag =4 ST 4m , (35-2)
(4,m)
with
(1) B . ’
AT | Ym = 2 (tytig /-t t gt)) (35-b)

where m is.oné of the nearest neighbors of £ -and,

Gl— 2:o

1 - go(sz— Zé)

t, = (elt(e)| o) = (36).

- The last equality follows from Eq. (31) combined with Hy.
(17-a).
The expressions (34-b) and (35-b) are'eaSily shown
to be identical to the results obtained by Cyrot-Lackmann ‘

and Ducasfelle(197l)lmn:differ'from the treatments of other

4
\

i
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. authors (Nickel and Krumhansl 1971, Leath 1972, Foo et al.

| 1971) by the éppearance of 2_ the humber of nearest
néighbors. It should also be pointed'outlthat the recent
criticism by Cyrot-Lackmann and Cyrot (1972) of their
earlier>f0rmu1ation (Cyrot-Lackmann and Ducastelle 1971) is
valid only if oﬁe coﬁsiders atoms which ate not nearest

neighbors of each other.

It remains to evaluate the matrix elements of P, Q,
R and S [Eq.(20)] and take the configurational averages.
This part of the calculation is carried out in the two appen-

dices and the results are discussed in the next section.
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IV. RESULTS

As shown in Appendix II, we obtain_tWO equations
from the two_self—consistént relations [Ean(IO-a) and
(10-b)] which can be written as the coupled equation for
the two coherent potentials. The resulting equations,
obtained from Eq. (A-23) and fhe combinatibn of Eq. (A-29)
witﬁ Ed. (A-20), reépectivély are

I "
g, = Uo_ (€A_ Z;o)go (€B_ 2:o) +Z]_1— (sA— z:o)go..z

o]
s

7

and,

!
[
1

_ T |
21 = U + £4—[1-glr(X,X)JL1"glF(X’Y)J

1 N\ .

The quantities F_, F, F, £ and I''s are defined by Eq"™"

(A-17), (A-27),(A-21), (A-30) and (A-19-f) respectively.
Ud and U1 are the potentials in the virtual crystal -

approximation given by,

Uo = xEA + y€B | (39)

and

— 2
U bl ) + 2xyW + y WBB (40)

1 AA AB
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‘One notices that previously used approximations

are contained in-Ean(37) and (38). Thus the first terms

in these equations represent the virtual crystal approxi-

"mation aﬁd the first two terms in Eq. (37) reproduce the

result obtained in the SS;CPA. The rest of the terms ére

the corrections due to the inclusion of pair—scatteringland"

off-diagonal randomness in the present analysis.
To solve Eqns(37) and (38), it.is convenient to
transform them in dimensionless form. We shall therefore

refer all quantities to ZWAA,' the half-bandwidth of the

pure A-lattice. .Fdrthermore, we assume that €= — €40

and obtain

E .
- o] - - 2_ 2 ’ °
o N (x y) 6 + (6 GO)PQ
r Aar 7
+ ZLI"(6"00)P0JL1'*(6'*°o)poJfo
and, |
EI ) A
o = Ziya = W+ £+ (1--1“AA Pl)(l—l"AB P)
(1-FBBP1)(fl+ fz)
where,

.— l = .
f. = Fi/ZWAA’ £ e/zwAA

B, = ZWy,8,

(41)

(42)

(43)

(44)
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»(45)

1 AAgl
€ ~ €
6 =-A B _ ¢ /7w (46)
22V, , AT TTAA
W= 1 (x® + 2yxy + By?) : ' (47)
7
and,
PAA _ I(x,x) _ 1 o
ZW V/ 2
AA
- _Ix,y) _ v
Tap =Tea ==, "%
AA
I‘\BB — P(Y)Y) =.§_ - g . (48)
ZW Z 1
AA

The last equations result from defining the bandwidths of
A-B and B-B 1lattice in terms of the A-A lattice;
WAB = VWAA and WBB = BWAA.

Before representingAthe numerical results, let us

note that g, and g1 (Eq.28) can be written in k-repre-

sentation as,

_ 1Y 1

o TNCECZ-ozom e

k o 1‘)’
and

T ik.(,@"m) .

g -+, -2 (50)

NkE-E-Ey(k)
[o] 1
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ik.A

where ¥(k) = Z‘e is the structure factor," 2 Dbeing
) A ' )
the nearest-neighbor vector. In Eq.(50), JA .and m are

nearest neighbors and therefore,

1 _ -
g = oag = — ' o (31)
S )} - -

where the dimensionless parameter o« 1is defined by,

) (52)

— —_ / =
o = , (E AE/ZWAA

The dimensionless quantities P and P1 [Eqns(44) and

" (45)] are therefore given by

1 1Y% 1
P = =/ (53),
°© Zo, N K O - 7z~ 1y (k)
and
_ 1
P1 B cMpo - yAsj (54).

The quantity of interest is the electronic density of states

(Eq.4) which can be expressed as,

- _1 _ _N
p (E) = Im f (2lc |2 7 Img,
or |
"(E) = pPE)Y . _ 1 | - .
p’'(E) ZW, o ( = > = ImP_ | (35),
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.p'(E) being the density of states/atom expressed in units
of half-bandwidth of pure A-lattice.

S (41) and (42) are now

The two non-linear Edn
solved iteratively for qol and 01 as a function .of
feduced energy E’, for given values of x, the concen-
tration of A-atoms; &, the potential difference between
type-A and type-B atoms, aﬁd. B and 7Y the relative band-
width»of B-B and A-B lattices respectively with respect
fo_the A-A lattice. The knowledge of the coherent poten-
tials 00' and cl allows one to compute the imaginary
part of . Po and the density of.States is obtained from
Eq. (55) . We have carried out the numerical caléulations
for a number of'differént alloys for the body—centered
cubic latticeiand the results are discussed in the next

section.
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DISCUSSION

Thé‘numerical results for electron density of
statés/atom (in fact mp‘’, where p’ is giﬁen by Eq.(55))
as a function of energy for various alloy pérameters are
presented in this,section.. The results are illustrated by:
a number of figures where the normaliééd Energy E’ (Eq;
52) has been shifted by & so that the band corresponding
to the pure A-lattice in these dimensionless units is
located at the origin and extends frém -1 to + 1.
Throughout the present analysis we have considered the
body-centered cubic (BCC) lattice for which the deﬁsity af
states was obtained by using the lattice Green's function
recently evaluated by Morita and Horiguchi (1971). The |
denéify of7statés for ordered pure A-BCC lattice is shown
- in Figﬁre 3 and all effects of disorder are measured with

respect to it. Since we have chosen ¢€_ = the

B~ T a
effect of substituting B-atoms for A-atoms is expected to
be the appearance of a '"minority band' located at - 26,
whose width is controlled by the paraméters x, B, and Y.
Whether any structure due to presence of minority atoms is
discernible in the density of states curves, depends as
shown below, on the values of these parameters and _6.

| The results for the case of a dilute alloy

(x = 0.9) " are presented in Figures 4 and 5 for 6 = 0.2
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" and two different valﬁes for_the set (B; Y). - As shown in
the figures, the general effect of disorder is to remove
the singularity at the origin in the density of states of
the ordered lattice and modify the bandwidth, which is
increased for the alloy repreéented by (B, ¥) = (1.4, 1.2)
[Fig. 4] and decreased for the case (8, ¥) = (0.15, O;;)
[Fig. 5]; The density of states in the vicinity of |
Energy = - 0.4 is increased relative to the ordered
1attice showing the presence of the contribution of the
minority band. For the larger bandwidth case [Fig.'4] fhe
minority band is relatively flat and no visible structure
shows up at Energy = - 0.4. Tﬁis'effect, as éxpected, is
more pronounced for the shorter bandwidth alloy and, as
shown in the insert of Figuré 5, a shoulder in the density
of states is indeed discernabie. For a non-dilute alloy,
still more-pronounced structure would be expecfed and fhis
is indicated in Figures (6)-(8) for x = 0.6, 6 = 0.2 and
'three different bandwidth combination§ (8, ¥). Note that
the peak due to the.minbrity band does not lie exactly at

- 0.4 but slowly shifts towards higher energy with increas-
ing values of B and Y, while the main peak shifts towards
lower energy. The magnitude of the impurity band peak is
lowest for (B, ¥) = (1.4, 1.2) and highest for

(B, ¥) = (0.4, 0.7).
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In the céﬁeé discussed éboye, we have ohly
considered alloys where the main band and the minority
band overlap in energy (6 < 1). 1In order to compare.
. results with earlier calculations, it is desirable to
.consider the split—band case (6 >?1). S0 that the éffects
of the minority bénd are clearly separated frqm that of
the main band. Also to facilitate comparison with the
SS-CPA, we first consider the alloy with no off-diagonal
raﬁdomness, i.e. B =% = 1. For this particular case, the
resulfs of Blackman, et al.(1971) reduce to the SS-CPA. This
is due to the negléct of pair scattering in their work.
our results (labeled TS-CPA for two sites-CPA) for x = 0.9
and 6 = 1.05 are presented in Figﬁre 9 and compared with-
the SS-CPA, . | In the main band, the differences bet&een
the TS-CPA and SS-CPA results are negligible and for clar—v
ity only TS-CPA results are shown. Howevér, important and
major differences appear ip the shape of the minorit&'bandv
(Fig. 9) as obtained in the present work and that calcu-~
lated from SS-CPA, In the later, one obtains a smoothly
varying curve for the density of states in the minority
band; a result which originates from the fact that in the
SS~CPA, fhe perturbation is localized at a given site.
Consequentlylthe coherent potential is k-independent and
is'fncapable of sampling . the lattice. The k-dependent.
coherent potentigls in the present formulation lead to the

\
\
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appearance of sfructure on both sides of the minority band
(Fig. 9). Foliowing quite a different formulation, Schwartz
and Siggia (1972) alsofind structure in the minority band.

Foo, et al. (1971) in their.calculations‘for one-dimensional
randdm chain, have also reported structure in the minority
band; however, the location of their minority band is a
strong function of the bandWidths B and Y. This inéorrect
result is due to their special choices of the values of B
and :7 and is typical of the shape of the density of states
of one-dimensional chains.

It is of interest to plot the real and imaginary
parts of the coherent potentials Oo and. 01 and compafe :
them with the SS-CPA. This is done in Figures 10-12,

As shown in Figures 10 and 11, the inclusion of pair
scattering leads fo the ﬁreseﬁce of stfucture in Recro and
Imco which is responsible for the structure in the‘density -
of states (Fig. 9). For the off-diagonal coherent potential
'dl (Fig. 12), the SS-CPA results would be -Imo, = 0 and

Reol = 0.125 over the entire range of the minority band.

Finally, Figure 13 shows the density of states for
the case when'off—diagonal randomness is present. The
presenc; of the off-diagonal randomness has the advantage
of controlling the bandwidth of the minority band by

varying the values of B8 and Y. As shown in Figure 13

for the case ¥ = 0.5, further structure appears in the
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density of states of the minority band due
of the central peak. The structure in the
off-diagonal randomness (Fig. 9) has been

Schwartz and Siggia (1972) to the bonding and

to the splitting
absence of the
assigned by

anti~bonding

levels of a molecule embedded in an effective medium. At

the time of the present writing, we have not found a satis-

factory explanation for the extra structure seen in the

presence of the off-diagonal randomness (Fig. 13).
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SUMMARY

In this‘paper; we have-extendéd the single-site
coherent potential approximétion for random binary alloys
to include the effects of the off-diagonal randomness and
the pair scattering. The formalism réduces to bre?ious
approximafions used in this problem in appropriate limits.
The numerical results for a number of different alloys are
reported and it is shown that the inclusion of pair scatter-
ing and off-diagonal randomness leads to the appearance of
structure in the density of states of the mimority compon-
ent band.

There remains tﬁe problem of inVeétigating the
effect of scattering from clusters higher than the fwo—sites
clusters. 1In principle, this'ié quite straightforward in
thé»framework'of_the present theory,; however, the numerical
work involved is expected to be.quite formidable. The
theory can also be applied to the calculation of conduct-
ivity (Sokoloski et al. 1972) and indeed the study of
disordered magnetic systems (BoseAet al. 1972). - The
detailed calculations of such extensions will be reported -

:

in the near future.
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APPENDIX I

The Matrix Elements

The matrix elements of R [Eq.(20-c)] and S [Eg.

(20-d)) between Wannier states on a nearest neighbor pair

of sites (4,m) are easily written down in terms of the

matrix elements of T(l) and T(z), as
(2) (2) (1) (1)
Roo Bam\_ [ Tos Tim & . &\ [Tsr Tim
: : (2) (2) (1) (1) .
Ros Bum Toe” Tom g, €/ \Tmz  Tum (A-1),
and,
(1) (1) ) ' (2) (2)
Sge Sem\_ [ T2d Tim & BN\ [ Tet Tim
. (1) (1) (2) (2)
Sng Sum Tne  Tam g, g Tue Tom (A—Z).
We notice that,
SLZ'= RZZ’ Szm - Rmz’ sz - Rzm,-and Smm = Rmm (A-3)

. The matrix elements of P and Q@ can now be obtained by

taking the diagonal and the off-diagonal matrix elementsv

of Eq.(20-a) and Eq. (20-b), the resulting expreséions are, -

Qs Un 1 1- g Rmm™ €. Rgm g, Rom* g1Rmm
~ D(Z,m) .
Qs mm g8, Ryt 8 Ry 1 -gR,-g R,/  (A-4)

and,
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P P ’ 1 - gosm - g S g S, + g8

L2 LAm 1 m 1. 4m o 4m 1 mm
V - D(/L,m) . - - 2 - ]
Pus Pam/ : 8 Smgt 8.54s 17 8,8, 88,/ (A-5),
',where,

D(g,m) = 1 - go(R£L+ Rmm) - gl(Rzm+ Rmz) +

2 2
(go - gl) (Rzszm - Rszmz) (A-6)

The same D(2,m) appears in Eqns

(A-4) and (A-5) due to

" the symﬁetry relations between R's and S's [Eq.(A-3)].
ItAis now straightforward to write down the matrix

elements of T (Eq.19); we, however, follow a slightly

modified approach in ordef to get the final equations in

‘the form which can be easily dompared with previous calcu-

lations. To evaluate the diagonal matrix elements.‘Tzz, we
separate out the single-site and two-site contributions,
leading to'
Tzz = tz + Z Tzz(z,m) . (A-7)
where,
- _ () (1)
Tog(om) = (Typ'+ Ryp)Qpy + (Typ'+ Ryn)Qyy
. (p(® (2) | -
Ty + Sy )dPyy + Ty S0Py (A-8),

with-



(1) _ 42 2 _

Tos tytmg /(1

1

im) = totng, /(1 -

p(2) _ (2)

ﬂz tzz, and TL
The quantities tzz and

Eq. (27) and Eq. (28) respectively.

(A-9)

(A-10) .

(A-11)

in Eq. (A-11) are given by

To evaluate the off-diagonal matrix elements, we

write
TZm = Z sz(z,m)

where
— (2) ( (1)
T m(JZ,,m) zm + Tzz

(2)
+ {[1'*goTzz + ngZm

24 fm 4Tmi T 4m
r (2) [ (2) 1
+ lLl'*goTzz + ng g T L + goTJZ,m J mmj mm
(A—13).
The last equation is obtained by rewriting Eq. (19) as,
T = T(2)+ (T(1)+ R)Q + (S + T(?)GOS)P (A-14)
It remains to take configurational average of T, and

(A-12)

(1)
sz RZm>Qmm

[ng(2)+ goT(Z)WS ;P

sz and this is carried out in the next appendix.
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APPENDIX II

Configurational Averages

Taking the configurational average of Eq. (A-7) and
invoking the self—consistency condition [Eq;(lO—a)], we

obtain

<t£>'; xt, + vyt = - Z(Tzz(z,m)>,. | (A-15),

where, from Eq.(36),

t - A,B ° ‘ ~ : (A-16).

Also,
_ - )
(r,,(4,m)) =F =, 1J Ty (L9 - (A-17)
I=X,y
J=X,y
wifh,
Tzﬂ(I,J) = [Tii)(I,J) + Rzz(I,J)jsz(i,J)
Tt 5y s R, (1,5
Ty (1,9 + R (1,0 jQ,(1,T)
2 7 '
+ [TEL)(I,J) + Szz(I,J)JPZL(I,J) (A—18)"
+ [Tii)(I,J) + szm(I,J)]pmz(I,J)'
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R L(I’J) etc. ére obtained from Eqns (A-1), (A-2), (A-4)
(1) (2)

and (A-5) and various T 's and T 's from Eqns

" (A-9)-(A-11). One then has,

,tzt g2 -

a0 - LI (A-192) ,
1 - tIth1

_ t.t.g
D, - Pa,n - 1L ~ (A-19b),
1 - tIth1 :

2t g _

T (g gy - 915 (A-19¢),
mm 1 - t.t.g®
IJ%

T2(1,N)g
¥ (1,0 - {2 1,9 - ° _ (A-19d),
. [1-T(1,9e 1°- T1, 08
and

r1,)l1-T,NHg ]
[1-T(1,ne 1°- T31,D8;

where

I

I'(1,9) = W(1,3) - I, <W(x,x) =Wy, étc.> (A-19f)

Finally taking the donfigurational average of Eq. (A-12)
and invoking -the self-consistency condition [Eq. (10-b)],

we obtain

(2)y _ . ‘
<sz ) = - <F2> (A-20)

" ——. s S s b w4 o —— - . . N
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. where,

(F ) = A, 1J F_(1,J) © (A-21)
2

I-x,y

J=xX,¥y

and Fz(I,J) is obtained from Eq. (A-13),
F (1,J) = T(l)(I J) 4R, (1,3)1Q, (1,J)
2 7 L ’ 22t [t

s [t R, (1,0 o, (1,0

+ {Ll-kgoT( )(I J)i—g T( )(I J)JS (I,J)
+ Lg Tgi)(l ) +g, 15 )(1 3y 8,1, J)} (I,J)

e {[1+e, @ a,0 e T( )(1 3) |8, (1,)

+

(A-22).

The two equations of interest are Eq. (A-15) and
Eq.(A-20) and to put them in reasonable. form, we first

rewrite Eq.(A-15) as,

€. - X . € - =
x. A 0 +y B o
1 - g (e4-2) 1~ g (5= X))
=~ ZT (L,m) = - ZF,

22
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or,

r il
Eo = Uo— (€A_ 2:o)go (GB—. Z;o) +Z|_1- (EA'-» z;o)go_J

. 8 - .
[1 - (sB- Z;o A)go.jFo : ' (a-23),

which is Eq. (37).

To obtain Eq. (38), we rewrite

T
2
Té ). Im L p (A-24),
n 1 -1 g : :
Im®y
where,
3 2
g
F = fm "o | (A~25) .

1 2 2 2
1- rzmgl )[1 - Pngl )" - ergo]

‘Therefore,

(i)> _ &P I'(x,x) + 2xy I'(x,y)

(t, _
1-g I'(x,x) 1-g I'(x,y)
+ yP= I'(y,y) + <F1> ' A (A-26),
1- glP(YsY)
where,
s =T . |
F)=/ 1JF (1,9 _ (A-27),
I=x,y .
J=X,¥y
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o r'%1,J5)g” .
F (1,J) = 2 (A-28) .

[1-T(I,J)g1][(1-T(I,J)gl)a-re(I,J)gz]

" From Eq.(A-26), we have, .

‘ . U -2+ &
(r(2)y o 1 1

{1-g I'(x,x)]1 - glf(x,y')lﬂl -g T'(y,y)]

+ (F) . . (A-29),

where U1’ the value of the overlap integral in the virtual

_crystal approximationvis given by Eq. (40), and
£ - I‘(X,g)I“(x,y)‘F(y,y)gf— (x2+'2xy).
T, 0l(x,y)g, - (x*+ y)Tx, x0Ty, y)g
- 2xy>r<x,’y)f<y,~y)gl' | | (A-30).

Combining Eq. (A-29) with Eq. (A-20), we finally obtain

Eq. (38) for 21'
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Figure 6,
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FIGURE CAPTIONS

The diagrammatic réprésentation of the first four
terms in Eq.(23). The dashed vertical line repre-
sents scattering from a given site denoted by a
star. The horizontal line (G&) repfesénts'thé

motion in the effective medium. All sites are-

~distinct and summation over distinct sites is

implied.

The first diagram represents the scattering from
single-site clusters while the others are some .
of the diagrams obtained from Fig. (1) which are.

appropriate to scattering from two-site clusters.

" 'The density of stateé as a function of energy for

an ordered body-centered cubic lattice.

The density of states Vs. energy for a random

A0.930.1 alloy; B, v > 1.

The density of states Vs. energy for a random

. < 1
0;9B0.1 alloy; B, v 1. The insert shows
the density of states in the vicinity of the
energy where one would expect the effects aris-

ing from the presence .of B-atoums.

The density of states Vs. energy for a random

AO.GBO.4 alloy; B, v > 1.



Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.
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The density of states Vs. energy for a random

A B alloy; B, ¥y < 1.

0.6%0.4
Same as for Fig. 7 but different values of B

and V.

The density of states Vs. energy for a random
AO.QBO.l alloy in the sp;lt—band case (6 > 1).
Note the break in the horizontal scale. The
vertical scale on the right'is for the main band
while that on the left is for the "minority!"

band. The results of the present work are

labeled TS-CPA.

The real part of the diagonal coherent potential
o over the energy range of the '"minority"

band. Comparison between present results

(TS-CPA) and SS-CPA.

The imaginary pért of the diagonal coherent
potential 00 over the energy range of the
"minority" band. Comparison between present
results (TS-CPA) and SS-CPA. Note the break

in the vertical scale.

The real and the imaginary part of the off-
diagonal coherent potential 01 over the

energy range of the "minority' band.



Figure 13.

~43-

‘The density of states Vs, Energy for a random

AO.QBO.l alloy in the split-band cgse (6 > 1),
including the off-diagonal randomness, Note

the break in the horizontal scale. The vertical

~scale on the fight is for ‘the main band “while

that on the left is for the "minority” band,
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