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NOTATION 

design variables for upper surface i = 1 , 6  (coefficients used in the expression for upper 
surface ordinates) 

design variables for lower surface i = 1 , 6 (coefficients used in the expression for lower 
surface ordinates) 

chord 

section drag coefficient 

section lift coefficient 

section pitching-moment coefficient 

pressure coefficients, - p ) / q  

constraint function 

Mach number 

NCON number of constraint functions 
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objective function 

free-stream static pressure 

local static pressure 

Legendre polynomials (i = 1,6) 

free-stream dynamic pressure 

Reynolds number 

move direction vector 

thickness 

trailing-edge thickness 

area within airfoil contour 

chordwise distance 

vector of design variables 
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Y vertical distance 

a! angle of attack 

P movement in s direction 

Subscripts 

Rr lower surface 

mux maximum 

min minimum 

us upper surface 
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Raymond M. Hicks and Garret N. Vanderplaats 

Ames Research Center 

SUMMARY 

A practical procedure for the optimum design of low-speed airfoils is demonstrated. The 
procedure uses an optimization program based on the method of feasible directions coupled with an 
aerodynamic analysis program that uses a relaxation solution of the inviscid, full potential equation. 
The analysis program is valid for both incompressible and compressible flow thereby making opti- 
mum design of high-speed airfoils also possible. Results are presented for the following three 
different constrained optimization problems at fixed angle of attack and Mach number: adverse 
pressure gradient minimization, pitching moment minimization, and lift maximization. All three 
problems were studied with various aerodynamic and geometric constraints. 

INTRODUCTION 

The design of advanced general aviation aircraft has indicated a need for a wider choice of 
airfoil sections to meet the increased requirements of safety, utility, performance, and economy to 
operate in the complex environment of today’s air transportation system. More airfoil sections 
could be provided by systematic variation of airfoil parameters through wind-tunnel testing or by 
the development of advanced computer programs to calculate section aerodynamic characteristics. 
It was felt that the general aviation manufacturers would be better served by the latter approach, 
that is, the development of a simple, direct approach to airfoil design since a modern family of 
airfoils would not necessarily meet the requirements of a particular design problem. The goal has 
been to develop a method that would allow the aircraft designer to  calculate airfoil contours so that 
the requirements of the design could be met without the inevitable compromise that arises when an 
airfoil must be chosen from an existing family of sections. Achievement of this goal has been 
enhanced by the rapid advancement in aerodynamic and numerical optimization programs over the 
last few years. Aerodynamic coefficients, pressure distribution, boundary-layer transition, and even 
flow separation can now be predicted for two-dimensional sections. Hence, it is now possible to 
design an airfoil on a computer. 

Considerable effort has been expended within NASA, the universities, and industry over the 
last few years to develop methods that can be used to design advanced lowspeed airfoils (e.g., 
refs. 1 and 2). Such methods have been used in both the direct and inverse modes to design airfoil 
sections (refs. 3-5). 

In the direct mode, airfoil design has been mainly intuitive combined with wind-tunnel tests to 
enhance the design process. Inverse methods have been used successfully to design airfoils for 



specific flight conditions but have the disadvantage of requiring an apriori knowledge of the 
desirable form of the pressure distribution before the design is attempted. While such knowledge 
may be available in some cases, the designer usually knows more about the required thickness, 
volume, trailing-edge angle, etc., than about the required velocities or pressures over the airfoil 
surfaces. Because of the inadequacies of current design methods, a practical engineering procedure 
based on numerical optimization which allows the designer to specify geometric requirements of the 
airfoil at the start of the design is under development at Ames. Both low-speed and high-speed 
airfoil sections can be designed with this method. This method was shown to be both practical and 
easy to use for the design of shock-free transonic airfoils (ref. 6). The technique has been applied 
here to the design of potential general aviation airfoils. 

The results presented must be considered preliminary and are intended only to illustrate the 
usefulness and simplicity of the technique. 

DESIGN METHOD 

The design method demonstrated here used two existing compgter programs - an optimiza- 
tion program based on the method of feasible directions (ref. 7) and an aerodynamic analysis 
program based on a relaxation solution of the full potential equation (ref. 8). The technique is 
applicable to both subsonic and transonic flow. The theoretical bases for both computer programs 
are discussed briefly in the appendix. 

The thickness distributions of the airfoils considered are given by 

where yus and y b  are the upper- and lower-surface ordinates, respectively, and P 2 ,  . . ., P, are 
Legendre polynomials given by 

P2 = 2(x/c)- 1 

P3 = ~(x/c)’ - ~(x /c )  + 1 

P5 ~ O ( X / C ) ~  - 1 4 0 ( ~ / ~ ) ~  + ~ O ( X / C ) ~  - ~ O ( X / C )  + I 

P6 = 2 5 2 ( ~ / ~ ) ’  - 6 3 0 ( ~ / ~ ) ~  + ~ ~ O ( X / C ) ~  - 2 1 0 ( x / ~ ) ~  + ~ O ( X / C )  - 1 
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The square root term allows a blunt leading edge and assures matching of upper-surface and 
lower-surface derivatives of all orders at the leading edge. The coefficients a ,  , . . ., a6 and b l  , . . ., 
b6 are the design variables perturbed by the optimization program to achieve optimum design. 

Legendre polynomials were used to represent the airfoil geometry because optimization algo- 
rithms work more efficiently when orthogonal expressions are used. This particular representation 
of the airfoil geometry is not unique, and other forms such as Fourier series, piecewise polynomials, 
or other orthogonal polynomials are certainly possible choices. Optimum design problems were also 
solved using one expression for thickness and another for camber; however, the geometric represen- 
tation used here was found to be more efficient for optimization because the upper and lower 
surfaces were not mathematically coupled. 

All airfoils were constrained to have no negative thickness ( t 2 0 )  and to  have a trailingedge 
thickness no greater than 1 percent of the chord (ATE < 0.01~).  Unless otherwise noted, all design 
variables (al , . . ., a6 ; b l  , - . ., b 6 )  were used for each optimization problem. All pitching-moment 
coefficients calculated during this study were referenced to the quarter chord. The parameter Y 
(indicated in the figures) is the area contained within the contour of the normalized airfoil and can 
be considered a measure of the volume of a finite wing using the airfoils shown. 

Some of the airfoils developed during this study may exhibit minor imperfections (e.g., 
reflexed curvature). No attempt was made to eliminate such minor flaws since the primary purpose 
of this effort was to demonstrate a technique rather than to  finalize the design of specific airfoils. In 
an actual design, any surface irregularities could easily be eliminated by additional constraints on 
the airfoil geometry or by selecting an alternate expression for the thickness distribution. 

In optimization problems of the type Considered here, a starting airfoil is needed. Unless 
otherwise noted, the initial airfoil used here was obtained by fitting the thickness equations given 
above to six points on the upper surface and six points on the lower surface of the NACA 641 -212. 

DESIGN RESULTS AND DISCUSSION 

The following numerical optimization problems, subject to  geometric and aerodynamic con- 
straints, were considered : adverse pressure gradient minimization, pitching moment minimization, 
and lift maximization. 

The aerodynamic analysis program used here is applicable to inviscid flow only, hence drag 
minimization problems were not considered. However, a comparison of the inviscid optimization 
results with viscous calculations shows that many interesting design problems can be treated by an 
inviscid theory. In the near future, the optimization program will be coupled with a viscous aero- 
dynamic analysis program, thereby permitting the consideration of drag during the optimization 
process. 

The first problem considered here was the design of airfoils for high maximum lift coefficient. 
and because of the close Since reliable methods are not available to accurately calculate CL 

max 
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relationship of CL 
small upper-surface pressure peaks and low adverse pressure gradients were developed. 

to the shape of the upper-surface pressure distribution, airfoils that have 
mux 

Minimization of Adverse Pressure Gradient 

The absolute value of the difference in pressure coefficients at x / c  = 0.003 and x/c  = 0.2 was 
taken as a measure of the upper-surface pressure gradient near the leading edge for the series of 
o p t i m i z a t i o n  p r o b l e m s  c o n s i d e r e d  h e r e  ( i . e . ,  t h e  m i n i m u m  va lue  o f  

IC ( x / c  = 0.2)l was sought). The choice of this pressure difference as a 
measure of the pressure gradient is arbitrary and other quantities such as peak pressure coefficient 
could have been used. 

(x /c  = 0.003) - C 
pus pus 

The minimization of the upper-surface adverse pressure gradient at M = 0.1 and (x = 6", subject 
to constraints on thickness and trailing-edge bluntness, is shown in figure 1. Note that when the 
adverse pressure gradient was reduced, a loss in lift occurred. Also, a modest "humping" of the 
pressure distribution between the leading edge and x / c  = 0.2 occurs. However, this may not be 
undesirable since a favorable pressure gradient is achieved in the region of large curvature near the 
leading edge where the fluid particles are subjected to  large centrifugal forces. Hence leadingedge 
stall may be eliminated. The final airfoil in figure 1 exhibits greater volume and smaller nosedown 
pitching moment. 

Adverse pressure gradient minimization subject to  constraints on pitching-moment coefficient, 
lift coefficient, and airfoil volume along with the thickness and trailing-edge constraints for 01 = 6" 
is shown in figures 2, 3, and 4. When the volume is required to be greater than or equal to a 
specified value (V 2 0.075), the final airfoil is considerably thicker than the initial airfoil (fig. 2). 
Note the substantial reduction in pressure peak and adverse pressure gradient near the leading edge 
on the upper surface accompanied by an increase in volume of nearly 51 percent. Here, the con- 
straint on lift coefficient prevented the loss in lift noted in figure 1. All constraints were satisfied by 
the final design. When the volume is constrained from above and below (0.075 < V G 0.09, fig. 3, 
or 0.075 < V <  0.08, fig. 4) along with constraints on Cm, CL,  thickness, and trailingedge blunt- 
ness, the final airfoils are considerably thinner but still exhibit small adverse pressure gradients near 
the leading edge on the upper surface (figs. 3 and 4). The improved pressure gradient results from an 
increase in the upper-surface ordinates near the leading edge (figs. 1 to 4). Increasing ordinates in 
this region eliminates leading-edge stall and increases the maximum lift coefficient by delaying flow 
separation to greater angles of attack (refs.4, 9, and 10). Note that the final lift coefficient is 
greater for the thinner sections (figs. 3 and 4) than for the thick section in figure 2. 

The effect of increasing the design angle of attack from 6" to 10" on minimization of adverse 
pressure gradient is shown in figure 5. The pressure peak is increased from -8.21 to  -3.4 accom- 
panied by a substantial reduction in the leading-edge adverse pressure gradient. Again a large 
increase in the upper-surface ordinates particularly near the leading edge was required to  achieve the 
desired result. All constraints were satisfied by the final contour and the lift and pitching-moment 
coefficients were improved. While the final airfoil may achieve a large maximum lift coefficient, a 
drag penalty would probably be found at low lift. Drag will be explored experimentally during 
future wind-tunnel tests, and also theoretically when a suitable viscous aerodynamic program is 
available (the program is currently under development). 
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A superposition of the airfoils designed for angles of attack of 6" and 10" is shown in figure 6. 
The slight irregularity in the upper surface of the airfoil designed for a = 10" could easily be 
eliminated by imposing additional constraints on thickness and/or curvature. 

Minimization of Pitching Moment 

Pitching-moment minimization at M = 0.1 and a = 0" subject to constraints on thickness and 
trailing-edge bluntness is shown in figure 7. Note that the pitching-moment coefficient was reduced 
to zero along with a loss in lift. This result was achieved primarily by unloading the trailing edge 
along with a slight change toward a more symmetrical airfoil. The lower-surface pressure coeffi- 
cients are less than those for the upper surface aft of the 75-percent chord station. 

Pitching-moment minimization at a = 6" subject to  thickness and trailingedge bluntness con- 
straints is shown in figure 8. Again the moment coefficient is reduced to  near zero accompanied by 
a loss in lift by unloading the trailing edge of the airfoil. Before considering the more important 
problem of moment minimization subject to aerodynamic constraints along with more rigid geo- 
metric constraints, it was deemed appropriate to calculate the aerodynamic characteristics of the 
final airfoil in figure 8 by a viscous theory to  explore the usefulness and practicality of design by an 
inviscid theory. Figure 9 compares the inviscid calculations with viscous calculations, where the 
agreement between the theories for pressure distribution, lift coefficient, and moment coefficient is 
good. This comparison indicates that useful low-speed design can be achieved with an inviscid 
theory so long as the drag of the final design is checked with a viscous theory or experimentally. 
(The viscous theory used here was not coupled with the optimization program for airfoil design 
because of the long computer time required for each calculation. The theory is described in 
reference 1 .) Viscous and inviscid calculations are compared further later. 

Moment minimization subject to constraints on lift coefficient, thickness, and trailing-edge 
bluntness is shown in figure 10. In this case, very little improvement in moment coefficient was 
realized. The reason for this lack of improvement is that the change in the design variables (coeffi- 
cients a, ,  . . ., a6 and b ,  , . . ., b6 of the thickness equations) required to reduce the nosedown 
pitching moment is opposite the design variable change required by the lift constraint. Hence little 
can be done to improve the pitching moment without violating the lift constraint. Three possible 
solutions to this difficulty are: (1) Use a different equation to represent the airfoil geometry since 
cambered airfoils with forward loading are apparently difficult to achieve with the geometric 
equations used here. (2) Impose more constraints on the design. (3) Use a different initial airfoil. 

Increasing the number of constraints was found to increase the probability of finding an 
optimum design during the study reported in reference 6; hence more constraints were used here. 
When additional constraints are imposed, the design is "pushed" in a different direction, which 
often improves the result, particularly if relative minimums are present. Constraints on upper- 
surface pressure gradient and volume were added and the design was rerun on the computer 
(fig. 11). The final airfoil exhibits nearly a 50-percent decrease in nosedown moment along with 
increased lift and volume and a reduced adverse presence gradient near the leading edge on the 
upper surface. So, again, imposing additional constraints is beneficial in the optimum design of 
airfoil sections. 
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Since the pitching moment was still not reduced to zero in the above example, a different 
initial airfoil was chosen for the next series of moment minimization problems. The initial airfoil 
used was a cambered version of a shock-free section developed during the study reported in refer- 
ence 6. The results in figures 12, 13, and 14 show the effect of moment.minimization subject to 
thickness and trailing-edge bluntness constraints only. Figures 13 and 14 show, respectively, the 
effect of changing the upper-surface and lower-surface design variables independently. In all three 
cases (figs. 12 to 14) the nosedown moment was reduced to near zero along with a reduction in lift 
coefficient. The pitching moment and lift reduction was achieved by generating a more symmetrical 
airfoil and unloading the trailing edge. The effect of adding a constraint on lift is shown in 
figure 15. In this case, the pitching moment was reduced by more than 50 percent along with a 
small decrease in lift and a substantial increase in volume. However, a moment coefficient of zero 
was still not achieved. In the future, alternate equations for the airfoil geometry will be used in an 
effort to achieve greater flexibility in design and hence easier attainment of the optimum. 

Maximization of Lift 

The same initial airfoil as used for the pitching-moment minimization results described pre- 
viously (figs. 12 to 15) was used for all lift maximization problems except the final design problem. 
Lift maximization at M = 0.1 and CY = 6O subject to constraints on pitching moment, volume, thick- 
ness, trailing-edge bluntness, and upper-surface pressure coefficient at one chordwise station is shown 
in figure 16 (the arrow shows the position of the pressure coefficient constraint). The upper-surface 
pressure coefficient was constrained so that the peak upper-surface velocity and adverse pressure gra- 
dient could be reduced. The final airfoil exhibits nearly a 12-percent increase in lift along with a 
greater nosedown moment, a greater volume, and a smaller adverse pressure gradient. All constraints 
were satisfied by the final design. 

The effect of increasing the moment constraint and moving the constraint on the upper-surface 
pressure coefficient forward is shown in figure 17. A smaller increase in lift was achieved than €or 
the design shown in the previous figure primarily because of the “stronger” constraint on moment. 
Again, within the limits of the equation for geometry used here, reducing the pitching moment 
usually causes a decrease in lift. A further increase in pitching-moment constraint and an additional 
constraint on lower-surface pressure coefficient produced a final airfoil with nearly the same lift as 
the initial airfoil (fig. 18). The additional constraint on lower-surface pressure coefficient at the 
65-percent chord station was imposed to smooth the lower-surface pressure distribution. Again no 
constraints were violated by the final design. 

The quasi-641 -212 airfoil used for adverse pressure gradient minimization was again used as 
the initial airfoil for the last lift maximization problem. Constraints on moment, volume, thickness, 
trailing-edge bluntness, and upper-surface pressure coefficients were imposed (see fig. 19). The final 
airfoil exhibits a modest increase in lift accompanied by a smaller pitching moment, an increased 
volume, a small peak upper-surface velocity, and a weaker adverse pressure gradient near the leading 
edge on the upper surface. Since this airfoil appears to be an attractive, high-lift airfoil, viscous 
calculations were carried out to further assess the validity of the inviscid theory and to explore the 
off-design characteristics. Figure 20 compares inviscid theory with viscous theory. Note that the 
pressure peak and adverse pressure gradient are lower when calculated by the viscous theory because 
of the displacement effects of the boundary layer. A reduction in lift coefficient and nosedown 
pitching moment is also noted. Generally, the agreement between the two theories is acceptable, 
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which shows again that meaningful Iowspeed airfoil design can be achieved with an inviscid theory. 
Figure 21 shows the effect of angle of attack on the aerodynamic characteristics of the final airfoil 
in figure 19. Note that the peak negative pressure coefficient is only -5 for cx = 12". An empirical 
estimate based on the peak pressure and adverse pressure gradient indicates that the maximum lift 
coefficient is approximately 1.85. This estimate is a substantial improvement over the 641 -21 2, 
which has a maximum lift coefficient of 1.5 at a Reynolds number of 6-million for the smooth 
surface condition (ref. 11). The final airfoil shown in figure 19 will be tested in the future to 
evaluate the validity of these predictions. 

CONCLUDING REMARKS 

A technique for the optimum design of low-speed airfoils was demonstrated. The results 
presented here show that the adverse pressure gradient and pitching moment can be reduced and the 
lift coefficient can be increased with an inviscid aerodynamic theory. Extending the technique to 
viscous drag minimization or lift/drag maximization is straightforward, depending on the availability 
of suitable aerodynamic programs that include boundary-layer effects. The procedure is an efficient, 
easy-to-use engineering approach to the design of airfoil sections. 

The optimization problems considered here were performed on a CDC 7600 computer. A 
typical design problem used about three minutes of CPU time at a cost of approximately $55. 

Further work is needed to develop equations for the airfoil geometry which allow greater 
flexibility in airfoil contour modification so that optimum design can be achieved for a greater 
variety of airfoils and isolated regions of the airfoil (e.g., leading or trailing edge) can be modified 
without altering the entire airfoil. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, January 14, 1975 
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THEORETICAL CONSIDERATIONS 

Aerodynamic Analysis 

The aerodynamic analysis program uses a relaxation method to solve the nonlinear partial 
differential equation that governs the inviscid, potential fluid flow. The problem is solved by 
mapping the airfoil to the interior of a unit circle. Appropriate boundary conditions are specified on 
the airfoil surface and in the far field. The governing partial differential equation is of mixed 
elliptic-hyperbolic type and is solved by a mixed finite-difference, line relaxation algorithm. Solu- 
tions in which the flow is completely subsonic or transonic (mixed subsonic, supersonic) where 
both shock-free flows and embedded-shock flows are possible. (See ref. 8 for complete details of the 
theory and solution procedure.) The aerodynamic program was modified to fit the requirements of 
the optimization program, and the two programs were coupled to produce a single design optimiza- 
tion program. 

During the optimization process, the aerodynamics of many different airfoils must be calcu- 
lated. However, each airfoil is a small perturbation on the preceding airfoil and hence the flow 
characteristics of one airfoil provide a good initial estimate to  start the calculation for the next 
airfoil. This process reduces the number of iterations required for convergence of the relaxation 
technique used to solve the fluid flow equation, thereby providing an efficient computational 
process. 

The proposed procedure is not limited to two-dimensional airfoils. Lifting three-dimensional 
wings and axisymmetric bodies should be admissible problems to the proposed method. 

Optimization Process 

Numerous optimization algorithms are available in the literature, each with its own special 
mathematical characteristics. The basic concept common to each is that a sequence of improving 
designs is obtained, which leads to a final optimum solution that satisfies all imposed constraints 
unless such a design does not exist. 

Mathematically stated, the optimization problem has the form: 

Minimize OBJ = F(Z) subject t o  Gj(Z) < 0 , j = 1 flCON 

where Z is a vector containing the design variables (in this case, the coefficients of the airfoil 
geometry function). When pitching moment is to  be minimized, OBJ is the value of the moment 
coefficient, a highly nonlinear implicit function of the design variables. The term Gj(Z) defines the 
linear and nonlinear constraints on the design and NCON is the total number of such constraints. 
For example, if the enclosed volume of the airfoil is required to be greater than or equal to  a 
specified value, Vmin, the corresponding constraint may be written in normalized form as 
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For the polynomial representation used for the airfoil shape, the above constraint is a linear 
function of the design variables. Other constraints considered include lift coefficient, pressure 
gradient, and pressure coefficient at some chordwise station on the airfoil. 

For the airfoil design problem considered here, the upper and lower surfaces may be described, 
respectively, as 

yus = a , G +  azP2 + . . . + a,P, 

where the coefficients a ,  . . ., a, and bl  . . ., b, are the design variables contained in the Z vector 
and P 2 ,  . . ., P6 are Legendre polynomials. Non-negative thickness is ensured by imposing the 
linear constraints 

at 50 chordwise stations. An example of the nonlinear constraints considered is the requirement 
that the lift coefficient be greater than some specified minimum, say Ci, so that 

If pitching moment is to be minimized, the objective function, OBJ, equals Cm- During the 
optimization process, the gradient 

is required. Then if no constraints are active or violated (all Gj(x) G 0), the pitching moment is 
reduced by moving in the direction of steepest descent -v C,. If one or more constraints are active 
or violated (some Gi(x) > 0), a search is determined to reduce Cm subject to these constraints. 

The general optimization procedure is to iteratively update the design so that at iteration q ,  
fl = 2q1 + pSq where S is a vector direction in the n-dimensional design space and p is the distance 
of movement in direction S. At iteration q ,  S is determined so that, for an arbitrarily small 0, the 
objective function is decreased (usable direction) and no constraints are violated (feasible direction). 
If the initial design is not feasible (if it violates one or more constraints), a direction S is found that 
will overcome this constraint violation with minimal increase in the objective function. At any 
iteration, if one or more constraints are active or violated, the T vector is determined by the method 
of feasible directions (refs. 12 to 15). If no constraints are active, either a steepest descent or 
conjugate direction determined using the Fletcher-Reeves algorithm (refs. 16 and 17) is taken as the 
move direction. A constraint is defined to be active if 

CT d Gj(2) < CT 

9 



where GT is a small negative number used to identify near zero values of G.(x). This procedure is 
required because precise zero is seldom attainable numerically. A constraint is considered inactive if 
its value is less than CT and violated if it is greater than CT (GT is the “constraint tolerance”). 

1 

The optimization algorithms are described in detail in references 12 through 17 and only a 
brief geometric interpretation is given here to identify the program requirements. 

Consider the two-variable design space shown in figure 22 where an initial unconstrained 
design is prescribed at point A. At this point, the gradient of the objective function is calculated by 
a finite-difference computation using one-sided differences. The initial direction of movement from 
this point is the direction of steepest descent, S = -V OBJ. The parameter 0 is now determined so 
that OBJ is minimized or a constraint surface is encountered (Gi(Z) = 0) by moving in this direc- 
tion. If the objective is nonlinear, subsequent directions are determined by the conjugate direction 
method (ref. 16) until a constraint surface is encountered (point B in fig. 22). At point B, the 
gradient of both the objective function and the active constraint(s) is required, again calculated by 
finite-difference computation. The feasible direction algorithm is used to determine 5. In this case, 0 
is determined so that OBJ is minimized in direction S, a new constraint is encountered or a currently 
active constraint is again encountered. If one or more constraints are violated (point C in fig. 22), as 
is often true for the initial design, a direction is determined that will point toward the feasible 
region with minimal increase in OBJ, based on gradients of the objective function and all active and 
violated constraints. 

The optimum design program is segmented into three parts: the main program that initializes 
all design information; CONMIN, which performs the optimization; and the aerodynamic analysis 
routines to provide function and constraint evaluations. Figure 23 is a block diagram of the program 
organization. Optimization usually requires less than 10 design iterations. Gradient calculations 
using finite difference require y1 aerodynamic analyses per design iteration (n is the number of 
design variables). The move (one-dimensional search) in direction S requires an average of three 
analyses. Therefore, the maximum total number of aerodynamic analyses should seldom exceed 
10n + 30. The calculations described under Design Results and Discussion were carried out on a 
CDC 7600 computer. The majority of the results required about 3 minutes of CPU time, which 
corresponds to 50 to 150 separate flow calculations. Most of the relaxation calculations converged 
in 1 to 40 iterations. 
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-4 

CONSTRAINTS: t 2 O.ATE 2 0,Olc 
CL C m  V 

INITIAL AIRFOIL 0,904 -0,052 0,0760 
FINAL AIRFOIL 0,774 -0,006 0,0923 --_. 

.1 

T/C 0 

-3 

-2 
I A-\ 

----------- -1- 
-- 2 

Figure 1.- Upper surface adverse pressure gradient minimization;M = 0.1, a = 6". 
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CONSTRAINTS: Cm2-0,05, CL 2 0,90, V 2 0.075, t L 0, A T E  5 0,Olc 
CL C m  V 

INITIAL AIRFOIL 0,904 -0,052 0,0760 
FINAL AIRFOIL 0,914 -0,038 0,1147 --- 

e--- 

/-- 

---- -_____-- ---- 
I I I I 1 1 1 1 1 1 

0 ,10 ,20 ,30 ,40 .50 ,60 ,70 ,80 ,90 1 ,OO 
x/c 

Figure 2.- Upper surface adverse pressure gradient minimization; M = 0.1, 01 = 6". 
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,1 

T/C 0 

-4 

-3 
CONSTRAINTS: Cm>-0,05, CL 2 0,9, 0,075 I V 5 0,09, t > 0 ,  ATE 5 0 . 0 1 ~  

CL Cm V 
INITIAL AIRFOIL 0,904 -0,052 0,0760 
FINAL AIRFOIL 0,955 -0,046 0,0890 

-2 
--- 

-1 

0 

1 

2 

-,1 I I I I 1 1 1 1 1 1 1 
O ,10 ,20 ,30 a40 150 ,60 ,70 .80 ,90 1.00 

x/c 

Figure 3.- Upper surface adverse pressure gradient minimization; M = 0.1, cy = 6". 
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CONSTRAINTS: Cm>-0,05, CL ~ 0 . 9 0 ,  0,075 < - V  <_0,08, t>O,ATE < 0 , 0 1 ~  
CL Cm V 

INITIAL AIRFOIL 0,904 -0,052 0,760 
FINAL AIRFOIL 0,956 -0,040 0,800 

-.-- 

I I I I 1 1 1 .I 1 1 1 
0 ,10 ,20 ,30 ,YO -50 ,60 .70 ,80 ,90 1,OO 

x/c 

Figure 4.- Upper surface adverse pressure gradient minimization;M = 0.1, a = 6". 
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-8,21 

-5 
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-10 
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,1 

T/C 0 

- 

I I I I I I I I I I 

I \  CONSTRAINTS: CmL-0,05, CI 11,35, 0,075 I V - 0,095, t 

CL Cm V 
INITIAL AIRFOIL 1,38 -0,058 0,0760 
FINAL AIRFOIL 

0, ATE 

1 

0 I Olc 

Figure 5.- Upper surface adverse pressure gradient minimization;M = 0.1, cu = 10". 

DESIGNED FOR a = 6 O  
DESIGNED FOR a= 10" -A- 

Figure 6.- Comparison of airfoil contours designed for different angles of attack; M = 0.1. 



CONSTRAINTS: t 2 0, AT E  < 0,Ok 
CL C m  V 

INITIAL AIRFOIL 0,186 -0,043 0,0760 
--- FINAL AIRFOIL 0,009 0,000 0,0789 

-,1 I I I I 1 1 1 1 1 1 1 
0 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90 1 ,OO 

x/c 

Figure 7.- Pitching-moment minimization; M = 0.1, CY = 0". 

-4 
CONSTRAINTS: t 2 0,ATE 5 0 . 0 1 ~  

INITIAL AIRFOIL 0,904 -0,052 0,0760 
CL C m  v 

-3 

--- FINAL AIRFOIL 0.683 0,001 0,0787 

-2 

CP 
-1 

0 

,1 1 

TIC 0 2 

I 
I- 

0 110 420 830 e40 850 '60 .70 e80 ,90 1.00 

x/c 

Figure 8.- Pitching-moment minimization; M = 0.1, CY = 6". 
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CL Crn CD 
INVISCID THEORY 0,683 0,001 --- 
VISCOUS THEORY 0,682 -0,007 0,0138 RN = 5(1016 

Figure 9.- Comparison of inviscid theory with viscous theory for the final airfoil in figure 8; 
M = 0.1, a = 6". 

-4 
CONSTRAINTS: CL L 0,9, t 2 0, ATE <_ 0,Olc 

-3 CL Cm V 
INITIAL AIRFOIL 0,904 -0,052 0,0760 
FINAL AIRFOIL 0,907 -0,048 0,0844 --- 

-2 

-1 

0 

1 

2 

1 I I I I I I I .  I I 1 
0 ,20 -30 ,40 ,54 ,60 -70 ,80 '90 1.00 

x/c 

Figure 10.- Pitching-moment minimization; M = 0.1 , a = 6". 
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-1 
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Cm V 
t 2 0, ATE I 0 .Olc 

CL 
I N I T I A L  A I R F O I L  0,904 -0,052 0,0760 
F I N A L  A I R F O I L  0,936 -0,028 0,0826 --- 

-,1 I I I I I 1 1 1 1 1 1 
0 , l o  #20 $30 ,40 ,50 ,60 ,70 ,90 1,oo 

x/c 

Figure 1 1 .- Pitching-moment minimization; M = 0.1, a = 6". 

CONSTRAINTS : t 2 0, ATE 5 0, Olc -3 

CL Cm V 

I N I T I A L  A I R F O I L  0,984 -0,070 0,0951 -2 
0,001 0,0971 

0 

,1 1 

-,1 
0 ,IO ,20 ,30 ,40 $50 -60 ,70 ,80 ,90 1.00 

x/c 

Figure 12.- Pitching-moment minimization; M = 0.1, a = 6". 
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CONSTRAINTS: t 1. 0, AT E  5 0,Olc 

-3 CL C m  V 

0,0951 
-2 --A FINAL AIRFOIL 0,716 0,002 0,0838 

INITIAL AIRFOIL 0,984 -0,070 

DESIGN VARIABLES: al,  a2, a3. a4, a5, a6 

c, -1 

0 

.1 1 

-,1 I I I I I I I I I I 1 
0 , l o  .20 ,30 ,40 .50 ,60 ,70 ,80 ,90 1,OO 

X/C 

Figure 13.- Pitching-moment minimization;M = 0.1, a = 6" 

CONSTRAINTS: t 2 0, ATE < 0,Ok 
-3 

CL C m  V 

INITIAL AIRFOIL 0,984 -0,070 0,0951 
FINAL AIRFOIL 0,705 0,001 0,1077 --- -2 

DESIGN VARIABLES: bl, b2, b3, bq, b5, b6 

c, -1 

0 

$1 1 

-.1 I I I I I I I I I I I 

0 . l o  ,20 .30 ,40 ,50 ,60 .70 ,80 ,go 1.00 
x/c 

Figure 14.- Pitching-moment minimization;M = 0.1, a = 6". 



-3 

-2 

CONSTRAINTS: CL 0,95, t 2 0, ATE 5 0.01~ 

CL Cm V 
INITIAL AIRFOIL 0,984 -0,070 0,0951 

\--- FINAL AIRFOIL 0,949 -0.034 0.1113 

Figure 15.- Pitching-moment minimization;M = 0.1, a = 6". 

CONSTRAINTS: Cm 2-0,1, V 2 0,095, Cp,, 2 -2,O AT (x/c) = 0,139, t 2 0, 
-3 ATE5 0,Olc 

CL Cm V 
INITIAL AIRFOIL 0,984 -0,070 0.0951 

-2 --- FINAL AIRFOIL 1,110 -0,099 0,1098 

-1 
CP 

0 

8 1  1 

T/C 0 2 

-,1 I I I I I 1 1 1 1 t 1 
0 110 '20 ,30 ,40 .SO ,60 870 ,80 .90 1'00 

x/c 

Figure 16.- Lift maximization; M = 0.1, a = 6". 
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CP 

,1 

T/C 0 

-,1 

CP 

,1 

T/C 0 

-,1 

V L 0,095, Cp,, 2 -2 ,O 8 (x/c) = 0,014, t L 0,ATE 5 0,Olc 

CL Cm V 

INITIAL AIRFOIL 0,984 -0,070 0,0951 
FINAL AIRFOIL 1,05 -0,078 0,1037 

-3 
CONSTRAINTS: Cm >_-0,08, 

-2 

-1 

0 
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-3 
CONSTRAINTS: Cm >_-0,08, 

-2 

-1 

0 
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I I I I I I i i i i i 
0 ,10 .20 -30 ,40 ,50 ,60 '70 .80 .90 1,OO 

x/c 

Figure 17.- Lift maximization; M = 0.1, IV = 6". 

CONSTRAINTS: Cm?-0,05, V 2 0,095, Cpus L -2,O AT (x/cf = 0,019 
-3 P 

CpLsL. 0,lO AT (x/c) = 0,653 

CL Cm V 
INITIAL AIRFOIL 0,984 -0.070 0,0951 

--- FINAL AIRFOIL 0.983 -0,045 0,0951 

---- 
- I F -  -. 2 t  

- - - =  --e--__ 
-- -I'- 

I I I I I I 1 1 1 1 1 

0 a10 820 830 *40 850 e60 '70 '80 ,90 1 ,OO 

x/c 

Figure 18.- Lift maximization; M = 0.1, IV = 6". 
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CONSTRAINTS: Cm~-0,05, V 2 0,075, CpUs) -2,O AT (x/c) = 0,003, 
t l 0 ,  ATE I 0 , 0 1 ~ ,  Cp,, 2 -240 AT (x/c) = 0.01 

-4 r 
-3 

-2 

CP 
-1 

0 

,1 1 

CL Cm V 
INITIAL AIRFOIL 0,904 -0,052 0,0760 
FINAL AIRFOIL 0,949 -0,047 0.0860 ._-- 

-,1 I I I I I I I I I I J 
0 a10 a20 $30 840 $50 $60 870 880 890 1800 

x/c 

Figure 19.- Lift maximization; M = 0.1, a = 6 O .  
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,1 

T/C 0 

-3 
CL Cm CD 

INVISCID THEORY 0,949 -0,047 --- 
-2 --- VISCOUS THEORY 0,870 -0,033 0,0132 RN = 

-1 

0 

1 

2 

-3 
CL Cm CD 

INVISCID THEORY 0,949 -0,047 --- 
-2 --- VISCOUS THEORY 0,870 -0,033 0,0132 RN = 

-1 

0 

1 

-,1 I I I I I 1 I I I I I 
0 ,10 '20 .30 ,40 ,50 ,60 ,70 ,80 ,90 1.00 

x/c 

Figure 20.- Comparison of inviscid theory with viscous theory for the final airfoil in figure 19; 
M = 0.1, a = 6". 
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12 1.45 -0,031 0,0254 
6 0'87 -0,033 0,0132 
0 0,21 -0.034 0,0085 

-- 
--- 

CP 

I--- ----- 

2 O  ,10 ,20 ,30 ,40 ,50 #60 ,70 ,80 ,90 1 , O O  
X/C 

Figure 21.- Angle of attack effect for the final airfoil in figure 19; M = 0.1, RN = 5( 

OBJ = CONSTANT 

0 

Figure 22.- Two-variable design space. 
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Figure 23.- Program organization. 
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