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A NOISE STUDY OF THE A-6 AIRPLANE AND TECHNIQUES 

FOR RZDUCINC ITS AURAL DEXTCTION DISTANCE 
* 

By David A .  Hilton, Andrew B. Connor 
and Harvey H. Hubbard 

SUMMARY 

A study was undertaken by the NASA Langley Research Center t o  determine 

S t a t i c  and flyby noise measurements were taken t o  docu- 
the noise reduction poten t ia l  of the A-6 airplane i n  order t o  reduce i t s  aural 
5etection distance. 
-Pnt the basic a i rplane signature. The low-frequency noise which i s  generally 
x s t  c r i t i c a l  f o r  aural detection was found t o  be broad band i n  nature from 
t h i s  airplane, and i t s  source i s  the turboJet engine exhaust. High-frequency 
,-ozpressor noise, which i s  character is t ic  of tu rboje t  powerplants, and which 
I s  prominent a t  close range for  t h i s  airplane,  has no measurable e f f ec t  on 
c1lra.l detection distance. 

The use of fluted-engine exhaust nozzles t o  change the f a r  f i e l d  noise 
spectra i s  suggested as a possible means fo r  reducing the aural detection 
distsnces. Detection distances associated with eight-lobe and four-lobe 
nozzles are  estimated fo r  a 1,000-foot a l t i t ude  and grassy t e r r a in  t o  decrease 
f ro3  -+ miles t o  about 3 miles, and f’ram 3 miles t o  about 2 miles for  a 300-foot 
a l t i t ude  and grassy t e r r a i n .  

The above nozz.le modifications are estimated t o  add 123 andl5E. pounds, 
respectively, t o  the a i r c r a f t  weight, and result in a 10 and 15-knot decrease 
i n  V- (roughly 2 percent) .  
affected by about the same proportion as 
s t a b i l i t y  charac te r i s t ics  are relat ively unaffected by these changes. 

Rate of climb and velocity for  rnte  of climb a re  
V-, but the cruise performance and 

NASA, i n  respon 

INTRODUCTION 

e t o  a Department of Defen e request, has undertaken a 
study of the noise reduction potent ia l  of the A-6 airplane i n  terms of i t s  
aural detection distance,  This e f fo r t  spec i f ica l ly  involves : (1) documenting 
the noise charac te r i s t ics  of the basic airplane, (2) evaLu8:izg 2ossible modi -  
f icat ions a d  t h e i r  associated noise reductions, (3)  estimating the e f fec ts  of 
some selected modifications sn the aural detection disiiance of the a i r c ra f t ,  



and ( 4 )  estimating the e f f e c t s  of such noise reduction modifications on the 
performance and s t a b i l i t y  of the  a i r c r a f t .  This paper d o c m n t s  the  NASA 
e f f o r t s  i n  accoql i sh ing  the  above objectives. The r e s u l t s  contained herein 
do not necessarily represent t he  optimum solut ion t o  the problem of noise 
reduction fo r  the A-6 airplane,  but are indicat ive of those believed t o  be 
achievable. 
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hlRP mi l i t a ry  rated power 

NRP normal ra ted power 

TAS t r u e  airspeed 

THF t h r u s t  horsepower 

(R/C),, 

TO takeoff 

maximum r a t e  of climb, feet/minute 

center l ine t 
APPARATUS AND M"H0DS 

Test Airplane 

The A-6 airplane which was tes ted  f o r  the s tudies  of t h i s  report  i s  a 
two-place twin-turbojet midwing monoplane with a design gross weight of about 
55,000 pounds. The turbojet  engines are  each ra ted  a t  8;,00 pounds th rus t  a t  
takeoff.  Photographs of the t e s t  airplane are shown i n  figure 1, and a three- 
view drawing of the airplane with a l i s t  of i t c  pr incipal  physical features  i s  
presented i n  f igure  2. 
Services Evaluation Group, Patuxent River  Naval A i r  Station. 

The airplane and the test p i l o t s  came from the A l l  

Test Conditions 

Noise measurement t e s t s  were conducted a t  the  NASA Wallops Island test 
f a c i l i t y  where use w a s  made of the main paved runway surface and the  associated 
f l a t  t e r r a i n  f o r  locat ing the instrumentation f o r  both s t a t i c  and flyby t e s t s .  
The t e r r a i n  fea tures  of the t e s t  area a re  shown i n  the photograph of figure 3(a) 
which i s  a view of the microphone array looking north from the runway centerline,  
and figure 3(b)  which i s  a view t o  the south. 
phone arrays f o r  these t e s t s  are  included i n  f igure 4. 
conditions fo r  a l l  noise measurement t e s t s  a r e  l i s t e d  i n  table  I. 

Schematic diagrams of the micro- 
Airplane operating 

Noise-Measuring Equipment 

The noise measuring instrumentation used f o r  these t e s t s  i s  i l l u s t r a t e d  by 
the block diagram of figure 5 .  The microphones were of a conventionalpiezo- 
e l e c t r i c  ceramic type having a frequency response f l a t  tc within 23 dB over the 
frequency range of 20 t o  12,000 cps. The outputs of a l l  the  mrcrophones at 
each s ta t ion  were recorded on multichannel tape recorders. The en t i r e  sound 
measurement system was calibrated i n  the f i e l d  before and a f t e r  the measure- 
ments by means of conventional discrete  frequency cal ibrators  supplied by the  
microphone manufacturers. The cista records were played back from the tape 
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(using the playback system shown schematically i n  f i g .  5 )  t o  obtain the sound 
pressure l eve l  time h i s to r i e s  and both broad-band and narrow-band spectra.  

AIRCRAFT OPERATION 

S t a t i c  and flyover noise measurements were taken of the t e s t  a i rplane a t  

S t a t i c  noise t e s t s  were conducted with only one engine 
the  conditions l i s t e d  i n  tab le  I with the  noise measurement apparatus positioned 
a s  shown i n  f igure  4. 
operating. Engine t e s t  conditions fo r  s t a t i c  runs two and three were chosen by 
the p i l o t  a s  representat ive of normal f l i g h t  operations. 
(61 percent rpm) w a s  included as an a i d  t o  analysis  i f  required. 

The low-speed case 

The f l i g h t  t e s t s  were conducted a t  the two selected power se t t ings  of 
Airspeed 85 and 96 percent over an a l t i t ude  range f'rom 200 t o  3,000 feet. 

ranged from 305 t o  520 knots. 
a GSN-5 radar t racking uni t  and some of these data were relayed f o r  information 
t o  the p i l o t .  
about '5 miles p r i o r  to ,  and 1 mile beyond, the  overhead posit ion.  

The f l igh t ' course  and a l t i t ude  were plot ted by 

The airplane was maintained on the desired f l i g h t  path f o r  

ATMOSPHEXlIC CONDITIONS 

Some surface weather measurements and atmospheric sounding data were 
recorded i n  the v i c in i ty  of the t e s t  s i te during the taking of these measure- 
ments. Winds were out of the southwest a t  6 knots on the surface and 25 knots 
a t  3,000 f e e t .  
3,000 f ee t ,  and r e l a t ive  humidity w a s  48 percent and 36 percent over the  above 
a l t i t u d e  range. 

The temperature was 1-6.7~ C a t  the  surface and 11.7' C a t  

MEASURED NOISE CHARACTERISTICS OF THE BASIC AIRPLANE 

Flyover noise data for  t h i s  airplane were measured a t  a l t i t udes  of 
750 fee t ,  1,500 fee t ,  and 3,000 fee t  fo r  both the  cruise and climb power con- 
d i t ions  of t ab le  I. Noise levels  associated with cruise power were markedly 
lower than those associated with takeoff power and hence, detection distance 
studies were based on cruise power conditions. 
s t a t i c  runup t e s t s  indicated that the main noise components were broad band i n  
nature and that there were no discrete  frequencies present that were s ign i f icant  
i n  aural  detection. 

Analysis of the noise data from 

AIRCRAFT MODIFICATIONS ANALYZED 

Inspection of the measured noise signatures of the A-6 a i rc raf i  indicates  
t ha t  the main source of noise i s  t h e  mixing of the j e t  engine exhausts with the 
surrounding ambient a i r .  The present s tudies  have been made for  the purpose of 
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evaluating the  poss ib i l i ty  of a l t e r i n g  the exhaust noise spectrum t o  reduce 
au ra l  detection distance. 
spectrum i s  t o  make use of a corrugated o r  lobed exhaust nozzle t o  increase the  
rate of mixing of the j e t  exhaust with the  ambient a i r .  (See, f o r  example, 
sketches of f i g .  A - 1  of appendix A , )  
extensive j e t  exhaust suppressor research studies, as for example i n  refer- 
ences 1 and 2, were reviewed. 

One of the approaches t o  a l t e r ing  the  exhaust noise 

In  t h i s  regard the data produced during 

A ra ther  extensive se r i e s  of lobed nozzle studies was conducted by the 
E o l l s  Royce Company, and the r e s u l t s  are given i n  reference 1. I n  that work it 
w a s  found tha t  the noise reductions obtained from such nozzles varied systemati- 
ca l ly  as a function of the number of lobes or corrugations. The r e s u l t s  of the  
above parametric study are p lo t ted  i n  figure 6 i n  such a way as t o  indicate  
the  octave band i n  which the  maximum noise attenuation w a s  observed f o r  nozzles 
having d i f fe ren t  numbers of corrugations. It can be seen t h a t  the la rges t  
noise attenuations were observed i n  the higher frequency bands for  t he  larger  
numbers of corrugations. 
band for  which the maximum noise l eve l  reduction occurs a l so  decreases. 

A s  the  number of corrugations decreases, the frequency 

Experimental i n f l i gh t  evaluation data  fo r  a nozzle having eight  corruga- 
t ions or lobes are given i n  reference 2. 
operation on the J-65 engines of the E57 a i r c r a f t  and produced zizable changes 
i n  the radiated j e t  noise spectra. 

The above nozzle w a s  designed for  

A summary of the r e su l t s  from the f l i g h t  tests of refer.t-.nce 2 are pre- 
sented i n  figure 7. 
three separate evaluation flybys f o r  each of the octave bands and are plot ted 
i n  f igure 7 as a function of the octave band center frequency. 
:f f igure 7 relates d i rec t ly  t o  the  eight-lobe suppressor,of reference 2 whereas 
the  dashed curve is  estimated fo r  an  equivalent four-lobe suppressor according 
t o  the  data of reference 1. The above curves represent the estimated j e t  noise 
reduction performance of two possible j e t  nozzle configurations. The eight-lobe 
suppressor i s  of par t icular  i n t e re s t  because t h i s  configuration has been tes ted  
i n  f l i g h t  a t  an airspeed i n  excess of 200 knots on an engine of about the same 
t h r u s t  l eve l  as that of the A-6 a i r c r a f t ,  and thus the r e su l t s  are expected t o  
be d i r ec t ly  applicable. The similarities of the powerplant i n s t a l l a t ion  used 
i n  the studies of reference 2 t o  t he  A-6 airplane used for t h i s  noise study are  
discussed i n  more detai l  i n  appendix B. The four-lobe suppressor i s  proposed 
f o r  the  purpose of achieving greater noise reductions i n  the lower frequencies 
which a re  significant i n  aural detection, a t  the expense of probable increases 
i n  the noise generation a t  the higher frequencies which are  not s ignif icant  i n  
aura l  detection. 

The data of figure 7 are  the average noise reductions from 

The so l id  curve 

ESTIMATED NOISE CHAFUCTEKLSTICS 

Estimated noise spectra a t  a distance of 1,000 reet f ; r  tne  basic  a i r c r a f t  
and the two nozzle configurations described above are given i n  figure 8. 
overal l  sound pressure leve i  f o r  each of the three configurations i s  indicated 
a t  the left-hand side of the f i g l r e  adjacent t o  the ordinate scale.  The octave 
band spectrum i n  each case reryesents the  maximum value of sound pressure leve l  

The 



i n  each octave band during the flyover cycle, regardless of the time a t  which 
it occurs. It i s  estimated t h a t  the eight-lobe configuration nozzle would 
produce the l a rges t  noise reduction i n  the  four th  octave band, whereas t h e  
four-lobe nozzle would produce the l m g e s t  noise reduction i n  the t h i r d  octave 
band. 

DETERMINATION OF AURAL DETTECTION DISTANCES 

Basic Assumptions Relating t o  Detection 

I n  addi t ion t o  the noise source charac te r i s t ics  (see refs. 3 and 4), it i s  
well-known that the  aural detection of a noise involves such factors  as the  
transmission charac te r i s t ics  of the path over which the noise t rave ls  (see 
r e f s .  5 ,  6, 7, 8, and g), and the acoustic conditions a t  the observer locat ion 
(see r e f s .  6 and 10) as well a s  the  hearing a b i l i t y  of the observer (see r e f .  11). 
Attempts have been made t o  account fo r  a l l  of t he  per t inent  factors  i n  the  
above categories fo r  the calculations of detect ion distance which follow. 

Attenuation factors.-  The at tenuat ion f ac to r s  associated with the trans- 
mission of noise from the source t o  the observer are assumed t o  involve the  
well-known inverse distance law, atmospheric absorption due t o  viscosi ty  and 
heat conduction, small-scale turbulence, and t e r r a i n  absorption which i s  weighted 
t o  account for  the elevation angle between the source and the observer. For 
the purposes of t h i s  paper these fac tors  are taken i n t o  account as  determined 
by the following equation: 

4 r . '  
P.L. ( f ,x)  = 20 loglo + kl + K2 + (K - 5) q& 

3 

where propagation loss (P.L.) i s  computed f o r  each frequency and distance 
combination and where the f i r s t  term on the  right-hand side of the equation 
accounts for  the spherical  spreading of the  waves. In t h i s  connection x is  
the distance for  which the calculation i s  being made and A i s  the reference 
distance f o r  which measured data are  avai lable .  
represent propagation losses  and which a r e  given i n  coefficient form are defined 
as  follows: 

The remaining terms which 

5 represents the atmospheric absorption due t o  viscosity and heat  con- 
duction and i s  expressed i n  dB per 1,000 feet. The values of Kl vary as a 
function of frequency and for  the purposes of t h i s  paper a re  those of the  fol-  
lowing tab le .  For frequencies up t o  500 cps data a re  taken from reference 5 
and for  the higher frequencies from reference 8. 
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Octave band no. Center freq.  Decibel loss per  1000 feet 

7 
8 
9 

31.5 
63 

125 
250 
500 
1000 
2000 
4000 
moo 

0.1 
0.2 
0.3 
0.5 
0 *7 
1.4 
3 
7 -7 
14.4 

K2 i s  the  at tenuat ion i n  the atmosphere due t o  sml l - sca l e  turbulence. A 
value of 1.3 dB per 1,000 feet i s  assumed independent of  frequency fo r  the 
frequency range above 250 cycles (see r e f .  9 ) .  

KT a l so  i s  expressed i n  dB per 1,000 feet and includes both atmospheric 
absorption and t e r r a i n  absorption. 

'which are l i s t e d  for  widely varying conditions of vegetation and ground cov2r. 
The data of reference 6 have been reproduced i n  a more convenient form i n  
reference 7. Calculations included herein make use of the data of reference 7 
par t icu lar ly  curve (b) of f igure 1 which represents the condition of thick 
grass cover (18 i n ,  high) and the upperbound of curve 3 of f igure 2 which repre- 
sents  conditions of leafy jungle with approximately 100 f e e t  "see through" vis i -  
b i l i t y .  
ground plane, between the noise source and the observer. 
assumed for the present calculations were taken from f igure 3 of reference 7 
and are  seen t o  vary from zero fo r  angles greater than 70 t o  1.0 f o r  an angle 

The values used are those of reference 6 

Kh i s  a weighting fac tor  t o  account f o r  the  angle, measured from the 
The values of K4 

of oo. 

Ambient noise l eve l  conditions and human hearing.- The de tec tab i l i ty  of 

Since they a re  
a noise i s  a l s o  a function of the ambient masking mise  conditions a t  the 
l i s ten ing  s t a t ion  and the  hearing abi l i t ies  of the l i s t ene r .  
somewhat related,  they w i l l  be discussed together. 

The ambient noise l eve l  conditions assumed for  these s tudies  were based 
on data from references 6 and 10 which were obtained i n  jungle environments. 
The resul t ing octave band spectra have been adjusted t o  account f o r  c r i t i c a l  
bandwidth of the human ear, according t o  the following equation, t o  give 
masking leve l  values f o r  each band. 

I ctave 
9 ~ c r i t i c a l ;  Masking level,  dB = octave band level,  dB - 10 loglo 

values corresponding t o  standard octave afoctave and & c r i t i c a l  where the 
band center frequencies a re  given i n  the following tab le :  



Octave band 
center freq., cps 

&octave, cps 

&cr i t i ca l ,  cps 

afoctave 
10 loglo Af 

c r i t i c a l  

The values of the last  l i n e  i n  the above tab le  have been subtracted from the 
octave band values t o  adjust  them t o  the masking leve l  spectra which define 
the boundaries of the jungle noise c r i t e r i a  detection region used i n  the  sub- 
sequent determination of aural  detect ion distances.  

31.5 63 125 250 500 1000 2000 4000 8000 

22 44 88 177 354' 707 1414 2828 5656 

-- -- 50 50 50 66 loo 220 500 

-- -- 2.5 3.5 8.5 10.7 11.5 11.1 10.5 

Likewise, a threshold of hearing curve (taken from ref. 5 )  i s  made use of 
since it represents the leve ls  of pure-tone noise t h a t  are j u s t  detectable on 
the  average by healthy young adul t s .  
having leve ls  lower than those of the threshold of hearing cuxve a t  corre- 
sponding frequencies w i l l  not be detectable.  Thus, the threshold of hearing 
curve i s  the  determining factor  of detection a t  the lower frequencies. 

The implication here i s  that noises 

No attempt i s  made t o  account for possible binaural e f f ec t s  i n  the studies 
of t he  present paper. 

ESTIMATED AURAL DETECTION DISTANCES 

Reference detection distances f o r  each of the three a i r c r a f t  configurations 
(basic  plus two modifications) f o r  flight a l t i tudes  of 1,000 f e e t  and 300 feet 
and for  ground-cover conditions representative of both 18-inch high grass and 
100-foot "see-through" leafy jungle have been determined with the  a i d  of 
f igure 9 and the basic noise signature estimates of figure 8. 
the  octave band noise levels  a t  various distances have been estimated by 
taking in to  account the appropriate atmospheric an2 t e r r a i n  losses. 
shown i n  the figure i s  a threshold of hearing curve and a band labeled 
"jungle noise detection c r i te r ia . "  
masking levels  i n  a re la t ive ly  quiet  jungle location i n  the C a n a l  Zone ( re f .  3 ) .  
The upper boundary on the other hand represents a re la t ive ly  more noisy masking 
l eve l  condition i n  Thailand ( r e f .  2 ) .  
found t o  be generally compatible with r e su l t s  of recent, Sut unsdblished, 
jungle noise surveys taken a t  Fort  Clayton i n  the Canal Zone. 
t i o n  of the maximum distance a t  which the a i r c r a f t  can be detected aural ly  it 
w a s  assumed tha t  such detection was possible a t  distances a t  which the leve l  of 
a i r c r a f t  noise i n  any octave ban5 equaled or exceeded e i the r  the masking level  

I n  figure 9 

Also 

The low boundary of t h i s  area represents 

These data have been compared with and 

I n  the determina- 
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curve or the  threshold of hearing curve, whichever w a s  appropriate. The r e su l t s  
of such estimates are included i n  t a b l e  I11 for each a i rc raf t  configuration and 
f u r  two a l t i t u d e s  and ground cover conditions. 

EFFECTS OF AIRCRAJ?" OPERATING AND 

GROUND OBSERVER CONDITIONS 

In  general, detection dis tances  were noted t o  be shorter fo r  lower air- 
craft a l t i t u d e s  and f o r  the more dense ground cover conditions. These r e s u l t s  
ars i n  agreement with those of other similar s tudies  as i n  references 1 and 2. 

THE EFFECTS OF Al l iCRAFT CONFIGURATION MODIFICATIONS 

The a i r c r a f t  configurations of t ab le  I11 have progressively decreasing 
values of overal l  noise l eve l  and the  associated detection distances decrease 
i n  the  same manner, reading from l e f t  t o  r igh t  i n  the  table .  For given condi- 
t.ions of a l t i t u d e  and ground cover the e f f ec t s  of nozzle configuration are 
i l l u s t r a t e d  i n  figure 9 .  The addi t ion of the eight-lobe suppressor r e s u l t s  i n  
a reduction of detection distances from about 1/2 mile t o  about 1 mile, depend- 
ing on the  a i r c r a f t  operating conditions and the ground cover conditions, and 
has associated with it an increase i n  weight of about 199 pounds (see tab le  I V )  . 
The minimum detection distance i s  estimated as 1.5 m i l e s  f o r  the  a i r c r a f t  f ly ing  
a t  300 f e e t  over leafy jungle ground cover. 

The modification involving the  four-lobe suppressor r e su l t s  i n  a decrease 
i n  the aura l  detection distance from about 3/4 mile t o  about a m i l e  and a half  
depending again on the a i r c r a f t  operating and ground cover conditions. In  
t h i s  l a t t e r  case the increase i n  w e i g h t  of the a i r c r a f t  over the basic  configura- 
t i o n  i s  about 1.55 pounds ( s e e  t ab l e  I V ) .  The minimum detection distance i s  
estimated as 1-1/4 miles for  the? a i r c r a f t  f lying a t  300 f ee t  over leafy  jungle 
ground cover. 

It i s  in te res t ing  t o  note that the use of the four-lobe suppressor i n  each 
case i s  approximately as e f fec t ive  i n  reducing the aural detect ion distance of 
the a i r c r a f t  as i s  operation over  the most dense ground cover. The i q l i c a -  
t i ons  of' the r e su l t s  of the present study are  that an exhaust suppressor nozzle 
modification t o  the A-6 a i r c r a f t  may be usef'ul i n  making modest reductions i n  
aural detection distances. Such a modification i s  re la t ive ly  simple t o  make 
and w i l l  r e s u l t  i n  re la t ive ly  small performance penalties.  
however, that the present s tudies  were not i n  suff ic ient  d e t a i l  t o  define an 
optimum suppressor nozzle configuration and t h a t  more def ini t ive s tudies  would 
be required f o r  t h i s  purpose. 

It should be noted, 

- 9 -  



CONCILJDING REMARKS 

A study has been conducted t o  evaluate t h e  e f f e c t s  of possible modifica- 
t i ons  t o  the  A-6 a i rc raf t .  t o  reduce i t s  aural detect ion distance i n  cruise  
fl ight. .  This study involved documenting the noise charac te r i s t ics  of thc  bas ic  
airplane,  devising modifications to  reduce the noise, and defining the detection- 
distance and aircraft-performance penal t ies  as a result of each modification. 
It w a s  found t h a t  the main source of noise on t h i s  a i r c r a f t  i s  the  mixing of the  
exhaust j e t s  with the  ambient a i r  and hence, only modifications t o  the exhaust 
nozzle a re  proposed. 
four-lobed corrugated configurations. 

Nozzle modificat.ions s tudied included eight-lobed and 

The addition of e i t h e r  eight-lobed or four-lobed corrugated nozzles t o  the  
bas ic  a i r c r a f t  r e s u l t s  i n  modest reductions i n  au ra l  detection distance. I n  
t h i s  regard t.he four-lobed nozzle was ,judged t o  be s l i gh t ly  more e f fec t ive  than 
the  eight-lobed nozzle. It w a s  found tha t  t he  reductions i n  detection distance 
as.eocisted wi th  the  four-lobed nozzle are about equivalent t o  those obtained 
from operation of the  basic  a i r c r a f t  over the most d?nse ground cover conditions 
of t h i s  study. The minimum aura l  detection d is t snce  estimated for the four-lobe 
slippressor was l - l / h  miles, and corresponded t o  the  a i r c r a f t  f lying a t  an a l t i -  
tude of 300 f e e t  over leafy jungle ground cover. 

- 10 - 
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Figure 6.- Octave band in which maximum noise reduction occurs for nozzles 
having various numbers of corrugations. (from Ref. 1) 
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!(a) Basic airplane; 18 i n .  grass; 1,000 f t .  a l t i t ude  

Octave band c e n t e r  freqwemy I) cps 
, - .~ .  

Figure 9.- Effect  of slant range and types of te r ra i r ,  oc h-5 noise s ignature .  
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T i m e  9.- Continued. 
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APPENDIX A 

WEIGHT ESTIMATES 

M. I,. Sisson 

The eight-lobed suppressor was assumed t o  be geometrically similar t o  tha t  
used 011 EI B-57 by Lewis Research Center, reference A-1 .  This suppressor was  
made of .Ob0 inch corrosion-resistant s teel ,  AIS1 321. 
suppr.essor w a s  computed from drawings. The suppressor for  t he  A-6 was sized 
t o  provide the same exi t  area as the  exis t ing A-6 t a i lp ipe .  
A-6 suppressor was calculated as proportional t o  the square of the  l i nea r  
dimensional r a t i o  t o  the B-57 suppressor. A four-lobed sup2ressor having the 
same cross section areas as the eight-lobed suppressor was sketched. I ts  
weight. was computed using t h e  same material, ,040 inch corrosion-resistant 
s tee1 . 

The weight of  the B-57 

The weight of the 

Ejector-cooling jackets  were sketched which would provide approximately 
tohe  ssme cooling a i r  flow around the  engine and t a i lp ipe  as the  exis t ing A-6 
e jec tor .  These uni t s  were assumed t o  extend eight  inches behind the suppressor 
o u t l e t .  
s teel .  It i s  estimated t h a t  no appreciable airframe weight change i s  involved 
i n  t h i s  modification. 

Their weights were based on the use of .Ob0 inch corrosion resistant 

The suppressor-ejector could be f i t t e d  t o  the airplane as shown i n  figure 
Table A - 1  presents a summary of the weight estimates f o r  the eight-lobed A - 1 .  

suppressor-ejector asseniblies. 

REFERENCE 

A-1. Coles, Willard D., Mihaloew, John A , ,  and Swann, W i l l i a m  H . :  Ground 
and In-Flight Acoystic and Performgce Characterist ics of Jet-Aircraft  
Exhaust, Noise Suppressors. NASA Technical Note 11-871:. 
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TABLE A-L 

Weight Summary 

Pigh i  -lobed suppressor 

Suppressor 
E j e ct or 
Total weight per engi.ne 

47.5 lbs. 

100.5 lbs. 
53.0 

Less exis t ing e j ec to r  and 3 inches of t a i lp ipe  1.0 
Total  weight increase per engine 99.5 lbs. 

!,'OILT - 1 ob e d sup p r  e s s or 

Suppressor 
E j ec t o r  
Total  weight; per engine 

38.0 lbs. 
40.6 
78.6 l b s .  

Less exis t ing e jec tor  and 3 inches of  t a i l p ipe  1.0 
Total  weight increase per engine 77.6 lbs. 



APPENDIX B 

PERFORMANCE, STABILITY AND CONTROL 

By James L. Hsssell ,  Jr ., and Ernie L. Anglin 

The EA-& version of the Grwmnan Intruder Navy airplane i s  powered by two 
P r a t t  and Whitney J52-P-6A nonaf'terburning j e t  engines, mili$ary ra ted  a t  
8500 pounds s t a t i c  th rus t  each at standard sea l eve l  conditions. 
are located side-by-side i n  the  fuselage belly beneath the wing carry-through 
s t ruc ture  as shown i n  figure B-1. The in s t a l l a t ion  embodies a r a the r  unusual 
p a i r  of crooked t a i lp ipes  which route the  engine exhausts t o  the lower sides of 
the fuselage j u s t  beneath the wing t r a i l i n g  edge a t  the wing-fuselage juncture 
as i l l u s t r a t e d  i n  figure B-2. me EA-& is  equipped with a pair of large speed 
brakes positioned on the lower sides of the fuselage a short  distance aft  of 
the  j e t  e x i t s  such that the exhausts impinge on the speed brakes when they are 
actuated outward. This general arrangement provides for rapid deceleration or  
accelerat ion as a f'unction of rap id ly  def lect ing or r e t r ac t ing  the speed brakes 
without need far changing engine thrus t ,  and is  shown i n  the l i n e  sketch of 
f igure  A-1  of appendix A .  
pipes consists of conical convergent nozzles having half-cone angles of 1'1' 
ringed by short  cyl indrical  e jec tors .  The manufacturer's estimated in s t a l l ed  
engine performance for  the i n s t a l l a t i o n  described above i s  given i n  reference E 1  
and was used i n  t h i s  analysis as the  basis f o r  thrust avai lable  fo r  the  basic  
EA-6A airplane.  

These engines 

The geometry of the e x i t  end of the basic  EA-& tail- 

Noise suppressor modifications proposed i n  t h i s  study consist  of four or 
eight-lobe convergent nozzles with cooling air shrouds which replace the stan- 
dard 17' conical nozzles and cy l indr ica l  e jectors  a t  the end of the ta i lp ipes .  
A s  shown i n  figure A - 1  the suppressor modifications involve considerable 
extensions of the t a i lp ipes  and thereby bring the je t  e x i t s  i n  closer proximity 
t o  t h e  speed brakes. 
e f f e c t s  a re  anticipated e i the r  t o  the engines or t o  the speed brakes due t o  
this arrangement, nor should there  be any loss  of speed brake effectiveness.  
The length of the cooling a i r  shroud shown i n  figure A - 1  i s  longer than would 
ac tua l ly  be needed t o  provide t h e  pumping act ion for cooling a i r  requirements. 
It is intended tha t  the shroud overhang length be trimmed t o  provide only the 
required quantity of cooling air  inasmuch as test  r e s u l t s  ( r e f .  B-3) have 
indicated minimized performance losses  w i t h  very short shroud overhang length. 

Based on r e s u l t s  presented i n  reference B-2 no detrimental 

The noise suppressor configurations selected fo r  modifications I and I1 
are very similar t o  the type in s t a l l ed  on a Martin B-57 airplane fo r  the 
experimental investigation reported i n  reference B-4. 
experimental t e s t s  provide fu l l - sca le  data f o r  both s t a t i c  and in f l igh t  per- 
formance and noise charac te r i s t ics  for  eight-lobe suppressor nozzles, and 
should correspond d i rec t ly  t o  the eight-lobe configuration of modification 11. 
A s  pointed out i n  reference €3-4, the choice of the lobed-type noise suppressor 
w a s  made on the basis  of extensive experience gained i n  e a r l i e r  s tudies  
( r e f s .  B-5 and B-6, f o r  example) uhich had indicated, along with some other 

The r e s u l t s  of the B-57 
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advantages, that minimum performances losses  would be incurred while providing 
the best  known acoustic attenuation charac te r i s t ics .  
charac te r i s t ics  of the four-lobe configuration (modification I) were estimated 
on the basis of skin f r i c t i o n  losses and the  r e s u l t s  of reference B-7. 

The performance and noise 

The compatibility of the proposed noise suppressor modifications t o  the  
E A - 6 ~  a i r c r a f t  i s  i l l u s t r a t e d  by the following comparison with the B-57 noise 
suppressor i n s t a l l a t ion :  

Tailpipe length: 

Standard nozzle: 

Cooling air required: 

Basic provision for  
cooling air: 

Rated s t a t i c  t h rus t  
of j e t  engine, lb:  

J e t  e x i t  diameter, i n .  

J e t  e x i t  area, sq  in .  

N oi se suppre s s or s 

Cooling air provision 
with noise suppressors: 

Based on the r e s u l t s  of the 

EA-6A 

Long because of 
buried engines i n  
f’uselage 

Conical convergent 

Yes 

Short e j ec to r  

8500 

18.71 

256 

Four- or  eight- 
lobe ty-pe 

Short shroud 

€3- 57 

Long because of 
buried engines i n  
wing 

Zoriical convergent 

Yes 

Short overhang 
shroud 

7800 

20.18 

319 

E i g h t -  lobe type 

Short shroud 

f’ull-scale f l i g h t  t e s t s  of reference B-4 and 
the wind-tunnel data  of reference E 3  the th rus t  losses  and drag penal t ies  
due t o  the proposed modifications a re  estimated as follows: 

Modification I Modification I1 

S t a t i c  t h rus t  loss 1.5 percent 2.5 percent 

In f l igh t  t h rus t  loss  2.0 percent j .O percent 

Incremental C 0.00032 s . a 0 3 6  
Do 

It should be noted that A - 5  ty-pe a i r c r a f i  a r e  currently being equipped 
with uprated ~52-P-8 engines w-Jing 9300 pounds s t a t i c  thrust a t  standsrd sea 
leve l  conditions - ar: incre‘se sL more than 9 percent ov%: fht J52-P-6A 



assumed i n  the present analysis .  
552-P-8 engines with the proposed modifications i n  order that the predicted 
losses  i n  performance w i l l  be eliminated. 
i n  fac t ,  have performance superior t o  published f l i g h t  da ta  i n  the EA-6A NATOPS 
Manual ( re f .  B-8) . 

It would therefore be advantageous t o  use the 

The modified U-6A a i r c r a f t  should, 

Basic fo r  performance analysis.- For the purpose of th is  study, a specif ic  
mission compatible with the in t en t  of minimized aural detect ion distance was 
selected for  performance analysis,  although many other loadings and missions 
a re  feasible  with t h i s  ve r sa t i l e  a t tack  a i r c r a f t .  
selected for  t h i s  study are defined i n  reference E 8  as the M-6A (Sea-Level Stores 
Delivery Attack Configuration" and consists of w h a t  is  known as a "Hi  Lo Lo Hi"  
f l i g h t  prof i le .  A pa i r  of external  wing-mounted ECM pods a r e  considered a par t  
a? the W-6A clean configuration and i n  t h i s  study a r e  assumed t o  remain w i t h  
the a i r c r a f t  throughout the mission (these ECM pods may be je t t isoned i n  an 
extreme emergency). 
EA-& carr ies  external s tores  consisting of four (4) 300-gallon fue l  tanks 
under the w i n g s  and one (1) MK 28 bomb beneath the fuselage centerline.  Prior 
t o  entering combat a t  low a l t i t u d e s  (near sea l eve l )  the four  empty wing tanks 
a r e  jettisoned; the performance for  the combat port ion of the mission i s  then 
based on the EA-6A with two (2)  ECM pods and one (1) MK 28 bomb. 
leg, performance i s  based on the EA-& having only the  two (2) ECM pods as 
external s tores .  

The loading and mission 

For takeoff and on the outbound l eg  of t h i s  mission the 

On the return 

The basis for  calculat ing the performance of the basic  EA-6A a i r c r a f t  i s  
presented i n  figures E 3  through B-5 along with the a i r c r a f t  weights a t  various 
stages along the mission p ro f i l e  as  defined i n  reference B-8. The lif't-drag 
polars  of f igure B-3 were obtained by adding the incremental drag due t o  the 
two (2)  ECM pods as determined from wind-tunnel t e s t s  t o  the  basic low-speed 
fl3ght-test polars fo r  the A6-A a i r c r a f t  f'rom reference B-1. 
r i s e  with Mach number fo r  the EA-& with two (2) ECM pods ( f ig .  B-4) w a s  
obtained by adding the incremental data for the pods as determined from wind- 
tunnel t e s t s  t o  the f l i gh t - t e s t  data for  the A6-A a i r c r a f t  ( r e f .  El). 
ference drag correction fac tors  a re  included i n  both sets of data and are 
based on the wind-tunnel tes t  r e su l t s  given i n  reference B-1. 
drag due t o  external  s tores  (a l so  presented i n  f ig .  B-4) were d, atermined from 
wind-tunnel t e s t s  and likewise includes appropriate interference drag correction 
fac tors  ( r e f .  B-1). 
(J52-P-6A) with a l t i t u d e  and Mach number was a l so  obtained from reference B-1 
and i s  included here a s  f igure B-5. 

The zero- l i f t  drag 

Inter-  

The incremental 

The var ia t ion of net-installed mil i tary- thrust  per engine 

A l l  performance calculations a re  based on two-engine mil i tary power and 
rate-of-climb calculations include corrections for f l ight  path acceleration. 
Takeoff calculations a re  based on a smooth f l a t  runway w i t h  a coefficient of 
ro l l ing  f r i c t i o n  of 0.025, w i t h  f laps  deflected 30° and slats extended. An 
example of the var ia t ion of t h rus t  available and th rus t  required (or drag) with 
Mach number i s  presented i n  f igure B-6 fo r  the basic EA-6A airplane and f o r  
modifications I and 11, representing the climbout configuration. 
a l l  three cases i s  shown as  one curve, although the e f f e c t  of skin f r i c t i o n  drag 
due t o  modifications I and I1 actual ly  i s  perceptible a t  the  higher Mach numbers. 
The e f fec ts  of the small w e i g h t  penalt ies due t o  modifications I and I1 a re  

The drag for 

- B-3 - 



not perceptible i n  the calculations; thus, the example of figure E 6  i s  
presented fo r  a median weight of 54,200 pounds applicable t o  all three cases, 

Results of performance analysis.- A summsry of the r e su l t s  of t he  perform- 
ance analysis for  the basic EA-6A and modifications I and I1 i s  given i n  
tab le  ELI for  the "Sea Level Stores Delivery" mission. These r e s u l t s  indicate  
that takeoff distance t o  clear a 50-foot obstacle would be increased by 2.5 t o  
4.0 percent, maximum r a t e  of climb a t  sea level would be reduced by 2.5 t o  
3.8 percent and maximum speed a t  sea l e v e l  would suffer by 2.1 t o  3.3 percent 
fo r  t he  climb-out leg  of the mission w h i c h  i s  the heaviest weight and also,  
aerodynamically, the "dirtiest" portion of the  f l i g h t  prof i le .  Performance 
losses  are somewhat more severe, percentage-wise, for  the combat and r e tu rn  
legs  of the mission where r a t e  of climb a t  sea leve l  suffers by a s  much a s  
5 t o  6 percent. Maximum speed i s  less affected,  however, incurring penal t ies  
of the order of only 1 percent for  the r e l a t ive ly  clean configurations at sea 
leve l .  

Comments on s t a b i l i t y  and control.- Inasmuch as the r e h t i v e l y  minor 
increase i n  weight due t o  i n s t a l l a t ion  of the noise suppressors i s  concentrated 
f a i r l y  close t o  midship, the adverse e f f ec t  on airplane center-of-gravity 
pos2tion i s  re la t ive ly  insignif icant .  The proposed modifications should have 
no e f f ec t  on the aerodynamic neutral  points .  
cer-ter-of-gravity l i m i t  with landing gear re t racted i s  30 percent MAC - the  
sam 3s for  the basic EA-& airplane. 

Therefore, the recommended a f t  

- E 4  - 



REFERENCES 

B-1. Carlucci, F.; Davin, T.; e t  a l :  Substantiating Performance Data Report 
for  the Standard Aircraft Characterist ics Charts of the A-6A Airplane. 
Grumman A i r c r a f t  Engineering Corp. Report No. XA128-105-18, 1965. 

B-2. Lee, Edwin E., Jr.; and Mercer, Charles E.: Je t  Interference Effects on 
a Twin-Engine Attack-Type-Airplane Model With Large Speed-Brake, Thrust- 
Spoiler Surfaces. NASA TM X-454, 1961. 

B-3.  Schmeer, James W.; Salters,  Leland B., Jr.; and Caseetti, Marlowe C.: 
Transonic Performance Characteristics of Several J e t  Noise Suppressors. 
NASA m 1 ~ 3 8 0 ,  1960. 

B-4. Coles, Willard D.; M i h a l o e w ,  John A.; and Swann, William H.: Ground 
and In-Flight Acoustic and Performance Characterist ics of Jet-Aircraft 
Exhaust Noise Suppressors. NASA !E? D-8'74, 1961. 

B-5. Ciepluch, C a r l  C.; North, Warren J.; Coles, Willard D.; and Antl, 
Robert J.: Acoustic, Thrust, and Drag Characterist ics of Several Full- 
Scale Noise Suppressors for Turbojet Engines. NACA TN 4261, 19%. 

B-6. Coles, Willard D.; M i h a l o e w ,  John A , ;  and Callaghan, Edrmurd E.: Turbojet 
Engine Noise Reduction With Mixing Nozzle-Ejector Combinations. 
NACA TN 4317, 1958. 

B-7. Greatrex, F. B.: Jet Noise. F i f th  International Aeronautical Conference, 

B-8. Anon: NATOPS Flight Manual N a v y  Model EA-6A Aircraf t .  NAVAIR 01-85ADB-1, 

Los Angeles, Calif ., June 20-23, 1955, pp. 415-443. 

1967 

- B-5 - 



I' 
m a 
b 

a 
t 
m 

I 

m 

- a 
.- 

- 
m 
v) 
t 

a 
t 
m 
f 
a, 

c 

.- 

.- 

+ 
a_ 

I 

a, 
I 



TABU B - I. - PERFORMANCE SUMMARY FOR SEA LEXEL STORES 
DELIVERY ATTACK CONFIGURATION ( H I  LO LO HI). 

Mod. I M&. I1 M - b A  
Unm&if ied Configuration and Item I 

.. * 
T.O. gross weight, Ib 55,060 55,215 55,259 5 E Ground distance, ft 5,350 5,480 5,560 

!k4 Cl-4 Total t o  c lear  50 ft 6,070 6,220 6,310 

8 

;a3 

’ * II A i r  distance t o  30 f’t 720 740 750 

ho S t a l l  speed power-off, kn 128 128 128 
3 a J 0  

Weight, Ibs 54,118 54,273 54,317 

Maximum r a t e  15,000 f’t 2,860 2 , 740 2,680 
of‘ climb, f’pm 20,000 ft 2,160 2,050 2,000 ;* 

II C 25,000 f’t 1,450 1,340 1,290 
30,000 f% 690 580 540 23 cd 35,000 ft -llO -210 -260 

Velocity f o r  SL 344 333 327 p. 
maximum r a t e  15,000 f’t 372 365 3 62 
of C l i n i b ,  20,000 ft 382 376 373 

“ZCo kn,TAJS 25,000 f’t 391 387 385 
30,000 f% 400 397 3 95 

3@ Service cei l ing,  f t  33,800 33 Y 000 32,800 

v-, knsts SL 522 511 505 
TAS 15,000 f’t 515 508 505 

20,000 f’t 507 501 498 
25,000 ft 492 486 484 
30,000 ft 464 460 

rr 
SL 5,050 4,920 4,860 

0-F9 

9. cu 
+ , -  

3 Yi 
;I 8- ut3 
n 
cu 
W 

46,347 46,391 
6,550 6,500 
374 370 
544 542 

36,900 36,650 

7,250 
3,150 
540 

Service ceil ing,  42,500 

25,000 ft 415 
4C,0’30 Ft 418 

vma,x> kn, SL 552 
25,000 ft 515 
40,000 420 

42, a00 41,600 

417 
548 
508 
4 18 

546 
505 
4 18 
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Figure 8-5. - Varlation of installed net military-rated thrust with 
Mach number and altitude for standard conditions. 
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Figure 6-6. - Example of the variation of net militarv-rated t h r u s i  available and 
t h r u s t  required wi th  Mach number for  the basic E A d A  airplane and modifications 
I and IT. Gross weight = 5 4  2Cd Ibs. Sea level standard conditions, climb-out 
configuration: (2)  ECM pods, ( 4 )  303 gallon wing tanks, (1) Mk28 bomb on $, 
flaps and gear retracted. 


