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ABSTRACT OF THESIS

A MOLECULAR-FIELD APPROXIMATION FOR QUANTUM CRYSTALS

Ground-state properties of quantum crystals have received con-
siderable attention from both theorists and experimentalists. The
theoretical results have varied widely with the Monte Carlo calcula-
tions being the most successful. The molecular field approximation
yields ground-state properties which agree closely with the Monte
Carlo results. This approach evaluates the dynamical behavior of each

-~4r of molecules in the molecular field of the other N-2 molecules.

In addition to predicting ground-state properties that agree well with

experiment, this approach yields interesting data on the relative im-
portance of interactions of different nearest neighbor pairs. Results
are presenfed for b.c.c. He3 and b.c.c. He* at low and high densitigs
(down to 10 cm3/m01e). Results are also presented for f.c.c. H2 over

a similar density range.

Ronald Leonard Danilowicz
Physics Department

Colorado State University
Fort Collins, Colorade 80521
May, 1973
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I. INTRODUCTTION

There have been a number of theoretical investigations of the
ground-state properties of quantum crystals over the last decade. A
quantum crystal is one in which the zero point excursion of a molecule
from its equilibrium lattice position is a large fraction of the near-
est neighbor distance. This is in contrast to most crystals where the
ampli;ude of the oscillations about .th%e equilibrium position is small
compared to the interatomic spacing at low temperature. This allows
the dynamics of most crystals to be described classically in terms of
a collection of harmonic oscillators.

The large oscillations in quantum crystals, a result of small
atomic mass and the weakness of the attractive part of the interaction
potential, invalidate the typical classical approach necessitating the
use of quantum mechanics for their description. In the treatment of
quantum crystals, another important consequence of the large zero point
motion must be properly accounted for. This is the strong correlation
of the motion of neighboring pairs of molecules. The relative motion
of neighboring pairs is correlated in such a way as to avoid close en-
counters which involve the strong short-range repulsive forces.

Most of the recent published calculations employ a variational
technique with trial wave functions which contain short-range correla-
tions. The variational approach relies on the Rayleigh-Ritz varia-

tional prineiple given by
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where E0 is the ground state energy, H is the Hamiltonian of the
system, and |¢> is an approximation to the ground state wave function,
|w0>. A complete list of symbols appears in Appendix A. The right-
hand side of equation (1) represents an upper bound to the ground state

energy which approaches E, as |y) approaches Imo} with equality when
W = 14,)-

A simple form for the N-particle wave function which contains
short-range correlations was first introduced by Jastrow.1 it is

_ _ N N
Wy, e = [ JeGD T T £(r; ) r, =|r
i=1 i<k

where ¢(;£) is a single particle wave function centered about the

equilibrium lattice position ‘ﬁi and the f(r, )} are N - 1) spher-

N
ik 2 (
ically symmetric two-body correlation functions. The limiting behavior

for the two-body correlation functions is f(r) = 0 and

r+0

11m f( ) = 1. Therefore, the £(r) functions lower the probability of

‘finding two molecules close together while having no effect at large

distances.

The N-particle Hamiltonian is given by

7. N N N
- - L Ve 24+l ;o v(r L) (3
m 2 L/ 13
k=1 143 i=1
where v(rij) represents the interatomic potential between the ith and
jth molecules. Evaluation of the right-hand side of equation (1)

therefore involves the calculation of on the order of N2 integrals

all containing 3N dimensions. [ne differences in the recent theories

are a result of the manner in which each one evaluates this expression.



The first technique used with much success was the work of
Nosanow2 which employed the use of a2 cluster expansion similar to those
used in statistical mechanics. Similar cluster expansion techniques
have been employed in much of the work on quantum crystals.3_10 A
slightly different expansion has been used by Guyer.11 He and
Werthamer have each written review articles which cover most of the

material mentioned above.lz’13

More recently, Horner14 has formulated
a perturbatien theory of quantum crystalé.. |

Most of these formulations give only fair agreement with experi-
mental data. The cluster expansions, however, converge rapidly enough
to be useful only for a very limited set of two-body correlation func-
tions. They require f(r) ‘to approach rapidly its limiting value of
unity. A satisfactory set of correlation functions at low densities
may be unsatisfactory at high pressures when the nearest neighbor dis-
tance becomes smaller. An additional problem is that in a cluster ex-
pansion the-completely free variation of both the single particle wave
functions and the two body correlation functions leads to a liquid
solution. This is discussed in detail in Guyer's review article.12

An approach which avoids these difficulties and also comes clos-
est to matching experimental data is the Monte Carlo representation
used by Hansen and coworkers.ls—lg Most differences that remain with
experiment are attributed primarily to an inadequate representation
for the two-body interaction potential, v(r).

The work presented here is an important improvement over the use
oan cluster expansion. It also removes the restrictions on the two-

bedy corrvclation functicng necessary for good convergence cof the

cluster expansion. This approach evaluates the dynamical behavior of
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each pair of molecules in the molecular field of the other N - 2
molecules. It is found necessary to incorporate in the molecular field
the approximate motion of the nearest neighbors-to the dynamic pair.
This molecular field approximation gives results for He3 and He4 which
agree closely with experiment and the results from the Monte Carlo rep-
resentation. As in the recent investigation by Hansen19 the range of
density covered has been extended to higher densities (10 cm3/m01e)
where the cluster expansions used to date are invalid.

Results are also presented for solid molecular hydrogen. In
addition to pfedicting ground-state propérties that agree well with ex-

3

periment for both H,, He” and Hé4, this approach yields data on the Im-

2’

por tance of interactions of different nearest neighbor pairs, and data

- showing the effects of dynamic motion.
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II. MOLECULAR FIELD THEORY
The expectation value for the Hamiltonian for an N-particle sys-
tem is

N

5

sV .j)lw> | (4)

j i=1

N
& = Glyor -5 e
k=1

where the wave function |w> is of the form given by equation (2). At

i

“th|

this point it is convenient to introduce a procedure first noted by

Jackson and Feanberg.20 The expectation value of a typical term in

the kinetic energy is

4&2' =
<1 vl@ fxp ‘I"lpdr dr, . . . dry (5)

Using Green's Theorem

RSN RV LT
v VY drl dr2 PR drN = - vy o« VW drl dr2 . drN

(6)
Therefore equation (5) can be rewritten as
£ x
-2 w2y - T 4" - ¥ yldr, dr. dr. (7)
4m v K K K 1 9%y -+« Gy
If we allow ¢ to be only real then equation (7) becomes
) )
A 2 2 — — _
- W VK hxwdrl dr2 . o s drN (8)

by virtue of

7% - 17 e 9



Using a ¥ of the form given by equation (2) gives finally

N .
-ﬁ—z- v vime (r ) + vZ1n j‘.(r )l ar, dr dar. (10)
4m K < K Kj 12 N
K#j

We can now rewrite equation (4) as

N N
) BN = _—
<H> {f '—‘v 1ncp(r) EuEVijdrl"'drN
1#]
-~
*{J wz'&?l'cﬁz...d_fN—l (11)

with

2
vy -5 e (12)

V..
1] 1]

1

A common choice for the form of the single particle wave func-

tion ¢(;;) is
3/4 = . _
o) = (2] exp L- £ a, - RK)‘Z] (13)
with this form
vzznq;(?:') = -38
i< 9

and equation (11) further simplifies to

NA2 T\ = _
W - B fg'g oL
i3 j=1



and the expectation value per particle is just

B _ 3’ 2 <N\ -1

B _ 3% v — = 2 — —

N " am T 2 i Vij drl . e drN P dr1 - e drN
i#j

(15}

It is at this point that the recent theories for quantum crys-
tals diverge. Each solves this equation in a different manner for var-
ious parameterized forms of the two-body correlation functiom, f(r).
In the static molecular field theory approximation the effective molec-
ular field acting on an arbitrary pair is found by assuming that the
N - 2 other molecules are fixed at their respective equilibrium lat-
tice positions. This is accomplished by letting the Ath and kth mole-
cules represent the arbitrary pair and by taking the limit
_¢2(E£ - i;) -+ 5(;; - E;) for all other N - 2 molecules (i.e.,
i# A,x).

Neglecting the constant in equation (15) we can arrange the re-
mainder so ﬁhat the sum is of contributions to the energy from sue~
cessive nearest neighbor shells. Rewriting equation (15) in this

manner gives

. . N
SEZ._ 3ﬁ28 1 \’/ﬁ; VAK drl . e . drN
= T 3{

N 2\1 2 = ——
kjr\w dr1 o drN (A,k)1lst n.n.

2 —— —
kJ[ﬁL V. dr. . . . dr
+ N CSNE —\ +. .. (16)
2 \_f-i 2 dr dr
vodry - - 4T S0 20d nen.

where the Ni's are the number of neighbors in each shell and (i,k)

lst n.n. means the Jth and «th molecules are first nearest neighbors,

ate. 8y letting $(§; - g;) - uir

;- éi} in this expression for all

i# A,k we get
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2 - = ., 2= = ..2,~- 2= = 2 - = -—
o (r =R )p“(r, -RDE(r, ) T_T f°(r -R)) £°(r. - RV dr. dr
\ E£ \“fh\ K K X A Ak e,k K S VW A po oAk A K
2 —_— e
f(bz(r_ et -myetE ) | PE-Ry ] £E -R)E, &
koox SFA,K 0F A ,K % /(,x)1st n.n.

+ ... an

In a previous papeer this expression was further simplified by assuming that the products over s
aud p to first order need only be carried out over first nearest neighbors to A and k. Each fune-
tion fz(f; - ﬁ;) was then expanded about its value evaluated at the equilibrium lattice site separation,
f2(§; - ﬁ;). These were angle averaged and reduced equation (17) to a collection of easily solvable two-
dimensional integrals.

Recently equation (17) has been evaluated more exactly by calculating the six-dimensional integrals
numarically using Monte Carlo techniques. The products of two-body correlation functions in equation (17)
contain all of the correlation functions which couple the Ath and xth molecules to every other molecule
in the system. In practice this product was only extended over the first three nearest neighbor shells

of the Ath and kth molecules. For the two-body correlation function considered in this investigatiom,



this was an adequate representation. The values for fz(;; - E;) and
fzfi'-A - §b) outside of this range were unity. This approximation is
easily changed and can be adjusted to include more nearest neighbor
shells as the two-body correlation functions considered become more

long ranged.

Also, the terms in equation (17) extend over the entire lattice.
In practice only the contributions from the first ten nearest neighbor
shells are calculated exactly. The contributions from the remaining
shells are evaluated for a static lattice. This is a more than ade-
quate approximation. In the Monte Carlo éalculations mentioned previ-
ouslylS_l9 only the first four nearest neighbor shells are evaluated
exactly. The details of the evaluation of equatiom (17) can be found
in Appendix B.

The forms of trial wave function and interaction potential used
in this study are primarily those that have received the most attention
in other stu&ies, This is because the intent at this point is a compar-
ison of techniques for evaluating equation (1) rather than a detailed
study of various trial wave functions and interaction potentials. The
trial wave functions used in this study therefore are in the form given
by equation (2). The single particle wave functions in that equation
are given for this study by equation (13). The two-body correlation
function used is the one which corresponds to the WKB solution of the

two-body Schrdédinger equation with a Lennard-Jones potential in the

limit as rij -+ 0., It has the form

(18)

L]
~~
]
i
L
St
il
-
w
o
b b=
LT
a
I?:
~—Tn
(N
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Finally the interaction potentials used for this study were of the

Lennard-Jcnes type given by

v(ri.) = 4E[ng;>12 - (:2;)6:] (19)
; c13/ Ny |

where ¢ = 10.22° K, o = 2.556 & for helium, and ¢ = 37° K,

g =2.932 for hydrogen.

et sy e s e e o —



ITI. RESULTS AND DISCUSSION

Equation (17) was evaluated using standard Monte Carlo integra-
tion techniques22 for a wide range of variables. The results for He4,
He3, and H2 were somewhat disappointing. In each case the ground-state
energy at zero pressure agreeﬁ quite well with experiment. Howevef, in
each case this minimum with respect teo our two variational parameters,
B and «, occurred for a value of B8 = 0. The corresponding value for
K was algo higher than the walue given By investigators using random
walk Monte Carlo techniques. These results at zero pressure alone were
not completely surprising since this is near the liquid-solid transi-

15,19 the

tion. Also, as has been pointed out by other investigators,
ground-state energy is a slowly.varying function of the wvariational
parameters in the vicinity of the minima. This was the case in this
study as thé value of Eo at 8 = 0 was not much less than the value
obtained for the minimizing values of B8 "and « reported elsewhere.
However, the disturbing part of the results was the fact that the mini-
mum with respect to 8 was at 8 = 0 for all densities. Even though
this corresponds to a solid in our calculation unlike the cluster expan-
sion, it resulted in a trial wave function with effectively only one
variational parameter, which was undesirable. The resulting ground-
state energies dropped increasingly below experimental values for in-
creasing densities. Typical results for He4 are shown in figure 1.

A. New Formalism

vas felt that theoas poor rusulis were due to the cigidicy of

T+
-t

the surrounding lattice, The localizing of molecules on individual

11
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Figure 1. Results with six-dimensional formalism.
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lattice sites comes partially from the single particle wave functions
and partially from the two-body correlation functions. With surround-
ing molecules fixed on their respective lattice sites, a molecule was
confined to a smaller volume than it would have been if these mole-
cules were allowed to move, This is another way of saying that the
correlations with the surrounding lattice were doing more than their
Proper share of the localizing. This in turn allowed the single par-
ticle wave functiong to spread out.

Pthahanzs calculates the exchange integral for He3, J, using gz
Monte Carlo calculation and alsc by evaiuating the six-dimensional
integral obtaiﬁed by fixing all but the exchanging pair of atoms on
their equilibrium lattice sites similar to our approach for the
ground-state energy. He fiﬁds good agreement at zero pressure for
the two techniques but the tesults rapidly diverge as the pressure
increases. He concludes a8 we do that the rigidity of the lattice is
to blame and this effect is more Pronounced at higher densities,

The solution is then to allow in some approximate fashion some
movement of the surrounding lattice. It wag felt that allowing the
motion of the nearest neighbors of each of the molecules in the dy-
namic pair (i,cx) would be sufficient to remove the difficulties with
the results. This was verified by later results,

In an attempt to presérve the dimensionality of the integrals at
six a number of different expansions were attempted in order to incor-
porate the approximate motion of these nearest neighbors. Each expan-
sion was burdened by slow and sometimes questionable convergence,

Each in turn was abandonad.

In order to sees clesrly the effect of allowing some approximate
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motion to the nearest neighbors of A and k it is convenilent to re-

write a typical integral from equation (17) as
$2(T - R )e%(F, - R)E2(F, )6(r,,F.)v, dr, dr, (20)
K K pA A A AT Ak A K
where

6(F,,xy = | | 2@ -8y |1 £2G
Ak S#EX ¥ * R SN

- Eb) (21)
Note that as shown above G(;;,f;) expresses the correlations of mole-
cules and. k to all other molecules localized at their equilibrium
lattice sites. Also expressed in this manner G(;i,;;} = 1.0 corre-
sponds to the cluster expansion result when that expansion is truncated
after the two-bedy term. By allowing motion to the nearest neighbors
"to x and « a new G(;;,E;).Would be needed which included the ef-
fects of this motion on: (1) the correlations between the ith and xth
molecules and each of their nearest neighbors; (2) the correlations be-
tween these nearest neighbors with each gther; and (3) the correlations
of these neighbors with all of the remaining molecules localized on
their equilibrium lattice sites.

The simplest approximation is to change G(;;,;;) to include only

the effects on the correlations of the Ath and kth molecules with their

nearest neighbors (item 1 above}. This gives
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¥,,r ) = 11 fZ(I-”K - R) T—[ fz(r_l - R) TT

s8#A,K PEA,K P i{=n.n. to A
#n.n. to x #n.n. to A #gmn.n. to «
x 22, - Rpedr, - r.oar, ] | f&(?. )
i i A i Rl B h| h|
j=n.n. to kK \j
~ #n.n. to A
~ t2(z, - T, )ar, 11 f £2@F, - TEE, - AT WE
3 I g=n.n. to ’
A and k (22)

When molecules A and k do not have any nearest neighbors in common
this becomes a 48-dimensional integral for a b.c.c. lattice and a 72~
dimensional integral for a f.c.c. lattice. Note it is only because we
have not included the effectis of the motion on the correlations between
these nearest neighbors themselves (item 2 above) that we can write equa-
tion {22} as the product of independent integrals.

Evaluation of G(;A,;;) as given in equation (22) was further sim-
plified by uging the same point in three dimensional phase space for the
evaluation of each of the integrals in that expression. This approxima-
tion had the effect of adding only three new dimensions to a typical
integral such as the integral in equation (20) making them nine-

dimensional integrals.
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The remaining results are for this new formalism except where the
original six-dimensional results are discussed for the saké of compari-
son. This new formalism gave satisfactory results over the whole range
of this study. The following quantities were calculated for Hea, He3,
and H2 for the Lennard-Jones potentials mentioned earlier. The ground-
state energy as a function of density was calculated for each. At each

density for which the energy was calculated the root-mean-square devia-

tion from equilibrium was evaluated from

P2 - = 2= = .2, - - = = (2 — = |1/2
n1/2 \,/ﬁ\¢ (5, ~E) (G -ROETE, D6t ) T, R [T dry dr,
<F > = Neormalization

(23)
Also at each density the single particle distribution function R(r) was

evaluated. R{r) is given by
— - _ 2,— =, 2,~ = Nl - - 3= .
R{er - Rll) = \v[”\ ¢ (rK - Rx)¢ (rh - Rl)f (rAK)G(r}\,rK)drK dﬂk (24)

where the normalization R(0) = 1.0 was used. For both <r2>1/2 and
R(r), » and « were nearest neighbors. From a curve fit to the energy

versus density data, pressure and compressibility values were
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obtained. Some idea of the effect of allowing some movement of the
nearest neighbors of the dynamic pair can be obtained from figure 2.
Here R(r) is presented for the two approximations for He4 for two dif-
ferent densities. Note that the result of allowing some motion to the
nearest neighbors is a spreading out of the single particle distribu-
tion function. This is just as expected and is apparently sufficient
to drastically improve agreement with other ground-state properties of
solid helium and hydrogen. For the sake of completeness, tabular data
for the R{r)'s plotted in figure 2 and later figures are all presented
in the last two tables of the RESULTS AND DISCUSSION sectiom, Tables VI
and VII.
B: Helium3 Results

Results for b.c.c. He3 are presented in Table I, 1In this table
V is the expectation value of the energy per particle from the bare
Lennardeones potential, v(rij). 4lso in this table T is the expec-
tation value.of the kinetic energy operator Vi per particle. For con-

3 and I-le4 were obtained only for a b.c.c. lat-

venience, results for He
tice. However, He3 at high pressures crystallizes in an f.c.c. lattice
and He4 has the h.c.p. structure for the range of densities studied
here. This is not very significant since the values of the energy dif-
fer negligibly for the different lattice structures. Only the values
n1/2 .

of <r > , V,and T 1in the table vary with lattice structure which
should be kept in mind for any comparisons with experiment or other

theories.

Figure 3 contains a comparison between the results of this study,

) 1
swperiment, and the resvlts of Hansen and Pollack 9 for the greound-state

/
energy. The experimental results are from Pandorf and Edwardszﬁ down
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1.0

Volume (cm3 /mole)
21.6 10.25

9 o Six-dimensional integrals
a O Nine~-dimensional integrals

R(x)

& |

(o)

Figure 2. R(r) for two different approximations for Hea.
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to a volume of 19.5 cm3/mole. Below that, energies were computed by
integrating the equation of state using pressures from Dugdale and
Franck.26 As can be seen from this figure, there is genmerally pgood
agreement with experiment and with the results of Hansen and Pollack.
This agreement is best at low densities (high specific volume) and the
calculated energies in this range are within 2 cal/mole of the experi-
mental values. The statistical errors for the calculated values in
this range are <1 cal/mole.

At high densities the calculated values as well as the results
from Hansen and'Pollack19 both begin to fall below the experimental
values. This result is also the case for He4 and 18 much easier to see
for He4 since experimental values exist for the entire density range
studied. It was concluded in reference 19 that these discrepancies
with experiment at high density are a result of inadequacies of the
Lennard-Jones potential which was used, a conclusion which is shared

here. As pointed out in other studiesls’l9

the energy varies slowly
with respect to the variational parameters in the neighborhood of the
minimum. Therefore, the values for the variational parameters 8 and
k should not be taken as exact. Since the values of V and T taken
separately vary more rapidly with B and « these separate values
have more uncertainty associated with them. It is expected that this
uncertainty due to not knowing the minimizing B's and k's exactly is
less than 10 percent. In comparing the values of V and T with other
studies keep in mind that these values taken separately will vary with
lattice structure even though the total energy does not,

The behavior of the cround-state energy at high densities alge

leads to poor agreement with experimental values of pressure and

- fi———
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compressibility in this range. Figures 4 and 5 contain comparisons of

these values. The calculated values were obtained from

(25)

after a simple curve fit of the ground-state energy versus specific
volume data. The experimental values are from references 26 and 27.
Figure 6 contains plots of the single particle distribution function
R(r) for different densities for He3. Two of the related values of
<r2>1/2 can be compared with experimental data from reference 24. The
experimental.values are determined from Debye temperature data using

the Debye formulal2

A
<;2> = %-mKBD (26)

At volumes of 24,5 cm3/mole and 20.8 cm3/mole the calculated values of
<r2)1"’2 of 1.18 and 1.06 3., respectively, are both lower than the respec-
tive experimental values of 1.38 R and 1.15 &.
C. Helium4 Results
Results for b.c.c. He4 are presented in Table II. The format of

the table is identical to that of Table I. Note that the minimizing

values of the variational parameters B and « are consistently higher

for Hea. A higher B more strongly localizes the individual atoms as
does a higher value of . This is physically realistic and is due to
the heavier mass of the Heh atoms. It leads also to lower values of

i

. . .4
+-‘_l—-_,-: roct-mcﬂn—square Aeviarinm for o ",n(‘ cAn be seen 85 &a nﬂrTOWing

of the single particle distribution functions in figure 7.
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Figure 8 contains a comparison of the single particle distribu-
tion function and e~Br2 for He4 at two specific volumes. The latter,
i.e., e_Srz, would be the single particle distribution function 1f the
wave function did not contain two-body correlation functions. This
figure gives some indication then of how much of the localizing of in-
dividual molecules on lattice sites is due to the effect of the two-body
correlation functions. Note that at the lower specific volume the two-
body correlation functions still are responsible for some of the local-
izing. This supports Hansen and Pollack'slg contention that these cor-
relations are still important at high pressures. In addition, this fig-
ure contains a comparison with Hansen and Levesque'sl5 R{(r) for He4 at
a volume of 21.5 cm3/mole.‘ The two R(r)'s appear to be very similar.

Figure 9 contains a comparison between the results of this study,
experiment, and the results of Hansen and Pollack19 for the ground-
state energy of He*. The experimental data are from references 23
and 26. Beiow 11.5 cm>/mole the experimental energiles are obtained by

integrating the experimental equation of state. As for He3

there is
good agreement with experiment except at the higher densities (low spe-
cific volume). As pointed out earlier this is attribured to inadequa-
cies in the Lennard-Jones potential which was used. An interesting
feature of figure 3 and figure 9 is that the theoretical values from
this study and reference 19 both are above the experimental values at
low densities and are below the experimental values at high densities.

3 and He4

In each region for both He the results of this study agree
more closely with the experimental values. It is not completely clear
vhy thiz iz the case. Tt i pereihia that the use of anothor latiiee

structure at the high densities would yield a slightly lower ground
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state energy. This would then lead to closer agreement with the Monte
Carlo results in the high density region; however, the agreement even
in this region is remarkably good.
The differences in the shape of the energy versus density curve
lead to correspondingly poor agreement with experimental values of
pressure and compressibility. These results are presented in fig-
ures 10 and 11 along with experimental values from references 23 and 26.

As with H33

» the theoretical values are lower than experimental values
over the entire range of densities with the worst agreement at the high
densities.

The values for the root-mean-square deviation are not compared
with experimental estimates from Debyve temperature data since the cal-
gulated values are for a b.c.c. lattice and the experimental values
would be from a hexagonal close¥packed lattice.

It should be pointed out that even though the Monte Carlo calcu-
lations of Hénsen and coworkers should be fairly exaect, there still
exist differences in the computed ground state energies from Hansen and

19 15

Pollack and Hansen and Levesque. These differences amount to as

much as 2 cal/mole even though the statistical errors quoted are
1 cal/mole and 0.4 cal/mele, respectively. ‘
D. Hydrogem Results
There exists even more uncertainty in the interatomic potential

for molecular hydrogen than for the corresponding potential for helium.
Because of this, the calculations for hydrogen are less extensive than
for helium. As for helium there exist for hydrogen Monte Carlo calcu-
-1Pt100928 a5 well as evineviment sl dara2? with which to compare the ra-

sults of this study. Tue wave function chosen is the same as the one
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used for the helium studies. The use of a spherically symmetric two-
body correlation function £{r) which is independent of the orientation
of the H, molecules requires some justification. Ordinarily one would
picture the H2 molecules as something resembling a dumbbell. However,
calculations by Kolos and Roothanso have shown that the deviation from
sphericity for the Hz'molecule is only =8 percent. Their calculations
lead to /}2>l/2 = 0.84 2 and (322>1/2 = 0.92 &, For a spherical mole-
cule <r2> = Qx + Y + Z > <§22> Therefore, the use of a spheri-
cally symmetric two-body correlation function and interatomic potential
are not as bad as one would at first imagine.

The results of this study using a Lennard-Jones 6-12 ﬁctential
are presented in Table ITI.. The ground-state energy at a volume of
22.65 cm3/mole is ~170 cal/mole. This 1is the same value obtained by
3ruce28 for a volume of 23.08 cm3/mole and is slightly higher than
Stewart‘329 experimental value of -186 cal/mole at 2 volume of
22,65 cﬁBImole.

The ground-state energies as a function of volume are compared
with Bruce's values in figure 12. The results of this study start to
drop below Bruce's values at around a volume of 15 cm3/m01e and differ
by over 100 cal/mole at the lowest volumes studied here. The statis-
tical errors in this region are <10 cal/mole. Most of this difference
is due to the different parameters used in the Lennard-Jones potential

in this study. As pointed out previously, these values were ¢ = 37°

K
and o = 2.93 8. This compares to the values used by Bruce of

e =36.7 K and o = 2.958 &. At these high densities differences in
the interatomic potential can ervily lead to differences of 2 zouple of

hundred calories per mele in the giound-state enmergy. To show this



Ground state energy {(cal/mole)

33

1200
1000 ©
o O Present study
(a] Bruce(zs)
0 O Rescaled to Bruce's ¢ and ¢
800p—
600
400—
200
0—-—
~200 | | | oo |
10 12 14 i6 18 20 22 24

Volume (cm™ /mole)

Figure 12. Ground state energy for Hz.



34

effect the results from this study have been rescaled to Bruce's values
of o and € and are also presented in figure 12. The agreement is
now ekcellent at the high densities but not as good in the intermediate
range.

Another indication of the amount of uncertainty possible in the
energies calculated using the Monte Carlo methods of Hansen and co-
workers 1s Bruce's statement that two differemt initial particle con-
figurations led to energies that varied by as much as 4 to 6 cal/mole.
This is in addition to any statistical errors in his results.

The pressure versus volume results for this study are compared
with Bruce's Monte Carlo results and with Stewart's experimental data
in figure 13. The pressure. data falls below Bruce's values at low
volumes, a direct consequence of the lower energles in this region.
This brings the pressures from this study closer to Stewart's experi-
mental data. This is due to the differences in interatomic potential
previouély pointed out. The resulting pressures are still much higher
than Stewart's values, a result consistent with all of the theoretical
studies done to date. Again rescaled values using Bruce's values of o
and € agree very well with his values for the pressure. Most of the
studies now in progress on hydrogen are aimed at determining an inter-
atomic potential which yields theoretical results that fit more closely
Stewart's pressure data.

E. Effects of Approximations

The biggest approximation is, of course, the molecular field
approximation itself. The effect of studying the dynamic motion of
palrs of molecules in a lattice wd;re most of the remaining molaculas

e fixed on their equilibrium latijce sites can only be determined
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from the comparisons with experiment. This approach in general seems
to be reasonable based on the agreement with experiment.

The inclusion of approximate motion of the nearest neighbors to
the dynamic pair A and « had a dramatic effect on the results. It
is important therefore to reiterate what this approximation includes
and what it does not include. This approximation treats exactly the
correlation of both A and « to each of their nearest neighbors. It
does not treat exactly the correlation of these nearest neighbors with
each other or with the remalning molecules in the lattice. This would
have an indirect effect on the molecules X and k. This effect is
apparently quite small as indicated by the close agreement with experi-
nent with the present formalism. The use of only three new variables
to evaluate the effects of motion of the nearest neighbors of X and «
worked gquite well again as indicated by the results.

As pointed out previcusly, other approximations have been made in
the evaluatiﬁn of equation (17). First the integrals were calculated
exactly only for the first ten nearest neighbor shells. The contribu-
tions from the remaining shells are evaluated for a static lattice. It
was found that over the range of densities studied, the energy could be
determined to within ~1 cal/mole if only the contributions from the
first four nearest neighbor shells were calculated exactly, which is

the approximation used in the "exact"

Monte Carlo studies. Evaluating
contributions from only ten shells exactly leads to a negligible error.
The static lattice sum is cut off after thirty-eight nearest neighbor
shells. This again gives negligible error. Some idea of the magnitudes
of the contributions frem differeat wasrast neighbor shells car ha cgen

[

in Table IV. This table containg contributions from different groups of
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nearest neighbor shells for both T and V for He4 at 21.6 cm3/mole,
and 10.25 cm>/mole. As can be seen from this table, the contributions
from the first two nearest neighbor shells are very large at the low
density. The contributions from the other shells become increasingly
important with higher demsities; however, the contributions from the
first four or five shells dominate the total energy even at these
higher densities.

Another important approximation is the cutoff of the product of
two-body correlation functions. These products contained the exact
correlations of the Ath and xth molecules to only their first, second,
and third nearest neighbors. The values of the correlation function
outside this range were unity. Some idea of the effect of this approx-
imation can be seen in Table V where <T>, <V>, and Eo are presented
for a typical He* calculation at 21.6 cmo/mole as a function of the
nearest neighbor shells contained exactly in this product. As can be
seen in thisltable, these results converge quickly even though the
f{r) used in this study is a fairly long-ranged two-body correlation
function. Most of the results for H2 were obtained with a secpnd near-
est neighbor cutoff in these products to save computation time. Apain
this approximation results in negligible errors.

The statistical errors ranged from less than 1 cal/mole at the
low densities to as much as 3 to 4 cal/mole at 10.25 cm3/mole for the
helium ground-state energies. The statistical errors for hydrogen were
a factor of twe to three higher. Because of the uncertainties in the

interaction potential for hydrogen it was not felt warranted to spend

weora agmritation time on these resoluag,
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It is felt that the cumulative effect of errors introduced by the
above approximations is indeed small and would not effect any of the
conclusions made from comparisons with experimental data.

Since most of the results have been compared with Monte Carlo re-
sults, a discussion of some of the limitations of that approach might
be useful. These Monte Carlo calculations . represented the best
agreement with experiment to date. However, as pointed out earlier,
calculations by Hansen and Pollack19 and Hansen and Levesque15 for
helium differ by as much as 2 cal/mole even though the statistical
errors guoted are 1 cal/mole and 0.4 cal/mole, respectively. Also, as
pointed out previously, Bruce28 obtained results which differed by as
much as 6 cal/mole depending on the starting configuration used. This
was in addition to any statistical error.

The Monte Carlo method ié naturally limited to a finite volume of
molecules that can be treated exactly. This 1s usually less than
1000 particies enclosed in a box with periocdic boundary conditions.
This and other approximations, such as letting each particle interact
exactly with only four or five nearest neighbor shells, add possible
errors to the Monte Carlo results.

In additiomn, W. W. Wood3l points out the likelihood that at high
densities it is quite possible that the Monte Carlo techniques used
may not properly sample phase space. This might effect substantially

the results at these densities.



IV. CONCLUDING REMARKS

The molecular field approximation as first formulated (six-
dimensional integrals) led to undesirable results. The new formula-
tion which allows in an approximate fashion the motion of nearest
neighbors of the dynamic pair gives much better results. None of the
many approximate theories of quantum crystals proposed to date agree
as well with experimental data and the Monte Carlo results as do the
results of this study. In addition, limitations on the two-body cor-
relation functions necessary for the wvarious cluster expansion ap-
proaches are not imposed by the molecular field approximation.

The molecular field approximation is, therefore, a valuable tool
for the study of properties of quantum crystals. The results of this
study cén easily be extended to include different trial wave functiops,
different potentials, and also much higher densities for a thorough in-
vestigation of the properties of quantum crystals. There are some in-
dications that random walk Monte Carlo methods may have difficulty in
properly sampling phase space at very high densities. The molecular

field approximation might therefore be quite useful at these densities.
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TABLE I. ~ b,ec.c. He” RESULTS
‘ ) e ({ 2)1/2
Volume (V} (T) Eq Pressure Compressibilicy {r 3] S
(cm3/mole) (cal/mole) (cal/mole) (cal/mole) {(atm) (104 atm™1) (R) (a=2y (o~1y
24.50 ~44,1 43.6 -0.5 1.18 3.5 1.11
20,80 -53.6 56.4 2.8 50 -23.8 1.06 4.1 1.11
16.16 -64.2 81.7 17.5 260 7.0 .85 6.5 1,08
14.00 -64.0 102.2 38.2 565 3.9 .75 8.7 1.06
11.82 -49.2 138.5 B89.3 1380 1.8 .62 12,5 1,04
10.25 -16.5 183.3 166.8 2820 .7 .52 19.0  1.02
TABLE II. - b.c.c. He" RESULTS
Volume (V) (T) 2 Pregssure Compressibilicy ‘&2§1/2 ] K
(cmB/mole) (cal/mole) (cal/mole) (cal/mole) (atm) (lO4 atm'l) (&) (0"2) (o=1)
21.60 =54.86 44,3 ~10.3 1.03 4.5 1.13
17.50 -68.1 61.13 -6.8 93 9.0 .83 5.7 1.13
15.5 -77.3 77.5 .2 250 6.0 .76 8.0 1.12
13.75 ~80.4 97.5 17.1 500 4.0 Y 11.5 1.11
11.82 ~-80.4 130.8 50.4 1035 2.6 .56 15.0 1.10
10.25 -62.1 155.9 103.8 1790 1.6 A48 20,0 1.10

A}
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TABLE III. - f.c.c. H2 RESULTS

Volume v T Eq Pressure B K
(cm3/mole) {(cal/mole) (cal/mole) ({cal/mole) (atm) (672) (o1

22.65 -301 131 -170 6 1.19
18.00 -376 252 -124 1100 30 1.14
13.60 -298 487 189 6 350 67 1.12
12.00 =51 595 544 12 400 30 1.11

10.80 318 707 1025 22 500 95 1.10



TABLE IV. - CONTRIBUTIONS FROM DIFFERENT NEAREST NEIGHROR SHELLS

Volume Nearest Contribution to. V Contribution to T Contribution to H
(cm3/mole) neighbor {cal/mole) (cal/mole) (cal/mole)
shell '
Exact Rigid Exact Rigid Exact Rigid
lattice ‘ lattice lattice
21.60 1st -29.90 25.00 ~4.,90
2nd -13.27 4,75 -8.52
3rd-10th -10.66 1.94 -8.72
11th~38th ==0.,77 -0.77 =, 06 0.06 =—-,71 -0.71
' g '
-ZET=12'51 +12.51
Total ~54.60 ' 44 .26 -10.34
10.25 1st +17.53 84.90 +102.43
2nd -38.90 17.9%4 -20.96
3rd -16.37 3.68 ~12.69
4th -11.03 -11.38 2,05 1.99 -8.98 -9,39
S5th-10th -9.85 -9.92 1.40 1.40 -8.45 -8.52
11th-38th ~=3,47 -3.47 %.29 .29 -3.18 -3.18
§§E§=55 60 +55.60
4m ) :

Total ~-62.09 165.86 103.77

KA



TABLE V. - PRODUCT OF CORRELATION FUNCTIONS APPROXIMATION

v T , i Exact product of
(cal/mole) (cal/mole) (cal/mole) f(r)'s cutoff after
-48.20 40.80 ' -7.46 lst nearest neighbors
-50.35 39.90 ~-10.45 2nd nearest neighbors
-50.20 39.90 ~10.30 3rd nearest neighbors
3

TABLE VI. - R(r) DATA FOR He

Volume rla)
(cm3/mole) O 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80
10.25 1.00 0.928 0.717 0.466 0.254 0.042 0.0035
11.82 1.00  .935 .757 .559  .363 .107 .019 0.0018
14.00 1.00  .957  .B24 L480  .206  .060 .012  0.0015
16.16 1.00 .961  .859 .567  .293  .117 .036 .0078
20.8 1.00  .975  .905 .688  .445 246 .116 .046  0.0148 0.0039

24.5 1.00 .922 .738  .515 .317 .173 .083 .034 .012

CY



Volume
(cm3/mole)

10.
11.
13.
15.

17
21

10.
21.

25
82
75
50

.50
.60

25
60

TABLE VII. - R(r) DATA FOR He

. r(a)
0.0 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80
1.00 0.916 0.681 0.417 0.207 0.027 0.0012
1.00 .922 .730 495 .292 .064 ,0070
1.00 .955 .809 L412 .133 026 .0028
1.00 .829 484 L2117 . 068 .019 .0022
1.00 .82 . 587 .319 .137 .045 011 0019
1.00 .901 675 L4224 .227 .102 .038 011 .0028
Six-Dimensional Formalism
1.00 0.885 0.610 0.323 0.130 0.0084 0.00015
1.00 .975 .902 .657 .380 .168 0.054 0.013 0.0022 0.00032

9%



APPENDIX A

SYMBOLS

B energy

E(x) two-body correlation function

G defined by egs. (21) and (22)

H Hamiltonian

s Planck's constant divided by 2u

i unit vector in x direction

J exchange integral

5 unit vector in ¥y direction

m mass .

N number of molecules in the crystal lattice

p pressure

Ei vector to equilibrium position of the ith molecule

Eij =‘Ei - Eﬁ, vector joining the equilibrium positions of the
ith and jth molecules

R{x) single particle distribution function defined by eq. (24)

r distance (depending on usage T = !;; - _}| or r = l;; - Ri[,
etc.)

r = |?; - ﬁ;‘, distance that Kth molecule is from its equi-

librium position

<r2 1/2 root mean square deviation from equilibrium defined by

eq. (23)
- . th
I vector to position of i~ molecule
E?i srolume element for the itn molecule
?ij = ;£ - ;3, vector joining the ith and jth molecules

47
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kinetic energy per molecule

potential energy per molecule

defined by eq. (12) |

specific volume (appears only in eq. (25))
cartesian coordinate

cartesian coordinatée

- ﬁ;! and = |rp

E3N - ﬁbl, distance that the nearest neighbors
to the Ath and kth molecules are from their equilibrium posi-
tions

cartesian coordinate

= |§A - ﬁ%l, distance that the Ath molecule is from its equi-
librium position

variational parameter in ¢(r)

Dirac & function

gradient

Laplacian

depth of potential well

spherical coordinate

Debye temperature

unit vector in z direction

variational parameter in f(r)

Boltzmann's constant (appears only in eq. (26))

compressibility (appears only in eq. (25))

two-body interaction potential

angle equal to 180°

Glstaee at whiclh Teaua:d 3. 22 potential is zero

spherical coordinate
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p{r) single particle wave function

W total wave funcﬁion

¢f complex conjugate of total wave function
ko element of seolid angle for the Ath molecule
Subscripts:

0 ground state

i sometimes associated with the Ath molecule
2 sometimes assoclated with the Ath molecule
i

3

b3

s .

K

A

P

Speclal symbol:

<> expectation value

e arm oM B e e - mm R



APPENDIX B
DETAILS OF MONTE CARLO INTEGRATION

In evaluating equation (17) it is first necessary to calculate

the magnitudes of the following vectors r, - RK, T, - RA’ Iy T T
;; - ﬁ;, and ;} - ﬁ; for all sites s and p necessary in
l £2(r - R) 'i £2(r - R ) and for all the (A,x) pairs evalu-
K s A p
s#h,x PFEA K

ated in the summation. This is done for both b.c.c., and f.c.c. lat-
tices,
First we will introduce two new vectors T and z as follows:

r=1 -R (B1)

2 =r

- R (B2)

Substituting in the other vectors gives

r. R o=r+ R . (B3)

r, - Rp =z + Rkp (B4)

Ly =T, - r. =2z -r- RKA (B5)

Further let us use the notation that R, = IRAK‘ when (A,k) are nearest
neighbors, R.l = IRkKI when (A,k) are second nearest neighbors, ete,

First writing r and =z din Cartesian coordinates gives

z = z sin 61 cos ¢l£ + z sin Bl sin ¢15 + z cos Blg, z = [Z} (B6)

r lT] (7))

r sin 62 cos ¢21 + r sin 62 sin ¢23 + r cos eZK, r

With these we can get the magnitudes of the vectors in terms of the six

variables r, z, 815 995 ¢, ¥, The magnitudes of typical ;; - ﬁ;

and T, - ﬁ; used in this study are shown in Table BI for a b.c.c.
lattice and Table BII for a f.c.¢. lattice. Table BITT contsina bvni-

cal l;- $ for both lattices. Far ithe later formulation which

| 4
Ak

50
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invelved allowing the nearest neighbors of X and « to also move we

have

|
i
al
'
=i
H
n
I
=

The vectors LR and T, - ;b for this case are similar to those
in Table BIII.

The calculation of equation (17) for a set of variational param-
eters 8 and k involved evaluating the necessary integrals using
standard Monte Carlo techniquese22 This first step involved changing
the variables of integration so that they ranged from 0 + 1. Since
the integratioﬁs over r, y, and 2z vranged from 0 - = these integra-
tions were either cut off at a value 10 Ro when step function bilasing
was used or left as integréls between § - = when some form of eépo-
nential biasing was used. Biasing of the angular variables had very
little effect and therefore was not used for these variables.

The procedure used was to pick a point in six~dimensional (or
nine-dimensional) phase space and then use this same point for a trial

evaluation of each of the necessary integrals. The (&(rij» and

<— - V i 1n f(rij)> were evaluated separately. The contribution from

each nearest neighbor shell involved three separate integrals: one for
h2

<y(r )> another for ( ViJ In f(r )), and finally a normalization

integral. Usually the integrals for the third through the tenth near-
est neighbor shells were evaluated together since the normalization in-
tegral was nearly identical for each. Since the contributions from
these shells are also quite small the effect of this approximation on
the potential energy was always less than 0.5 percent and on the kinetic

enecay iess than 0.1 peccaent.



52

An exit was made to a statistics subroutine after each set of N
points in phase space. The program continued until either a set of
criteria on statistics were met or a given number of points in phase
space had been evaluated. Typically N ranged from 500 to 1000 and

the total number of points from 20 Q00 to 300 000.
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TABLE BI. - MAGNITUDES OF ;; - R, AND r, - ﬁb FOR A B.C.C. LATTICE

5 A
r, - Rl
9 5 QrRo 1/2
[r= + Ry + —— (sin 6, cos ¢, + sin 6, sin ¢, + cos 82)]
V3 :
2rR
[r2 + Rg + - {(-sin 62 cos ¢, + sin 82 sin ¢2 + cos 82)]1/2
{r2 + R% + 2rRl sin 62 cos ¢2]1/2
2 2 1/2
™ + Rl + 2rRl sin 6, sin ¢2]
[r2 + R% +- Vﬁerz(sin 62 cos ¢, + sin 82 sin ¢2)]l/2
2 2 . ! 1/2
™ + R2 + V2 rR2(51n 82 cos ¢2 + cos 92)]
|1‘)\ - Rpl
2zR
{zz + Rg + — 0 (sin Bl cos ¢l + sin 61 sin ¢1 + cos 81)]1/2
V3
2zR 1/z2
2 2 0
+ s
(2 RO + - (-sin 81 cos ¢l + sin Sl sin ¢l + cos 81)]
2 p . 1/2
[27 + RO + Zle sin Bl cos ¢l]
(22 + Ri + 2zR) sin €, sin '4’1]1/2
2 2 ] , 1/2
[z° + R2 + V2 zR2(51n 81 cos ¢l + sin 81 sin ¢1)]
2 1/2

[t o)

[z° + RS + V2 szfsin 61 cos ¢l + cos Bl)}



54

TABLE BII. - MAGNITUDES OF ?K - R AND ¥, - Ep FOR A F.C.C. LATTICE

[r“ + RS + V2 rRy(sin &, cos ¢, + sin 6, sin ¢2)]l/2

(r? + B2 + V2 rRy(sin 8, sin ¢, + cos 92)]1/2

[r? + R% + 2rRl sin €, cos ¢2]l/2

[r2 + R% + 2rRl sin 8, sin ¢2]l/2

+ V2 zRy(sin 6, cos ¢y + sin 8; sin ¢l)]1/2

oMo

1

+ V2 zRO(sin 6, sin ¢; + cos el)]l/Z

[ o8 )

+ ZZRl sin 61 cos ¢l]l/2

M

, 1/2
+ 2le sin Gl sin ¢l]

=
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TABLE BIII. - MAGNITUDES OF E%K ‘FOR A F.C.C. AND B.C.C. LATTICE

b.c.c., |FAK|

Neerest neighbor
pair
2, 2, .2 228
lst [z + r~ + RO - 2zr(sin 81 sin 62 cos(¢l - ¢2) + cos Bl cos 82) - s (sinrel cos ¢1
2rR 1/2
+ sin 81 sin ¢:l + cos 81) + 5 < {sin 82 cos ¢, + sin 62 sin ¢, + cos 92)]
2 {zz + r2 + R2 - 2zr(sin 9, sin 0, cos($¢, - ¢,) + cos 6, cos 0,) - 2zR. cos 6. + 2rR cos 8 11/2
o 1 1 2 1 2 1 2 1 1 1 2
f.c.c., IrAK]
1st [22 + r2 + R2 - 2zr(sin 9, sin 6, cos($, - ¢.) + cos 9, cos 8., - V2 zR (sin 8. cos ¢
‘ 0 1 2 1 2 1 2 0 1 1
+ sin 8. gin ¢.) + ¥2 R (sin 6, cos ¢, + sin 8, sin ¢ )]l/2
1 1 0 2 2 2 2
and {22 + r2 + R2 —- 2zr(sin @, sin 6, cos($, - $,) + cos 8. cos O ) — 2zR, sin 8. cos ¢
) 1 1 2 1 2 1 2 1 1 1

+ 2rRl sin 62 cos ¢2)]l/2
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