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ABSTRACT OF THESIS

A MOLECULAR-FIELD APPROXIMATION FOR QUANTUM CRYSTALS

Ground-state properties of quantum crystals have received con-

siderable attention from both theorists and experimentalists. The

theoretical results have varied widely with the Monte Carlo calcula-

tions being the most successful. The molecular field approximation

yields ground-state properties which agree closely with the Monte

Carlo results. This approach evaluates the dynamical behavior of each

--ir of molecules in the molecular field of the other N-2 molecules.

In addition to predicting ground-state properties that agree well with

experiment, this approach yields interesting data on the relative im-

portance of interactions of different nearest neighbor pairs. Results

are presented for b.c.c. He3 and b.c.c. He
4 at low and high densities

(down to 10 cm3/mole). Results are also presented for f.c.c. H2 over

a similar density range.

Ronald Leonard Danilowicz
Physics Department
Colorado State University
Fort Collins, Colorado 80521
May, 1973

iii



ACKNOWLEDGMENTS

I wish to acknowledge the guidance and friendship of my adviser,

Dr. Richard D. Etters, throughout the course of this study. 
It is a

pleasure to thank the other members of my committee, 
Professor John C.

Raich, Sanford Kern, and Carl W. Wilmsen.

The author is grateful for the financial assistance of the

National Aeronautics and Space Administration and for the interest 
of

Miss G. Collins and the Training Committee.

Finally, I wish to thank my wife, Lucy, and my two children for

their patience and understanding.

iv



TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . . . . . .. . . . ..................... . 1

II MOLECULAR FIELD APPROXIMATION .. . . . . . . . . . . . .. 5

III RESULTS AND DISCUSSION . . . . . . .. ................ . 11

A. New Formalism . . . .. . . . . ................... . 11

B. Helium3 Results . ... . . ................... 17

C. Helium 4 Results . . . . . .. .................. . 21

D. Hydrogen Results ................... . 29

E. Effects of Approximations . . . . . . . . . . . 34

IV CONCLUDING REMARKS . . . . . . . .................... 39

REFERENCES . . . . . . . .. . ....................... 40

APPENDICES
A - LIST OF SYMBOLS. . . ................. 47

B - DETAILS OF MONTE CARLO INTEGRATION . . . . . . . . . 50

V



LIST OF TABLES

Table Page
number

I b.c.c. He 3 Results ,.. .. ............ . 42

II b.c.c. He 4 Results .......... ........ . 42

III f.c.c. H2 Results. . .. ............... .. . 43

IV Contributions from Different Nearest Neighbor Shells . . . 44

V Product of Correlation Functions Approximation . ..... 45

VI R(r) Data for He. . . . . . . . . . . . . . . . . . . 45

VII R(r) Data for He . . . . . . . . . . . . . . . . . . . . . 46

BI Magnitudes of r - R and r - R for a b.c.c.
K s- A p

Lattice. .. .......... ........ ...... 53

BII Magnitudes of r - R and r. - R for a f.c.c.
K s A p

Lattice. ........ ............... . . . 54

BIII Magnitudes of r for a f.c.c. and b.c.c. Lattice. . . . 55

vi



LIST OF FIGURES

Figure Page
number

1 Results with six-dimensional formalism . ......... 12

2 R(r) for two different approximations for He . . ...... 18

3 Ground-state energy for He3. . ......... . . . . . 19

4 Pressure versus volume for He3 . ......... . . . . 22

5 Compressibility versus volume for He3 . .......... 23

6 He3 one particle distribution function R(r) . . . . . . . 24

7 He one particle distribution function R(r) . . . . . . . 25

8 Comparison of R(r) and e- Br 2  for He at two different

volumes. . ........ ... .. . . . . . . . . . . . 27

9 Ground-state energy for He . . . . . . . . . . . . . . . . 28

10 Pressure versus volume-for He . ............. 30

11 Compressibility versus volume for He . .......... 31

12 Ground-state energy for H2  . . . . . . . . . . . . . . . . 33

13 Pressure versus volume for H2 .  . . . . . . . . . . . . . .  35

vii



I. INTRODUCTION

There have been a number of theoretical investigations of the

ground-state properties of quantum crystals over the last decade. A

quantum crystal is one in which the zero point excursion of a molecule

from its equilibrium lattice position is a large fraction of the near-

est neighbor distance. This is in contrast to most crystals where the

amplitude of the oscillations about .the equilibrium position is small

compared to the interatomic spacing at low temperature. This allows

the dynamics of most crystals to be described classically in terms of

a collection of harmonic oscillators.

The large oscillations in quantum crystals, a result of small

atomic mass and the weakness of the attractive part of the interaction

potential, invalidate the typical classical approach necessitating the

use of quantum mechanics for their description. In the treatment of

quantum crystals, another important consequence of the large zero point

motion must be properly accounted for. This is the strong correlation

of the motion of neighboring pairs of molecules. The relative motion

of neighboring pairs is correlated in such a way as to avoid close en-

counters which involve the strong short-range repulsive forces.

Most of the recent published calculations employ a variational

technique with trial wave functions which contain short-range correla-

tions. The variational approach relies on the Rayleigh-Ritz varia-

tional principle given by
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E (1)
Eo I <, p '

where Eo is the ground state energy, H is the Hamiltonian of the

system, and I) is an approximation to the ground state wave function,

IIo). A complete list of symbols appears in Appendix A. The right-

hand side of equation (1) represents an upper bound to the ground state

energy which approaches E as ip) approaches Io) with equality when

A simple form for the N-particle wave function which contains

short-range correlations was first introduced by Jastrow.
1  It is

N N

(rl,r2, . . . rN) = (r) f(r), rj = Irj - 1 (2)
i=l j<<

where s(ri) is a single particle wave function centered about the

N
equilibrium lattice position Ri and the f(rjK) are 2 (N - 1) spher-

ically symmetric two-body correlation functions. The limiting behavior

lim
for the two-body correlation functions is r+0 f(r) = 0 and

lim f(r) = 1. Therefore, the f(r) functions lower the probability of
r->co

finding two molecules close together while having no effect at large

distances.

The N-particle Hamiltonian is given by

N N N

th

where v(rij) represents the interatomic potential between the ith and

Jth molecules. Evaluation of the right-hand side of equation (1)

therefore involves the calculation of on the order of N2 integrals

all containing 3N direansions. Lie differences in the recenc theories

are a result of the manner in which each one evaluates this expression.
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The first technique used with much success was the work of

Nosanow2 which employed the use of a cluster expansion similar to those

used in statistical mechanics. Similar cluster expansion techniques

3-10
have been employed in much of the work on quantum crystals. A

slightly different expansion has been used by Guyer.11 He and

Werthamer have each written review articles which cover most of the

material mentioned above. 12'13 More recently, Horner 14 has formulated

a perturbation theory of quantum crystals.

Most of these formulations give only fair agreement with experi-

mental data. The cluster expansions, however, converge rapidly enough

to be useful only for a very limited set of two-body correlation func-

tions. They require f(r) "to approach rapidly its limiting value of

unity. A satisfactory set of correlation functions at low densities

may be unsatisfactory at high pressures when the nearest neighbor dis-

tance becomes smaller. An additional problem is that in a cluster ex-

pansion the completely free variation of both the single particle wave

functions and the two body correlation functions leads to a liquid

solution. This is discussed in detail in Guyer's review article.12

An approach which avoids these difficulties and also comes clos-

est to matching experimental data is the Monte Carlo representation

used by Hansen and coworkers.15- 19 Most differences that remain with

experiment are attributed primarily to an inadequate representation

for the two-body interaction potential, v(r).

The work presented here is an important improvement over the use

of a cluster expansion. It also removes the restrictions on the two-

body cor~olation functions necessnr r or good convergence of the

cluster expansion. This approach evaluates the dynamical behavior of
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each pair of molecules in the molecular field of the other N - 2

molecules. It is found necessary to incorporate in the molecular field

the approximate motion of the nearest neighbors to the dynamic pair.

This molecular field approximation gives results for He and He which

agree closely with experiment and the results from the Monte Carlo rep-

resentation. As in the recent investigation by Hansen19 the range of

density covered has been extended to higher densities (10 cm3/mole)

where the cluster expansions used to date are invalid.

Results are also presented for solid molecular hydrogen. In

addition to predicting ground-state properties that agree well with ex-

periment for both H2, He
3 and He , this approach yields data on the im-

portance of interactions of different nearest neighbor pairs, and data

showing the effects of dynamic motion.



II. MOLECULAR FIELD THEORY

The expectation value for the Hamiltonian for an N-particle sys-

tem is

N N N2 V 2 1

- = -+ -fr ) 4r (4)
2m K -_/ 1 rij)

K=l i#j j=1

where the wave function 1) is of the form given by equation (2). At

this point it is convenient to introduce a procedure first noted by

Jackson and Feenberg. 20  The expectation value of a typical term in

the kinetic energy is

2 22 2
< 2  V 2dr l dr 2 . drN (5)

Using Green's Theorem

4V drl dr2  . drN = - Vdrdr 2 . . dr N

(6)

Therefore equation (5) can be rewritten as

m -4 dr dr 2 . . dr (7)

4m (

If we allow 4 to be only real then equation (7) becomes

I 2 2

4m 2 V In dr I dr 2 . . drN (8)

by virtue of

2 1 _2 1 2
V n (V) (9)
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Using a ) of the form given by equation (2) gives finally

2
m 2 21n,(r ) + V21n f(rj drldr2  drN (10)
4m FK " K K Kj l '2.

We can now rewrite equation (4) as

N N N

HL m = L ) VVIn( )j drl .. . drN

.K=l iij j=1

,* §f 2 drl dr2  drN (11)

with

S (r ) 2 2
V (ij 2m ijlnf(rij) (12)

A common choice for the form of the single particle wave func-

tion c(r ) is

(r ) 3/4 exp (r - RK) (13)

with this form

V 21n(r ) = -38

and equation (11) further simplifies to

H + 2 VE ij dr .. drN

i j j=l

Lr . . . dr N (14)
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and the expectation value per particle is just

N = 2 _1 Vij dr l . . drN

(15)

It is at this point that the recent theories for quantum crys-

tals diverge. Each solves this equation in a different manner for var-

ious parameterized forms of the two-body correlation function, f(r).

In the static molecular field theory approximation the effective molec-

ular field acting on an arbitrary pair is found by assuming that the

N - 2 other molecules are fixed at their respective equilibrium lat-

tice positions. This is accomplished by letting the Xth and Kth mole-

cules represent the arbitrary pair and by taking the limit

2-
2(r - Ri )  6(r i - Ri ) for all other N - 2 molecules (i.e.,

i # ,K).

Neglecting the constant in equation (15) we can arrange the re-

mainder so that the sum is of contributions to the energy from suc-

cessive nearest neighbor shells. Rewriting equation (15) in this

manner gives

) 2 1 2V rl . . . dr N

N 324m 1 2

1 " N (,K)1st n.n.

2V drl . dr
+ N . drN (X,K)2nd n.n. (16)

where the Ni's are the number of neighbors in each shell and (X,K)

Ist n.n. means the Xth and Kth molecules are first nearest neighbors,

etc. 6y letting !4(ri -- i) r - Ri) in this expression for all

i # X,K we get



N 4m

N (r -R) (r -R)f (rh) f(r - Rs) f (r -R)V dr dr

2(T-R ) 2( -R)f ) f2 (-Rs 2(r- )dr dr /

s#,,K pfP,K (X,K)lst n.n.

+ . . . (17)

In a previous paper 21 this expression was further simplified by assuming that the products over s

and p to first order need only be carried out over first nearest neighbors to X and K. Each func-

tion f2(r K - R ) was then expanded about its value evaluated at the equilibrium lattice site separation,

f 2(R - ). These were angle averaged and reduced equation (17) to a collection of easily solvable two-
K s

dimensional integrals.

Recently equation (17) has been evaluated more exactly by calculating the six-dimensional integrals

numarically using Monte Carlo techniques. The products of two-body correlation functions in equation (17)

contain all of the correlation functions which couple the Xth and Kth molecules to every other molecule

in the system. In practice this product was only extended over the first three nearest neighbor shells

of the Xth and Kth molecules. For the two-body correlation function considered in this investigation,



this was an adequate representation. The values for f2(r - R ) and
K S

f2(rX - R ) outside of this range were unity. This approximation is

easily changed and can be adjusted to include more nearest neighbor

shells as the two-body correlation functions considered become more

long ranged.

Also, the terms in equation (17) extend over the entire lattice.

In practice only the contributions from the first ten nearest neighbor

shells are calculated exactly. The contributions from the remaining

shells are evaluated for a static lattice. This is a more than ade-

quate approximation. In the Monte Carlo calculations mentioned previ-

ously only the first four nearest neighbor shells are evaluated

exactly. The details of the evaluation of equation (17) can be found

in Appendix B.

The forms of trial wave function and interaction potential used

in this study are primarily those that have received the most attention

in other studies, This is because the intent at this point is a compar-

ison of techniques for evaluating equation (1) rather than a detailed

study of various trial wave functions and interaction potentials. The

trial wave functions used in this study therefore are in the form given

by equation (2). The single particle wave functions in that equation

are given for this study by equation (13). The two-body correlation

function used is the one which corresponds to the WKB solution of the

two-body Schrbdinger equation with a Lennard-Jones potential in the

limit as rij 0. It has the form

f(rij) = Exp ~i- (18)
-Ia I
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Finally the interaction potentials used for this study were of the

Lennard-Jones type given by

v (r)12 )6 (19)
_ i j ij

where E = 10.220 K, o = 2.556 a for helium, and c = 370 K,

a = 2.93 2 for hydrogen.



III. RESULTS AND DISCUSSION

Equation (17) was evaluated using standard Monte Carlo integra-

tion techniques 2 2 for a wide range of variables. The results for He4 ,

He , and H2 were somewhat disappointing. In each case the ground-state

energy at zero pressure agreed quite well with experiment. However, in

each case this minimum with respect to our two variational parameters,

5 and K, occurred for a value of 8 = 0. The corresponding value for

K was also higher than the value given by investigators using random

walk Monte Carlo techniques. These results at zero pressure alone were

not completely surprising since this is near the liquid-solid transi-

tion. Also, as has been pointed out by other investigators,1 5 ,19 the

ground-state energy is a slowly varying function of the variational

parameters in the vicinity of the minima. This was the case in this

study as the value of E at B = 0 was not much less than the value

obtained for the minimizing values of B and K reported elsewhere.

However, the disturbing part of the results was the fact that the mini-

mum with respect to S was at S = 0 for all densities. Even though

this corresponds to a solid in our calculation unlike the cluster expan-

sion, it resulted in a trial wave function with effectively only one

variational parameter, which was undesirable. The resulting ground-

state energies dropped increasingly below experimental values for in-

creasing densities. Typical results for He4 are shown in figure 1.

A. New Formalism

.t :as felt that ihs were due to the rigidicy of

the surrounding lattice. The localizing of molecules on individual

11
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Figure 1. Results with six-dimensional formalism.
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lattice sites comes partially from the single particle wave functions
and partially from the two-body correlation functions. With surround-
ing molecules fixed on their respective lattice sites, a molecule was
confined to a smaller volume than it would have been if these mole-
cules were allowed to move. This is another way of saying that the
correlations with the surrounding lattice were doing more than their
proper share of the localizing. This in turn allowed the single par-
ticle wave functions to spread out.

MacMahan25 calculates the exchange integral for He3 , J, using a
Monte Carlo calculation and also by evaluating the six-dimensional
integral obtained by fixing all but the exchanging pair of atoms on
their equilibrium lattice sites similar to our approach for the
ground-state energy. He finds good agreement at zero pressure for
the two techniques but the results rapidly diverge as the pressure
increases. He concludes as we do that the rigidity of the lattice is
to blame and this effect is more pronounced at higher densities.

The solution is then to allow in some approximate fashion some
movement of the surrounding lattice. It was felt that allowing the
motion of the nearest neighbors of each of the molecules in the dy-
namic pair (A,K) would be sufficient to remove the difficulties with
the results. This was verified by later results.

In an attempt to preserve the dimensionality of the integrals at
six a number of different expansions were attempted in order to incor-
porate the approximate motion of these nearest neighbors. Each expan-
sion was burdened by slow and sometimes questionable convergence.
Each in turn was abandoned.

Ii, uider to see clerly the eff rt of allowing some approxiite
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motion to the nearest neighbors of X and K it is convenient to re-

write a typical integral from equation (17) as

(r' - R ) X2r - Rx)f (r )G(r ,r )V dr X dr (20)

where

G(rf,r f (r - R ) f (r - R ) (21)
rK s#X, K S , p

S X,Kc P#XK

Note that as shown above G(r ,rK) expresses the correlations of mole-

cules X and K to all other molecules localized at their equilibrium

lattice sites. Also expressed in this manner G(rX,rK) = 1.0 corre-

sponds to the cluster expansion result when that expansion is truncated

after the two-body term. By allowing motion to the nearest neighbors

to X and K a new G(r,,r ) would be needed which included the ef-

fects of this motion on: (1) the correlations between the Xth and Kth

molecules and each of their nearest neighbors; (2) the correlations be-

tween these nearest neighbors with each other; and (3) the correlations

of these neighbors with all of the remaining molecules localized on

their equilibrium lattice sites.

The simplest approximation is to change G(rX,rK) to include only

the effects on the correlations of the Ath and Kth molecules with their

nearest neighbors (item 1 above). This gives
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G(r ,r ) f2(r R) f2(r R
s#XK,i s p i=n.n. to X
#n.n. to K #n.n. to A #n.n. to K

S(r - Ri)f (r - r.i)dri n ( - )
j=n.n. to K
_n.n. to A

f2('Kr j j - TT2- 2 22(r - r)dr =nn to (r - r )f (rK - r )) (r - R)drT
£Zn.n. to

A and K (22)

When molecules A and K do not have any nearest neighbors in common

this becomes a 48-dimensional integral for a b.c.c. lattice and a 72-

dimensional integral for a f.c.c. lattice. Note it is only because we

have not included the effects of the motion on the correlations between

these nearest neighbors themselves (item 2 above) that we can write equa-

tion (22) as the product of independent integrals.

Evaluation of G(rX,r ) as given in equation (22) was further sim-

plified by using the same point in three dimensional phase space for the

evaluation of each of the integrals in that expression. This approxima-

tion had the effect of adding only three new dimensions to a typical

integral such as the integral in equation (20) making them nine-

dimensional integrals.
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The remaining results are for this new formalism except where the

original six-dimensional results are discussed for the sake of compari-

son. This new formalism gave satisfactory results over the whole range

of this study. The following quantities were calculated for He , He
3

and I2 for the Lennard-Jones potentials mentioned earlier. The ground-

state energy as a function of density was calculated for each. At each

density for which the energy was calculated the root-mean-square devia-

tion from equilibrium was evaluated from

2 2- 2 2 1/2
12(r _-R ), 2 ( r - )f2 (r )G(r, , r ) r - 2 dr r

r2>/2 Normalization

(23)

Also at each density the single.particle distribution function R(r) was

evaluated. R(r) is given by

R(jr - RI) = K2(r - R )2(r - R )f 2 (r )G(r ,rK)dr d (24)

where the normalization R(O) = 1.0 was used. For both <r2>1/ 2 and

R(r), ~ and K were nearest neighbors. From a curve fit to the energy

versus density data, pressure and compressibility values were



17

obtained. Some idea of the effect of allowing some movement of the

nearest neighbors of the dynamic pair can be obtained from figure 2.

Here R(r) is presented for the two approximations for He4 for two dif-

ferent densities. Note that the result of allowing some motion to the

nearest neighbors is a spreading out of the single particle distribu-

tion function. This is just as expected and is apparently sufficient

to drastically improve agreement with other ground-state properties of

solid helium and hydrogen. For the sake of completeness, tabular data

for the R(r)'s plotted in figure 2 and later figures are all presented

in the last two tables of the RESULTS AND DISCUSSION section, Tables VI

and VII.

B; Helium3 Results

Results for b.c.c. He3 are presented in Table I. In this table

V is the expectation value of the energy per particle from the bare

Lennard-Jones potential, v(rij). Also in this table T is the expec-

tation value of the kinetic energy operator V. per particle. For con-

venience, results for He3 and He4 were obtained only for a b.c.c. lat-

tice. However, He3 at high pressures crystallizes in an f.c.c. lattice

and He4 has the h.c.p. structure for the range of densities studied

here. This is not very significant since the values of the energy dif-

fer negligibly for the different lattice structures. Only the values

of r2 1/2 , V , and T in the table vary with lattice structure which

should be kept in mind for any comparisons with experiment or other

theories.

Figure 3 contains a comparison between the results of this study,

Yxoeriment, and the results of Hansen and Pollack1 9 for the grcund-state

energy. The experimental results are from Pandorf and Edwards 2 4 down
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Figure 2. R(r) for two different approximations for He4 .
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to a volume of 19.5 cm3/mole. Below that, energies were computed by

integrating the equation of state using pressures from Dugdale and

26
Franck. As can be seen from this figure, there is generally good

agreement with experiment and with the results of Hansen and Pollack.

This agreement is best at low densities (high specific volume) and the

calculated energies in this range are within 2 cal/mole of the experi-

mental values. The statistical errors for the calculated values in

this range are <1 cal/mole.

At high densities the calculated values as well as the results

from Hansen and Pollack 1 9 both begin to fall below the experimental

values. This result is also the case for He4 and is much easier to see

for He4 since experimental values exist for the entire density range

studied. It was concluded in reference 19 that these discrepancies

with experiment at high density are a result of inadequacies of the

Lennard-Jones potential which was used, a conclusion which is shared

here. As pointed out in other studies the energy varies slowly

with respect to the variational parameters in the neighborhood of the

minimum. Therefore, the values for the variational parameters and

K should not be taken as exact. Since the values of V and T taken

separately vary more rapidly with B and K these separate values

have more uncertainty associated with them. It is expected that this

uncertainty due to not knowing the minimizing S's and K's exactly is

less than 10 percent. In comparing the values of V and T with other

studies keep in mind that these values taken separately will vary with

lattice structure even though the total energy does not.

The behavior of the cround-statc energy at high densiteq 0lso

leads to poor agreement with experimental values of pressure and
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compressibility in this range. Figures 4 and 5 contain comparisons of

these values. The calculated values were obtained from

3E
P =

av
(25)

2 I
1 2Eo

K =
v 2

9y

after a simple curve fit of the ground-state energy versus specific

volume data. The experimental values are from references 26 and 27.

Figure 6 contains plots of the single particle distribution function

R(r) for different densities for He
3 . Two of the related values of

Kr21/2 can be compared with experimental data from reference 24. The

experimental values are determined from Debye temperature data using

the Debye formula 1 2

-r 4m D 2(26)

At volumes of 24.5 cm3/mole and 20.8 cm3/mole the calculated values of

r2)1/2 of 1.18 and 1.06 , respectively, are both lower than the respec-

tive experimental values of 1.38 1 and 1.15 1.

C. Helium4 Results

Results for b.c.c. He4 are presented in Table II. The format of

the table is identical to that of Table I. Note that the minimizing

values of the variational parameters 8 and K are consistently higher

for He4 . A higher 8 more strongly localizes the individual atoms as

does a higher value of K. This is physically realistic and is due to

the heavier mass of the He4 atoms. It leads also to lower values of

h' r'c'zt- mcan-square de:n on r r:4 nd can be seen as a n;rrnowng

of the single particle distribution functions in figure 7.
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Figure 8 contains a comparison of the single particle distribu-

tion function and e-Br 2  for He4 at two specific volumes. The latter,

-Sri.e., e , would be the single particle distribution function if the

wave function did not contain two-body correlation functions. This

figure gives some indication then of how much of the localizing of in-

dividual molecules on lattice sites is due to the effect of the two-body

correlation functions. Note that at the lower specific volume the two-

body correlation functions still are responsible for some of the local-

izing. This supports Hansen and Pollack's1 9 contention that these cor-

relations are still important at high pressures. In addition, this fig-

ure contains a comparison with Hansen and Levesque's 5 R(r) for He4 at

a volume of 21.5 cm3/mole.- The two R(r)'s appear to be very similar.

Figure 9 contains a comparison between the results of this study,

experiment, and the results of Hansen and Pollack 9 for the ground-

state energy of He4 . The experimental data are from references 23

and 26. Below 11.5 cm3/mole the experimental energies are obtained by

integrating the experimental equation of state. As for He3 there is

good agreement with experiment except at the higher densities (low spe-

cific volume). As pointed out earlier this is attributed to inadequa-

cies in the Lennard-Jones potential which was used. An interesting

feature of figure 3 and figure 9 is that the theoretical values from

this study and reference 19 both are above the experimental values at

low densities and are below the experimental values at high densities.

In each region for both He3 and He4 the results of this study agree

more closely with the experimental values. It is not completely clear

,hy this is the case. Tt i pcrcli' that the use of another lattice

structure at the high densities would yield a slightly lower ground
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state energy. This would then lead to closer agreement with the Monte

Carlo results in the high density region; however, the agreement even

in this region is remarkably good.

The differences in the shape of the energy versus density curve

lead to correspondingly poor agreement with experimental values of

pressure and compressibility. These results are presented in fig-

ures 10 and 11 along with experimental values from references 23 and 26.

As with He3 , the theoretical values are lower than experimental values

over the entire range of densities with the worst agreement at the high

densities.

The values for the root-mean-square deviation are not compared

with experimental estimates from Debye temperature data since the cal-

culated values are for a b.c.c. lattice and the experimental values

would be from a hexagonal close-packed lattice.

It should be pointed out that even though the Monte Carlo calcu-

lations of Hansen and coworkers should be fairly exact, there still

exist differences in the computed ground state energies from Hansen and

Pollack19 and Hansen and Levesque.15 These differences amount to as

much as 2 cal/mole even though the statistical errors quoted are

1 cal/mole and 0.4 cal/mole, respectively.

D. Hydrogen Results

There exists even more uncertainty in the interatomic potential

for molecular hydrogen than for the corresponding potential for helium.

Because of this, the calculations for hydrogen are less extensive than

for helium. As for helium there exist for hydrogen Monte Carlo calcu-

2 7 29
?tjolti 28  s wel.l a F nir 1 ~,ltr l ,-. 29 with which to compare the re-

sults of this study. The wave function chosen is the same as the one



2000-

1600 O Experiment (2 6'2 3 )

Results of this study

O

S1200

800
O

400-

10 12 14 163 18 20 22
Volume (cm /mole)

Figure 10. Pressure versus volume for He



31

60-

O Experiment(2
6 ,2

4 )

Results of this study

50

4 40 -

J

30 -
o

O 20

O O

r-4

Fi

000 'I
10 12 14 163 18 20 22

Volume (cm /mole)

Figure 11. Compressibility versus volume for He .



32

used for the helium studies. The use of a spherically symmetric two-

body correlation function f(r) which is independent of the orientation

of the H2 molecules requires some justification. Ordinarily one would

picture the H2 molecules as something resembling a dumbbell. However,

calculations by Kolos and Roothan30 have shown that the deviation from

sphericity for the H2 molecule is only "8 percent. Their calculations

lead to (r21/2 0.84 a and (3Z2)1/2 0.92 R. For a spherical mole-

cule (r2 = (x 2 +y2 + 2 ) = (3Z 2 >. Therefore, the use of a spheri-

cally symmetric two-body correlation function and interatomic potential

are not as bad as one would at first imagine.

The results of this study using a Lennard-Jones 6-12 potential

are presented in Table III.. The ground-state energy at a volume of

22.65 cm3/mole is -170 cal/mole. This is the same value obtained by

28 3Bruce for a volume of 23.08 cm /mole and is slightly higher than

Stewart's 29 experimental value of -186 cal/mole at a volume of

22.65 cm3/mole.

The ground-state energies as a function of volume are compared

with Bruce's values in figure 12. The results of this study start to

drop below Bruce's values at around a volume of 15 cm3/mole and differ

by over 100 cal/mole at the lowest volumes studied here. The statis-

tical errors in this region are <10 cal/mole. Most of this difference

is due to the different parameters used in the Lennard-Jones potential

in this study. As pointed out previously, these values were E = 370 K

and a = 2.93 £. This compares to the values used by Bruce of

E = 36.70 K and a = 2.958 R. At these high densities differences in

the interatomic potential can ersily lead to differences of a couple of

hundred calories per mole in the gLuund-state energy. To show this
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effect the results from this study have been rescaled to Bruce's values

of a and e and are also presented in figure 12. The agreement is

now excellent at the high densities but not as good in the intermediate

range.

Another indication of the amount of uncertainty possible in the

energies calculated using the Monte Carlo methods of Hansen and co-

workers is Bruce's statement that two different initial particle con-

figurations led to energies that varied by as much as 4 to 6 cal/mole.

This is in addition to any statistical errors in his results.

The pressure versus volume results for this study are compared

with Bruce's Monte Carlo results and with Stewart's experimental data

in figure 13. The pressure- data falls below Bruce's values at low

volumes, a direct consequence of the lower energies in this region.

This brings the pressures from this study closer to Stewart's experi-

mental data. This is due to the differences in interatomic potential

previously pointed out. The resulting pressures are still much higher

than Stewart's values, a result consistent with all of the theoretical

studies done to date. Again rescaled values using Bruce's values of a

and e agree very well with his values for the pressure. Most of the

studies now in progress on hydrogen are aimed at determining an inter-

atomic potential which yields theoretical results that fit more closely

Stewart's pressure data.

E. Effects of Approximations

The biggest approximation is, of course, the molecular field

approximation itself. The effect of studying the dynamic motion of

pairs of molecules in a lattice ,iher most of the remaining molecules

are fixed on their equilibrium lattLice sites can only be determined
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from the comparisons with experiment. This approach in general seems

to be reasonable based on the agreement with experiment.

The inclusion of approximate motion of the nearest neighbors to

the dynamic pair X and K had a dramatic effect on the results. It

is important therefore to reiterate what this approximation includes

and what it does not include. This approximation treats exactly the

correlation of both X and K to each of their nearest neighbors. It

does not treat exactly the correlation of these nearest neighbors with

each other or with the remaining molecules in the lattice. This would

have an indirect effect on the molecules X and K. This effect is

apparently quite small as indicated by the close agreement with experi-

ment with the present formalism. The use of only three new variables

to evaluate the effects of motion of the nearest neighbors of A and K

worked quite well again as indicated by the results.

As pointed out previously, other approximations have been made in

the evaluation of equation (17). First the integrals were calculated

exactly only for the first ten nearest neighbor shells. The contribu-

tions from the remaining shells are evaluated for a static lattice. It

was found that over the range of densities studied, the energy could be

determined to within -1 cal/mole if only the contributions from the

first four nearest neighbor shells were calculated exactly, which is

the approximation used in the "exact" Monte Carlo studies. Evaluating

contributions from only ten shells exactly leads to a negligible error.

The static lattice sum is cut off after thirty-eight nearest neighbor

shells. This again gives negligible error. Some idea of the magnitudes

of the contributions frcm differn- i rest neighbor shells c be seen

in Table IV. This table contains cuictributions from different groups of
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nearest neighbor shells for both T and V for He4 at 21.6 cm3/mole,

and 10.25 cm3/mole. As can be seen from this table, the contributions

from the first two nearest neighbor shells are very large at the low

density. The contributions from the other shells become increasingly

important with higher densities; however, the contributions from the

first four or five shells dominate the total energy even at these

higher densities.

Another important approximation is the cutoff of the product of

two-body correlation functions. These products contained the exact

correlations of the Xth and Kth molecules to only their first, second,

and third nearest neighbors. The values of the correlation function

outside this range were unity. Some idea of the effect of this approx-

imation can be seen in Table V where <T), (V , and Eo are presented

for a typical He4 calculation at 21.6 cm3/mole as a function of the

nearest neighbor shells contained exactly in this product. As can be

seen in this table, these results converge quickly even though the

f(r) used in this study is a fairly long-ranged two-body correlation

function. Most of the results for H2 were obtained with a second near-

est neighbor cutoff in these products co save computation time. Again

this approximation results in negligible errors.

The statistical errors ranged from less than 1 cal/mole at the

low densities to as much as 3 to 4 cal/mole at 10.25 cm3 /mole for the

helium ground-state energies. The statistical errors for hydrogen were

a factor of two to three higher. Because of the uncertainties in the

interaction potential for hydrogen it was not felt warranted to spend

-'Cr2 C....tation time t'- T" c , ,,1
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It is felt that the cumulative effect of errors introduced by the

above approximations is indeed small and would not effect any of the

conclusions made from comparisons with experimental data.

Since most of the results have been compared with Monte Carlo re-

sults, a discussion of some of the limitations of that approach might

be useful. These Monte Carlo calculations .. represented the best

agreement with experiment to date. However, as pointed out earlier,

calculations by Hansen and Pollackl9 and Hansen and Levesque 5 for

helium differ by as much as 2 cal/mole even though the statistical

errors quoted are 1 cal/mole and 0.4 cal/mole, respectively. Also, as

pointed out previously, Bruce 2 8 obtained results which differed by as

much as 6 cal/mole depending on the starting configuration used. This

was in addition to any statistical error.

The Monte Carlo method is naturally limited to a finite volume of

molecules that can be treated exactly. This is usually less than

1000 particles enclosed in a box with periodic boundary conditions.

This and other approximations, such as letting each particle interact

exactly with only four or five nearest neighbor shells, add possible

errors to the Monte Carlo results.

In addition, W. W. Wood 3 1 points out the likelihood that at high

densities it is quite possible that the Monte Carlo techniques used

may not properly sample phase space. This might effect substantially

the results at these densities.



IV. CONCLUDING REMARKS

The molecular field approximation as first formulated (six-

dimensional integrals) led to undesirable results. The new formula-

tion which allows in an approximate fashion the motion of nearest

neighbors of the dynamic pair gives much better results. None of the

many approximate theories of quantum crystals proposed to date agree

as well with experimental data and the Monte Carlo results as do the

results of this study. In addition, limitations on the two-body cor-

relation functions necessary for the various cluster expansion ap-

proaches are not imposed by the molecular field approximation.

The molecular field approximation is, therefore, a valuable tool

for the study of properties of quantum crystals. The results of this

study can easily be extended to include different trial wave functions,

different potentials, and also much higher densities for a thorough in-

vestigation of the properties of quantum crystals. There are some in-

dications that random walk Monte Carlo methods may have difficulty in

properly sampling phase space at very high densities. The molecular

field approximation might therefore be quite useful at these densities.
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TABLE I. - b.c.c. He3 RESULTS

Volume (T E, Pressure Compressibility (r2)l/2 K
(cm3/mole) (cal/mole) (cal/mole) (cal/mole) (atm) (104 atm-1) (R) (a-2) (0-1)

24.50 -44.1 43.6 -0.5 1.18 3.5 1.11
20.80 -53.6 56.4 2.8 50 .23.8 1.06 4.1 1.11
16.16 -64.2 81.7 17.5 260 7.0 .85 6.5 1.08
14.00 -64.0 102.2 38.2 565 3.9 .75 8.7 1.06
11.82 -49.2 138.5 89.3 1380 1.8 .62 12.5 1.04
10.25 -16.5 183.3 166.8 2820 .7 .52 19.0 1.02

TABLE II. - b.c.c. He RESULTS

Volume (V) (T) Eo  Pressure Compressibility r2 1/ 2  K
(cm3 /mole) (cal/mole) (cal/mole) (cal/mole) (atm) (104 atm - i) () ( -2) (-1)

21.60 -54.6 44.3 -10.3 1.03 4.5 1.13
17.50 -68.1 61.3 -6.8 93 9.0 .83 5.7 1.13
15.5 -77.3 77.5 .2 250 6.0 .76 8.0 1.1213.75 -80.4 97.5 17.1 500 4.0 .64 11.5 1.11
11.82 -80.4 130.8 50.4 1035 2.6 .56 15.0 1.10
10.25 -62.1 165.9 103.8 1790 1.6 .48 20.0 1.10



43

TABLE III. - f.c.c. H2 RESULTS

Volume V T Eo  Pressure K
(cm3/mole) (cal/mole) (cal/mole) (cal/mole) (atm) (0-2) (a-1)

22.65 -301 131 -170 6 1.19
18.00 -376 252 -124 1 100 30 1.14
13.60 -298 487 189 6 350 67 1.12
12.00 -51 595 544 12 400 80 1.11.
10.80 318 707 1025 22 500 95 1.10



TABLE IV. - CONTRIBUTIONS FROM DIFFERENT NEAREST NEIGHBOR SHELLS

Volume Nearest Contribution to. V Contribution to T Contribution to H
(cm3/mole) neighbor (cal/mole) (cal/mole) (cal/mole)

shell
Exact Rigid Exact Rigid Exact Rigid

lattice lattice lattice

21.60 1st -29.90 25.00 -4.90
2nd -13.27 4.75 -8.52

3rd-10th -10.66 1.94 -8.72
llth-38th =-0.77 -0.77 z.06 0.06 =-.71 -0.71

=12.51 +12.51

Total -54.60 44.26 -10.34
-
-

10.25 ist +17.53 84.90 +102.43
2nd -38.90 17.94 -20.96
3rd -16.37 3.68 -12.69
4th -11.03 -11.38 2.05 1.99 -8.98 -9.39

5th-lO0th -9.85 -9.92 1.40 1.40 -8.45 -8.52
llth-38th --3.47 -3.47 -.29 .29 -3.18 -3.18

3 =55.60 +55.60
4m

Total -62.09 165.86 103.77



TABLE V. - PRODUCT OF CORRELATION FUNCTIONS APPROXIMATION

V T H Exact product of

(cal/mole) (cal/mole) (cal/mole) f(r)'s cutoff after

-48.20 40.80 -7.46 Ist nearest neighbors

-50.35 39.90 -10.45 2nd nearest neighbors
-50.20 39.90 -10.30 3rd nearest neighbors

TABLE VI. - R(r) DATA FOR He3

Volume .r(a)
(cm3/mole) 0 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80

10.25 1.00 0.928 0.717 0.466 0.254 0.042 0.0035
11.82 1.00 .935 .757 .559 .363 .107 .019 0.0018
14.00 1.00 .957 .824 .480 .206 .060 .012 0.0015
16.16 1.00 .961 .859 .567 .293 .117 .036 .0078
20.8 1.00 .975 .905 .688 .445 .246 .116 .046 0.0148 0.0039
24.5 1.00 .922 .738 .515 .317 .173 .083 .034 .012



TABLE VII. - R(r) DATA FOR He
4

Volume r(o)

(cm3/mole) 0.0 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80

10.25 1.00 0.916 0.681 0.417 0.207 0.027 0.0012

11.82 1.00 .922 .730 .495 .292 .064 .0070

13.75 1.00 .955 .809 .412 .133 .026 .0028

15.50 1.00 .829 .484 .217 .068 .019 .0022

17.50 1.00 .862 .587 .319 .137 .045 .011 .0019

21.60 1.00 .901 .675 .424 .227 .102 .038 .011 .0028

Six-Dimensional Formalism

10.25 1.00 0.885 0.610 0.323 0.130 0.0084 0.00015

21.60 1.00 .975 .902 .657 .380 .168 0.054 0.013 0.0022 0.00032
.Is



APPENDIX A

SYMBOLS

E energy

f(r) two-body correlation function

G defined by eqs. (21) and (22)

H Hamiltonian

Planck's constant divided by 2v

unit vector in x direction

J exchange integral

j unit vector in y direction

m mass

N number of molecules in the crystal lattice

p pressure

R. vector to equilibrium position of the ith molecule
1

R..i = R i - R, vector joining the equilibrium positions of the

ith and jth molecules

R(r) single particle distribution function defined by eq. 
(24)

r distance (depending on usage r= ri - r or r = ri - Ri l

etc.)

r = jr - RK , distance that Kth molecule is from its equi-

librium position

Kr2 1/2  root mean square deviation from equilibrium defined by

eq. (23)

th
r. vector to position of i molecule

-r. volume element for the i mnlecule

th th

r = - r., vector joining the i and j molecules

47
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T kinetic energy per molecule

V potential energy per molecule

Vij defined by eq. (12)

v specific volume (appears only in eq. (25))

x cartesian coordinate

y cartesian coordinate

y = Ir - R I and = I - i, distance that the nearest neighborss s p p

to the Xth and Kth molecules are from their equilibrium posi-

tions

z cartesian coordinate

z = Ir - R , distance that the Xth molecule is from its equi-

librium position

B variational parameter in p(r)

6 Dirac 6 function

V gradient

V2  Laplacian

E depth of potential well

e spherical coordinate

eD  Debye temperature

K unit vector in z direction

K variational parameter in f(r)

K Boltzmann's constant (appears only in eq. (26))

K compressibility (appears only in eq. (25))

v two-body interaction potential

n angle equal to 1800

Ss:iLaIce at whiJL .~l cli .. potential is zero

spherical coordinate
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4(r) single particle wave function

total wave function

complex conjugate of total wave function

dQ2 element of solid angle for the Xth molecule

Subscripts:

0 ground state

1 sometimes associated with the Xth molecule

2 sometimes associated with the Ath molecule

i

K

P

Special symbol:

<) expectation value



APPENDIX B

DETAILS OF MONTE CARLO INTEGRATION

In evaluating equation (17) it is first necessary to calculate

the magnitudes of the following vectors rK - RK , r - R r -

r - Rs, and r - R for all sites s and p necessary in

7 f 2 (r - s) f 2 (r - R ) and for all the (AK) pairs evalu-K 5 P

ated in the summation. This is done for both b.c.c. and f.c.c. lat-

tices.

First we will introduce two new vectors r and z as follows:

r =r - R (Bl)

z = r - RX (B2)

Substituting in the other vectors gives

r - R = r + R (B3)
K S KS

r - RP = z + R p (B4)

rXK = rA - r = z - r - RKA (B5)

Further let us use the notation that Ro = IRAI when (X,K) are nearest

neighbors, R1 = IRKI when (A,K) are second nearest neighbors, etc.

First writing r and z in Cartesian coordinates gives

z = z sin 81 cos €li + z sin 61 sin lj + z cos e1K ,  z = (B6)

r = r sin 02 cos 02i + r sin +2 sin ¢2j + r cos 62 K r = I (B7)

With these we can get the magnitudes of the vectors in terms of the six

variables r, z, 81, 02' €1' 22. The magnitudes of typical r - R
K S

and rA - R used in this study are shown in Table BI for a b.c.c.

lattice and Table BII for a f.c.c. lattice. Table BITT contpi typi-

cal IrX I's for both lattices. For the later formulation which

50
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involved allowing the nearest neighbors of X and K to also move we

have

y r -R = r -R
s s p p'

The vectors r - r and r - r for this case are similar to those

in Table BIII.

The calculation of equation (17) for a set of variational param-

eters B and K involved evaluating the necessary integrals using

standard Monte Carlo techniques.22 This first step involved changing

the variables of integration so that they ranged from 0 + 1. Since

the integrations over r, y, and z ranged from 0 - m these integra-

tions were either cut off at a value 10 R when step function biasing

was used or left as integrals between 0 -+ when some form of expo-

nential biasing was used. Biasing of the angular variables had very

little effect and therefore was not used for these variables.

The procedure used was to pick a point in six-dimensional (or

nine-dimensional) phase space and then use this same point for a trial

evaluation of each of the necessary integrals. The v(rij)) and

h2 . n- V n f(r were evaluated separately. The contribution from

each nearest neighbor shell involved three separate integrals: one for

<v(r ij) ; another for (- hm Vi n f(rij ); and finally a normalization

integral. Usually the integrals for the third through the tenth near-

est neighbor shells were evaluated together since the normalization in-

tegral was nearly identical for each, Since the contributions from

these shells are also quite small the effect of this approximation on

the potential energy was always less than 0.5 percent and on the kinetic

-nec, j less tian 0.1 puc.ent.
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An exit was made to a statistics subroutine after each set of N

points in phase space. The program continued until either a set of

criteria on statistics were met or a given number of points in phase

space had been evaluated. Typically N ranged from 500 to 1000 and

the total number of points from 20 000 to 300 000.
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TABLE BI. - MAGNITUDES OF r - R AND r - Rp FOR A B.C.C. LATTICE

r - R
K S

2 2 2rR0 1/2
[r 2 + R + (sin Cos +sin sin 2 + cos 12)]

0 02 9 2 2 021

2 2 1

[r2 + R2 + 2rR 1 sin 02 sinsin 1 /2

2 rR 2 (in 2 CS 2 + sin 82 sin2 )

[r R2 2R2 + rR(sin 02 cos 2 + cos 02)]1/2
2 2 22

IrX - TPI

[2 + R2 +2R (sin 01 cos 2+ sin 01 sin + cos 0)11/2

2 2 2zR0 1/2

[z +R (sin 1 cos 1 + sin 1 sin 1
+ cos e1)]

[z 2 + R + 2zR1 sin 01 cos 1/2[z 2 + R2 + 72 zR 2(sin 01 cos 2 + sin 01 sin ) ]1/2

[2 + R2 + 2zR 2sin 8 2 cos 1o //2

[z 2 + R 2 + 2zR sin e, sin 1/2

2 2 o 1/2/

[z 2 + R2 + /2 zR2 (sin e1 cos 1 + cos el)1/2
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TABLE BII. - MAGNITUDES OF r - R AND r - R FOR A F.C.C. LATTICE
K s p

[r 2 + R2 + 2 rR0(sin e 2 cos 2 + sin s2 sin 12)1/ 2

[r 2 + R2 + V' rRO(sin 02 sin 2 + cos e2) 1 / 2

[r2 + 2 + 2rR1 sin 82 cos 2]1/2

[r 2 + R2 + 2rR1 sin 62 sin c2 1/2

I - R

[z2 + Rg + 2 zR0 (sin e1 cos 1 + sin 61 sin ~)]/2

2 02 1(z2 + R +/2 sizR0(sin 01 sin + COS el)]/2

[z 2 + R2 + 2zR sin 01 cos 1] 1 / 2

+ 2zR1/2[z2 + R2 + 2zR I sin 01 sin 0l
] I/ 2



TABLE BIII. - MAGNITUDES OF r. FOR A FoC.C. AND B.C.C. LATTICEAK

b.c.c., rKI

lNe. .rest neighbor
pair

2 2 2 2zR
st [z + r + - 2zr(sin 1 sin cos( + cos 6 COS (sin e cos i

2rR0  1/2
+ sin 81 sin 1 + cos 01) + - ,(sin 02 cos 2 + sin 02 sin s2 + cos 82)]

2 [z 2 + r2 + R2 - 2zr(sin 61 sin 62 cos(p 1 - p2 ) + c C 1 c scos + 2rR cos 1/2

f.c.c., ITr

Ist [z2 + r2 + R - 2zr(sin 61 sin 62 cos(41 -2 ) + cos 61 cos 62 - v zR0 (sin 61 cos ~1

+ sin 61 sin 01) + I rRO(sin 62 cos 02 + sin 82 sin 2) ]1/2

2 2 22nd [z + r + Ri  2zr(sin 01 sin 02 cos( 1 -1 2) + cos 61 cos 02) - 2zR1 sin 61 cos 01

+ 2rR 1 sin e2 cos 02) ]1/2


