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FOREWORD

This report describes an investigation of fracture characteristics and cyclic
flaw growth behavior of 2219-T851 and -T87 aluminum alloys subjected to load-
ing under a thermal profile. The work was performed by the Boeing Aerospace
Company from June 1973 through September 1974 under Contract NAS3-17764. The
work was administered by Mr. John A, Misencik of the NASA-Lewis Research

Center.

Boeing personnel who participated in this investigation included J. N. Masters,
Project Manager and W. L. Engstrom, Technical Leader. Test support was pro-
vided by A. A. Ottiyk. Metallurgical support was provided by M. V. Hyatt and
M. H. Gramling. George Buehler prepared the art work and Eva Cornelius typed

the manuscript.

The information contained in this report is also released as Boeing Document

D180-18615-1.
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SYMBOLS AND ACRONYMS

Crack depth of semi-elliptical surface flaw in surface flaw
specimen, length of through-the-thickness crack in single
edge notch tension specimen.

Critical flaw size for single edge notch tension specimen.
Flaw length of semi-elliptical surface flaw.

Crack opening displacement constant.

Crack opening displacement.

Cyclic crack growth rate.

Young's Modulus.

Elevated temperature (450K (350°F) unless noted otherwise).
Electrical discharge machine.

Single edge notchi Lension specimen stress intensity factor.
Single edge notch tension specimen stress intensity at
failure-- calculated from a; and Tmax”

Critical single edge notch tension specimen stress intensity

factor-- calculated from a and o
cr cr

Irwin surface flaw stress intensity with deep flaw magnification.

Surface flaw critical stress intensity.

Maximum cyclic surface flaw stress intensity.

Maximum cyclic single edge notch tension through-~the-thickness
flaw stress intensity.

Crack growth resistance.

Difference between maximum and minimum applied cyciic stress
intensities.

Deep flaw magnification factor from NASA CR 72606.

Number of fatique cycles.

Not available.

Flaw shape parameter = 2 - 0.212(7/oy)2.

Single edge notch tension specimen.

Surface flaw specimen.

Half plastic zone size.

Cyclic stress ratio.
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SYMBOLS AND ACRONYMS

RT Room temperature.

t Thickness of specimen at flaw plane.

W Width of specimen at flaw plane.

Y Polynomial function of a and W used to calculate stress
intensity for single edge edge notch tension specimens.

8 Crack opening displacement.

050,40 Applied gross stress.

TEAILURE®CF Stress level at which failure occurs.

Ter Critical stress level at which failure occurs.

TMAX Maximum cyclic stress level.

N Net section stress.

OYS’O Yield strength.

UULT Ultimate strength.

u Poisson's ratio.

$ Complete elliptical integral of the second kind
corresponding to modulus k = [(c? - az)/czll/z.

>UBSCRIPTS

f Final condition.

i Initial condition.

cr Critical condition.

RT Condition at room temperature

ET Condition at elevated temperature (450K (350°F) unless noted

otherwise) .
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SUMMARY

This experimental program was undertaken to determine the behavior of
2219-T851 and -T87 aluminum alloys when subjected to a thermal profile
spectirum in which applied stress levels are varied at the same time that
the test temperature is varied over the range 144K (-200°F) up to 450K
(350°F). Pursuant to the investigation of the above problem a number of
other data were also generated including mechanical properties, static
fracture characteristics and constant amplitude, constant temperature
cyclic behavior. The -TB51 temper was tested in a thickness of 6.35 mm
(0.250 in.) and the -T87 temper was tested in thicknesses of 6.35 mm
(0.250 in.) and 3.18 mm (0.125 in.). Flat tensile specimens and surface
flaw and single edge notch tension fracture specimens were tested. Mech-
anical property and static fracture specimens were tested at 144K (-200°F),
room temperature, and 450K (350°F). Cfyclic specimens were tested at room

temperature and 450K (350°F).

A1l surface flaw specimens tested exhibited failure stresses near the yield
strengths of the materials. Single edge notch tension specimens produced
Kcr and KCN values which remained constant at 144K (-200°F) and room tem-
perature. An increase in temperature to 450K (350°F) caused a substantial

increase in K and K values.
cr CN

Results of the constant amplitude, constant temperature cyclic crack growth
tests indicate for both surface flaw and single edge notch tension specimens
that 2219-T851 and -T87 have the same cyclic crack growth rates at room
temperature. At 450K (350°F) the -T851 temper has slower crack growth rates
thar the -T87 temper. |In addition, it has been shown that crack growth rates
of each temper are approximately doubled by an increase of temperature to 450K
(350°F) at low K values (22 MN/mB/2 (20 ksi/in)). At K values above

Ly I'4N/m3/2 (40 k??/Tﬁ) growth rates at rocm temperature anza:levated temper-
ature are equal. Tests conducted on sirgle edge notch tension specimens to
evaluate the effect of hold time on crack growth rates have shown that hold-
ing at the maximum stress level for 2 minutes on each cycle increases crack
growth rates substantially over those produced by sinusoidal loading at 1 Hz
(60 cpm).
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Results of therma! profile tests show that the flaw growth of surface
flaw specimens can be successfully predicted by using a linear cumulative |
damage analysis. Crack growth rates of single edge notch specimens sub-

jected to thermal profile loading are slower than those which would be i
predicted by a linear cumulative damage analysis. The crack growth rate

retardation apparent in single edge ~otch tension specimens appears to be ;
caused by the high temperature part of the thermal profile. Specimens sub-

jected to subsequent room temperature exposure and cycling exhibit lower

growth rates than would be expected from comparison with base line constant i
temperature, constant amplitude crack growth data. Additionally, there

appears to be a specimen size and/or net section effect on single edge

notch specimens subjected to thermal profile loading. Wide specimens sub-

jected to net section stresses of 27% to 31% of cys display more retarda-

tion in flaw growth behavior than smaller specimens subjected to net section

stresses of U42% to 84% of oys' The surface flaw specimens, which did not

show retardation, were subjected to net section stresses on the order of

53% to 97% of oys'
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1.0 !NTRODUCTION

Experivnce has shown that large aerospace structures and pressure vessels
citer contain crack-like defects due to fabrication. Service life of these
struciures is dependent upon initial quality of the structure, the sub-
critival flaw growth characteristics of the materials in their respective
service environments, and the critical flaw sizes at maximum operating stresses.
Over te past few years, several research programs have been undertaken to
invect igate methods to prevent failure of aerospace structures and pressure
vesse:s, and to provide test data which can be utilized in design (e.g.,
References 1 through 6). Mcst prior fracture experiments on 2219 aluminum
have been performed at constant temperature. Several areas of the planned
shuttle vehicle will be subjected to varying temperature profiles ranging
from subzero temperatures to up to approximately +450K (+350°F) for aluminum

corponents.

An earlier Boeing IRED study investigated flaw growth of aluminum

sur‘ac: flawed specimens subjected to a simulated recoverable booster load/
tem-erature profile. Loads were held relatively constant while temperature
was varied betwe- 1 78K (-320°F) and 450K (+350°F). Results indicated signif-
icantly higher growth rates than anticipated, with most of the damage occur-

ring at elevated temperature.

The proyram reported herein was initiated to further explore the problem of
flaw growth under load,;temperature profiles simulating Space Shuttle orbiter
primery structure. Materials selected for this investigation were 2219-T851
alumipum, 6.35 n (0.250 in.) thick, and 2219-T87 aluminum, 6.35 mm (0.250 in.)
and ,.18 mm (0.125 in.) thick. The fracture and flaw growth tests were per-
formed + ing both surface flaw (SF) and single edge notch tension (SENT) spec-

imen configurations.

"he materials were characterized using mechanical property, static fracture
and constant <mplitude, constant tempcrature cyclic crack growth tests. A

summary v“ tests performed are shown in Table |. Tests in which the applied

R
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stress and temperature were varied simultaneously were subscquently conducted.
The load/thermal profile utilized for each flight was a simplified version of
that which a shuttle structure might be subjected to during flight. It was
kept as simple as possible to insure that the test results could be easily com-
pared with the results of the constant amplitude, constant temperature cyclic
tests. A schematic of the typical profile used for the tests is shown in Fig-
ure |. A summary of the load/thermal profile tests is shown in Table 2.

The following sections of this report describe materials and procedures and

include results and analysis, and conclusions.



a4,

S RS K

o

PR

O R i & 4 e LA o I T

S RN AN 1Y o

3

)

!m&
Ny

)
{4
~ S
it
~
i}
\/f
!
L
1\
3
£
N
i
5
e
F
£
i1

2.0 MATERIALS

The material used in this program was 2219 aluminum in the -T851 and -T87
tempers in a plate thickness of 6.35 mm (0.250 in.). All material for each
temper was from a single heat. The material was ordered per Boeing Speci-
fication BMS 7-105C (equivalent to Military Specification MIL-A-8920A).
Chemical compositions of the two heats were determined by the Boeing Aero-
space Company and are shown in Table 3. The cleanliness rating of both
heats were better than classification "A" per ASTM E45-63.
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3.0 PROCEDURES
3.1 SPECIMEN FABRICATION
3.1.1 Tensile Specimens

Tensile specimens were fabricated per Figure 2. The 2219-T85! specimens

were tested in full thickness from €.35 mm (0.250 in.) plate. 22i19-TB7 spec-
imens were cut from the same heat of 6.35 mm (0.250 in.) plate and were tested
in thicknesses of 6.35 mm (0.250 in.) and 3.18 mm (0.125 in.). Specimens were
cut so that the loadina axis was either parallel (longitudinal) or perpendicular

(transverse) to the major rolling direction.
3.1.2 Single Edge Notch Tension and Surface Flaw Specimens

All single edge notch tens.on (SENT) and surface flaw (SF) specimens were
fabricated so that the loading direction was perpendicular to the rolling
direction. This produced a TL crack propagation direction for all SENT tests
and a TS crack propagation direction for all SF tests. (See Figure 3 for a
description of propagation directions.) Specimen configurations are shown in
Figures 4 through 9. SENT static fracture specimens are shown in Figures 4, §
and 6. The SENT configurations shown in Figures 6 and 7 wure employed for the
cyclic tests. The surface flaw specimens used for the static fracture and
cyclic tests were fabricated per the configurations shown in both of Figures 8
and 9.

Flaws in the SENT specimens were ir“roduced by cutting standard chevron shaped
notches as shown in Figures 4 through 7. Flaws in the SF specimens were intro-
ducad by electric discharge machining (EDM). The chevron notches in the SENT
specimens and the EDM notches in the SF specimens were extended by tension
cycling at low stress levels. The maximum stress levels for the SENT specimens
varie¢ from 28 to 41 HN/m2 (4 to 6 ksi). The SF specimens were precracked at
83 te i38 HN/m2 (12 to 20 ksi). The number of cycles required was 10 to 453
thousand for SENT specimens and 2 to 30 thousand for SF specimens, depending

on the initial flaw size and precracking stress. The cracks in SENT specimens
were visually observei at the specimen surface with the aid of a magnifying
glass, and the flaw periphery of SF specimens was visually observed with the aid

of a microscope to determine when precracking was complete.
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3.2 TEST SETUP

All tests were conducted in an environmentally controlled laboratory at the
Boeing Space (enter in Kent, Washington. Mechanical property and static
fracture tests conducted at I44K (-200°F) were pe-formed by enclosing the
specimen in an insulated chamber and introducing gaseous nitrogen (GNZ) at
low temperature. Several thermocouples were installed on each specimen and
the temperature was maintained at 144K (-200°F) +3K (5°F) for at least ten
minutes before each test. Tests conducted at 450K (350°F) were performed by
installing electrical resistance contact heaters on the specimen. As with
the cryogenic tests, the temperature was monitored with thermocouples and
the specimen was allowed to soak at 450K (350°F) 43K (5°F) for at least ten
minutes before each test. Thermal profile specimens which were tested at
temperatures ranging from 144K (-200°F) up t~ 4SOK (350°F) were conducted by
utilizing a combination of GNZ’ LN2 spray, ard electrical re stance contact

heaters.

Tensile specimens were tested ina0.53 MN (120 kip) capacity Baldwin static

test machire. The SENT and SF static fracture tests were tested in a Mate-
rials Testing System (MTS) machine with a 1.34 MN (300 kip) static capability
and a 1.11 MN (250 kip) cyclic capability. The SF cyclic tests were conducted
in either a0.27 MN (60 kip) or 2 0.67 MN (150 kip) capacity test machine of
Boeing manufacture. A photo of a SF specimen instalied in a test machine is
shown in Figure 10. The SENT cyclic tests were conducted in the above mentioned
0.27MN (60 kip) and0.67MN (150 kip) machines, and in the MTS machine. All SENT
tests utilized pin loading. Thermal profile spectrum tests of the SF specimens
were conducted in the MTS machine. Thermal profile spectrum SENT specimens were
tested in the MTS machine and a 1-56 MN (350 kip) capacity resonant beam fatigue
machine. During the thermal profile tests, the load was control'ed by the use
of a NOVA load programming system. The temperature profile was controlled with
a programmable temperature control system using set points and timers. Control
systems on the load and temperature programmers were interconnected to achieve
the thermal/stress profiles required for the tests. A photo of a SENT specimen
installed in a test machine and under test is shown in Figure 11. A closeup

view is shown in Figure 2.



Crack propagation in SENT specimens was monitored with the use of crack pro-
pagation gages (CPG). These gages are manufactured by the Micro-Measurements
Company under the catalog number TK-09-CPC03-003. They were applied in the

ERRR B B

f FARY same manner as standard strain gages. A photo of a specimen with a CPG in-
: hd stalled is shown in Figure 13. Crack propagation was also measured by visual
i éﬁ"g means during the cyclic tests.
R
For the SF static fracture tests, determination of flaw growth through the
\ W? thickness (breakthrough) prior to ultimate failure was accomplished by em-
e ploying pressure cups. The pressure cups were clamped to the specimens and a
T pressure differential of approximately 3.5 to 7 KN/m2 (5 to 10 psi) was used.
~ - Helium gas was used as the pressurizing medium. Pressure transducers were
- employed on the front and/or back side to sense the pressure change associated
O with flaw breakthrough. Pressure cups were also utilized on SF cyclic tests to
determine breakthrough. Examples of pressure cups are shown in Figure 14.
% T Crack opening displacement (COD) was monitored during static fracture and cyclic
AZ tests of both SENT and SF tests. A standard ASTM type clip gage (Reference 7)
: was used. The clip gage was attached to integrally machined knife edges on the
» SENT specimens. (See Figure 13 for an example of a clip gage installation.)
‘ For the SF specimens, it was necessary to spot weld knife edges to each specimen
i as shown in Figure 15.
i 3.3 EXPERIMENTAL APPROACH

Summaries of the types of tests conducted in this program are shown in Tables

| and 2. Details of the experimental approach used are described below.
3.3.1 Mechanical Property Tests

Extensometers were used on all tensile specimens. Mechanical property tests

- . .
e I I

were conducted at 144k (-200°F) in GNZ' In room temperzture air, and in air at
450K (350°F). A strain rate of 0.005 mm/mm/minute was used on all specimens
unti] the material yield stress was obtained. (Yield stress is defined at 0.2%
offset in 50.8 mm (2.0 in.).) A strain rate of 0.10 mm/mm/minute was then used
for the remaining portion of the loading until failure. A total of 36 specimens
were tested.
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3.3.2 Static Fracture Tests

Static fracture tests were conducted on 10 SF and 18 SENT specimens. Both
types of fracture specimens were tested at 144K (-200°F) in GNZ, in room
temperature air, and in air at 450K (350°F). Each specimen was loaded at a
rate to cause failure in one to two minutes. The SF specimens were instru-
mented with pressure cups as described in Section 3.2 to determine if and when
breakthrough occurred prior to failure. A typical plot of load vs. pressure

is shown in Figure 16. Each SENT specimen was instrumented with crack pro-
pagation gages (CPG) described in Section 3.2. Data from these gages were used
to determine the critical flaw size and critical failure load. A plot of

load vs. CPG output is shown in Figure 17.

SF specimens were instrumented with a clip gage as shown in Figure 15 to deter-
mine crack opening displacements (COD). The clip gage was spring loaded against
knife edges integrally machined into or spot welded to the specimen. An expres-
sion for the opening displacements of a completely embedded flaw has been pro-
vided by Green and Sneddon (Reference 8). Their study examined a flaw embedded
in an elastic solid which was subjected to a uniform load normal to the crack
surface at infinity. The maximum opening displacement occurs at the diametri-
cal center of the crack and is expressed by the equation,

. _ k0-p?) oa
COD = 6 = - T

Although a rigorous solution is not available for flaw opening displacements for
a semi-elliptical surface flaw, such displacements should also be proportional
to o and a/% for elastic materials. By following Irwin's procedure (Reference

9) to account for the effect of plastic yielding, the COD for a surface flaw can

be approximated by

where C is a constant. (0D measurements were not directly used in analysis of
SF static fracture data, however, these measurements were made so that, if
necessary, they could be used to supplement COD/flaw size correlations on the

cyclic tests.

10
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SENT specimens were also instrumented to determine LOD. These measurements
were helpful in estimating the critical flaw size in tests where the sub-
critical crack growth extended beyond the range of the CPG. The manner in

which this was done is described in Sectinn 4.2.2.

3.3.3 Constant Amplitude, Constant Temperature

Cyclic Base Line Tests

Base line cyclic tests were conducted on 12 SF and 26 SENT specimens. These
tests were conducted in order to produce crack growth rate data which could

be correlated with crack growth rate data genera*ed under the thermal/load
spectrum. The tests were conducted in room temperature air at a stress ratio,
R, of zero and in air at 450K (350°F) at R = 0.5 for all but two of the SENT
specimens. These two tests were ccnducted in room temperature air at R = 0.5
and at 450K (350°F) at R = 0. A sinusoidal loading profile was used and the
test frequency was 1 Hz (60 cpm) for all tests except for the suslic tests

described in Section 4.3.2.

SF specimens were tested both in the low alastic range (c/cys = 0.50) and near
the plastic range (o/:xys = 0.85). Specimens were tested in a manner so that for
each specimen tested at room temperature, there was a corresponding specimen
tested at elevated temperature. The purpose of setting up tests in this manner
was 50 that the results could be more easily correlated to the thermal profile
tests. The cyclic stresses for room temperature and elevated temperature tests
were such that the ratio " max at elevated temperature/omax at room temperature
was constant for corresponding specimens of each temper. In most cases specimens

were cycled until breakthrough occurred.

SENT spec ‘men tests were planned in a manner similar to that of the SF tests.
Because of net stress limitations, it was not possible to test at gross stress
levels of 0.50 and 0.85 %5 However, as in the SF tests, loads were chosen so
that the ratio ®max at elevated temperature/omax at room temperature was constant
for corresponding specimens of each temper. Final crack lengths of each test

were limited by the criterion that o /oys < 0.8.

net

SF specimens utilized pressure cups to determine breakthrough as in the static

fracture tests. SENT specimens were instrumnented with CPG's in order to monitor

N



crack growth during the tests. The crack length was also monitored visually

on SENT tests at appropriate intervals. by

SF cyclic specimens were instrumented with the clip gages described in Secticn
3.3.2 to determine COD during cycling tests. The COD measurements were used .

to calculate instantaneous growth rates by using the following approach. The

.
wonen

crack opening displacement constant, C, can be determined at test initiation f
and termination from knowledge of the stress level, initial and final flaw

sizes, and the corresponding flaw opening displacements as indicated belc C

§i A

- SO, |
sf A

G- 5 (), =

where the subscripts i and f refer to initial and final conditions, respect-
ively. Tests have shown that for relatively deep flaws in the tougher materials
the value of C tends to increase with increasing crack size, rather than remain
constant. Crack growth rate calculations in this report were based on an

assumed linear variation in C between the known initial and final values.

It. order to relate the flaw parameter {a//Q) to £ for values of a//Q) between
the initial and final values an assumption must be made as to the manner in
which the flaw shape changes from

a-a, 2¢ - (2c)i

ag - a, (Zc)f - (ZC)i

i.e., both flaw depth and width growth simultaneously reach the same percentage
of their respective total growth from initial to final values. The flaw shape
parameter, Q, can now be determined as a functicn of flaw depth and, in turn,
COD can be related to crack depth. Tke number of cycles, N, corresponding to
each selected flaw depth value can be determined from the test record and, con-
sequently, the change in N for each increment of flaw depth is known. The crack

growth rate da/dN can then be calculated.

SENT specimens were also instrumented to determine COD during cycling. These

COD measurements were used to substantiate visual and CPG measurements.

-



3.3.4 Thermal Profile Tests

Thermal profile spectrum tests In which stress level changes were combined

with variations in temperature were scheduled for 6 SF and 9 SENT specimens.

In addition, one SENT specimen was sustain loaded for 2 hours at 450K (350°F)

and subsequently cycled at RT. A diagram of the basic spectrum used for the
thermal/ioad profile tests is shown in Figure 1. It is a simplified version

of the thermul/loac profile that a shuttle structure might see during a

typical flight. The spectrum was kept as simple as possible to insure that

the thermal profile cests could be easily compared with the constsnt temperature,

constant ampl..ude cyclic tests,

The max.mum cyclic loads at room temperature (RT) and at elevated temperature

(ET) for most of the thermal profile tests were chosen so that the ratio

g @ RT g @ ET
ys ys

for each temper. For a given crack length, this kept
the ratio K/Oy. constant. Since the calculated plastic yield zone size, 2ry.
3
at the crack tip is a function of this ratio (e.g., see Reference 10), this was

done in an attempt to remove 2ryas another test variable.

For all but one thermal profile test, the room temperature cycles were applied
at R = zero and the elevated temperature cycles were applied at R = 0.5 as in
the constant temperature, ccnastant amplitude base line tests. During these
parts of the profile, the test frequency was | Hz (60 cpm) and the waveform

was sinusoidal. One specimen was tested at R = zero during the high temperature

part of the spectrum.

Because of the complexities of the heating and cooling apparatus, it was not
possible to instrument the SF specim2ns with pressure cups. Nor. was it pos-
sible to instrument the smaller SENT specimens with CPG's to monitor crack growth.
Breakthrough on the SF specimens and crack length extension on the smaller SENT

specimens were observed visually. The larger SENT specimens were equipped with
CPG's.

SF thermal profile specimens were instrumented with clip gages to determine COD.

13
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This data was used as described in Section 3.3.2 with the following exception.
Because of large variations in the readings caused by large temperature
changes, it was necessary to take COD measuremsnts at the same arbitrary point
in each spectrum. This method proved adequate in relating COD behavior to
flaw growth.

SENT specimens were also instrumented for COD measurements. These data were

helpful in supplementing visual and CPG measurements of crack growth.
3.4 STRE.S INTENSITY SOLUTIONS
3.6 Surface Flaw Specimens

Where stress intensity values are reported, they were based on the Irwin
equation (Reference 9) modified with the empirical deep flaw magnification

factor developed in Reference 2. The resulting equation is as follows.

Ta 1/2
K, = 1.95 c(-Q—) N

K
where K, = surfa.e flaw stress intensity
o = applied gross area stress
a = flaw depth in a surface flaw specimen
Q = shape parameter

"K = deep flaw magnification factor.

Values of Q and M, are shown in Figures 18 and 19, respectively.

K
3.4.2 Single Edge Notch Tension Specimens

Where stress intensity values are reported, they were calculated using the

following solution from Reference 11:

K=ca/2[1.99 -0.40 (25 +18.70 (2)7 - 38,48 (2)3 + 53.85 (2)Y

or K= oa'lzv

where K = single edge notch tension stress intensity

applied gross area stre.s

Q
[ ]

= flaw length in a single edge notch specimen

= specimen width

< £ o

= polynomial function of a and w.

Values of Y are shown in Figure 20.
14
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For static fracture tests two methods were used to calculate the stress
intensity at fracture. The resultant values are referred to as KCN and Kcr'
KCN values were calculated using the maximum applied stress, O max’ and the
initial flaw length, a,. Kcr values were calculated using the critical flaw
size, a s and the critical stress level, Oy These latter values, ar and
acr were determined using resistance curve methods as described in References

12 and 13.

15

[ TORTESESTORPE



AR e B L e

. e

.
%

3
e

4.0 TEST RESULTS AND ANALYSIS
L MECHANICAL PROPERTIES

Tensile properties of the two tempers of 2219 aluminum alloy used ir the
program are shown in Tables 4, § and 6. Tests of both tempers were con-
ducted in gaseous nitrogen at 144K (-200°F), in room remperature air, and
in air at 450K (350°F). Tests were conducted on the -T85! temper in the
6.35 mm (0.250 in.) thickness and on the -T87 temper in thicknesses of 6.35
mm (0.250 in.) and 3.18 mm (0.125 in.).

Room temperature strength levels were well above the values required by
Military Specification MIL-A-8920A and the corresponding Boeing Specifica-
tion BMS 7-105C. Strength levels are plotted as a function of temperature
in Figure 21. The shapes of the curves connecting the datum points were
determined by comparing the test data with strength vs. temperature curves
in MiL-Handbook 5. As would be expected, strength levels of the -T8?7
temper are higher than those of the -T851 temper.

.2 STATIC FRACTURE TESTS
4.2.1 Surface Flaw Specimens

Static fracture SF data are tabulated in Table 7. Plots of failure stress,
g, vs. flaw size, a/Q, are shown in Figures 22 and 23 for the -T851 and -TB7
tempers, respectively. One point, from specimen 87-SF-3, did not appear to
be truly representative of the material, so it is not shown in Figure 23.
Instead, the datum point from a replicate test, 87-SF-7 is shown. All of the

static fracture specimens failed before breakthrough occurred.

In Figures 22 and 23 straight line failure loci have be-n constructed con-
necting the test points to points at which unflawed specimens would exhibit
ultimate tensile failure. Recently, Bixler has demonstrated that such a
straight line relationship can be applied to data when the failure stress is
above 90% of the yield stress (Reference 14). Bixler examined test results
from aluminum, nickel base steel, and titanium alloys. The equation which

describes this relationship is of the following form:

£ BLANK NOT FLMED .
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where = wultimate tensile strength

G

ULT
A = a constant dependent on materlal properties

= specimen thickness

= an exponent ranging from 0.6 to 0.76

flaw depth

QO & 3 e~
]

= shape parameter

Examination of Figures 22 and 23 shows that the failure loci become more
horizontal on the plots with an increase in temperature. Indeed, for the
3.18 mm (0.125 in.) -T8B7 specimen tested at 450K (350°F) the failure stress
actually occurred at a stress level slightly above the average ultimate
strength level determined in the mechanical properties tests. This type of
behavior indicates that for the flaw sizes and high failure stresses ex-
perienced by these tests, the failure stress of the specimen becomes less

sensitive to the existence of the flaw as the temperature increases.

Specimens of the -T851 temper failed at lower stress levels than did com-
parable specimens of the -TB7 temper. Since the failure stress is a func-
tion of relative vitimate tensile strength, this type of behavior would be

expected.
§.2.2 Single Edge Notch Tension Specimens

Data from the 6.35 mm (0.250 in.) 2219-T851 SENT tests are reported in Table
8. Data from the 6.35 mm (0.250 in.) and 3.18 mm (0.125 in.) 2219-TB7 spec-

imens are reported in Tables 9 and 10, respectively. Two stress intsnsity

values are reported for each test, KCN and Kcr’ K. 6 is defined as the stress

CN
intensity calculated using the maximum applied stress, Tmax’ and the initial

flaw length, a,. The critical stress intensity, Kcr' was calculated from
the critical stress level, Ocr and the corresponding critical crack length,

3., These values of L and a__ were determired using resistance curve

cr
methods described in References 12 and 13.

18
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Each SENT specimen was instrumented with crack propagation gages as de-
scribed in Section 3.2. These gages provided a means of obtaining an output
of applied load vs. estimated crack length for the specimens during the
fracture tests. An example curve for specimen 87-2 is shown in Figure 17.
Example crack growth resistance curves (KR vs. a) are plotted for the 6.35
mm (0.250 in.) 2219-T87 specimens in Figure 24. Stress intensity curves

(K vs. a) for each test are plotted on tte iame figure. K., is defined as

the point at which the K, curve is tangent to a K curve.

R

Finding the tangency point of the K and K, curves requires the construction

R
of K curves at several stress levels. However, a more simplified approach
was found to be successful for these tests. Examination of the load vs. CPG
curve in Figure 17 will show two points marked '"A" and '"B'. These points

correspond to the two points marked ''A'' and '"'B'' on the K_ curve in Figure 24.

R
Point "A" is the point at which the maximum stress level is reached. Examina-
tion of Figure 24 and corresponding CPG curves shows that this relationship

is alsc true for other tests plotted on Figure 24. This relationship wes

noted to hold for the other twelve tests also.

A critical crack length could ncot be determined for Specimen B51-4, tested at
room temperature because the failure load was just beyond the maximum load
range on the load vs. CPG curve. Specimens tested at 450K (350C°F) exhibited
subcritical flaw growth which extended further than the 39.6 mm (1.56 in.)
gage iength of the CPG's. Thus, for the first two specimens tested at this
temperature (Specimens 851-6 and 87-6) critical crack lengths could not be
determined directly from the CPG traces. However, critical flaw sizes were
estimated from COD data. All other specimens subsequently tested at 450K
(350°F) were instrumented with two CPG's in order to measure the large amount
of subcritical flaw growth inherent in the tests at this higher temperature.
Tables 8, 9 and 10 show values of ¢
/2 at K

Tnet ys CN

initial crack length, a,. Values of dnet/:ys at K, were calculated using

the maximum applied stress level and the critical crack length, 3, Using

/o _at K. and at K. The values of
¥s cr

net CN
were determined from the maximum applied stress level and the

the above methods, it was found that o /o _ exceedey 0.8 for all of the K
net’ ys CN

19
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values except the V44K (-200°F) and room temperature tests on the -T87 temper.

For the K _ values 0 /o exceeded 0.8 for all tests.
cr net ys

KCN and Kcr values are plotted vs. temperature in Figures 25 and 26, respect-

ively. Average values are summarized in the table below:

TEST TEMPERATURE'

TEMPER| STRESS INTENSITY 144 (-200°F) RT | 450K (350°F) |
N - HN/m;;Z(ksi/m 126 (115) 126 (115)] 199 (181)
Keye MN/m’ % (ksi/in) 97 (88) 97 (88) 121 (110)
g7 |Keer Mm% (ksi /o) 106 (96) 106 (96) | 184 (167)
Koy MN/m> 2 (ksi/Tm) 86 (78) 86 (78) | 110 (100)

The -T87 temper did not appear to show any significant difference in stress
intensity values for the two thicknesses (6.35 mm (0.250 in.) and 3.18 mm
(0.125 in.)) which were tested. For both tempers, the K r and Ken values
remain constant at 144K (-200°F) and room temperature and increase as the
temperature is raised to 450K (350°F). The higher toughness values exhibited
by the lower strength -T851 temper (vs. those of the -T87 temper) demonstrate
that the SENT fracture tests were tovghnress controlled regardless of the

inherent high net section stresses.

4.3 CONSTANT TEMPERATURE, CONSTANT AMPLITUDE CYCLIC BASE LINE TESTS
4.3.1 Surface Flaw Specimens
Test parameters for the 2219-TB51 SF tests are reported in Table 11. The

2219-T87 SF tests are reported in Tables 12 and 13. Maximum stress intensity
vs. crack growth rate curves for the 2219-T851 room temperature and 450K (305°F)
tests are plotted in Figures 27 and 28. respectively. Similar data for the
2219-T87 roum temperature tests are plotted in Figure 29 and data for the
elevated temperature tests are plotted in Figure 30. A summary plot of all SF

tests is shown in Figure 31.

20
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Figires 27 and 28 show fairly tight data bands for the -T851 temper. The

-T87 data exhibits greater scatter, especially in the thicker gage specimers,
as shown in Figures 29 and 30. There do not appear to be significant stress
level effects, although, if such effects existed they may be masked by data
scatter in the -T87 tests. F.gure 31 shows that the room temperature crack
growth rates are about the same for both tempers for a given thickness. Crack
growth rates in the T87 temper appear to be slightly faster than those of the
-T851 temper at elevated temperature. This difference is or the order of
about twice as fast. It also can be seen that the 3.18 mm (0.125 in.) -787
specimens appear to grow at a slightly faster crack growth rate than the

6.35 mm (0.250 in.) specimens at room temperature. Figure 32 shcws the room
temperature data generated on this program compared with in extensive body

of 2219-T87 data compiled in Reference 15.

Forman, Kearney and Engle {Reference 16) have proposed a fatigue crack pro-
pagation mode! of the form:
¢ (ak)"
da/dN = HOE R)K|E KT

where: da/dN = fatigue crack growth rate
AK = cyclic stress intensity range
KIE = c¢ritical stress intensity
R = stress -atio
C,n = empiricaily determined constants.

An attempt was made to fit this equation to the SF crack growth rate data
generated on this program. Figures 33 and 34 show this equation fitted to
room temperature SF 2219-TBS1 and 2219-T87 data, respectively. In Figure 33,
K|E was estimated from the approximate stress intensity at failure of specimen
851-SF-C6 (this specimen was cycled to failure under thermal profile loading).
In Figure 34, for the T87 temper, The KIE value was taken from Reference 15.
Examination of these twc figures shows that the equation of Forman et al, can
be made to fit the data fairly well. No attempt was made to fit the equation
to crack growth rate data generated at elevated temperature because of the

lack of KDE data.

21
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4.3.2 Single Edge Notch Tension Specimens -

Test parameters for the 2219-T85! SENT tests are tabulated in Table 14.
Data for the 2219-T87 tests are in Tables 15 and 16. Typical flaw length {"
vs. cycles plots are shown in Figures 35 and 36 for a room temperature

test and for a test at 450K (350°F), respectively. During cycling, crack

length measurements were made visually and with the use of crack propagation ¢
gages as described in Section 3.2. Agresment between CPG measurements and

visual measurements on room temperature tests was excellent as shown by the i
example in Figure 35. Agreement between CPG measurements and visual measure-

ments on 450K (350°F) tests was not as good (see Figure 36), however, the IV
CPG measurements still produced data which were more than adequate for deter-

mining crack growth rates.

Crack growth rates for the 2219-T851 SENT room temperature and 450K (350°F)

tests are shown in Figures 37 and 3%, respectively. Data from 6.35 mm (0.250 ;
in.) 2219-T87 SENT room temperature and elevated temperature tests are shown

in Figures 39 and 40. The 3.18 mm (0.125 in.) -T87 results are shown in ‘
Figures 41 and 42. Summary plots of all the data are shown in Figure 43.

Examination of Figures 37 through 42 shows that at a given stress irtensity
crack growth rate is not influenced by variations in maximum stres; level and/
or specimen size. Scatter bands on the summary plot of Figure 43 show that at i
room temperature and R = 0, the three temper/thickness combinations exhibit

nearly equal growth rates. At elevated temperature and R = 0.5 there appears |
to be no thickness effect on the -T87 tests. However, a comparison between

the two tempers shows that for most of the data, cracks in the -T87 temper

grow at a rate about two times faster than those in the -T851 temper. This

difference in crack growth rates at elevated temperature was also observed in

the surface flaw tests.

All but one of the room temperature tests were conducted at a stress ratio, R,
of zero. All but one of the elevated temperature tests were conducted at

R =0.5. In order to determine temperature effects at a given stress ratio
(and likewise, stress ratio effects at a given temperature), one room tem-

perature tests wac conducted at R = 0.5 and one elevated temperature test was

22
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conducted at R = zero. Additionally, three specimens were tested under a
sustained load cyclic (suslic) loading profile. Effects of variations in
stress ratio, test temperature and loading profile are discussed below,

I1lustrations are shown in Figures 44 through 48.

The effect of varying the stress ratio on crack growth rate at a constant
test temperature is illustrated in Figures b4 and 45. Figure 44 shows
scatter bands of crack growth rates for room temperature tests at R = 0 for
the three temper/thickness combinations tested. For comparison, one specimen
(87-C12) was tested at room temperature and R = 0.5. Datum points for this
specimen are also shown in Figure 44. This figure shows that at room tem-
perature the crack growth rate at R = 0 is on the order of 2 to 4 times as
fast as the crack growth rate at R = 0.5 for the three temper/thickness com-
binations tested. Figure 45 shows the scatter band of crack growth rates
for elevated temperature tests on the -T851 temper tested at R = 0.5. For
comparison, one specimen (851-C12) was tested at elevated temperature and

R = 0. Datum points for this specimen are also shown in Figure 45. This
figure shows that at elevated temperature the crack growth rate at R = 0 is
on the order of 3 to 10 times as fa<t as the crack growth rate at R = 0.5

for the -T851 temper.

The effect of varying the test temperature on crack growth rates at a con-
stant stress ratio is illustrated in Figures 46 and 47. Figure 46 shows the
scatter band of crack growth rates for room temperature tests on the -T85]
temper at R = (. The specimen (851-C12) tested at elevated temperature and
R =10 is also plotted for comparison. Figure 46 shows that for the 2219-T851
alloy tested at R = 0, raising the test temperature from room temperature to

450K (350°F) has the following effect on the cyclic growth rates:

1) at low stress intensities, 20 MN/mB/2 (18 ksivin) - Kmax
33 "lN/mB/2 (30 ksiv/in), crack growth rates at 450K
(350°F) are about 2-3 times those at RT.
2) at intermediate stress intensities, 33 MN/m3/2 (30 ksivin)
3/2

< Kmax < 44 MN/m (40 ksiv/in), crack growth rates at 450K

(350°F) are up to twice the growth rates at RT.
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3) at high stress intensity, Kmax > Uk MN/mB/2 (40 ksivin),
there appears to be no temperature effect on crack growth

rates.

Figure 47 further illustrates the effect of test temperature on crack growth
rates. Scatter bands of crack growth rates for elevated temperature tests on
the -T87 temper tested at R = 0.5 are plotted in this figure. Datum points
from the -T87 specimen (B87-C12) tested at room temperature and R = 0.5 are
also plotted in this figure for comparison. Figure 47 shows that for the
2219-T87 alloy tested at R = 0.5, raising the test temperature from room tem-
perature to 450K {350°F) has the following effect on the cyclic crack growth

rates:

1) at low stress intensities, 25 I‘IN/m3/2 (23 ksivin) < K <33
MN/mB/2 (30 ksiv/in), growth rates at 450K (350°F) are about
} 1/2 to about 3 times those at RT.
. . . ., 3/2 -
2) at intermediate stress intensities, 33 MN/m (30 ksivin)
c K< b un/m3/2
ma x
are about the same as or as fast as 2 times those at RT.
3) at high stress intensity, Kmax > Lb MN/m3/2 (40 ksi”in),

there appears to be no temperature effect on growth rates.

The small effects of elevated temperature on crack growth rates reported here

have also been seen in other 2219 data (e.g , References 17 and 18).

Three specimens were subjected to suslic loading. These specimens, 851-C5 and
-C7, and 87-C7 were reported in Figures 38 and 40. After being fatigue cycled
in the normal manner with a sinusoidal loading profile at 1 Hz (60 cpm), each
specimen was fatique marked at a lower cyclic stress level in room temperature
air. Each specimen was then subjected to 30 sustained load (suslic) cycles.

This loading was conducted at a stress ratio of 0.5 ard the specimens were

held at the maximum load for 2 minutes during each cycle. Examination of crack

opening displacement (COD) records indicates that crack growth probably occurred

continuously during each hold time. After undergoing suslic loading, each
specimen was fatigue marked at a lower stress in room temperature air and the

original test was continued. Average crack growth rates were calculated for

24
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these tests and they are plotted as solid points in Figure 48. Base line
crack growth rate bands for the | Hz (6J cpm) sinusoidal ioading profile

are also reported in Figure 48. The limited amount of data shown here indi-
cates that the suslic crack growth rates are 10 to 15 times the rates of the
| Hz (60 cpm) data.

The room temperature SENT cyclic crack growth rate data from this program

are compared with room temperature 2219-T851 through-the-thickness cyclic
crack growth rate data generated by Grumman in the program in Reference 19.
The Grumman data were generated at stress ratios of +0, +0.05 and +0.1.

Figure 49 shows that the B'sing data compare very well with the data generated

by Grumman.

Comparison of the summary plots on Figures3land 43 shows that at a given K
value, a crack in a SENT specimen grows at a faster crack growth rate than
does a crack in a SF specimen. (Note the shift in the abscissa between Fig-
ures 31 and 43.) This difference was also seen in Reference 6 and is attrib-
uted to the different propagation directions, TL for the SENT tests and TS
for the SF tests.

An attempt was made to fit the equation of Forman, et al (Reference 16) to

the SENT crack growth rate data generated on this program. values used

K
were determined from the SENT static fracture test results. g?gures 50 and

51 show Forman's equation fitted to 2219-TBS! crack growth rate data gen-
erated at room temperature and 450K (350°F), respectively. Figure 50 shows

a very good fit for the 2219-T85! room temperature crack data generated at
R=0. In Figure 51, Forman's equation was fitted to the body of 2219-T85!
SENT crack growth data generated at 450K (350°F) and R = 0.5. An R value of
zero was substituted into the resulting equation and the locus of crack growth
rates for this condition is also plotted. Data from specimen 85i-C12, tested
at 450K (350°F) and R = 0 are also plotted on Figure 51. Both sets of data,
at R=0.5and R =0, fit Forman's equation very well. Figures 52 and 53 show
Forman's equation fitted to room temperature and 450K (350°F) 2219-T87 crack
growth data. The room temperature 2219-T87 data generated at R = 0 also show

a good fit to Forman's equation as shown in Figure 52. An R value of 0.5 was
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also substituted into the equation for the room temperature -T87 data and
it is plotted in Figure 52 along with data from specimen 87-C12 which was
tested at R = 0.5. The data from specimen 87-C12 match the fitted curve of
crack growth rates within a factor of two. The elevated temperature -T87

data matched the equation quite well as shown In Figure 53.
4.4 THERMAL PROFILE TESTS

Surface flaw and single edge notch tension specimens were subjected to a com-
bination of changing loads and temperatures. The basic spectrum utilized for
most tests is shown in Figure 1. Minor changes were made in this basic spec-
trum test for some of the tests. The results and discussions of all of the

thermal profile tests are presented below.
L.y Surface Flaw Specimens

All SF specimens were subjected to the basic spectrum shown in Figu&e 1. As
described in Section 3.3.4, loads were chosen so that the ratio E"B%'ﬁf =

KeT ys
Oys @ ET

Crack growth rate data from the 2219-T851 surface flaw tests are plotted in

was utilized on each specimen.

Figure 54 and listed in Table 17. Figure 54 shows the data presented in
terms of the crack growth rate, da/d Flight, vs. the maximum applied stress

intensity at the room temperature part of the flight, Klmax @ RT.

A predicted growth rate band is also shown in Figure 54. The prediction is
based upon a linear cumulative damage approach, util @ _ing the base line data
shown previously in Figure 31. Each "light contained 100 cycles at RT, 100
cycles at ET, a short period at zero load and cryogenic temperature and one
sustained load cycle at ET of aoproximately two minutes duration. In the pre-
diction, cyclic growth rates were taken at the appropriate K. values and the
sustained load growth rate was taken to be 10 times the elevated teperature
cyclic crack growth rate at the appropriate K value. The total relative damage
which occurred was about 1-3% due to the elevated temperature sustained loading;
about 10-25% due to the elevated temperature cyclic lcad; and the remainder

due to the room temperature cyclic load. It was assumed that no damage
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occurred during the cryogenic part of each flight. The growth rates were
added to produce the scatter band in Figure 54. It can be seen that the

experimental thermal profile crack growth rate data falls within this band.

Similar results were observed in the SF tests on the -T87 temper. Figure 55
Kimax & BT for both thicknesses (6.35 mm (0.250
in.) and 3.18 mm (0.125 in.)) of the -T37 temper. A scatter band of expected

shows a plot of da/dFlight vs.

crack growth rates was constructed from base line data in Figure 3! in the
same manner as was done from the -TB51 base line data. The -T87 crack growth
data in Figure 55 generally falls within this boundary. The -T87 crack growth

data are listed in Table 18.

Net section stresses for the -TB51 and -T87 specimens were on the order of 5§3%

to 97% of yield strength.
L.4.2 Single Edge Notch Tension Specimens

Crack growth rate data from the 2219-T851 single edge notch tension tests are
plotted in Figure 56 in terms of da/dFliak. vs. Koax & RT- A scatter band of
expected crack growth rates was constructed from base line da/dN rates found

in Figure 43 in the same manner as described in Section 4.4.1. This scatter

band is plotted in Figure 56 along with the data from the thermal profile tests.

Two of the three -T851 specimens were tested under the basic thermal profile
spectrum of Figure 1. The third specimen 851-C10, was subjected to thermal
profile flights which differed in that the 100 cycles at elevated temperature
on each flight were applied with a stress ratio of zero instead of 0.65.
Examirstion of Figure 56 shows that all three of the specimens demonstrated

some retardation in crack growth rates.

Specimen 851-C10 demonstrates retarded crack growth rates even though the
high temperature cycles were applied at a lower stress ratio than that for
which the scatter band was calculated. The highest amount of retardation
occurred in Specimen 851-C11. This specimen was wider than the other two
specimens (305 mm (12 in.) vs. 76 mm (3 in.)), and it was subjected to lower
net section stresses than the other two specimens. (o /oy5 = 0.29 to

net

0.3 vs. qnet/oys = 0.44 to 0.84 as shown in Table 19.
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Alter having been subjected to 73 thermal proriie flights, specimen 851-C11
was cycled at RT and constant amplitude at R = 0. The maximum stress level
used was the same as that applied during the RT portion of each thermal pro-
file flight. Crack growth rate, da/dN, data from this test are compared with
base line da/dN data in Figure 57. It can easily be seen that the room tem-
perature cyclic growth rates were retarded by the previous thermal profile
flights. This specimen was cycled under constant amplitude, constant tempera-
ture loading from a crack length of 80.8 mm (3.18 in.) to 95.8 mm (3.77 in.).
Retardation occurred over this entire distance (15 mm (0.59 in.)) althrough,
the amount of retardation decreased as the crack e:tended. The fact that
retardation should be apparent over such a long distance is somewhat sutpris-
ing especially since the estimated plastic zone size, 2r , produced during

the thermal profile test was on the order of 2.5 mm (0.10 in.). (This plastic

K »
zone size was calculated by the equation, ry = 5%-( —gﬁi )2 suggested ir.
ys

Reference 10.)

The crack growth behavior of the -T87 temper was quite similar to that of
the -T851 temper. The 6.35 mm (0.250 in.) and 3.18 mm (0.125 "n.} ™37
data are listed in Tables 20 and 21, respectively. Crack grow... <ut- for
both thicknesses are plotted in terms of da/dFlight vs. Kmax # RT in Figure
58. The scatter band for predicted crack growth rates was generated from
the base line da/dN data in Figure 43 as described above. This predicted
band is also plotted on Figure 58 along with the actual thermal profile test

datum points.

Three specimers were tested in each thickness for the -T87 temper. Two of

the 6.35 mm (0.250 in.) specimens (87-C10 and 87-C11) ana one of the 3.18

mm (0.125 in.) specimens (87-(23) were tested under the basic spectrum of
Figure 1. The third 6.35 mm (0.250 in.) specimen (B7-C9) was tested under

the basic spectrum, but the maximum temperature used during the elevated
temperature portion of the spectrum was 394K (250°F) rather than 450K (350°F).
One of the remaining 3.18 mm (0.125 in.) specimens (87-C21) was subjected

to a maximum temrerature of 422K (300°F) during the elevated temperature por-
tion of the spectrum. The third 3.18 mm (0.125 in.) specimen (87-C24) was
subjected to a modified spectrum in which there was no sustzined load at
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elevated temperature and the maximum stress at elevated temperature was

lowered 50 that cET/cRT = 0.5 oys -] ETIoys @ RT.

Figure 58 shows that all of the specimens tested exhibited at least Some
retardation in crack growth rates. There appears to be no thicknesi effect

on growth rates. However, as in the -T851 tests, there does appear to be a
specimen width and/or a net section stress effect. Specimens 87-C9, 87-C10

and 87-C21 were 76 mm (3 in.) wide and showed less retardation in their crack
growih rates than did specimens 87-C11, 87-C23 and 87-C24 which were 305 mm

(12 in.) wide. The 76 mm (3 in.) wide specimens were subjected to net section
stresses on the order of 423 to 80% of the yield stress and the 305 mm (12 in.)
wide specimens were subjected to net section stresses on the order of 272 to
31% of yield. Llowering the test temperature at the elevated temperature
portion of the spectrum from 450K (350°F) to 394K (250°F) did not appear to
have any substantial impact on the crack growth rates. Furthermore, removing
the sustained portion of the spectrum at elevated temperature and lowering

the maximum stress at elevated temperature did not appear to remove retarda-
tion effects. Lowering the stress level at elevated temperature would also
slightly lower the crack growth rate, da/dFlight, however, not to the extent that
was experienced by specimen 87-C24.

Ir. order to further investigate the observations of retardation, additional
testing was performed on several -T87 SENT specimens. Specimen 87-Cl1 was
cycled at RT under constant amplitude at R = 0 after having been subjected to
58 thermal profile flights. The maximum stress level used in the RT test

~as the same as that applied during the RT portion of each thermal profile
flight. The resultant crack growth data are shown on a da/dN vs. Kmax plot
aiong with base line data in Figure 59. These crack growth data (shown as
square points on the plot) demonstrate behavior similar to that shown by
specimen 851-C11 discussed earlier. Retardation in the cyclic crack growth
rate was very apparzant at the beginning of the test, however, as the crack
grew from a length of 82.6 mm (3.25 in.) to a length of 97.8 mm (3.85 in.)
the growth rates eventvally matched those of the base line tests. A further
illustration of this retardation in crack growth rates is shown in Figure 60.
This figure shows the crack length of specimen 87-C11 plotted as a function
of numbers of cycles. Data from base line specimen 87-C3 are also shown for

comparison.
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Figure 59 also contains crack growth rate dai points from specimen 87-C22.
This specimen was sustain loaded at 450K (350°F) to a stress level comparable
to that used for many of the thermal profile tests. The specimen was then
cycled at RT and constant amplitude with R = 0. The maximum stress level for

T _ %ys @ RY
o s B ET’
file spectrum tests. This specimen (87-512) a¥20 exhibited subsequent re-

the RT cyclic test was chosen so that, as in the thermal pro-
tardation in crack growth rates. Test parameters for specimen 87-C22 are
tabulated in Table 22.

For most of the thermal! profile tests, the elevated temperature portion of
each flight caused retardation of crack growth during the room te ~erature
portion of the subsequent flights, (i.e., crack growth rates indicated that
most of the cyclic crack growth occurrea at elevated temperature during each
flight). As a further check on this observation, one specimen (87-C23) was
cycled at 450K (350°F) and constant ampli*ide with R = 0.5, after having
been subjected to 46 thermal profile fli,nts. The maximum stress level used
was the same as that applied during the ET portion of each thermal profile
flight. The data are shown on a2 da/dN vs. Kmax glot along with ET bzse line
data in Figure 61. These data fall within the scatter tand generated from

the base line tests.
bh.4.3 Metallurgical Analysis

The fracture faces of the base line cyclic and thermal profile specimens were
examined after testing and the following observations were noted. Base line
SF specimens generally exhibited flatter fracture faces than did the SENT
specimen over the area where cyclic growth occurred. Room temperature and
elevated temperature SF specimens were similar in appearance although the
fracture faces of the ET specimens were slizht'y c:lie- in appearance. SENT

specimens tested at RT and ET also exhibited differences in fracture face

brightness with most of the ET SENT specimen fracture faces being somewhat darker

than the RT SENT specimen fracture faces. This darkness in the ET tests was
probably due to rubbing and fretting on the fr=azture face. It was also

noted that this apparent fretting on the RT SENT FRACTURE faces became
visible at K levels around 27.5 MN/m3/2 (25 ksi»in) and above. A very subtle

difference between RT and ET SENT fracture face texture was also noted. SENT
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specimens tested at ET exhibited more facets in their fracture faces than

did those tested at RT.

Examination of the fracture faces of thermal profile specimens showed that
the SF specimens exhibited flatter fracture faces than the SENT specimens.
Additionally the SENT specimen fracture faces were not as bright as those

of the SF specimens.

Two of the thermal profile specimens were also subjected to a closer examina-
tion under an electron microscope. One SENT specimen {87-C11}) and one SF
specimen (87-SF-C6) were examined. Figures 62 and 63 show the regions from
where replicas were taken on thse two specimens to produce the fractographs

shown in the following figures.

Figure 64 shows an electron fractograph from the precrack region of SENT

specimen 87-C11. This region displayed typical fatigue striations.

Figures 65, 66 and 67 show electron fractographs from the thermal profile
region of specimen 87-Cli. In this region 'tire tracks,"” typica! in fatigue
fractures, were frequently observed (Figure 65). Fretting was suspected in
this area of having rubbed out most of the fatigue striations. However, a
couple of very small areas containing striations were noted (Figure 66).

Isolated areas of elongsted dimples weie also observed (Figure 67).

As described earlier, specimen 87-C11 was subjected to constant amplitude
cycles at RT after having been subjected to 58 thermal profile flights. It
was noted earlier in Section 4.4.2 that the constant amplitude growth rates
demonstrated crack growth delay due to the previous thermal profile flights.
Figures 68, 69 and 70 are from the constant temperature, constant amplitude
region where crack growth delay was apparent. Close to the interface between
the thermal profil. and constant amplitude regions fatique striations were
observed (Figure 68). Farther out from this interface (~0.64 mm (0.025 in.)
from Figure 68) striations were still observed, but the striation spacing
was much smaller (Figure 69). Still farther from the interface (~0.%4% rm
(0.037 in.) from Figure 68) what might be extremely small striations were
observed. Much of the rest of the constant temperature, constant amplitude

region of specimen 87-Cl1 was covered with flat, featureless areas where no
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striations were seen (Figure 70). This topography is characteristi: of very
low AK fatigue cycling in aluminum alloys where striation spacing is too small
to be resolved. Figure 7! is a fractograph typical of the area farther along -
the constant temperature, constant amplitude region of specimen 87-C11, where

crack growth retardation was diminishing.

The preceeding description of "normally' space¢ striations at the beginning
of the post thermal profile delay region, followed at some small distance by
finer and finer striations, and finally by larger and larger striations is
typical of fractographic observations of delay regions following peakh over-
loads in fatigue spectra observed by others on through-the-thickness tests
(e.g., References 20 and 21). While there was no pecak overload in this case
the last 100 cyclec at 450K (350°F) prior to RT cycling has had a delay effect
similar to that of a peak overload. It should be noted that the ''normal"
flaw growth rates at the beginning of the delay region could not be detected

by actual surface measurements cr by COD measurements during the test.

Figures 72 and 73 show {ractographs from the therma! profile region of the
surface flaw specimen, 87-SF-C6. (See Figure 63 for location.) Examination
of the replica from this specimen revealed three principal differences between

it and the replica from the thermal profile region of the SENT specimen, 87-Cl11.

1. Fatigue striations were visible throughout much of the thermal
region on the surface flaw specimen (Figure 72). In the SENT

specimen visible fatigue striations were extremely rare,

2. Areas of urinterrupted striaticns where more than 100 striations
could be counted were observea. Separalting tnese groups
was a large growth increment (Figure 72} which probably occurred
during the single load application and hold where temperature
increased from V44K (-200°F) to 450K (350°F). (See spectrum in
Figure 1). The fractograph in Figure 72 indicates that the growth
increment for this single load applicatiorn and hoid was about 10
times as large as for each cycle of the other load applications
applied at ! Hz (60 cpm). 1In contrast, crack grow*h in the SENT
specimen during the RT portion of the thermal spectrum was

apparently very minimal (based on macroscopic measurement only).
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There was an abundance of an acicular material in the thermal
profile region of the surface flaw specimen (Figure 73).
These particles were not observed in the thermal profile

region of the SENT specimen.
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5.0 CONCLUSIONS

The following conclusions are based on test results of surface flawed and
single edge notch tension tests on 2219 aluminum alloy in TBS) and T87

tempers.

Static Fracture Behavior

1. All surface flaw specimens tested exhibited failure stresses

at or above the yield strengths of the materials.

2. For single edge notch tension specimens, the stress intensity

values at failure, Kcr and K., remain constart as the tempera-

CN
ture is increased from 144K (-200°F) to room temperature. As
the temperature is increased furthcr up to 450K (350°F), K

and K

cr

N values increase substantially.

Constant Temperature, Constant Amplitude Cyclic Flaw Growth Behavior

1. At room temperature, 2219-TB51 and 2219-T87 aluminum alloys
exhibit the same cyclic crack growth rates at a given maximum
cyclic stress intensity value for both surface flaw and single

edge notch tension specimens.

2. At 450K (350°F), 2219-T851 aluminum alloy has a slower cyclic

crack growth rate at a given maximum cyclic stress intensity

P 55

value than does 2219-T87 aluminum alloy for both surface flaw

and single edge notch tension specimens.

3. Surface flaw 2219-T851 and -TB7 specimens (tested in the TS
propagation direction) have slower cyclic crack growth rates
than single edge notch tension specimens (tested in TL pro-

pagation direction).

L. Cyclic crack growth rates of 2219-T8S1 and -T87 surface flaw
and single edge notch specimens, tested under the stresses and
with the configurations used in this program are not affected

by the maximum cyclic stress level. (i.e., They are K dependent.)

5. Cyclic crack growth rates of single edge notch tension specimens
are not affected by specimen size in the configurations tested

in this program.
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6. for all three temper/thickness combinations tested in the SENT
configurations at room temperature, the crack growth rate at

R=0 is about 2 to 4 times the growth rate at R = 0.5,

7. For the -T85)1 temper, tested in the SENT configquration at
Lsok (350°F), the crack growth rate at R = 0 is on the order
of 3 to 10 times the crack growth rate at R = 0.5.

8. For the -T851 temper tested in the SENT configuration at R = 0,
varying the temperature from RT to 450K (350°F) has the follow-

ing effect on cyclic crack growth rates.

K EFFECT ON

max GROWTH RATES
20 HN/mBI? (18 ksi/in) to 33 MN/m372 (30 ksi/in) 2 to 3 times RT rates
33 MN/mBI2 (30 ksivin) to 4k nulm3/2 (40 ksiYin) same as to 2 times RT rates
Greater than b4 HN/m3/2 (40 ksivin) same as RT rates

9. For the ~T87 temper tested in the SENT configuration at R = 0.5,
varying the temperature from RT to 450K (350°F) has the following

effect on cyclic crack growth rates.

" EFFECT ON

max GROWTH RATES
25 M/m’ 2 (23 ksiv/in) to 33 MN/m3’2 (30 ksivin) 1-1/2 to 3 times RT rates
33 MN/m3f2 (30 ksivin) to 4b f‘lN/my2 (40 ksi/in) same as to 2 times RT rates
Greater than 44 MN/mB/zi(ho ksiin) same as RT rates

10. For both the -TBS1 and -T87 tempers tested at 450K (350°F) and
R = 0.5, holding the maximum stress for 2 minutes on each
cycle produces growth rates on the order of 10 to 15 times

those produced by 1.0 Hz (60 cpm) sinusoida! loading.

Thermal Profile Flaw Growih Behavior

1. The flaw growth behavior of surface flaw specimens can be successfully

predicted by a cumulative damage approach.

2. The flaw growth rates of single edge notch tension specimens
were usually much slower than those which would be predicted

by 8 cumulative damage approach. Crack growth retardation was
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most pronounced for ET levels of 450K (350°F) but was still
apparent for ET levels of 394K (250°F).

The flaw growth behavior of single edge notch tension specimens
appears to be affected by specimen size and/or net section stress,
with wider specimens subjected to net sertion stresses on the
order of 27% to 31% of ays displaying more retardation in flaw
growth behavior than smaller specimens subjected to net section
stresses on the order of 42% to B4% of st Note that these

test variables did not affect constant temperature, constant

amplitude cyclic flaw growth rates.
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AMPLITUDE REGION , RIGHT AFTER THE THERMAL PROFILE REGION OF
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TABLE 3: CHEMICAL COMPOSITION OF ALUMINUM ALLO 'S
(% BY WEIGHT) AS DETERMINED BY BOEING

AEROSPACE COMPANY TESTS
2219-1851 R 2219-187 Bb.
ELEMENT 6.35 mm (0.25 INCH)| 6.35 mm (0.25 INCH)

ALCOA HEAT 215061

ALCOA HEAT 215091

==
COPPER 6.40 6.33
MANGANESE 0.30 0.30
VANADIUM 0.08 0.06
SILICON 0.10 0.12
IRON 2. 21 0.19
MAGNESIUM 0.016 0.018
ZINC 0.03 0.03
TITANIUM 0.04 0.04
ZIRCONIUM 0.18 0.16
ALUMINUM BALANCE BALANCE

CLEANLINESS RATING OF BOTH HEATS — CLASSIFICATION

"A" PER ASTM E-45-63, AS DETERMINED BY BC:IING
AEROSPACE COMPANY TESTS.
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TABLE & MECHANICAL PROPERTIES OF 6.35 mm (0.25 Inch)
2219-1851 ALWUMINUM ALLOY

a -z - w .:E O 3
2 C82.08 e = |ze |z 1z = |9%
2 lauzlz32|5 _|Z3|es|etqoizze |2 323
7 |Wwy VU OWw 5\: o o 25...'0 =RV Z° - o< 2
> [22Z|E53|8 < |5 | B |S8E|5R 2|22 | 2 |23
w <§;°zzu¥&{wegzqu°.'g&‘ o o2
2 |¥T E|ZoZ|>= o 2|19 2|0<_]ozd 2< | & -
b g o~ aR a wv Z x
2| " || |E EF[EE[ELT]ET |2 | o5 [34°
a O ~ par’ b= * « |O
6.34 144 | 502 | 388 |
b1 0.2491 L 200 |29 lsen |t |V |35 - |-
o 636 ] | 502 |38 [ 17 |1 | 34 74.5
0.2502) 72.8 | (56.3) 0.286 | (10.8)
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_ T ] n .
(0. 2492) 73.0 |55.0 | 2 o.297 [(8)
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: i
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1333
Avg. 65.7) | 150.4) 17 12 34
6.30 456 | 336
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BV -L-N0 2490 L 3500 |a7.5 |00 |27 |17 |8 | - -
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Avg. (47 4) | (40,4) 25 U117 58
L 1632 325 | 270 ,
851 Tﬂ(o.me) T @1 139 n 29 15 56 - -
6.33 325 | 273 64.8
y T -
(0. 2492) .2 l3s.el? [ [*® b2l
325 | 271
Avg. vV ol feen ¥ |8 |57
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TABLE 5: MECHANICAL PROPERTIES CF 6.35 mm (0.25 Inch)
2219-T87 ALUMINUM ALLOY
o I (Ve
ac 4 w - o |3
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3 3&6 e E wolze .:-:5.:60.5 zZo | = l0Z g
Z o WS w Cl= ¥X]|la X € FldacZ|0O0 - | >2
z |32Z|Z03|s T |2~ | En |0RE[G3 2|2 |2 [aae
w <U~’°Zz w E\E "’{ZZO Z2Z%lud o) o
2 |9 §|Zog|l= s Zlg Zlos o2 | 2 |97 -
O El= 3 - ° § - 3 o~ a8 o v Z . w
W) = <« (7 2 lwslaRr | w ~ Dy, ~
w o o | ws — > o g_) ou.l
b O dr]r .51 ! >
U1, 2460 (-200) [(76.1) | (61.7)
2 6.28 L 525 425 12 n 31 0.290 L1 7
0. 2471) (761 | :161.6) (11.3)
525 | 425
Avg. 7611 | 161, 6 13 11 29
6.30 536 | 430
i g N 1 i - -
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TABLE 6: MECHANICAL PROPERTIES OF 3.18 mm (0,125 INCH)

LY.

2219-T87 ALUMINUM ALLOY
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