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This report was prepared by Dr. D. P. Hajela, Research Associate,
Department of Geodetic Science, The Ohio State University, under NASA
Grant NGR 36-008-161, The Ohio State University Research Foundation Pro-
ject No. 3210. The contract covering this research is administered through
the Goddard Space Flight Center, Greenbelt, Maryland, Mr. James Marsh,
Technical Officer.
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ABSTRACT

This study investigates the direct recovery of mean gravity anomalies
from summed range rate (R„) observations, the signal path being ground station
to a geosynchronous relay satellite to a close satellite significantly perturbed by
the short wave features of the earth's gravitational field. To ensure realistic
observations, these were simulated with the nominal orbital elements for the
relay satellite corresponding to ATS--O, and for two different close satellites
one at about 250 km height, and the other at about 900 km height corresponding
to the nominal values for Geos-C. The earth's gravitational field was repre-
sented by a reference set of potential coefficients up to degree and order 12,
considered as known values, and by residual gravity anomalies obtained by sub-
tracting the anomalies, implied by the potential coefficients, from their ter-
restrial estimates. The Geodyn orbit generation and parameter estimation pro-
gram was used after modifying it to accept gravity anomalies as parameters.
The standard deviation (std. devn.) of A, observations was assumed as 0.08
cm/sec. based on an integration interval of 10 :seconds.

The recovery of mean gravity anomalies over 10 0 and 5° equal area
blocks from As observations to close satellites at heights of about 900 and 250 km
respectively were classified as recovery from strong signal. The recovery of
5° and 20.5 equal area mean anomalies using the same close satellites were
classified as recovery from weak signal. The anomaly recovery was considered
over local or regional areas. The satellite state vectors could not be recovered
from short individual arcs of 4 to 20 minutes duration, and were held fixed in
this study to a-priori known values.

It was found that gravity anomalies could be recovered from strong sig-
nal without using any a-priori terrestrial information, i.e. considering their
initial values as zero and also assigning them a zero weight matrix. However,
while recovering them from weak signal, it was necessary to use the a-priori
estimate of the std. devn. of the anomalies to form their a-priori diagonal
weight matrix. Without this a-priori information, the solutions from weak sig-
nal were unstable and not meaningful..

The optimum density of observations was achieved by considering
ascending and descending satellite arcs with spacing between adjacent arcs
roughly half the sire of anomaly block being recovered. If the observations
along an arc were more closely spaced than the spacing between adjacent arcs,
the std. devn. of the recovered anomalies was required to be multiplied by a
scaling factor.

The density of observations should be nearly uniform over the area.
if the orbital inclination of the close satellite is about 4e, the area of investi-
gation needs to be located in the form of a rhombus with its diagonals in the
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east-west and the north-south directions. A latitudinal extent up to 40 0 is advis-
able, and the area should lie either in the mid-latitudes or the equatorial region.
The observations should not extend beyond the limits of the area of investigation,
and one anomaly block all around the area should be included in the estimation
process. These latter anomalies not covered by observations cannot be recovered
but these ensure the optimum recovery of the gravity anomalies inside the area
of investigation. For small mean anomaly blocks like 2°. 5, anomalies in two
blocks all around the area need to bra included in the estimation process. 	 {

The criteria for examining the 'goodness' of anomaly recovery have been
described. The std. devn. of recovered anomalies from strong signal was found
to be about 2 mgals for 10° and about 6 mgals for a equal area mean anomalies.
These results have been compared with those obtained by Schwarz in 1970.
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1. INTRODUC T10N

The concept of a geostationary satellite tracking a close satellite, signifi-
cantly perturbed by the short wave features of the earth's gravitational field, was

discussed at the Williamstown concerence (Kaula, 1969). The measurement of
the range rate of the close satellite from the geostationary satellite, relayed to a
ground tracking station, would then permit the evaluation of those short wave
features of the earth's gravitational field, whose effect is discernible at the alti-
tude of the close satellite. Schwarz (1970) considered the short wave features of

f	 the earth's gravitational field represented by a surface density layer residual to

3	
pherical harmonic potential coefficients field up to degree 12. He studied the

size of blocks 20 x 20 and 50 x  5° on the earth's surface, over which the density
of surface layer was assumed constant, which could be resolved in local areas
from satellite to satellite range rate measurements. Kaula (1972) considered
these measurements for determining the local variations in the earth's gravita-
tional field in terms of point masses over various sized blocks, 2°.5x2°.5,
5'x e and 10° x 10', residual to spherical harmonic potential coefficients field
up to degree 12.

Several global solutions for the short wave features of the earth's gravi-
tational field have also been made using other types of satellite data. Koch and 	 -
Morrison (1970) determined 48 surface density values in 30°x 30° blocks, resid-
ual to potential coefficients field up to degree 4 using optical satellite observations.
Koch and Witte (1971) extended this determination to 104, 20°x 20° surface density
elements, using range rate measurements from ground stations to satellites.
Arnold (1972) describes the solution of 52 gravity anomalies in 20° blocks in
selected areas using optical satellite observations. Obenson (1970) proposed a
method for the recovery of 184 gravity anomalies in 15° blocks from opttcal satel-
lite data. Rapp (1971a) described another approach for the recovery of gravity
anomalies from such data; and elaborated on the procedures (1971c) for their
determination, and the combination with existing gravity material.

The Geodyn program (Martin, February 1972b) performs numerical inte-
gration of the equations of motion of the satellites; and simultaneously evaluates
the variational partials by the numerical integration of the variational equations.
This program was modified by Karki (1973) to accept gravity anomalies as un-
known parameters. Rapp (1973b) describes the recovery of 184 15° equal area
gravity anomalies, utilizing the modified Geodyn program, from optical satellite
observations, and in combination with terrestrial gravity observations.

Vonbun (1971), Kahn et al (1972) have described the Geos-C/ATS-F satel-
lite to satellite tracking and gravimetry experiment. With the launch of ATS-6
in May, 1974 and the proposed launch of Geos-C in March, 1975, it was timely to
study the recovery of gravity anomalies from satellite to satellite tracking data.
Similar data may also be available during Apollo-Soyuz-Link flight in July, 1975.

1



The Geodyn program was enlarged (Martin, February, 1972a) to accept
satellite to satellite range and range rate measurements. This revised version
(November, 1972) of Geodyn program was accordingly modified by Hajela. (1974)
to accept gravity anomalies as unknown parameters, generally following Karki
(1973). The purpose of the present study is to investigate the recovery of mean
gravity anomalies over 2. 5, 50 and le equal area blocks in regional or local
areas, from 60° by 60° down to 20° by 200 or less. To explore the capability of
satellite to satellite range rate, and range, observations in recov w: ring gravity
anomalies, utilizing close satellites at height of 900 km, or 250 km, combination
solutions were not attempted. No use was thn :^ made of a-priori information
about gravity anomalies from terrestrial observations, except in Sec. 5.2 and
5.3, where the value of a -priori variance of anomalies in 2°. 5 and a blocks
was utilized to form their weight matrix. The present study otherwise follows
the approach outlined by Rapp ( 1971a, 1971c).

1.1	 Satellite to Satellite Tracking

This term will be used in this study to indicate a geostationary satellite
of the ATS-6 type, generally referred to as the relay satellite, tracking a satel-
lite close to earth. The close satellite would either be the Geos -C type satellite
at a height of about 906 km, or a lower drag- -free type satellite ( Lange, DeBra,
Kaula, 1969) or any other satellite, e.g. Apollo- Soyu z- Link flight, at a height
of about 250 km. The case of one close satellite tracking another close satellite
in the same nominal orbit (Comfort, 1973; Schwarz, 1970) will not be considered
in this study.

The cartesian position and velocity coordinates of the relay satellite used
in this study, were kindly supplied by Mr. J.G. Marsh of NASA, and were as
follows:

X= 13,848. 503... I=
YT -39,803 . 422 ... Iran
Z =	 380.053... km

X = 2.905... km/sec
Y -1.006... km/sec
Z _ 7.92'8... km/sec,

(1.1)

at time 20 Sep. 1969 23 hour 55 inin. 0 sec. This however, gave a nominal geo-
stationary longitude of 63° . 2 W. The coordinates of the relay satellite in equation
(1.1) were then assumed to refer to time 21 Sep. 1969 01 flour 33 min. 36 . 3 sec.
which gave a nominal geostationar y• longitude of 9e. 95 W. , which was close to the
planned value of 9e W. for ATS- -6. The inertial coordinate system used in this
study was .assumed to be the true of date coordinate system at 690921 . 0 (YYMMDD),
with the Z axis defined by the instantaneous rotation axis of the earth, X axis by
the true equinox of date and Y axis forming a right handed orthogonal system.

The velocity coordinates in the same directions were defined by Z, X, Y. The
inertial position and velocity coordinates of the relay satellite were then defined
to be in this sytem, and expressed by equation (1.1) at the time 690921 (YYMMDD)
01 hour 33 min. 36.3 sec. The coordinates of the close satellite were then also

referred to this initial epoch (sec' Sec. 2.3.1).

2
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The nominal value of the Keplerian elements for the Geos-C type of satel-
lite was taken from Kahn et a1 (1972) as:

a= 7214 km

	

e= 0.006	 (1.2)
i = 115°

The nominal value of the Keplerian elements of the close satellite at height of
about 250 km was taken as:

a= 6626 km

	

e = 0.0005	 (1.3)
i = 115°

The inclination of the 250km high satellite was kept the same as that of the Geos-Cu	 type satellite, so that the pattern of satellite arcs would have the same geometry
over the area of investigation. The actual orbital parameters of the close satel-

'	 lites were optimized, as described in Sec. 2.3.1, so that the subsatellite points,
in subsequent passes of the close satellite, cover the area of investigation in an
optimum manner. The optimized values of the Keplerian elements for the two
satellites will be given in equations (2.54) and (2. 56).

The satellite to satellite observations considered were the range from the
ground tracking station to the relay satellite, plus the range from the relay satel-
lite to the close satellite. This will be referred to as the summed range. The
summed range rate would be the time derivative of the summed range, i. e. the
time rate change of the range from the ground station to the relay satellite to the
close satellite. The anticipated standard deviation (NASA, 1974, p. 4-65) of the
summed range rate observations in the proposed Geos-C/ATS-6 tracking experi-
ment is . 07 cm/sec. with an integration interval of 10 seconds. This is expected
to improve to .04 cm/sec, and .03 cm/sec. , if the integration interval for deter-
minim; summed range rate is 30 seconds and 1 minute respectively. As the time
interval of observations in most of the investigations in the present study was
kept as 10 seconds, a slightly conservative estimate of . 08 cm/sec. was used for
the standard deviation of the summed range rate observations not only for the
close satellite at height of 900 km, but also for the close satellite at height of
250 knl.

1.2	 Gravity Anomalies

Mean gravity anomalies were considered in this study over 10 0 equal area
blocks, according to the generalized division, proposed by Rapp (1971b). Fur-
ther subdivision into 5° equal area blocks was according to Hajela (1973). These,
and the further subdivision into 20 . 5 equal area blocks, will be described in
Sec. 3.1. The limits of all blocks were in integer number of degrees, to enable
the determination of mean gravity anuirnalies over large size blocks from the
available free air gravity anomalies in 1°x 10 equiangular blocks. This led to
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the 20 .5 blocks being considerably unequal in area, but the word 'equal area' was
retained to differentiate it from equiangular blocks.

The initial values for the free air mean gravity anomalies over 10 0 equal
area blocks were taken from Hajela (1973). The gravity formula and the constants
used for the reference ellipsoid will be given in Sec. 3.2, equations (3.7) and
(3.8). The gravity anomalies actually used, however, referred to a set of
spherical harmonic potential coefficients up to degree and order 12, i. e. from
the free air terrestrial gravity anomalies, the gravity anomaly implied by the
set of potential coefficients, was subtracted out, as described in Sec. 3.2. The
resulting value will be referred to as the residual gravity anomalies.

The set of potential coefficients used as a reference to describe the earth's
gravitational field were those obtained by least squares collocation by Rapp
(1973a). As their value was considered to be known and held fixed, the anomaly
implied by these potential coefficients was also a fixed constant value. After
the residual anomaly is recovered from the adjustment procedure described in
Chapter 2, the anomaly implied by the potential coefficients may be added to it,
to get the recovered gravity anomaly referred to the specified gravity formula.
We thus concern ourselves in this study with the recovery of residual anomalies.
These will, in general, be referred to as anomalies, unless it is necessary to
specifically distinguish between terrestrial anomalies, anomalies implied by the
potential coefficients, and residual anomalies. The residual anomalies recovered
from the adjustment scheme would be referred to as the 'rc:overed anomalies';
and the residual anomalies used to simulate satellite to satellite observations
would be referred to as the 'expected anonialies'. The difference of recovered
anomaly minus the expected anomaly would be referred to as the 'anomaly dis-
crepancy' and would be used as one of the measures to examine the recovery
model.

The formation of the mean residual anomalies over 2°. 5, a and 10 0 equal
area blocks will be described in Chapter 3.

1.3	 Brief Description of Study

The investigations in this study have been grouped under four main prob-
lems. These are firstly, the recovery of 10 0 equal area mean anomalies from
close satellite at height of about 900 km, and the recovery of 5 0 equal area mean
anomalies from close satellite at height of about 250 km. These two problems
will be discussed in Chapter 4. As the effect of anomalies over 10 0 blocks would
be felt more strongly on the summed range rate, and range, observations at the
height of close satellite of 900 krn, as compared to the effect of anomalies over

blocks; and similarly, the 5° anomalies would be more discernible at the
height of close satellite of 250 km as compared to 2 0 . 5 anomalies, the discussion
in Chapter 4 is categorized as the recovery of gravity anomalies from strong
signal. This also enables us to test various considerations, which may then be
applied with greater confidence to the recovery of gravity anomalies from weak
signal. The latter category comprises of the investigations for the recovery
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of 5° equal area mean anomalies from close satellite at height of 900 km, and
the recovery of 20. 5 equal area mean anomalies from close satellite at height
of 250 km; and these have been grouped in Chapter 5.

As already mentioned, we will consider in this study only the satellite to
satellite tracking observations. Preliminary investigations showed that summed
range observations were not very sensitive for the recovery of gravity anoma' ies.
This has been discussed in Sec. 4.1.5. In all subsequent investigations, only the
summed range rate observations were utilized. The gravity anomalies were the
only unknowns considered. The only are parameters considered were the constants
of integration, i. e. the position and velocity coordinates at the start of integrating
the orbits, which were eliminated from the normals, as the observations in that
are were processed, according to Sec. 2.2.1. A satellite are consisted of a
single pass of the close satellite, as the trajectory of the subsatellite point of the
close satellite moved over the area of investigation from one edge to the other.
The word 'satellite arc', or 'arc', has been used to indicate both the trajectory
of the subsatellite points, as well as the summed range rate observations along
that arc, and the usage is clear according to the context. As the duration of
individual satellite arcs was short, from 4 to 20 minutes depending upon the area
of investigation, the are parameters were not recovered in this study, and were
held fixed, as discussed in Sec. 2.2.1.

The geodetic coordinates of the ground tracking station were taken as:

Latitude	 35° - 12' - 7': 28 N.,
Longitude 277° -- 07' - 41 `. 16 E. ,	 (1.4)
Height	 850 meters.

The ground tracking station was intended to be Rosman, North Carolina, but as
E	 the reference ellipsoid (equation 3.7) used in this study was different from the
i	 reference ellipsoid on which the coordinates in equation (1.4) were given, these

coordinates now refer to a hypothetical station in its vicinity.

We begin by discussing in Chapter 2 the mathematical model and &r^ pro-
cedure of recovery. The gravity anomalies for data simulation will be described
in Chapter 3. The main investigations of this study will be reported in Chapters
4 and 5. Discussion about the use of real data, a summary of main results, and
suggestions for further study will be presented in Chapter 6. The results ob-
tained by Schwarz (1970) will also be compared with the results of this study at
the end of Sec. 6.3.

The standard deviation of range rate observations of . 05 mm/sec, assumed
by Schwarz was about 16 times more optimistic than what is likely to be achieved
in currently proposed satellite to satellite tracking experiments like ATS-6/Geos-C
and Apollo/Soyuz flight. The results of the present study are more realistic in
terms of the precision of observations and the height of close satellites. We have
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now also the advantage of better orbit generation and parameter estimation
computer programs, including gravity anomalies as parameters. The main con-
tribution of this study, however, lies in the systematic investigation of the re-
covery of gravity anomalies in local and regional areas, and in establishing the
optimum design. of observations and the optimum mathematical model for the re-
covery.

a

A
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2. MATHEMATICAL MODEL AND PROCEDURE OF RECOVERY

We will consider the observations during this study to be only the summed
range rate, or the summed range. The unknowns to be recovered by the usual
least squares procedure would be the residual gravity anomalies and the starting

coord inates of the relay and close satellite at the epoch of starting the integration
of the orbits of these satellites. We later find that the size-ting coordinates could
not be recovered satisfactorily because of using observations over very short
periods of satellite arcs from 4 to 20 minutes, and the starting coordinates were
thus considered in this study to be well determined a-priori say, with other track-
ing data, and these values were then held 'fixed' in the estimation process by

	
c

assigning them a very low variance. This is described in more detail later in
Sec. 2.3.3. (Also see Sec. 6.1).

The initial or 'approximate' value of the residual gravity anomalies were
considered to be zero. The computed value of the summed range rate or summed
range was then obtained with respect to the position of the relay and close satel-
lites obtained by integrating their orbits in the gravity field described only by
the reference set of potential coefficients with the residual anomalies as zero.
This misclosures between the 'observed' values (Sec. 2.3.2) and the computed
values of the summed range rate or summed range, along with the mat; • ia of
partial derivatives of these observations with respect to the unknowns, were then
used to recover the correction to the 'approximate' value of the residual anomalies,
which was also the "solution vector' as the approximate value of res (dual anom-
alies were zero. Following the notation of Uotila (1967), the solution vector X
is obtained by:

X= -N-'U= -(A`PA)-'A`PL,	 (2.1)

where A is the matrix of partial derivatives of the observations with respect to
the unImowns, P is the weight matrix of observations, L is the vector of mis-
closures, N is the normals matrix and U is the 'constant' vector of tha normal
equations:

NX+U = U
	

(2.2)

Though the adjustment may essentially be described by equation (2. 1), the
actFaal scheme used allowed the possibility of treating the unknown parameters
also as observations, and constraining their adjusted values to fulfill certain
coalitions. T:ie actual scheme also allovved the elimination of axe parameters
after proces31ng observations in each arc, so that the unknowns actually solved
for were the residual gravity anomalies. This scheme is described more fully

in Sec. 2.2.1.
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2.1	 Computation of the Misclosure Vector and the Partial Derivatives Matrix

2.1.1 The Mis closure Vector

the treatment o hi Goad and Martin 1872 the geometry forFollowing h reatm nt f Chin, G	 Ni.	 (	 ),	 g	 y	 ^
obtaining the summed range or summed range rate is shown in Figure 2. 1, where
Ri , Ra and Rs are the geocentric radius vectors to the relay and close satellites
and the ground tracking station respectively at a specified time. Denoting the re-
lay and close satellites by subscripts 1 and 2, and the upward and downward range
by the subscripts u and d, we may represent the 4 ranges, i.e., from the ground
tracking station to the relay satellite, from the relay satellite to the close satel-
lite, and the 2 ranges on the return path to the ground tracking station, by Rau ,
Red, R2,, Rld respectively. Then, representing the summed range from the
ground tracking station to the relay satellite and then to the close satellite as Re? 	

3

we have:
E	 ^

Re	 (Riu+ Had + Re   + Rld )	 (2.3)

The ranges on the right hand side of equation (2.3) may be expressed in
terms of the geocentric radius vectors RI , Re , R., but we have to specify the
times at which these radius vectors are to be so expressed. if we denote the
time at which the signal is received back at the ground tracking station by t, and
the transit time along the 4 ranges by At with appropriate subscripts, we have:

Rte	 R1 (t- At ld }- Iis(t)^	 (2.4)

R2 U -- R2( t - Atia- 6tau) - Ra (t-Atid )^	 (2.5)

Raa= RI (t -AtI - Ate  - Ataa } — R2 (t-Ate_ A bu} l	 (2.6)
Rau = ^Rs (t Aim-Attu - Afiaa-At3u)-R1(t- Ate-At2 „-Ataa}^	 (2.7) i

`+,•'e have assumed in equations (2.4) to (2.7) that there are no transponder
delays at the 2 satellites. A comparatively large transponder delay of 4/tsec.
would affect the summed range of about 78, 000 km by only I cm; but in practice
the actual transponder delays of the satellites could also be taken into account.

The radius vectors at the required times in equations (2.4) to (2. 7) can
be computed knowing the inertial coordinates of the satellites and the ground
tracking station at those times, and we may thus compute the summed range R,
at any particular time, say t, from equation (2.3). The summed range rate, R©,
would be its time derivative, to be denoted by a dot on the top, and expressed
in terms of the time derivatives of the 4 ranges, i. e. ,

Ra _ (Rau + Raa + R2u + Rld )	 (2.8)

and, we can readily see from equation (2.4) that

i	 8 i



I

^^

{



d
k a = dt fEt1 (t -At ) -- ( t) I

[(R1 ( t—At1a ) - Rs (t))' (RI (t.. AtId)— lk (t))1	 (2.9)
((R2 {t - At1a) - Rs (t))' ( R2 (t-A tIA )- F (t))T

with similar expressions for Ra u , Rad, R2„ from equations (2.5) to (2. 7). The dot
between expressions inside square brackets denotes the scalar dot product.

The summed range rate R, at any particular time, say t, may then be com-
puted knowing the inertial velocities of the satellites and the ground tracking sta-
tion at the required times in equation (2.4) to (2. 7), in addition to their inertial
coordinates at those times. The summed range observations are thus a function
of the inertial coordinates, while the summed range rate observations are a
function of both the inertial coordinates and inertial velocities of the relay and
close satellites and the ground tracking station at the required times.

The simulation of 'observations' will be described in Sec. 2.3.2. The
integration of orbits of the relay and close satellites to obtain their inertial
coord inates and velocities, will also be discussed in Sec. 2.3.2. The inertial
coordinates of the ground tracking station are obtained by a rotational transfor-
mation of its cartesian coordinates about the earth's rotation axis by the Green-
wich hour angle of the true equinox of date, and by applying precession and nu-
tation for the period of time from 0.0 hr. of the reference day. This has been
described in detail in Volume 1 Sections 3 to 5 of Geodyn System Description
(1972) and has not been repeated here. The computed value of R. or A,, at the
time of observation may then be obtained from equations (2.3) and (2. 8), and
the vector of m.isclosures, L of equation (2. 1), computed. We may row discuss
the computation of the partial derivatives matrix A.

2.1.2 The Partial Derivatives Matrix

If we represent the unknown parameters, whose values are to be recovered
from the adjustment process, by P, then we have to form the partial derivatives
of the observations, R, or R8 , with respect to these parameters. From equation
(2.3), we have:

aR, 1 r,111u aRad aRnu aR3A	 aX1ir
B8 ^ 2 aXll aX1i  aX1i i 6X1i) m

1 aRaa
d

aRa. LIL
2 aXzi -Xai^ a6

(2.10)

I;
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A 
)R1a	 + Rau	 X13 _ ?J i.

	

dX1i	 AXli	 ;)B	 R

where X11 , Xai are the inertial coordinates of the relay and close satellites re-
spectively, and summation over i from 1 to 3 is implied. This summation con-
vention for a repeated subscript would also be understood to apply in subsequent
expressions.

Though the ranges in equations (2.4) to (2.7) refer to coordinates of the
satellites at slightly different times, we may ignore these differences while
computing the partials in equation (2.10). It may then be further simplified by
putting:

3Rlu , ?^Rla	 ;^R2d =^, 'Rzn

'6 X1 	 X11 ' X11	 ^X1i

We also note that:

(2.11)

?^Ra d	 )Rqd	 ^)R;a _	 Rau

Xgi	 X11 s A N-2i	 ;^X1i	 (2 .12)

The expt essiun for the partials ;)a may then be simplified by substituting
equations (2.11) and (2.12) in equations (2.10) as:

^)Rm	 'A R1d ^ X1i	 'AR2u( ^Xls _ ^x2i)	 (2i. 3)
;) P ^Xli r'P + 7) X1f ^R	

;)R

We may similarly compute the partials of the summed range rate from
equation (2. S), where we note from equation (2.9) that both the inertial coordinates
and the inertial velocities of the satellites are involved. We may again use the
analogous simplification to equation (2,11) that partials of upward range rate with
respect to inertial coordinates and velocities are approximately equal to the
corresponding partials of the downward range rate, when we get:

N 	 ^R	 ^ Xli+  	 ki +u
ABAXii ^ 	rap	 AXli	 ^IXli	

;^B

(2.14)

+ )Rau ;) X2i + Ra u Xai

^Xai

It is easy to see from equation (2.9) that analogous relations to equation
(2.12) also hold for the partials of the range rate with respect to inertial coordin-
ates and velocities, which simplifies equation (2.14) as:

^Ra „ Rid ^Xli Rau ^X1i aXai

B	 ^X, i as
+;) 

^3X1i ( . - ^Q (2.16)
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Finally, it may be verified from equations (2.9) and (2.4), and similar
expressions, that

I

aR1.a ^ aR^ ^ r^R^ u _ 'aRa„	
{2.1.6)	 t

7)xil 	 7)X11	 aX:Li	 7) X-1

so that equation (2.15) becomes:

aRe	 3RD aX3.1 Rau axi s aXai

af3	 aXji
+

7)B 7 Xxu

aR1d dXii 113, a i 7)x21+
)-, ,Jj

f
7)6 aXlf bo

_
a$	 '

where, as before, the summation over i from 1 to 3 is implied.

(2.17)

In equation (2.17), the value of the partials of range rage and range, with
respect to the inertial coordinates, i. e. expressions of the type

7)R,	 aR14

a^.i	 7)x11

are easily computed from geometrical expressions given in equations (2.9) and
(2.4). We may thus confine our remarks to the evaluation of the variational
partials

) X-1 i	
a
Xa i

which are obtained by the integration of the variational equations, as referred
to either of the two satellites, by:

a& — a 7)p	 a 	 +)T	 2.195P 7)P(5—Rd 5P ;)X,
(_7)U7)X,
	 (	 )

where V is the earth's gravitational potential comprising of the normal potential
U defined by a set of fully normalized spherical harmonic coefficients, C,,
up to degree N,,0.,, and the disturbing potential T due to a set of residual gravity
anomalies Ag', i.e.,

I
	 u^ kM 1+	

^r/	
(Cnm cosmh rSn m sinm	 ^(sincp)^ (2.20)

n= +  
	 o
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and

T =j Ad S(r, O) da
417 f

a

(2.21)

In equation (2.20), W is the gravitational constant times the earth's mass;
ae is the equatorial radius of the reference ellipsoid; r is the geocentric radius vec-
tor of the satellite of geocentric latitude qp and longitude X, and Pm (s incp) are the
fully normalized associated Legendre functions. In equation (2.21), R is the radius
of the mean earth sphere, S(r, 0) is the extended Stokes function (Heiskanen and
Moritz, 1967, page 235), 0 is the spherical distance between the sub-satellite
point and the surface area dQ, over which Ad is the residual gravity anomaly, and
is given by:

Ag = Agr - Agpc	 (2.22)

where Agr is the free air gravity anomaly and Agpc is the gravity anomaly implied
by the potential coefficients used in equation (2.20). Equation (2,22) will be dis-
cussed further in Sec. 3.1 to 3.3.

The first term on the right hand side of equation (2.19) may be put as:

i) { )UN - 32 U	 ^3 i,j = 1,2,3
^B 1 r^ Xj AXi5X, 5P

(2.23)

4 and as we are taking the reference set of potential coefficients to be known con-
stants, there are no direct partials of U with respect to P. The expressions for
evaluating ^2 U/i)XI ^X j are given in detail in Volume I Sec. S. 3.1 of the Geodyn
System Description (1972).

While considering the second term on the right hand side of equation (2. 19)
we need only consider the evaluation of direct partials with respect to a particular
gravity anomaly Agr given by:

	

 dr	 dT bqp	 aT dX( FJT

	

^r ^XA 	 * ^h dX1

R --^^-- 
(

^
r X

Agk M dcrk + ^^^ 1 Agl', ')S^ dcrk
4TT	 Agk \ 73X1 k	 r^r g	 73X1 k	 Aq k

I ^S^X1 , Agk ^h dek

k
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RQ—r  LS I ;)S It,	 rah aS 1 1(2.24)

Orr X1 7r 	 X, f-61  + ;)X,^hkdok

I. equation (2.24), we have approximated the integral in equation (2.21) by
a summation and have expressed the derivatives of the anomalous potential. T in
terms of the derivatives of the extended Stokes function S(r, 0). We then carry out
the differentiation with respect to a particular mean gravity anomaly Qgk given over
a block of area dQk . The derivatives of r, cY, A with respect to X i (Xx, Xa , Xs)
can easily be shown to be given by:

7r 	 Xi
axi 	r

LO _	 1	 ^ X1 +

axi J o + 4A	 rs a Xi )

a  r X1— &(^&. 0
axi — x1 + ^ axi  X., axi

while the derivatives of the extended Stokes function with respect to r, 0, are
given in Heiskanen and Moritz (1967, pages 234, 235), as:

a	 a

Tr - R D + D 1- 6Dk
k	 k	 k

(2.28)

f^	 1-tcos. Ok + DI,- t cos if'k {13 + $P./1i --	 - )
2

(2.25)

(2.26)

(2.27)

aS	 7S r	 a	 aS^,	 = 7 	 Cos U k	 (2.29)
k	 k a

as	 _ as r,	 a	 _ 7S	 coa^cp' sina l,	 (2.20)
dX k	 a	 a^	 a k i

NOa2+ B -- 8-31-t cos - D
-t sinok

 k	 Dk Dk	 Dk sin 0



where

t= it 	 (2.32)

Dk = 1 1,/r = (r, +R2 - 2Rroos l^tk ) /r =(I 2t cos t	 t2 ) 2	(2.33)

and A. is the distance of the satellite from the gravity anomaly Agk of geocentric

latitude c k and longitude Xk ; 4 is the spherical distance of the gravity anomaly
Agk from the subsatellite point (0, X); and % is the azimuth of the gravity anomaly
Agk from the subsatellite point. 0 1,, and ak are given by:

cos `F'k= sine' sin4 + coscp'coscpk cos(l k - X),	 (2.34)

cost k s in (X, - X)tan	 cost

coscp'sincpk - sinrp cosfpkcos(,l k - X)	 ( 2 .35)

For mean gravity anomalies at a sufficient distance from the subsatellite
point, say k> 35°, we may compute the value of	 , (^TAX3) at the center of
the anomaly block, but for gravity anomalies cl.o^segk to the subsatellite point,
we need to subdivide the anomaly block into A sub-blocks to minimize quadratuke
errors, and compute it as:

^ ^cp' \-' dS

Agk ;)XI 	4TT ^^X 1 	^r p doh 3Xf -)' ^cp' p 

dU

(2.36)

	

ah	 m
	aX i 	ail Q, dcrL

The anomaly blocks were subdivided into 4, 9, or 16 sub-blocks when
350> `Yk >20° , 20°> 0k > le. 5 and 12°.5>{ c > 00 respectively, as per Hajela
(1972).

Further discussion regarding the integration of the variational equations
(2.19) may be seen in Rapp (1971a) and Geodyn Systems Description Volume I
(1972),

and
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2.2	 The Adjustment Scheme

2.2.1 The Correction Vector

In elaboration of the remarks before Sec. 2. 1, we may In general terms,
describe the mathematical model, as:

F(LFa , L; a ) --0,	 (2.37)

where LFa is the vector of observations of summed range rate, or summed range,
related through the function F to the vector Lx of unknown parameters being
estimated, i. e. the arc parameters and the residual gravity anomalies, and the
e3ubscript 'a' represents their adjusted values.

Further, if any constraints are to be imposed on the adjusted values of
parameters to fulfill certain conditions, we may express these in the form:

G(Lx8 )=O 	 (2.38)

The linearized form of the equations (2.37) and (2.38) is;

B F VF + 13FX VX + WF = 0	 (2.39x)

BGX Vx + WO = 0	 (2.39b)

where B represents the partials matrix of the functions F and G with respect to
the observed quantities (B F ) and the unknown parameters (B F x, BGX); V represents
the correction vectors (VF , Vx ); and W represents the misclosure vectors (WF,
WG ) when the initial or 'approximate' values of the observed quantities and un-
known parameters are substituted in equations (2.37) and (2.38).

if we represent the weight matrices of the observed quantities by PF and
of the unknown parameters by P X , it may be shown (Mikhail, 1970), that for
the usual least value of the sum of squares of the weighted residuals (or correction
vectors) under the condition that the equations (2.39) are satisfied, i. e. , for a
mir ' uium value of cp given by:

(p ^' VF" PF VF + Vx' Px Vx- 2KF'(B FVF +BFX VX + WF )- 2Kc' (B4x V X +WG )	 (2.40)

where KF , ;.^- are the Lagrange multipliers, the solution is obtained by:

—1Vx 	 BFxf PF BFX +P x 	 BoX --BF I' PF WF + PxWx

_ 	 (2.41)

-Ka	 BGx	 0	 -Wc
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where Wx is the vector of difference between the. observed value of parameters,
and the approximate value used in computing the misclosures WF and We . This
enables the a priori estimates of residual gravity anomalies from terrestrial
data to be used in a combination solution with satellite to satellite tracking data.

If there'were no conditions to be satisfied by the adjusted values of the
unknown parameters, i. e. if we delete equations (2.38), (2.39b) and the last
term in equation (2.44), the correction vector Vx for the unknown parameters
would be given by:

Vx = (BFx' PF BFx + Px) 
1 

(-BFx' PF WF} Px Wx)	 (2.42)

The matrices B Fx and Px may be partitioned according to the correction
vector Vx referring to are parameters and the residual gravity anomalies, rep-
resented by the subscripts 'a.' and 'k' respectively, i. e.

Vx' = M. I Vk)

BFx =(B., Bk)

r

oQP,Q
Px=
	 21, 4	 Pk

W/ = (Wa , Wk )	 (2.43)

where E,, , Z  are the a-priori variance-covariance matrices of the. arc parameters
and residual gravity anomalies respectively, and we have taken the scalar variance
of unit weight, ao, as unity.

Equation (2.42) may then be represented by-

V.	 IFZBn +Ex	 B

	

i	 ,, F,F1Bk	
-1

W	 .

V1,(B,^ E e 1 $k ) I	 Bk E F 1 Bk + Ek 
1

^k

-B6 E F 1 WF + ,'	 W&

-Bk E F I W,+ F k 1	 Wk

Nit N,k-1
	 -U.

Nall	 Nk	 _Uk
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Equation (2.44) may be solved for Vk (Uotila, 1967) as:

Vk = (Nx - %,x N.-' Nax)-1 (-'Uk + Ngk Na' U. )
	

(2.45)

We may now consider the expressions for the are parameters in equation
(2.44) to be partitioned according to individual arcs, i. e.

N,,	0
Na =	 N2 .

0

Nak = ( N4^k	 N^2x ... )

U8 = ( U. , Ua2 , .... )

Z s	 0

aa2	
(2.48)

0	 .'

where we have assumed that firstly, there is no covariance between the arc para-
meters for different arcs; and secondly, that the observations in any given arc
do not depend on the arc parameters of any other arcs. Then it may be shown
(Geodyn Vol. I Sec. 10.2 ., 1972) that the terms referring to are parameters in
equation (2.45) are obtained as summations for individual arcs. Denoting the
rth are with subscript r, equation (2.45) may be represented by:

Vk = (Nk	Nrk' N," N, Ij- '
 (-Uk +- Nrk Nr 1 Ur.},	 (2.47)

r	 r

which is the form in which individual arc parameters are successively eliminated,
as observations in each arc are processed to give, say for the r th arc, Ni-, Nrk,
Ur ; and the contribution to Nk , Uk from the observations in the rth arc.

The expressions for the correction vector V6 for the arc parameters, and
for its partition according to individual are Vr, are given in Geodyn Vol. I
Sec. 10.2 (1972), and have not been given here, as it was found that these could
not be recovered from short arcs of 4 to 20 minutes duration. Accordingly the
starting values of inertial coordinates and velocities for each are were fixed by
assigning them very low variances. This resulted in the summation terms for
the arc parameters in equation (2.47) becoming much smaller than the terms for
the residual anomalies, and the correction vector Vk could in effect be represented
as:

3
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Vk = -Nk 1 Uk ,

which is essentially the same as equation (2.1).

Further, as mentioned in Chapter 1, the correction vector V k was re-
covered in all the investigations throughout this study from satellite data only,
i.e. summed range rate, or summed range, observations. Accordingly, the
weight matrix for the residual gravity anomalies, P k in equation (2.43), was
always (except Sec. 5. 2, 5.3) kept as 0.

2.2.2 Weight Matrix

The standard deviation of all summed range rate observations was taken
as 0.08 cm/sec, based on an integration interval of 10 seconds. All covariances
were assumed to be zero resulting in the variance-covariance matrix of obser-
vations, and hence the weight inatrix P F , being diagonal. (scalar variance of unit
weight Qo was kept as 1). The assumption of zero covariance is reasonable if
all observations, say at 10 seconds interval, are used without converting them
to 'synthetic' observations, say at 1 minute interval. The observations at 1
minute interval were used in Sec. 4. 1, but these could still be considered as
independent observations, as all intervening observations at 10 seconds inter-
val were ignored. However, the effect of using all independent observations, at
10 seconds interval, has been investigated in Sec. 4.1 and no observations were
'thrown away' in later sections.

The standard deviation of summed range observations was taken as
10 meters (NASA, 1974, p. 4--78), and all observations were considered to be
independent. The summed range observations have been used in one test only
in Sec. 4.1.5. As these gave very poor anomaly recovery, only summed range
rate observations were used in all other investigations.

2.2.:3 Constraints for liarmonic Coefficients

We may now specify if any constraints are to be imposed on the adjusted
values of residual gravity anomalies to fulfill any conditions, as in equation (2.38).
if the set of anomalies being recovered was a global one, then clearly the 6 coef-
ficients of degree 0, 1 and some of degree 2; i.e. a" o; ai,o; a' ,, ; bi,^ ^,, ;
bar, should be zero in the spherical harmonic expansion of the adjusted residual
anomalies:

^_ n

A' =	 (any cos mh+1',sinmX) P,. (sincp^)
M rJ
	 J

M=O M=O

(2.48
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T;	 .

This would correspond to the mean value of the residual gravity anomalies over
the whole earth being zero, the origin of th '4 coordinate system being at the cen-
ter of gravity of the earth, and the Z axis of the coordinates system coinciding
with the mean rotation axis of the earth. The formation of these 6 condition
equations has been described by Rapp (1971a).

However, while these conditions may be held for anomalies over the
whole earth, there is no clear justification for them to hold over regional
areas, even, as large as say 1/8th of the globe, investigated in Sec. 4.1. The
contributions to the fully normalized harmonic coefficients an", V,,. given by:

a nm` 	 I 

ff 

r	 COs m,1
_ 	 AV P,,,, (sin cQ')	 da 	(2.49)

bna/	
Orr	

s in m x

Cr

from a regional area a,, , may be balanced by other regions ue, a3 , ... ; so that
if a harmonic coefficient is zero over the whole earth, it is not required to be
zero separately over regional areas.

The effect of imposing the 6 conditions for low degree harmonic coef-
ficients of degree 0, 1 and some degree 2 being zero, was tested in Sec. 4.1.4
over an area of latitudinal extent 70 0 and longitudinal extent of about 60°. The
anomaly recovery was found to become worse when these conditions were imposed
as compared to the adjustment without imposing any conditions.

Again, if the residual gravity anomalies were recovered over the whole
earth, it could be argued that as the gravity anomaly, Agpc, equivalent to the
effect of the potential coefficie nts up to degree N,,x has been removed in
equation (2.22), the values of C nA `, 8 (see equation (2.20))up to degree Nmnx

as obtained from the adjusted values of the residual gravity anomalies, 6g,',
should be zero, i.e.,

	

C„m'	 cos m )1

	

,	 Orr {n^-1.)	 A^ Fna (sincp')	
sinmh	

du

	

nm
	

ff
a

1	 anm

Y (n-1)	 bnn'



where y is the average value of gravity over the earth, say 9 79. 8 gals. Equation
(2.50) corresponds to the coefficients up to degree N,,,, in the spherical harmonic
expansion of the adjusted residual gravity anomalies being zero, i.e. aaly higher
degree (>N,e,$ ) harmonics are present in the expansion of Ag; . Similar constraints
in the case of residual surface densities are recommended in Geodyn Vol. 1,
Sec. 8.3.2.4 (1972).

However, if we cannot justify constraints for low degree harmonic coef-
ficients in regi un areas, in contrast to a global coverage, there is still less
justificp..Ion for higher degree (2< n s h?...,,) constraints. Hence, except for the
test in Sec. 4.1.4, no constraints were imposed on the adjusted value of the
residual, gravity anomalies in regional or local areas in other investigations in
this study.

2.3	 Procedure of Computations

2.3.1 Orbital Parameters of the Close Satellite

The generation of residual mean gravity anomalies over 100, a and 2°. 5
equal area blocks will be described in Sec. 3.2 and 3.3. After obtaining the value
of the earth's gravitational potential by equations (2.20) and (2.21), we would like
to choose the orbital i arameters of the close satellites at a height of about 900 km
and 250 km respectively, so that the trace of the subsatellite points 'samples' the
area of investigation in an optimum manner. The choice of the orbital parameters
for the relay sa4olli`,e has been described in Sec. 1.1. We will now describe the
choice of the orbital parameters at the same initial epoch, and in the same coord-
inate system, for the close satellite at a height of about 900 km. The orbital para-
meters for the close satellite at a height of about 250 km were chosen similarly.

The initial values used were inclination i= 1150 , eccentricity a -..000,
and the nominal value of the semi-major axis a= 7214km. The argument of
preigee, w, was obtained so that perigee occurred when the latitude of the sub-
satellite point was the same as the south bounding latitude, V, , of the area of
investigation; i.e.,

W= sin i (sin(p,/sin i),	 -rr/2 < W< TT/2
	

(2.51)

The right ascension of the ascending node, Q, was obtained so that at the
initial epoch (Greenwich siderial time= 9 0), the longitude of the subsatellite

point was X, i s/2, where hH is the longitude of the western limit of the area of

investigati_:n and s° is the size of the gravity anomaly blocks, say 10°.
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0! , = CDs' (cos W/ cos (D 8 ), -TT/2 C a' C TT/2
(2.52)

n = Xx + S/2 + Qp - av'

The value of the semi-major axis was optimized so that when the sub-
satellite trace starts again over the area of investigation, after completing its
trajectory in longitude around the earth, it is offset from the initial trace com-
puted in equations (2.51) and (2. 52) by s 3 . This is obtained by first computing^
the ratio if of the mean motion n of the satellite, to the siderial rotation rate e
of the earth. The mean motion is corrected for the perturbation in mean motion,
An, and the motion of perigee c) due to the second zonal harmonic Cs,o only. Luni-
solar contributions are also included, but have not been shown in the equations
given below. Tlad ratio k' is rounded off to the nearest integer and a/2rr is re-
duced from it. Ii we now multiply it by 6 and remove An and W terms, we get the
new value of mean motion n, which will ensure the condition of the initial and
next subsatellite traces starting over the area bein g offset by S". The optimized
value a of the semi-major axis is then obtained from n by Kepler's third
law. The above algorithm may be represented by the following equations:

3
n = (kM)* a- /2

a
An = 3nC2ae (3 Cos 2i-1)

4(1 -e;e ) ^z a2

W - 
3n Ca,o aQ (7 - 5 cosy i)
4(1-e2 1a a'a

k (n.+An+ w)/ 8	 (2.53)

k' = integer part of (ic'+1/2) -- s' /?,TT

i k'6-An--W

a = (kM) /3 (n)-2/a

The algorithm represented by equations (2.51) to (2.53) has been described
by Kaula (1972, pages 25, 26), and the initial orbital parameters for the close
satellite in this study were computed using a shortened ;version of the subroutines
kindly supplied by him. The optimized values of the Keplerian elements at tho
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initial epoch of 690921 (YYMMDD) 01 hr. 33 min. 36.3 sec. were:

a= 7258.48... km	 M= 0.0
e=	 0.006	 W= 0.0	 (2.54)

i = 115°
	 62 = 238°. 59...

with the latitude and longitude of the subsatellite point being 0 0 and 215° E. re-

spectively.

The corresponding inertial coordinates and velocities, in terms of the
inertial coordinate system defined by the true of date coordinates of the reference
date 690921. 0, were-

X 21 = --3759.56 ... km

X 22 = -6157.99...I1n1

Via$=	 0.0 ... km

X21= -2.689...km/sec

X2,` 1.641...km/sec
X 22 = 0.675 ... km/sec

(2.55)

The period of orbit of this satellite was 102.4 minutes, the average alti-
tude for ascending arcs was about 854km and for the descending arcs, it was
about 908km. The olservations pertaining to this close satellite have been
used in Sec. 4.1 and Sec. 5.1.

The initial values for the close satellite at a. height of about 250km were
i = 115°, e = . 0005, nominal value for a = 6626 km, and s° --- 2°. 5. The optimized
values of the Xeplerian elements at the initial epoch were:

a= 6632.84... km	 M= 0.0
e =	 0.0005	 W - 0.0	 (2.56)
i = 115°	 S
	

2480.88...

with the latitude and longitude of the subsatellite point being 0° and 261°25 E. re-
spectively.

The corresponding inertial coordinates and velocities were:

X21 W 1702.63... Icm	 Xa 1 - -3.167... km/sec
X 22 = -6407.16...Icm	 X22= -0. 841... km/sec	 (2.57)

X23 =	 0.0 ... Ir. M	 :i23= 7.029...km/sec

The period of orbit of this satellite was 89.5 min., and the average altitude
was about 255 km. The observations pertaining to this are have been used in

Sec. 4. 2 and Sec. 5.2.
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i	 2.3.2 Simulation of Observations

Having obtained the inertial position and velocity vectors at the initial
epoch in equations (2. 55) and (2. 57), the inertial position and velocity vectors of
the satellite at any later time could be obtained by integrating the equations of
motion:

bV _ aU xr

where the symbols are the same as in equations (2.19) to (2.21). initially, the
purpose of this integration was to obtain the inertial position and velocity vectors
over an extended period of time of 8 to 32 days, and to obtain the latitude and
longitude of the subsatellite points at a specified interval, to determine the inci-
dence of satellite trajectories over the area of investigation. After these tra-
jectories were plotted, it was possible to choose the particular trajectories as in
Chapters 4 and 5, and the approximate duration for which the observational data
need to be simulated. As each ascending or descending satellite trajectory in
the area would later be used as an individual arc, and the starting coordinates for

I
	

these individual arcs would have no relation to each other, these starting coordinates
need not be computed with full rigor. Accordingly, only the first term on the
right hand side of equation (2.58) was used in this initial integration of the orbits
of the close satellites, and also of the relay satellite, using the Cowell orbit
generator program (Cigarski, Velez, 1967). As the gradient of the anomalous
potential T, due to the residual gravity anomalies, was not used in these compu-
tations, it resulted in a very considerable saving of computer, time (Sec. 6.2).

The Cowell orbit generator program is fully described in the above referenced
publication and does not need any elaboration here. The integration model was kept
as fixed order and fixed step. The order of integration for all the 3 satellites

was kept as 11 (Velez, 1968, page 9), while the fixed step size was kept as 5, 1 and
i minutes respectively (Robinson, 1970) for the relay satellite, and the close satel-
lites at heights of about 900 and 250 km.

For the simulation of Observations' for 4 to 20 minutes along the arcs
chosen for investigation in Chapters 4 and 5, the orbits of the satellites were inte-
grated using the gradients of both the normal and anomalous potentials in
equation (2.58), by the Geodyn program (Nov. 1972), which was modified to accept
residual gravity anomalies. The expressions for aU/;^X i are described in Geodyn
Vol. 1, Sec. 8.3.1 (1972). The expression for )T/7)X1 from equations (2.24),

(2.29) and (2. 30) is:



I

d= _ R 3r 	 If BS	 acp	 , ^S I
73X1 - Orr 73X1	 Qt'k ar	

dQk-,^X1	 Agk 7)0 I Cos^k dcrk
k	 k	 k	 k	 (2 .59)

	

- 73X Cos (0, 
X A

gk 73S'' 	 Sin Uk dQk
i	 ^Xi	 k	 ^w k

which may be evaluated using equations (2.25) to (2.28) and (2.31) to (2.35). Fur-
then, as in equation (2.36), the value of the derivatives of the Stokes' function in
equation ( 2.59) were evaluated by quadrature by dividing the kth anomaly block
into k sub-blocks (4, 9, or 16 as per limiting values of 0k given below equation
(2.36)):

73S	 de = 	 ^S	 do'
^r	 k ^ ^r	 Q

k	 Q	
(2.60)

cos ^k	 cos ^
)SS dQk = ^ ^^ ^	 1 dore

k sin CYk 	^,	 ^ S1Y! rXQ

The gradient of the anomalous potential at a particular satellite position
X 1 in equation (2.59) should ideally be obtained by summation of the index k over
the whole earth. However, the contribution of the distant gravity anomalies
(0,,> 30°) is smalls and it is optimal (Hirvonen and Moritz, 1963) to include the
anomalies up to spherical distance Ok S 300 from the subsatellite point. Further,
in the present study, the normal potential U in equation (2.58) includes the coef-
ficients up to degree and order 12, and thus models the global, effects. The 	

E

summation in equation (2.59) using residual gravity anomalies Ag ` (equation
(2.22)) could then be restricted to a still smaller value for Ya k • 1- 6ever, for all
investigations in this study, the residual gravity anomalies were incl-aded up to
a spherical distance 30° around the area of investigation. This will be further
ea plained in Sec. 3.4.

The actual simulation of observations in the modified Geodyn program
was done by first writing on a magnetic tape, in the Geos--2 data center format
(Geodyn Systems Description Vol. 111 pages C-22 to C-26, 1972), zero value for
observations of summed range rate, or summed range, for all times for which
observati7ns were required to be simulated. These zero observations were then
used in the data reduction mode of the Geodyn program, with the earth's gravity
field described by residual gravity anomalies up to 30 3 all around the area of

investigation, besides the spherical harmonic: potential coefficients up to degree
and order 12 (hereafter referred to as (12, 12) potential coefficients. The

M
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orbits of the relay and close satellite were then generated in this gravity field
using equations (2.58) to (2.60), and the computed values of summed range rate

or summed range Re f were obtained as in equation (2.8) and (2.3) corres-

ponding to the times of the zero observations. The misclosures between the
zero observations and the corresponding computed values were then written
out on another tape, which was subsequently reformatted in'the Geos-2 data

}	 center format to give the required simulated observations. A subset of the sim-
ulated observations could be prepared by deleting some observations near the
beginning or ending of the 'satellite arc' for the subsatellite points to lie within,
specified bounding values.

2.3.3 Reduction and Adjustment of Data

The simulated observations for the desired number of satellite arcs could
then be processed in another Geodyn program in the data reduction mode, with the
earth's gravity field now described only by the (12, 12) potential coefficients. The
computed value of Pe, or 1%, now refers to the approximate value of the residual
gravity anomalies as zero, and the misclosure vector from the simulated obser-
vations is obtained as outlined in Sec. 2.1. 1. The variational equations (2. 19) for
the are parameters, and the desired number of residual gravity anomalies, are
integrated along with the integration of the equations of motion for the satellite
orbits. The order of integration for the variational equations was kept as 11 as
in the equations of motion, but the step size was increased to 75 and 35 seconds,
from 60 and 30 seconds for the equations of motion, for the close satellites at
heights of about 900 and 250 km respectively.

The normals matrix and the constant vector of equation (2.47), are formed
by a summation process by the contributions of observations from each arc, and
the accumulated values are written out on magnetic tape after the processing of
observations of each arc, starting from the first arc. It is therefore possible to
separate out the contributions to the normals matrix and the constant vector for
each are individually, and then, if so desired, to combine them in any order after
deleting the contributions of the observations of any arc, if required.

After the normals and constant vector are finally formed for the desired
number of arcs, we ma y invert the normals matrix and solve for the unknown
parameters, the residual gravity anomalies in this study, as in equation (2.47).
We may also like to solve for a smaller subset of anomalies. This is possible
without having to form the normals and constant vector afresh. We may visualize
it with refernce to equation (2. 1), where if the kth pavameter is not required to
be included in the solution, we may delete the kth element in the solution and
constant vectors X and U, and the kth row and column of the normals matrix N.
The process may be repeated till all the required number of elements in X and
U, and all the rows and columns of N, are deleted for all the parameters not re-
quired to be included in the solution. in actual practice, advantage is taken of

the s,,,mmetry of the normals matrix in reducing the computer core storage, by
storing column-wise only the lower triangular portion of the normals matrix in
a 'racked' vector form. Careful manipulation is then required to ensure that
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only the required elements of the roves and columns pertaining to the parameters
being deleted from the solution, are removed from their respective locations
from the packed vector fornn of the normals matrix; and after their removal the
normals matrix is 'repacked' correctly.



3. GRAVITY ANOMALIES FOR DATA SIMULATION

3.1	 10°, a and 2P 5 Equal Area Blocks

The residual gravity anomal ies Ag' used in this study were a set of terres-
trial free air gravity anomalies Ags, from which we have. subtracted the value of
gravity anomaly A&c implied by a set of reference potential coefficients con-
sidered as known constant values, i. e.

Ag' = Agt - AgPc
	 (3.1)

The set of terrestrial gravity anomalies were mean anomalies defined
over equal area blocks. We first consider a 100 equal area block in terms of a .
10°x 100 'basic' block, as defined by Rapp (1971b). Its latitude limits were de-
fined by the equator and :L 10° parallel of latitude, and longitudinal extent as 10 0

starting from the Greenwich meridian and proceeding east. The latitudinal ex-
tent of all other blocks was everywhere 100 starting from equator, and proceeding
north or south. The longitudinal extent AX of a block was determined to meet
3 requirements, i. e. its area As will be nearly equa to ' the area of the basic block
AB; there will be integer number of blocks n in each latitude zone; and starting
from the Greenwich meridian and proceeding east, its eastern longitude XE will
be an integer number of degrees. Denoting the north and south limits of a block
by cpN and cps and its east and west limits by X E and Aw, the above requirements
may be expressed as:

ON	 XE
As =	 cos cp dcp A = AX (sincp N - sin cps )

cps	 Jew

= AB = ^o sin 100 ,

==> AX = As/(sinON - sincps)

n	 = integer part of (360°/Ae -E- 0. 5)	 (3.2)

360°/n

4E i = integer part of (iW + 0. 5), i = 1, n-1,

X , = 360°
r.

We next consider a 5 equal area block. This was defined as in Hajola
(1973), to be 4 component blocks of a 10 0 equal area block. The latitudinal ex-
tent of all a equal area blocks was then 5 0 starting from the equator and pro--

!	 ceeding north or south. The longitudinal extent was however fixed to ensure

>ti
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-	 that the extreme limits of the 4 component a equal area blocks, on the west and
the east, were the same as that of the 10 0 equal area black; and the limit in the
center of the 10° equal area block was obtained to be half of its longitudinal extent
rounded off to the nearest integer degrees. Figure 3.1_ clarifies these divisions.

3
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This scheme of obtaining 50 equal area blocks as 4 components of a. 100
equal area block does result in the area of several a blocks not closely fulfilling
the equal area condition, as shown in the last column of Table 2B, page 7 of
Hajela (1973). This scheme however, enables the gravity anomaly of 4 5° blocks
to be meaned to give the gravity anomaly of a 10 0 block, which is very useful.

The 2°. 5 equal area blocks were similarly obtained as 4 component blocks
of a 5° equal area block. The 5° equal area blocks had been subdivided into 25
1° equal area blocks for the purpose of prediction of anomalies, as described in
Sec. 3, page 4 of Rapp (1972). These 25 1° equal area blocks were then grouped
into 9 blocks to give the north-west component 2°. 5 block, 6 blocks each to give
the north-east and south-west component 2: 5 block, and 4 blocks to give the
south-east component 2°. 5 block. This scheme resulted in the 2.5 equal area
blocks being considerably unequal in area, but the basic characteristic of being
able to mean the gravity anomalies, after weighting according to area, from
smaller blocks to successively larger blocks was maintained. Thus the values
in lo x 10 equiangular blocks could be meaned to give the value in a 1 0 equal area
block, and latter values could be successively meaned to give the values for
2: 5, a and 10° equal area blocks. The scheme of subdivision into component
blocks has been shown in Figure 3.1 illustrating 4 100 equal area blocks, 16
5° equal area blocks and 64 20.5 equal area blocks. The word 'equal area'
blocks has been retained to differentiate from equiangular blocks. however, as
we shall be using throughout this study only the equal area blocks as per the
scheme shown in Figure 3. 1, we may also refer to them simply as 10 0, e, and
2°. 5 blocks, unless the word 'equal area' adds clarity to the description.

3.2	 Reference_ Potential Coefficients Set and 10° Equal Area Residual
Anomalies 

The set of potential coefficients used as a reference to describe the earth's
gravitational field, were those obtained by least squares collocation by Rapp
(1973a). The mean gravity anomaly Agpr of a block, bounded by geocentric lati-
tudes ON , cps and longitudes X E , Xw, as implied by the potential coefficients up to
degree Nmax, is given by (Desrochers, 1971, page 13):

Nmax 	 _

Agac _ Ago +	 ^'^	 ^` (n-1) Ax Cn 4	 cpN P.,o(sincp)coscp'dgp
AX(sinc N--sIncps)	 .n=	 cps

R

j n,,(sinMX E -SinMX W ) S,,,m(cosmlE--cosmAw)m `	 fA=L

(3.3)

,, m (sincp')coscp` (W
r

cpS
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where

other symbols have the same meaning as in equation (2.20); Ago is the average
value of the mean gravity anomaly for the block size over the whole earth, C,, o
are the fully normalized zonal harmonics from which C 4,o and -U4 ,0 have been sub-
tracted for the reference ellipsoid, whose flattening f, is the same as used in
the gravity formula for th- , terrestrial gravity anomalies. These are given by
(Mueller, 1964):

C,4 ,0 - -	 (^f-	 + 3 fm	 f^+...}	 {3.4)

	

A5 3	 3 7	 3

1	 4	 4 sC 4i0 = - 9 ( 7fm- 5 £ + ...}	 ( 3.5)

where
W a'^

kM

and w is the rotational velocity of the earth.

The constants used for the reference ellipsoid and the gravity formula
were as used by Rapp ( 1972):

a, = 6, 378 , 1.37.8 nl
f = 1/298.258
kM = 3.086, 01.3 x 10 14 re/sec''	 (3.7)
w = 7. 292, 115, 146, 7 x 10

-6 
rad/sec

y, = 978, 033.51. mgals

y = y, ( 1 +. 005, 302, 43 sina(p -- .000, 005, 87 sin. 2tp)	 (3.8)

We now consider the maximum degree N,,., up to which the potential
coefficients should be used. N„ a, should be large enough so that the R. M.S.
value of !fig' in equation (3.1) is as small as possible, so that when its approx-
imate value is taken as zero in the adjustment scheme described in Sec. 2.2,
the linearized form of equations (2.39) is adequate to give a solution vector with-
out requiring iteration. On the other hand, N,,, should not be larger than the
degree of well determined potential coefficients from satellite data, nor larger
than 140/s° (Rapp, :1973b), whore s" is the size of the mean grav ity anomaly
block. From the above considerations N.,,.should not exceed 14, as we would
be using up to 100 blocks; and preferably not exceed 12, as from Rapp (1973a),
we find that after degree 12, the number of potential coefficients having larger
standard deviations than their magnitude increase rapidly.
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The 100 terrestrial gravity anomalies, Ag T , were those described by
Hajela (1973, Table 8, pages 20 to 23). The mean value Ago for these anomalies
was -1.4mga.ls and R.M.S. value was 11.3mgals (Table 7, ibid). , if we sub-
tract from these AgT , the values of Agpc, computed as in equation (3.3) with
potential coefficients up to degree and order 12, we get the values of 100 residual
anomalies Ag' as in equation (3.1). The minimum, maximum, range and the
R. M.S. values of Ag' were reduced from the corresponding values of Ag T as
shown in Table 3. 1, but the reduction was not large.

Table 3.1

Statistics for 100 Equal Area Mean Terrestrial
and Residual Gravity Anomalies Using Potential

Coefficients up to Degree and Order 12

Terrestrial gravity anom. Residual gravity anom.
AgT (mgals)	 Ag'-- AgT -ABC (mgal.$)

Maximum value	 34	 21
Minimum value	 -41	 -33
Range	 75	 54
Mean value	 -1.4	 0
R.M.S. value	 i1.3	 8.3

it was then considered if in the formation of 10 0 terrestrial anomalies,
we should have imposed conditions that the low degree potential coefficients, as
generated from the terrestrial anomalies, should be the same as the well
determined values from satellite data. This was done according to Snowden
and Rapp (1988), which ensured;

1	 _	 cos mA	 C m
4rg y (n-1) . ff	 AgT pn^ (since) IsinmX1da - S m	

= 0	 (3.9)
n

6

for m s n, 2 nsNmax, C ;a. and Wo reduced for Ca, 0 and U4,0 as in equations

(3.4) and (3.5), and

a

J f Ag, Pn^ (since) 
cos m	

dQ	 = 0	 (3.10)
4TT	 sin MX	 Unm

a

for n = 1, to 00,
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and

1 ff	 r
4T	 Agr der- Ago = 0 	 (3.11)

Cr

The adjustment of Ag T was done for equations (3,9) to 13.11) for 3 values of N„ax,
i.e. 4, 8 and 12, which we may refer to as Agg,4 , Oge,e, Ag-.a, la respectively.
Thp value of residual gravity anomalies Ago,,,, n = 4, 8, 12 was them obtained
from equation (3. 1), where Agpc was computed from equation (3.3) using
(12,12) potential coefficients for all the 3 cases, i.e.,

IAgn,n= A , n - Agpc (12,12), X3 = 4,8, 12

A

The statistics for Agn,n xad Agog, have been given in Table 3.2.

Table 3.2

Statistics for 10” Equal Area Mean Residual Gravity
Anomalies and Terrestrial Gravity Anomalies Adjusted

for (4,4), (8,8) and (12,12) Potential coefficients

A 94 1 4 Ag4#4 Agee Age ,B Agia,la A g12,12

Maximum value 35 22 40 19 38 26
Minimum value -42 -32 -45 -27 -60 --25
Range 77 54 85 46 98 51

Mean value - 1 .4 0 -1.4 0 --1.4 0
R. M.S. value 12.4 7.8 14.0 7.17 15.4 7.11

Units are mgals.

We note from Table 3.2 that the lowest R. M.S. value of 7. 1 mgals occurs
for Ag^a^,,,, i.e. when the terrestrial anomalies have been adjusted to (12,12)
potential coefficients according to equations (3.9) to (3.11), though this is not
very much lower than K. 3 mgals in Table 3. 1, when the terrestrial anomalies
were computed as in Hajela (1973) without imposing the conditions in equations
(3.9) to (3.11). The residual anomalies used in Sec. 4. 1 were however computed
after imposing these conditions, as described later.

The value of f Pnm (sincp) cos cp dep in equation (3. 3) was computed using
Gaussian quadrature formulas for 24 points, according to constants given in sub-
routine DQG24 in I. B. M. Scientific Subroutine Package (Version III, p. 302, 1970).
To get the mean residual gravity anomaly in 10 blocks, say Arlo" (1), we may use
LgTlô , and subtract 

Agpclo° 
computed for the 10 0 blocks using equation (3. 3). This

was done in Table 3.1. Alternatively, we may use terrestrial anomalies in the

4 component 50 blocks of a 10" block, say AgT50 ; and subtract from these the
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values of Agpc °, computed for 50 blocks using equation (3. 3), to obtain the
residual gravity anomalies in 50 blocks, Ag6a . We may then form Ag-I& (II) using
the residual anomalies Age in the 4 component 5° blocks of area dcrd3 by:

4

Agio° (11) _	 (Agri do'sp)/	 dc'sx

The difference Ag10o (I) - Ag1Q° (II) has been given in Table 3.3.

(3.12)

Table 3.3

10° Equal Area Mean Residual Gravity Anomalies.
Difference for Direct Computation Over 100 Block Aglo? (1)
Minus Meaned Value Over Component 5° Blocks, Agin" (II)

Maximum value 3.1 mgals
Minimum value -4.2
Range 7.3
XLean Value 0.0
R. M.S. value 0.6
No. of + elements 106
No. of 0 elements 183
No. of - elements 127

The differences in Table 3.3 indicate the advisability of computing Agpc in
equation (3.3) in a blocks, in contrast to 10 0 blocks. Accordingly, the global
set of 1664 5

0
 terrestrial anomalies was first computed as iu Hajela (1973, See.

4). These 5° anomalies were then adjusted to satisfy equations (3.9) to (3. 11)
for the reference set of (12, 12) potential coefficients. The residual anomalies
in a blocks, Age, were obtained from these adjusted a terrestrial anomalies
by subtracting Agp(: , computed from equation (3.3). The global set of 416 100
residual anomalies were finally obtained from A&, using equation (3.12). 130
10° residual anomalies from this set will be used in Section 4.1.

3.3	 2°.5, b° and 10° Equal Area Residual Anomalies

The adjustment of terrestrial anomalies by equations (3.9) to (3. 11) over
the whole earth requires much computer time for small size blocks like 2°. 5,
when 4 x 1664 = 6656 anomalies have to be adjusted. We should then consider the
formation and recovery of residual anomalies over regional areas. Also, as it
is advisable to compute equation (3.3) over smaller, blocks, it would be prefer--

able to compute residual anomalies Ag` directly over 1 t' equal area blocks, by

cons idering AgT over these blocks as in Hajela (1973), and then using equations

(3.3) and (3. 1). As later (Tscherning and Rapp, 1974, p. 5) terrestrial gravity
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cos(D mj	A91i
J

f	 ^	 t

Ag a°O. e
cos tp,j

(3.14)
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data was now available than used in Hajela (1973), fresh estimates of 10 equal

area terrestrial gravity anomalies were formed using this later data. if we did

not have terrestrial gravity observations over any 10 equal area block, say p, we

could then predict the residual anomaly AV directly from other computed residual

anomalies in :L 50 equal area block, according; to Moritz (1969), Rapp (1972), by:

ogP = C  (C+D)-1 Ad,	 (3.13)

where Ag is the vector of already computed residual anomalies inside the a block.
Cp is the vector of covariances of 1 0 equal area residual anomalies for the
spherical distances between the p th block, and the location of already computed

residual anomalies inside the a block, C is the matrix of covariances of a equal
area residual anomalies for spherical distances corresponding to the location of
already computed residual anomalies. D is a diagonal matrix with the squure of
estimated standard deviation of already computed residual anomalies. on the
diagonal. As Ogpe in equation (3.1) is computed from known constant values of the
potential coefficients, the estimated standard deviation of 10 equal area residual

anomalies was kept the same as that of the corresponding terrestrial anomalies.

The computation of the residual anomalies of 5° and 10° equal area blocks
from the computed/predicted residual anomalies of 1° equal area blocks, was then
done according to equations (9) and (12) of Hajela (1973). The computation of
2°. 5 equal area residual anomalies, A,.$ was done from the 1 0 equal area re-

sidual anomalies Agi0 by:

where cpmj was the mean latitude of the j th 1° belt; j=2 or 3, was the number of 10
latitude belts in a 2.5 equal area block; and i = 2 or 3 was the number of 1° equal
a rea residual anomalies in the j th 10 belt of the 2^ 5 equal area block.

The computation of the covariance function for 1 3 equal area residual anom-
alies, which was needed in equation (3.13), may now be described. The covariance
function for the 1

0
 equal area terrestrial anomalies was provided by Tscherning

and Rapp (1974, Table 15, p.73). if we represent it by C(o), where 0 is the

i	 spherical distance, we have (Heiskanen and Moritz, 1967, p. 256):

00

C (0) - 7, en Pn (cost),	 (3.15)

n= p

where c a are the anomaly degree variances given (ibid, p. 259) by:



n
a	 a

en^	 (a nn + b no)

tl= 0

U

= ya (n-1)A E (Cnna + 'Sact )s
R= o

(3.16)

where the symbols have been defined earlier in equation (2.20), (3.3) and (3.9).
Finally, Pn (cos 0) are the Legendre"6 polynomials, which may be computed from
the recursion formula (ibid, p.23):

P n (cosh) = - n1 P„- a (cosh)+ 2n - i cos 0 Pn-1(Cos 0),n	 n

with starting values from

PO(Cosh)=I, P1 (cos h) = cos h

( 3.17)

d

(3.18)

As the residual anomalies have been obtained from the terrestrial anom-
alies by subtracting the anomaly implied by (12,12) potential coefficients, the
covariance function for the residual anomalies C/(h) is simply obtained by:

	

,l`	

M	
,I,	 1',	

la

	

CI {h)	 CnPn (Cos h)- C {h) —	 CnPn (Cos '!,)
n = 13	 n=2 (3.19)

3z	 n	 V

= CM - Ya Y Pn(COSh) • (n~1)a	 (C na + S n )=
n= 3	 n=^

Y

The values of c n , n = 2 1 12 computed from the potential coefficients
were taken directly from Rapp (1973a). The values of the covariance function
for the 1° equal area terrestrial and residual anomalies for spherical distanc.e
up to 80 have been given in Table 3.4.
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Table 3.4

Covariance Function for 1° Equal. Area Terrestrial
and Residual. Anomalfes Using Potential Coefficients

up to Degree and order 12

Spherical Distance	 Covariance for	 Covariance for
Terrestrial Anomalies Residual Anomalies

°	 C(o) mgals a	C°(0) mgals2

0.0 919.7 754.1
0.5 671.6 506.2
1.0 493.4 328.4
1.5 368.2 204.0
2.0 285.4 122.2
2.5 236.1 74.3
3.0 211.4 51.3
3.5 200.7 42.6
4.0 193.4 37.5
4.5 176.9 23.5
5.0 155.9 5.2
5.5 146.4 -1.3
6.0 141.4 --3.0
6.5 133.4 -7.6
7.0 :124.9 -12.4
7.5 119.9 -13.6
8.0 117.4 -12.1

The value of f Pna (sin(d) cos c dcp in equation (3.3) for latitudinal extent
of 1° was now computed using Gaussian quadrature formulas with 4 points,
according to constants given in subroutine DQG4 in I.B.M. Scientific Subroutine
Package (Version III, p. 300, 1970). The values of residual anomalies for 2°. 5,
5° and 100 equal area blocks computed in this Section will he used in See. 4.2 and

Chapter 5.

3.4	 Extent of Anomalies for Simulation of Ob=ervations
i

As.mentioned in Sec. 2.3.2, all observations used in Chapters 4 and 5 	 y
were simulated using (12,12) potential coefficients, and residual gravity anomalies
up to 30 0 spherical distance beyond the area of investigation. We may now examine
the utility of subdividing a large size anomaly block into component blocks of 	

d

smaller size. Summed range rato observations, with close satellite tit height of
about 900km, were simulated for 2 satellite arcs, using (12,12) potential coef-
ficients with 1.08 50 residual anomalies. In This case (Case 1), 40 5° residual
anomalies covered the area of interest, traversed by subsatellite points of the
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close satellite, and up to 10 0 spherical distance all around the area of interest.
The balance 68 50 residual anomalies covered an area from 10 0 to 20° spherical
distance all around the area of interest. in the second case (Case 2), the summed
range rate observations were simulated for the same configuration, with (12,12)
potential coefficients and 40 59 residual anomalies covering the area of interest
and up to 10° spherical distance all around it. However, the 68 5° residual
anomalies, 10° to 200 around tho area of interest were replaced in Case 2 by 17
10° residual anomalies, weaned from the 68 5° blocks. The residual anomalies
in Cases 1 and 2 are shown in Figure 3.2. The difference in summed range rate
observations (Case 1- Case 2) is shown in Table 3.5.

Starting .Coordinates fQ
for Aro I	 1` i

40°N

Area of Interest

\-VIO 

c^ l'

20° N

Urnit of 40 50 Equal Area Residual Anomaliesvk

Starting Coordinates 0°

2400 E	 270° E 	 Vaf Arc 2	 3000E

Figure 3. `L 40 50 Equal Area Residual Anomalies Surrounded by
68 a Equal Area Residual Anomalies (Case 1), or by
17 10° Equal Area Residual Anomalies (Case 2).

Case 2 has been shown in th e figure.
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Table 3.5

]Effect of Replacing 5° Component Residual Anomalies by
10" Residual Anomalies in Border Around Area of Interest.

A

Summed Raage Rate Differences, AL in cm/sec. for 2 Arcs.
Height of Close Satellite 900 kin

ARC 1	 ARC 2

Time in	 Rn	 ARr,	 Time in	 l3a	 ARo

Orbit (min.)	 (cm/sec.) (cm/see.) Orbit (rein.) (cm/sec.) (cm/sec.)

0.0 -429,601.11 0.008 0.0 24-2,740.97 -0.067

0.5 -406,451.67 0.005 0.5 267, 327.63 -0.069
1.0 -382,674.46 0.002 1.0 293, 476.90 -0.072
1.5 -358,300.73 -0.001 1.5 319,147.67 -0.075
2.0 -333,363.75 -0.002 2.0 344,300.73 -0.079

2.5 -307,898.79 -0.003 2.5 ;368, 89'4.84 -0.085
3.0 -281,943.08 -0.004 3.0 .392 906.82 -0.090

As the differences in summed range rate in 'fable 3.5 are less or about
the same as standard deviation ( ^ 1cr level), we may replace I.lie outer-most
component a° residual anomalies by the 10 0 residual anomalies. This reduced
computer time from 1 min. 30.0 sec. to 0 min. 52.9 see. , i. c.. , by about 41°x},
in the test reported in Table 3.5. For simulating the summed range mite obser-
vations used in Sec. 4.2 and Sec. 5. 1, in addition to the (12, 12) potential coef-
ficients, 12 a residual anomalies covered the area of interest, surrounded by
40 5" residual anomalies up to 10" spherical distance around the area of
interest; and these were in turn surrounded by 37 100 residual anomalic:; from

10" to 30° spherical distance around the area of interest. 'These limits have
been shown later in Figures 4. 12 and 4.1 •t in See. 4.2.

The summed range rate observaLions used in Sec. 5.2 Were :similarly

simulated using (12,12) potential coefficients, and 104 2 0.5 residual anomalies
covering the area of interest, and an area of 5° spherical distance all around
the area of interest. These were surrounded by 26 50 residual anomalies
covering the area from spherical distance 50 to 10" all around the area of

interest; and finally, 37 100 residual anomalies covered the area from spherical

distance 100 to 300 all around lire area of interest. The limits of these 2:5,
5° and 10" residual anomalies are shown in Figure 3.3.

i

a
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Limit of 37 !0° Anomalies
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Figure 3.3 Extent of 2; 5, 50 and 100 Equal Area Residual Anomalies
for S.mulating observations in Sec. 5.2 Up To 30° Spherical
Radius All Around the Area of Investigation for the Recovery
of 20.5 Equal Area Anomalies.
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We discuss in this chapter the recovery of 100 and 5° equal area mean anom-
alies using the close satellite at heights of about 900 km and 250 km respectively.
The recovery of 5° and 2°. 5 equal area mean anomalies from the close satellite at
heights of about 900 km and 250 km will be discussed in Chapter 5. The effect of
5° equal area mean anomalies on summed range rate, and summed range, obser-
vations will be stronger when the close satellite is at a height of 250km, as com-
pared to the case when the close satellite is at a height of about 900 km. We may
therefore investigate various considerations and test procedures for anomaly
recovery when the signal is strong, and apply these later to the case when the
signal is comparatively weaker, mak'sug further modifications, as necessary.

We start in Sec. 4.1 with the discussion of recovery of 10° equal area mean
anomalies with the close satellite at a height of about 900km. We will first Inves-
tigate the effect on anomaly recovery in regional areas, if we constrain the re-
covered anomalies to give zero value for some low degree harmonic coefficients,
as discussed in Sec. 2.2.3. We will then investigate how effective summed range
observations are in comparison to the summed range rate observations for
recovering anomalies. The conclusions with respect to these two points will be
given in the end of Sec. 4.1.5.

i
s

	

	 We will next consider the design. of 'arcs', or the spacing of observations
in an arc, as the close satellite orbits over the area of investigation, and also
consider the spacing between arcs; and how these .affect the anomaly recovery.
We will then test various cases of anomaly recovery as affected by the relative
location of observations and the anomalies being estimated; and arrive at the
optimum model for recovery of 10 0 equal area mean anomalies. The conclusions
reached in Sec;. 4.1 would then be applied in Sec. 4.2 to the recovery of 5 0 equal

I

	
area mean anomalies with the close satellite at a height of 250 kin.

The summed range rate observations were used at 1 minute interval in
Sec. 4.1 for the recovery of 10 0 anomalies. The standard deviation of these ob-
servations may then have been considered as ..03 cm/sec. , based on an integration
interval of 1 min. , instead of . 08 cm/sec. based on an integration interval of 10 sec.
This has been later discussed at the end of Sec. 4.1.9, and would simply result in
the standard deviation of all recovered 10°anomalies Leing reduced by a factor of 3/8.

4.1	 Recovery of 100 Equal Area Mean Anomalies From Close Satellite at
Height of 900km

4.1.1 Area of Investigation

The area chosen for investigation was centered on lad tude 30° N. and

longitude 2700 E. (900 W.). Its latitudinal extent wits 70 0 from 100 S. to 600 N. ,
and longitudinal extent about 60° from 240" to 300" E. The longitudinal limits

i
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varied slightly in each 100 latitude zone, according to the actual limits of the 100

equal area anomaly blocks in accordance with the scheme described in Sec. 3.1.

The total number of 10° anomalies in this area was 37, and these were numbered

from west to east in each latitude zone starting from the north--west of the area,
and proceeding south. The limits of these anomalies, the center of the blocks
and the numbering system have been shown in Figure 4.1. The figure also shows
'satellite arcs' described below.

4.1.2 Satellite Arcs

A total of 14 arcs were selected so that these were positioned symmetrical-
ly in the area. There were 7 ascending arcs, with the subsatellite point moving
from south-east to north--west; and 7 descending arcs with the subsatellite point
moving from north-east to south-west. The number of arcs selected gave a
longitudinal spacing of about 6° between two adjacent ascending (or 2 adjacent
descending) arcs in the center of the area, which was close to half the longitu-
dinal extent of the 100 equal area anomaly blocks. If we consider all 14 arcs,
i.e. summed range rate, or summed range, observations at specified time inter-
vals over all 14 arcs, there would in general be portions of 2 ascending and 2
descending arcs over each anomaly block in the central area, and portions of 2
ascending (or 2 descending) arcs over each anomaly block in the 4 corners. if
we remove alternate ascending and descending arcs, and consider the remaining
8 arcs, the portions of arcs over any specific anomaly blc-6; - would be halved
when compared to the density obtained with 14 arcs. To enable convenient
numbering of arcs for investigation of anomaly recovery with different arc
spacing, the latter 8 arcs were numbered from 1 to 8, and the balance 6 arcs
out of the total of 14 arcs were numbered from 9 to 14.

The 14 arcs with their numbers, and the direction of arrow to distinguish
an ascending or descending arc, are shown in Figure 4.1. The inter-se number-
ing in Arcs 1 to 8 and in Arcs 9 to 14 was according to the starting time of the
arc. The arcs were chosen to be of 19 minutes duration or more, so that if tiie
summed range rate, or summed range, observations (hereafter 'observations')
were considered at 1 minute interval, there would be at least 20 observations
in an arc. No arcs were thus selected west of Are No. 2 and Are No. 4, or
east of Are No. a and Arc No. 7. The reason for choosing 1 minute interval
of observations will be clarified in Sec. 4.1.3. The starting time and duration
of each arc, and the latitude and longitude of first and last subsatellite point inCP

each arc, are given in Table 4.1.
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Figure 4. 1 Satellite Arcs for Recovery of 10" Equal Area Mean Anomalies.
Height of Close Satellite ;zi 900km.
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4.1.3 Time Interval of Observations along an Arc 

We may also consider along with the question of spacing of arcs roughly 
equal or half of the block size of anomaly being recovered, the question of 
spacing of observations or the time interval of observations along an arc in re­
lation to the block size of anomaly being recovered. In Figure 4.2 (a) to (d), the 
location of subsatellite points at intervals of 1 minute are shown over 4 anomaly 
blocks for the arcs selected in Figure 4.1. The longitudinal scale has been re­
duced in Figure 4.2 (a), (b) to achieve equal area representation. We notice that, 
in general, the spacing of observations at 1 minute interval is symmetrical over 
all the blocks considering both along the arc as well as across the arc obser­
vations, and this was the reason for choosing 1 minute interval of observations 
along the arc. The spacing of observations across the arc is slightly less than 
the spacing of observations along the arc in the north, but the former increndes 
progressively as we go to the southern portion of area. If we were to consider 
the observations at :10 sec. Interval for this case of 10° equal area anumaly re­
covery with arc spacing about hnlf the anomaly bloci, silw, the observatiuns would 
be closely spaced along the arcs as comllared to acruss the arcs. The rCVCl'HC 
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ANOMALY BLOCK No.7

--P

240°	 257°
Figure 4.2a

ANOMALY BLOCK No.22

253"	 270'	 277'
Figure 4.2b
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V 	 ^
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1Q^ 	 b	 ^10

257°	 257°	 240°	 250"
Figure 4.2c	 Fi sure- 4.2d

Figure 4.2 Typical Spacing of Observations over 10° Equal Area Mean
Anomaly Blocks. Height of Close Satellite P• 900 km. Are
Spaeingpj e, Time Interval Along Are = I Min.
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would be true if the observations were spaced at, say, 2 minutes interval.

To examine the effect of spacing of observations along the are on anomaly
recovery, summed range rate observations along 2 arcs, viz. Arc 13 and Arc 14,
at time intervals of 30 see., 60 sec. , and 120 sec. , were used for recovery of 9
anomalies in the central area. The anomalies and subsatellite points for the close
satellite at 2 minute intervals are shown in Figure 4.3.



From the figure, it is clear that the longitudinal spacing of arcs is much larger
as compared to the spacing of observations along the arcs. Even at 2 minutes
interval of observa tions along the arc, 2 more descending and 2 more ascending
arcs would be needed (e.g. Arcs 9, 10, 11, 12 with reference to figure 4.1) to
achieve symmetry of observations. Because of this very sparse spacing of arcs,
i. e. when about, say, 6 arcs (Arcs 9-14) should have been considered, only 2
arcs (Arcs 13, 14) have been considered, no satisfactory anomaly recovery
could be expected. Further, if on a-priori considerations the spacing of arcs
is inadequate for satisfactory anomaly recovery, this inadequate spacing of arcs
cannot be expected to be compensated by increasing along-arc observations.

The above considerations are confirmed by the results shown in Table
4.2, where the discrepancies in recovered anoinalies remain about the same
when observations along the are for Arcs 13, 1 .1 are increased from 2 min. to
1 min. and then to 30 sec. The standard deviations however, decrease with
increase in along-arc observations. Here, and in all subsequent discuNsions,
the standard deviations (std. devn.) quoted are the square root of respective
diagonal elements of the inverse normal matrix, without any modification for
the size of residuals or degrees of freedom, i.e. the scalar variance of unit
weight has been considered to be unity. The decrease in std. devn. may be
e; plained by the partials for neighboring observations (with respect to anom-
alies being recovered) not being significantly different, when along-arc obser-
vations are arbitrarily increased without regard to adequate spacing of arcs.
The ratio of std. devns. , as along-arc observations are increased, are also
shown in Table 4. 2, and are nearly 11V_2 - 0.71..

Table 4.2

Anomaly Discrepancies and Ratio of Standard P oviat ion
with increased Along-Arc Observations

Anom Center of Anomaly Anomaly Discrepancy (mgals)	 11atio of Std. Devn.
Block	 Time Interval of Obsns.

1 min. obsn. / 30 sec. obsn/
No.	 cp°	 l°	 2 min. 1 min. 30 sec.	 2 rain, obsn.	 1 min. obsn.

7 45 270

-

4

-	 --

4

- -

4

- -

.7i .!1'2

~	 11	 - -35 - 258 - - -54 -54 -54 .70 .72
12 35 270 44 43 42 .70 .72

13 35 282 -36 -35	 _
-

_ -35	
^-

. -71 .79,
- -- -16	 - ^ 25r - 256.6

_
-10 - -14 -16 ^	 -. 75 .72

17 25 267.5 29 35 37 .75 .73

18 25 278.5 -35 -39 -40 .75
- - -	 ----

.72
-

~ -	
--

-	 -22 - 15
- - - -

262
- -	 __

-16
- 	 - -

-15 - 	 - --14
.71

.72

23 15 272.5 41 43 43 .71 .72
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It is thus advisable to keep the time interval of observations along the arc,
or along-arc spacing, roughly same as spacing between arcs considering the
whole area, as was done in Figure 4.2. However, as we do not know a-priori
what spacing between arcs would be adequate for anomaly recovery, we may keep
a relatively close along-arc spacing, and after we have investigated the optimum
spacing between arcs, the std. devns. of recovered anomalies may be multiplied
by a factor of /n-, if n is the :average ratio of alo: zg-arc spacing to across-arc
spacing of observations. This conclusion about std. devns. may be questioned as
it is based on a test where the across-arc spacing was prima facie grossly in-
adequate. It was, however borne out again when 8 arcs were used, across-arc
spacing roughly equal to anomaly block size, and along-arc spacing was varied
from 1 minute to 30 sec. This test will be reported later at the end of Sec. 4.1.9.

4.1.4 Constraints for Low Degree Harmonic Coefficients

We now report the results of the effect of impo3ing six conditions to be
satisfied by the recovered anomalies, as discussed in Sec. 2.2.3. All the 14
arcs in Figure 4.1 were used with summed range-rate observations and all 37
anomalies in Figure 4.1 were solved for. The expected value of anomalies, the
recovered value of anomalies and their std. devns. , with and without the con-
ditions being imposed, are given in Table 4.3. The interval of observations for
the case with conditions happened to be 30 see., while that for the case without
conditions was 1 minute, hence the std. devu. for the case with conditions have
been quoted after multiplying by 42. The std. devn. for the range rate obser-
vations in both cases was kept as .08 cm/sec.

We find that though the std, devu. are about the same in both cases, the
anomaly discrepancy is much larger when the constraints are imposed than when
these are not imposed, the Root Mean Square {R. M.S.) value of the discrepancies
being 13.1 and 4.9 mgals respectively. The R. M.S. value of the recovered anom-
alies in both cases may also be compared with the R. M.S. value of the expected
anomalies. We may also calculate the correlation coefficient (p) of the recovered
values (Aga) with the expected values (A') from the relation:

cgs AgT /n

A	
n

^L Agea/n 2	
a9Ta /n

n	 n

n being the number of anomalies recovered. These statistics are shown in
Table 4. 4, from which it is clear that imposition of constraints for low degree
harmonic coefficients for anomaly recovery in regional areas, as opposed to
global coverage, worsens the solution and is therefore not Justified. We will

comment on the 1 kroodness' of solution withoutconstraints IaLor In See. 4. 1.l1.
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Table 4.3

I

Effect of Low Degree Harmonic Coefficient Constraints
on Anomaly Recovery

IAnom. Expected Soln.with Constraints Soln,without Constraints Anom. Discrepancy
No. Aiom, Anom, s. d. Anom, s. d. (3)-(2) (5)-(2)

( 1) (2) (3) (4) (5) (6) (7) (8)

E	

1 -2.2 -21.2 2.7 -1.6 3.2 -19.0 0.6
2 0.0 19.3 3.0 -2.1 3.2 19.3 -2.1
3 -5.9 -27.3 2.5 -6.9 2.7 -21.4 -1.0
4 -6.4 18.4 1.3 8.1 1.3 24.8 14.5
5 -0.6 19.8 3.1 0.4 3.6 20.4 1.0
6 5.7 -3.7 2.1 4.4 2.6 -9.4 -1.3
7 1.3 17.4 2.1 6.2 2.3 16.1 4.9
8 6.0 -14.9 2.1 -4.1 2.3 -20.9 -10.1
9 -3.8 -2.9 1.6 -4.9 1.6 0.9 -1.1

' 10 0.1
--

-11.1 3.5 -4.8 3.6 -11.2 -4.9
11 --

-5.3 -- --' -4.6	 - -2.-4
-2-.-4 -

2.5
---- -- 

0.7- 2.9
12 -6.0 -6.9 2.3 --10.5 2.3 -0.9 --4.5
13 3.1 4.7 2.4 11.5 2.4 1.6 8.4
14 -1.7 13.1 2.0 -2.8 2.2 14.8 -1.1
15 3.1 7.6 4.2 3.5 4.4 4.5 0.4
16 13.0 9.7 3.1 12.4 3.3 -3.3 -0.6
17 -6.0 1.9 2.8 -4.6 2.9 7.9 1.4
18 5.2 3.2 3.0 -0.4 2.9 -2.0 -5.6
19 -9.8 -28.6 3.1 -8.8 3.4 -18.8 1.0
20 -11.4

---
-7.4

-
4.1 --12.3 4.4 4.0 -0.9

21-----
--8.2 ---11.4 4.1--

--	
-6.4	 --

4.L----`_
-3.2 

-
-- 1.8

22 2,2 1.5 3.0 0.2 3.0 -0.7 -2.0
23 4.0 -5.0 2.5 4.2 2.6 --9.0 0.2
24 -4.7 1.9 3.3 4.8 3.4 6.6 9.5
25 -4.8 19.3 3.0 -8.8 3.4 24.1 -4.0
26 4.9 15.1 4.0 2.7 5.1 10.2 -2.2
27 2.4 1.3 4.2 3.7 4.5 -1.1 1.3

'	 28 -2.3 7.0 3.1 -0.2 3.3 9.3 2.1
29 -2.0 -5.0 2.4 -7.3 2.3 -3.0 -5.3
30t 8.6 19.8 2.7 3.1 3.4 11.2 -5.5

31 5.0 µ20.0 2.4
-----------------------------------------------

-0.5 2.6 -25.0 -5.5 
32 5.3 -11.6 2.4 6.8 5.0 --16.9 1.5
33 3.4 12.2 4.0 -4.8 4.6 8.8 -8.2
34 --6.1 -19.9 3.1 -2.7 3.5 -13.8 3.4
35 5.0 13.1 2.3 4.4 2.5 8.1 --0.6
36 -3.6 -15.9 3.3 4,5 4.0 -12.3 8.1
37 -0.8 10.3 1.8 4.2 1.9 11.1 5.0

Units of anomalies and standard deviations are mgals.
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For convenience of reference, we will call this latter solution in columns 5 and
6 of Table 4.3 as Solution 10-1, 100 being the bloc]; size of anomaly recovery
and 1 being the first solution to be considered.

Table 4.4

Statistics for Solutions With and Without Constraints
for Loy;* Degree Harmonic Coefficients

Soln. with Constraints
Yes	 No

R. M.S. value of anomaly discrepancy (mgals) 	 13.1	 4.9

R. M. S. value of recovered anomalies (mgals) 	 13.9	 5.9

R. M.S. value of expected anomalies (mgals)	 5.4	 5.4

Correln. coeff. (p) of recovered anom. with
5.33	 0.63

expected anomalies 

4.1.5 Summed Range Observations vs. Summed Range Rate Observations

We may also briefly examine if anomaly recovery could be done using
summed range observations. For this test, 37 anomalies were solved for using
summed range observations along 14 arcs as in Figure 4.1. The std, devn. of
observations was assumed as 10 meters (NASA, 1974, p. 4 - 78). The anomaly
discrepancies ranged from -150 i .gals to 180 mgals, with the R. M. S. value of
95 mgals. This test was conducted before the co pciusions about not imposing

constraints were reached, as described in the prLvious section, hence these
discrepancies could be compared with column 7 in Table 4.3 for the constrained

E	 solution, and with the R. M.S. value of 13.1 mgals as per Table 4.4. As the
anomaly discrepancies with summed range observations are so large as com-
pared to summed range rate observations, it was not considered worthwhile to
repeat the solution for the former without constraints.

The std. devn, of the recovered anomalies using summed range observa-
tions vary from 43 mgals to 475 mgals, with the RMS value of 225 mgals. The
std. devn. of recovered anomalies would be reduced proportionately if the std.
devn.. of observations was reduced from 10 meters. However, as the observa-
tions were assumed to be independent with the same std, devn. for each obser-
vation, the weight matrix would be a diagonal matrix with al.. elements an the

diagonal being the same number- 1/(std. devn. ) a, and hence the solution vector

would be unaltered. With the usual notation of A as the partials matrix, P the
weight matrix and I the unit matrix of corresponding size, L as the micclosure

vector, the solution vector X would be unaffected in the relation:

e

a

I
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I

X- -N-"U (A'PA)
-1

A'PL = -(A'	 I A)-' A'	
1 

a IL(s. d. }	 (s. d. )

(4.2)

(s. d, )a{A'A0	 1 a A'L -(A'A)-1 A'L
(s. d. )

We may therefore conclude that the design of arcs in Figure 4.1 is unable
to recover anomalies with summed range observations in contrast to summed rangy
rate observations. Further, as per remarks in the end of Sec. 4.1.4, we should
not impose any constraints for low degree harmonic coefficients on the recovered
anomalies in regional or localized areas. Accordingly, in all further tests we
will use only summed range rate observations and not- impose any constraints.

i
4.1. u Spacing of Arcs

It. is clear that the distribution of observations directly over an anomaly
block will become more dense as the number of arcs is increased over the area,
or in other words, the spacing between arcs is decreased. We may start with
some suitable spacing of arcs in relation to the anomaly block size, e.g. same
spacing as t;.e block size, which will result in one ascending (and/or one descend-

ing) 
are over each anomaly block. We may then, examine the resulting anomaly

recovery as we increase or decrease the spacing of arcs. We have already
reported the results for are spacing roughly half the anomaly size, i. e. 14 arcs,
in columns 5, 6, and 8 of Table 4. 3, without specifying the rationale for this 	 j

choice. We may now consider this Solution 10--1 in relation to anomaly recovery
with are spacing roughly equal to the anomaly size, i.e. Arcs 1 to 8; and we
may contrast it further with a rather unrealistic are spacing of double the
anomaly s ize, i. e. Arcs 2, 4, 5, and 7. These 4 arcs and the 37 anomalies
being recovered are shown in Figure 4.4.

Th,. statistics described in Sec. 4. 1.4 areg iven in Table 4.5 for these
3 cases. We may mention again that the observations were summed range rate
at 1 min. interval with std. devn. of . in cm/sec. , and 37 anomalies were solved
for without imposing any constraints.

Table 4.5

Statistics for Anomaly Recovery with Are Spacing of
2, 1 and 1/2 Times Anomaly Block Sire

Arc Spacing/Anomaly Block Size	 2	 1	 1/2

No. of Arcs	 2, 4, 5, 7 1 to 8 1 to 14

P. M. S. value of anomaly discrepancy (mgals)	 26.0	 7.4	 4.9

R. M. S. value of recovered anomalies (mgals)	 26.9	 8,4	 5.9

R. M.S. value of expected anomalies (mgals) 	 5.4	 5.4	 5.4

Correln. coeff. (p) of recovered anom. with expected anom. 	 0.26	 0.50 0.63
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Figure 4.4 Spacing of Arcs at 2 times Anomaly Block Size.
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It is obvious from Table 4.5 that arc spacing of twice the anomaly size, J. e.
4 Arcs is totally inadequate. 	 Further, the std. devns. of re^:overed anomalies

are tabulated in Table 4.6 for this case. With reference to the location of the 4
arcs in Figure 4. 4, we find that the std. devns. of anomalies which are aot
covered by any of these arcs is much greater than for those anomalies which are
covered by the arcs. It thf.refore appears necessary that each anomaly block
being recovered must be covered by satellite observations directly over it.

Table 4.6

Standard Deviation of Anomalies for Inadequate Arc Spacing
Of 2 Times Anomaly Block Size

Anom
No.

Std.
devn

Anom
No.

Std.
devn

Anom
No.

Std.
deva

Anom
No.

Std.
devn

Anom
No.

Std.
devn

Anom
No.

Std.
deva

Anom
No.

Std.
devn

1 44 5 13 10 17 15 28 20 67 26 366 32 722

2 26 6 41 11 50 16 32 21 336 27 294 33 226

3 28 7 33 12 309 17 431 22 97 28 85 34 60

4 33 8 39 13 56 18 34 23 63 29 74 35 40

9 20 14 24 19 22 24 155 30 292 36 111

25 37 31 115 37 350

Unit of standard deviation is mgals,

4.1.7 Effect of Aliasing in Anomaly Recovery

From the discussion in the previous section, we now find that arc-spacing
of roughly half the anomaly block size, i.e. Arcs 1 to 14 (or Solution 10-1) is to
be preferred over arc-spacing roughly same as anomaly block size, i. e. Arcs 1
to 8. However, we also find from columns 6 and 8 of `fable 4.3 that there are
several l.trge anomaly discrepancies which are about 3 times or more, of the
std. devT, of the recovered anofnalie:s, e.g. Anomaly No. 4,8,13,24,36: and
there are several others which are about 2 times the std. deva. As Cher. are
no 'observational' errors in the simulated observations, the anomaly discrep-
ancies should have, in general, been smaller.

Though we cannot rule out the possibility at this stage that we have not
yet reached the optimum spacing of arcs in Solution 10-1, and should consider
closer are spacing instead of 1/2 the block size, the slow impri>vement in going
from are spacing roughly same as block size (Arcs 1 to 8) to hs If of block size
(Arcs 1 to 14) as shotin in Table 4.5 indicates that we ought to first investigate
other reasons for the still unsatisfactory anomaly recovery. One such reason
could be the inability of the anomalies on the periphery of the Area to be re-
covered satisfactorily due to their adjacent anomalies, which are out of the area,

1
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being ignored in the estimation process; or in other words, the effect of
'alias ing.'

We may then consider this 'aliasin;' to have affected the recovery of
peripheral anomalies, which may be the outermost anomalies in the area (see
Figure 4. 1), i.e. the anomalies in the north and south latitude zones (Anomaly
No. 1 to 4, 32 to 37) and the anomalies on the west and east edge of other
latitude zones (Anomaly No. 5, 9; 10,14; 15,19; 20, 25; 26, 31 ). Though the obser-
vations used were over the whole area covered by 37 anomalies, which were then
solved for, it may be argued that the values obtained for the 20 anomalies on the
periphery may have been vitiated by aliasing, and only the remaining 17 anom-
alies may be recovered satisfactorily. The anomaly discrepancies of these 17
anomalies have been extracted from columns 8 and 6 of Table 4.3 from Solution
10-1 and given in Table 4.7.

Table 4.7

Discrepancies in Recovered Anomalies Unaffected by Aliasing

Anomaly	 Anomaly	 Anomaly	 Anomaly	 Anomaly
No. Discr. s. d. No. Discr. s. d. No. Discr. s. d. No. Discr. s. d. No. Discr. s. d.

6	 -1.3	 2.6	 11	 2.9	 2, 5	 16	 -0.6	 3.3	 21 1.8 4.2 27 1.3 4.5
7	 4.9	 2.3	 12	 -4.5	 2.3	 17	 1.4	 2.9	 22 -2.0 3.0 28 2.1 3.3
8	 -10.1	 2.3	 13	 8.4	 2.4	 18	 -5.6	 2.9	 23 0.2 2.6 29 --5.3 2.3

24 9.5 3.4 '30 -5.5 3.4

Units of anomaly discrepancy and standard deviation are mgals.

In Table 4. 7, we still find several large anomaly discrepancies, e.g.
Anomaly No. 8, 13, 24, which are about 3 or more times the std. devn. If it
is argued that not only the outermost but the next set of adjacent anomalies should
also be rejected because of aliasing effect, we are left with Anomaly No. 12, 17,
22 and 23; but the anomaly discrepancy is still large for Anomaly No. 12. Further,
when we consider that the anomaly discrepancies for many peripheral anomalies
which may be supposed to have been affected by abasing, is quite small (about
1/2 the s. d.) e. g. Anomaly No. 1, 3, 5,14,15,19, 20, 27, 32, 35 in Table 4. 3, we
have to conclude that aliasing, as defined above, does not appear to be the cause
of the unsatisfactory anomaly recovery in Solution 10-1.

4.1.8 Relative Location of Anomalies and Arcs

Another reason, which may be considered for the unsatisfactory anomaly
recovery in Solution 10-1, could be soine weakness in anomaly recovery caused
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by sparser distribution of observations in the corners of the area as compared to
the central area. The anomaly blocks most densely covered by observations are
No. 7, 11, 12, 13 and 17. We may, therefore recover only these 5 anomalies
from the observations used in Solution 10-1, and compare the anomaly discrepancies
of this solution with the discrepancies for the same 5 anomalies in Solution 10-1,
where all 37 anomalies were estimated together. This has been done in Table 4.8.

Table 4.8

E
Effect of Reduction in Number of Recovered Anomalies.

Summed Range Rate observations at 1 minute Interval for 14 Arcs

No. of Anomalies Solved= 5 	 No. of Anomalies Solved-- 37
Anom.

	

No.	 Anom. Discr. Std. Devn. Anom. Dscr. Std. Devn.

	

7	 -5.4	 0.7	 4.9	 2.3

	

11	 1.5	 0.7	 2.9	 2.5

	

12	 14.2	 0.8	 -4.5	 2.3

	

13	 -15.0	 0.4	 8.4	 2.4

	

17	 12.5	 0.7	 1.4	 2.9

Units of anomaly discrepancy and standard deviation are ingals.

We first note that by including a large number of observations, which are
not over the anomalies being recovered, the std, devns. of anomalies being re-
covered drop to unrealistically low values. The reason for the decrease in std.
devn. in column 3 of Table 4.8, though the anomaly discrepancies are large in
column 2, when we reduce the number of recovered anomalies, is not clear.
This may be contrasted with increase in std. devns. though the anomaly dis-
crepancies become lower, when a larger number of anomalies are solved for
than what are covered by observations, and is discussed in remarks following
Table 4.9. in any case, it is clear from Table 4.8 that the anomaly recovery
has been worsened when we solve for a smaller number of anoinaiies than what
are covered by observations, even if these were sparse observations. We may
then run another test for the effect of relative location of anomalies and arcs by

j	 using all observations along 7 ascending arcs (and a separate test later by using

#	 7 descending arcs), andsolving for all 37 anomalies. The anomalies covered by
l	 the arcs should be recovered better than those not covered by them, as noted

earlier in Table 4.6. The former anomalies may then be recovered by them-
!	 selves alone using the same 7 arcs, and compared with their values with the

case when all 37 anomalies were solved for. We would thus be interested only
in the subset of anomalies covered by 7 ascending (or descending) arcs, Figures
4.5 and 4.6 respectively; and examining the effect of solving for a larger set of
anomalies. We would have however ensured in this test that not only the density
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rigure 4.5 Relative Location of Anomaly Blocks and

7 Ascending Arcs.

of observations was uniform (1/2 anomaly block size both across and along--arc)
over all anomalies of interest, but that there were no extra observations not
over the anomalies of interest.
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We first report in Table 4.9 results for all 37 anomalies, using either
all ascending arcs or all descending arcs. The std. deva. has been given for all
anomalies, whether they are covered by observations or not, to highlight the
fact that the anomalies not covered by observations cannot be recovered. The
anomaly discrepancy has however been shown only when it is not absurdly large,
say when its absolute value is not greater than 10 mgals.

Table 4.9

Comparison of Anomaly Discrepancy and Standard Deviations
for Anomalies Covered or Not Covered by Observations.

Summed Range Rate Observations at 1 Min. Interval for 7 Arcs

Ctr. ofAnom 7 Ascending Arcs ( Fig. 4 . 5) 7 Descending Arcs ( Fig. 4.6)
Anom Block Anom. Covered Anom. Std. Anom. Covered Anom. Std.

No. cp° e by Obsns. Discrep Devu by Obsns. Discrep Devn
1 55.0 248.5 Yes 5.9 6.8 No 1.3* 44.1
2 1? Partly 2.5 10.2 Partly --2.2 19.7
3 " 282.5 No 51.8 Yes --5.1 6.1
4 " 300.0 t? _160.7_ ----!' --- - _-8.1___4.4 --

r- 5 - 45.0 242.0--
__

Yes-r-- --2.3 5.7 No 47.6
6 11 „ 3.2 6.1 It
7 it 270.0 it -4.7 5.6 Yes 3.2 6.6
8 " 284.0 No 21.6 " -3.5 5.4
9 " 298_0 " 77.3 -__	 " ---- - -3.4 -4.0 --_

10 - 35 . 0 26 . 0
_

Partly - - - - -1.7 8.6 -No x20.3
11 " 258.0 Yes -1.5 6.3 Yes 1.2 7.4
12 " 270.0 ,T 4.5 5.5 " -4.0 6.8
13 " 282.0 it -8.5 6.9 " -1.1 6.6
14 it 294 . 0 No__- 18 . 9 -__Partly_-__ 1.7- 10.0__

15 r 25.0 245.5 - - - No
-_ --__

64.1- Yes
-

-2.2 7.-5
16 it 256.5 Yes -0.5 12.1 11 7.0
17 " 267.5 " -1.7 5.9 " --1.8 7.0
18 " 278.5 " 0.7 5.5 to -1.3 10.2
19 " 289.5 " 1  0--------------------------------------o44.9_
20 W 15.0 242.0 - - - No -	 - - 506.0 Yes -3.7 7.2
21 TT 252.0 11 " 0.6 6.0
22 T, 262.0 Yes --0.7 14.4 " -6.4 6.6
23 it 272.5 -1.0 6.1 2.1 10.2
24 it 283.0 " -2.1 5.9 No 77.0
25 it 293.0 4 .14,.1 5. 5 it 351.2_
2V - 5.0 245.0 - r No	

____- _- 912.9___-- Yes _^ -_ -2.2
- -

6.1
27 " 255.0 It 164.3 it 6.5
23 " 265.0 Partly 6.0 20.4 it 0.5 8.7

.`19 275.0 Yes -1.8 6.9 No 50.1
1:01 0 " 285.0 " 0.2 6.6 5.2* 275.0
31 " 295.0 T' -8.3 3.4 T' ----- 285.5--_
32 - -5.0 245.0 --- No - - - - - - - - - - - - - - - - Yes -8.1- ^7.6
33 if 255.0 If 469.6 " -5.2 8.0

34 " 265.0 to Partly -9.5 15.9
35 it 275.0 Yes -3.3 7.2 No

'T 675.436
37

1t 285.0
295.0

^T -0.9
6.8

6.8
3.2 „ 791.6

Units of anomaly discrepancy and standard *Unrepresentative Value.
deviation are mgals. Anomaly discrepancy not Close agreement by chance.
tabulated if absurdly large, i. e. if absolute
value greater than 10 mgals
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We first consider the case when all 37 anomalies have been estimated
though observations covered only a subset of these anomalies. firstly, we find
that the farther the location of anomaly from the observations (along the arcs),
the larger is the std. dem. , and the anomaly cannot be recovered when there are
no observations directly over the anomaly block. Secondly, considering the std.
devas. of anomalies covered by observations, these are all larger than the corres-
ponding std. devns. in Solution 10--1 given in column 6 of Table 4.3. This appears
to be due to solving for larger number of anomalies than covered by observations,
and may be explained by the Normals matrix becoming ill--conditioned by their
incorporation.

Next, we compare the anomaly recovery with the case when only the
anomalies covered by observations are estimated, or what we may term as the
anomalies of interest. There are 24 anomalies of interest in either . ase of 7
ascending and 7 descending arcs. The statistics for these 24 anomalies are
given in Table 4.10.

Table 4.10

Effect of Solving for More Anomalies than Covered by Observations.
Summed Flange Rate Observations at 1 min. Interval for 7 Arcs

7 Ascending Arcs 7 Descending Arcs
No. of Anomalies Solved for	 24	 37	 24	 37

R. M. S. value of anom. discrepancy 5.1 3.9 7.2 4.1
for 24 anomalies (mgals)

R. M. S. value of 24 recovered
anomalies (mgals)

6.2 5.8 7.7 7.0

R. M. S. value of 24 expected 5.2 5.2 5.7 5.7
anomalies (mgals)

Correln. coeff. (p) of recovered 0.62 0.75 0.46 0.81
anom. with expected? anom.

The results clearly point out that the anomaly recovery improves for a
anomalies covered by observations, if additional anomalies around the former 	 a
anomalies of interest, are treated as unknowns and included in the estimation 	 "3

j	 process. The latter Ldditional anomalies are not covered by observations and
cannot be recovered themselves, as evidenced by the very large std. devne. in
Table 4.9, but their inclusion improves the model for recovery of anomalies of
interest.

From Figares 4.5 and 4.6, we see that the additional anomalies were one
or two anomaly blocks beyond the anomalies covered by observations, but they
were not in a systematic pattern around the anomalies of interest. Another 2
solutions were therefore tried, which we shall term as Solutions 10-2 and 10-3.
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These had respectively one and two additional anomalies on the periphery all
around the 37 anomalies leading to a total number of 64 and 92 anomalies re-
spectively, which were then solved for. The details, as reported below, for
37 anomalies were extracted from these Solutions 10-2 and 10-3 for comparison
with Solution 10-1. The layout of 37,64 and 92 anomalies for these 3 solutions
is shown in Figure 4.7. Some statistics for these solutions are given in Table
4.11.
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Table 4. 11

Statistics for Anomaly Recovery for 37 10° Equal Area Mean Anomalies
Summed Range Rate Observations at 1 Min. Interval for 14 Arcs

Soln.10-1 Soln.10-2 Soln.10-3
No. of anomalies solved for 37 64 92

R. M.S. value of anom. discrepancy
for 37 anomalies (mgals) 4.9 p. 3 0.3

Meau value of anom. discrepancy 0.0 -0.1 0.3
for 37 anomalies (mgals)

Minimum value of anom. discrepancy -10.1  -0.7 0.1for 37 anomalies (mgals)
Maximum value of anom. discrepancy 14.5 0.8 0.4for 37 anomalies (mgals)
Sum of squares of anom. discrepancy 891' 1 4.3 2.7for 37 anomalies (mgals2)
71. M.S. value of 37 recovered

6.9 5.5 5.4 anomalies (mgals)
R. M.S. value of 37 expected

6.4 5.4 5.4 anomalies (mgals)
Correln. coeff. (p) of recovered anom. 0.63 0.9981 0.9988

with expected anomalies

The improvement in anomaly recovery by including one additional anomaly
block all around the periphery, is strikingly illustrated in the results of going
from Solution 10-1 to 10-2. The further improvement in going to Solution 10-3
is very little. In fact, the latter appears to be an almost perfect anomaly recov-
ery but for a constant anomaly discrepancy of about 0.3 mgals. The W equal
area anomalies are however not recovered at all in Solution 10-3, as described
later, and the close agreement is illusory, for it merely shows the repeatability
of the results. The summed range rate 'observations' were simulated using 130

i	 anomalies, I. e. 3 le blocks all around the periphery of 37 anomalies of interest;
and now when we use these observations to recover 92 anomalies, i.e. up to 2 100
blocks all around the anomalies of interest, the process is virtually repeated in
reverse order. The small anomaly discrepancy is due to a smaller subset of

(	 anomalies being recovered that what were used to generate the simulated observa-
tions. The almost constant value with a small magnitude of 0.3 mgals does how-

1	 ever show that firstly, partials of observations with retg pect to the unknown para-
meters (10° anomalies) have been computed accurately enough for the anomalies

{	 to be well recovered from the initial zero value in a. non-linear model. Secondly,
the density of observations with are spacing of about half anomaly block size is

i	 adequate for the anomaly recovery. Thirdly, we conclude that the effect of re-

a
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sidual anomalies farther than 2 anomaly blocks, i.e. 200, is very small on the
summed range rate observations.

To confirm the above conclusion, a reduced set of observations with lati-
tudinal extent from 10 0 'N. to 50° N were extracted from the previous observations,
covering the latitudinal extent from 10°S. to 60°N.

The longitudinal extent of this reduced set of observations was so kept that
these observations covered only 16 anomalies numbered 6 to 8;10 to 13;15 to 19; and
21 to 24. These anomalies and arcs along+which observations were used are shown
in Figure 4.8.
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These extracted observations had thus been generated using anomalies up to a,

spherical distance of at least 400 beyond the limit of this area, and these obser-

vations were now used to recover 16 anomalies of interest along with 2 anomaly
blocks all around the periphery. observations were used only along 8 arcs,
Arcs ? to 8, i.e. at arc spacing roughly same as the size of anomaly block,
and therefore with this sparser density of observations, the anomaly recovery
could not be expected to have as close agreement as reported in the last column
of Table 4.11 for Solution 10-3. However, the R. M.S. value of anomaly discrep-
ancy for the 16 anomalies of interest was only 0.9 mgals, and the correlation
coefficient between the recovered value and the expected value of anomalies was
0.988. As these results confirm the conclusion that the effect of residual anom-
alies farther than 2 anomaly blocks is negligibly small on the summed range rate
observations, this test for 16 anomalies of interest was not repeated with 14 arcs.

We may now elaborate on the remark after Table 4.11 that anomalies were
not recovered in Solution 10-3. Firstly, the correlation coefficients between the
37 recovered anomalies, as obtained from the variance covariance matrix of
Solution 10-3, were very high. The average value of this correlation coefficient
for anomalies in the same latitude zone between 2 adjacent anomalies and be-
tween 2 anomalies separated by 1, 2 and 3 anomaly blocks between them was
about 0.9. Its value between two recovered anomalies in 2 adjacent latitude
zones and between 2 anomalies separated by 1 and 2 latitude zones was also about
0.9. In short, the different anomalies were not being recovered individually.
Secondly, the std. devn. of the 37 recovered anomalies were also large; the
minimum, maximum and R. M. S. value being 41. 4, 63. 1  and 52.8 ingals respec-
tively. When we note that minimum, maximum and R. M.S. value of std. devn.
for the 37 anomalies in Solution 10-2 were 3. 4 1 23.4 and 7.5 mgals respectively,

we have to conclude that Solution 10-3 has to be rejected, and Solution 10-2
accepted. Solution 10-2 will be examined in greater detail in the following Sec.f	
4.1.9.

4.1.9 Recovery Model for 100 Equal Area Mean Anomalies

The statistics for Solution 10-2 have been presented in Table 4.11 for the
37 anomalies of interest covered by the observations. We may also record here
the improvement in anomaly recovery, with the increase in density of observa-
tions from arc-spacing of roughly same as anomaly block size (8 Arcs) to are
spacing of roughly half of anomaly block size (14 Arcs). The number of recovered
anomalies in both cases were 64, i.e. 37 anomalies of interest and an additional
anomaly all around the area covered by observation; and the spacing of observa-
tions along the are was 1 min. The statistics for the 37 anomalies of interest
are given in 'fable 4.12.
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Table 4. 12

Effect of Reduction in Spacing of Arcs for Solution 10-2
for 37 100 Equal Area Mean Anomalies

Soln. 10-2
14 Arcs	 8 Arcs

R. M. S. value of anomaly discrepancy
( mgals)

0.3 1.3 

Mean value of anomaly discrepancy
-0.1 0.2

(mgals)
Minimum value of anomaly discrepancy

(mgals) -0.7 -2.4 

Maximum value of anomaly discrepancy

( mgals)
0.8 6.3 

Sum of Squares of anomaly discrepancy 4.3 59.9
(mgals)a

R. M. S. value of recovered anomalies

(mgals)

5.5 5.5

R. M.S. value of expected anomalies

(mks)

5.4 5.4

Correln. coeff. (p) of recovered anom.
0.998 0.973

with expected anom.
R. M. S. value of std. devn. of recovered

7.5 43.0
anom. (mgals)

The correlation coefficients between the 37 recovered anomalies obtained
from the variance-covariance matrix of Solution 10-2 are shown in Figure 4.9.
The figure shows the correlation coefficients between adjacent anomalies both
in the east-west direction in the same latitude zone, as well as in the north-
south direction between two adjacent anomalies in two adjacent latitude zones.
We first note that the magnitude of the correlation coefficients is low; average
value in the east-west direction is -0.32, and average value in the north-south
direction is -0.44, which indicates that the individual 10 0 equal area Anomalies
are being recovered. Secondly, the correlation coefficients are lower in the
center, where the density of observations is large because of the presence of
both ascending and descending arcs. Thirdly, in the north half of the area, the
magnitude of the east-west correlation coefficient is higher (average -.40) than
the magnitude of the north-south correlation coefficient (average -. 26); while in
the south-half of area the east-west correlation coefficient is lower (average -. 28)
than the north--south correlation coefficient (average -0.61), This is due to
larger spacing between arcs in the south as compared to the north, as would be
clear from Figure 4.2. A high correlation coefficient appears as a sign of

weak anomaly recovery.
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We may now consider the std. devns. of the recovered anomalies for the
37 anomalies of interest in Solution 10-2. These have been tabulated in Table
4.13. We find that the std. devns. are lowest in the center of the area. further,
the std. devns. of anomalies in the north of the area are lower as compared to
the anomalies in the south of the area; and finally, std, devns. of anomalies in
the east ^.f area are lower than for the anomalies in the west of area in each lati-
tude^ zone.

Table 4.13

Variation in Standard Deviation of
37 10° Equal Area Mean Anomalies in Solution 1G-2

Anomaly	 Latitude	 std. Deva. of Anomalies Sequentially from W. to E.
No.	 Zone	 (mgals)

1-4 50° - 60" N. 9.5, 6.1, 4.6, 6.1
5-9 40° - z500 N 10.3, 4. 6, 3.9, 4.3, 7.8

10-14 300- 40°N 11.2, 4.0, 3.6, 3.4, 7.3
15-1919 20°-- 30° N. 7.2, 4.4, 3.5, 3.9, 4.8
20-2525 10°- 20° N. 7. 4, 5.51 4.0, 3. 5, 4.8, 5.4
26-31  0° - 10° N . 11.3, 6.9, 4.8, 4. 3, 6.0, 5.9
32-37 10° S- 00 23.4, 15. G, 10.4, 5.5, 7.0,* 5.2

*perhaps caused by Arc. No. 8 not going up to the edge of the area. See remarks
before Table 4. 1.

The std. d -.-ns. decrease in the center of the area clearly because of the
increascid density of observations because of the presence of both ascending and
descending arcs. it may therefore be better to consider the recovery of anom-
alies in an area Shaped like a rhombus with the diagowt13 roughly east-west and
aurth-south so that most of the area is covered by both ascending and descending
arcs. This has been done in Sec. 4.2 and Chapter 5. The increase in std.
devns, in the south of area as compared to the north of area is due to the increase
in the spacing of arcs as we go towards the equator as may be seen from figure
4.2. It may therefore be appropriate, if it can be so arranged, to consider re-
covery in equatorial areas separately from mid-latitudes.

The reason for the increase in std. devn. from east to west in a latitude
zone is due to the fixing of starting coordinates of each arc, as observations of
about 20 minutes duration could not solve for the starting coordinates, as dis-
cussed in Sac. 2.3..3. The misclosures of 'observed value' - 'computed value'
of summed range rate nre therefore zero in the north-east for descending arcs

and in the sout h-east for ascending arcs, and increase as we proceed along; the

arcs to south-west and north-west respectively. As outlined later in Sec. 6. 1,
while working with actual observational data over entire usable portion of the

arc, say, 40 minutes, and in conjunction with other tracking data, it may be
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possible to adjust the starting coordinates of the are (or portions of the arc) to
fit the whole date., and there may not then be any large change in std. devn. of
anomalies in a lati.tude zone towards one edge.

We may now examine the question of 'goodness' of solution, as we have
already considered this for Solution 10-2. For simulated observations, not
burdened with observational errors, the anomaly discrepancies should be small,
about 1/2 to 1/3 of the R. M.S. value of the expected anomalies. 'I he R. M.S.
value of the recovered anomalies should be comparable to the R. M.S. value of
the expected anomalies, with a high value, say 0. 9, of the correlation coefficient
of recovered with expected anomalies, as defined by p in equation (4.1). These
statistics may be seen for Solution 10-2 in Table 4.11.

The correlation coefficient between the recovered anomalies, as obtained
from the variance-covariance matrix should be small, say about 0. 5 or less;
see Figure 4.9. The std. devn. of recovered anomalies should be comparable
to, or less than, the std. devn. of the expected anomalies, which may be ob-
tained as the R. M.S. value of the expected anomalies. We may note here that
the std. devn. of recovered anomalies would be decreased by a factor by which .
the std. devn. of observations is reduced, as the observations were considered
to be independent, and having the same std. devn.; see equation (4.2) in
Sec. 4.1.5. The std. devn. of summed range rate observations in Sec. 4.1 was
taken as .08 cm/sec. , which is based on an integration interval of 10 sec. How-
ever, as we have used observations at 1 minute interval, we may consider their
std. de ny. as .03 cm/sec, based on an integration interval of 1 minute. The
std. devn. of recovered anomalies in Solution 10-2 would thus become 2.8 mgals
instead of 7.5 mgals. We have already discussed the increased std. devn. of re-
covered anomalies on the -south and west edges of the area because of reduced
number of observations. if we then cons idor the remaining anomalies, i.e.
except Anomaly No. 5, 10, 26, 32, 33, 34 on the edges of the area (see Table
4.13 and Figures 4. 1 and 4.2) having std, devn, larger than 10 mkmis, the
R. M. S. value of 31 recovered anomalies in Solution 10-2 would become 5. 2
mgals considering std. devn, of summed range rate observations as .08cm/sec.
This will be reduced to 2.0mgals, if we consider the std. devn. of summed range
rate observations as .03 cm/sec. This R. M.S. value of the std, devn, of re--
covered anomalies, 2.0 or 2.8 mgals, may then be compared for judging the
'goodness' of anomaly recovery with the std. devn. of expected anomalies of
5.4mgals, obtained as the R. M.S. value of the 37 expected anomal es.

We may also recall the discussion in Sec. 4.1. 3 about computing Che std.
devn. of recovered anomalies wben the spacing of observations along the arc is
about the same as spacing of observations between adjacent arcs. V'IC have en-
sured this in Solution 10-2, where; the spacing of arcs was about half anomaly block
sire by considering observations along the arc at 1 minute ink.-rval; see Figure
4.. 2. However, if we had considered observations along the are at oloser time
interval, say n times the spacing of observations between the arcs, then the
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resulting std. devn. of the recovered anomalies need to be multiplied by 5. This
was demonstrated in Table 4.3, but those results were rased on a recovery
model which solved only for the anomalies covered by observations, and the ob-
servations were also grossly inadequate, as we considered only 2 arcs. Now
that we have decided on the optimum recovery model by solving for an additional
anomaly all around the border of area covered by observations, we may examine
the change in std. devn,s. with increased along-arc observations for this model.
We have already reported in Table 4.12 the results of recovering 37 anomalies
of interest, using observations along 8 arcs at 1 minute interval to solve for
64 anomalies. Another solution was then obtained using the same model, but
with observations at 30 sec. interval along 8 arcs. The difference between anom-
aly recovery for the 37 anomalies of interest between these 2 runs was nominal,
the R. M.S. value of the difference being 1.4 mgal.s. However, the std. devns. of
recovered anomalies of the two solutions bore an almost constant ratio, whose
mean value was 0. 70, which agrees with the factor 1/T= 0.71. These results
then confirm the conclusions of Sec. 4.1.3.

We have thus described the criteria for judging the 'goodness' of anomaly
recovery and illustrated it with Solution 10-'? of 37 10° equal area mean anom-
alies. We now describe in Sec. 4.2 the anomaly recovery of a equal area mean
anomalies using a close satellite of height 250 km. A
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4.2	 Recovery of 5° Equal Area Mean Anomalies from Close Satellite at
Height of 250 km

4.2.1 Area of Investigation and Satellite Arcs

The area for the recovery of 5 3 equal area anomalies was also centered
on latitude 300 N. and longitude 26e E. Two changes were, however, made in
the shape and the extent of the area as per the discussion before Table 4.13 in
Sec. 4.1.9. First, the shape of the area was changed from a roughly rectangu-
lar one, as in Figure: 4.1 to nearly like a rhombus with the diagonals roughly
east-west and north-south. This change resulted in most of the anomalies being
covered by both ascending and descending arcs (see Figure 4.10), thereby in-
creasing the density of observations and making it more uniform over a much
larger portion of the area than what was possible with a rectangular shape of the
area as in Figure 4.1. The second change was to reduce the latitudinal extent
of the area so that the spacing between two adjacent arcs was more nearly the
same over anomalies in the north edge of the area as compared to the spacing
over anomalies in the south edge of the area (see Figure 4.11 a, b). The wide
latitudinal extent of 70° for the area for the recovery of 10 0 anomalies had re-
sulted in the spacing between the arcs to be nearly halved over anomalies in the
south edge as compared to the north edge of the area, as may be seen from
Figures 4.2a and 4.2d. However, the present latitudinal extent of 20 0 for the
area for the recovery of a anomalies was merely for the computational con-
venience of having a smaller number of arcs to be simulated. This will be-
come more apparent in Sec. 5. 1, where the same area of investigation was
retained to enable comparison, but we needed to consider up to 28 arcs. From
the consideration of nearly uniform spacing between the arcs from the north
edge to the south edge of the area, we may have as well increased the latitudinal
extent to 400 .

The area of investigation and the satellite arcs have been shown in
Figure 4.10. As discussed, the anomalies to be recovered were chosen so
that their location and extent would result in the shape of the area being more
nearly a rhombus. The total number of anomalies with these considerations
came out to be 12. The satellite arcs were selected so that the spacing be-
tween adjacent arcs was roughly half of the longitudinal extent of the 5° anomaly
block; and that all the arcs taken together were positioned symmetrically over
the area of investigation. The total number of arcs selected from these
considerations were 12. The inter-se numbering of arcs was according to the
starting time of the arc. The starting time, the duration ol' arc and the coordi-
nates for the first and last sub-satellite point for the close :satellite are given
in 'fable 4.14.
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Table 4.14
s

Satellite Arcs Used for Recovery of 5° Equal Area Mean Anomalies
Height of Close Satellite ;k- 250 km

Are Ascending/	 Starting Time*	 Duration First & Last Subsatellite Pts.

No. Descending	 of Are	 for Close Sat.

	

Are	 Day Hour Min.. Sec. Min. Sec.

	

1	 d	 0	 12 31	 00	 4	 00	 34.4 273.9 20.2 264.2

	

2	 '`	 0	 22	 29	 40	 3	 40	 27.5 272.8 40.2 262.8

	

3	 101,	 2	 13	 42	 00	 4	 10	 39.8 265.9	 25.3 254.8

	

4	 "Ir"	 2	 23	 40	 10	 4	 10	 20.1 265.0 34.8 254.9

	

5	 ,el	 4	 13	 26	 30	 4	 10	 35.1 271.4 20.3 261.2
I	 6	 4	 23	 24	 40	 4	 20	 25.0 271.5 40.1 259.9

	

7	 6	 14 37	 40	 4	 20	 39.9 263.0 24.8 251.4

	

8	 7	 00	 35	 50	 4	 10	 19.9 262.0 34.7 252.0

	

9	 8	 14 21	 40	 4	 20	 36.9 269.9 21.6 259.0

	

10	 9	 00	 20	 30	 3	 50	 25.5 268.1 38.9 258.0

	

11	 12	 15	 16	 30	 4	 50	 39.8 269.5 22.9 256.8

	

12	 13	 01	 15	 00	 4	 00	 21.2 267.8 35.4 258.0

*in elapsed time from 21 Sept. 69 01 hr. 33 min. 36.3 sec. (see Sec. 1.1)

The observations along each are were simulated at a time interval of 10
seconds. The observations corresponding to the position of sub-satellite points
of the close satellite over 4 anomaly blocks have been shown in Figures 4.1la
to d, the longitudinal scale having been reduced to achieve an equal area repre-
sentation. The observations have been shown in Figure 4.11 at time interval of
every 30 seconds only. We notice from Figure 4.11a that the spacing of along-
arc abservations at 30 seconds time interval is slightly larger in anomaly block
No. 1 at the north edge of the area, as compared to the spacing of observations
between adjacent arcs. Taut, as we proceed to the south edge of the area
through anomaly blocks No. 4, 9, 12, the along--arc spacing of observations
becomes slightly smaller than the across-arc spacing of observations. How-
ever, considering the whole area, if we achieve satisfactory anomaly recovery
with 12 arcs giving across--arc spacing of half anomaly block size, we ought to
utilize the corresponding along-arc spacing of observations as 30 sec. And,
in that case, as we have used the observations at time interval of 10 seconds,
we need to multiply the resulting std. devns. of the recovered anomalies by a

factor of /-3-. The std. devns. in Sec. 4.2 have been quoted throughout as ob-
tained from the observations at 10 seconds (.lane interval without multiplying
by the factor of ^3, and this has been done only finally In the end of Section
4.2.3.
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Figure 4.11 Typical Spacing of Observations over 5° Equal Area
Mean Anomaly Blocks.
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Are Spacings 30 , Time Interval Along Are= 30 sec.
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4.2.2 Relative Location of Anomalies and Arcs

We have already noticed in Sec. 4.1.8, particularly in the remarks follow-
ing Table 4. 11, that the anomaly recovery improves for the anomalies covered by
observations if additional anomalies all around the anomalies of interest are in-
cluded in the solution. We would thus discuss 3 solutions, Solutions 250-5-1,
250-5-2, 250-5-3 indicating the 3 solutions for 50 anomalies using close satel-
lite at a height of about 250 km. The statistics will be quoted only for the 12 anom-
alies of interest, as in Figure 4. 10, but the number of anomalies solved for in the
3 solutions would be 12, 24 and 40 respectively. The layout of these 12, 24 and
40 anomalies has been shown in figure 4.12.
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Figure 4.12 Layout of Anomalies for Solutions 250-5-1, 250-5-2, 250-5-3.
No. of Anomalies Solved for Were 12, 24, 40 respectively.

7

73



Summed range rate observations with std. devu. of .08 cm/sec., and time
interval of 10 seconds along an arc, were used for 12 arcs as in Figure 4.10 for
all the three solutions, 250-5-1 0 2, 3.

We will first report the anomaly discrepancies using 6 arcs, i, e. are
spacing roughly same as anomaly block size. Two different sets of 6 arcs were
used. The location of these two sets of arcs are shown in Figures 4. 13 a, b
respectively.

Figure 4.13a Case 1. Arcs 5 to 8. 11. 12.

j
a

t

l
a

{

i

j



The spacing of arcs is the same in both cases, but in the first case the peripheral
anomaly blocks on the west are better covered by observations as compared to
the second case, while the reverse is true for the peripheral anomaly blocks on
the east. However, as the misclosures of summed range rate are zero on the
north-east and south-east edges because of fixing of the starting coordinates of
each arc, as discussed in Sec. 2.3.3, and the misclosures increase as we pro-
ceed towards the west edge of the area, Case 2 is likely to give a worse anomaly
recovery than Case 1. The anomaly discrepancies are given in Table 4.15 for
Cases 1, 2 and also for their combination, i.e. using all the 12 arcs. To e_n-
able comparison of these cases, 40 anomalies, i.e. 2 additional atibmalies all
around the 12 anomalies of interest, were solved for in all the 3 cases, but
anomaly discrepancies have been tabulated fur only the 12 anomalies of interest.

Table 4.15

Relative Location of Anomaly Blocks and Arcsis Summed Range Rate Observations at 10 sec. Time Interval

Anomaly Discrepancy in mgals
Anom. Case 1. - 6 Arcs	 Case 2.- 6 Arcs 12 Arcs

No. Are No. 5 to 8, 11, 12	 Arc No. 1 to 4, 9, 10 Solution 250-5-3

1 -0.5	 2.3 0.0
2 -0.1	 1.3 -0.2

3
-----------------------------------------------

0.9	 6.8 0.9
4 0.4	 2.1 0.2
5 0.1	 0.8 0.0
6 1.8	 1.0 -0.5

7 3.6	 9.9 2.5
8 1.4	 0.3 0.9
9 0.5	 0.7 0.4

10 1.0	 0.7 0.1

11 1.4	 -0.9 0.4
12 0.5	 -0.3 0.4

f - - - - -
i

- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
R.M.S.
Value 1.4	 3.6 0.8

The largest change in anomaly discrepancies between Cases 1 and 2
Occurs for Anomaly No. 3 and 7 on the west edge of the area. With reference
to Figure 4.13, we find that this change is only due to the observations in Case 1
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being positioned centrally over these anomalies as compared to Case 2. The
difference in anomaly discrepancies between Cases 1 and 2 for the other 10
anomalies is only marginal, the Y, M.S. value for these 10 anomaly discrep-
ancies being 1.0 and 1.2 mgals respectively. If we now compare the anomaly
discrepancies between Case 1 with Solution 250-5-3, we find that the anomaly
discrepancies have been reduced for all anomalies because of decreased spacing
of arcs. The reduction is noticeable not only for Anomalies No. 6, 10 on the
east edge, but also for Anomalies No. 1, 7, 11 on the west edge. However, the
anomaly discrepancy for Anomaly No. 7 continues to big large in Solution	 a
250-5-3 as compared to other anomalies, exceeding 3 times the R. M.S. value
of the 12 anomaly discrepancies. In view of the sharp reduction in anomaly
discrepancies for Anomaly No. 3 and 7 in going from Case 2 to Case 1, it
appears likely that we may achieve a still better anomaly recovery if the density
of observations over peripheral anomalies is increased still further over the
design of arcs in Figure 4. 10, which we may recall, was already an improve-
ment over the design of arcs in Figure 4.1 for 100 anomaly recovery. This
aspect will be examined further in See. 5.1.3.

We may, however, emphasize as we discussed for Solution 10-3 in the
end of Sec. 4.1.8, that Solution 250-5-3 does not fit as a suitable recovery
model for a anomalies. As mentioned in Sec. 3.4 and shown in Figure 4.14, 	 Y
the summed range rate 'observations' were simulated using 52 5° anomalies,
i.e. two 50 anomalies all around the area of investigation, and 37 100 anom-
alies, i. e. two 10° anomaly all around the periphery of 52 5° anomalies, thus
taking into account the contribution of residual anomalies up to 300 around the	 j
area of investigation besides the global gravity field defined by potential coef-
ficients up to degree and order 12. In Solution 250-50-3, we have now used
these 'observations' to solve for 40 50 anomalies, i.e. two 50 anomalies all
around the 12 anomalies of interest, thereby virtually repeating the process in
reverse order. in Solution 10--3, we found an almost constant anomaly dis-
crepancy of 0.3mgals due to the effect of residual anomalies beyond 209 from
the area of investigation being very little. The anomaly discrepancies are
slightly larger in Solu^ion 250-5-3, as we have gone up to 10 0 only from the
area of investigation. But, as pointed out in remarks after Table 4.11 in
Sec. 4.1.8, these discrepancies are small enough to show the adequacy of the
computations of the partials matrix of observations with respect :o unknown	 " a
5° anomalies, and the adequacy of the density of observations, 	 a

To elaborate further on Solution 250-5-3, the correlation coefficients
between the 12 recovered anomalies as obtained from the variance-covariance
matrix were very high. The average value of this correlation coefficient for
anomalies in the same latitude zone between 2 adjacent anomalies was 0. 78, and
even between 2 anomalies separated by one anomaly block between them, it
was 0.61. Its average value between two anomalies in adjacent latitude zones
was 0. 72, and between 2 anomalies separated by 2 latitude zones, it was still	 3

0.55. The std. devn. of the 12 recovered anomalies were also large, the

minimum, maximum and R. M. S. value being 6. S, 43.8, 20.5 mgals respectively.
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The anomaly discrepancy and std. devns. for 12 anomalies of interest
in Solution 250-5-2 are given in Table 4.16, though, as already mentioned, 24
anomalies were solved for. This solution has been discussed further in Sec.
4.2.3.

Table 4.16

Solution 250-5-2.
Summed Range Rate Observation at 10 sec. Time Interval for 12 Arcs

Anom. Expected Solution 250-5-2 Anon-i.
INTO. Anomaly Anomaly	 Std. devn. Discrep.

1 -21.8 -24.1	 2.7 -2.3
2 -14.8 -12.2	 1.5 2.6

3 -1.5 --4.9	 4.3 -3.4
4 -12.9 -12.5	 1.7 0.4
5 -9.6 -9.7	 1.5 -0.1
6 3.2 -1.8	 6.0 -5.0

7 16.8
----------------------------------------

17.7	 5.0
------	 g

0.9
8 1.0 1.8	 2.2 0.8
9 -20.4 -20.6	 J.'4. -0.2	 3

10 -0.3 3.3	 1.7 3.6

11 22.4
----------------------------------------------

22.2	 5.2 -0.2	 3

12 -9.1 -8.4	 2.2 0.7	 a

R.M.S. 13.7 13.9	 3.4 2.3	 j
Value

Units are mgals.

In view of the discussion in Sec. 4. 1, we need only mention that the mini-
mum, maximum and the R. M.S. value of anomaly discrepancy in Solution 250-5-1,
when only the 12 anomalies covered by observations were solved for, was -3.5,
13.9 and 6.8 mgals, i.e. the anomaly recovery was worse than Solution 250-5-2.
We will thus examine only the Solution 250-5-2 for how good the anomaly recovery
has been with respect to the criteria discussed in Sec. 4.1.9.

4.2.3 Recovery Model for 5° Equal Area Mean Anomalies

We again note that the std. devns. of the anomalies in Table 4.16, gen-
erally follow the same pattern as discussed before Table 4.13 in Sec. 4.1.9.
The correlation coefficients between the 12 recovered anomalies obtained from
;.U-	 .-..n I-- -P 0-1-4m;- I)MA._M -9 n-- ol--- - T.,;--n A l R
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Figure 4.1 5 Correlation Coefficients Between Recovered Anomalies
in SoMion 250-5-2.



The correlation coefficients are shown between 2 adjacent anomalies both In the
east-west and in the north--south direction. We note that the magnitude of the
correlation coefficients is low; average value in the east--west direction is -.26,
and average value in the north-south direction is -. 41, which indicates that the
individual 5° anomalies are being recovered.

We may now put together in Table 4.17 the statistics discussed in the
end of Sec. 4.1.9 to examine the 'goodness' of anomaly recovery in Solution
250-5--2 for the 12 anomalies of interest.

Table 4.17

Statistics for a Anomaly Recovery in Solution 250-5-2
Summed Range Rate Observations at 10 sec. Time Interval for 12 Arcs

No. of anomalies recovered 24
No. of anomalies of interest 12
R. M. S. value of anomaly discrepancy (mgals) 2.3
R. M.S. value of expected anomalies (mgals) 13.7
R. M. S. value of recovered anomalies (mgals) 13.9
Correln. coeff. (p) of recovered anom. with

expected anom. 0.986

Mean correln. coeff. of adjacent recovered
anom. (E. W. direction) -0.26

Mean correln. coeff. of adjacent recovered
anom. (N. S. direction) -0.41

R. M.S. value of std. devu. of recovered 3.4
anom. (mgals)

Along-arc/Across-arc spacing of observations 3
R. M.S. value of std. devn. of recovered anom.

corrected for spacing of observations (mgals)
5.9

We thus find that the anomaly recovery in Solution 250-5-2 is satisfactory,
but the along--arc spacing of observations at 10 sec. time interval is about 3
times the across-arc spacing of observations with 12 arcs, as pointed out in
the end of Sec. 4.2.1 after examination of Figure 4.11.. The R. M. S. value of
std. devn. of recovered anomalies should then be increased by a factor of
in view of the discussion in the end of Sec 4.1..9, and this has therefore been
done in the last line of Table 4.17.
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4.3	 Recovery of Gravity Anomalies from Strong_S gnat

We will summarize here the recovery of 10° and a equal area mean
anomalies, as obtained respectively in Solution 10-2 (Tables 4.11, 4.13,
Figure 4.9) and Solution 250-5-2 (Tables 4.16, 4.17, Figure •1.15).

We have already summarized the criteria for examining the 'goodness'
of anomaly recovery at the end of Sec. 4.1.9. To recapitulate briefly, for
simulated observations not burdened with observational errors, the R. M.S.
value of the anomaly discrepancy should be small, about 1/2 to 1/3 of the R. M.S.
value of the expected anomalies. The R. M.S. value of the recovered anomalies
should be comparable to the R. M. S. value of the expected anomalies, with a
high value, say, about 0. 9, of the correlation coefficient between the recovered
and expected anomalies. The correlation coefficients between adjacent recovered
anomalies, as obtained from their variance-covariance matrix., should be small,
say less than 0. 5, both in the east-west and in the north-south directions.

The R. M. S. value of the std. devn. of the recovered anomalies should
be comparable to, or less than, the std. devn. of the expected anomalies,
which may be obtained as the R. M. S. value of the expected anomalies. The
std. devn. of the recovered anomalies should be computed for that spacing of
along-arc observations, which is roughly equal to the spacing of observations
between adjacent arcs. The optimum spacing of arcs was found to be half
anomaly block size, i. e. roughly 60 and a respectively for the recovery of 100
and 5° equal area anomalies. The corresponding along-arc spacing is obtained
when the time interval of ob. 71.evations along the are is 1 minute and 30 seconds
respectively (Figures 4.2 and 4.1.1). If the along-arc observations are closer,
e.g. every 10 seconds in Solution 250-5-2, which is 3 times closer than the
desired across-arc spacing of observations, then the resulting std, devas. of the
recovered anomalies should be multiplied by V- (Table 4.17 in Sec. 4.2.3).

The time interval of along-aLc observations in Solution 10-2 was 1
minute, which was roughly the same as the across-arc spacing of observations
of half anomaly block size, i.e. about 60 . However, in this case, we should
have used the std. devn. of summed range rate observations as .03 cm/sec
based on an integration interval of 1 minute, instead of .08 cm/sec based on an
integration interval of 10 seconds. As all observations were considered to be
independent and with the same std. devn., the resulting std. devn. of recovered
anomalies in Table 4.13 should then be multiplied by a factor of 3/8. This has
been done in Table 4.18 below, which gives the statistics for t to anomaly re-
covery of 100 and a equal area mean anomalies for Solutions 10-2 and 250-5-2
respectively.
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Table 4.18

Statistics for Recovery of 100 and 59 Equal Area Mean Anomalies
from Strong Signal

Approximate height of close satellite (km) 900 250
Size of equal area mean anomaly blocks 100 5°
Solution No. 10-2 250-5--2
Latitudinal extent of the area of investigation 70° 20°
Longitudinal extent of the area of investigation (approx.) 600 250
No. of anomalies of interest, covered by observations 37 12
No. of anomalies estimated 64 24
No. of anomaly blocks all around the area of investigation, 1 1

not covered by obsns.
Spacing of Satellite arcs in terms of anomaly block size 1/2 1/2
Longitudinal spacing of satellite arcs (approx.) 0 e
No. of satellite arcs used in the solution 14 12
R. M.S. value of expected anomalies (mgals) 5.4 13.7
R. M. S. value of recovered anomalies (mgals) 5.5 13.9
Correln. coeff. of recovered anom. with expected anom. 0.998 0.986
R. M.S. value of anomaly discrepancy (mgals) 0.3 2.3
Mean	 't	 r,	 rr _0.1 _0.2
Minimum -0.7 -5.0
Maximum „	 ' °	 ,' 0.8 3.6
Time interval of observations along an are 1 min. 10 sec.
R. M. S. value of std, devn. of recovered anomalies (mgals) 5. `L* 3.4

r '	 ,	 rr , corrected for integration interval 2.0 3.4
of observations

Ratio of along--arc to across--arc spacing of observations 1 3
R. M.S. value of std. devn. of recovered anomalies	 cor-

2' '' 9rected for integration interval and along-arc spacing
of observations

Average correln. coeff. between adjacent recovered anom.
(E. W. direction) -0.32 -0.26

Average correln. coeff. between adjacent recovered anom. _0.44 -0.41(N. S. direction)
Results tabulated in Chapter 4	 Tables 4.11, 4.13 4.16, 4.17

Figure 4.9 4.15

*R. M.S. value for 31 anomalies, after leaving out 6 anomalies on the south and
west edges of the area, not well covered with observations (see remarks after
Table 4.13 in Sec. 4.1.9).
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5. RECOVERY OF GRAVITY ANOMALIES FROM WEAK SIGNAL

We discuss in this Chapter the recovery of 5° equal area mean residual
anomalies from the close satellite: at a height of about 900 km, and the recovery
of 2°. 5 equal area mean residual anomalies from the close satellite at a height
of about 250 km. The effect of anomalies in 5° blocks will obviously be felt less
than the effect of anomalies in 10° blocks, on the close"satellite at height of
900km, and similarly, the effect of 2°.5 anomalies will be weaker than that of
5° anomalies on the close satellite at height of 250km. The signal to be re-
covered from the summed range rate measurements is then weaker than the
cases discussed in Sec. 4.1 and Sec. 4.2.

5.1	 Recovery of a Equal Area Mean Anomalies from Clo.,. e Satellite at
Height of 90okm

5.1.1 Area of Investigation and Satellite Arcs	 i

The area of investigation for the recovery of 50 anomalies from close
satellite at height of 900km, was retained to be the same as in Sec. 4.2. The
location of the area, its shape, and the numbering of 50 anomalies to be re-
covered were also the same as in Sec. 4.2. The satellite arcs were selected
to achieve symmetrical positioning over the area, and to achieve spacing of
roughly 1/2 the anomaly block size. 13 arcs were chosen initially as compared
to 12 arcs in Sec. 4.2 (see Figure 4.10). However, as discussed in Sec. 4.2.2 ,
4 more arcs were also selected, one in each corner of the area, to examine the
effect of progressively increasing the density of observations directly over the
peripheral anomaly blocks.

I The location of the a„es with respect to the anomalies to be recovered
is shown in Figure 5.1. The numbering of arcs from 1 to 13 was according to
the starting time of the arc. The numbering of the corner arcs was in accor-
dance with the examination of the effect on the anomaly recovery made from 13
arcs, as the additional arcs were added to the solution one at a time; and this
order was arcs 14, 15, 14A and 15A respectively. Later, in See. 5.1.4, we

E

will further investigate the effect of increasing the density of arcs from 1/2
anomaly block size to 1/4 anomaly block size. These arcs would be numbered
16 to 28. The particulars for Arcs 1 to 13, and for Arcs 14, 15, 14A, 15A,
have been given in Table 5.1.
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Table 5.1

Satellite Arcs Used for Recovery of 50 Equal Area Mean Anomalies.
Height of Close Satellites 900 km

S

Are Ascending/ Starting Time* Duration First & Last Subsatellite Pts.

No. Descending of Are for Close Sat.

Arc Day Hour Min. Sec.	 Min. Sec.

1 R 1	 20 29 50	 4	 30 20.0 21 61.4 34.1 251.7

2 2	 10 41 20	 4	 30 40.5 262.6 27.0 251.8
3 2	 20 24 00	 5	 00 19.7 264.7 35.3 253.8

4 3	 10 35 40	 5	 10 40.3 265.5 24.7 253.4	 'E

5 R 3	 20 18 20	 4	 50 20.0 ' 1 67.7 35.1 257.2

6 4	 10 30 00	 5	 10 40.1 268.5 24.5 256.4
7 4	 20 13 50	 4	 40 23.9 268.3 38.3 257.6

8 5	 10 24 40	 6	 10 38.9 270.5 20.2 256.8

9 5	 20 08 20	 5	 00 24.7 271.0 40.0 259.1

10 6	 10 20 00	 5	 10 35.7 270.9 19.9 259.8
11 R 6	 20 03 00	 4	 40 26.0 273.3 40.2 262.0
12 i! 7	 10 14 20	 5	 10 35.5 273.8 19.6 262.7
13 7	 19 58 30	 3	 20 29.8 273.7 40.0 265.4

14 0	 09 12 40	 4	 30 33.7 275.9 19.9 266.5
15 0	 20 35 30	 3	 10 19.8 258.4 29.8 251.9
14A 1	 10 47 00	 3	 20 40.7 259.7 30.8 251.4

15A *11 0	 18 56 30	 3	 20 30.6 276.7 40.7 268.3

* in elapsed time from 21 Sept. 69 01 hr. 33min. 36.3 sec. (:gee Sec. 1.1)

The Lime interval between observations along an arc in Sec. 5.1 was kept

as 10 see., as in Sec. 4.2. Hence, we would need to multiply the std. devns. of

the recovered anomalies by /3-, when we finally obtain a solution using satellite

arcs shown in Figure 5.1. This has thus been taken into account only in Table

5.6 at the end of Sec. 5.1.3.

5.1.2 Relative Location of Anomalies and Arcs

We have already seen in Chapter 4 that the anomaly recovery in the area
of investigation covered by satellite arcs, is 'good', when we include in the
estimation process an additional anomaly all around the anomalies of interest.
If we include in the estimation process two additional anomalies all around the
anomalies of interest, the solution get worse as evidenced by large std. devns.

and high correlation coefficients of the recovered anomalies. However, in this
case, the anomaly discrepancies are much reduced due to a much larger sub-

.
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set of anomalies being solved far, out of the total anamalie a ad in the simulation

of 'observations'.

Hence, before we examine in detail the 'goodness' of anomaly recovery
with a particular design of arcs, by the statistics discussed in the end of Sec.
4.1.9, it will be adequate, as an initial test, to examine the anomaly discrepan-
cies for the 12 anomalies of interest in a solution, where 40 anomalies have been
solved for. We will adopt this procedure in testing the improvement in anomaly
recovery, as we consider the increase in density of observations over the area
of investigation, and, in particular, over the peripheral anomalies. The std.
devns. and anomaly discrepancies of the 12 anomalies of interest, will also be
examined for the solutions, in which 24 anomalies, i.e, after inclusion of an
additional anomaly all around the anomalies of interest, have been estimated.
These two criteria of anomaly discrepancy, and std, devns. of the recovered
anomalies, would be clarified when the results are presented.

We first present in Table 5.2 the anomaly discrepancies for the 12 anom-
alies of interest, both when 40 and 24 anomalies were solved for respectively, using
Arcs 1 to 13 giving arc spacing of roughly half of anomaly block size. We may call
these solutions as Solution 900-5-3 and Solution 900-5-2, 900 km being the height
of close satellite, a being the anomaly block size, and suffixes 3 and 2 denote,
as in Chapter 4, that respectively 2 or 1 additional anomalies all around the area
of investigation have been included in the solution. The last column in Table 5.2
gives the std. devns. of the recovered anomalies in Solution 900-5-2.

Table 5.2

Anomaly Discrepancies and Std. Devns. for 12 5 0 Equal Area Mean Anomalies 	 -'
for Are Spacing Roughly Half Anomaly Block Size.

Summed Range Rate Observations at 10 sec. Time Interval for 13 Arec .!Arcs I. to 13).
is

Height of Close Satellite _— 900 km

Anom.	 Anomaly Discrepancy in mgals	 Std. Devn. (mgals)

	

No.	 Soln. 900-5-3	 Soln. 900-5-2	 Soln. 900-5-2	 i

	

1	 6.0	 --3	 72

	

-	 0.2	 -21	 79
-- ---------------------	 --------------	 ----------------	 ----------

	.`3	 3.4	 -11-	 -86-

	

4	 -1.5	 5	 65	 r'

	

5	 -1.8	 12	 69	
s

	

6	 3.4	 -34	 90
-------------------------------------------------------------------------

	

7	 -0.8	 10	 88
8 -0.6 2 80
9 3.0 -16 63

..10 --------_ __-__ -5.8
-

18 63-11-- -- 
-4.8 -----

-------------------------
0

------ --------	 y
121

12
-------------------------------------

2.5 18
-------------

98

R. M. S. 3.4 15.6
--------------- ------
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The anomaly discrepancy in column 2 of Table 5,2 is murh higine. than the

values in the last column of 'fable 4.15, in See. 4.2, when 5 ° recovery was being
attempted with close satellite at height of 250 km. We have thus not been able to

recover the 5° anomalies with close satellite at height of 906kxr, even when the
spacing of arcs was roughly half of anomaly block sire. This is still more evident
from columns 3 and 4 of Table 5.2.

5.1.3 Satellite Arcs Over Peripheral Anomalies

Before we consider increasing the density of arcs further to roughly I-Ath
of the anomaly block size, we would investigate the effect of considering greater
density of observations over the peripheral anomalies. The are spacing is still
retained at roughly half anomaly block size, but we progressively add to the sol-
ution obtained with 13 arcs the observations of Arcs 14, 15, 14A and 15A. The
number of anomalies solved for was 40 in all these 4 solutions. We report in
Table 5 . 3 the anomaly discrepancies, as we add the observations in Arc 14 and
Are 15. The improvement or worsening of anomaly recovery, denoted by f and
-- signs respectively, has also been shown. The effect on the std. devns. of the
recovered anomalies, as more arcs are included in the solution, will be examined
later.

Table 5.3

Effect of Increasing the Density of Observations Over Peripheral Anomalies.
Summed Range Date Observations with Are Spacing Roughly Half Anomaly Block. Size.

Height of Close Satellite z:; 900 km.

Anom. Anom. Discrep. in mgals Improve.-Lnent(f) or Worsening(-) of Anom. Discrep. (mgals)
No.	 Arcs 1--14 Arcs 1-15	 13 to 14 Arcs 14 to 15 Arcs 13 to 15 Arcs

1 2.9 2.0 3.1 0.9 4.0
2 1.9 2.2

--

-1.7 -0.3 -2.0
-

3
----- 4.7 --

^4.0 ---1.3 0.7 -0.6
4 -2.0 -1, . -0.5 0.6 0.1
5 -1.0 -1.4 0.8 -0.4 0.4
6 1.0 1.4 2.4 -0.4 2.0

-7	 ----
-3.6-- -- 0.5 

---
-- -2.8 ------- 3.1_-- --- 0.3

8 0.6 -1.0 0.0 -0.4 -0.4
9 1.7 2.2 1.3 -0.5 0.8

10 -2.4 -2.8 3.4

~

-0.4 3.0
____ --_1^

-2.9 -- -0.9	 -r 1.9 2.0 2.9
12 1.6 0.8 -0.9 0.8 1.7

R. M. S.
value of 2.5 2.0 0.5 0.5 1.1
col (2),(3)

Mean value
of col. (4)to (6)

}
I
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If we now examine the location of the arc added to the solution, with re-
spect to the improvement in anomaly discrepancies, we find that the pronounced
changes are in the peripheral anomalies; those below the are show improvement,
while those away from the arc get worse, but the latter's magnitude is sligbly
less than the improvement in the anomalies below the arc. When we consider the
effect of additing both Arcs 14 and 15 to the solution obtained from 13 arcs, we
find that almost all anomaly discrepancies it iprove with a mean value of 1.1
mgals. The single noticeable worsening by 2.0 mgals of anomaly No. 2 can per-
haps be also overlooked as we find that the final anomaly discrepancy is still only
2.2 mgals compared to the R.M.S. value of 2.0mgals.

It therefore appears that the increase in density of observations over the peri-
pheral anomaly blocks improves the solution, even though small portions of Arcs 14
and 15 lie outside the area of investigation. It also appears that it is better to have
symmetrical positioning of the Arcs i. e. with both Arcs 14 and 15 added to the 13 arcs.

We now present in Table 5.4 the effect on anomaly discrepancies of the 12
anomalies of interest, as we add Arcs 14A and 15A to the solution obtained by 15 arcs.
The layout of Table 5.4 follows that of'rable 5. 3, and 40 anomalies were solved for, as
before.

Tab] e 5.4
Effect of Anom.. Disc rep. by Increasing the Density of Obsns. Over Peripheral Anomalies.
Summed Range Rate Obsns. Using 16 and 17 Arcs. Height of Close Sal ellite.;: 900 km.

Anom. Anom. Discrep. in .ngals Improvement(+) or Worsening(-) of Auom. Discrep. (mgals)
No. 16 Arcs	 17 Arcs 15 to 16 Arcs	 16 to 17 Arcs	 15 to 17 Arcs

1 0.3	 0.1 1.7 0.2	 1.9
2 2.5	 2.3 -0.3 0.2	 -0.1

3 3.5	 6.0 0.5 -2.5	 -2.0
4 -0.9	 -2.0 0.5 -1.1	 -0.6
5 -1.3	 0.4 0.1 0.9	 1.0
6 1.4	 -1.4---------------------------------------------0.0 0.0	 0.0

------
7 0.3	 --0.5 0.2 -0.2	 0.0

i	 8 -1.0	 -0.8 0.0 0.2	 0.2
9

I
1.9	 1.5 0.3 0.4	 0.7

10 -2.6	 -2.0 0.2 0.6	 0.8

11
----------------------------------

-0.9	 -G. 2 0.0
------ •----------

0.7	 0.7
12------- 1.0	 0.6

----	 ---------------------------------------0.2 0.4	 0.2

R.M.S
value of 1.7	 ..1 0. U•U	 0.1cols (2),(3)

Mean value
ofcols. (4)

to (6)
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From the last row in columns 4 to 6 of Table 5.4, we notice that the mean
value of improvement of 0. 2, 0. 0, 0.1 mgals, by the addition of Arcs 14A and 15A
is nearly zero; and is in any case less than the corresponding values of 0. 5, 0.5
and 1.1 mgals in Table 5. 3. when Arcs 14 and 15 were added to the solution ob-
tained from 13 arcs. This may be explained by the geometry of the arcs in rela-
tion to the area of investigation, as may be -Caen from Figure 5.1. A much larger
portion of Arcs 14 and 15 lie over the area, while only a smaller portion of arcs
14A and 15A lie over the area.

The reduction of std. devns. of the 12 anomalies of interest, with the
addition of Arcs 14, 15, 14A and 15A was also examined. It was found that the
reduction primarily occurs for the anomalies directly covered by the observations.
This is, however, also accompanied by a slight reduction in the Ejtd. devas. of all
other anomalies. We will designate the solution using 15 (Ares 1 to 15) and 17
arcs (Ares 1 to 15, 14A and 15A), and solving for 24 anomalies, as Solution
900-5-2A and Solution 900-5-2B respectively. The anomaly discrepancies and the
std. devns. of the 12 anomalies of interest in these solutions are given in Table 5.5.

I#

Table 5.5

t	 Anom. Discrep. and Std. Devn. for 12 50 Equal Area. Mean Anomalies, for
4

Are Spacing Roughly Half Anomaly Block Size
Summed Range Rate Qbsns at 10 sec. Time Interval for 15 and 17 Arcs.

Height of Close Satellite ;:,-- 900 km

Anom. Solution 900-5-2A Solution 900-5--2B
No. Anom. Discrep.	 Std. Devn. Anom. Discrep. &*..kd. Devu.

1 -2.3	 69 0.6 49
2 -24.7	 73 --31.3 60

-	 -	

_

-13.3	 77
-----

-9.g
-^---_-

53
4 7.7	 55 7.8 45

i	 5 11.2	 57 13.6 52
6

I
-29.6	 46 -34.5 35

7 7.6	 77 6.5 67
8 2.7	 75 1.4 70
9 -19.5	 57 -20.9 53

10 22.6	 55 22.9 50

11
--------------------------------------------

-8.9	 93 _1.2.4
6

12

-

28.0	 71 23.9 85

R.M.S.
----
	

-----	 -----__
17,5	

68 __-_
16.8

----___59

value

Units are mgals.
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The results of Solutions 900-5--2A and 900-5-2B in Table 5.5 may be com-
pared with the results of Solution 900-5-2 (13 Arcs) in Table 5.2. The R. M.S.
value of the std. devn. decreases as we consider the solution with 13, 15 and 17
arcs to 83, 68 and 59 mgals respectively. We expect this to occur, as the density
of observations over peripheral anomalies is increased to be nearly the same as
over the anomalies in the center of the area. The reduction is more pronounced
as we go from 13 to 15 arcs, but becomes less pronounced as we go from 15 to 17
arcs, which is als,.) what we expect, as a smaller portion of the Arcs 14A and 15A
lies over the area of investigation as compared to Arcs 14 and 15 (see Fip:re 5.1).
However, when we consider the R. M. S. value of thc anomaly discrepancies, it
rises from 15.6 to 17. 5, and then to 18.8 mgals, as we consider the solution with
13, 15 and 17 arcs, respectively. It is not clear why this should occur, except
perhaps to indicate that 50 anomalies are not being recovered from the close satel-
lite at height of 9001km. A greater density of observations increases the relia-
bility, as evidenced from the reduction in std. devn,,;. of the recovered anomalies.
But as the R. 11R. S. value of the std. devns. is still so large, the anomaly discrep-
ancies cannot be very meaningful.

We may now put together the statistics for examining the 'goodness' of
recovery of the a atic , malles, as discussed at the ead of Sec. 4.1.9. This has
been done in Table 5.6 for Solution 900-5-2A, using 15 arcs, which appears to
be the optimum solution obtainable from arc spacing, of half anomaly block size.

Table 5. 6

Statistics for 50 Anomaly Recovery in Solution 9005-2A.
Summed Range Rate Observations at 10 sec. Time interval for 15 Arcs

24
12
17.5
13.7
23.0

0.65

-0.54

-0.60

68

3

118

5

:a

7-

No. of anomalies recovered
No. of anomalies of interest
R. M.S. value of anomaly discrepancy (mgals)
R. M.S. value of expected anomalies (mgals)
R. M. S. value of recovered anomalies (mgals)
Correln. coeff. (p) of recovered anom. with

expected anom.
Mean correln. coeff. of adjacent recovered

anom. (E. W. direction)
Mean correln. coeff. of adjacent recovered

anom. (N.S. direction)
R.M.S. value of std. devn. of recovered

anom. (mgals)
Along-arc/Across-arc spacing of observa-

tions
R. M.S. value of std. devn. of recovered

anom. corrected for spacing of obser-
vations (nigals)
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When we compare Table 5.6 with Table 4.17 of 5::;. 4.2.3 for the re-
covery of a anomalies from close sateilite at height of 250 km. , it is obvious
that we are not able to recover 5 anomalies from close satellite at height of

000 km with arc spacing of roughly half anomaly block size. in fact, all the
criteria discussed at the end of Sac. 4.1.0 for examining the 'goodness' of anom-
aly recovery fail for Solution 900-5-2A In 'fable 5.6. We may now only check
whether the anomaly recovery could be significantly improved by making the
density of arc-spacing; to 1/4th anomaly block size. This will be examined in
Sec. 5.1.4.

5.1.4 increased Density of Satellite Arcs

Thirteen additional satellite arcs were used in this investigation, which
together with the 15 arcs in Sec. 5.1.1, gave the arc spacing as 1/4th anomaly
block size, i.e. the longitudinal spacing of roughly 1Y. These 13 additional
arcs have been shown by a dashed line in Figure 5.2, along with 15 arcs of
Figure 5.1 which have been shown by a continuous line.

s
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The numbering of the additional arcs was from 16 to 28 according to the starting
time of the arc. The particulars of these arcs have been given in Table 5.7.

Table 5.7

Additional Satellite Arcs Used for Recovery of 50 Equal Area Mean Anomalies.
Height of Close Satellite ^ze 900 km

Are Ascending/ Starting Time { Duration First & Last Subsatellite Pts.
No. Descending of Are for Close Sat.

Are Day Hour Min. Sec. Min. Sec. e e 0 )e

16 1% 25 23 19 20 3 50 19.7 260.2 31.7 252.2
17 R 26 23 13 40 4 50 19.9 263.2 35.0 252.7
18 27 13 25 20 5 00 40.3 264.1 25.2 252.3
19 27 23 08 00 4 50 20.1 266.2 35.2 255.7
20 28 13 19 40 5 00 40.1 267.0 25.0 255.3
21 28 23 02 50 4 40 22.0 268.2 36.4 257.8
22 29 13 14 00 5 40 39.9 270.0 22.7 257.0
23 29 22 58 00 4 50 24.8 269.5 39.7 258.1
24 30 13 09 30 5 20 36.2 269.9 19.9 258.3
25 `C 30 22 52 20 4 50 25.1 272.5 39.9 261.0
26 31 13 04 10 4 50 35.0 272.0 20.2 261.6
27 31 22 47 50 3 40 28.9 273.0 40.1 263.9
28 32 12 58 30 4 50 34.8 274.9 20.0 264.4

* in elapsed time from 21 Sep. 69 01 hr. 33 min. 36.3 sec. (see Sec. 1.1)

The time interval between, observations along an arc was again kept as
10 seconds. The are spacing of 1/4th anomaly block size is now very nearly
equal to the along-arc spacing of observations, or at most 1.5 times. We thus
need not change the std. devns. of the recovered anomalies with 10 seconds
time interval between observations, or if we wish to take a conservative view,
multiply there by a factor of V_I_.5 . 1.2.	 5

We first present in Table 5.8 the anomaly discrepancies for the 12 anom-
alies of interest using the 13 additional arcs, both when 40 and 24 anomalies
were solved for, and the std. devns for the latter case. 'rhe information in
Table 5.8 for Arcs 16-2-8, may then be compared to that given in Table 5.2
for Arcs 1-13.

1
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Table 5.8

Anom. Discrep, and Std. Devns. for 12 5° Equal Area Mean Anomalies for
Are Spacing Roughly Half Anomaly Block Size.

Suxnmed Range Rate Observations at 10 sec. Time Interval
Using 13 Additional Arcs (Arcs 16-28)

Height of Close Satellite 9 0 km
i

Anom.	 Anom. Discrep. in ingals Std. Deva. in mguls
No.	 Anom. Salved --)1- 40	 24	 24

i

	

1	 1.0	 2	 107

	

2	 -3.7	 -28	 87
--------------------------------------------

	

 3.1	 --14	 109

	

4	 --2.3	 --3	 80	 j

	

5	 3.6	 18	 65

	

6	 -5.4	 -35	 61
-- --- --- - - - - -	 - - - - - -	 - - - - - -	 - - - - - ----- - - - -	 - - - --- - - i

	

7	 1.8	 10	 115
	8 	 0.1	 9	 97	 j

	

9	 -0.9	 --14	 78

	

10	 1.3	 12	 82
------------------------------ -----------------	 i

	

11	 -0.8	 -13	 109

	

12	 -1.1	 20	 100
-- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - ----- - - - - - - - .-- --

R. M. S.
value	 2.6	 17.4	 92

3

The purpose of Table 5.8 was to assure ourselves that the normals and
constant vector for the 13 additional arcs have been computed correctly, before
we combine them with those obtained earlier to get a final solution with are
spacing of 1/4th anomaly block size, instead of the are spacing of 1/2 anomaly
block size attempted so far. This purpose is roughly nict as may be seen by
comparing the last rows of Tables 5.8 and 5.2.

We now present in Table 5.9 the anomaly discrepancies and std. devns.
for the 12 anomalies of interest, for are spacing of 1/4th anomaly block size.
for both 28 and 26 arcs (i. e, without arcs 14 and 15). in both cases, the anom-
aly discrepancy has first been given for the solution in which 40 anomalies have
been estimated. This is then followed by the anomaly discrepancy and std. devn.
when 24 anomalies have been estimated.
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Table 5.9

Anom. Discrep. and Std. Devns. for 12 a Equal Area Mean Anomalies
for Are Spacing 1/4 Anomaly Block Size,

Sunned Range Rate Obsus. at 10 sec. Time Interval for 28 and 26 Arcs.
Height of Close Satellite ti 9 0 0 kin

Arcs 1 to 28 Arcs 1 to 13, 16 to 28
1 Anom.. Solved	 40 24 24 40 24 24

Anom. Anom. Anom. Std. Anom. Anom. Std.
No. Discrep. Discrep. Devn. Discrep. Discrep. Devn.

1 -3.0 1.1 54 -4.2 2.9 55
2 -2.9 28.2 52 -2.7 24.4 55

3 -3.5 14.9 56 -3.0 11.3 60
4 1.5 -6.1 43 1.7 -2.3 46
5 1.6 -13.5 42 1.9 -16.4 44
6 -1.5 30.1 35 -2.3 35.7 44

7 0.0 -7.0 58 o.4 -8.7 67
8 0.8 -6.3 56 0.5 -4.7 58
9 -2.1 21.2 42 -2.3 17.3 46

10 2.9 -21.9 41 3.7 -17.0 47

11 1.7 11.3 67 2.5 8.8 74
12 -1.1 -28.7 54 -1.6 -23.7 63

R. M. S. 2.1 18.5 51 2.5 17.3 56
value

Units are mgals.

The effect of incorporating the 13 additional arcs in the solution obtained
from Arcs 1 to 15 or in the solution obtained from Arcs 1 to 13 may now be ex-
amined by comparing Table 5.9 with Tables 5. 5 and 5.2 respectively. In going
from the solution with 15 arcs to the solution with 28 arcs, the R. M.S. value of
the std. deva. falls from 68A ='118 ingals to 514T.-5 = 62 ingals, but the R. M.S.
value of anomaly discrepancy goes up slightly from 17.5 mgals to 18.5 mgals.
In the case of going from the solution with 13 Arcs to the solution with 26 Arcs,
the R. M. S. value of std. devn. falls from 83 3 = 144 mgals to 56 '/_1.5 = 69 mgals,
b:2t the R. M.S. value of anomaly discrepancy shows a slight rise from x.5.6
mguls to 17.3 mgals. It may also be noticed that the difference between the
solutions with 28 and 26 arcs tan `able 5.9 is less marked than tho difforonce be-
tween the solutions with 15 and 13 arcs in Tables 5. 5 and 5.2.

i

I

E

i
I

a
j

i
r

i

M

..	 1

I

d94



It is however, clear that even by increasing the density of arcs to 1/4th
anomaly block size, the R. M. S. value of the anomaly discrepancy remains about
15 to 20 mgals and R. M.S. value of the std, devn. of the recovered anomalies re--	 i
mains about 50 to 70 mgal.s. These appear to be the limiting values obtainable in	

fthe recovery of 50 anomalies using a close satellite at height of about 900 km,
without using any a-priori information from terrestrial gravity data.

The recovery model for 5° anomalies has therefore to be re--examined.
This will bo done in Sec. 5. 3, after investigating the recovery model for 2°. 5
anomalies from close satellite at height of 250 km.
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5.2	 recover , of 20. 5 Equal Area Mean Anomalies from Close Satellite at
Height of 250 kin

5.2.1 Area of Investigation and Satellite Arcs

The area of investigation for the recovery of e. 5 anomalies from close
satellite at heiglit of 250 km, comprised of a total of 20 e. 5 equal area blocks.
A total of 20 satellite arcs were selected to achieve symmetric positioning over
the area, adequate coverage of the peripheral anomalies, and to achieve an are
spacing of about half anomaly block size, i. e. a longitudinal spacing of about 1y.
The limit: of the 2° 5 anomaly blocks, and the satellite arcs, have been shown
in Figure 5.3.

264°E

	

35° N
	 .12)

30° N

25°N

0 
f 

16

262° E

Figure 5.3 Satellite Areas for Itacovery of;? : 5 Equitl Arc it
Mean Anomalies. Arc-, Sixteing 	 Anomaly Block Size.
lioii lit of Close Sutelh itc 	 250 icm,
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as anomaly block size, we may either tale 9 arcs shown by continuous lines in
Figure 5.3, or else, we may tame the 11 arcs shmvn by clashed lines. These 11
arcs cover some of the peripheral anomalies better, but have comparatively a
small number of observations over the area of investigation. If we wish to -con-
sider the are spacing of half anomaly block size, we may consider 16 arcs, i. e.
excluding the 4 corner arcs. Or else, we may consider 18 arcs including the
arcs No. 13 and 1, which Wave slightly larger number of observations over the
area than arcs No. 8 and 15; finally we may consider all the 20 arcs shown in
Figure 5.3. We will refer to the groups of arcs described above as 9,11,1.6,1$
and 20 arcs.

The number of 2°. 5 anomalies, which we are considering for .recovery, is
20. If we consider 1 or 2 additional anomalies all around them during the estim-
ation process, the total number of anomalies becomes 36 and 56 respectively.
The limits of these 20, 36 and 56 20. 5 anomalies have been shown, in Figure 5.4.

260°E

270°E

	

40° N	 -- - - -- -^	 II	 I
l	 I
i

I	 0	 !

	

I	 34	 5	 6
a	 0	 a	 r

!

1

rr	 r
!	 11	 12	 13	 14	 1
!	 N

!	 1
1	 ^5 Is	 I+	

a	 1

1 19	 20	 I•I	 II	 I
I

20nN	
(Limit of 36 Anorn. E

Limit of 56 Anomalles

Figrure 5.4 Limits of 20, 36 and 56 A 5 Equal Area Mean Anomalies.
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Alternate arcs have been shown by a dashed lino for convenience of reference.

The numbering of thv satellite arcs from 1 to 20 was again according to the
starting time of the are. The particulars for these arcs have been given in
Table 5.10. The th-ve interval bohvicen observations along an are was kept as.
10 seconds. The along-arc spacing of observations was then roughly equal to
the across-arc spacing, when we consider it to be about half anomaly block size.

Table 5.10

Satellite Arcs Used for Recovery of 2° 5 Equal Area. Mean Anomalies.

1leight of Close Satellite ;z_- 250 km

Arc Ascending/ Starting Time* Duration First & Last Subsatellite Pts.

No. Descending of Are for Close Sat.

Are Day Hour Min. Sec. Min. Sec. gyp° e e e

1 0 22 30 50 1 30 31.6 269.9 36.8 265.8
2 F' 2 13 42 50 2 30 37.0 263.4 28.2 256.8
3 R 2 23 40 40 2 30 21.9 263.9 30.8 258.0
4 3 13 34 30 3 20 36.6 267..E 24.9 259.3
5 R 3 23 33 10 2 50 25.2 266.5 35.2 259.4
6 4 13 27 00 3 10 33.3 270.0 22.1 262.4
7 4 23 26 00 2 10 29.8 268.3 37.3 262.4
8 R 7 00 36 20 1 40 21.7 260.9 27.7 257.1
9 IV 7 14 30 00 3 10 37.3 265.4 26.2 257.2

10 8 00 28 00 3 10 22.1 265.5 33.4 257.8
11 10/ 8 14 22 10 3 20 35.2 268.5 23.4 260.2
12 '"L 9 00 20 30 2 40 25.5 268.3 34.9 261.4
13 r! 9 14 15 00 2 30 30.7 269.9 21.8 264.0
14 10 00 13 20 2 00 30.0 269.8 37.0 264.5
15 11 15 25 50 1 30 36.8 262.0 31.6 257.9
16 R 12 01 23 40 2 20 22.0 262.6 30.3 257.0
17 12 15 17 20 3 30 37.0 267.0 24.7 258.0
18 13 01 15 50 3 00 24.2 266.0 34.8 258.4
19 13 15 09 30 3 40 34.9 270.0 21.9 261.0
20 14 01 08 30 2 20 28.2 268.1 36.3 262.0

in elapsed time from 21 Sep. 69 01 hr. 33 min. 36.3 sec. (see Sec. 1.1)

5.2.2 Relative Location of Anomalies and Arcs

We will first describe the groups of arcs that may be considered for
examining the anomaly recovery. If we consider are spacing roughly the same
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As per the discussion in Sec. 5.1.2, we will first examine the anomaly discrep-
ancies for the 20 anomalies of interest when we have solved for 56 anomalies.
This has been given in Table 5. ].1, when 9, 11, 16, 18 and 20 area were used in
the solution. We will later consider the recovery of 20 anomalies from solution
in which 36 anomalies have been solved for. We will use throughout Sec. 5.2
summed range rate observations with uniform std. devu. of .08 cm /sec., based
on an integration interval of 10 seconds.

Table 5.11

Anom. Discrep. for 20 2°. 5 Equal Area Mean Anomalies
for 9, 11, 16, 18 and 20 Arcs.

2 Additional Anomalies All Around the Area Included in the Solution.
Height of Close Satellite.:: 250 km

Anom. Expected	 Anomaly Discrepancy in mgals
No.	 Anomaly	 9 Arcs 11 Arcs 16 Arcs 18 Arcs 20 Arcs

1	 --9.7	 22.6	 4.2	 21.0	 30.8	 4.4
2	 -10.0	 -3.6	 9.8	 -1.9	 -2.4	 20.8

-W 3
-31.0	 -1.1
----	

- 18.1 --
^,8	

5.3
------- 3.9------

4	 1.4	 -9.4	 1.3	 -0.6	 -3.1	 4.8
5	 -9.2	 7.6	 4.2	 -0.3	 -2.6	 -5.0
6	 3.8	 -30.3	 -3.5	 7.8	 11.7	 18.0

------ -------------------------------------
7	 2.1	 -1.8	 14.2	 -0.3	 -1.2	 7.6

i	 8	 -11.3	 14.2	 7.0	 3.4	 6.8	 4.7
9	 -21.2	 -0.9	 9.8	 4.1	 3.2	 7.1

10	 -7.4	 9.7	 -0.1	 6.1	 0.9	 1.6

11	 4.4	 -16.6	 -26.5	 6.9	 8.4	 -0.7
12	 -17.3	 12.2	 11.7	 1.2	 5.6	 11.2

ri	 13 -21.9 -2.2 6.7 3.^ Q.S 1.7
14 5.1 1.8 5.8 -7.5

-	 -
:3.9

-	 ----------
4.4
.--.... - - - -

i
I

-- - - - -

15
- - - -

28.1
- - - -^ - -

20.5
- - - - -

85.9 10.4 ;3.2 V2.5
16 -20.5 -16.0 -3.9 9.0 7.4 11.4
17 -33.0 10.4 10.8 5.1 11.6 11.5
.18 -28.6 -•28.3 -24.9

-------------------------------------
-19.9 -29..2 -24.8

------
19 10.6 -5.6 85.1 20.5 17.0 20.5
20 -27.3 -9.6 -15.4 -4.8 -2.9 -5.4

R. M. S. 18.3 14.2 29.4 9"1 11.5 11. 1

E	
value

i -
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We notice that the anomaly discrepancies are large in ail cases, and the
solutions are unstable. The R. M.S. value of anomaly discrepancies for the 20
anomalies, would only get worse in the solutions when we solve for 36 anom--
alies. This was discussed in Sec. 5.1.2, and is again found in Table 5.12.

Table 5.12

{	 9

1	
i

t

i

R. M.S. Value of Anomaly Discrepancies for 20 2°. 5 Equal Area Mean Anomalies
for 9, 11, 16, 18 and 20 Arcs.

1 Additional Anomaly All Around the Area included in the Solution.
Height of Close Satellite .;: 250 km

No. of Arcs Used	 R. M.S. Value of
Anom. Discrep. (rn.gals)

	

9	 17.8

	11	 28.3	 f

	

16	 32.3

	

18	 34.0

i	 20	 26.7	 7

1
^	

9

We notice, in particular, the small increase in the R. M. S. value of
anomaly discrepancy in the solution using 9 arcs, when we solve for 56 auomalbs
and 36 anomalies, the value being 14.2 and 17.8 mgals respectively. However, 	

a

the instability of the solution is apparent, when we cons are the values in the^	 Y	 pp	 ^	 p	 ^
j	 last line of Table 5.11 with the corresponding values in Table 5.12. To ex-

amine this in greater detail, the at;omaly discrepancies and std. devns. using
9 arcs and 20 arcs, and solving for 36 anomalies in each case, has been
shown in Table 5.13.

I.

I

i^

i
I

a
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Table 5. 13

Anom. Discrep. and Std. Devas. for 20 20.5 Equal Area Mean Anomalies.
Are Spacing roughly Same and Half Anomaly Block Size (9 & 20 Arcs respectively)

Height of Close Satellite s 250 km

Anom. 9 Arcs 20 Arcs
No. Anom. Discrep. Std. Devn. Anom. Discrep. Std. De*m.

1 25.5 120.7 -38.3 31.1
2 -21.4 29.3 &4 14.1

3 7.8 38.7 6.3 15.3
4 -10.6 77.7 -7.0 21.9
5 9.8 41.8 7.6 9.8
6 -36.0 112.4 -50.5 13.7

7 12.6 58.9 --13.1 19.2
8 -9.3 88.7 18.3 29.8
9 0.7 34.3 1.4 14.2

10 --1.2 80.4 -15.0 29.7

11 9.2 59.9 4.3 23.7
12 -11.5 50.6 0.1 21.3
13 7.9 25.3 -5.7 10.8
14 -35.5 85.5 4.2 15.4

15 24.7 128.7 2.1 39.2
16 -28.4 115.2 0.3 29.6
17 14.6 49.5 25.9 15.7
1$ -11.6 100.2 -75.7 17.7

19 7.8 112.2 -53.3 20.6
20 -13.0 28.3 -7.7 12.0

R. M. S. 17.8 79.5 26.7 21.8
value

Units are mgals.

The solution with 9 arcs, i. e. with arc spacing roughly same as anomaly
block size is obviously unacceptable because of very large std. devns. of the

recovered anomalies. The solution with 20 arcs, i.e. with are spacing voughly
1/2 anomaly bioclt size is also unacceptable bocause of large anomaly discrep-
ancies, pa.rtioul.arly for anomalies No. 6, 18 and 19. 'mc large anomaly discrep-
ancies could lie caused by the increasing non-linearity of the inathema.tica.l model
for the 2° 5 anomaly recovery, malting it difficult to recover the anarmlios from

y
9
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Ij	
the initial value of zero according to the procedure described in Chapter 2. We
may then consider iterating the solution, and this will be discussed in Sec.
5.2.4. We may also consider using in the solution, the a-priori information
about the varhnce of 2.5 residual anomalies. In all solutions considered so
far, we had taken the weight matrix for the anomalies, Pk in equation (2.43), to

i	 be zero. This will now be re-examined in Sec. 5.2.3.
I

We may also remark on the relative magnitude of the std. devns. of the
recovered anomalies in the last column of Table 5.13. The scheme of subdivision
of a 50 equal area block into 4 component 2 0.5 blocks shown in Figure 3.1, re-
sults in the latter blocks being considerably unequal in area. From Figure 5.3,
we then see that, for example, a larger number of observations fail. over anomaly
block No. 3 as compared to block No. 4 or 7. The number of observations over
block No. 1 and 8 are still less. The std. devns. of anomalies No. 3, 4, 7,1 and
8 reflect this variation in the number of observation, values being 15.3; 21.9•, 19.2;
31.1, 29.8 mgals respectively. The same pattern of variation in std. deva.. is no-
ticed in the last column of Table 5.13 for other e. 5 blocks. It would be advisable,
in future, to consider rather °themes or formation of 20. 5 blocks to reduce this in-
homogeneity of observations over neighboring blocks, but this has not been done
during this sf ady.

5.2.3 Solution Using A-Priori Variance of Residual Anomalies

The purpose of this study was to investigate the recovery of gravity anom-
alies from satellite to satellite tracking data alone, without using any terrestrial
data. No a-priori information about terrestrial gravity anomalies and their std.
devns. was thus used in any investigations reported so far. It would, however,
be valid to use the a-priori information about the variance of the residual anom-
alies so long as it is kept the same for all anomalies being considered for re-
covery. We have discussed in Sec. 3.3 the formation of 2°. 5 equal area residual
anomalies. The variance for these 2°. 5 anomalies, considering 104 anomalies
in the area shown in Figure 3.4, was found to be 308 mgals a . We may thus take
the weight matrix of the 2°.5 residual anomalies to be a diagonaE matrix with all
elements on the diagonal being 1/308, instead of zero as considered so far. The
initial value of all 2°.5 anomalies was still kept as zero in the adjustme.t scheme
described in Sec. 2.2. This is therefore slightly different from a combination
solution, where the a-priori estimates of the value of all terrestrial gravity
anomalies, and their std. devns., may be used along with satellite to satellite
summed range rate observations, to get a revised estimate of the gravity anom-
alies to fit all available data. We may, however, call the present procedure of
using the variance of residual anomalies to form their weight matrix, also as
a 'combination' solution, to differentiate it from the solutions already reported
in Sec. 5.2.2. The anomaly discrepancies and std. devns. of the 20 anomalies
of interest, from these 'combination' solutions using 9, 16, and 20 arcs, and
solving [or 36 anomalies is given in Table 5.14.
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Table 5.14

Anom. Discrep. and Std. Devns. of 20 2°. 5 Equal Area Mean Anomalies
Using A--Priori Variance of Anomalies.

Height of Close Satellite .-t^ 250 km

Anom 9 Arcs 16 Arcs 20 Arcs
No. Anom Discr Std Devn	 Anom Discr	 Std Devn Anom Discr Std Devu

1 -13.5 15.5	 -30.1	 13.9 -22.7 13.1
2 5.0 10.6	 13.6	 9.3 9.2 9.0

3 2.6 9.2	 -0.1	 8.4 2.1 7.9
4 -6.8 12.1	 -12.8	 10.6 --12.8 10.5
5 -2.8 8.4	 0.9	 6.8 3.4 6.6
6 -3.6 14.2	 -16.3	 11.2 --33.9 8.4

7 -7.4 11.3	 --5.5	 9.9 -3.8 9.6
8 12.2 14.2	 17.8	 12.5 10.8 12.4
9 7.0 10.3	 3.9	 8.8 9.8 8.6

10 4.1 15.0	 7.7	 14.4 -6.9 13.4

11 9.6 10.7	 3.0	 9.4 -3.9 9.1
12 8.2 11.9	 9.1	 10.2 14.7 10.1
13 -3.3 7.2	 -5.2	 6.3 -6.4 6.2
14 -18.8 11.2	 -16.7	 9.6 -18.3 9.3

15 -9.1 13.9	 -1.7	 13.3 -11.5 12.4
16 23.1 14.7	 1.5	 13.1 -6.5 12.7
17 -9.6 11.4	 4.7	 9.4 15.7 9.1
18 8.3 14.4	 18.3	 11.6 --26.1 10.7

19 3.1 12.1	 3.1	 11.6 --25.4 10.1
20 10.2 8.6	 1.4	 `.. 6 -9.8 7.0

R. M. S. 9.9 12.1	 11.6	 10.6 15.2 10.0
value

Units are mgals.

As the R.M.S. value of anomaly discrepancy in Table 5 . 14, using
20 arcs was larger than for both 16 arcs and 9 arcs, another 'combination'
solution was tried for 20 arcs, in which the initial value for all 36 anomalies
was retained as zero.	 The weight matrix was also kept as diagonal, with
weights for the 20 anomalies of interest also retained as 1/308, to correspond
to their std. devn. of 17.5 { = 308} m8als.	 However, for the remaining 16
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anomalies outside the area of investigation, the weights were reduced to 1/900,
corresponding to their std. devn. as 30.0 mgals. The choice of 30 mgals was
arbitrary, but we do know from the results of the previous investigations, that
the std. devas. of the recovered anomalies is considerably higher for the anom-
alies not covered by observations, as compared to .hose lying inside the area of
investigation, and covered by observations. It may therefore be appropriate to
reduce the weight in the 'combination' solution for the anomalies outside the
area of investigation. However, the anomaly discrepancies in this test with 20
arcs remained large, with a R. M. S. value of 16.7 mgals. It may perhaps be ar-
gued that a 'combination' solution using 9 arcs gives lower anomaly discrepan-
cies, as the std. devn. of 17.5 mgals is much lower than the std. devn. of the
recovered anomalies, without using a-priori variance of the anomalies (see
column 3 of Table 5.13). The effect of a-priori variance in the weight matrix
of anomalies, is thus strongly felt in the combination solution with 9 arcs as
compared to 20 arcs, as in the latter case the std. devn. of the recovered
anomalies with zero weight matrix of anomalies, is already close to the value
of 17.5 mgals (see last column of Table 5.13).

We cannot however justify using 9 arcs giving are spacing roughly same
as anomaly block size, in preference to 20 arcs giving are spacing roughly half
anomaly block size, in view of the experience gained so far from investigations
in Chapter 4 and Sec. 5.1.. We may therefore now consider a second iteration
for the recovery of anomalies, vs which we may use the initial value of anom-
alies different lrom zero. For the purpose of this iteration onl .v, we may use
the recovered anomalies as obtained from the combination solution using 9 arcs,
as initial values instead of a zero vector. This will be investigated in Sec.
5.2.4.

5.2.4 Iteration Solution

The misclosures between 'observed' summed range rate value and the
computed value was so far obtained by generating the orbits of the satellites
using (12,12) potential coefficients only, and treating the residual gravity anom-
alies as zero. For obtaining the iteration solution, the initiwl value of the 20
residual gravity anomalies was taken to be as obtained from the combination
solution using 9 arcs; and these were used for generating the orbits of the satel-
lites besides the (12, 12) potential coefficients. The R. M.S. value of the mis-
closures of the summed range rate for the 20 arcs, when no residual gravity
anomalie3 were used and when 20 residual gravity anomalies were used, are
given in Table 5.15.
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Table 5. 15

R. M. S. Value of Misclosure Between Observed and Computed Value of
Summed mange Rate (f^) With & Without 20 20.5 Equal Area Residual Gravity Anoms.

Height of Close Sa.tellite ;ze 250 km

Misclosure in Rs in cm/sec
Are No. No Anomalies 20 Anomalies

1 0.434 0.714
2 1.007 0.710

3 0.459 0.237
4 0.717 0.207
5 1.330 0.077
6 0.501 0.416
7 0.331 0.491
8 0.871 1.090
9 1.029 0.641

10 0.971 0.229
11 0.724 0.025
12 0.815 0.106
13 0.357 0.797
14 0.206 0.519
15 0.791 0.690
16 0.041 0.382
17 0.836 0.395
18 1.321 0.175
19 0.643 0.246
20 0.556 0.332

i
We find that the misclosures were reduced in 14 out of 20 arcs. How-

ever, the reduction in the misclosure for 4 out of 14 arcs is not large. It is
also marginal for arcs No. 20 and 3. The values of gravity anomalies in the
iteration solution are therefore perhaps not much better as initial values, to
ensure linearization of the mathematical model, as compared to the zero values
used in the previous solutions in Sec. 5.2.2. The R. M.S. valise of -die anomaly
discrepancy of 9.9 mgals (Table 5 . 14) for the anomalies used as initial values
in the iteration solution is, in fact, slightly larger than half of the R. M.S. value
of 17.5 mgals for the 2°. 5 residual anomalies.

After obtaining the misclosure vector and the partial derivatives matrix
as in Sec. 2. 1, with initial values of gravity anomalies from 9 arcs combination	 i

solution, the correction vector to these initial- values was obtained with the
weight matrix of the gravity anomalies kept as zero. The anomaly discrepancy
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for 20 anomalies of interest, using 9 arcs, in this iteration solution is given in
Table 5.16, which may be compared with column 2 of Table 5.13. The std.
devns. of the recovered anomalies were the same as in column 3 of Table 5.13.

Table 5.16

Anom. Discrep. for 20 2°. 5 Equal Area Mean Anomalies for 9 Arcs Iteration Soln.
Height of Close Satellite 250 km

Anom. Anom. Discrep Anom. Anom. Discrep.
No.	 (mgals)	 No.	 (mgals)

1 29.3 11 10.8
2 -21.9 12 -12.0
3 8.0 13 7.4
4 -10.9 14 -34.8
5 9.3 15 25.0
6 -34.7 16 -30.2
7 12.2 17 16.6
8 -8.0 18 -13.8

9 0.9 19 6.3

10 -2.6 20 -13.9

On comparing Tables 5.16 and 5.13, we find that the anomaly discrepancies
are almost the same in the original solution as in the iteration solution. We do not
achieve any convergence from the iteration solution, as perhaps the initial values
used in the iteration solution did not secure an improvement in the linearization
of the mathematical model, over the zero values used in Sec. 5.2.2.

5.2.5 Recovery Model for e. 5 Equal Area Mean Anomalies

The improvement in anomaly recovery by estimating an additional anom-
aly all around the area of investigation, which was first discussed in Sec. 4.1.8
and confirmed in later investigations, may perhaps be explained because of sig-
nificant eorrelation between adjacent anomalies. The correlation between two
anomalies, separated by one anoinaly block between them, is wearer; and it is
thus adequate to consider only 1 additional anomaly all around the area of inves-
tigation. This is so for 10 0 and equal area anomalies as seen in Chapter 4.
However, as the size of anomaly block is reduced to 2°. 5 equal area, the correl-
ation between two 20.5 anomalies, separated by one anomaly block between them,
may become significant. If we then allow two additional anomalies all around the
area of investigation to be estimated, this correlation between every third anom-
aly is also taken into account. We have, in fact, already reported such solution
in Table 5.1.1, in whic"Lx 56 anomalies were estimated, i.e. 20 anomalies of
interest with 2 additional anomalies all around them. These solutions were,
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however not stable. We could then incorporate the information of a-priori
variance of 2". 5 anomalies in a diagonal weight matrix, as in Sec. 5.2.:3 instead
of considering a zero weight matrix; and this 'combination' solution may make
the solutions more stable. Again, as discussed after Table 5.14, the 36 anoma-
lies outside the area of investigation may be given a lower weight as compared to
the 20 anomalies of interest, lying inside the area of investigation.

The anomaly discrepancies and std. devns. determined on the above con-
siderations, have been given for the 20 anomalies of interest in Table 5.17.

Table 5.17
Anom. Discrep. and Std. Devns. of 20 e.. 5 Equal Area Mean Anomalies

Using A-Priori Variance of Anomallie4.
2 Additional Anomalies All Around the Area Included in the Soln.

Are Spacing Roughly Half Anomaly Block Size (20 Arcs)
Height of Close Satelli te;ze 2 50 km



All the 20 arcs were used in the solution. The initial value of all the 56 anom-
alies was taken as zero. The weight matrix of the anomalies was kept diagonal
and two solutions were tried. In the first case, the weights for all the 56 anom-
alies was kept as 1/(17.5)'2 . In the second case, this weight was retained for
the 20 anomalies of interest, but for the 36 anomalies outside the area of investi-
gation, and thus not covered by observations, the weights were reduced to 1/304.
The expected value and the recovered value of anomalies in Case 2 have also
been showy in Table 5.17.

The improvement in anomaly discrepancies for the 20 anomalies of
interest, by assigning a low weight in Case 2 for the outside anomalies not
covered by observations, is apparent from columns 3 and 6 of Table 5.17. This
is particularly so for the peripheral anomalies, e.g., anomalies No. 3, 6, 10,
15, 18 and 19. We also notice by comparing column 3 of Table 5.17 with the
last but. one column of Table 5.14, that there is no improvement in the combin-
ation solution using 56 anomalies over the combination solution using 36 anom-
alies, if the weights of all anomalies are kept the same; the R. M.S. value of the
anomaly discrepancy being 20.3 and 15.2 mgals respectively. The combination
solution with uniform weights for 56 anomalies in column 3 of Table 5.17, also
does not show any improvement over the original solution with zero weights for
the 56 anomalies, in the last column of Table 5.11; the R. M. S. value of the
anomaly discrepancy in the latter solution being 11.1 mgals. The optimum re-
covery model for 2°. 5 equal area anomalies is therefore obtained by solving for 2
additional 2. 5 anomalies all around the area of investigation, and assigning low-
er weights to these outside anomalies not covered by observations. We will
designate this solution as 2.5-3C; 2.5 for the size of anomaly block, 3 to indi-
cate the inclusion of 2 additional anomalies in the solution, and C for the 'Com-
bination' solution obtained by assigning non-zero weights to the anomalies.

The statistics for examining the 'goodness' of anomaly recovery for the
2°. 5 anomalies in the Solution 2.5-3C are given in Table 5.18.

Table 5.18
Statistics for 2°. 5 Anomaly Recovery in Solution 2.5-3C.

Summed Range Rate Obsns. at 10 sec. Time Interval for 20 Arcs
No. of anomalies recovered 56
No. of anomalies of interest 20
A-priori std. devn. of anomalies of interest (mgals) 17.5
A-priori std, devn. of anomalies not covered by obsns. (mgals) 30
R. M.S. value of anomaly discrepancy (mgals) 8.5
R. M, S. value of expected anomalies (mgals) 18.3
R. M.S. value of recovered anomalies (mgals) 15.5
Correln. coeff. (p) of recovered anom. with expected anoin. 0.92
Mean correln. coeff. of adjacent recovered anom. (L. W. direction) -0.23
Mean correln. coeff. of adjacont recovered anom. (N. S. dlroction) -0.39
R. M.S. value of std. devn. of recovered anom. (mgals) 11.1
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5.3	 Recovery Model for 5° Equal Area Mean Anomalies

We found in Sec. 5. 1, with reference to the closing remarks in Sec.
5.1.4, that we could not recover 50 anomalies from close satellite at height
of about 9001cm, without using any a-priori information from terrestrial gravity
data, I. e. when both the initial value and the weight matrix of the anomalies
were considered to be zero. This was inspite of ensuring sufficient observations
over the peripheral anomalies in Sec. 5.1.3, and inspite of increasing the den-
sity of satellite arcs from roughly 1/2 anomaly block size to 1/4 anomaly block
size in Sec. 5.1.4.

We may therefore utilize the a priori variance of 5° residual anomalies
to form their weight matrix, as has been done in the case of the recovery of
20.5 anomalies in the previous section. The investigations for the recovery of
5° anomalies from close satellite at height of 250 km in Sec. 4. 2, show (he op-
timum recovery with the inclusion of one additional anomaly all around the area
of investigation in the estimation process. We may, however, also try the
recovery with 2 additional anomalies all around the area of investigation, in
view of the results of See. 5.2.5. Similarly, we may also experiment with the
weights of anomalies outside the area of investigation, and thus not covered
with observations, being lower than the weights for the anomalies covered by
observations.

The variance of 52 5° equal area residual anomalies used in the sim-
ulation of observations in Sec. 3. 4, was found to be 108 mgals s . We may thus
form the weight matrix of the anomalies as a diagonal, matrix, with all elements
on the diagonal being 1/108, 1. e. uniform weights corresponding to the std.
devn. of 10.4 mgals. We may also obtain another solution using a similar
weight matrix, but where the weights for the anomalies outside the area of in-
vestigation correspond to the std. devn. of 20 nigals, i.e. varying weights.
We report in Table 5.19, 3 solution using 15 arcs, and solving for 24 anollialies,
i.e. one additional anomaly all around, with uniform weights (Case 1), and vary-
ing weights (Case 2). In Case 3, we still use 15 arcs, but solve for 40 anom-
alies, i.e. 2 additional anomalies all around, with varying weights. The
initial value of all anomalies in all the 3 cases was kept: as zero.

I
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Table 5.19

Anom. Discrep. and Std. Devns. of 12 a Equal Area Mean Anomalies
Using A-Priori Variance of Anomalies.

Summed Range Rate Obsns. at 10 sec. Time Interval for I5 Arcs
With Are Spacing Roughly Half Anomaly Block Size.

Height of Close Satellite-_ 9 0 0 km

Case 1.	 Case 2.	 Case 3.
Anom. 24 Anom Uniform Weight 24 Anom Varying Weight 40 Anom Varying Weight
No.	 Anom Discr Sid Deva Anom Discr Std Deva Anom Discr Std Deva

1 7.2 8.4 10.0 9.1 10.8 9.1
2 9.8 8.1 6.0 8.9 6.0 9.0

3 2.2 8.2 2.1 9.0., 1.7 9.1
4 -3.8 7.5 -2.4 7.7 -2.5 7.8
5 -11.0 7.3 -9.5 7.6 -7.0 7.7
6 13.6 7.9 0.2 8.8 -0.7 8.9

7 --6.3 8.2 -10.7 9.1 -10.9 9.2
8 2.9 8.2 1.3 8.3 -0.8 8.3
9 4.5 7.3 7.7 7.5 7.6 7.6

10 --3.1 8.2 -3.8 8.9 -2.8 9.0

11 -13.1 8.2 -16.1 9.0 -L6.1 9.1
12 6.8 7.4 7.7 8.5 8.1 8.7

R. M. S. 8.0 7.9 7.9 8.6 7.8 8.6
value

Units are mgals .

The >olutions in Cases 1 and 2 are comparable to Solution 900-5-2A re-
ported in Tables 5. 5 and 5. 6, where the 1't. M.S. value of anomaly discrepancy
was 17. 5 mgals. We therefore notice the improvement in anomaly recovery,
when we use the a-priori variance of anomalies to form their weight matrix.
Secondly, we find from Table 5.19 that there is no noticeable difference in the
solutions in the 3 cases. The improvement in anomaly recovery thus results
from the diagonal weight matrix not being zero, but it is not material if the
weights are uniform, or are lower for the anomalies not covered with observa-
tions. Also, unlike Sec. 5.2.5, it is adequate to consider one additional rn,om-

w	 aly all around the area of investigation. This was also found when two other
solutions were tried analogous to Cases 2 and 3, but using 28 arcs, i. e. with

f	 arc spacing of 1/4th anomaly block size, the R. M.S. value of the anomaly dis-
crepancy being 7.5 and 7.4 sngals respectively.



We may thus consider the optimum model for the recovery of 5° anom-
alies from close satellite at a height ;.f about 900 kin, being Case 2 of Table 5. 19,
where we utilize the a-priori variance of the anomalies. The are spacing is then
1/2 anomaly blocs: size, as more arcs to give a spacing of 1/4 anomaly block
size do not cause a proportionately large improvement. Only one additional
anomaly all around the area of investigation is included in view of the investi-
gations in Sec. 4.2; but lower weights are assigned to anomalies not covered by
observations, in view of the investigations in Sec. 5.2.5.

We have to now recall that the along-arc observations being at time inter-
val of 10 seconds, were 3 times more closely spaced than the spacing between
the arcs, which was about half anomaly block size. If we were not considering
combination solution, we would have multiplied the std, devns of the recovered
anomalies by A3. We could have also gnt the same results if wL I,ad multiplied
the weight matrix of observations by 1/3, And then we do not scale the std.
devns. of recovered anomalies. Accordingly, when considering the combina-
tion solution, we may multiply the first term of the normals in equation (2.42)
by 1/3 before adding the weight matrix P, based on the a-priori variance of
anomalies. Case 2 of Table 5.22 was then run again with this modification.

We will call this as Solution 900-5-2C, 900 km being the height of the
close satellite, 5 for size of anomaly blocks being recovered, 2 for including
one additional anomaly all around the area of investigation, and suffix C to in-
dicate a 'combination' solution. The statistics for examining the 'goodness'
of anomaly recovery in Solution 900-5-2C are given in `fable 5.20.

Table 5.20

Statistics for 5 Anomaly Recovery in Solution 900-5-2C.
Summed Range Rate Obsns. at 10 sec. Time Interval for 15 Arcs

No. of anomalies recovered 24

No. of anomalies of interest 12
A--priori std, devn. of anomalies of interest (mgals) 10.4
A-priori std. devn. of anomalies not covered by obsns (mgr.ls) 20

R. M. S. value of anomaly discrepancy (mgals) 8.5
R. M.S. value of expected anomalies (mgals) 13.7
R. M.S. value of recovered anomalies (mgals) 8.5
Correln. coeff. (p) of recovered anom. with expected anom. 0.81
Mean correln. coeff. of adjacent recovered anom. (L.W. direction) -0.18
Mean correbi. coeff. of adjacent recovered anom. (N.S. direction) -0.18
R. M.S. value of std. devn. of recovered anon. (inguls) 9.0
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6. USE OF REAL DATA AND CONCLUSIONS

6.1	 Use of Real Data

An effort was made throughout this study to use data, which would be
similar to the real data, likely to be available later. This is particularly true
for the data in Sec. 4.1 and 5.1., with the close satellite at height of about
904 km, which is likely to correspond closely to the Geos-C/ATS--6 configuration.
The geometry, and the density of the across-arc and along-arc observations,
and the nominal. satellite Keplerian elements used in this study correspond
closely to the proposed values.

The use of real data would obviously bypass the discussion in Sec. 3.4
about the extent of anomalies for simulation of observations, as it would sense
the global effect of the gravity anomalies at the satellite altitude. The summed
range rate measurements would, however, require preprocessing, primarily
for the refraction effects for the ground ATS-6 tracking station to the ATS-6
relay satellite. As the relay satellite is nominally geostationary, and the sig-
nal path through the ionosphere and troposphere remains nearly the same for
various observations in a satellite arc, the refraction corrections are likely to
be well determined. The transponder delays -:)f the satellites are not likely to
cause any significant errors within the range of their calibration uncertainties
of a few microseconds.

The initial state vector of the satellites for starling integration for
individual arcs could not be detenuinod in this study, as the observations
were simulated for periods of 5 to 20 minutes only. The starting coordinates
have thus to be obtained for each arc from an optimum combinallon of various
tracking data (Martin, 1969; Martin, 1971; Kahn et al; 1972). It may be possible
to refine these estimates further, by considering; the summed range rate data
over the entire usable period of the arc, over which the close satellite may be
tracked by the relay satellite, say, over a 40 minutes arc. These final estim-
ates may then be held fixed, as in this study, for the portion of the are used
over the area of investigation. This approach needs further investigation.

iThe subdivision of a 10° equal area block into component blocks of
j	 various sizes has been described in Sec. 3.1. In this study, the residual

mean anomalies over a block of a given size, were estimated as a correction
vector to an initial zero value vector. After obtaining these estimates of re-
sidual anomalies from the satellite to satellite tracking data, it may be desired
to combine these with the estimates obtained from the terrestrial gravity data.
The combined estimate may be obtained directly as indicated in equation (2.41)
in Sec. 2.2.1. The terrestrial estimates of the residual anomalies may be
obtained according to Clio sahamc dosvi-lbed in Sec:. 3.3. Hnally to convert
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the residual anomalies, Ag, into gravity anomalies, Agf , with respect to a

given reference ellipsoid through a specified gravity formula as in equations
(3.7) and (3.8) in Sec. 3. 9, we may compute the gravity anomaly Agpe, implied
by the accepted set of potential coefficients as in equation (3.3), and then ob-

tain Agf from equation (3.1.).

6.2 Computer Run Timings

The main computer program used in this study was the November, 1972
version of the Geodyn program (Chin, Goad and Martin, 1972), which was modi-
fied to accept gravity anomalies. These modifications have been described
separately (Karki, 1973; Hajela, 1974). The Geodyn program was primarily
used in data simulation mode for obtaining normals, and for the computation of
the solution vector. A few supporting programs were also written separately,
as described in Sec. 2.3.3. All information in this Section pertains to the
IBM 360/175 Computer.

The computer runs, which took the most time, were for simulating ob-
servations using gravity anomalies, in addition to the (12,12) potential coeffi-
cients. For the close satellite at height of 900 km, with integration step size
of 1 minute, it took about 54 seconds per are of about 20 minutes duration, with
data interval as 30 seconds. For the same satellite, it still took about 43 sec-
onds per are of about 5 minutes duration, with data interval as 10 seconds. For
the close satellite at height of 250 km, with integration step size of 30 seconds,
it took about 47 seconds per are of about 5 minutes duration, with data interval
as 10 seconds. If we were to simulate observations without using gravity anom-
alies, it took only about 8 seconds per are of about 20 minutes duration for the
close satellite at height of 900 km, in contrast to 54 seconds per are, when
gravity anomalies were also used.

The computer runs for obtaining the normal equations depended primarily
on the numbor oaf anomalies to be estimated. For 92 and 40 anomalies to be es

-timated, it was respectively about 32 and 22 seconds per arc. Other computer
runs R-or obtaining individual arc normals from summed normals for several arcs;
or to combine normals for several arcs from individual are normals, would
take little tine, about 5 seconds or less for the whole run. it would take similar
time to reduce the number of unknowns from the sum cued normals. The inversion
of normals and the computation of solution vector, were likewise about 5 seconds
or less, once the normals and constant vector were .lvailable on the magnetic
tape.
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The core storage requirement for the Geodyn program in the data
reduction mode is about 360K, when no gravity anomalies are input to the pro-
gram. Additional storage of about 1. 5 K is required for'each gravity anomaly
input to the program. Further information may be seen in tho Geodyn program
documentation (1972).

6.3	 Summary of Results

The results of anomaly recovery for the preferred solutions in Chapters
4 and 5, have been summarized in Tables 6.1 and 6.2 respectively. The
solutions for anomaly recovery extracted from Chapter 4, did not use any a-
priuri information about gravity anomalies, i. e. their initial value was taken
as a zero vector, and their weight matrix was also taken as zero. The solu-
tions for anomaly recovery extracted from Chapter 5, assumod the initial
value of gravity anomalies as a zero vector, but the weight matrix was taken
as a diagonal matrix, with weights as the reciprocal of a--priori variance of the
gravity anomalies. The weights were the same for sill anomalies covered with
observations, and a lower weight for all anomalies not covered with observations.
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Table 6.1

Summary of Results for Anomaly Recovery from Strong Signal
Summed Range Rate Obsns. withStd. Deva. 0. 08 cm/sec. for Integration Interval of 10 Sec.
Simulated Obsus. without Observational Errors. Zero Weight Matrix fox Anomalies.

Approximate height of close satellite (km) 900 250
Size of equal area mean anomaly block 10° 5°
Latitudinal extent of the area of 70° 20°

investigation 10°S--60°N 20°N-40°N
Longitudinal extent of the area of 60° 25°

investigation (approx.) 2400 - 3000 E 2500 - 2750 E
No. of anomalies of interest, covered by obsns. 37 12
No. of anomalies estimated 64 24
No. of anomaly blocks all around the area of investigation, 1 1

not covered by obsns.
Spacing of satellite area in terms of anomaly knock size 1/2 1/2
Longitudinal spacing of satellite arcs (approx.) 6° 30
No. of satellite arcs used in the solution 14 12
R. M.S. value of expected anomalies (mgals) 5.4 13.7
R. M.S. value of recovered anomalies (mgals) 5.5 13.9
Correln. coeff. of recovered anom, with expected anom. 0.998 0.986
R: M.S. value of anomaly discrepancy (mgals) 0.3 2.3
Mean value of anomaly discrepancy (mgals) --0.1 -0.2
Minimum value of anomaly discrepancy (mgals) -0.7 -5.0
Maximum value of anomaly discrepancy (mgals) 0.8 3.6
Time interval of observations along an are 1 min. 10 see.
R. M. S. ralue of std. devn. of recovered anomalies (mg•-.l.$) 5.2* 3.4
R. M.S, value of std, devn. , corrected for integration interval 	 2.0 3.4

of observations
Ratio of along-arc to across-arc spacing of observations 1 3
R.M.S. value of std. devn. of recovered anoms. , corrected for	 2.0 5.9

integration interval and along--arc spacing of obsns
Average correln. coeff. between adjacent recovered anom. -0.32 -0.26

(E. W. direction)
Average correln. coeff. between adjacent recovered anom. -0.44 -0.41

(N. S. direction)
Results tabulated in Chapter 4 Soln. 10--2 Soln. 250-5-2

Tables 4.11,4.13; 4.16, 4.17
Figure 4.9 Figure 4.15

Also see Table 4.18

*R.M.S. value for 31 anomalies, after leaving out 6 anomalies on the south and
west edges of the area, not well covered with observations (see remarks after
'fable 4.13 in Sec. 4.1.9).
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Table 6.2

Summary of Results for Anomaly Recovery from Weak Signal.
Summed Range Rate Obsns. with Std. Deva. 0.08cm/see for In.tcgration Interval of 10 Sec.

Simulated Observations without Observational Errors.
Diagonal Weight Matrix for Anomalies Using A-Priori Variance

Approximate height of close satellite (km) 250 900
Size of equal area mean anomaly block 20 5 50
Latitudinal extent of the area of 150 200

investigation 22'-37'N 200 x-400 N
Longitudinal extent of the area of 130 2e

investigation (approx.) 257° - 2700 E 260° - 275° E
No. of anomalies of interest, covered by 20 12

obsns.
No. of anomalies estimated 56 24
No. of anomaly blocks all around the area 2 1

of investigation, not covered by obsns.
A-priori std. deva. for weight matrix, for 17.5 10.4

anomalies covered with obsns. (mgals)
A-p:-iori std. devn. for weight matrix, for 30 20

anomalies not covered with obsns. (mgals)
Spacing of satellite arcs in terms of anomaly 1/2 1/2

block size
Longitudinal spacing of satellite arcs to 3 

(approx. )
No. of satellite ales used in the solution 20 15
R. M.S. value of expected anomalies (mgals) 18.3 1.3. 7
R. M.S. value of recovered anomalies (mgals) 15.5 8.5
Correln. coeff. of recovered anom. with 0.92 0.81

expected anom.
R. M.S. value of anomaly discrepancy (mgals) 8.5 8.5
Mean value of anomaly discrepancy (mgals) -1.0 -0.4
Minimum value of anomaly discrepancy (mgals) --18.0 -17.9
Max ,mum value of anomaly discrepancy (mgals) 10.3 12.1
Time , interval of observations along an arc 10 see. 10 sec,
Ratio of along-arc to across-arc spacing 1 3

of observations
R. M.S. value of std. deva. of recovered anom. 11.1 9.0

corrected for spacing of observations*
Average correln. coeff. between adjacent re- -0.23 -0.18

covered anom. (E. W. direction)
Average correln. coeff. between adjacent -0.:39 -0.18

recovered anoni. (N. S. direction)
Results tabulated in Chapter 5 Soln. 2.5-3C Soln. 900-G-2C

Tables 5.16, 5.17 Table 5.20

* Sec discussion before Table 5.20 in Sec. 5.3.
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We may recall here the criteria used for judging the 'goodness' of anomaly re-
covery. For simulated observations, not burdens d with observational errors, the
R. M.S. value of anomaly discrepancy should be small, say 1/2 to 1/3 times the
R. M.S. value of the expected anomalies. The R. M. S.value of recovered anomalies
should be comparable to the R. M. S. value of the expected anomalies, with a high
value, say, about 0. 9, of the correlation coefficient between the recovered and ex-
pected anomalies. The R. M.S. value of the std. devns. of the recovered anomalies
should be comparable to, or less than, the std. devn. of the expected anomalies,
which may be obtained as the R. M. S. value of the expected anomalies. The cor-
relation coefficients between adjacent recovered anomalies, both in the east-west
and in the north-south directions, should be small, say less than 0.5.

We may also mention, in brief-, the main conclusions about the observational
data. The optimum number of satellite arcs to be used in the solution, are those,
which achieve a spacing of about half of the anomaly block size desired to be re-
covered. This spacing refers to adjacent ascending, or descending, arcs. The
satellite arcs should be uniformly spaced, and located symmetrically with respect
to the area of investigation, considering both the ascending and descending arcs.
It is necessary that the peripheral anomaly blocks are nearly as well covered 1vith
observations, as the central anomalies. The optimum shape of the area of investi-
gation would thus depend on the inclination of the satellite. For satellites with
inclination between 300 - 60° , the shape of the area of investigation should be near-
ly a rhombus, with its diagonals in the east-west and in the north-south direction.
The latitudinal extent of the area should not exceed about 40°, and should preferably
lie wholly over either the equatorial region, or the mid-latitude reglim.

The observations should not extend beyond the area of investigation. If the
spacing of observations along an arc is more dense than the spacing of observations
between adjacent arcs, say n times, then the std. devns. of the recovered anomalies
should be multiplied by a factor of //n . Alternatively, the scaling of the std. devns.
of the recovered anomalies may also be achieved by multiplying the weight matrix
of the observations by a factor of 1 /n.

An additional anomaly all around the area of investigation should be estimated
along with the anomalies covered by observations. However these anomalies not
covered with observations, would not be recovered; and information should be ex-
tracted from the solution for only those anomalies covered by the observations.
only one additional anomaly all around the area of investigation is to be included
in the solution for the recovery of 10 0 and 50 anomalies; but for smaller blocks
like 2°. 5, 2 additional anomalies all around the area of investigation, are to be
included in the solution.

The anomaly recovery improves, if instead of t<n.lcing the weight matrix of
anomalies to be zero, we use a diagonal weight matrix with the same weight for all
anomalies covered by observations, as the reciprocal of a-prior! variance of the
gravity anomalies. The weight for all anomalies not covered with observations,
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is also same, but is lower than the weight for the anomalieb zovered by obser-
vations. The anomalies could not be recovered with weak signal, as discussed
in Chapter 5, without using this information about the a-priori variance of the
gravity anomalies.

Summed range observations are not sensitive enough, as compared to
the summed range rate observations, for the recovery of gravity anomalies.
For the recovery of residual anomalies in regional, or local, areas, no con-
straints should be imposed on the recovered anomalies to satisfy any specified
values of the spherical harmonic coefficients.

Finally, we may compare the results of Schwarz (1970) with those ob-
tained in the present study. These results cannot be compared rigorously be-
cause of the differences in the configuration of satellites, in the recovered
parameters and in the size of blocks. The 'uncertainties' in the recovered
values of density parameters by Schwarz may however, be related to the std.
devns. of the recovered anomalies in this study, by first multiplying by a fac-
to r of 2n ; and then by a factor of 16 to account for the std. devn. of summed
range rate observations used by Schwarz being .005 cm/see as compared to
.08 em/see in this study for the integration interval of 10 seconds.

Schwarz (Solution 8.1) obtained an uncertainty of 0.6 to 1.8 mgals in
the recovered vF. hies of 2"x 20 density parameters, with the close satellite
at height of 200km tracked by a geosyuchronous relay satellite. This is then
equivalent to 60 to 180 mgals (= 0.6 to 1.8x 2vr x16) for comparison with the
std. devns. of recovered 2°. 5 equal area anomalies in this study from close
satellite at height of 250km. In Solution 5.1, using 2 low satellites in nearly
same orbit at height of about 200km, his uncertainty is equivalent to 80 to 240
mgals. The correlation coefficients in these 2 solutions were about -0.8 in
the east--west direction and about -0.6 in the north-south direction. As the
spacing between arcs used by Schwarz was roughly the same as block size,
instead of 1/2 clock size, his results can be perhaps compared with the solution
for 9 arcs in Fable 5.13 in this study, with the R. M.S. value of std. dc,vns. of
recovered anomalies being 80/ _= 112 mgals. The final results obtained in
Solution 2.5-W in this study have been summarized in `!'able 6.2, which gives

j	 the R. M.S. value of std. dem of recovered anomalies as 11 mgmis, and the
correlation coefficients in the east-west direction as -0.2, and in the north-
south direction as -0.4. The spacing of arcs in this solution was 1/2 anomaly
block size and the a-priori variance of anomalies was used informing their

weight matrix.

For 5°x 5° density parameters, using 2 low satellites at height of

about 300 km, Schwarz I s uncertainty (Solution 3.1) is equivalent to 10 to 30 	 i
mgals. The correlation coefficients were about -0.6 in the east-west

E

direction and 0.4 in the north-south direction. Those results can beperhaps
compared with the solution for 6 arcs in Sec. 4.2.2 for the recovery of 5"
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equal area mean anomalies ur ging a close satellite with height of 250ii^m. As
this was considered Inadequate spacing of tires, the R.M.S. value of the std.
devns. was not given but it was 7.9A 19 rngals. For 12 arcs, I. e, with are
spacing of about 1/2 anomaly block size, the particulars for Solution 250-5-2
have been summarized In Table 6. 1, which gives the R.M.S. value of std.
devu. of recovered anomalies as 6 mgals, and the correlation coefficients in the
east-west direction as -0.3, and in the north-south direction as -0.4.

Again, for ex a density parameters, using 2 low satellites at height of
about 700 km, Schwarz's uncertainty (Solution 1.4) is equivalent to 60 to 400
mgals. The correlation coefficients were about -0.8 in the east-west -?irection,
and -0.2 to 0.2 in the north-south direction. These results are comparable
with the solution. for K arcs in Sec. 5.1.2 for the recovery of a anomalies
using a close satellite with height of about 900 km. The R. M. S. value of the
std. devns. was 190A = 465 mgals. The; final results obtained in Solution
900-5-2C in i.his study have been summarized in Table 6.2, which gives the
R. M.S. value of std. devn. of recovered anomalies as 9 mgals, and the correla-
tion coefficients in the east-west and in the north-south directions as -0.2
mgals. The spacing of arcs in this solution was 1/2 anomaly block size and the
a-priori variance of anomalies was used in forming their weight matrix.

We thus find that there are 2 noticeable differences in this study and
that of Schwarz. The spacing between the arcs considered by Schwarz was
roughly the same as the size of block in which density parameters were being
estimated, while the optimum spacing of arcs was found to be 1/2 block size
In this study. Secondly, Schwarz does not allow for the possibility of using a-
priori. knowledge of the variance of the parameters being recovered, to form
a weight matrix for them. It vial found in this study that there was a remark-
able improvement in the anomaly recovery of 2°. 5 anomalies from close satel-
lite at height of 250 km, and of 50 anomalies from close satellite at height of
900 km, i.e. when the signal was weak, if the knowledge of the a-priori variance
of anomalies was used to form their weight matrix.

6.4	 Suggestions for Further Study

During the recovery of anomalies discussed in Chapter 4, no u6e was
made of any a-priori information from the terrestri7-1 data for these gravity
anomalies. The recovery of anomalies was entirely .ram the information in
the signal from satellite data, i.e. the summed range rate observations. In
Chapter 5, the signal from satellite data alone was not sufficient to recover
the anomalies. We then utilized the a-priori information about variance of
these anomalies to assign a non-zero weight matrix for them. This weight
matrix was diagonal and the weights assigned were the same for a set of
anomalies. The initial value of all the anomalies was still kept as a zero
vector. We thus did not utilize the a-priori estimates of these gravity an:om-
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alien from terrestrial observations, nor did we assign different weights to the
anomaly estimates. further study should be made for the optimum utilization
of these terrestrial estimates of anomalies, and their std. devns. , for getting a
revised estimate, incorporating all available information from satellite and
terrestrial observations. Rapp (1973b) has already reported the results of re-
covering, 150 anomalies using optical satellite data, and a-priori terrestrial
estimates of le anomalies and their std. devns. A study may now be made for
the recovery of anomalies in smaller size, say 100 and 5° equal area blocks, by
utilizing summed range rate observations from the Geos-C/ATS-6 tracking,
and a-priori terrestrial estimates of these 10 0 and 50 anomalies.

Further study is also needed to obtain the starting coordinates of the
close and realy satellites, for a short are of the close satellite of less than
one revolution, to fit the observations over a short time span of 5 to 20 minutes.
This has already been indicated in Sec. 6.1. The accuracy with which these
starting coordinates can be determined, and the effect of the uncertainty in this
determination on the computed value of t .e summed range rate, needs to be
investigated. The uncertainty in this computed value would affect the mis-
closure from the observed value, and this erroneous value would be propogated
into the correction vector of the parameters of interest.

We have considered in this study the residual gravity anomalies referred
to a set of potential coefficients complete up to degree and order 12. The pur-
pose of using a potential field of higher order was to reduce the magnitude of
the residual anomalies. However, as noted in Sec. 3.2 (Tables 3.1 and 3. 2),
this reduction was not substantial. It may be investigated if it would be better
to define the earth's normal gravitational potential by utilizing a still larger
set of potential coefficients, or some other representation, which would still
retain the computational convenience of potential coefficients in generating the
orbits (Kaula, 1970; Lundquist and Giacaglia, 1972), and the residual anom-
alies are then defined with respect to this new representation.

The shape of the area of investigation was discussed in Sec. 4.2. How-
ever, the extent of the area of investigation for the recovery of a and 2°. 5
anomalies in Sec. 4.2 and Chapter 5, was chosen rather arbitrarily for the
computational convenience of being covered by a limited number of satellite
arcs. We did discuss in Sec. 4.1.9, the desirability of the area of investiga-
tion being separate for equatorial regions and mid--latitude regions, and
accordingly limited to about 40° in latitudinal extent. It may further be inves-
tigated if there is any optimum extent of the area, which would yield a balance
between computational effort and accuracy of anomaly recovery, for the case of
summed range rate observations. This investigation may follow the report of
Argentiero, Icahn and Garza-Robles (1974), where the discussion pertains to
the recovery of gravity anomalies from altimeter data.
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The formation of 20.5 and a equal area blocks, as component blocks of
100 equal area blocks,, has been discussed in Sec. 3. 1, and the estimation of
residual gravity anomalies in these blocks from terrestrial data in Sec. 3.3.
We, however, note that this scheme results in the 2° 5 blocks being considerably
unequal in area. This then leads to a non--homogeneous distribution of the
number of observations over neighboring 2° 5 blocks, as discussed in the end of
Sec. 5.2.2. The variation in the area of 2° 5 blocks was a result of these being
meaned from the 25 1° equal area blocks, which were the smallest blocks in
which the gravity anomaly was estimated or predicted within a 50 block, as dis-
cussed in Sec. 3.3. A new subdivision scheme of 50 blocks into 2: 5 and 10
bloclts may be investigated, which would retain the advant.t.ges of the present
scheme, but reduce the large variation in the area of neighboring 2°. 5 blocks.
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