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.INTRODUCTION

Every beginning course in classical mechanics has as an

exercise the derivation of the Rutherford scattering cross

section for two classical Coulomb point charges. Many people

are surprised to learn that this is stillapparently an un-

solved problem if a uniform dc magnetic field is assumed to

be present. Since the interaction of classical point charges

is fundamental for all discrete-particle processes that go on

in most plasmas, this simple example should make clear that

there are many things we do not know about such processes.

The situation becomes worse if we add in the complexities

associated with the long range of the Coulomb force, and the

statistical mechanical side of the problem.

There is a seriously underpopulated border region of plasma

physics that lies between controlled thermonuclear research

and the older, less volatile society of classical statistical

mechanics. This territory was initially explored in classic

papers of Landau (1,2], Vlasov, [3], and Bogolyubov [4]. Ten

or twelve years ago a few permanent settlements appeared to

have been established there. Life on this rugged frontier

proved to be harsh, however, and many of these settlements have

now been abandoned. One hope of these lectures will be to re-

cruit some vigorous pioneers who will be willing to try again

at the neglected task of developing this important area.

Our subject matter may be roughly defined as that class

of plasma processes for which the so-called "Vlasov approx-

imation" is inadequate [5]. Such phenomena include: equations

of state and other equilibrium thermodynamic relations, thermal

relaxation phenomena, transport properties such as diffusion

and electrical conduction, and microscopic statistical fluc-

tuations in such quantities as the electric field and the

charge density. All these may be loosely called "discrete

particle" processes.

Convincing calculations of these quantities have been

given in some cases for the case of a plasma in the absence

of an external magnetic field. Calculations in the presence

of a strong magnetic field are usually absent or less than

convincing, though progress has been made within the last year

or two. Reliable laboratory measurements of these quantities,

that would pass muster in other branches of physics, are

usually lacking, both with and without the external magnetic

field.
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Results in this area come slowly, and it is rather easy
to make embarrassing conceptual mistakes, even though it is
only classical physics we are dealing with. There is also
great economic pressure for plasma physics to show results in
a hurry, more rapidly than it is realistic to expect these
rather deep fundamental problems to sort themselves out. To
yield to this economic pressure is to gamble upon achieving
practical success in plasma situations without needing to
understand these phenomena. Such a gamble may be justified
for some people, but I think it would be unwise for aZZll of us
to take it.

The question of why practitioners of orthodox statistical
mechanics have largely stayed away from these problems is more
difficult to answer. Their training and extensive experience
with similar problems in neutral particle systems would ap-
pear to be an excellent preparation for plasmas. Perhaps it
has to do with their perceptions of the sometimes desparate.
professional style of the plasma physics community. But for
whatever reason, the classical statistical mechanics experts
have largely remained aloof from considerations of systems wit
long range forces, one suspects much to the detriment of both
subjects.

The subject of discrete-particle processes is much better
understood in the absence of an externally-imposed dc magnetic
field than in the presence of such a field. Many, if not most,
of the important laboratory plasmas involve external magnetic
fields in a fundamental way. The emphasis in this article
will be almost exclusively on the situation in which a strong
external magnetic field is present. A recent volume by the
author [6] surveys the theory of the unmagnetized, or field-
free plasma, and many other good survey volumes exist.

The following material is divided into four sections.
In Section I, a number of results from the equilibrium sta-
tistical mechanics of two-dimensional plasmas are derived. The
corresponding results for three dimensions are already well
known. These results are independent of the presence of an
external dc magnetic field, and are of interest in their own
right as well as being essential to what follows. Section II
is concerned with the non-equilibrium statistical mechanics of
the electrostatic guiding-center plasma, a two-dimensional
plasma model of great power and simplicity, recently introduced
by Taylor and McNamara [7]. Section III concerns the generali-
zation of this model to three dimensions. Section IV returns
to two dimensions and relaxes the guiding-center model to in-
clude finite Larmor radius effects.
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I. EQUILIBRIUM ENSEMBLE AVERAGES;
STATIONARY CORRELATION FUNCTIONS

(A) Phase Space and the Gibbs Canonical Ensemble

As is the case with any system with a very large number
of degrees of freedom, our description is necessarily proba-
bilistic. The dynamical state of the system can be specified
by identifying it with a point of the phase space of the sys-
tem. The coordinates of any such point (X, say) are the posi-
tions and velocities of every particle. The dynamical state
of the system is then equivalent to a random variable defined
over the phase space. Equilibrium statistical mechanics [1]
demonstrates that the normalized probability distribution of
this random variable appropriate to a system in thermal equi-
librium with a temperature 0 = KT (in energy units) is

Deq exp(-/ ) (1)
eq. S dX exp(-e/)
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This is, of course, the canonical distribution of Gibbs; e is
the total energy, uniquely defined for each point X of the

phase space, and dX is the volume element.

Thermodynamic quantities and other macroscopic observable.

are interpretable as "ensemble averages", or expectation values

computed with respect to Deq . Thus, if A(X) is any dynamical
variable, its expectation value will be written as

(A) = dX A(X) Deq. (2)

where the integration runs over the entire phase space acces-
sible to the system.

Thermodynamic functions are derivable from the partition
function, which, apart from quantum mechanical factors which
will not be of interest to us here, is

Z dX exp(-&/e) (3)

In particular, the equation of state for the pressure [2] is

_ UZ = z (4)
BV Z av

where V is the spatial volume in which the system is confined.
If one wants to calculate extensive quantities (such as the
Helmholtz free energy or the entropy) accurately, one has to

put the additional factors into Eq. (3) correctly, but since

they are volume-independent, they cancel out of Eq. (4).

For definiteness, we will usually consider N positive
charges +e and N negative ones -e. For E we have the expression

ST + U (5)

1 -*2
T m i vi (6)

i

U = p (7)

i<J
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T is the total kinetic energy and U is the total potential
(interaction) energy. The Ei in (6) runs over all particles
of both signs, and m i and vi are the mass and velocity of the
ith particle. In (7), ij is the two-body Coulomb potential
between charged particles i and j. The sum runs over all pairs.
We make the convenient and important restriction to electro-
static interactions, ignoring all retardation effects and mag-
netic interactions as being down by a factor of O(v2 /c2 ) from
the ones we shall include. (This approximation is often called,
somewhat incorrectly, the "low beta" approximation by plasma
physicists. "Beta" is a rather important plasma quantity which
is essentially the ratio of thermal energy density to magnetic
energy density.) It is also important to note that the things
that have been said so far are unchanged by the addition of an
external, constant, and spatially uniform magnetic field of
arbitrary strength, since & is unchanged by the addition of
such a field. Thus, the calculation of such ensemble averages
as Eq. (2) are independent of , the external field, so long
as A is a time-independent function of X.

(B) Reduced Probability Distributions [2-6]

It is convenient to project the probability distribution

(1) onto a subspace which is just the phase of s particles,
where s is some small integer (1,2,3,...). Let Xj E (x ,v.)
be the position and velocity of the jth charge. Then

f lq"(Xl...X) .(8)
Vs 8 . dXs+ dXs+ 2 ... Deq.

J s+1 s+2 eq.

is the reduced probability distribution in the phase space of
s particles. The volume factor Vs is for later convenience,
and the integration is over all the coordinates of all the
remaining charges. To discuss two charged species, it is con-
venient to partition s into si "ions" (positive charges) and

se "electrons" (se + si = s) and define
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feq. =feq (Xi ... X i ;e ... xe

si's e  silse 1 s i se

{.. ... +Deq
= V 1 ... d dxe ... dX Deq.

(9)

where X = (x ,v ) are the phase space coordinates of the

jth ion; a similar expression applies for electrons. The
superscripts will indicate the species of the charged par-
ticles. Note that all the f are symmetric under the

interchange of like particle coordinates.

It is immediately obvious that the velocity-space parts
of the f are trivial and may be separated from the con-

si.,s

figuration-space parts:

si exp(-m.i  /2e)

Se =1l (2nB/m)/2

(10)

Se exp(-m e /20)

n d/2 n s.,
J= (2re/m e/) i e

where d is the dimensionality of the system, and
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r e.. d4e ... d exp(-U/e)

1 S+l

,8 e .d.dd dx e dx exp(-U/)

(11)

is the configuration-space probability distribution of the sub-
system.

It will be generally understood that we are dealing through-
out with very large systems: N >> 1, and N/V E no, the number
density. The "thermodynamic limit" of N + m and V - - may or
may not be well defined for such expressions as Eqs. (3) and
(4). It is not an entirely academic question as to whether such
limits exist. Some rigorous work has been done in one dimen-
sion [7,8] and in three dimensions [9], and more is badly needed
(in two dimensions, especially). We shall generally assume that
the limit does exist; but that V and N are just very large but
finite quantities is perhaps a slighly more acceptable way for
us to look at the problem. The large-system limit is desirable
in that we may hope that removing the system's boundaries to
infinity will leave us with a "bulk" limit in which the surface
contributions to extensive quantities will be negligible com-
pared to the volume contributions, and that nothing that hap-
pens near the boundaries will affect the intensive quantities.
(This may appear to be obvious, but it is not.) Making this
assumption, it is easy to show that ni, = no,, = const. = 1,
and that the higher ns s depend only on the separations of

the particle coordinates and not on their absolute spatial lo-
cations.

(C) The EquiZibriwn BBGKY Hierarchy

Most of the macroscopic functions of interest can be ex-
pressed as integrals of n2 0 ,n0 2' and ni 1, as it turns out.
Any approximate method of calculating these quantities is
therefore of some interest. A convenient starting place is
the well-knwon equilibrium BBGKY [2-5] hierarchy, which can
be readily obtained by taking gradients of Eq. (11). It is
left as an exercise to show that, assuming periodic boundary
conditions over a very large volume V, for any j between 1
and s.,

1
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n a a f(si,se )ise s,s eani' e e

~aa iif i i
N -s. by x - xs.+1

ev s+1 4i nsi+1,s1(12)

ie -i +e

eV dS +1 Mi nss +A
f e bx JS e

The notation used is the following: ii is the Coulomb poten-

tial interaction of the two ions, and (ee is that of two elec-
trons. ii() = (ee ie = (ei = -pee is the Coulomb po-
tential between an electron and an ion. 0(si,se) is the total
Coulomb potential energy of the first si ions and se electrons

If se and si are not large, we can replace (N - si)/V and

(N - se)/V by the average number density no , on the right-hand
side of (12). A similar relation comes from taking gradients
of Eq. (11) with respect to the electron coordinates:

nsi, e n sie (s i,e )

4e Q 4e
ax 7x

ei e 4i1

S+1 -eSI 's.+1

j axj e= "- s$+l xjnsi+l,s9 e
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ee -e -4e

n j e B (x e+) (13)

9 S +1 es8 +1
e bxj i'Se

where we have assumed N >> si or se . The normalization con-
ditions to be obeyed by n ,S are, from (11),

si,s e

. . S .+S4i -.e e n + e

l ' si d dse nilse (14)

and n0 ,0 = n1 ,0 = no, I = i.

(D) Expansion in the "PZasma Parameter" E

For the entirely general case, there is no particular ad-
vantage in writing the thermal equilibrium relations in the
form of Eqs. (12) and (13). Rather, their advantage lies in
the ease with which perturbation theory can be done on them.
It turns out that for a wide range of parameters, the poten-
tial energy of two charges in a plasma which lie at a distance
equal to the nearest-neighbor separation is much less than the
average kinetic energy per particle, 6. This means that the
interactions are mostly weak in the sense that ee/e, ii/e

and ie/e can all be considered to be << 1 over most of the
phase space. We can thus do a weak-coupling expansion in
<>avg./8, (where <>avg. is some average interaction poten-
tial). The expansion is complicated slightly by the long range
of the potential, which raises some of the integral terms in
Eqs. (12), (13) by one order in <> avg .

avg.

The details of this expansion for the three-dimensional
case have been adequately described several times (see e.g.,
Guernsey [10] or Montgomery [11]), and there is no purpose in
doing so again here. We shall outline the development, how-
ever, for the two-dimensional [12] case, since so much of the
later theory to be developed involves two-dimensional models.
Equations (12) and (13) apply to one, two, or three dimensions,
with appropriate modifications of the Coulomb potential
11 = pee = -_ei = _pie. In two dimensions, the-charges are

imagined as very long parallel "rods" of length k and charge
e, and the potential between two rods of positive charge +e
each is, for example,
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iii i - 42e 2  ,i 4i
-(X xj) = a x - x (15)

with similar expressions for the other interactions.

The zeroth order (i.e., non-interacting) values of the
n are seen to be those solutions of Eqs. (12) and (13)
si,se

with all the potential energy parts neglected and which also
satisfy (14). These are, obviously,

n ( 0 )  = 1, all s. and s (16)
si se  e

The superscript zero means of zeroth order in powers of the
interaction potential, and we imagine (16) as the first term
of the series.

n = n(O)  + n(l) + (17)
si,s e  sis e  si',s

1 e 1 e

We expect the higher-order terms of this series, the "correla-
tion functions", all to vanish as the particle separations
become very large, and n + n(O) then.

si,se si,se

The lowest order there is, according to (16), no correla-
tion between the positions of the particles: what one would
expect from non-interacting particles. We proceed to (12)
and (13) to obtain the next terms in the series. However, the
long range of the Coulomb potential means that one has to keep
the next order terms in the integrals in Eq. (12), above those
a purely formal estimate would indicate.

A self-consistent expansion procedure is readily found
in which the correlations between larger numbers of particles
is progressively weaker in powers of <p>/8. The next order can
be found in terms of pair correlations:

si

(1) pii'i - i
ss1 e = xk - x)

k<j=1
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S
e

+ ee,.e _-ep (xk - x )
k<e=1

s. s (18)
1 e

+ pei e - x)i
k=1 1=1

ii ee ei
where p = p = -pei

With the assumptions, it can be shown that the first-order
part of aZZ of Eqs. (12) and (13) is satisfied if one sets

pe(x) = e2 (x), ee(x) = e2*(x), and

B9(x12) 1 *(x12 )

S + - 4
B X12 b x1 2

= e f ( ) (x23) (19)

Sd3 (x23)

ne2 r ~((x)e J-

In Eq. (19), x12 E 1x - x 2 1, and so on. It is a differentio-
integral equation of the convolution type, and can be solved
by the Fourier transformation. Setting
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6P(x) f A(-) e

(20)

*(x) = () ei (20)

we find

2n e2 (21)

1 + (2n1) (k)

or

ee( ee()/e (22)

1 +(2n o/) pee ()(2n)2

Poisson's equation, Fourier-transformed in two dimensions, give

ee(k) = e /Trrk 2 , so that we may finally write (22) as the
classical Debye-HiickeZ expression:

pee(k) 8 n2 ( + k2 (23)

Here, we have introduced the very important Debye length into
the problem, namely

2 A9 -2
K D (24)

8un e

If we Fourier transform Eq. (23) back to x-space, we get

ee x  2e
P (x)= Ko(x/D) (25)
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where Ko is a Bessel function of imaginary argument, and has
the asymptotic form

pee(x) - - 2 T exp (-x/%D) (26)
x >> X 2x

We see that XD has the important physical significance of being

the distance over which pair correlations persist, just as in
three dimensions, though the functional form is somewhat dif-

ii ee ei
ferent. Since p =p = -p , we now have all the first-
order solution.

The calculation of the correlation functions to higher
order becomes quite messy, but as long as pee(x) is << 1, Eqs.
(17), (18), and (25) are a satisfactory approximation. It is
readily seen that the condition for validity is thus 2e2 /£8<<1,
or what is equivalent,

-i

e m (4no) << 1 (27)

This condition is essentially that the number of charged-rods
per Debye square is very large. The well-known analogue [13]
of this condition in three dimensions is that the number of
point charges per Debye cube is very large.

(E) Further Comments on the Validity of the Expansion

The failure of the weak-interaction approximation over
small regions of the phase space (at small particle separations)
is indicated by the fact that the short-range form of Eq. (25),

pee(x << hD) -(2e 2 /kD)ln(x/XD). This ceases to be << 1 at a

distance xmin. given by

2e 2

or

xmin. = D e-1/s (28)

-Compared with the nearest-neighbor separation no , this givesCompared with the nearest-neighbor separation no , this gives
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min. -G exp (-1/e) (29)

n
o

which is smaller than any power of E, but is not zero. Be-
cause the separation of two charges is so seldom less than

Xmin., it is reasonable to hope that the important features

of the theory will be unchanged by ignoring the short range
of ee(x). To render certain integrals convergent, it is

often convenient to work not with ee(x), but with another

function which differs from it only for x Xmin , namely

2 rr

2~2

where kmax = 1/Xmin . The length Xmin has the physical
interpretation in the unmagnetized case of being the distance

of closest approach of two colliding thermal particles with

zero impact parameter. To remove this somewhat unsatisfac-

tory state of affairs at short range requires quantum mech-

anical modifications in three dimensions, and has not been

carried out in two dimensions. It has been concluded by every-

one who has seriously looked at the three-dimensional calcula-

tions that the dominant effects are correctly obtained from

the modification of ee of Eq. (3) at short distances. We

shall have to hope that the same thing is true in two dimen-

sions. The effect of this modification of the interaction on
the pair correlations is just to cut off the Fourier integrals
of such expressions as (23) at Iki = 1/xmin

(F) Ensemble Averages of Macroscopic Functions [14]

To summarize our results to this point, we have calculated

the four pair correlations in this problem in terms of a single.
function, which in Fourier transform language reads

pee(kp ()P (k)=-p (k)

(31)

( 8 2n n )-

1 + k22
1 + k '-
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This is not an exact result, and is valid to the extent
that the inequality (27) holds. We have immediately from it

expressions for all the various nsise, from (17) and (18),

to the same accuracy. We can calculate, in terms of it, ad-

tional quantities of physical interest. For example, the
electric field

S2e4i
j=1

(32)

(2e 
- -4e

k=1

can be readily shown to have zero ensemble average

(i()) = eq. 2 dX = 0 (33)

as can the net electrical charge density

-4 -ep(x) - 6(4x - -x) - 6(x - X )  (34)

j=1
ee ii ie

For, using our previous expressions for p , p , p , we can
also show

(p(t)) = 0 (35)

However, the vanishing of the ensemble averages of E and p
should not be construed to mean they are zero, because, for
example, <E2 > # 0. Let us calculate the autocorrelation of
the charge density,

() p(x + r)) = eq. p() p(x + r) dX (36)P + -4: :) fjq t]P.
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For this purpose it is convenient to insert (35), (9), and (10)
into (36), getting :

e - 6( Xj

=)- px) + )>

j=1 q=1

(x+ + i+ - - -+ -x DP
(6 r x q 6(x+r q Deq.

e 2 N(N - 1) 4 4 t 4 4 4 (37)
= n2 2,0 (x x + r).+ n0 ,2 (x,x + r

2 N2 <nl,l(X,X nl l(X,X
2 2

2 V

S 2 1x + r + nl,1 (xx + r

Using nl,o = no, 1 = 1, and passing to the limit of N,V very

large, we use (18) and our previously derived expressions for

the pair correlations to write:

22 2
n e 2n e

(p( ) p(t + ii)) = 4 pee(,) + o 6(r) (38)

which depends only upon the separation of the points r, as we

know it should.
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It is often useful to decompose expressions like Eq. (38)
into a Fourier sum or integral, and write them in. terms of
their spectral densities. Thus,

(p(x) p(X + r))= fk S () e (39)

where Fourier transformation _f Eq. (38) and use of (23) shows
that the spectral density S (k) is

2 2 2
s ( ke (40)

p 2 2 2  1 + kXD

Of considerable interest also will be the spectral Aenity of
the auto-correlation tensor of the electric field, SE(k), de-
fined by

+ f sE() e (41)

Two applications of Poisson's equation shows that SE and S
are related by P

SE(k) = ~ ) , (42)

so that

E a' 2 2 2 (43)
iX 1 +k D

It will be instructive for the reader to compute other auto-
correlations as exercices, such as the current-current auto-
correlation, <1() ( + +)>
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(G) Field Energies, Thermal Energies, and a Warning

It is interesting to calculate the rms electric field

strength

S= Trace S k )  kk (44)

Equation (44) contains a logarithmic divergence at large k,

which is to be associated with small particle separations; it

can be rendered finite by the cutoff (30). However, this is

misleading, for (44) contains in it a term proportional to

the infinite electrostatic self-energies of all the point

charges, which originates in the 6(r) term in Eq. (38). Sub-

tracting this off will give a more revealing quantity. The

self energy of one charge is proportional to Eavg E (87e 2 /2V)

f dk/k, and the self field-energy for 2N of them is an additive

quantity, so

16TT no0 e
2  dk

( self - 2 k

and

42 42 2 0 dk
(E) (E )self ( + k2 2 (45)

£XD k( + D)

Note that Eq. (45) has now a small k divergence, which must be

associated with large spatial separations. This has no analogue

in the three-dimensional theory, even though (23) is essentially

the same as the three-dimensional expression. This pathology

has its origin in the fact that the Coulomb potential (15) has

a divergence at infinity in two dimensions, but the three-

dimensional expression does not. The divergence strongly sug-

gests that we may anticipate other unexpected small-
4 diver-

gences, and that at times we may want to limit the discussion

to a large but finite plasma volume V = L
2 , to provide an effec-

tive cutoff in k space at k ~ 27/L.

An interesting ratio is the ratio of the electric field

energy density to the thermal energy density 2no0 /Z. Dividing

(44) by 16fno0 /R and cutting the integral off at Xmin. 
= XDe- /t
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16 n 0/e
1 / 8 0 no Dmn.

1 l/e 1

This is not small small compared to unity for any E. However,

if we compute the comparable ratio for the part of <E
2 > that is

to be associated with interaction energy,

(f2- (82 )sel f  e (46)

0 2
16Tne/1 = _ 2 kv (L/2 Ty D)

As long as the right-hand side of (46) is small compared to

unity it makes sense to speak about the field fluctuation energy

as being small relative to the kinetic energy, which is the

essential approximation that has been made. But it is clear

that such formulas as (46) lead to grave difficulties if one

tries to pass to the limit L - m. Whether these are difficul-

ties with the perturbation expansion (17), or correspond to

more basic questions connected with the existence of the thermo-

dynamic limit in two dimensions is something that at the time

of this writing, apparently nobody knows. Definitive answers

to these questions will involve investigations of a consid-

erably higher degree of rigor than the one presented here. In

the meantime, one wants to be especially cautious of attempts

to evaluate extensive quantities, suh as the total energy, by

integrating intensive ones such as <E >. The circumstance may

arise (it does in one dimension [15]) in which small terms of

0(l/V) may be misged in the perturbation theory, which give no

contribution to <E
2> in the limit, but which may nonetheless

give finite or even divergent contributions to integrals over

the entire volume.

(H) Equation of State, Collapse at Low Temperatures

As a next comment on the equilibrium theory, let us remark

on one rather remarkable property of this system, namely that

its equation of state is exactly calculable. This has apparently

been discovered at least twice [16,17]. It is not a complicated

manipulation [2] to reduce Eq. (4) to
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p = 2 - - dx . Y(x ) x n2 (x i,x) (47)
i<j

where

V2 'd8N- XDeq. (48)

1 dXDeq*

In (48), d8 N- 4 X means the integral over all phase space co-
ordinates except for xi and xj. The .Z. is over all pairs of
both signs. <3

Equation (47) applies to any force law ij. The unique
feature of the two-dimensional Coulomb potential is that
xil'(xij) = -2eiej /, independently of xi and xj. What re-
mains is just the normalization integral for the two-body dis-
tributions, and the problem has been reduced to counting par-
ticle pairs. This gives, after a little algebra

12 n- (49)

The equation of state, while becoming that of an ideal gas for
high temperatures (E << 1), has the feature of predicting a
cotlapse (p < 0) at low temperatures, corresponding to e = 4.
This is nothing remarkable, since it has its origin in the
fact that the ion-electron interaction (and thus the total
energy) is unbounded from below. In fact, one sees from (3)
that when xi is close to xj, Z contains a factor

2e. e. r 2e.e./to
~ dx.j exp . i x j dxij x

If ei and ej are of unlike sign, this will diverge when -(22/O8)
+ 1 < -1, or E > 2. If more than two particles are considered,
the divergence may even occur at higher 0 (see Knorr [181).
Some lower bound on the interaction would be required to elim-
inate this collapse, as quantum mechanics is required in three
dimensions.
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(I) Summary

Starting from the Gibbs distribution for an equilibrium

system of electrostatically interacting charged rods aligned

parallel, approximate expressions for the phase space proba-

bility distributions have been derived by an expansion in the

plasma parameter (number of rods per Debye square). The pro-

gram has been carried out in parallel to the familiar [10,13]

expansion in three dimensions. These approximate probability

distributions permit the calculation of ensemble averages of

stationary fluctuation quantities and their spectral densi-

ties; these are independent of external magnetic field strength.

The thermodynamic equation of state has been noted to be exact.

Anomalies which may possibly result from taking the "thermo-

dynamic" limit (N - - V - m) have been noted. Up to this point

the theory is the same with or without an external magnetic

field.

II. THE TWO-DIMENSIONAL GUIDING-CENTER PLASMA

(A) Some General Remarks on Transport Processes

A central concern in statistical -physics has always been

the matter of transport properties [19]. That is, gradients

in the macroscopic hydrodynamic parameters will result in the

net transport of mass, momentum, energy, electric current, etc.,

across an imaginary surface in a gas, liquid, or plasma. This

transport comes about as a direct consequence of the microscopic

interactions among the particles, and is inevitably a problem

in non-equilibrium statistical mechanics.

This problem has been of acute concern for strongly mag-

netized plasmas, because many controlled fusion schemes pro-

pose to confine a very hot plasma away from material walls by

means of externally-imposed dc magnetic fields. Often, actual

machines appear to confine plasmas less well than they are sup-

posed to, and this "anomalous" transport of plasma has been a

matter of concern for many years.' It was addressed early by

Bohm [20], disappeared from sight for several years, re-appeared

about 1960 [21,22] when controlled fusion research became

public knowledge, and has been the motivation for many of the

exotic instability and "weak turbulence" calculations which

were a major pre-occupation of plasma theory in the 1960's.

The subject is far from exhausted, though it has become dif-

ficult of access by virtue of being surrounded with hundreds

of rather diffuse calculations.



452 MONTGOMERY

Actually, the transport may not be so "anomalous" as it
might appear at first sight. Most of the more sober calcula-
tions [23] .have started from a kinetic equation. By kinetic
equation, one means a differentio-integral equation such as
Boltzmann's equation, which will advance the time-dependent
analogues of f,o 0 and f0 ,1 of Eqs. (9) in time. A crucial
ingredient of any kinetic equation is a collision term in
which the irreversibility originates, which is a functional
of the one-body distribution (fl o or f0 1), and into the
derivation of which goes some mitroscopit model of the par-
ticle-particle interaction process. Different forms of the
collision term arise from different microscopic models [24].
Thus uncorrelated, strong, two-body collisions lead to the
Boltzmann equation, and weak two-body collisions lead to the
Fokker-Planck equation. In the plasma case, however, most of
the microscopic models used to describe the interactions of
charged particles have not included the effects of an exter-
nal magnetic field on the particle-particle interaction pro-
cess. Putting in an external magnetic field renders the
strongly-interacting two-body problem insoluble, so there is
at present no analogue of Boltzmann's equation for the case in
which an intense, external magnetic field is present. In a
weak-interaction model of a plasma, a kinetic equation results
[25-27] but is so complicated that even the derivation of it
is quite strenuous, and heroic efforts will be required to
extract many predictions about transport properties from it.

From the foregoing remarks we may conclude that the sub-
ject of transport properties in a strongly-magnetized plasma
is still very much an open one. One expects significant
gains in understanding only to the extent that clean and bold
simplifying approximations can be found. A recent breakthrough
in this direction was due to Taylor and McNamara [28]. They
introduced a two-dimensional model of a plasma consisting of
charged rods aligned parallel which are free to move perpen-
dicularly to a strong dc magnetic field. They further simpli-
fied the dynamics by introducing the guiding-center approxima-.
tion for the particle motion. Discussion of the various prop-
erties of this model will be the subject-matter of this chapter.
Various features of the model can be generalized to three di-
mensions, but discussion of these is better deferred until
after the two-dimensional model has been presented.
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(B) The Guiding-Center Plasma ("Zero Gyro-Radius" Plasma)

The physical system is the same as that described in
Section I: a collection of N very long rods of charge +e,
length k, mass mi , and N more of charge -e, length k, mass me
aligned parallel to the z-axis of coordinates, and interacting
through the Coulomb potential, with an interaction potential
given by # m = -(2eem/ /)lnIx - I for any two charges.

The equation of motion for the velocity of a given charged
rod of charge-to-mass ratio ej/mj is

dv. e. v.
a =_xii - (50)

dt, mj C

here v, E are two-dimensional vectors lying in the xy plane,
B = B ~, with B = a congtant, and E is evaluated at the loca-
tion of the particle. E = -V0 obeys the two-dimensional Poisson
equation,

-4 i X (51)

where the sum runs over all charges of both signs. Equations
(50) and (51), together with dxj/dt = vj and the appropriate
boundary conditions, constitute a complete dynamical descrip-
tion of the system. This dynamical description is still.quite
complicated, and we shall have more to say about it later. At
present, we wish to discuss an even more simplified version
of the dynamics, namely, the guiding-center approximation.

The reader is referred to Northrop [29] for a discussion
of the guiding center approximation; in practice, it amounts
_o neilecting the left-hand side of Eq. (50), so that
E + (vj/c) x B = 0, or in this two-dimensional geometry,

= e 9(+j,t) x 9/B (52)

The vi in (52) is to be distinguished from the v. in (50);
(52) describes the motion of the guiding center of the par-
ticle. This guiding center motion has superimposed on it the
"fast" gyration of the particle with characteristic gyro-frequency
Q. = e.B/mjc and characteristic radius of the order of rj =

/87m-/j, for a particle of thermal energy e. The "fast"

motion is averaged out in writing down Eq. (52). The conditions
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for the validity of Eq. (52) as a satisfactory approximation
are that, most imporlantly, the characteristic time T and
length X over which E(x,t) varies significantly must satisfy
the inequalities

(53)

j >> 1

The actual microscopic electric field in the plasma will be
de-composable into components which do and do not satisfy the
inequalities (53). Only the former will be treated accurately
by (52). At the present time, no satisfactory quantitative
estimate exists as to the errors which result from this ap-
proximation.

(C) Connection with Ideal Hydrodynamics

The replacement of the differential equation (50) by the
algebraic equation (52) is a considerable simplification. It
also has the unexpected benefit of leaving us with a Hamiltonian
system, the Hamiltonian of which is essentially the same as
the potential energy of the original system! To see this, we
digress briefly on the hydrodynamics of incompressible, inviscid
fluids in two dimensions. In the theory of parallel "line"
vortex motion [30], it is shown that the fluid velocity field
which resnlts from a collection of line vortices of vortex
strength Kj = Kje, located at positions xj is

Sx - x.
V(X Z J X 2 (54)

The vortices move along streamlines, so in particular the
velocity of the ith vortex is

-4

. J x L (55)
V. = 2

1 2T 2

ji xij

Now consider (50), (51), and (52). The electric field seen
by charge i is
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2e. . (56)

jfi xiJ

so its velocity is

2ce. x..
=V - - X -- (57)ViAB 2 B

ji ij

If we identify (2f)
-1 times the vortex strength, K /27, with

-2ce.i/B, then the two mathematical descriptions b come iden-

tical. We may use language appropriate to the guiding center

plasma interchangably with language appropriate to line vorte.

motion, providing that

K = -4 e/ce B (58)

That the system is Hamiltonian with Hamiltonian

H = .- 1 Ki K. xIwx x- (59)

i<j

can readily be seen by picking canonical coordinates

[xj H (xj,yj)] qj,pj:

(qj,pj) = Kj (xj,yj sgn Kj) (60)

for each vortex (or charge). It is readily verified that (55)

is the same as

bH bH
0 q = (61)

Thus the canonical coordinates and momenta are essentially

just the Cartesian spatial coordinates xi,y i of the charges

(or vortices), with a change in sign of yi for the negative

vortices.

Since H is not explicitly time dependent, it is a constant

of the motion. The canonical distribution is again given by
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Eq. (±), since H is up to a constant factor, just the inter-
action energy iJj ij of all the pairs of charges. All the

stationary thermal equilibrium correlation functions and spec-
tral densities calculated in Section I are identical to the
corresponding quantities for the guiding center plasma. Of
course time dependent quantities will evolve much differently,
and we pass now to a consideration of some of these.

(D) Formulation of the Problem of Spatial Diffusion in the
Green-Kubo Picture

A measure of the rate of spatial transport can be obtained
in the following simple situations. Suppose a very tenuous
distribution of labeled particles, so rarified that their inter-
action with each other is negligible, is released near x = 0.
As time goes on, due to the fluctuating microscopic electric
field, the charges (they will hereafter be called "test" par-
ticles) will be moved away from the origin. The position after
time t for one of them will be

t

r () dT (62)

where v(t) is the velocity. By (52), this is

4 (T) X B
X = C XB2 'T (63)

where E(T) = E[x(T),T] is the electric field evaluated at the
instantaneous test particle position.

The path (63) is erratic and complicated, and to evaluate
it would involve knowing, among other things, the exact micro-
scopic electric field E(X,t). An ensemble average prediction
is the best we can hope for. So we imagine a set of similar
plasmas, distributed according to the Gibbs distribution (1),
and release a collection of test particles near I = 0 at t = 0
in each one. Hereafter we address ourselves to the question
of calculating ensemble averages over this ensemble [31].

Since <E> = 0, by Eq. (33), we have at once that <x> = 0,
which simply says that particle transport is isotropic. A
measure of the amount of diffusion is <12> # 0; thus

-2 2
S)= 2 d71 dT2 E(T2)) (64)

o o
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Auto-correlations like <E(Tl ) * E(T2)> play a central role in

what follows. If the ensemble is stationary, they will depend

upon T2 - T1 only, so that <E(T) E(T)> = <E() E(T - T)>,

and it is expected that for all physical systems, <1(0 E(T >

will + 0 as T - ± + . It is also to be expected that <E(O) E(T)>

is an even function of T. We shall assume so.

Defining T2 - TI - T, (T 2 + T I )/ 2 H T, the integral (64)

can be rewritten as

(X) = fdT dT ((0) 9 (7)) (65)

The region of integration in (65) is as shown below (Fig. II-1).

2 T T + T 2)/2

2 I
T I  T = T2 - T I

Figure II-1. Regions of integration for Eqs. (64) and (65).

For large t, the non-vanishing part of the

integrand will lie in the neighborhood of

the T=0 axis.

Now if <E(O) - E(T)> goes to zero sufficiently rapidly

(more rapidly than 1/T) for larg_ T, we 4 may consider the case

when t is >> the time in which <E(O) • E(T)> goes to zero, and

write, from (65),
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42 c2 d
B2J

(66)

=t ( 2 C2 • (Tr)) dTr

The ratio <1 2 >/2t thus becomes time-independent for long times
and this ratio D,

D = (0) (T)) dT (67)
D2
B 0

is called the diffusion coefficient. It is generally thought
of as a good measure of the diffusiveness of a medium. (It
is also frequently defined by <1 2 >/2td, where d is the dimen-
sionality of the system).

Recently a lot of interest has arisen in the possibility
that <2> may grow faster' than t as t -+ o in two 4imensigns
for a variety of systems [32]. For example, if <E(O) - E(T)>
were to fall off as 0(1/T) for large T, detailed examination
of (65) reveals that <1 2 > ~ t In t for large t. This has been
hard for many people to accept, but it has also shown up now
in the plasma case. The reason the <2> - t behavior is so
well accepted is that it can be derived regardless of dimen-
sionality [31], from a random-walk model in which a random
walker takes a large number n of uncorrelated steps per unit
time, each step of very small length a, with n<0 2 > = const..
(D is in fact, just proportional to n<aC2 >.) This is true for
virtually any distribution law for the steps. If <12> turns
out to grow faster than t for systems of dimensionality less
than three, then it means that the venerable random walk model
is probably less accurate than we had supposed for these sys-
tems.

In any case, we will be concerned in the following pages
with attempts to calculate the function

D(t) a f ((o) • (T) dT (68)
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for the guiding-center plasma whose dynamics are given by (51)

and (52). If the integral converges, it will be called the

"diffusion coefficient",

D = D(C) (if it exists!) . (69)

But if the integral D(t) fails to approach a limit, it still

is an interesting measure of the way the test particles diffuse.

t

(E) Evaluation of <E(O) • E(T)> dT and D

0

It is convenient to evaluate (68) in a large but finite

volume V = L
2 . E(T) = E[i(T),T], and the exact electric field

due to the 2N charges is

= -(t) e (70)

where the Fourier transform of the charge density is

pk (t) f4 ei p(7,t) (71)

Using (34), and inserting the result into (70) gives

2X, = - e (72)S k 2 V

k j
where the um is over all charges of both signs, and the

values of k have components which are integer multiples of

2rr/L (we impose periodic boundary conditions).

E(T) = E[x(T), T] is then

g(T) = TT e / (73)

ik 2 V

9j
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where -(T) is the trajectory of a particle which starts at the
origin: (0)) = 0. For shorthand, (73) will also be written
as

2(T) Z e(gi -' ( T )  
(74)

in an obvious notation.

The problem is then one of evaluating

(2(0) *()=(0) 
(T) exp (A2 I(T))) (75)1 2

This result is exact, and we cannot go further without
an approximation or an hypothesis. One which can be made [28]

but which some day will have to be given careful scrutiny is

to neglect the correlations between the positions of the test

particles and those of the background plasma, the I (T). That
assumption reduces (75) to

2()* ()) K (0) 2  i (76)

.1 , k12

Further, noting that< Ek (t ) Et (t ) = 0 unless k + k = 0

for a spatially-uniform ensemble, and that E -(t) = E(t) since

E is real, we have, from (76),

(2(0) * 4() *(0) ()( e(J x(T) (77)

The next step necessarily involves expressing the two
terms on tje righ_-hand side of (77) in an approximate way in

terms of <E(O) * E(T)>, to provide an equation to be solved
for this quantity. The last term can be written as

<exp[-ik * x(T)1>
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0

(78)
M

= exp ic x t (m
2 m=l

where E(m) is the electric field between times (m - 1)T/M and

mT/M. At is T/M.

The computation of the expectation value in (78) involves

not just the probability distribution of the electric field

seen by the particle, but the joint probability dlstribvtion of

the electric field at a whole sequence of times, E(1), E(2),

E(3). . If we cafl this joint probability distribution

PM[E(1),E( 2 ),. . E(M)], then formally

(exp [-i (

= lim d(1) ... d(M) P[9(1) ... (M)] (79)

exp ic t t.C (m

m=1

It has not been possible to establish an expression for

P[I(1)) ... E(M)] from first principles[33]. A reasonable

conjecture is that it is a jointly normal probability distri-

bution [34,35]; that is,

M
p[2(l) ... (M)] = exp - Z a :(i) E(j (80)

i,j=l

where n is a normalizing constant and the Rij are constant

2 x 2 positive-definite dyadics. A generalization of the cen-

tral limit theorem, for example, makes (80) look extremely

plausible [35]. In tqe present context, the theorem gays tqe

following. Consider E(1),E(2), ... to be the sum j [E (1) ,E(2),..
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Here E (n) is the electric field at the test particle produced
by particle j in time interval n, and the Ej runs over all the
plasma charges. Then, under very weak conditions o the moments
of the probability distributions of the individual E (n), and
the additional assumption that the Ej(n) are uncorrelated with
each other for different j, the probability distribution of the
E. (where j goes from 1 to 2N) converges to (80) for N + m.
This neglect of correlation between the trajectories of the
plasma particles is the key approximation, and is made quite
plausible by the weakness of the pair correlation [Eqs. (21)
to (25)] for small plasma parameter.

It is shown in Appendix I that the result of substituting
(80) into (79) is

(exp[-i 'x(T)])

lim exp X - l
L 2 4 At Aj

ml=1 m2=1 B

= exp (2B2 T 1 f dr 2  
1 ( ) T)): (k X B)(k B

- exp B 2  J dT1  dT2  (~(1 i (T2))] (81)
4 B o f

Inserting (81) into (77) yields the result that

(9(0) 2(7))

E *(0) (T)) exp f dT7 dT 2 ((T)

(82)
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Equation (82) i_ a satisfactory starting point for cal-

culation of <E(0) . E()> as soon as we have an acceptable ex-

pression for <EA(0) * Ek(T) . First, note that

k
(24 (0 " 2 *((0)

Z 1612 e. e ii"[-x (O)- ())] (83)

S 16 e (( - 3 o) - f x2k 02 e i *j (0) - A (0) - c

By E (T), we mean the electric field seen by the kth particle,
of cnarge ek. In (83), we can treat the kth particle in the

same approximations we treated the test particles in Eqs. (76)

through (82), getting

k

16T e e

SJ 2k2v . e x i. x (o) - o (0).

xp ic B E(g) d

= kE(0) ~ E(0)) exp C
2 2 f dT7 Jo dT2 ( (T 1 )  ( "

(84)
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Since the E x B drift is independent of both _he mass and sign
of the charge, the statistical properties of E () will be the
same for all R.

Inserting (84) into (82) gives

(2(0) 9 (7))

(85)

12 B2 e1 p 2  T( 1T ) ~(T)
r: o o

Since <I E' 2 > is a stationary quantity obtainable from

the methods of Section I, Eq. ( 5) is iow a closed equation
that can be used to determine <E(O) * E(T)>. Defining
R(T) (c2/2B2 ).

df T
1  d 2 Q('r2 - 1) , where Q(T) = -2 ( (0) 9(T))

dR(T)/d = (c2/B2 )  (Z) dg, and d2R/d2 = c2 Q(T)/B2 , which

means that (85) can be expressed as

2 = 2 >) exp [-22 R(T)] (86)
c d7

From (65), R(t) has the physical interpretation of being
<*2>/4, where <x2> is the mean square spread after time t of
the distribution of test particles.

Equation (86) has a first integral

-2 
c 2 1 2  1 - exk 2-2k 2 

R 0(87)

2B 2k (87)
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where the fact that dR(O)/dT = 0 has been used to evaluate the
constant of integration. To proceed further with Eq. (87) re-
quires numerical integration, if R(T) is desired. This inte-
gration is discussed in a later section. We can extract the
long time behavior analytically, however, by noting that
R(T) --* + m, so that

-- a.c (88)
T7o 2 22B k

or

2 cT d 2 d (t)
D(t) = 2 Q(T) dT

B2 dt

approaches the limit

D(m) = 2 L k2  (89)

Up to a factor of /2, this is the result of Taylor and
McNamara [28].

Several remarks are in order concerning (89) before we
pass to the details of its evaluation. First, it varies as
1/B, confirming the elusive conjecture of Bohm [20] Secondly,
it will contain a factor /E, since it contains <IE1 2>/k2 ,

k
and will vanish in the Vlasov limit (E - 0). Finally, the ex-
pression will dive e in the infinite volume limit, since the
minimum value of Ik< is 2Tr/L, and a factor 1/k2 occurs in the
Zk. This is a reflection of the fact that the long-wavelength,

small -k contributions to (89) are the dominant terms, in con-
trast to "classical" diffusion models based on random two-body
encounters.

We may estimate (89) for a larg_ volume V = L2 by replac-
ing the sum over discrete values of k by an integral over con-
tinuous k according to the prescription
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Z ll2 4fdk Trace

(90)

2 T k dk 1
1 +k 2

where use has -been made of (43). The integral in (90) is to
be cut off at kmin. = 2n/L from below. The result of using
(90) in (89) for the diffusion coefficient is

D() 2c dk

(91)

eB D +

1 ce
The Bohm result, never justified in detail, was D(m) =6 eB'

Notice, however, the following limitation in the deriva-

tion of Eqs. (89) and (91). It was arrived at by assuming
that the terms involving exp(-2k2 R) in (87) had become << 1.
Since kmin. = 27/L and R = <i2>/4, this is equivalent to

2 2

>> 1

or <x2> >> L/22 L2/20. However, when <x > becomes > L
the test particles will have encountered the boundary once,
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and in view of the periodic boundary conditions, the diffusion
model with its monotonically increasing <2> will have broken
down. Thus there is a relatively narrow temporal interval,

L << 2t D() < L2  
(92)

20

in which (89) and (91) may be expected-to apply. Both before
and after this interval, the development of <x2> will be more

complicated.

Finally, we remark that if one attempts to apply (86) to

unbounded two-dimensional plasmas, a variation [36] of
<X2> ~ t/in- occurs for large values of t.

(F) Liouville Equation, BBGKY Hierarchy, and the
Time-Dependent "Vlasov" Limit [12]

The diffusion calculation could proceed in a relatively
unsystematic way, with the assumption (80) as the key ingredient
For other purposes, a more systematic formalism for the kinetic

theory of the two-dimensional guiding center plasma is desirable.
Proceeding in parallel to the well-known program of the non-
equilibrium BBGKY [2-6,11] hierarchy, it is useful to construct
a description based on the Liouville equation.

The phase-space probability distribution of any Hamiltonian
system obeys a Liouville equation, which simply expresses the

constancy of that probability distribution as seen by an ob-
server who moves along any phase-space trajectory traced out

by the system as it moves through its phase space. Since we

have seen the system to be Hamiltonian in Eqs. (59) to (61),
we can write down the Liouville equation immediately as

d+ E Z a D = O (93)
dt at dt 4

i 7

where D = D(xl,x 2 ,...,t) is the probability distribution of

all _he particles in their phase space. Noting that di(t)/dt

= c E(i,t) x B/B2 , (93) becomes

+ D = 0, (94)
at 2i

B x.1 1
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where (xi,t) = + Z A xj , and the

i j/i

summations run over all charges of both signs. The single
most important solution of (94) is. of course,

D eq= exp ( -T cpij/e)/f dX exp ( - ~ j/e), though for a
i<ji<

non-equilibrium situation, D will not be D . We shall gen-
erally assume, however, that the various co relation functions
have the same orders of magnitude as the thermal equilibrium
correlations of Section I. We also assume D to be symmetric
under interchange of like particle coordinates. The reduced
probability distributions are defined in analogy to Eqs. (9)
as

f i e dx . +  . ... D (95)

si' e i e

where it is to be noted that

=+ i +i +e -*+e
fs e fsi s(xl ... xs. ,x ... xs ,t)Se Si' e si e

is a function of position space coordinates only (the dimen-
sionality of the phase space is now 4N).

Integrating (94) over a big box of volume V = L2 gives:

Sat 2 x

2 -4e
Bxe ,se

O s X j -s

= n d i
1 i . io s.+1 4i 2 f

+ fx. B 7x
j=1 J
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. ie 
+1 f+i K ( x s +1) fs.+ls

+ n dx s.+1 -e x 4e

k=l

Seiwi f

-+e ' e+

e x B x.

j=1

s - ee(e -

e  - Xse+ 1 si 'se+l
+ no  Se+1 -4 " X 2e

e x k  B x k
k=1

(96)

This is the non-equilibriwn BBGKY hierarchy for the system,

and is the analogue of (13). By E (s i s , we mean - -

P(sise), where D(si,sj) is the Q cij for the first si ions
i<j

and the first se electrons. Similarly Esise) = _- (iSe)/ia . k'

Equations (94) and (96) are not as complicated as they
look, and we can profitably introduce abbreviations for the
linear differential and integral operators which appear in them.

Thus, (94) will sometimes be written as D + H )D = 0, and (96) as

s + H(s La)f] +e Lie

+ (Li + Le es ) fs s ) s. +  in an obvious notation. Ho is the
3. e ie e
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Liouville operator for all 2N particles, and H(si,se) is the

Liouville operator for si ions and se electrons.

The BBGKY hierarchy (96) is analogous to the well-known

hierarchy for ordinary plasmas but it has important differences

which are worth mentioning. It is interesting to consider the

"Vlasov limit" in which the correlations vanish; the corres-

ponding thermal equilibrium limit (see Section I) is that in

which E + 0. Thus we write

f - H f (X,t) 1 fL (x,t and all of Eqs. (96)
Vsi'e j=l 1,0 k=1 lt]

become satisfied if

f lit) x 9 fl,1,t)

t Xl' t) + 2
B ax1

(97)

fo 1 -,e (xt) x (Xlt) 0

( ) + B2  x e0

where

I(X t) = + - n [f ,o 't) - fO, ,t) dx
- -

(98)

Equations (97) and (98) are the analogues of the classical

Vlasov-Poisson system for the two-dimensional guiding-centgr

plasma. The spatially-uniform state, f1 ,0 = f0,1 
= 1 and E = 0,

is obviously a solution. However, the analogue of the Landau

problem, in which one linearizes about the spatially uniform

state, is apparently insoluble; for the first non-vanishing

terms in (97) are intrinsically of second order in powers of

the departure from spatial uniformity.

Equations (97), (98) are completely equivalent to the

equations of motion for incompressible, inviscid flow. They

can be made to look simpler by subtracting Eqs. (97) from each

other to get



MAGNETIZED PLASMA MODELS 471

at+ 2 - O (99)
B ax

where

. E = Tp (100)
ax

Very little information exists on the solutions of the
system (99), (100), although a number of numerical simulations
exist which are relevant [37-39]. Taylor and Thompson [40] have
argued for the existence of a large class of oscillatory so-
lutions of thi_ system with a frequency which vanishes as the
amplitude of El 2 vanishes. This derivation, however, is not
wholly transparent. Any oscillations which do exist will be
intrinsically nonlinear.

Another peculiar feature of the hierarchy (96) is the
apparent absence of any tendency toward thermal equilibrium.
For the conventional hierarchy for a normal plasma, assuming
an initially spatially uniform state leads to rapidly-developing
pair correlations. These in turn relax to functionals of fi o
and fo, 1 which, when substituted into the equations for -fl,o/at
and f0, 1/at, lead to the Balescu-Lenard equation [7,41-43].
From this, an approach to thermal equilibrium can be proved.
The situation is quite different for the guiding-center plasma.
It is clear by inspection that the completely uncorrelated state,

i e
in which f s j= k f 1,0x ) f,1 ()with f,, = f, = 1,

sSe j=1 k=i
is a time-independent solution of (96)! It is not known whether
there is any sense in which the solutions of (96) relax to the
thermal equilibrium values (11). This is one of the really
mysterious parts of the theory. A number of time independent
solutions with non-thermal equilibrium correlations for (96)
can be constructed, but there is no particular reason for pre-
ferring one over the other.

(G) Calculation of the EZectrical Conductivity by the Kubo
Method [44,45]

A calculation of a second transport coefficient, the elec-
trical conductivity, proceeds most naturally from the Liouville
equation, Eq. (94) will be abbreviated as

+ Ho D = 0 (94a)
Bt 0
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+ -iwt.
The addition of a spatially uniform electric field E e
modifies (94a) to read

c 1 exp (-iwt) X
+ H) D= B2

(101)

, + a - exp (-iwt) H1D

where the right-hand side gf Eq. (101) defines the linear op-
erator H1 . We now regard Eo as weak, and seek a perturbation

solution to (101) in the form D = D(0O) + D(1) + ... where

the superscript indicates the order in H1 . Thus D(0 ) obeys

(t + H) D(O) = O 
(102)

and D (1 ) obeys

- + H D(1) = - exp(-iwt) H1 D(0) (103)

The appropriate solution to (102) is the Gibbs distribution

D( 0 ) = f exp(- ( ij/e) (104)

i<j

and the Pij runs over all pairs of particles of both signs.

i<j
As usual, n is chosen so that D( 0) dX = 1. Since (102) is

simply a statement of the cons ancy of D(O) along a trajectory

in the total phase space, it is just a statement that the

formal solution

-tH

D(O)(t) = e 0 D(O)(0) (105)
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is just a function of the constants of the motion [6]. Y ij
i<j

has already been noted to be such a constant, and (104) is the

solution appropriate to thermal equilibrium.

We imagine the external uniform field E to be turned on

abruptly at t = 0. The solution to (103) can be found by in-

tegrating the equivalent equation

etH D(1 tH -wt - tH
-- ~e D' = - e e H e (106)

between t = 0 and t = t. Setting D( 1 ) = 0 at t = 0, noting

that e-tHo D(0 ) = D(O), and rearranging the integral gives

D(1)= -eiwt dT e i  e- Ho D(0 )  (107)

Now for any dynamical variable whose value is determined by

the phase space coordinates (A, say), the expectation value

<A> = I A D dX. For variables which have expectation values
which *anish in thermal equilibrium, we have the result that

to first order in Eo , <A> = f A D(I) dX. Introducing the

explicit form of H 1, we have

H1 D(0)  +) eE D(0)
B j

(108)

o . e(-v - v.) D

We now note that the effect of the operator e- THo applied to
any function of the coordinates obeying Liouville's equation

is to trace those coordinates back T units along the phase
space trajectory and assign.them their values there. Thus,

-HO i -i +i
for instance e v. = v.(-T), where v j(-T) is the velocity

that the jth ion would have had T seconds'ago if it now has
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velocity vj = vj(0). Therefore

exp (-,H o ) H1 D( )  (-) - (T) D(o)

(109)

since D (0 ) is constant along the phase space trajectory. In-
serting (109) into (107) and the result into the expression
for <A> gives

<A) = exp (-iwt) - dr exp (iTr)

o
(110a)

(A e [v.(-T) -

We have not yet committed ourselves to an explicit expres-
sion for the dynamical variable A. To calculate the electr4c
current density produced in response to the electric field Eo,
we pick A a function which makes <A> equal to the volume cur-
rent density <j>. We must remember to apply this procedure
only far away from the plasma boundary. Thus

A 4= e(V v) LL

Noting that <v(0) * v(T)> will be an even function of T for
all particles of both signs,

(-) = ( ) e

exp (-i) d e i TL2 e
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+i --
[ (0) 0]) (110b)

The coefficient of Eo exp (-iwt) in (110b) can be identified
as the conductivity tensor 8(w):

2  Co

a(W) = e2 dT iT
e L d

o

(111)

z [v (O) - [(oT [i V;( T

The terms in (111) with j # k and not of the same species can
be shown to give a contribution which is down by a factor of
0(1/N) from those with j = k. Therefore (w) becomes, since
all the j = k terms of the same species are equal.

2
G(w) = 2Ne dT eiwT (<(0) *(T))

ZL 0

(112)

2n e 2 c 2

S o 4 dT eiu (~(0) X() X 2

The <E(0) E(T)> is the same quantity whose trace appears in
Eq. (64), and the same methods can be used to calculatV it.-
Under the apparently straightforward assumption that <E(0O) E(T)>
is diagonal (for it to be otherwise would imply a preferred
direction in space), we have

(6) = a(w)
where

2n e2c 2

C(r) o Q(T) e i " dT (113)
OB 2

0
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1 f
with Q(T) given by l <E(0) * E(T)>, as before.

2
2n e c 2

(0B ) Q(T)

(114)

2
n e

SD(O.)

showing a direct proportionality with the diffusion coefficient

D(m) of Eq. (89). Such a proportionality between the conduc-

tivity and diffusion coefficient was called by Kubo [44] a

"generalized Einstein relation", for systems whose dynamics

are governed by Newton's laws. But it was far from obvious

that such a proportionality would exist for the guiding-center

plasma.

The ac conductivity requires a Fourier transform of Q(T),

which is not obtainable analytically in closed form. For that,

one needs to solve Eq. (87) numerically. This has been done,

and the details are reported by Montgomery and Tappert [45].

Typical results are shown, in dimensionless units whose inter-

pretation we can ignore here, in Figs. II-2 and 1I-3. The

same remarks about divergences for L - - apply as were ap-

plicable in the discussion of the diffusion coefficient.

(Note added in proof: Recent numerical simulations by

G. Joyce and the author have indicated that the conductive

behavior of the guiding center plasma may be somewhat more

complicated than the present development would indicate. A

transverse electric field induces large scale vortex motion of

a non-local character in a wide variety of simulations. We are

also indebted to Dr. Leaf Turner for pointing out to us certain

shortcomings of the present derivation of a local conductivity.)
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Figure 11-2. Numerical solution of Eq. (87), from Mont-

gomery and Tappert [45]. Dimensionless units

are: k/KD, R/2KD, t[8nocee ]/ZB. Notice
that R increases linearly with t almost from

the beginning.
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Figure 11-3. Real and imaginary parts of the conductivity

from Eq. (113). The units of a are noecE/ZB.
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(H) The "Negative Temperature" Instability for the
Guiding-Center Plasma

A rather unusual feature of the guiding-center plasma is

that for interaction energies i<j ij greater than a certain

amount, statistical mechanics preaicts no stable, thermal equi-

librium, spatially uniform state. In the discussion immediately

after Eq. (49), the absence of such a state for sufficiently

low energies was noted. It was noted some time ago by Onsager

[46] that, for different reasons, no equilibrium states exist

for high enough energies.

Onsager's prediction was made in the context of the hydro-

dynamic formulation of the problem, Eqs. (59) through (61). We

can understand it in the following way. Equation (3) for the

partition function can be rewritten as (again omitting factors

which are not of interest here)

S=f dX exp (-e/9)

(115)

= aQ (c) exp (-p/)

where E is now just the numerical value of the Hamiltonian (59)
2N

d. = I (dqi dpi) is the phase space volume element for all
i=l

the vortices (charges) of both signs, and (e) is the structure

function, or phase space volume per unit e. Q(S) = d4 (&)/d8,
where D(g) is the tot l phase space volume with values of H

less than e: D(g) =  _ dE' Q(9').

For most thermodynamic systems, 0(g) increases rapidly

with increasing e for very large N, and exp(-/8
6 ) decreases

rapidly for very large N. The competition between the two

means that the integrand in (115) will be rather sharply peaked

about some value e = So. Indeed, this is nothing but the state

ment that the fluctuations in energy in the ensemble are small,

and that most of the systems are sharply concentrated in energy

near the mean value, which is the only reason statistical mechan-

ics works at all. Thus we can write

Z = / d exp [*(e) - p/s] (116)
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where (S) = In2(e). The integrand in (116) can be well ap-
proximated near &, by exp[P(So) - e0/e+ (.(e0 ) _ - S)2/2],
and is negligibly small away from So. The integral can be
performed to give

z = exp ( e 1 "(eo) 1 /I (117)

but the theory of the canonical ensemble also shows

Z = exp )K - + const. (118)

where So is the thermodynamic internal energy of the system
being represented and S(S ) is the corresponding entropy. The
maximum occurs at 1/8 = p (e ) = (g0)/(S ). Noting that i
and S are both 0(N) quantities, comparing (118) and (117) gives
for the entropy

S(eo) = K &, 0(go) + const. (119)

plus terms negligible compared to O(N), and for the temperature,

1 o'(Eo)1 _ () (120)

Equations (119) and (120) are standard formulas but they have
some peculiar implications for the system described by Eqs.
(59)-(61). For notice that each one of the 2N particles (vor-
tices) has available to it a maximum phase space volume L2 1KI.
All 2N of them have a phase-space volume L4NIKI 2N. This means
that 4(&), which is a non-decreasing function of P by definition,
increases monotonically from 0 to LN IKI2N as E goes from -m
to +m. This further implies a maximum (at 8 = em, say) in
a(C), where Q'(C) goes from positive to negative. Equation (120)
then implies that if eo >. m, the temperature e is negative.

Landau and Lifshitz [47] show quite generally that a sta-
tionary thermal equilibrium state is not to be expected for
negative temperatures, provided the component parts of the sys-
tem are free to move with respect to each other. That condition
is fulfilled for the present system, so that no stationary state
is expected when the value of H exceeds the quantity E . One
can get a qualitative picture of what the states of the system
are for H = t> Em by considering the limit of very large
values of H. These clearly correspond to states in which the
charges (vortices) of unlike sign as they can get. The



480 MONTGOMERY

macroscopic flow pattern is that of a pair of large counter-

rotating vortices, spatially separated in different parts of

the volume.

Recently, such a flow pattern emerged [37] rather unex-

pectedly in a numerical solution to the two-dimensional equa-

tions of incompressible fluid flow at high Reynolds number

(essentially Eqs. (99) and (100) with a small viscous damping).

An "ergodic boundary" separating those initial conditions

where the large pair of vortices is formed from those where

they are not was proposed by Deem and Zabusky. A possible ex-

planation in terms of the "negative temperature" instability

was offered by Montgomery [48], who also observed that the

prediction was not totally applicable to the Deem-Zabusky

simulation in view of the lack of a distinction between "self"

and "interaction" energies in the continuum representation

(Onsager's prediction applies only to a "line" vortex model,

and H = e is the interaction energy). Cook and Taylor [49]

had previously offered an explanation of the Deem-Zabusky

results in terms of the impossibility of relaxation to the

thermal equilibrium energy spectrum [essentially Eq. (44)],

as compatible with conservation of enstrophy, for certain sets

of initial conditions. [Enstrophy is the volume integral of

the square of the vorticity, or for the plasma interpretation,

the square of the charge density. It is one among many con-

stants of the motion for the ideal incompressible fluid, where

the integral of any power of the vorticity is also such a

constant. Due to the non-square-integrability of the delta

function, it is ill-defined for the discrete-charge or dis-

crete-vortex system].

Joyce and Montgomery [50] performed a simulation of the

discrete vortex situation in which the equations of motion of

individual vortices were advanced numerically in time. At

high initial interaction energies (energies >> the self

energies, in the particle-in-cell representation), the Deem-

Zabusky phenomenon reappeared: formation of a pair of large

vortices composed of many of the smaller discrete ones.

A calculation due to Taylor [51] attempts to determine

the threshold for the negative temperature instability by

evaluation of the stationary-phase approximation to - ln (

The rather remarkable result emerges that, when the infinite

self-energy is taken into account, C, = 0. [there is also a

somewhat confusing attempt to connect the result with the pre-

vious Cook-Taylor [49] calculation for continuous fluids. We

are unable to appreciate this argument, and shall remark no

more on it here]. An improved calculation-of e is due to

C.E. Seyler, Jr., in Physical Review Letters, 3 515 (1974).
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Ihe result em = 0 would be a remarkable conclusion for the
following reason. Since the plasma parameter does not enter
the calculation, we may assume that the result holds down to
S= 0. But P = 0 is the "Vlasov" limit, or for the fluid case,
the limit of ideal, incompressible, inviscid hydrodynamics.
The spatially-uniform, field-free, quiescent state would be
by this criterion unstable. The interaction energy per par-
ticle in the Vlasov limit is zero. Therefore, any perturbation
on the spatially-uniform state would have the effect of adding
a positive interaction energy per particle. (The energy
fdx <E 2 >/8 is a positive-definite functional of any charge
density perturbation). Thus any perturbation from uniformity
would put the system on the negative-temperature side of the
boundary.

Finally, it may be speculated that the energy at which p
becomes < 0 according to (49) might lie above Em. This even-
tuality, which seems unlikely, would deny the existence in
principle of a stable spatially-uniform thermodynamic equi-
librium state of the guiding-center plasma in two dimensions
for any energy.

From these various calculations, it is to be concluded
that the guiding center plasma in two dimensions is an extra-
ordinarily rich statistical-mechanical system, one about which
much remains to be discovered. It is also one whose patho-
logies and singular features should make the investigator wary
until we have developed a better intuitive understanding of
the system, than now exists.

III. GUIDING-CENTER PLASMAS IN THREE DIMENSIONS

(A) Dynamical Description, Canonical Ensemble, and Time-
Independent Fluctuations

The two-dimensional guiding-center plasma model developed
in Sections I and II is of intrinsic interest for statistical
physics, but any practical significance it may have depends in
large part upon finding a way to generalize it to three dimen-
sions. This program is still in its infancy, and though some
of the results which have been achieved will now be summarized,
they will very probably have been considerably enlarged upon
by the time this material appears in print.

The natural generalization to three 4imesions involves
allowing point charges to move with the cE x B/B 2 4rift per-
pendicularly to a constant uniform magnetic field B, but to
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move according to Newton's laws in the parallel direction. If
the velocity of the jth charge is vj, we decompose it (and
other vectors) into parallel and perpendicular parts,

j = V. b + v. (121)

wherg 6 E B/B is in the z-direction, say, and b * v. = 0.
For vj , we have

= cE(x.,t) X /B 2  
(122)

where E(xj,t) is jhe electric field evaluated at tje insta-
taneous position xj of the jth charged particle (dxj/dt = vj).
For the parallel motion, we have

dv
m. = e b * 9(,t) (123)

Sdt (123)

Once again, we use the electrostatic approximgtion (more
for convenience than anything- else) and determine E by Poisson's
equation, or equation, or equivalently, by its solution

9(4,t) e (124)
3 3

where the sum runs over all charges of both signs. (Again
we take N positive ions and N electrons inside a large volume
V. Now, V = L 3 .)

Equations (121)-(124) form a closed system. The dynamics
they express can be given a Hamiltonian form; this will guarantee,
among other things, the existence of a Liouville equation and
a BBGKY hierarchy, with their attendant possibilities for doing
a systematic perturbation theory. Letting the jth particle have
coordinates xj = (xj,yj,zj), the Hamiltonian function can be
chosen to be

H= e e i q,- B C a

i<j
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( 2 21 -i
+ c W"T -T- T  p + (z.- z j)

(125)

+ p Pj
2 /2m

Sj

where the summations run over all charges of both signs, and

the canonically conjugate Hamiltonian variables for the per-

pendicular motion are

Ble.
= X.

Qj e c .j

(126)

B e. I
p c y. sgn e.

For the parallel motion, the canonical variables are just zj
and pzj. It is straightforward to show that Hamiltonian's

equations qi = aH/Ipi, Pi = -9H/@qiireproduce (122), while

zj = H/3pzj, Pzj = -aH/ zj reproduce (123) and the definition

of vji E vjz.

Expressed in terms of the positions and velocities, H

becomes

H = i mj v 2 / 2 (127)

i<j J

where .ij is the two-body Coulomb potential ei ej/x i - xj.

The canonical distribution of Gibbs will be.

-H/e
Deq = (128)

eq. dX e/E
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where, if H is expressed in the form (127), f dX means an in-
tegral over the 2N *.4 = 8N coordinates(xj,yj , z j , v j z ) , where
j runs over all charges of both signs.

That the equilibrium phase space probability density has
the form that it does [Eq. (128)] means that, in three dimen-
sions as in two, the thermal equilibrium configuration-space
probability density (using superscripts to label particle
species, now) has the form:

41 4i -te we 2N
nNN(x ... X; xl ... xN)/V

e ie i e xre

d ex[ (NN)/ dxl... d exp [-(12(N, 9)/)]

Sexp-(NN)/]/Q2 N (129)

Equation (129) is the same as for the ordinary plasma in three
dimensions, with or without an external magnetic field. Here,
@(N,N) = ei e /xij is the total potential energy of N ions

i<j
and N electrons. All the reduced probability distributions

i+se f i i e +e exp[-§(N,N)/9]
e Vsi.dx N  dse+.. dxN Q2N

will be the same, too, as will all single-time thermal equi-
librium ensemble averages. This simplifies matters consider-
ably, since these quantities are familiar ones and have been
for several years (see, for a review, reference 13). They
are, as before, independent of B. Without proof we shall
list a number of readily-proved results obtained from n ,.
n0 ,2 , and ni, 1 .

Interest frequently focuses on the case n X3 >> 1, where
now no = N/V is the average density (particles7 cm) for both
species. The Debye length XD in three dimensions is defined
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by X2 = e/8Tnoe 2 . For E = (4TnoX3)- ' << 1, we have ni,o =

no, I = 1 exactly, and to 0(E),

ii,-i -i
n2,0 = 1 + p i(x -.x2

n0 2 =1+ Pee,-e 1 x) (130)

ie ( i - )n, 1 = 1 + p x 2

ii ee ei ie .
Here, the pair correlation p = p = -p = -p is given
by

2 I /
ee(x - e e

; i  (131a)

=Jd e p 4(k)

where

ee 1 1

16rr no 1 + k2 (131b)

From such expressions, other quantities such as <E(x) E(x')>
may be similarly calculated. Thus, the autocorrelation of
the electrical charge density p(x) is

(p( ) p(3x')) = 4e2n ee( P (X

+ 2n e 8(x -x ')
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= f Sp() ei * d (132)

where

2 2 2
ne k hD

Sp( =) 22 (133)

4 i 3 1 + k2 2

Also

where

4n e2  2

~Ek) = 2 (134)
k 1 + k 2

from which

2 J (2T) + k

Equation (135) contains a divergence at large k which, as in

two dimensions, may be associated with the infinite self-

energies of the 2N particles

self a o j (136)
8 2r k (2rT) k D

The interaction energy can then be measured by

(g2> _ (2>self e d 1

f (2 T) k2 D( + k2 4)
(137)
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so that the ratio of interaction energy to thermal energy is

approximately

( 2) self /8 1 e
= - = - (138)

3n o e 24n o  

The smallness of this quantity is the basis of the weak-inter-
action approximation in which the kinetic theory of a plasma
is usually treated. The limit E + 0 for the non-thermal equi-
librium problem (where no and e/m are defined in terms of an
average number density and average thermal velocity) is usually
called the "Vlasov limit". The non-equilibrium properties of
this limit have occupied the attentions of more plasma theo-
riests than any other single topic.

To render <E > finite, we may cut offthe radial k-
integration in (135) in the usual way at the inverse distance
of clos st approach of a thermal particle, kmax. = e/e2 . This
gives <E2/8v>/3no0 = 2v /3, which, it should be noted, is not
small [unlike (138)] for any-value of E. The failure to dis-
tinguish between interaction energy and the spurious self-
energy of point Coulomb charges can lead to serious concep-
tual errors.

(B) Transverse Diffusion in Three Dimensions [52]

The coefficient of transverse spatial diffusion, for the
three-dimensional guiding-center plasma, cn be written in the
sam_ way as (67), in terms of the part of E that is perpendicular
to B:

2 Com
D = ( (O) (7)) a (139)

Again, the problem is ong of evaluating the electric field
auto-correlation <E (0) E (T)>, where E(T) is the electric
field seen at time+T by a "test" ion which is located at the
z-axis a T = 0. E(T) is related to the Eulerian electric
field E(x,t) by

E(T) = E[(T),T) (140)

and
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(x,t) = - exp i x (t)]
i k 2  V

k j

where x(T) is the orbit of the test particle. xj(t) is the
location of the jth charge in the plasma at time t. We have
toFourier-analyze E(x,t) in a large volume V, rather than an
infinite volume, for reasons which will become clear as we go
on. Equation (141) will also be written as

E(x,t) = (t) e (142)

so that (139) becomes

D 2 i)* (7) ei ' (T)) d (

B2  (143

since <E E > = 0 for k A -k2 for a spatially uniform ensemble.
k k

1 2

If we once again ignore the correlation between the spatial
locations of the test ions and the plasma particles [it will
be small if it is of the same order as (131)], we have a re-
lation analogous to (77), and

D 2  ( (0) • ())(eik x()) dT. (144)

B k k

One again, we can evaluate D- if we can evaluate
<exp i k • x(T)>. The same methods will be applicable in
evaluating
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16 2 e k2

16T2 ee (exp i [xi() - (0O)]) (145)

ij

The program to be followed closely parallels that for two
dimensions. For x(T), we have

X(T) = C() + B 2

(146)

In (146), the "test" particle has been assumed to be an ion
with charge-to-mass ratio ei/m4 . Equation (146) follows from
integrating (122) and (123). x(O) is the 4nitial position and
V the initial velocity of the test ion. x(0) can be set
equal to zero with no loss of generality. v it is a statistically-
distributed quantity which may be assumed to obey the Maxwell-
Boltzmann distribution.

Evaluating <exp i k * x(T) is no simple matter, and Eq.
(146) is considerably more complicated than (78). About the
best that has keen done so far in evaluating it is the follow-
ing. Because x(T) is the position of a random variable which
is initially localized near x(O) = 0, and because its proba-
bility distribution P[x(T),T] is expected to spread out with
time,

(exp ii -'(T)> = (T) eix(T) P[(T)

+ -

will damp with increasing T. <exp i k * x(Zj is the "char-
acteristic function" of the random variable x(T), in the lan-
guage of probability. Roughly speaking, the damping will occur
for two reasons: motion parallel to the field lines, and
motion perpendicular to them. Only the latter mechanism was
operative in the two-dimensional case. The latter is inhibited



490 MONTGOMERY

by increasing B, but the former is not. The damping due to

the parallel motion will be more extreme than that due to the

perpendicular motion. Therefore, for very strong magnetic

fields, it is useful to forget the perpendicular drift except
when k is normal to B. This is tantamount to assuming

(exp i +(7))

(exp iC f '+(T) + d T') i =oB 2 
E

i f V • , 0 (14 7 )

The first of these two expressions can be approximated by the
assumption which led to Eq. (81), but the second is more com-

plicated.

That the statistical properties of the parallel electric
field seen by a particle can be rather different from the

properties of the perpendicular field can be seen as follows.

Even if the parallel electric field obeys some jointly normal
distribution such as (80), there is the important difference
that it can accelerate a particle, whereas the perpendicular

components cannot. While the perpendicular motion can be visu-
alized as a limit of small increments in position space, the
parallel motions are a sum of small increments in velocity
space. This means that eventually some of the particles will
be moving very fast. Such fast-moving particles will, as is
well known, eventually begin losing energy due to the radia-
tion of plasma oscillations, and due to the relatively infre-

quent close collisions with other particles. Therefore, the
electric field seen in the parallel direction cannot in gen-
dral be well represented by an expression such as (80) in which
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the probability of the electric field seen by a particle is

given by a velocity-independent expression.

The parallel motion is closer in some ways to the

conventional [31] Langevin approximation of the theory of

Brownian motion in one dimension. There, a test particle

in one dimension obeys the equation

dv = -F(v) + A(t) (148)
dt

with a frictional "drag" coefficient F(v) and a stationary

random force field A [analogous to our 86 - (t)]. The

statistics of A can be given by some such expression as

(80). For F(v) = Bv, where $-  is a constant long com-

pared to the time necessary for <A(0O) A(t)> to go to zero,

the stochastic solutions to (148) are tractable [31].

However, we know that for the plasma case, F(v) is a

considerably more complicated nonlinear function of v.

Methods apparently do not currently exist for the calcu-

lation of such quantities as <exp[ik ft v(t')dt']> when
(148) governs v(t), with a more elaborate nonlinear form

for F(v). Therefore we must admit an inability to treat

the second expressions in (147) properly over the whole

range of T, and seek an approximation which will render

it tractable, even if the approximation is not entirely

satisfactory.

One possible procedure is to neglect the contribu-

tion of the parallel electric field in the second of

Eqs. (147). We are treating only the low-frequency,

long-wavelength parts of the electric field spectrum

correctly anyway. For this reason, one may expect that

the mechanism of free streaming of particles down the

field lines will be dominant in destroying the cor-

relations between the initial electric field seen by

the particle and that field at a later time. The parallel

motion of a particle will endure for something of the

order of a mean free path, and we may imagine that the

auto-correlation length for the electric field will be 5
this mean free path. If we ignore E , we get for

S# 0,
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(exp i x(T))i (exp(i • VII T1))

(149)

= vll exp exp(i k vilT)

2 2 2 2 2
= exp(-k OT /2mi) = exp(-kl VionT /2),

where we have assumed the test ions to be distributed with
a thermal equilibrium velocity distribution. Vo n E /mi

We shall make the approximation (149) and explore its
consequences, both for the test particles and the plasma

particles. Later we shall remark upon the possibilities
of relaxing it. For the case of purely perpendicular 's,
a development parallel to that of

(exp i x(T))k1=

(150)

= eI d 1  d 2  .exp f (E(Ti)
4 B2 E (

Before substituting (150) and (149) into (144), we

need expressions for the <El (0) - E (T)>. Making the

same approximations that led to (149) and (150) on the
plasma charges in (145) gives
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<' (0) (7) )

2 2
16 2 e. e. k

k2 2 2 (exp i 4[x. (O) - x.(O)] .

ij

exp V2 2

exp 2 for kil 0

16 2 e.e. -c2 k2  T T

e xp d± d T ( E, f( Tlk2 V2  exp 4 B2 d l B 2  1) j 2

(exp ii [xi(0) - j(o)]) for k1 = 0

(151)

2
In (151), Voj e/m is the square of the thermal speed foroj J

the species to which charge j belongs. We have also implicitly
assumed that the jointly normal probability distribution of the
perpendicular electric field is the same for all the particles.

Finally, we need <exp i t [1,(0) - t.(0)]>, which is

d t di 2 n2 (X1 , 2) e-i x1 2 /2, where n2 is the probability
istribution (130) of whatever two particles are involved.

If. i and j are the same particle, the < > is clearly unity.
If they are different, i # j, then
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(exp ik - [x.(O) - (o)])

(152)

=8Kr - (2 sgn ei sgn e

(152) is just (129)-(131), expressed in a finite-volume rep-
resentation.

Inserting (152) and (151) into the relation

(0 ()) = (0) (T))(ei x(-)(153)

we have

(E 1(0)* (T)>

= k 16 2 ee k  2  (-k2 2 T ( k2  ' 2
16 e -e -k 

ik2 V2 2 ex exp 2
i=J kll k V k

Sexp (.d fJ(= d f).g
i=J k11=0 kB 
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2 2  k2  2

i1j k k

1 sgn e e exp 11 ion
K . 2 n V 2 2 i

0 k + KD 2

16T e.e. 2e2 k 2 d4 "
+ k k2 v2  exp 2B 22 1( 1 (T

i k 11=0o

* 8Kr(k) i 1 k K2D2 sgn ei e2 n k2 + K2
D (154)

This is an integral equation for <E.L(O) * E.(T)>. If weeha

defined the Fourier transform of the Coulom potential 4 (k) =

lim e2 /2 T2 (k 2+ 2) more carefully, the 6Kr(k) terms would not

have been present in < (0) * E>(T)>, and they will not con-
k k

tribute to the summation. Hereafter they are dropped. (This

is only one of the places where one has to be alert for the

pathologies that follow from the fact that the Coulomb poten-

tial is neither square integrable nor absolutely integrable,

and so has no Fourier transform in a rigorous sense, except

as such a limit as the one just described.) The Zij can be

performed in (154) and the result is:
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(2 (0) (7))

2 2 2 2 2 216r en k -k Vo T
= expSvk 2(k2 + K 2) 2

kilO
(155)

2 2 2)

* xp 2 + exp 2

Z 2 2e 2 no 2 k2 T T

+ (k2 + K) exp d2 E(T2

k1=0

Equation (155) can be simplified by defining, as in the two-
dimensional case,

S((0) (7)) Q (T)

1 2 B dT2 2  . 2 1 (156)

d2 R (T) C ()

d T2 B2
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These definitions can be used in (155) to give

16 T2 e2 h k2 /k 2

2 Q(T) V o IV T L ik (k 2 + KD2

(157)

2- 2 2 2 V oo2 2( 5

(-k Vi 2 T -k V2e T 2o
2 ) + exp 2 exp (L -

+ 32 o k2 K exp [-2k2R (T)]

k 11iO I

Defining Eb E 16Tr2 e2 c2 /B2VK, this becomes, replacing T by t,

d2 R (t) e x p [ -2 k 2 R ( t ) ]  
i

2  b 2 2 + b
dt 1 + k k

k1=0 kjj#O
(158)

where f(k,t) is a known function of t:

2 22 2
k exp -k 2 V2  t /2

(Z t) 1 11ion

2k 2- 1 + k 22

(159)

L xp 2 + exp 2
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Equation (158) is the analogue of Eq. (86) for three di-

mensions. It is considerably more complicated because of the

last term, however, and so far has not been solved in the gen-

eral case. It can be integrated once, noting that dR(0O)/dt = 0,

to yield:

d (t) exp[-2 k2 R1 (T)]

dt 1 + k 2

kll =0 o

(160)

+ eb Z fl rt f(2,t) dT

kj0 o

and we may show how to extract the leading term in powers of

1/B from Eq. (160).

The only place the magnetic field enters (158) or (160)

is in the denominator of the small quantity Cb We seek the

leading term, in powers of Eb, of the solution to (158) and

(160). We shall see presently that for large t, RL(t) varies

proportionally to E6 t, which makes the first term on the
b

right of (160) an 0(cb ) term. Since the second term on the

right of (160) is 0(Cb), the result follows that it can be

neglected to lowest significant order, either in (160) or in

(158).

If we neglect f(k,t) in (158), we get

d2 R (t)T exp[-2k2R (t)]

2 b 2V2
dt 2  k 1 + k

k =0

or equivalently,

S dR (t) [1 - exp(-2k 2 R )]
1 e I )] (161)

Sk2(1 + k2 2
.':D
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Since R, and its first two derivatives are always posi-
tive for t > 0, last term in (161) becomes negligible as
t + m, and

___ (b 1

2 dt 2( 2  (162)
k )(1+

But DI/2 is just d RL(-)/dt, so

=2 b k2(1 + k2 2 )
SIt(163)

+ terms of O(eb)

Equation (163) is the three-dimensional analogue of (89). To
approximate it by an integral for a large volume, we make the
replacement [as in (90)]:

- k dk

k k min± mln

where kmin = 2n/L = 27/V 3 is the lower limit of kj integration
which results from the finite box size.

Carrying out the integration and introducing the definition
of cb, (163) becomes

D =-- y-X-, (164)D XD D)I eB 2nno ) L 2n

Equation (164) is strikingly similar to (91). It contains
the factors ce/eB, the square root of the plasma parameter,
and a volume-dependent factor. Only the volume-dependent fac-
tor is different: it diverges slowly as L + - in two dimensions,
but it approaches zero slowly in three dimensions. This slow
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approach to zero puts a constraint on the volume in order that

the second term of (160) really be negligible compared to the

first. Replacing the second E in (160) by an integral (which

k

must be cut off at k = /e 2 to avoid an unphysical short-
max.

range divergence) the condition that the term involving f(k,t)

be negligible is that

B2 1 L/2 L kmax

>> 3n ) / (165)
2 3 n ) 3 2(

n m. 32 no  L(

This can be regarded as a constraint on either B or L, that

(164) shall adequately represent the coefficient of transverse

diffusion. The limits of large B and large V are not inter-

changeable. At fixed volume, however large, (164) becomes

accurate as B - C. But at fixed B, however large, (164) ceases

to be accurate as V + -, because (165) ceases to hold.

Arguments which led to the inequality (92) on the time

over which true diffusion-like behavior can be observed like-

wise complicate the picture for the solutions of (161).

(C) Problems Associated with a Convergent Infinite-Volume

Theory

The form of Eq. (164) leaves little doubt of its inade-

quacy if we are interested in passing to the rigorous limit

of an infinite volume, V - O. One might at first guess that

the way to obtain the infinite-volume limit would be to drop

the first term in (160) and simply write

dR (t)
D () = 2 lim d

t- d t

S2 e b V f d f f (,1)6dT
(2 0

(166)
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However, upon substituting (159) into (166), one finds that
the integral diverges, and so what superficially appears to
be a nice expression with the correct "classical" dependence
B- 2 is actually useless.

The reasons for this are not difficult to see, but they
are not easy to correct. The reasons lie in the separations,
represented by Eqs. (147), (149), and (150), of the damping
of <exp ik * x(T)> into purely perpendicular and purely paral-
lel contributions.+ The point is that as V increases and the
allowed values of k become more and more dense, this separa-
tion will become less and less realistic for vey s-all but
non-zero values of kll. The damping due to the E x B drift
will compete with the free-streaming damping below a value of
ki that can be estimated by setting k Vion t 2  k 2 Ditat a
time when both are of order unity; i.e., below k1i z k' D/Vion -
Similarly the parallel electric field which has been uncere-
moniously dropped up to now from the second of Eqs. (147) can
become important in the small kll region. It has been pointed
out recently by Vahala [53] that mild assumptions on the sta-
tistics of the parallel electric field can lead to a term in
(147) which has the essential temporal behavior ~ exp{-k t3

times a quantity which -+ 0 as E + 01. This mechanism, essen-
tially a parallel collision damping, is a Shird approximately
equal competitor in the role of damping f(k,T) to zero for
large T at small k 1 .

It should be apparent that a rather complex limiting pro-
cess, involving the three small parameters s, cb, and 1/V is
involved; a simple formula which covers all cases is too much
to hope for in the near future. But formula (164), supplemented
by the inequality (165), may be supposed to be a good measure
of the regime in which the guiding-center plasma exhibits Bohm-
like diffusion in thermal equilibrium. What are not yet clear
are the infinite volume or finite 1/B limits in which "classi-
cal" diffusion may be expected. The "classical" diffusion for-
mulas, though very familiar, lack convincing derivations in a
strongly magnetized plasma. One may expect this part of the
picture to clear up before long, but jumping to premature con-
clusions is to be avoided.

(D) A Systematic Kinetic Theory of the Three-Dimensional
Guiding-Center Plasma

Since the system is Hamiltonian [Eqs. (125)-(127)], it
will obey a Liouville equation. From this a BBGKY hierarchy
can be derived, and provides a possibility of doing a system-
atic kinetic theory via an expansion in the plasma parameter E.
This in some ways is similar to the theory for a one-dimensional
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plasma, but the correspondence is not perfect. We shall adopt

a compact notation, dispensing with the superscripts to iden-

tify .charged species, as in the previous two sections.

For the phase space coordinates of the jth particle, we

write Xj E (x., y , z, pzj) E (x.,pzj .), where pzj = m vzj

The Liouville equation then reads

7 + . D = 0 (167)
t dt a x.)

where the probability distribution D is a function of all the

X 's for all particles of both species, and is assumed to be

symmetric under the interchange of like particle coordinates.

Written out in detail, (167) is

Sv + E D 0
zj - z m

x 1x VZ z

(168)

Here, E. j e j I jHere, E =  j e (xj - x )/Ixj  - xQ , , and Ejl = b E is the

z-component of the electric field at the location of particle j.

Summations run over all particles of both signs.

The reduced probability distributions are

f V DdX dX d ... X (169)
a a f s+1 ~s+2 ~2N

and integrating (168) yields

at 2  zj 8z m
.B x m 1 BVz s



MAGNETIZED PLASMA MODELS 503

= -
fno  d X8+1

species i=1

(170)

S (is+1 fs+1 efi , s+1

B2 4 4 m.c z. VB a m i C Zi  a vZi

Here,

1 3

s e ( i x)
- X8X1 1

is+= es+/x -xs+1

n = N/V

and the C means to sum over the (s+l) st particle, first
species

treating it as an ion and then as an electron. Equation (170)
is a generalization of (96), but because of the velocity de-
pendence, greatly exceeds (96) in dynamical content.

The "Vlasov approximation" amounts to ignoring all the
s

correlations and writing fs = I fl(i), as usual. This gives,
i=l

for the jth species,

f 1 e. E 1 cifX f _-+v -+ -. + =
at z z m. v 2 4 0

z B x
(171)
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where

x I - I Z
(172)

species (172)

This is the limit of the VZasov-Poisson system in a very strong

magnetic field. An equivalent limit was treated some time ago

by Harris [54] and Rosenbluth [55], although only after the

solution to the full linearized Vlasov-Poisson system had been

carried out.

Standard methods* [13] can be applied to solve the

linearized version of (171)-(172). That is, we keep only linear

terms in the departure from the spatially-uniform, field-free

state. Linearized, Eq. (171) takes the form

(1) (1) (0)
af. af. eE af.
!i b e Z = 0 (173)

at z z m.ie a

where i,e stands for ions and electrons. Poisson's equation

(172) takes the form

(1)i,,t) e (Xv ',t) dv';

o) 
(174)ax x x x

i and e

f() = f (0)(v ) only are the spatially uniform equilibria we
i,e i,e z

(1) +
are perturbing about, and fie (x, v ,t) are the perturbations.

(1) -+ +* (1) +
Assuming E,f) exp(ik * x) and that f(l) (x, v ,0 ) =iie i,e z +

ik.x ik*x
g. (v ) e , the solution to (173) is (dropping e
i,e z

* L. D. Landau, .T. Phy. (U.S.S.R) ZO, 25 (1946).
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-ik v t

f,e (Vzt) = gie(vz) e z

(175)

a (0) t ikv (T-t)

M,e z
e  i Vz d7 E(T ) e z (

7
't )

Substituting (175) into (174) gives

ik " (t) = ikE(t) = 4Ien °  f dv

(0) (0)+ -
) ~e i e (176)

z z

ttdTE(T -ik v zV(t -T)

Since Ez(t) = (kz/k) E(t), (176) is an integral equation

of the convolution type for E(t) which can be solved by
standard techniques [13]. The result is conveniently obtained
as a Laplace transform

a+iC

E(T) = E(s) est (177)

a-ic

where s is the complex Laplace transform variable, and
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d v 4 nen

v - is/k k k [e(v) - gi(vz)] (178)
E(s) = z z z

D(k,s)

D(k,s) is the dielectric function, defined by (the usual [13]
remarks about the contours of s and vz integration apply):

k F dVz z/Vz (179)D(9,s) = 1 - i - 4 kz (179)
i k 2  s+ ik v
j k J z

The Ej in (179) is a sum over species (two terms) and W2 .
4rno e 2/m., = i or e. The vanishing of D(k,s) at

- iw(k) + y(k) determines the angular frequencies w(k) at
which the medium can support electrostatic os'illations; the
corresponding Landau damping decrement is -y(k). Antecedents
of Eq. (179) were first derived by Harris [54] and Rosenbluth
[55].

Equation (179) becomes identical with that for an un-
magnetized plasma upon replacing kz by k, vz by the component

+ + (0)of v along k, and letting f( (v) be replaced by the velocity

distribution function of that component of v. It follows _hat
from all the previous detailed work on the solutions of D(k,s) = 0
we can immediately infer the character of the possible modes of
oscillation of the 3-dimensional guiding center plasma.

In summary, there are two important branches of the w
versus k curve for Maxwellian distributions, one associated
with electron oscillations and one associated with ion acoustic
waves. For k << KD, the electron branch has w z pe kz/k, and
goes over into ordinary electron plasma oscillations for par-
allel propagation (kz = k). The ion acoustic branch is heavily
damped unless Te >> Ti, in which case its dispersion relation

becomes w/k z (wpi(kz/k))/(k2 + Kbe) , where KDe E 4Tn oe2/ e,
and this also goes over into it unmagnetized value at
kz = k. The damping decrements depend linearly, for the
case Y2 << , on the values of fl/v (v = ~/kz), and are
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large when these quantities are large. The most important dif-
ference between the solution of D(k,s) = 0 here and in the un-
magnetized case is perhaps the possibility that undamped electro-
static oscillations at large angles (kz/k << 1) can exist at
considerably lower values than the electron plasma frequency:
W pe kz/k. Since w/kz w pe/k, these are still essentially
undamped as long as wpe/k is greater than an electron thermal
speed. For sufficiently large wavelength (small k) and large
angles, these can lie below the ion gyrofrequency in a real
plasma and can render the drift approximation more satisfac-
tory than it would otherwise be.

Other kinetic theory problems can be approached through
(170). For example, it may be expected that kinetic equations
for the evolution of non-Maxwellian one-body distributions,
such as the Balescu-Lenard equation, might be extracted from
an expansion in E for the spatially uniform state. The strong
similarity to the one-dimensional case suggests, however, that
a messy, 0(c2), calculation might be required in order to pre-
dict relaxation to thermal equilibrium. A calculation of the
spectral density of the fluctuations in the next sub-section
points to a possible pathological feature of any such expan-
sion, and re-emphasizes the very special role played in the
guiding-center plasma by wave numbers with kz/k << 1.

(E) Fluctuations for the Three-Dimensional Guiding-Center Plasma

It is possible, for the spatially-uniform three-dimensional
guiding-center plasma, to calculate the auto-correlation func-
tion of the electric field in the Eurlerian representation:

(~(x,t) (x + ,t + T))= dw E(,w) ei( ~+ ' ) (180)

The calculation can be carried out one of two ways: either by
the Rostoker method of super-posed "dressed" test particles
[14] or through the two-time BBGKY hierarchy [13], which can
be shown to lead to the same results. Both methods are by now
well known, and we shall use the former since it is simpler.

The calculation is instructive because it illustrates
clearly the singular behavior associated with those components
of k which lie nearly in the perpendicular direction ti B. The
unusual physical behavior associated with k << KD and k * B = 0
has already been shown to give the dominant contribution to
te "anomalous" diffusion coefficient (164). A calculation of
SE(k,w) from the conventional expansion in the strength of the
interaction sheds additional light on the unusual features of
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this small, crucial region of kspace.

"Test particles", in the sense they were introduced into

kinetic theory by Rostoker [14] and Thompson and Hubbard [56],
are uncorrelated, freely-streaming Coulomb charges carrying a

modified potential. The modification of the potential is

achieved by Fourier transforming it in space an4 time, then

dividing the transformed potential 0(k,w) by D(k,iw). Such

fluctuation quantities as S 1k,w) are then obtained by super-

posing uncorrelated particles with this potential. The foun-

dations of the method are discussed, e.g., in detail in Ref. 13,

where it is shown to be connected with the more rigorous de-

rivations proceeding from the two--time BBGKY hierarchy.

For particles of species j, the exact number density for

non-interacting charges is:

N

86 -J -. t)

n (1,t) = Z (x - xo - o

i=l

For the 3-dimensional guiding-center plasma, vo = b vlo, but

x can be anything. The Fourier-transformed charge density

N -3
n.(k,t) = (2~ - 3 exp -ik . ( + v t) (181)

i=l

will give

<nj(k,t) nj(k',t')>

N

(2 n) "  exp[-ik • (xio + V t) - ik' • (N + v t)]
So 0o o10 e 1

(182)
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If the various charges are uncorrelated, the only terms
which will contribute to the electric field spectrum for large
t, t' are those with i =4 , so

<nj( ,t) nj(k',t + T))

(183)

V (2)3 io

plus terms which do not contribute to SE . The velocity inte-
gral for the 3D guiding-center plasma is a single integration,
so we can write, for the guiding center plasma

<n(x,t) nj( + , t + T)>

= fd dw S .. ( ,w) exp[i + i(184)

where

n, - f.(-w /k z)

S. j kj~) -'67(185)
(2 rr) I kz i

plus terms which do not contribute to SE. noj E Nj/V = no
for both ions and electrons. Summing (185) over species and
applying Poisson's equation, we have the spectral density of
the electric field fluctuations for "bare" (i.e., uncorrela-
ted and non-interacting) particles:
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(186)

2no 2 f.(-w/k

j k Ik,

("bare" particles).

The canonical recipe now requires division of (186) by

ID(k,iw) to give:

SE(k,w)

(187)

2 noj e fj(-w/kz )

k Ik z D(k, iw) I

The corresponding expression for the three-dimensional unmag-

netized plasma is [13,14]

S B=O

(188)

2 n oj e .  1 F (-w/k)

T k k D(2,iw) 12

where Fj is the velocity 4istribution function for the com-

ponent of velocity along k.

Equations (187) and (188) are similar, but there is a
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striking difference. Namely, for w/kz = const., k finite, and
kz + 0, (187) diverges; yhereas (188) does not. In other words,
4187 predicts that <IE(k,w)i2>will be in no sense small for
k . B, even though the plasma parameter may be small.

Superficially more complicated, but similar, divergences
plague the full three-dimensional plasma in a very strong mag-
netic field [57]. There exists at the present time no 9atis-
factory calculatign of SE(k,w) for those components of k nearly
perpendicular to B. The weak-coupling procedures simply will
not work. In view of the already displayed importance of these
components for plasma transport properties, the problem of cal-
culating them accurately appears to be of the utmost importance.
Because of the discussion following Eq. (166), it is not reason-
able to expect this calculation to be easy.

(F) Swunary

We have outlined a basis for the systematic calculation of
statistical mechanical quantities for a plasma in which the
plasma particles x drift transverse to a strong dc magnetic
field, but respond according to Newton's laws in the parallel
direction. The leading term in the coefficient of transverse
spatial diffusion for a large but finite plasma has been cal-
culated, and has been shown to fall off as 0(1/B), even in
thermal equilibrium. Spectral density calculations for the
electric field fluctuations based on the more conventional weak-
coupling expansion are shown to lead to an unphysigal diver-
gence for those k vectors nearly perpendicular to B. It is
exactly these components which are involved in "anomalous"
transport properties. The conventional expansion in the plasma
parameter is therefore inadequate in such calculations.

IV. FINITE GYRORADIUS EFFECTS AND THERMAL RELAXATION IN TWO
DIMENSIONS

(A) Preliminary Considerations; Liouville Equation; Hierarchy

Though the guiding-center approximation in two dimensions
has greatly facilitated calculation of thermal equilibrium
transport coefficients, certain other processes associated with
finite values of the plasma parameter apparently lie outside
its scope. Mot importantly, there is apparently no tendency
toward thermal equilibrium in the conventional sense. Any un-
correlated spatially uniform state is an exact solution of (96):
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S. S
1 e

setting f = i n fl,0(i) f l1 (e)gives 3/3t E 0 in (96)
1' e i=1 e=1

if f1,o = fo,i 
= const. = 1. There is no tendency, as there is

for other Hamiltonian systems that obey a hierarchy, for the

pair correlations to develop and go to their thermal equilibrium

values [such as (25)]. Moreover, any state with vanishing trip-

let correlations and with two-particle distributions which de-

pend only upon the magnitudes of the separations of the particles

is also a time independent solution of the equations from (96)
for which (si,se) = (1,1), (2,0), and (0,2). Therefore from

the dynanical point of view, there is no particular reason to

prefer (43) over any other spectral density. For example, the

purely random distribution, with all pair correlations E 0
and <E2> <E 2>self has been studied in some detail numer-
ically by Taylor and McNamara [28].

Clearly what is required in order to study thermalization

processes in a two-dimensional magnetized plasma is a relaxa-

tion of the guiding-center approximation. By averaging over

the "fast" gyromotion, one arrives at a system of dynamical

equations which, among other things, makes the potential energ.

a constant of the motion. Since total energy is also conserve

this makes it impossible for a ratio of potential to total

energy which is different from that demanded by thermal equi-
librium to adjust itself. This is an additional proof of the

impossibility of complete thermalization within the framework

of guiding-center theory.

In this section we shall examine the possibility of pre-

dicting thermal relaxation for a plasma made up of two-dimension,

charges whose equation of motion is

dv e.

dt -mj . +

instead of (52). To keep the description simple, we shall also

make the popular approximation of a uniform immobile ion back-

ground, so that only the negative charges are involved in the

dynamics: all e. = -e. The Liouville equation is simple to

write down, and he BBGKY hierarchy which results from inte-

grating over the phase space of the last N-s charges is
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s4
e. v.

+ " e j x
F i. C 4

j=1

mi bx i j  
a a (189)

dx dv . So and is normalized so that dx dv .
m d Vs+l -4

where ij is given by (15). fs = fs(Xl v I... xs Vs;t) is a
function of the 4s phase space variables necessary to dscrbe
te f~rst s particles, and is normalized so that f fs dxl dVl """
dxs dvs = V

s = L2

Equation (189) looks much more like the familiar hier-
archies that have been investigated than does (96), but the
magnetic field term introduces some non-trivial complications.

It is realistic to confine our attention to the spatially
uniform and g rotrypi ]4mit, so that fl = fl(v/2,t) only,
and f2 = f2 (x - xv,v ,t) only. The s = 1 and s = 2 equa-
tions become, from Z184),

fl no 12 f2- = - a d v (190)
3t m 2 2 4 4
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+ 4 - eV +
-1 - 2 4 m c

-e v2 X 1  1 2  f

2 3 x 12  2

no 14 4 (1 __ fdx v + . 3
x xl , 1 x2 2)

(191)

Another useful way of writing (191) compactly is

S+ H2 ) f2 = L2 f 3  (192)

where the linear operator H2 is the LiouviZZe operator for two
particles, and L2 is defined by the right-hand side of (191).

(B) Boltzmann's Equation for the Two-Dimensional StrongZy-
Magnetized Plasma

Equations (190) and (191) are general for any two-body
potential .12" Their analogues in three dimensions (usually
minus the magnetic field) are the starting point for the most
satisfactory existing derivations of kinetic equations: ap-
proximate equations of the form af,/Dt = {a functional of f,
onlyl which predict relaxation to a Maxwellian f1. Expansion
in the density, for example, leads to the Boltzmann equation;
expansion in the potential leads to the Fokker-Planck equa-
tion; and expansion in the plasma parameter leads to the
Balescu-Lenard equation. It is natural to attempt these ex-
pansions on (190) and (191).

The perturbation theory is not entirely straightforward
in the three-dimensional case, and is less so for (190) and
(191). Normally the complications result from the presence
of disparate time scales (first articulated by Bogolyubov [21)
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in the underlying physical processes. This must be incorpo-
rated into the mathematics either formally [2,58], or by a
fortunate insight [59]. The complication of more than one
time scale is present in (190)-(191) also, but another dif-
ficulty is more fundamental. The conventional kinetic equa-
tions have in common that the two-body distribution f evolves
in terms of fl and what is essentially a two-particle dynam-
ical process that goes to completion in a time short compared
with fl/Dfl/at. For instance, in the derivation of Boltzmann's
equation [60,61], the two-body process is a collision in which
two particles approach each other, collide, and separate in
well-defined stages during the duration of which fl is sens-
ibly constant. For two colliding charges in two dimensions,
the situation is much different in the presence of a strong
magnetic field, as we shall now show.

Two equal charges in two dimensions obey the equations

dv (
1 e

At m 12 x

(193)

Av2 e V2
----- - " + - x
dt m 21 c

where E1  -(2e/) x1 2 /x2 2 , and x = x - x2 . Adding Eqs.

(193) gives, since E1 2 = _-

, _ - - X (194)
dt mc
4. +

where V- (v + v )/2 is the center-of-mass velocity of the
two charges. Equation (194) is the equation of motion of a
free particle in a uniform magnetic field and so the solution
for the center-of-mass motion is immediate.

Subtracting Eqs. (193) gives
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v 1 2  2e e12

dt m 12 me

(195)

44

4e2 x12  ev 1 2
£m 2 me

X1 2

where v 12  v - v is the relative velocity of the two charges.
Two constants of te motion of (195) are (as can be readily

verified)

42
m12  4e xl 2  =7 = const.

(196)

mb (x1 2 X 1 2 ) x12 P = const.

Expressing x = (r cos 6, r sin 6) in terms of polar coor-
dinates and eliminating 6, we have

r j2 + "V(r)" = e = const. (197)

where the "effective potential" is

2

P 2 B2 r
2  e 2

"V(r)" - 2 +  2 f r (198)
2mr 8me

The solution to (197) is

adr

S -"v (r)"

and since "V(r)" has a single minimum and + m as r + 0 or r + ,
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the r motion is always bounded and periodic, with limits de-
fined by the intersection of "V(r)" with G.

Since e = P /mr 2 + eB/2mc, 6 is periodic with the same
period as r, and 0 can be written as a constant times t plus
a periodic function of t with the same period as the r motion
and with average value zero. The motion may or may not en-
circle the origin, but there is always a maximum radius r which
is reached periodically.

This shows that a significant difference exists between
the basic two-body interaction in a magnetized two-dimensional
plasmm and a three-dimensional one (or a two-dimensional one
with B = 0). There is no time before which one can confidently
assume that the spatial correlations of two colliding charges
vanish. This renders suspect many of the assumptions of the
BBGKY kinetic theory. Nevertheless, alternative equally-
plausible assumptions have yet to be suggested, so it is still
of interest to take the kinetic theory as far as possible in
parallel to its usual form.

The easiest expansion to perform on Eqs. (190)-(192) is
in powers of the density. To lowest order in the density, (192)
is just the two-particle Liouville equation

( + H2 ) ;Os (199)

whose solution is any function of the constants of the motion
of the two-body problem defined by (193). If we go ahead and
ignore the pair correlation at t = 0, f2 Z fl fl then, the
solution to (199)

_+ ++

f2(x lY Vix2)2"T)= f I1(-T)/2,0] fl[V2(-T)/2,0] (200)

where vl(-T), v 2 (-T) are thS sylugions to (193) that lead to
two particles, being at xl,vl,x 2 ,v2 , at time T. Substitution
of (200) into (190) would lead to secularity for reasons which
are well-known [11,61,62]. This is avoided by the method of
Dupree [59] or its more systematic formulation in the method
of multiple time scales [11,58,61].

One notes that an equally accurate solution to (199) is
obtained by allowing fl to have a slow dependence on the time.

@fl
Equation (190) predicts = 0(no), and so a slowly-varying
f results for low densiies. If we write a formal dimensionless1
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expansion parameter E in front of no to remind us that it is

treated as very small, (200) can to equal accuracy be replaced

by

2 (x1,, x2 ,v2 f (-T)/2, 7 f [2(-T)/2, T] (201)

since when substituted into (199), the only additional terms

generated are of 0(c). At the end of the calculation, we can

then let E + 1.

The canonical recipe would be to substitute (201) into

(190) after passing to the limit T + m, ET finite. That is,
one would write

a f v1/2,t)

S(t)

no da2  "12

m 2 2 4
b x 1 2

b + 2 -T

1 2 2 (202)

In the B = 0 case, (202) is nothing but Boltzmann's equation

[2], and only a few additional manipulations are required [6]

to bring it into the form given by Boltzmann. For the case
under discussion, however, it is not so simple. The limit of

the integrand does not exist; it is an oscillatory function

of T. The period of oscillation does vary from point to point

in the two-particle phase space so that the limit of the inte-

gral may exist even though the limit of the integrand may not.

But this has not been proved. An additional ad hoc step which

makes the limit of (202) well defined is that of time averag-

ing, reasonable in view of the success of the Bogolyubov "method

of averaging" [63,64] in other situations. It consists of re-

placing (202) by its time average
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2 T
bf (Vl/2, et) 1 n= lim 1 - o

B(t) T-k T m

(203)

I 2 xl2 V1

If the limit in (202) exists, it is identical to (203).

We propose (203) [or (202)] as the analogue of Boltzmann's
equation for the two-dimensional magnetized plasma [12]. We
suspect that it obeys an H-theorem and conservation laws, but
have not been able to prove any of these.

(C) The Weak-Coupling Approximation; The Fokker-Planck Equation

A second expansion of (191) which lies in the mainstream
of kinetic theory is an expansion in powers of the interaction.
That is, we shall treat the terms containing a two-body poten-
tial as of one order higher in a formal expansion parameter s
than the terms which do not. Corresponding to this (and glean-
ing an insight from the equilibrium theory), we expect the
correlation functions to get successively smaller in powers

af1  -2
of E as well. Since = O(c ),

f1 (1) = fl(v/2, Z2t)

f 2(1,2) = 1 /2, e2t) f(V /2, e2t)
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+ Xl,XV2 ;t, 2t)

3(1,2,3 ) = f 1 ( i/2, 2 t) f1 (v2/2, 2 t) fi(v/2, 2 t)

(204)

-42 22 +4 - -2
+ '(f 1(/2, Z t) P(x2v2,x3, 3;t, t)+ cyclic

permutations)

+ 0( 2 )

and so on.

Dropping terms of 0(2) from (191) after substituting in
(204) gives

+ + 1"1 + 2 me 1  me 2 X .p

m c x a -V +

1 m12 2 P2 42 2
m 4 - - fl 1v/2, - 2 t) fl(v 2 /2, c t)

2 1 2 (205)

for the pair correlation P.

The left-hand side of (205) can be recognized as the total

time derivative dP/dt computed along the noninteracting trajec-'
tories in the two-particle phase space. Integrating (205) from
0 to t and assuming that no pair correlations exist initially,
we get
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P dT 2e 1 2 1 1(vl2'2 -2t) f, 2
A M 2 (T(V), j iV/2,2t)

o )1

+ (1 . 2)
(206)

In (206), the prime means differentiation with respect to v2/2,
and (1 - 2) means the same term with coordinates of particles
1 and 2 interchanged.

Since x,2 (T), (), v() are sipply pyriodic functions
of T, readily expressible in terms of xl,v 1,x2, and v2 , the
integral

2 2  x12() "
2e(1) dT 2 (207)
Am o x2(T

121

can be done. I(1) has the physical interpretation of being m -!

times the kinetic energy transferred, to lowest order in per-
turbation theory, by particle 2 to particle 1. As long as I(1)
remains << v2/2, the perturbation theory remains valid.

The integral (207) is messy, but can be carried out in
terms of elementary functions. It is performed in detail in
Vahala's thesis [12]. Taken over an integral number of gyro-
periods To-E 27mc/eB, it is

0 2 2 x2 (b x v0 + 12 a X 1 2)
x 12+ b > 0

I(1)=

t 4ne2 12 X b] 2 2 x 12 b X 1 2 )
T 0 m 2 12 <

V1 2

(208)
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Here, -- eB/mc. The content of (208) is roughly that only
particles initially close enough together contribute to P, and
this contribution grows secularly with time.

We must confess lack of a systematic understanding of
what the proper use of (208) in (190) is. The formal substi-
tution of (208) into (190) leaves a secularly-growing term
which is unphysical. It was previously dealt with [12] by the
somewhat ad hoc procedure of cutting off the integration at ar
upper limit corresponding to mI(1) ~ e. Here we shall use a
time averaging procedure motivated by "stroboscopic" perturba-
tion theory [65] and obtain the same answer, up to a numerical
factor.

The motivating physical inequality is that in one gyro-
period, fl should have changed by very little. Therefore,
(190) will be replaced by

bf1 no '12 --
1 d dvat 2 2 f 2

(209)

-2 no 'P12
dx dv '12 ___S 2 v2 4

where the bar over f2 and P indicates an average over a gyro-

period. Since in the region where it is non-zero, TIT =
(27e 2/m) _ - 1 " 12 x )/v 2 , and since

2 -2 2
P - I(1) fl(vl/2, e t) f1(v2/2, 

2t)

(210)

+ (1 - 2)

we may substitue (208) and (210) into (209) to get a kinetic
equation
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f1 ( / 2 , 2 t )
d2 /2, t)

no d d 2 {3YXY5 -2 2 -2
S-- - 2 v2 4 ( r f /2, E t) f l (  /2, G t)

b x1  V,

+ (1 2)3 (211)

with the region of integration to run over all the region de-

fined by the second inequality in (208).

The integrals in (211) can be performed [12] and the re-
sult is

2 -2b fl( v1/2, e t) b r
b d , 2) - 1 2

(212)

f1 1/2, Z t) fl(v 2/2, Z t)

where the dyadic Q is given by

4 i n e (v1 2 X b)(v 1 2 x b)

Q 2 2 2
m a n v 1 2

(213)

4 2no4 2 -S V12 12 12
" 2 2

2 2 a v 1 2
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Equation (212) is a standard form in which the Fokker-
Planck equation has been written before. It is easy to prove
from it conservation of particles, momentum (zero in this case)
and kinetic energy. It also obeys an H-theorem, and thus pre-
dicts an approach to a Maxwellian f as t + m:

2 2 m /2e)
fl(11/2, s t) 2 T.G' exp(-m l/20)

-2
et-b

where 8no is the initial kinetic energy density. The relaxa-
tion that occurs is predicted to occur on a time scale trel.
where

2

trei. 4 no

That trel. shall be long compared to other time scales involved
is a necessary condition for the applicability of the guiding-
center model to situations other than thermal equilibrium, as
done, for example, by Taylor and McNamara [28] for the case of
a random initial distribution (P = 0).

Up to an arbitrary numerical factor associated with the
cut-off of I(1), Eq. (212) is the same as that given by Vahala
and Montgomery [12]. [See, however, reference [67].]

(D) The "Weak, Long-Range", or Balescu-Lenard, Limit

Note that no long-range cutoff of the potential was re-
quired to render (213) finite, unlike the corresponding situa-
tion in the unmagnetized case. Once can thus question the
necessity for going to the "weak long-range" limit usually
thought necessary to account properly for the long-range part
of the Coulomb force. Equation (212) may thus be surmised to
represent the "Balescu-Lenard limit" as well as the "Fokker-
Planck limit". Nevertheless, the Balescu-Lenard limit was
investigated in some detail in Vahala's thesis [12]. P was
re-calculated by adding in terms

Qr,,-z2E
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n fl 3o 1

m 1  ax 1

+ (1 -- 2)

on the left-hand side of (205). The calculation is still man-
ageable, though very lengthy. The rather surprising result is
that following the standard procedures, af1 /t = 0, through
terms-of first order in the plasma parameter. This not entirely
expected vanishing of the Balescu-Lenard collision term has as
yet no satisfactory physical interpretation, and requires ad-
ditional investigation.

(E) The "Test Particle" Problem; Absence of Dynamic Screening
on Vlasov Time Scales

One of the most important physical characteristics of the
unmagnetized Vlasov plasma in both two and three dimensions is
the separation of "Vlasov" and "collisional" time scales. These
can be roughly associated with processes which occur at finite
rates even when the plasma parameter E goes to zero and those
which do not. In the former category, we can put plasma oscil-
lations, Landau damping, and relaxation to the "kinetic stage"
of Bogolyubov, all of which occur on time scales measured by
the inverse plasma frequency w 1. In the latter class is relaxa-
tion to thermal equilibrium which occurs on time scales - w-I C
in two dimensions, and ~- w E-1/lnc-1 in three. P

p

Many of the novel features of two-dimensiona4 strongly
magnetized plasmas (and the nearly perpendicular k-vectors in
three) are associated with the fact that these two time scales
no longer enjoy a clear separation. There are no relaxation
processes which occur for components of the fluctuation spectra
with k perpendicular to B that occur on a time scale independent
of E.

This can be illustrated by adapting a very standard kind
of calculation for three-dimensional plasma [56] to the two-
dimensional magnetized plasma: the linear response of a Vlasov
plasma to a "test" charge introduced at t = 0.

The Vlasov equation obtained from (189) by ignoring all
correlations is
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+ v * E+ -
" e vf

(214)

where

(t) = "2e no" ( - ') ex,
ax x (215)

It is soluble, as a linearized initial value problem, by stan-

dard methods. If the initi-l conditions are-such that a test

charge et is introduced at xo with velocity v = (vo cos ,
v sin ) at t = 0, the electric field which results for t > 0

is

a+i

-# eix ds st
=E(,t) E (s) (216)

where.

(k,s)

i k Jn k 1 ein(@

kiet/Tk 2 -ikxo+(ikVo/ne) sin (0-0) c n k in

e s - int
D(i,s) e

n=-c

(217)

he new symbols appearing in (217) are 0e eB/mcl,
k= (k cos a, k sin a), and the dielectric function D(k,s)
is

2 'l
2 e n 2 2 T)

D(,s) 1 - 2 + in il vdv f£ (v2/2) Jfn k)

(218)
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Jn is the Bessel function of its argument and f = (2r)- 1.
exp (-mv2 /28) is the two-dimensional Maxwellian; Wpe E 4nnoe0

2 / m.

If the charge is stationary, v = 0, and kVe << S ,
Isl<< e', (217) simplifies considerably to

ie -i- xo

Tk2 2 (219)
a 1+ 1 +

When we Fourier-Laplace invert (219) we get, for the electric
field produced by the test charge

2et( - 0
x2t) 2 all t

l x - 1x p (220)

Q2
e

which is the vacuum value divided by the low-frequency limit
of the dielectric function 1 + w2 /2e"

pe e.

If, however, we had considered the limit Qe + 0 in (217)
we would have gotten instead of (220),

2e t ( x - o )  
r KD -KD Ix

x ,t)e o (221)

for wpet >> 1 and KDIX - xoI> > i.

The differences between (220) and (221) are considerable.
The latter is Debye shielded and has an effective range

- KDl = AD, while the former is not, and has an effective
range of the order of the size of the system.

We know, of'course, that the field of the test charge
will eventually be shielded; the thermal equilibrium theory
tells us that. The point is that it occurs on time scales
which are not identifiable with Vlasov's equation, but with
processes which slow down to stationary as E --0.
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(F) Comments on the Problem of Spatial Diffusion for Finite
Larmor Radii

Dawson, Okuda, and Carlile have published a preliminary
[66] account of a calculation of a two-dimensional coefficient
of spatial diffusion which endeavors to include finite Larmor
radius effects. The essentially new result, for which some

evidence from numerical simulation is presented, is that the
Taylor-McNamara result [Eqs. (89) and (91) of this article]
appears divided by the square root of the dielectric function

at zero frequency, [1 + jj c Qj2 . The development, how-

ever, does not aspire to the deductive character of the
Taylor-McNamara development and its generalizations, and a

number of the steps are little more than order-of-magnitude
estimates. These fortunately combine to produce exactly the
right numerical coefficient to agree with Taylor-McNamara in

the limit B + m. A supplementary derivation based on a two-

particle encounter model of diffusion is used to interpret

the data for lower values of B and a "classical" [i.e., 0(I/B 2 )

diffusion coefficient is claimed for these lower values. This
derivation omits contributions from the very-long-wavelength
components of the fluctuation spectrum, however, and so con-

tains no volume dependence. Since it is precisely these com-
ponents that led to the volume divergence in Eq. (91) and in
the calculations of Ref. 32, one suspects they may play a sim-

ilar role in the magnetized finite-Larmor-radius plasma. This
"classical" expression therefore probably needs, at best, an

inequality on the plasma volume in order that it be in fact
the dominant term.

One can hope for a clarification of these, and other,
important unanswered questions connected with the finite gyro-
radius plasma in the next few years.
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APPENDIX I: DERIVATION OF EQ. (81)

We are interested in evaluating expressions of the type

Is i d dE 2 ... d P( .2 .. ) exp i

m=1

(Al)

where

P(F e ... exp a (A2)

i,j=1

and n is chosen so that

fd2 *d2 2 ... 1 92(A3)

The aij are positive definite dyadics which satisfy x . aij x > 0
for any non-zero x.

The (EI ,E2 ,.. .EM) can be thought of as a column vector
whose ith element is ti, say. The Yij can be thought of as a
real, symmetric, positive dqfiqite mytrix whose ijth element
is Aij, say. Finally the (X1 , 2, ... AM) can be thought of as
a column vector whose jth element is R., say. We can then
write the desired integral I as 3

I i i d exp -A Ai i + i .9 (A4)
ij j

The exponentials in (A4) are scalars, and a unitary trans-
formation of the ei's always exists which will make Aij dia-
gonal in the new representation. Call the unitary trans-
formation Uij. Thus
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i =C Uij P3

(A5)

ik Akn(U nJ
kn

where A = A' 6ij, with A' > 0, all i.

The Jacobian of a unitary transformation is unity, so we

can write (A4) as

I = (n exp A 2 +; e (A6)

where 22 = Ujk 2k The integrals in (A6) are now elementar

and

( i e -i l 8/ Vr 2 ,2 / A

= i e "

j JI (A7)

a

e ij

ij

We also note from (A4) that
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2

all ak=O

.so

(ei ej) = (A-l1ij/2

from (A8), and

I = exp - - i(e<i e) (A9)

ij

If we now revert to the vector notation,

M

I = exp -+ (A10)

i,j=l

To derive Eq. (81) of the text from (A10), replace Xi by
( ck x B/B 2 ) At, all for i.

Equition (A2) has the property that integrating it over
all the Ei but one leaves a Gaussian distribution in that Ei.
However, the converse is not true: that the electric field
have a Gaussian distribution at any instant is not a sufficient
condition that the joint distribution have the form (A2).

Considerable use has been made of this theorem in sta-
tistical physics in recent years. See, e.g., the review article
by A.J.F. Siegert, in Statistical Mechanics at the Turn of the
Decade, E.G.D. Cohen, ed.; New York, Marcel Dekker, 1971.
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