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ABSTRACT

Laboratory tests with simulated micrometeoroids to measure the

heat transfer coefficient are discussed. Equations for ablation path

length for electrically accelerated micrometeoroids entering a gas target

are developed which yield guidelines for the laboratory measurement of

the heat transfer coefficient. Test results are presented for lanthanum

hexaboride (LaB 6 ) microparticles in air, argon, and oxygen targets. The

tests indicate the heat transfer coefficient has a value of approximately

0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/

sec and above. Test results extend to over 100 km/sec. Results are also

given for two types of small particle detectors. A solid state capaci-

tor type detector was tested from 0.61 km/sec to 50 km/sec. An impact

ionization type detector was tested from 1.0 to 150 km/sec using LaB 6
microparticles.

iii
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1.0 INTRODUCTION

It would be desirable to characterize the entry conditions of
microparticles into the earth's atmosphere with sufficient assurance to
identify the various observable phenomena which are associated with such
events. If the particle parameters along a micrometeoroid trail through
the upper atmosphere could be completely specified, then a number of the
meteor observable phenomena could be estimated. Two of the phenomena
associated with micrometeoroid entry are atom deposition and ion deposi-
tion. Definition of these properties for an aribtrary meteoroid, and
hence, for the total meteoroid flux into the earth's atmosphere, would
lead to estimates of number densities as a function of altitude for the
expected meteoroid elemental constituents. Correlation studies with high
altitude measurements of the same elements could be used to either support
or refute such estimates.

Another area of considerable interest to some observers is that
of residual particulates. These too could be predicted with detailed
knowledge of the meteoroid energy balance and ablation characteristics
along its entry path. Estimates of size and number density as a function
of altitude would permit correlation studies with high altitude collection
experiments already performed, or would suggest altitudes at which future
collection experiments should be made.

To be able to define the observable phenomena above, one needs
to be able to specify energy balance in an arbitrary microparticle during
entry. A number of associated parameters are important in this quest, but
two are of particular significance: One quite important parameter is that
of atmospheric density as a function of altitude. This is currently
reasonably well defined from the many rocket and satellite measurements
made in recent years. A second parameter, which requires better defini-
tion, is that of the heat transfer coefficient. Defining this coefficient,
with assurance of its accuracy, is essential to meaningful calculations
to attempt to quantify the observable phenomena of atom deposition, ion
deposition, and especially residual particulates.

One of the major objectives of the present program was to deter-
mine the value of the heat transfer coefficient as it relates to micro-
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particles entering a gaseous medium. The particular interest is in

measuring the heat transfer coefficient which is most likely to prevail

for micrometeoroids entering the upper atmosphere under conditions of

unshielded impact. This is a condition where the mean free path of the

gaseous elements exceeds the body dimensions of the micrometeoroid. If

interest is confined to micron size and below this condition is satisfied

at pressures below about 50 Torr for standard atmospheric constituents.

Initially, the objective was to perform a laboratory measure-

ment of the heat transfer coefficient for ablating micrometeoroids in

unshielded impact following the general experimental procedure used by

Friichtenicht1 and extend this work to higher velocities. This particu-

lar work predicted the effective value of the heat transfer coefficient

to be approximately 0.7 at 24 km/sec and decreasing more or less linearly

with velocity to a value of about 0.4 at 36 km/sec. Since the initial

velocity of micrometeoroids could extend considerably higher than that

investigated, measurement of the value of the coefficient at higher

velocities could be of importance to the field of meteor physics, in

general, and it would relate specifically to the problem of specifying

micrometeoroid observable phenomena.

The method used by Friichtenicht was an optical one whereby a

phototube viewed the ablation path of the particle. It had been estab-

lished by previous experiment that the light emitted by an ablating

particle was proportional to the mass lost by the particle. Therefore,

by observing the ablation path of the particle, the mass of the ablating

particle may be determined at any arbitrary point along the path. Once

this is obtained then the cross-sectional area of the particle is known

and hence, the energy input by collision with the gas molecules.

This technique works fine as long as the light emitted remains

proportional to the mass lost by the particle. However, when high

velocity microparticles are being observed with fixed ablation path

lengths on the order of one meter, this condition may no longer hold.

The reason the assumption no longer holds is that the mean free path of
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the ablated atoms may exceed the experimental chamber dimensions at the

lower gas pressures required. When this occurs thermalization of the

emitted atoms cannot occur before the chamber walls are encountered, and

consequently, the light emitted will no longer be proportional to the

mass lost. The question is at what point does the assumption fail?

In Section 2.0 this question is addressed and equations are

derived to show the validity of the assumption. Ablation path lengths

are found in terms of the parameters of the particle and gas target.

Equations are also derived which relate ablation path length to electric-
ally accelerated microparticles. Equations are also found relating

ablation path length to mean free path of the ablated atoms. These

equations show directly the validity of the foregoing assumption and

experimental guidelines are developed.

Using the guidelines developed, experiments were performed to
measure the heat transfer coefficient from about 30 km/sec to 100 km/sec.

The results of these experiments are presented in Section 3.0 along with

a description of the experimental configuration and procedure.

In Section 4.0 small particle detectors are discussed and the

test results for two types are presented. One is a capacitor type de-

tector and the other utilizes impact ionization. Graphs are presented

to show the sensitivity of each as functions of the impacting particle

radius and velocity.
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2.0 ABLATION PATH LENGTH FOR SIMULATED MICROMETEOROIDS ENTERING

A GAS TARGET

2.1 General Considerations

The objective of the following article is to determine the

trail or path length required to completely vaporize a micrometeoroid

under given entry conditions. The micrometeoroid (particle) vaporization

or ablation characteristics surrounding such conditions have become of

interest, especially since they relate directly to laboratory experiments

in which the heat transfer coefficient of an ablating particle is to be

measured by optically viewing the excitation of the target gas caused by

ablated particle atoms. In such an experiment, the light emitted at any

instant along the particle path is assumed to be proportional to mass

lost by the particle at that point. If the assumption is correct and

can be measured under known conditions, then the heat transfer coefficient

may be determined.1 The particular question to be addressed is at what

point or under what conditions does the original assumption become

invalid. Clearly, if the visible excitation of the target gas along the

particle path is to be at all points proportional to the mass lost, then

all ablated atoms must be completely thermalized at or near the position

at which they were ejected. Complete thermalization may require a large

number of collisions since the kinetic energy of the ablated atoms may

be on the order of 1000 electron volts or more. By determining the re-

quired ablation path length for the particular parameters of interest,
some insight will be gained regarding the validity of the foregoing
assumption.

Equations will be developed in terms of the pertinent para-

meters to answer the above question and these should prove to be of

further use in the practical design of a laboratory experiment to measure

the heat transfer coefficient. Particular emphasis will be made on those

conditions relating to the use of particles obtained by electrostatic

acceleration in a microparticle accelerator. Since several expressions

will involve electrostatic acceleration, it will be most convenient to

use the MKS system of units except where specified otherwise.
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2.2 Calculation of Ablation Path Length

In determining the path length (L) required to produce complete

vaporization of an incident particle, the incremental mass loss relation

is needed as a function of distance along the path. To achieve this,

the increment of energy expended'to vaporize an element of mass is equated

to that available by collision with the gas molecules incident upon the

surface of the particle. The relation is

(dm = yApg v3 dt (1)

where ,

c = total energy required to heat and vaporize a unit of mass,

dm = mass element vaporized,

y = heat transfer coefficient = fraction of available energy

expended on heating and vaporization,

Pg = density of gas along the path,

v = velocity of the particle relative to the gas,

dt = time element during which mass dm is vaporized.

Equation (1) above assumes that the energy expended by radiation is

negligibly small. The relative magnitude may be illustrated by con-

sidering an iron particle of radius 1.0 micron, initial velocity of

20 km/sec or higher, and ablation path length of 1.0 meter, as an example.

The radiated energy for this case can be shown to be less than 1.0 per-

cent of the total energy required for vaporization of the particle.

If consideration is limited to spherical particles, a relation

can be found in terms of the radius (r) and density of the particle

material (p p) since,

m = - r . (2)

Then, dm = 4 p pr 2dr . (3)
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If the deceleration of the particle is small during the time ablation

occurs then the velocity (v) may be considered constant over this inter-

val. (This is a relatively good approximation for high velocity particles

since the kinetic energy exceeds by many times that required for ablation).

Then the relation between the time (t) and distance (x) traveled is

simply

t d x

and dt dx (4)

By substituting Equations (3) and (4) into Equation (1), an incremental

relationship between dr and dx is obtained,

yp v2dx
dr = - 8vp (5)8 5p

p

By integrating the above equation from the initial particle

radius (r ), which corresponds to x = 0, to the final radius (rf), which

corresponds to the point x = L, the following is obtained:

dr = - 8L dx (6)

r 0 0
ro  o

yp v2L
r 0- rf = (7)

By letting rf go to zero, the desired expression for the ablation path

length is obtained, which is

8 (p pr

L = 2 (8)

Equation (8) is valid for all cases where ablation is actually

occurring and the change in particle velocity is small over the path

Slength. For better visualization of the relation between gas density,

path length, and particle velocity, the pressure of the gas target may
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be substituted for gas density if the target gas is specified. Using

air as a sample gas and the known gas density at a pressure of 1.0 micron

of mercury (2.26 x 10- 6 kg/micron-m3 , which is based on a collision cross-

section of 3.1 x 10-19 m2 and 28.8 amu average atomic mass) , the target

pressure Po is obtained from

P = 9 (Po in microns) (9)
2.26 x 10

Substituting Equation (9) into Equation (8), an expression for PoL is

obtained,

PL = p2  (micron-meters) . (10)
Yv

In Figure 2-1 the quantity PoL is plotted against the square

of the particle velocity for several values of the initial radius (ro)
as a running parameter when the ablating particle is iron with an assumed

density (p ) of 7.8 x 103 kg/m3, total heat of vaporization () of

8.3 x 106 J/kg, and heat transfer coefficient (y) of 1.0. It may be
-8seen from the Figure, for example, that for ro = 2 x 10-8 meters and

v2 = 4 x 109 m2/sec 2 a P0L value of approximately 1.0 is required.

Therefore, an experimental arrangement having a 1.0 meter long target

range will require only 1.0 micron of air pressure within to cause com-

plete vaporization of the incident particle.

Figure 2-2 is a similar plot of PoL versus particle velocity

squared for lanthanum hexaboride particles. The density of the particles

is assumed to be 2.61 x 103 kg/m3 . The heat of vaporization2 is taken

to be 3.48 x 106 J/kg and heat transfer coefficient (y) = 1.0. For this

material, a 2.0 x 10-8 meter radius particle with v2 = 4 x 109 m2/sec 2

will undergo complete vaporization with a PoL value of only 0.15 micron-

meters.

2.3 Equations Relating to Electrostatically Accelerated Micro-

particles

For ablation experiments involving the use of microparticles
from an electrostatic accelerator, it may prove useful to have Equation
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(8) rewritten in terms of the parameters of the accelerator. The mass

(m) and velocity (v) may be expressed in terms of the particle charge

(q) and total accelerating voltage N a) by equating the final kinetic

energy of the particle to the potential energy available before under-

going acceleration which is

1 2Smy = qVa  (11)

If consideration is limited to spherical particles, the charge

(q) acquired by the particle is related to the obtainable surface elec-

tric field (E) and permittivity of free space ( o ) by the relation

q = 4Ecor . (12)

For spherical particles, Equation (2) again applies

4 3
; 7ppr o  . (13)

Equation (13) may then be substituted into Equation (8) to obtain the

path length (L) as a function of particle, gas, and accelerator para-
meters

2 2
45p r o

L = 3ypoEVa  (14)

Alternatively, Equation (13) may be substituted into Equation (10) to
obtain

(5.90 x 105 p2r2

PoL = yE a (micron-meters) (15)

Equation (13) was used to generate the graphs of available

particle radii shown in Figures 2-3 and 2-4. The parameters assumed

for the calculations are

CO = 8.85 x 10-12 farad/meter
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E = 1.0 x 109 to 5.0 x 109 volts/meter

Va = 1.50 x 106 volts,

pp= 7.8 x 103 kg/m3 (iron)

p = 2.61 x 103 kg/m3 (lanthanum hexaboride)

For any given particle velocity, the range of expected.radii for either
material may be determined from the cross hatched section and the left

scale. In each case, the approximate detection threshold is indicated

for the surface electric field strength (E) shown. For a given particle

radius and surface field strength, the velocity obtained with lanthanum

hexaboride is higher than that obtained with iron by the square root of

the density ratio

LaB6 = iron/PLaB6/2 iron)

2.4 Mean Free Path Considerations

In certain laboratory experiments it becomes important to

consider the mean free path for ablated atoms in the target gas. In

experiments where complete thermalization of the ablated atoms is required,

the experimental chamber dimensions must be sufficiently large to allow

for several mean free path lengths for ablated atoms before the chamber
walls are encountered. In the discussion to follow a relationship will

be developed to relate the gas target mean free path to ablation path
length and particle and accelerator parameters.

If the molecular diameters of the gas and ablated atoms are
considered approximately the same, the mean free path (x) of an ablated
atom may be related to the molecular number density (n) and collision

cross section (a) by

na = 1 . (16)
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The gas density pg and molecular mass (p) is related to n by

n = (17)

Substituting Equation (17) into Equation (16) gives

S . (18)
ap

An interesting ratio is obtained by dividing the path length

(Equation(14)) by the mean free path (Equation (18)),

L 4ap 2L= 4pr 0  (19)
. 3ypEoEVa

The ratio L/A is seen to be independent of gas density depending only

upon the molecular mass. Figure 2-5 is a plot of L/x versus r2 for both

iron and LaB 6 particles. The resultant shown is obtained using the

following constants:

S= 3.1 x 10-19 m2

= 8.3 x 106 J/kg (iron)

= 3.48 x 106 J/kg (LaB 6)

Pp = 7.8 x 103 kg/m3 (iron),

p = 2.61 x 103 kg/m3 (LaB 6)

y=1.0 ,

p = 4.81 x 10-26 kg (28.8 amu)

Co = 8.85 x 10- 1 2 farads/meter
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E = 5 x 109 volts/meter ,

Va = 1.5 x 106 volts

From Figure 2-5 one can see that particles having the radii shown from an

electrostatic accelerator with the above characteristics will vaporize

completely in a very small number of mean free path lengths.

The L/x ratio as a function of particle velocity is perhaps

of more interest. This may be obtained by noting that Equation (13)

gives v2 as a function of ro which may be rearranged and squared to yield

36 2 E2 V222 2- o a (20)
p r o = 420)

Substitution of the value of p2 r2 of Equation (20) into Equation (19)

yields the desired equation for L/A as a function of particle velocity,

L 48acoEVa
L 4  (21)

ylV

Figure 2-6 illustrates Equation (21) in graphical form for the
same parameters given previously for Figure 2-5. It may be seen that

iron particles will vaporize completely in less than 10 mean free path

lengths above 64 km/sec while the corresponding velocity for LaB 6 particles
is about 52 km/sec. Furthermore, LaB6 particles will vaporize completely

in one mean free path length at 93 km/sec while the same occurs for iron
at 114 km/sec.

2.5 Discussion of Experimental Guidelines Obtained

In the above sections, equations were developed which illustrate
the most probable conditions required for complete ablation of sub-micron

size range particles entering an air target gas. Particular emphasis

was given to particles of iron and lanthanum hexaboride microparticles

obtained by electrostatic acceleration. The equations and graphical
presentations should be beneficial in the implementation of possible

laboratory experiments designed to function in the regimes studied.
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The particular question asked at the beginning, regarding the

conditions under which an optical experiment of the nature described

becomes invalid, may now be answered,in general , from the information

given in Figure 2-6. For nearly complete thermalization of the ablated

atoms near the point at which they were ejected, an ablation path ex-

tending several hundred mean free path lengths is required. This criterion

implies that significant error may occur in such measurements at velocities

near or exeeding about 30 km/sec for the conditions used in preparation

of Figure 2-6.
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3.0 LABORATORY MEASUREMENT OF THE HEAT TRANSFER COEFFICIENT

3.1 Experimental Objective and Procedures

Initially, the experimental objective was to measure the heat

transfer coefficient in the laboratory using high velocity microparticles

in much the same manner as that used by Friichtenicht. Due to advances

in the acceleration and detection of microparticles, it was felt that

the coefficient could be measured to velocities considerably higher than

the 35 - 40 km/sec attained in the previous work. This objective seemed

to be of particular importance since the indication was that the co-

efficient had a sharply decreasing value with velocity and therefore

could have considerable impact to the field of meteor physics.

The analysis of ablation path length in a gas target, presented

in Section 2.0, showed that the optical procedure used previously could

not be extended to velocities above about 30 km/sec due to the long mean

free path lengths which accompany the low gas densities required for

ablation within the desired region. For the velocity range of interest

(30 km/sec to 100 km/sec) an alternative method of measurement would be

required.

The equation derived for ablation path length in Section 2.2

(Equation (8); L = (8p pr )/(pg v )) indicated an alternative if the

path length (L) could be determined. If (L) could be measured then all

other quantities except the coefficient (y) could be either measured

directly in the laboratory or were known constants. Since optically

viewing the particle track has already been shown to be invalid in the

velocity range of interest, there seemed to be no obvious way to measure

an arbitrary path length for ablation. However, if the particle radius

(r ), particle velocity (v), and the gas density (p ) could be adjusted

in such a way as to make (L) fixed in value, then a method is available

to show when the particle mass approaches zero. The technique is to use

the ionization produced by impact of a solid particle as a tag to indi-

cate a non-zero residual mass. Considerable work has been done in the

area of impact ionization all of which has shown the method to be an

extremely sensitive one for detecting the presence of a high velocity

solid mass.3,4 As will be shown later in Section 4.3, impact of a solid
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particle with a tungsten plate at 10 km/sec produces impact ionization

of approximately 104 coulombs/kilogram. The quantity of impact ioniza-

tion produced rises to about 107 coulombs/kilogram at 100 km/sec.

Standard charge detectors used in the TRW Microparticle Accelerator

Facility have an equivalent noise charge on the order of 10-16 coulombs.

Hence, one could expect to detect a residual mass on the order of 10-20

kg at 10 km/sec and 10-23 kg at 100 km/sec.

The approach described above is the one which was used to

obtain the results to be presented later in this section. High velocity

microparticles are admitted to a gas target region where the gas density

may be varied as required to produce complete vaporization of the incident

particle. The presence of residual mass is indicated when an ionization

signal is produced at a time coinciding with impact of the particle with

the detector element. A more detailed description of the experiment

follows in Section 3.2.

3.2 The Experimental Facility

3.2.1 The Micrometeoroid Accelerator and Associated Apparatus

Several different experiments will be described in this section

and Section 4.0 which involve the use of high velocity microparticles.

Since a knowledge of the experimental arrangement is essential for ease

of interpretation of the various data to be presented, a general des-

cription of the apparatus will be given. The discussion to follow is

brief but will hopefully be adequate for the purpose intended. Should

more detailed information be desired, a number of technical papers have

been published regarding technical aspects of several of the subsystems

employed. These will be referenced at appropriate points.

Figure 3-1 is a block diagram of the general experimental

arrangement used for the tests conducted on this program. The descrip-

tion here will be limited to the general accelerator and the supporting

subsystems which are used to detect and select the desired microparticles

from the accelerator. A detailed description of the gas target and

associated equipment will be given in the next subsection.

The particle accelerator is a two million volt Van de Graaff

generator in which the high voltage terminal has been modified to accept
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microparticle charging and injection equipment.5 This equipment is

capable of charging and accelerating a variety of micron and sub-micron

size range materials to high velocities. The final velocity obtained is

dependent upon the size of the particular particle, the material used,

and the accelerating potential. Particle velocities range down to below

one kilometer per second for all materials. The upper velocity limit is,

for practical purposes, dependent upon the electronics used for particle

detection. For carbonyl iron particles and the particle detectors pre-

sently used in this facility, the maximum detectable velocity is about

80 km/sec; for lower density materials, the maximum detectable velocity

is much higher. (For example, data using lanthanum hexaboride (pp = 2.61)

particles are presented later in this report and extends to 150 km/sec).

Particles may be accelerated either continually or in single bursts.

Particles exiting from the accelerator first pass through a

magnet assembly where ions, which may have been produced by the charging

process, are removed. A particle position detector6 then provides a means

for locating the particle "beam" axis in order to align the system. The

particles next pass through two detectors spaced apart a carefully

measured distance from which the transit time over this distance may be

measured. The time separation of the two detector signals is analyzed

by a TRW Systems Model 3212PV2 Time Interval Selector and Dual Proportion-

al Delay Generator.7 The principal function of this unit is to provide

an output pulse which is time coincident with the detection of the

particle in Transit Time Detector No. 2, when the measured transit time

falls within the bounds of some predetermined time interval. This pulse

is used as a trigger pulse and is fed to the No. 1 input of a second

Time Interval Selector and proportional Delay Generator whose internal

functions are identical with those of the first unit. A third transit

time detector spaced a carefully measured distance downstream from the

second transit time detector produces a pulse upon arrival of the charged

particle at that location. This pulse is fed to the No. 2 input of the

second Time Interval Selector. This unit has two principal functions:

First, it provides an output trigger pulse which is time coincident with

the detection of the particle in Transit Time Detector No. 3 when the

measured transit time between detectors No. 2 and No. 3 falls within some
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predetermined time interval. This pulse is used to trigger an oscillo-

scope sweep and is also used to trigger a particle deflector. Normally,

with no signal applied to the input of the particle deflector high voltage

electronics, all particles are deflected by a bias voltage on a pair of

deflector plates and are not allowed to continue downstream toward the

experimental area. A signal from the Time Interval Selector removes the

bias voltage for a time just sufficient to allow the selected particle

to pass. The selected particle continues downstream through a sensitive

particle charge detector8 and into the experimental area. Second, the

Time Interval Selector contains proportional delay generators which produce

two trigger pulses at adjustable multiples of the actual measured transit

time between detectors No. 2 and No. 3. By proper adjustment of the

multipication factors, these pulses can be made to appear when the

selected particle is at two arbitrarily selected points downstream, inde-

pendent of particle velocity. Only one of the two available proportionally

delayed pulses is used in the diagram shown. It is used to start the No.

2 beam of a dual beam oscilloscope and is normally set to occur when the

particle is at position x ,which is just prior to the particle entering

the charge detector which precedes the differential pump section.

From the description above it should be clear that if the two

Time Interval Selectors are set to select identical transit times and the

distance between detectors No. 1 and No. 2 is the same as that between

No. 2 and No. 3, then a double coincident circuit is produced to control

particle transmission through the particle deflector. This particle

selection configuration has very high noise rejection and permits both

of the Time Interval Selectors to work very close to the detector noise

level without producing spurious trigger pulses to the selection and re-

cording equipment.

3.2.2 Experiment Configuration

The last particle charge detector, differential pump section,

and gas target region with associated equipment are depicted schematically

in Figure 3-2. The direction of particle flow is from left to right in

this figure. Particles entering the experimental region from the left

of the figure have been velocity selected by the equipment described in
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Figure 3-1. Normally, a trigger pulse would be provided by the second
Time Interval Selector just as the particle enters the diagram which would

be used to trigger a second beam on a dual beam oscilloscope. This

triggering method permits the transit of the particle through the charge

detector and the gas target chamber to be displayed on a relatively fast
sweep speed if desired.

After passing through the last particle charge detector, the

selected particle traverses a differentially pumped section where the

particle must pass through two 0.100 inch diameter apertures. The two

apertures together with the included pump section effectively isolates

the high vacuum portion of the accelerator from the relatively high

pressure of the gas target region. After passing through the second
aperture, the selected particle is subjected to a region of constant

pressure where heating and ablation occur. The light emitted by the

passage of the particle is observed through a window by the photomultiplier

tube shown at the top center of the figure. The resulting signal is not
used in a quantitative sense for this experiment but does provide a
positive indication that the particle successfully traversed the aperture
in the pump section.

If the pressure in the target region is too low to cause complete
evaporation of the incident particle, then a portion of the still solid

core of the particle will strike the impact ionization target plate at

the right end of the chamber. As indicated, the path length through the

gas target to this point is 63.5 centimeters. Such a particle will pro-

duce an observable impact signal which indicates incomplete evaporation.

Should the incident particle completely evaporate just prior to impact

then only single atoms will strike the plate and will produce no observable

output signal. (In some cases, especially at high velocities, a cloud

of ions will arrive at the target plate with sufficient energy to pass

through the biased grid assembly and will produce a signal. As will be

seen later in some of the oscilloscope photographs of the particle transit,

the ion signal is spread out in time and is easily separated from the

abrupt stop function caused by solid particle impact).
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The pressure in the target region is maintained by a precision

leak valve which permits adjusting the input flow rate from the gas supply

to balance that lost through the differential pump aperture. The dimen-

sions of the target region are large and no significant pressure drop

occurs across the length of the chamber due to this small flow. The valve

and diffusion pump to the right of the figure permit the chamber pressure

to be reduced to below 10-5 Torr and provides the hard vacuum conditions

needed for the impact ionization measurements which will be shown in

Section 4.3. The pressure in the chamber was monitored by an MKS Baratron

which was referenced to a hard vacuum of approximately 10-6 Torr.

The impact ionization detector consisted of a tungsten target

plate and the two grids shown in Figure 3-2. The outermost grid was at

ground potential to prevent electrical fields from the biased internal

elements from extending beyond its mounting location. The internal grid

was biased at -150 volts to prevent electrons formed in the ablation

process from reaching the target plate. The target plate was biased to

+150 volts. This bias voltage prevents ions of less than 150 volts from

reaching the detector plate and also combines with the -150 volts on the

inner grid to form a 300 volt drop across the 0.6 centimeter spacing.

3.3 Experimental Results

3.3.1 Discussion of Recorded Data

Lanthanum hexaboride particles were selected for use in the

heat transfer measurements solely because of low density and ease of

operation in the electrostatic accelerator. The density of LaB 6
(2.61 gms/cm 3 ) permits detection of particles up to 150 km/sec which

covers quite adequately the current region of interest. Iron, on the

other hand, may have been of more interest as a material but the data

would have extended to only 80 km/sec due to the higher density. The

LaB6 particles were obtained from Cerac, Inc., Butler, Wisconsin. The

fabrication process is proprietary but is believed to be a form of

grinding since the particles are irregular in shape. Spherical particles

were desired but were unavailable.
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Figure 3-3 contains four oscilloscope photographs which are

representative of typical data acquired at approximately 20 km/sec and

50 km/sec. Figure 3-3a illustrates a 5.18 km/sec particle having a mass

of 2.08 x 10-18 kg traversing the chamber with 1.0 x 10 -3 Torr argon

pressure. The upper trace consists of two rectangular pulses which are

the signals from the first and second particle charge detectors. The

time separation of these two pulses is used to measure particle velocity

while the amplitude of the second pulse is used to measure particle

charge. The transit time and particle charge together with the accel-

erator voltage are sufficient to calculate particle mass from the con-

servation of energy equation (1/2 my2 = qVa; Equation (11)). After the

second particle charge detector signal the upper trace is seen to increase

positively which represents the integrated light collected by the photo-

multiplier tube (PMT) observing the particle track. Recall that this

signal is used as a positive indication that the particle has entered

the gas target region. Finally, a negative going pulse indicates

arrival of charge at the impact ionization detector. The initial part

of the signal is seen to increase slowly, in a negative direction,
caused by the arrival of ions formed in the gas by impact and which

have velocities higher than that of the particle. Shortly after the
signal begins increasing negatively, an abrupt step occurs of very short
risetime. This portion of the signal is produced by impact of a small

amount of residual mass which was not evaporated. The remainder of the

signal is ion current from ions which straggle along behind the particle.

The lower trace in the photograph starts just prior to the

particle reaching the second particle charge detector. It then displays

the second particle charge detector signal, the photomultiplier signal,

and the impact ionization signal. The last two are at higher sensitivity

than that used on the upper trace.

Figure 3-3b shows the signals from a particle with v = 51.3
km/sec, m = 1.30 x 10- 1 8 kg, and argon gas pressure (P ) = 1.5 x 10- 3 Torr.
This particular particle has undergone complete evaporation as evidenced
by the complete absence of the sharp step in the signal which would be

produced by particle impact on the target plate. The relatively wide
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PARTICLE VELOCITY: 51.8 km/sec PARTICLE VELOCITY: 51.3 km/sec
MASS: 2.08 x 10-18 kg MASS: 1.30 x 10-18 kg
TARGET PRESSURE: 1.0 x 10- 3 Torr TARGET PRESSURE: 1.5 x 10- 3 Torr

(a) (b)

PARTICLE VELOCITY: 19.4 km/sec PARTICLE VELOCITY: 21.4 km/sec
MASS: 7.21 x 10 1 7 kg MASS: 2.20 x 10 1 7 kg
TARGET PRESSURE: 3.0 x 10-2 Torr TARGET PRESSURE: 3.0 x 10-2 Torr

(c) (d)

Figure 3-3. Oscilloscope Photographs Showing Typical Signal Response

at 20 km/sec and 50 km/sec.
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ion signal indicates the spread in arrival time of the ions formed by

the ablating particle.

Figure 3-3c indicates a lower velocity particle with v = 19.4

km/sec, m = 7.21 x 10-17 kg, Po = 3 x 10-2 Torr. Here the mean free path

in the gas is much shorter. The result is no observable ion current

signal. One sees only the large amplitude negative spike caused by

impact of the particle on the target.

Figure 3-3d shows a particle under almost identical conditions

as those for Figure 3-3c except about 1/3 the particle mass (v = 21.4
km/sec, m = 2.20 x 10-17 kg, Po = 3.0 x 10-2 Torr). This particle, for

practical purposes, has evaporated within the prescribed path length.

The PMT signal is present indicating ablation in the chamber and the

ionization detector has produced a barely discernable step. The very

small ionization detector signal shows that only a fraction of a percent
of the original mass remains intact at the target plate. Figures 3-3c

and 3-3d are also in an argon gas target.

Figure 3-4 represents typical data obtained at slightly higher

velocity. The impact shown in Figure 3-4a was obtained with the target

chamber under relatively high vacuum (v = 91.5 km/sec, m = 1.99 x 10-1 9 kg,
Po < 1.0 x 10-5 Torr). No PMT signal is observable for this event. The

only signal present is the sharp negative transition of the impact ioniza-
tion produced. The ionization detector for this event has a charge

sensitivity of 2.85 x 10-13 coulombs per division. The output signal is

differentiated with a 4.5 x 10-8 second time constant.

The photograph shown in Figure 3-4b represents an event where

v = 82.1 km/sec, m = 5.26 x 10-19 kg, Po = 1.5 x 10-3 Torr of argon.
Here the PMT signal is observable but quite weak as is typical of the
lower gas pressures. This particular particle was completely evaporated

prior to reaching the impact ionization plate since no sharp transition
for impact ionization is observed. The charge sensitivity in this photo-
graph is 5.69 x 10-14 coulombs per division which is five times more
sensitive than that for the impact shown in Figure 3-4a.
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PARTICLE VELOCITY: 91.5 km/sec PARTICLE VELOCITY: 82.1 km/sec

MASS: 1.99 x 10-19 kg MASS: 5.26 x 10-19 kg

TARGET PRESSURE: Vacuum TARGET PRESSURE: 1.5 x 10-3 Torr

(a) (b)

PARTICLE VELOCITY: 62.6 km/sec PARTICLE VELOCITY: 60.4 km/sec

MASS: 1.25 x 10-18 kg MASS: 9.34 x l - 1 9 kg

TARGET PRESSURE: 3.0 x 10-4 Torr TARGET PRESSURE: 1.0 x 10-3 Torr

(c) (d)

Figure 3-4. Oscilloscope Photographs Showing Typical Signal Response

at 60 km/sec, 82 km/sec and 91 km/sec.
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Figures 3-4c and 3-4d are for comparative purposes to illustrate

a particle which failed to evaporate before reaching the target plate

(3-4c) and one which did evaporate prior to arrival at the target plate

(3-4d). Conditions are quite similar for these two cases: In (c);
-18 -4v = 62.6 km/sec, m = 1.25 x 10 kg, P = 3.0 x 10 Torr of argon. In

-19 0(d); v = 60.4 km/sec, m = 9.34 x 10 kg, P = 1.0 x 107 3 Torr of argon.

The lower gas pressure for the case in 3-4c was clearly insufficient to

evaporate the particle as evidenced by the relatively large negative

transition for impact ionization.

The oscilloscope photographs in Figure 3-5a, b, c, and d are

for events at still higher velocity, again for comparative purposes. In

all cases, the PMT signal is weak but observable. In (a), the event is

for a particle with v = 108 km/sec, m = 2.32 x 10-19 kg and with Po =
-41.5 x 10-4 Torr of argon. As may be seen from the negative transition

indicating impact ionization, this particle did not completely evaporate

before hitting the target plate. The event shown in (b) illustrates

complete evaporation for v = 116 km/sec, m = 1.66 x 10- 1 9 kg, and P

2.5 x 10- 4 Torr of argon. In (c), v = 87.4 km/sec, m = 1.76 x 10-  kg,

Po = 3.0 x 10-4 Torr of argon, incomplete evaporation is evidenced. In

(d), v = 94.5 km/sec, m = 2.28 x 10- 19 kg, Po = 3.0 x 10- 4 Torr of argon,

complete evaporation has occurred.

As may be seen from these photographs, it becomes increasingly

more difficult to distinguish between complete and incomplete evaporation

as the velocity increases. This difficulty arises because of the reduced

time spreading of the ion group at the higher velocity. Since the chamber

pressure is reduced as the velocity increases, in order to maintain the

ablation path length (L) equal to a constant, there are fewer collisions

between evaporated particle atoms and gas molecules. This results in

less spreading in the ion group velocity and consequently a shorter rise-

time when the group impinges on the target plate. Increased bias voltage

on the impact ionization plate would eliminate this problem if it could

be made sufficiently high without initiating electrical breakdown in the

poor vacuum conditions existing in the gas target chamber. To eliminate

the ion current to the target the bias voltage would have to be capable

of stopping the highest energy ion from the particle or gas. At 100 km/sec,
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PARTICLE VELOCITY: 108 km/sec PARTICLE VELOCITY: 116 km/sec
MASS: 2.32 x 10-19 kg MASS: 1.66 x 10 - 1 9 kg
TARGET PRESSURE: 1.5 x 10 - 4 Torr TARGET PRESSURE: 2.5 x 10- Torr

(a) (b)

PARTICLE VELOCITY: 87.4 km/sec PARTICLE VELOCITY: 94.5 km/sec
MASS: 1.76 x 10 - 1 9 kg MASS: 2.28 x 10- 19 kg
TARGET PRESSURE: 3.0 x 10 Torr TARGET PRESSURE: 3.0 x 10- Torr

(c) (d)

Figure 3-5. Oscilloscope Photographs Showing Typical Signal Response

at 87 km/sec, 94 km/sec, 108 km/sec, and 116 km/sec.
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the lanthanum atoms have approximately 7,000 electron volts of energy

while the LaB 6 molecule would have about 10,000 electron volts. For the

configuration used in the experiments described herein, 10 kilovolts of

bias voltage was impractical.

3.3.2 Graphical Presentation of Heat Transfer Data

During the course of the program, data were obtained using LaB 6
particles in combination with target gases of air, argon and oxygen. Even

though there is little to distinguish the three cases, each will be pre-

sented separately for clarity.

Due to the limitations in the technique used in obtaining the

experimental data, it is not possible to make a direct calculation of

the heat transfer coefficient. As will be recalled, the experiment can

only tell us if the particle did or did not evaporate completely within

the length of the chosen ablation path length (L). Ideally, of course,

it would have been desirable to know the path length required for each

individual particle. In the absence of a direct measurement of the length

(L) required, Equation (8) has been utilized which is repeated here.

8p r0
L = (8)

YP gV

By rearranging the above, an expression is obtained for the

initial particle radius (r ) normalized to the gas density (p ) as a

function of v2 , which is

ro- - v2. (variation of (8))
g p

Since ro/Pg and v2 are measurable quantities and the path length (L),
particle density (p p), and total heat of ablation (t) are constants,
then ro/P can be plotted against v2 with y(L/8pp ) as a running para-

meter.

Figure 3-6 is a graph of the above with values for the heat
transfer coefficient (y) of 1.0, 0.8, 0.5 and 0.2. Superimposed on

this graph is the experimental data obtained with an air target gas.
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Figure 3-6. Initial Particle Radius (r )/Gas Target Density (p ) vs

Particle Velocity Squared for an Air Target Gas.
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For each event recorded, the value of r /P and the particle velocity (v)

were computed which defines a point upon the graph. The impact ionization

detector then provides a flag to identify whether that particular particle

was completely vaporized (an open circle on the graph) or had some resi-

dual mass remaining (a closed circle on the graph). Intuitively then, the

plot should show no events where complete evaporation occurred above the

line for y = 1.0 since this would require more energy input than was

available from collision with the gas. This is seen to be the case

except for three points, two of which lie sufficiently close to be within

reasonable experimental error. The third point is probably a result of

a particle collision with the bias screens in front of the impact ioniza-

tion plate since this would also result in a zero impact ionization signal.

These data in Figure 3-6 indicate that y has a probable value

of 0.9 or greater at v2 = 109 m2 /sec2 and approaches unity at about

v2 = 2.5 x 109 . At v2 = 1010 m2/sec 2 , the value of y appears to decline

toward 0.8. This is believed to be caused by a systematic experimental

error; namely, a result of charge loss on the particles before they arrive

at the particle charge detector. This facility has witnessed charge loss

on high velocity particles on several occasions before. It is known to

be more severe with increasing particle velocity and with increasing

pressure in the particle accelerator tube and in the drift space where

the transit time detectors are located. Every effort was made to maintain
the highest possible vacuum for the experiment but the data indicate a

problem still exists. The charge loss is most likely due to sputtering

caused by the impacting gas molecules or by charge exchange with molecules
which are adsorbed for a brief period before they are expelled from the
surface. The measurement of particle charge less than that on the particle

at the time acceleration took place will result in the calculation of a

smaller particle radius. The effect of this is to move the position of

a plotted point downward on the graph in Figure 3-6.

Figure 3-7 is a similar plot of the data acquired using argon

gas in the target chamber. Here we have four data points lying well above

the line y = 1.0 which show complete evaporation. Again, these points

are attributed to collision with the target bias screens and should be
rejected. These data also indicate the value of y to be 0.9 or greater
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at v2 = 109 m2/sec2 and approaches unity at v2 = 2.5 to 3 x 109 m2/sec 2

Again the closed circles dropping to y = 0.5 above v2 = 1010 m2/sec 2 is

attributed to charge loss on the particle. At the lower velocity end,

y = 0.8 at v2 = 5 x 108 m2 /sec 2 dropping to y - 0.5 at v2 = 108 m2 /sec2

It should be noted that Equation (8) used to plot the running parameter

(y) was derived by assuming that the particle velocity remains essentially

constant over the ablation path length. This is true to a very good

approximation at the higher velocities but this assumption will begin to

introduce errors as the incident particle velocity is reduced. A more

rigorous derivation should be performed in which the drag equation is

introduced to eliminate this source of error.

Figure 3-8 shows the data obtained using an oxygen target gas.

These data are quite similar to the two cases previously described and

should require no further comments.
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4.0 SMALL PARTICLE DETECTORS

4.1 Discussion

The detection of small particles in space has been of consider-

able interest for many years. As a result of this interest a variety of
small particle detectors have been conceived and developed and have pro-

vided much desired information regarding micrometeoroid flux. Recently,

Hemenway 9 has suggested that sub-micron particles may be emitted from

the sun. This proposal comes as a result of small particle collection

experiments in the upper atmosphere where he reports finding particles

of heavy atomic weight (Hf, Ta, La, W, Tm) which are difficult to

attribute to other origins. He postulates that these heavy element, high

melting point substances could be condensed in the solar atmosphere and

then expelled presumably by radiation pressure. This hypothesis is

difficult to refute or support in a quantitative sense due to the complex-

ity of describing the formation mechanism. However, the theory could be
put to a test by flying a sunward looking small particle detector with

sufficient sensitivity to detect particles with dimensions of the order

of 0.1 micron or less.

Two such detector types appear to have favorable characteristics

for this function: The first is a solid state capacitor-type detector.

This detector is formed using semiconductor metal-oxide-silicon (MOS)

technology. Typically, a layer of silicon dioxide is grown by thermal

diffusion on a low resistivity silicon substrate to form the dielectric
of the capacitor. The silicon substrate is then one plate of the capacitor

and a thin layer of aluminum is deposited over the silicon dioxide to form
the second plate of the capacitor. When properly biased electrically, a

microparticle which penetrates the thin aluminum layer and the silicon

dioxide dielectric will initiate an electrical breakdown thereby dis-
charging the capacitor. This type of detector is considerably more rugged
than other types of thin film capacitors. The second type of detector

utilizes impact ionization to produce the detected signal. In its

simplest form it consists of a target plate, typically of high density
high melting point material, and a biasable grid over the surface which is
spaced apart some distance from it.
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Both detectors mentioned above are rugged by nature and appear

to offer the sensitivity which may be required. The impact ionization

type detector appears to offer the greatest sensitivity and reliability.

4.2 Impact Tests With Capacitor Type Detector

The capacitor type detector discussed in Section 4.1 above has

been extensively tested and the results reported.10  However, it was

felt that the tests might be extended to higher velocities than previously

reported by using the TRW Micrometeoroid Accelerator. Pursuing this ob-

jective a sample of the two inch diameter detector reported in reference
0 0

10 with a 4000 A silicon dioxide layer and with a 1500 A aluminum film

was obtained.11 The front aluminum film was grounded and the silicon

substrate was biased to -50 volts through a 1.0 megohm resistor. The

signal from the capacitor active element was buffered by an amplifier

before being applied to the oscilloscope input.

Figure 4-1 shows four oscilloscope photographs which are

typical of all the breakdown signals recorded. The event shown in (a)

is the lowest velocity particle impact recorded, v = 0.614 km/sec,

m = 4.89 x 10-13 kg. The lower trace is the capacitor signal which can

be seen as a positive step toward the right side of the picture. The

upper trace contains the two particle detector signals from which particle

charge and velocity are obtained, and also the capacitor signal. The

capacitor signal appears to be noisy on the upper trace. The large

signal which goes off screen and which is superimposed on the capacitor

signal is actually caused by charge, liberated by the electrical break-

down, traveling back upstream and collected on the last particle charge

detector.

Figure 4-1b shows a particle impact with v = 6.76 km/sec,
m = 6.22 x 10-16 kg. Figure 4-1c is for a particle with v = 17.1 km/sec,

m = 5.60 x 10-17 kg. Figure 4-ld is the highest recorded event which

produced a breakdown signal (v = 33.9 km/sec, m = 7.90 x 10- 1 8 kg). In

all cases, for the above photographs and for all other breakdown events,
the output signal from the amplifier showed amplifier saturation which

means that the input signal from the capacitor exceeded 1.0 volts.
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PARTICLE VELOCITY: 0.614 km/sec PARTICLE VELOCITY: 6.76 km/sec
MASS: 4.89 x 10-13 kg MASS: 6.22 x 10- 16 kg

(a) (b)

PARTICLE VELOCITY: 17.1 km/sec PARTICLE VELOCITY: 33.9 km/sec
MASS: 5.60 x 10-17 kg MASS: 7.90 x 10-18 kg

(c) (d)

Figure 4-1. Oscilloscope Photographs Showing Signal Response From the
Capacitor Type Detector.
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Figure 4-2 is a plot of all impact events recorded with this

detector. The particle radius is plotted as a function of particle

impact velocity (normal incidence). A discharge signal for that event

is identified by a closed circle. A no-signal event is recorded by an

open circle. The slope of the curve generated by the many events recorded

has no significance except to indicate the particle radius available from

the accelerator as a function of velocity. The significant point is that

this detector responds to the particle radius shown at velocities to al-

most 30 km/sec. This velocity is almost three times that previously

reported in the reference cited. Note that the radius at 25 km/sec,

which produced a number of breakdown signals, is 1.0 x 10- 7 meters.

4.3 Impact Tests With Impact Ionization Type Detector

The impact ionization test results presented in this section

were obtained using the detector described for the heat transfer measure-

ments. As will be recalled, the target plate was tungsten. The net bias

voltage for these tests was 300 volts.

Figure 4-3 shows typical ionization signals produced across

the velocity range tested. Figure 4-3a shows the impact of a particle

with v = 4.26 km/sec, m = 2.42 x 10- 1 5 kg. The total collected charge

was 5.35 x 10-13 coulombs. The upper trace displays the two particle

detector signals and the impact ionization signal. The lower trace is

at a faster sweep speed (10 microseconds/division) and shows only the

impact ionization signal. Note here that the signal produced has two

components in the risetime. This is typical of all events below about

5 km/sec and is attributed to the contriubtion of spray particles which

go out and hit the grid thereby producing charge which is then collected

on the target plate.

In (b) an event is shown for a particle with v = 5.86 km/sec
and m = 6.98 x 10-16 kg. The total collected charge was 7.00 x 10-13

coulombs. Note that the two step risetime phenomena is no longer present.

In (c) the impact ionization is shown for a particle impact with v =

86.2 km/sec, m = 2.83 x 10-19 kg. The total collected charge was 1.75 x

10-12 coulombs. Note that although the particle mass is almost three

orders of magnitude less than in (b) the total charge is twice as large.
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CAPACITOR TYPE DETECTOR o0 0
0.4 MICRON THICK SILICON DIOXIDE o

DIELECTRIC WITH 0.15 MICRON THICK 0

ALUMINUM METALLIZATION FOR
IMPACT PLATE

- LANTHANUM HEXABORIDE PARTICLES
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PARTICLE IMPACT VELOCITY (m/sec)

Figure 4-2. Particle Radius vs Particle Velocity Showing Response of

Capacitor Type Detector.
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PARTICLE VELOCITY: 4.26 km/sec PARTICLE VELOCITY: 5.86 km/sec
MASS: 2.42 x 10-15 kg MASS: 6.98 x 10-16 kg

COLLECTED CHARGE: 5.35 x 10- 1 3 Coul COLLECTED CHARGE: 7.00 x 10 - 1 3 Coul

(a) (b)

- -
PARTICLE VELOCITY: 86.2 km/sec PARTICLE VELOCITY: 129 km/sec
MASS: 2.83 x 10 - 19 kg MASS: 7.47 x 10- 2 0 kg
COLLECTED CHARGE: 1.75 x 10-12 Coul COLLECTED CHARGE: 1.16 x 10-12 Coul

(c) (d)

Figure 4-3. Oscilloscope Photographs Showing Signal Response From the

Impact Ionization Detector.
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The event shown in (d) is for a particle with v = 129 km/sec, m = 7.47 x

10-20 kg. The total collected charged was 1.16 x 10-12 coulombs. The

risetime of the signal is limited by the amplifier used at about 200

nanoseconds.

The data obtained from all impact ionization tests are shown

in Figure 4-4. Here the total collected chrage per unit particle mass

is plotted against particle impact velocity. The data obtained from this

series of tests extends the velocity range by almost a factor of two above

that previously tested.4 The higher velocity tested has shown a two

component curve for impact ionization not previously observed. Below

10 km/sec the normalized charge (Q c/mp ) can be well represented by the
4.40

function, Qc/m = 0.2 v Above 10 km/sec it may be represented by
3.31

a second function, Qc/mp = 1.2 v

The graph displayed in Figure 4-4 shows clearly the extreme

sensitivity of the impact ionization type detector to high velocity

microparticles. At 100 km/sec the ionization produced is 5 x 106 coulombs

per kilogram. Assuming a reasonable detector noise level of 5 x 10-15

coulombs, then the detector should respond to a mass on the order of 10-21

kg at 100 km/sec.
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Figure 4-4. Total Collected Charge Per Unit Particle Mass (Q c/mp) vs

Particle Impact Velocity.
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5.0 SUMMARY

The tests conducted to measure the heat transfer coefficient

(y) for particles in unshielded impact (free molecule flow) have indi-
cated the value of y to be approximately 0.9 or greater at 30 km/sec and
approaches unity at 50 km/sec. Although the data show rolloff over 100
km/sec, this is believed to be systematic experimental error and should
be disregarded. The data as plotted show y to decrease in value to
about 0.5 at v = 15 km/sec. However, the equations used for the deter-
mination of y assume constant particle velocity over the ablation path
length. This assumption introduces a source of error at lower velocities.
The data should therefore be corrected by introducing the drag equation
into the derivation of the equation to determine y for values of y below
30 km/sec.

The values of y found above are believed to be valid ones,
especially in the high velocity range of 30-70 km/sec. Although these
values seem to provide the remaining essential ingredient for initial
estimates for some of the micrometeoroid observables, particularly
residual particulates, time did not permit these estimates to be made
under the present program.

Sputtering is still an area not too well defined in relation to
high velocity microparticles, although a survey of published data indi-
cates the sputtering coefficient is sufficiently low, for the molecular
energies involved, to be of little importance to those particles which
undergo ablation in the upper atmosphere. On the other hand, for those
micrometeoroids which are sufficiently small not to reach ablation
temperatures, then sputtering can be of primary significance in deter-
mining atom and ion deposition.

The impact tests on the capacitor type detector showed the
unit to have exceptionally good sensitivity for impact of sub-micron
particles. The velocity tested extended to over 30 km/sec and served to
show that the device should not be used to detect particles with radii
below 10-7 meters. However, when the relatively thick dielectric (4000 A)0

and aluminum layers (1500 A) are considered it would appear that the
detector can be made adequately sensitive to particles well below 10-7

meters radius if these two layers are made thinner.
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The tests with the impact ionization type detector extended to

a velocity of 150 km/sec. The slope of the normalized ionization curve

was found to change slope at about 10 km/sec for the particle and target
material tested. The extreme sensitivity of this type of detector would
appear to make it a prime candidate for a mission to test Hemenway's
hypothesis that particles are emitted from the sun. As stated previously,
Hemenway's collection experiments have indicated the presence of heavy
element, high melting point substances in the upper atmosphere which are
suggested to have a solar origin. Although at present theory appears
inadequate to quantify a formation mechanism and resulting rates of
emission, a sunward-looking detector of the impact ionization type could
detect such particles to extremely small dimensions should they exist.
The incorporation of an ion time-of-flight spectrometer to mass analyze

the charge produced would simultaneously identify the chemical composition
of the impacting particle. Therefore, if the particles detected are
heavy element, high melting point substances as suggested, they could be
differentiated with ease from those which are of ordinary meteoric origin.
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