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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space vehicles.
Accordingly, criteria have been developed in the following areas of technology:

Environment
Structures

Guidance and Control
Chemical Propulsion

Individual components of this work are issued as separate monographs as soon as they are
completed. A list of all monographs published in this series can be found on the last pages of
this monograph.

These monographs are to be regarded as guides to design and not as NASA requirements,
except as may be specified in formal project specifications. It is expected, however, that the
monographs will be used to develop requirements for specific projects and be cited as the
applicable documents in mission studies, or in contracts for the design and development of
space vehicle systems.

This monograph was prepared for NASA under the cognizance of the NASA Goddard Space
Flight Center with Scott A. Mills as program coordinator. Principal authors were Richard B.
Noll of Aerospace Systems, Inc. and Dr. Michael B. McElroy of Harvard University. The
Technical Director was Mr. John Zvara of Aerospace Systems, Inc. This monograph is based
on a draft manuscript prepared by Y. S. Lou of Northrop Services, Inc. His efforts which are
included in part are gratefully acknowledged.

Comments concerning the technical content of these monographs will be welcomed by the

National Aeronautics and Space Administration, Goddard Space Flight Center, Systems
Reliability Directorate, Greenbelt, Maryland 20771,

December 1974
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MODELS OF MARS'
ATMOSPHERE [1974]

1. INTRODUCTION

The purpose of this monograph is to provide atmospheric models for support of design and
mission planning of space vehicles that are to orbit the planet Mars, enter its atmosphere, or
land on the surface. The atmosphere affects the orbital lifetime, the flight dynamics of
the vehicle along its flight path, and the performance of the vehicle and its major subsys-
tems. For design of experiments, knowledge of the Martian atmosphere is required to select
instrumentation and establish the range of measurements.

Quantitative data for the Martian atmosphere have been obtained from Earth-based observa-
tions and from spacecraft that have orbited Mars or passed within several planetary radii.
These data have been used in conjunction with existing theories of planetary atmospheres to
predict other characteristics of the Martian atmosphere as discussed in reference 1. Because
of limited observational data, it was necessary to extrapolate within the limits of applicable
theory to establish reasonably complete model atmospheres. Earth-based observations have
generally provided information on the composition, temperature, and optical properties of
Mars with rather coarse spatial resolution, whereas spacecraft measurements have yielded
data on composition, temperature, pressure, density, and atmospheric structure with moder-
ately good spatial resolution.

The models herein provide the temperature, pressure, and density profiles required to per-
form basic aerodynamic analyses. The profiles are supplemented by computed values of
viscosity, specific heat, and speed of sound. These ambient values and the calculated aerody-
namic forces influence flight dynamics and space vehicle design; i.e., configuration, size,
strength, and materials. Other characteristics are inferred from the measured data that also
affect design. For example, electron densities of the ionosphere and the plasma character-
istics in the region of the solar wind may dictate requirements for electromagnetic shielding.
Alsv, opacity of the atmosphere caused by dust storms could constrain the design of landed
solar power systems and may adversely affect performance of experiments.

This monograph provides a set of engineering models for the Martian atmosphere on the
basis of theory and measured data available in July 1974, It replaces NASA SP-8010 of May
1968 (ref. 2). Data from US and USSR space exploration have narrowed considerably the
range of parameters in the lower atmosphere in comparison to the 1968 monograph. The
four model atmospheres developed herein include a model for a dusty atmosphere, a
nominal model for a clear atmosphere, and two other models that encompass reasonable
extremes of exospheric temperature.

Design cniteria monographs on other planets, Earth environments, and space technology are
listed in the last pages of this monograph.
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2. STATE OF THE ART

The need for information on the Martian atmosphere that could be used to develop atmo-
spheric engineering models for spacecraft design purposes was recognized in the middie
1960s (e.g., refs. 3, 4, and 5). Continuous observation of Mars from Earth, particularly by
radio and radar astronomy, and the successful flyby mission of Mariner 4 in 1965 provided
new information which was incorporated into improved models such as presented in
reference 2. Since the publication of reference 2, knowledge of the Martian atmosphere and
of the planet itself has undergone many changes. The most significant information came
from the M:riner 6, 7, and 9 experiments. The revised Mars engineering models for the

Viking Project (ref. 6) were developed on the basis of new findings from Mariner 6 and 7
missions.

Although the Mariner 9 mission did not provide in-situ measurements of the Martian atmo-
sphere such as obtained from Venus spacecraft missions (ref. 7), the spacecraft was placed in
orbit around Mars on November 14, 1971 and provided a remarkably successful record of
planetary conditions over a moderately long time base. Multispectral sensing devices were
used to observe Mars on a global basis and permitted a determination of atmospheric
characteristics as a function of spatial position. local time, and season. As a result, it is now
possible to reduce significantly the uncertainties inherent in spatially- and time-averaged
models.

2.1 Atmosphere

For discussion of engineering models, the Martian atmosphere is divided into lower and
upper regions as shown in figure 1. Reference 8 provides an overview of the impact of
Mariner 9 on the knowledge of Mars as well as a useful reference chart. Reference 9 gives a
more detailed account. The following sections briefly describe the current status of informa-
tion for the parameters needed to construct model atmospheres.

2.1.) Lower Atmosphere
2,1.1.1 Surface Pressure

Modern studies of the Martian atmospheric pressure began in 1963 with the spectroscopic
study of Kaplan, Munch, and Spinrad (ref. 10). Subsequent spectroscopic results were re-
ported in references 11 through 15. Of particular interest is the work by Grandjean and
Goody (ref. 15) who used the observation of carbon dioxide (CQ; ) to determine the rela-
tionship between the surface pressure and the total volume fraction of CQ,. The full
significance of this result was not appreciated because of the then prevailing theories that
favored high values for atmospheric pressure. Goody (ref. 16) noted that the assumption of
a pure CO, atmosphere led to a lower limit for the surface pressure of 13 mb. Another
analysis made by Belton and Hunten (ref. 12) gave 5.0 + 0.5 mb. Low pressure was also
derived by Musman (ref. 17) and Evans (ref. 18) from Martian ultraviolet albedos. Musman
used an albedo for the total dis~ obtained photoelectrically by de Vaucouleurs (ref, 19).
With assumptions of no absorbing atmospheric constituents, no particles in the atmosphere
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Figure 1.—Atmospheric Regions of Mars.

that might contribute to the albedo. and a surface reflectivity of zero, Musman calculated a
surface pressure of 27 mb for a pure N, atmosphere and 19 mb for a pure CO; atmosphere.
On the other hand, Evans found surface pressures of 6 £ 3 mb for pure CO2,9 £ 4 mb for
pure nitrogen (N3), and 12 £ 6 mb for pure argon (A) atmospheres on the basis of an
ultraviolet spectrum from 2400 to 3600 A that was obtained by an Aerobee rocket.

Through a careful examination of spectroscopic measurements, Wood (ref. 20) concluded
that the values of the surface pressure on Mars fall between § and 7 mb except for two
measurements which yielded pressures of 4.4 mb and 8.0 mb. Wood derived a mean Martian
surface pressure of 5.3 mb on the basis of spectroscopic measurements of CQ; abundance.

Additional information on the atmospheric pressure was obtained from Mariner 4, 6, and 7
occultation experiments in which changes in the frequency, phase, and amplitude of the
S-band radio signal during passage through the atmosphere of Mars, were observed immedi-
ately before and after occultation by the planet. Analysis of these effects yielded estimates
of the refractivity and density of the atmosphere near the surface, the scale height in the
atmosphere, and the electron density profile of the ionosphere. Frowm these data, sutface
pressure was estimated in the 4.2 to 8.0 mb range (refs. 21 through 26).

The most recent results for surface pressure were derived from both ground-based observa-
tions and Mariner 9 experiments. Absorption of CO; in the Martian atmosphere (from
which the partial pressure of CO; can be inferred) was measured from Earth by means of a
multislit spectrometer in 1969 (ref. 27) and in 1971 (ref. 28). These measurements, which
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provided moderate spatial resolution, covered about three-fourths of the circumference
from 40°N to 20°S latitude in 1969 and almost all of the surface from 40°N to 60°S ir
1971. The results of these measurements were in general agreement,

An occultation experiment similar to those of Mariner 4, 6, and 7 was conducted on Mariner
9 (ref. 29*. The results were similar to the previous occultation results even though the
measurements were made at a time when the entire planet was shrouded by a dust storm.
This storm obscured the surface at wavelengths ranging from the ultraviolet to the infrared
(ref. 30). Unlike earlier Mariners, Mariner 9 was placed in orbit around Mars so it provided
occultation measurements over various regions. Measurements made in the equatornial re-
gions resulted in an average surface pressure of about 4.95 mb withovt taking into account
minimum Naximum measurements. The minimum surface pressure of approximately
)8 mb was méasured in the Phoenicis Lacus region of the Tharsis ridge area as well as i the
Claritas area at ap\pmximatcly 34.5°S latitude. The highest surface pressure of 8.9 mb was
measured at the bottom ot the Hellas depression,

Surizce pressures at about 65°N lctitude were considerabiy higher than those in the

equatoriai region. Pressures ranged from about 7.2 to 10.3 mb with a mean value of

approximately 89 mb. The pressures derived from Mariner 9 occultation data are in
agreement with Eartiv-based spectroscopic results of reference 28.

The difference in surface pressures shown by the spectroscopic and occultation results
correlates with the topography of Mar«.* Radar observations and spacecraft occultation
expenmtents prior to 1969 showed that the olevation difference on Mars was about 12 km
(refs. 31 through 34). References 35, 36. and 37 indicated clevation variations of about 14
km. However, rccent topographic estimates that have been denved from occultation, radar,
spectral, and optical measurements show a range of elevations from 4 km below the mean

surface in Hellas depression to an altitude of 28 km on Olympus Mons as shown in figure
R 2

The surface pressure data achieved by the Mariner Y accultation experiment strongiy suggest
that the physical shape ot Mars is substantially more oblate that its gravitational
cquipotentiai surfsce and is appioximated by a triaxiai ellipsoid (ref. 18, Optical
measurements of Mars indicate that the shape is an ellipsoid wiih an equatorial radius of
3398 ¢ 3 km and a polar radius of 3371 + 4 km (ref. 39). Farth and Mariner 9 obserations
were combined to yield ellipsoid radii of 3400.12, 239419, and 3375.45 kiir **> The mean
equatorial radius of Mars determined from combined radar data is 3394 + 2 km (r=f, 303,

*Leavles variation with tupography, scasonal variatic.. of sutface pressure by 16 10 o percent 1s mdicated 1n recent
study hy P, M, Worceshy n, “Global Seasonal |luctuations on Mars'" fexoan 22, July 1908
**E, ). Christensen, “Maiton Topography Derived from f,ocultabon, Radar. Spectial ad Gptical Mezsurements,”
Journal ot Geophysival Resarch, to be published i carly 187,

sea> L Cain ed &t “Approximations to the Mean Surface of Mas .,nd\!\an Atnosphere Usmg Manne: @ Occultations,”
Chapter 37 of Marirer Mars 1971 Project 'inal Report, vol 1V (vet, 21, ovly 18, 1373 ~p. 495428,
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Table 1
Composition of the Martian Atmosphere

(ref. 40)

Constituent Abundance {cm atm)*

CO, 7800

co 5.6

0, 10.4

H,0 ~ 3, variable

H2 ~0.4

03 ~1074

N, <400

A + inert gases <1560

SO, <3x10°?

N,O <200

CH, <10

CoH, <2

CoHg <1

NH, <2

NO, <8x10°*

*These valuas give the abundance of esch gas according to its thickness in cm if spread evenly over
the planet. The uniform density is that for standard temperature and pressure (0°C and 760 mm

Hg). 1 cm atm is equivalent to a 1 cm thickness and contains 2.69 x 1023 molecules/m?,

2.1.1.2 Composition and Molecular Mass

Present knowledge of the composition of the Martian atmosphere is based on spectroscopic
observations and on theoretical deductions that certain gases are present. Additionally, the
polarization and occultation measurements provide information on the total amount of
gases. Table 1 from reference 40 lists the abundances of all the observed and assumed
constituents.

A. Major Constituents

Of the expected major constituents (N3, CO4, and A), only CQO; has been observed spectro-
scopically. The amount of CO; reported lies within the range of 50 to 90m-atm (rfs. 10,
12, 41 through 46), and the arithmetic mean of CO; abundance for the ten best measure-
ments was 72 m-atm (ref. 6). A current value is 78m-atm (ref. 40). On the basis of the

observed spatial variations of total pressure, one would expect similar spatial variations for
CO;.

A small amount of nitrogen may be present in the Martian atmosphere even though it was
not detected by the ultraviolet spectrometers on the Mariner 6, 7, and 9 spacecraft. From
Mariner 6 and 7 evidence that the ionosphere of Mars contains C03+ ions, Goody (ref. 47)
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noted that the amount of nitrogen present in the Martian atmosphere must be less than ten
percent or else the ions would be OH* and CO*. Dalgarno and McFElroy (ref. 48) estimated the
maximum mole fraction of N1 relative to CO; must be less than five percent on the basis of
an analysis of dayglow data. It has been suggested (ref. 6) that the presence of one percent
nitrogen may be assumed for the purpose of calculating radio blackout phenomena.

The possibility of potassium compoundas near the surface of Mars led to the long-held
assumption that the Martian atmosphere ¢ntains some argon associated with the produc-
tion of potassium 40 by radioactive decay. The amount of argon in the Martian atmosphere
is probably small. Recent studies (refs. 25 and 49 through 52) all confirm that CO; is the
only major constituent; inert species other than argon can account for at most ten percent
of the total atmospheric mass.*

B. Minor Constituents

Besides water vapor and dust, minor identified constituents are CO, O,, and O,. Water
vapor was first detected spectroscopically by Spinrad, Munch, and Kaplan (ref. 5§3). An
analysis of the line intensities gave an average abundance 6f 14 £ 7 um precipitable water
over the entire planet. Other findings for H; O were reported by Dollfus (ref. 54) who gave
value of 45 um precipitable water, the highest determination, and by Schorn et al. (ref. 55)
who estimated an abundance of 10 to 20 um precipitable water from study of the lines of
H, O near 8200A with a new high-dispersion spectrograph during the 1964-65 apparition.
The mean relative humidity of the Martian atmosphere may be as high as 50 percent (ref.
56).

Seasonal and latitudinal variations of water vapor content have been reported by Tull
(ref. 57) who found that during the period from the middle summer to the middle autumn
the amount of precipitable water vapor reached as much as 48 um in the northern hemi-
sphere and 20 um in the southern hemisphere. Schorn et al. (ref. 56) reported that more
precipitable water vapor was found in the northern hemispherc in the northern midspring
and more in the southern hemisphere in the northern midsummer.

Water vapor was identified conclusively from spectra obtained by the infrared interferom-
eter spectroscopy (IRIS) experiment on Mariner 9 (ref. 37). The total H,O content was
determined from a quantitative companson of observed and synthesized spectra. This com-
parison adicated the abundance of water vapor at 10 to 20 um of precipitable water. Water
vapor data fcom the IRIS experiment are compared to Earth-based observaiions (refs. S8
and 59) in figure 3. The data shown by the dashed lines were made concurrently with the
IRIS data. Latitudina® gradients were not found to be significant from the South pole to the
equator. The 1971 Earth-based measurements and [RIS data are in general agreement;
however, Earth measurements in previous years during similar scasonal conditions indicated
larger amounts of water vapor. Results from the 1.38 um water vapor band experiment on
the USSR Mars 3 indicate substantially lower water vapor amounts (refl. 60) although the
reason for an actual discrepancy is not clear.

*Reported detection of considerable amounts of an inert atmospheric gas by the recent Soviet lander 1s discusved by G, P.
Wood in NASA T™M X.71999, August 1974,
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The average abundance of water vapor determined by IRIS was lower than values observed
during previous oppositions. It is theorized that this could result from an unusually large
amount of water trapped in the north polar cap (water vapor was not detected over the
north polar hood) or that the large dust storm in late 1971 could have resulted in the
adsorption of water vapor on the dust particles.

When Mariner 9 entered into orbit of Mars on November 14, 1971, the entir: planet was
shrouded by a dust storm. Thus, dust must be considered as a likely atmospheric constitu-
ent. Comparison of Mariner 9 observations of the brightness of the dust storm with results
from a simple multiple scattering theory (ref. 61) leads to an albedo of about 0.7 for the
particles. This is consistent with values for Martian surface albedo obtained from Earth-
based measurements. Therefore, the mean size and composition of the dust storm particles
appear to be similar to those for particles on the Martian surface. The mean particle size of
surface material has been estimated as 100 um in references 62 and 63 and between 10 and
300 um in reference 64.

Because mineralogical characteristics determine the spectral position of absorption and
transmission maxima (e.g., ref. 65), it is possible to infer the dust composition from Mariner
9 IRIS results. An empirical comparison of these data with laboratory transmission spectra
of mineral dust indicates a SiO2 content of 60 £+ 10 percent (ref. 37).

Other identified minor species of the lower Martian atmosphere are carbon monoxide (CO)
detected by Kaplan et al. (ref. 49), oxygen (O3) observed by Carleton and Traub (ref. 66),
and ozone (O3) measured by Lane et al, (ref. 67). Both CO and O3 should be well mixed
throughout the lower atmosphere of Mars. Their abundances are 5.6 cm-atm and 104
cm-atm, sespectively.

Ozone was observed by the Mariner 7 ultraviolet spectrometer experiment at the Martian
south polar cap during its late spring season but nowhere else (ref. 683, Results from a
similar experiment on Mariner 9 (ref. 67) also indicated the presence of O3 in the Martian
atmosphere during the southern summer season. In the foregoing observations, ozone was
detected only in the polar region north of 45°N, but it was subsequently detected in the
southern hemisphere with the approach of the autumnal equinox. The presence of ozone
appears to increase as the amount of water vapor in the atmosphere decreases (ref. 67).

There are upper limits for the abundances of formaldehyde (HCHO), carvonyl sulfide
(COS), ammonia (NH,), methane (CH,), and oxides of nitrogen such as NO,. N,0,.NO,
N,O, and HNO,. Theoretical models (refs. 28 and 69) indicate expected densities for
H,0,. H,, H, OH, and HO, species that play a major role in the chemistry of the Martian
atmosphere.

C. Molecular Mass

From Mariner 4 occultation data, Spencer (ref. 70) has shown for a mean temperatire above
the occultation point of 140 to 180 K, the allowable mean molecular weight could range
from 33.1 to 50. Similarly, Hess and Pounder (ref. 71) indicated that ani,ough the mean
molecular weight estimated from the Mariner 4 data is between 33.2 and 39.2, a range of
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31.2 to 44 is consistent with reliable spectroscopic data. More recently both Mariner 6 and
7 occultation experiments indicated that the molecular weight of the Martian atmosphere is
close to 44 (refs. 23 and 24). Thus, the more recent data interpretations strongly favor a
CO; rich atmosphere in which CO, accounts for at least 90 percent of the total atmospheric
mass.

2.1.1.3 Temperature

Numerous theoretical models have been developed to uescribe the thermal structure of the
Martian atmosphere (e.g., refs. 72, 73, and 74). These analyses are generally based on
assumptions ot radiative, convective, and conguctive equilibrium tor the Martian atmosphere
and surface. One recent analysis (ref. 75) also includes absorption of solar energy by a
grey atmosphere such as might be caused by the global dust storm of 1971. These theoreti-
cal techniques are in general accord and demonstrate variation of temp.rature with latitude
and season.

The vertical temperature structure of Mars has been determined from o.. ltation experi-
ments on Mariner 4 (refs, 21, 22, 76, and 77), Mariner 6 and 7 (refs. 23 and 24), and
Mariner 9 (refs. 29 and 78) and from the Mariner 9 IRIS experiment (ref. 37). Occultation
results from Mariner 6 and 7 were compared to a revised model of the analysis developed by
Leovy in reference 74 (ref. 79). Predictions by this model of the Martian atmospheric
characteristics at the time of the Mariner 6 and 7 tlybys (ref. B0) were in excellent agree-
ment with observed data.* Mariner 9 IRIS results obtained during the global dust storm did
not correlate well with the theoretical analyses for a dust-free atmosphere. However,
Mariner 9 results were in reasonable agreement with the model of a dusty atmosphere
presented by Gierasch and Goody (ref. 75).

The 20,000 spectra from the Mariner 9 IRIS cxperiment indicated temperature variations
with latitude, season, local time, topography, and secular events such as the global dust
storm (ref, 37), Figure 4a shows variation with latitude and local time during the dust storm
at altitudes of about 10 km (2 mb pressure level of the atmosph:re). For the period after
the dust storm, figure 4b shows cooling of the atmosphere and shifting of the maximum
temperature toward the subsolar point at the same altitudes. The isotherms were con-
structed from data averaged over 10 degree bands of latitude and one hour intervals in
Martian local time. The diurnal variations of 15 to 30K were jarger than expected from
theoretical predictions.

At the surface, figure 5** shows variation of temperatare with latitude and local time
during and after the dus{ storm (ref. 37). Maximum temperatures occurred near the subsolar
point at both times with little change in the maximum,

*Private communication from Y. 8. Lou, Northrop Services, Inc., Huntaville, Alabama,
**} igure $ refers 1o the temperatute on the surface, There 1s a large temperature drop in the first meter above the surface
in the warmer parts of the day. In some temperature studies, the zero point for alutude s taken at the top bonndar, of
this thin layer.
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Temperature profiles obtained from the Mariner 6 and 7 occultations are shown in figure 6
(ref. 24). The profiles are uncertain at high altitudes because of uncertainties in the motion
of the spacecraft and in the refractivity of the ionosphere. Thzse data indicate an extremely
cold region in the middle atmosphere with a subadiabatic lapse rate of about 3.5 K/km.
Mariner 9 occultation results reported in reference 29 were obtained during the global dust
storm. Measurements at beginning of occultation were made in the equatorial region and
measurements near the end at about 65°N latitude in the Martian early morning during
midwinter. Therefore, the near-surface temperatures of 150 to 160 K obtained at the end of
occultation were noticeably lower than at the beginning. Typical temperaturz profiles ob-
tained from Mariner 9 IRIS are shown in figure 7. The cooling of the atmosphere as the dust
storm diminished is evident; however, in all cases the lapse rate remained subadiabatic (ref.
3.

2.1.1.4 Winds (Atmospheric Dynamics)

Information concerning Martian winds has been obtained from observation and theory. The
observational input comes largely from the study of the motion of cloud systems in the
Martian atmosphere although useful information has also been derived from analysis of
temperature maps made by the IRIS instrument on Mariner 9. The theoretical work is based
generally on the application of standard meteorological principles (ref. 81).
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Observational studies of Martian clouds have a lengthy history. Ground based observations
by Kuiper (ref. 82) and de Vaucouleurs (ref. 19) established the potential of the technique
as a remote monitor of dynamic activity. They drew attention to a variety of interesting
circulation phenomena. Their concepts have been followed in Mariner 9 experimrents. The
imaging experiment on this spacecraft provided superior spatial resolution and afforded an
excellent opportunity for careful study of Martian meteorological phenomena (ref. 61).

A. Mariner 9 Results

Mariner 9 arrived at Mars during a planet-wide dust storm tha! altered meteorological
conditions drastically. Dust was lifted to altitudes above 30 km (ref. 61). This vertical
extent requires strong winds and circulation; these can be attributed to alterations in the
temperature structure because of dust content. The effect of dust on heating was shown by
the unexpectedly high atmospheric temperatures observed by Mariner 9 experiments. These
high temperatures in conjunction with their nonuniformity in horizontal dit tions (refs. 37
and 75) can induce vertical circulation in two ways (ref. 61):

1) the diurnal variation of the heating can drive a large-scale circulation capable of
completely overturning the atmosphere each day, and
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2) if large-scale hotrizontal variations in dust content of the air occur, the dustier
regions will be heated relative to their surroundings and will develop larger vertical
velocities.

C Hlitsyn (ref. 83) has deduced that a dust storm can result in a cyclonic vortex with therma!
winds (velocity changes) of about 40 m/s. For the upper part of the atmosphere where the
temperature gradient is reversed, an anticyclonic vortex should arise. Thus, the dust storm
can generate strong winds that can raise new dust from the surface. Sagan (ref. 84) con-
cludes that wind velocities of 100 m/s and perhaps as high as 150 m/s are required to raise
th dust to the observed altitude.

Ti e effect of the large observed diurnal variations in the atmospheric temperatures during
the global dust storm of 1271 on tidal winds was considered in reference 37 and extended
by Pirraglia and Conrath (ref. 85). Temperature fields derived from the Mariner 9 IRIS
experiment were used as input data to solve the surface pressure tidal equation and subse-
quently to estimate the velocities of atmospheric winds. The derived wind fields are shown
in ligures 8 and 9. The resulting diurnal winds near the surface beyond 20°N and 5 {ig. 8)
have amplitudes of the order of 20 m/s. These winds could not sustain the dust storm unticss
augmented by the polar symmetric fields or orographic wind fields. The 70 to 100 mk
zonally-symmetric winds in the latitude belt between 30°N and 30°S could coniribute to
the lifting of dust into the atmosphere.

Photographs from Mariner 9 (ref. 61) also revealed local dust storms. In one case, the storms -

appear to be associated with a strong southward movement of cold air following a cold front
at ai apparent speed of 15 m/s. These highly-convective local storms carried dust as high as
15 t0 20 km.

The Mariner 9 pictures also revealed a variety of additional features of the Martian mete-
otology. Photographs of the clouds comprising the North polar hood (north of 45°N) indi-
cated that those clouds move in a manner that is characteristic of cold front: and associated
baroclinic wave cyclones in the Earth's atmosphere. Cloud bands were chserved in the

regior. between 45 and 65°N during the winter season. These clouds which have 30 kmi.

wavelengths are indicative of gravity waves that are generated by flow over irregular topoers-
phy. Wave orien. .tions and positions in respect to *h» topography show that west-to-east
winds prev:e:! in this region. Because of the static stability of the Mars atmosphere at this
time (ret 17), it was inferred that a deep layer containing westerly winds with speeds of at

least ~5 m/s lies above the wave-generating region (ref. 61).
= Theoretical Studies

Information from Larth-based Martian cloud observations was used as « direct input for the
theotetical stndy of atmospheric circulation (ref. 86) in which the presence of a wave-ivpe
circulation regime was found. A value of 100 m/s or more was obtained for the maximum
sur "2 wind and 13 m/s for the maximum large-scale vertical wind. The average 7onal winds
we, e about 25 mys and average meridional winds about 1.3 m/s.

A comprehensive theoretical investigation of generai circulation on Mar< by Leovy and
Mintz (ref. 87) included calculations of wind velocities for the northern vernal equinox and
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southern summer solstice. Their results for t}}e\touthem summer solstice indicate that the
meridional compounent of mean wind has a suong circulation across the equator. This
meridional flow has a speed of 10 m/s with the s wutherly wind at high altitude and the
northerly wind near the surface. Its effective region is between 25°N and 30°S latitudes. As
a result of this flow pattern, the air mass is being transferred from the diminishing polar cap
to the growing polar cap. The zonal ccmponent of the mean wind at near surface is
illustrated in figure 10 where the easterly and westerly winds are plotted against latitudes.
The mean flow in the summer hemisptiere is ¢xpected to be stable and nearly undisturbed.
For the winter hemisphere, however, the mean flow becomes unstable. Leovy and Mintz
also found that the maximum instantaneous near-surface wind speed occurs at 2G°S latitude
and that the average speed of the extremely sirong winds at 15 km altitude at 40°S is about
70 m/s.

The diurnal variation in wind velocity for a clear atmosphere has been explored by Goody
(ref. 47). Goody pointed out that the diurna' variation of wind because of temperature
changes is complicated by variations in tropopause height and eddy exchange coefficient
and by the unknown behavior of the atmospheric tidal energy. The magnitude of this
thermally-driven diurnal change of wind is estimated to be 2 m/s (ref. 88). However, the
diurnal fluctuation in the vertical momentum exchange can cause a diurnal variation in wind
velocity as large as the zonal wind itself, which has a magnitude of 40 m/s (ref. 88).

Large scale motions are known to have a significant effect on the atmospheric vertical
temperature structure (c.g., refs. 89 through 92). Dynamic processes including baroclinic
waves, vertical oscillations such as induced by topographic relief, and vertical oscillations at
altitude were studied (ref. 93). These processes were shown to modify temperature structure
predicted by radiative-convective model in such a way as to provide an explanation of the
observed cold middle atmosphere (ref. 37) that was not predicted by the less complete
models.
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The vertical wind vector gradient in the Martian atmosphere has been investigated by Wood
(ref. 20) who took the results of wind component at two levels provided by Leovy and
Mintz and assumed a linear variation of wind with height. His analysis indicates that the
vertica! wind vector gradient is positive from the top of the surface boundary layer to 15 km
altitude and negative for the altitude region above 15 km. The magnitude of the vertical
wind vector gradient has been suggested to be 6 m/s-km for space vehicle design (ref, 94).

2.1.2 Upper Atmosphere

The only measurements that pertain directly to conditions in the upper atmosphere of Mars
are the electron density profiles obtained from Mariner 4, 6, 7, and 9 and the ultraviolet
airglow data obtained from Mariner 6, 7, and 9 and the USSR Mars 2 and 3. Therefore,
engineering models for the upre; atmosphere must rely on a variety of theoretical studies
and inferences derived from limited data. The range in the models, however, has been
narrowed considerably by spacecraft results.

2.1.2.1 lonosphere

There has long been speculation that Mars has an ionosphere with a structure similar to that
of Earth. A scientific discussion of the upper atmospheie of Mars, however, has only been
possible since the successful experiment of Mariner 4. More information has been provided
by Mariner 6, 7, and 9 experiments.

The formation of the Martian ionosphere and interpretation of electron number density
data acquired from Mariner experiments are based on Earth analogy. As with the terresti.ul
atmosphere, the photoionization process on Mars is expected to form an ionosphere. The
height and extent of the Martian ionosphere are complex functions of the season, solar
activity, and time of day. In the uppermost regions of the atmesphere, the number density
of the molecules is too low to produce an appreciable electron density. At lower altitudes,
electron density is limited by attenuation of the ultraviolet radiation in the atmosphere and
large electron recombination rates from increased density.

It has been concluded (ref. 20) that the electron number densities in the Martian ionosphere
should not be large enough to affect radio communication to and from a lander on the
surface. For spacecraft atmospheric entry, electron densities are not considered significant
even behind the bow shock wave that foims by compression of the solar wind’s magnetic
field against the ionosphere (ref. 95).

A. Electron Density Data

Figure 1] shows the distributions of electron number-density in the Martian ionosphere
from Mariner 4, 6, 7 and 9 (refs. 25, 29, and 97). The maximum electron densities are much
lower than expected at altitudes of 120 km from Mariner 4 measurements, 135 km from
Mariner 6 and 7 measurements, and 135 km from Mariner 9 data. This indicates a lower
atmospheric temperature th; . anticipated.

The measured maximum electron density was 10° ¢m™® from Mariner 4 when the solar
activity was low and the solar zenith angle was large (67°). The Mariner 6 and 7 measure-
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Figure 11.—Martian lonization Profiles (refs. 25, 29, and 96).

ments gave a maximum electron density of 1.7 x 10° cm™® when the solar activity was

higher than in 1965. The Mariner 9 data shown are for revolution 12 at a solar zenith angle
of approximately 55°. As the solar zenith angle decreased in subsequent revolutions. the
clectron maximum was observed to occur at lower altitudes and to be of greater density
(ref. 29).

B. Mgajor Constituents

The major ion in the Martian ionosphere is ionized molecular oxygen, O, *. This has been
inferred from a combination of laboratory experiments and analysis of Mariner 6 and 7 data
(ref. 97). O, % is generated by the reaction of atomic oxygen ions, Ot with carbon dioxide.
CO,. Figure 12 is a theoretical model of the Martian ionosphere that shows the relative
densities of the principal constituents at different altitudes. For a concentration of one
pereent atomic oxygen, the ratio of O, * (0 CO, ¥ is approximately 3 to | (ret. 98).
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C. Models

A preliminary one dimensional model for the interaction of the Martian ionosphere with the
solar wind was presented by Cloutier et al. (ref. 99). Their model predicted a major
depression of the ionospheric scale height that was associated with the pressure of lost shock
solar plasma which was assumed to stream subsonically into the Martian upper ionosphere.
The validity of the one dimensional model was not supported. however, by suhsequent

spacecraft results. More recemi theoretical models have attempted to i move the one dimen-
sional limitation.

Cloutier and Daniell (ref. 100) considered a model in which the magnetized solar wind acted
as a dynamo over the day side of the planet. In this model the distribution of currents
entering the ionosphere through the plasmapause was considered carefully. The location of
the plasmapause was fixed by a requirement that the total ionospheric current must be of
sufficient magnitude to cancel the shock-compressed interplanetary magnetic field. This
requirement led to an estimated height of 320 to 425 km for the plasmapause.

An alternate model for the outer ionosphere was discussed by Bauer and Hartle (ref. 101),
They noted evidence from the USSR spacecraft Mars 2 and 3 (ret. 102) for a weak intninsic
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magnetic field on Mars that could be of sufficient strength to balance the dynamic pressure
of the solar wind at a height of about 1000 km. The distribution of plasma inside the
magnetosphere would be controlled in large measure by the convective electric field induced
by the solar wind except below 300 km where chemical processes are more efficient than
electrodynamically-induced mass motion. A schematic illustration of the plasma flow pat-
tern is given in figure 13 from reference 101. Bauer and Hartle estimated a plasmapause
height of about 300 km.

Figure 13. — Solar Wind-Induced Convective Flow
Pattern for Mars (ref. 101).

From the foregoing models, therefore, one could conclude that because of interaction with
the solar wind, the Martian ionosphere should terminate effectively between 300 and 450
km, the predicted range of altitudes for the plasmapause. One expects also that the solar
wind should induce significant departures from photochemical equilibrium in the ono-
sphere at high latitudes and at large solar zenith angles: there are indications in the Mariner 9
data (refs. 78 and 103) that these departures may have been observed.

2.1.2.2 Neutral Atmosphere

Mariner 6, 7, and 9 carried ultraviolet spectrometers to measure radiations emitted by
~+tomic hydrogen and atomic oxygen (refs. 98 and 104). The measured airglow spectrum is
characteristic of an essentially pure CO, atmosphere. Almost all of the observed emissions
were produced by the action of solar ultraviolet radiation on CQ, . Mars 2 and 3 also carnied
experiments to measure ultraviolet emissions of the atmosphere (ref. 105). The Mariner
results showed the presence of carbon monoxide (CO), atomic carbon, atomic hydrogen,
and atomic oxygen (ref. 98). The amount of atomic hydrogen at 135 km was calculated to
be one part per million (ref. 1061 and the amount of atomic oxygen at the same altitude 1s
about one percent (ref, 107),
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The density of atomic hydrogen at 200 km was calculated to be 3 x 10* atoms cm™? (ref.
106) on the basis of Mariner 6 and 7 data. The temperaturc at the top of the Martian
thermosphere (fig. 1) was determined to be 350 K from Mariner 6 and 7 data (ref. 108), 325
K from Mariner 9 data (ref. 109), and sbout 250 K from Mariner 4 data. The higher
temperatures are asscciated with the higher values of extreme ultraviolet (EUV) radiation
that occur in high-activity periods of the solar cycle.

Photodissociation of CO,, electron-impact dissociation of CO, , and dissociative recombina-
tion of CO, * all produce atomic oxygen in the Martian upper atmosphere (ref. 98). Theore-
tically, it could be expected that atomic oxygen would be a dominant species; however,
analysis of ionospheric profiles suggests that oxygen abundances at the onospheric peak are
less than ten percent, which is consistent with the one percent result of reference 107, The
observed concentrations of O indicate that mixing processes must be exceedingly efficient in
the upper Martian atmosphere. It may be estimated that the turbopause is located at an
altitude as high as 150 km.

The major uncertainties in neutral densities of the upper atmosphere relate to the location
of the turbopause and the abundance of light constituents O, N, . CO, and He at the
turbopause. Calculated densities for several known constituents arc shown in figure 14,
which is based on Mariner 6 and 7 observations (ref, 98). The turbopause in these models
was set at 100 km. The amount of CO and O, in the model was based on the results of
ground-based observations, that is, less than 0.1 percent for CO (ref. 49) and slightly more
than 0.1 percent for O, (ref. 110). The expected low abundance of N; is discussed in
section 2.1.1.2.

Theoretical attempts have been made to calculate temperatures for the upper Martian atmo-
sphere with observed values for the flux of solar ultraviolet radiation and reasonable esti-
mates for the rates of key chemical reactions. The resulting theoretical models tend to give
temperature values that are higher than values of temperatures derived from analyses of
jonospheric profiles and airglow data. For example, one theoretical thermal model (ref. 111)
yielded an exospheric temperature of 487 K on the basis of Mariner 4 (solar flux) data (July
1965) as compared to 300 K that was derived from clectron scale height by Stewart and
Hogan (ref. 112). The difference was attributed to difficulties in estimating EUV heating
efficiency and flux (ref. 111). An exospheric temperature of 500 K for July 1969 that was
inferred from the electron scale height determined from Mariner 6 and 7 data (ref. 96) can
be explained by greater EUV in 1969 than in 1965, It appears that the Jdiscrepancies snay be
removed by inclusion of eddy transport in the theoretical models although definitive results
have not yet been reported.

2.1.3 Clouds

Clouds have been observed from Euarth and have been verified by Mariner 6. 7, und 9
experiments, especially by television pictures The cloud features are usually referred to as
yeillow, white. blue, and an ill-defined “blue haze®™.

The observed yellow clouds are generally considered to be associated with dust storms.
Storms of local extent may become global, as observed by Mariner 9 in late 1971, The
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Figure 14.—Model of Martian Neutral Atmosphere Components {ref. 98).

global storm of 1971 extended from the surfuce to as high as 30 km. Particle size has been
discussed in section 2.1.2.

Stationary clouds have been obsenved from the Larth and in Manner 9 pictures over large
calderas and other high topographical features (ref. 30). These white clouds hegin to
brighten in the exrly afternoon and continue to brighten wntil they disappear over the
afternoon limb (ref. 113). These clouds have been correlated with features in the Thanis,
Olympus Mons, and Elysium regions. The timing of the clouds’ appedrance and their
relationship to very high topography indicates that they may be formed by Lifting of heated
air from the surrounding fower terrain. These clouds may lic between 8 to 10 km above the

surface and contain water ice (ref, 114) Water ice also has been detected i the spectrum of

the north polar hood (ref. 115),

Another layer of white clouds has been wlentitied in the polar region between about § and
30 km (ref. 116}, which are generited in a wave configuration by tlow over aregular
topography. Topographic clouds persist north of 45N duning the northern late winter
season. Two of the waves-cloud systems scen in Mariner 9 pictures near the periphery of the
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north polar hood have been seen repeatedly from Earth and were detected by Mariner 6 and
7 (ref. 117). Mariner 6 and 7 measurements revealed reflection features near 4.3u that are
characteristic of solid CO,; (ref. 118): however, from a combination of Mariner 9 imaging
and IRIS data, it has been argued that most of the clouds observed between 45 and 60°N
are composed mostly of water ice (ref. 116).

Brightness profiles and pictures from Mariner 9 indicate a cloud layer between 45 and 65
km. The layer is much bluer than the underlying dust (ref. 30). The clouds were observed
near the 0.02 mb pressure level and had an estimated thickness of not more than 2 km. In
the South polar region, it is suspected that water ice is the principal constituent and the
clouds over the Jorth polar hood appear to be composed of CO, ice, and possibly water ice.

A “blue haze” has been observed, but its location in the atmosphere and its properties are
unknov'n. Surface details on Mars generally are clearly seen in any light of wavelengths
greater than 4500 to 4550 A, i.e.. red or yellow hght. The Martian “blue haze” is a diffuse,
variable phenomenon that occas.onally clears and allows surface features to be observed in
blue light, sometimes described as “‘blue clearing”. The haze itself, which is probably a
high-altitude layer, is not blue but extinguishes solar blue light reflected from the Martian
surface although transparent to longer wavelengths of light. When the effects of observa-
tional selection are removed, some workers believe that there is some correlation of blue
clearing with favorable oppositions. The evidence is not compelling, however, because blue
clearings have been observed also at unfavorable oppositions or several months from opposi-
tion and on small topographical scales of Mars down to the limit of telescopic resolution.

Soaie authorities discount the hypothesis that the “blue haze” is produced by scattering of
light by condensed particles. They suggest that the “blue haze™ and its occasional clearing
may result from selective absorption of light by solid particles in the atmosphere. Others
have suggested that interaction of solar wind protons with the CO, of the atmosphere
causes the “blue haze” by producing molecular ions (CO, ¥ and CO*) that have strong
absorption bands in the required energies. These hypotheses are all speculative, however.

2.1.4 Gravity Field

If Mars is considered as an oblate spheroid, its gravitational potential function can readily be
developed in a spherical harmenic series. Truncation after the first two terms gives the
gravitational potential function as (ref. 119);

oR.0)=M 1 -1, (Ry/RY )

and the radial acceleration of gravity as
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0 = latitude

Rg = equatorial radius = 3394(+2) km
R = distance from center of Mars (km)
GM = 42828.5 (£0.4) km? /s?

I = 0.001965 (+0.000006)

The constant J, is a measure of the flattening, f = 0.00524 + 0.00003. The foregoing values
are incorporated from Mariner 9 results (ref. 120).

The centrifugal correction to the radial component of gravitational acceleration can be
expressed as

F.=w? Rcos? 6

where w is the Martian angular velocity, 0.7088218 x 10™* radians/s. .
2.2 Atmospheric Models
2.2 Calculation

The models presented in this mounograph were generated by the computer program de-
scribed in reference 121. The program was modified to include a molecular mass sutroutine
to handle the molecular mass variation with altitude, an extended temperature range for the
calculation of the specific heat and the reduced collision integral which appears in the
viscosity relationship, and thermochemical data that allow for the inclusion of atomic |
oxygen and atomic hydrogen as component gases.

; The basic inputs to the computer program are the temperature profile, the surface pressure,
: the near-surface atmospheric composition and corresponding molecular mass, the planetary
: radius, the acceleration of gravity at the planet’s surface, and the atmospheric density at the
turbopause. The values for density, pressure, speed of sound, molecular mass, density scale
height, number density, mean free path, viscosity, and pressure scale height as functions of :
altitude are calculated with the mathematical relationships given in reference 113;additiona)
mathematical operations are required to determine the mean molecular mass values above
the turbopause. All operations satisfy the hydrostatic equation and equation of state. Calcu-
lations account for the variation of gravitational acceleration with altitude throughout the
§ atmosphere.

2.2.2 Choice of Model Parameters

Models were computed for the Martian atmosphere to account for uncertainties in atmo-
spheric parameters. Table 2 shows the input parameters for the engineering models of the
Mars atmosphere that have been developed. The lower portion of the atmosphere was based
{ on temperature profiles determined from spacecraft measurements. In the upper atmo-
sphere, temperature profiles were obtained from reference 122 which was based on the
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thermal model of reference 108. The upper atmosphere temperature profiles were con-
strained at the lower end by density values at the turbopause and by the temperature
profiles that were adopted for the lower atmosphere. The top of the upper atmosphere
temperature profiles were constrained by exospheric temperatures based on spacecraft data.
The temperature profiles used for the atmospheric models are shown in figure 15.

The adopted temperature profiles near their minima cross the solid-vapor phase boundary
for CO;, beyond which CO, cannot exist as a gas. This discrepancy in the data has not been
resolved in the literature. The adopted profiles represent the data that i» currently available,

2.2.2.1 Lower Atmosphere

Temperature profiles for the lower atmosphere have been established by spacecraft measure-
ments (section 2.1.1.3). The mean temperature profile for the clear atmosphere is represen-
tative of Martian mid-latitudes at the mean surface level. The low temperature profile for
the clear atmosphere is derived from polar region measurements given in reference 123. The
high temperature profile for the clear atmosphere is that of Mariner 9, revolution 174 shown
in figure 7. The temperature profile for the dusty atmosphere is taken from revolution 20 of
Mariner 9 shown in figure 7. it is representative of high temperatures encountered during a
global dust storm.

Uncertainties in atmospheric surface temperature and pressure are associated with topo-
graphic differences, latitude, longitude, time of day, and season. The selected profiles
encompass extremes measured by Mariner 9. Computations were initiated at 10 km below
the mean surface level to allow 10r topographic variation. The composition of the lower
atmosphere was choseri as 98.8 percent CO,, 1 percent N,, 0.07 pcrcent CO, and 0.13
percent O, on the basis of abundances given in table 1.

2.2.2.2 Upper Atmosphere

The lower boundary for the theoretical upper atmosphere is the turbopause. The turbopause
is the altitude below which the atmospheric gases mix in constant proportions; above this
altitude each constituent gas is taken to be in diffusive equilibrium, with number density
decreasing with altitude at a rate that depends upon the molecular mass of the gas and the
ambient atmospheric temperature. The density value at the turbopause was estimated on the
basis of the composition taken for the lower atmosphere and an eddy diffusion coefficient
of 1 x 10® ¢m?/s. From the turbopause upward the atmospheric composition was modified
by the addition of atomic oxygen O and atomic hydrogen H. The abundance of H was
assumed to be the same for all models, whereas O was chosen as | percent to obtain a
reasonable minimum density, 3 percent for the mean density, and 10 percent for a reason-
able maximum density, The abundance of CO, was decreased according to the amount of O
and H added. The models of the upper atmosphere are superposed on the lower atmosphere
models at the turbopause.
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TABLE 2.
COMPUTER INPUTS FOR MODELS OF MARS ATOMSPHERE (1974)

MODEL
Parameters
1 il 1l v
Planetary Radius (km) 3394 3394 3394 3394
Surface Gravity (cm/s?) 371.8 371.8 371.8 371.8
Surface Pressure (mb) 4.95 4.95 4.95 495
Surface Temperature (K) 207.5 182.5 255.0 255.0
Composition (% by volume)
Below Turbopause
Co, 98.8 98.8 98.8 98.8
N, 1.0 1.0 1.0 1.0
Co 0.07 0.07 0.07 0.07
0, 0.13 0.13 0.13 0.13
At Turbopause
co, 95.8 97.8 88.8 95.8
N, 1.0 1.0 1.0 1.0
1(0) 0.07 0.07 0.07 0.07
0, 0.13 0.13 0.13 013 |
o) 3.00 1.00 10.00 3.00
H 0.0001 0.0001 0.0001 0.0001 |
Molecular Mass (g/g-mole)
Below Turbopause 43.82 43.32 43.82 43.82
At Turbopause 42.98 43.56 41.02 42.98
SRR O S N
Density at Turbopause (g/cm3) | 1.46x10-12 | 1.46x10-'? | 1.46x10-'2 | 1.46x10-2
Exospheric Temperature (K) 350 250 500 350

The upper constraint on the upper atmosphers models is the exospheric temperature which
is a function of both diurnal heating and solar cycle heating. A value of 250K is used for a
night-side atmosphore with minimum solar activity; 500K is used for maximum solar activ-
ity and day-side exospheric temperatures; and 350K is representative of mean conditions.
The temperature profiles for the upper atmosphere for the different exospheric tempera-

tures are shown in figure 15.
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3. CRITERIA

" .The engineering models of the Mars atmosphere prxxﬁ\*d herein should be used for mission

planpning apd design of space vehicles that are to orbit"Mars, descend through the atmo-
sphicre, mamuver in the atmosphers, lm"d on the planetary surtface, or conduct scientific
investigations Juring a pianetary flyby m‘mon The modeis should be used for all facets of
space vehicle desigu including N
N

blm ture

Deceleration system

Propulsion system

Flight control system

Guidance system

\ Heat shield and thermal coatrol system

Communication systems
N Electronics
Power supply
Mechanical devices
Scientific experiments (equipment and measurement ranges)

The models should be regarded as approximations that are based on the best available data
and which encomnpass current uncertainties in the atmospheric parameters. The models are
by necessity relatively general in nature; they are particularly useful for preliminary design
and mission tradeofi studies. In later design stages. after specific missions, orbits, and
landing sites are selected, the range of atmospheric parameters can be significantly reduced
by specifying geographic location of landings, orbital ;arameters of satellites and subsatel-
lites, season of the Martian year, Martian local time, and predicted level of solar activity for
that time. If the foregoing information is known, it may be possible to select temperature
profiles from Mariner 9 data that embody ihe effects of variation as to spatial coordinates,
topography, season, time of day, and dust storms. The Mariner 9 temperature profiles from
the Infrared Interferometcr Spectroscopy (IRIS) spectra will be made available to the scien-
tific community in 1975 through the National Space Science Data Center, NASA Goddard
Space Flight Center (ref. 124),

3.1 Atmospheric Models

The engineering models of the Mars atmosphere are given in tables 3 through 6. Model |
(table 3) should be considered as the nominal model. It is representative of clear atmo-
spheric conditions at mid-latitudes in mid-spring or mid-autumn during periods of moderate
solar activity. Models Il through IV (tables 4 through 6) take into account possible ex-
tremes of molecular mass, solar activity, exospheric temperature and atmospheric clarity in
appropriate combinations as shown in table 2. Model Il (table 4) presents a cold tempera-
ture model with a low-density upper atmnsphere. It is best applied in the polar regions,
during winter, or for night-time analyses, all at periods of low solar activity. Model H]I (tahle
5) presents a high temperature model of the clear atmosphere with a high-density urper
atmosphere. It is intended for application in equatorial regions, during summer, or for
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afternoon analyses, during periods of high solar activity. Model IV (table 6) presents a
temperature model of the atmosphere that can be considered as typical during global dust
storms. Figures 4 and $ give additional information on temperature variation with latitude,
local time, and the presence of dust.

Al models are based on a mean planetary radius of 3394 km which corresponds to 0 km
altitude in the tables. However, to encompass possible extremes of local topography as well
as variations in local radius, the tables have been extended downward to -10 km which
corresponds to a planetary radius of 3084 km. Thus, if a model is applied to a low area such
as the Hellas region, the tables would be entered at about -4 km or if a high region such as
Olympus Mons is considered, the table is entered at about 28 km (fig. 2).

The four tables were termunated at altitudes where the density falls to 107'¢ g/cm?® because
the hydrostatic equilibrium assumption upon which these models are based undoubtedly
becomes invalid at greater altitudes.

3.2 Winds

Information on Martian winds was obtained from cloud observations, studies of dust storm
characteristics, and models of atmospheric circulation and tidal pressure. The following
near-surface wind speeds are recommended for space vehicle design purposes.

Surface Pressure
Wind Parameter
4mb 8 mb
Mean Speed (1 m above surfaze) 50 m/s 35 m/s
Peak Speed 145 m/s 100 m/s
Vertical Wind Ver.tor Gradient 6 m/s - km 6 m/s - km

3.3 lonosphere

Observations by Mariner 4, 6, 7, and 9 spacecraft indicate peak electron density in the
Martian ionosphere to be of the order of 10° cm™. This density should not be large enough
to affect radio communication to and from a lander on the surface. For spacecraft
atmospheric cntry, zlectron densities should not be significant even belund the bow shock
wave which forms through compression of the solar wind’s magnetic field against the
ionosphere. The electron density profiles given in figure 11 should be used in design
configuration analyses,
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Distinct cloud layers, identified by color, have been verified by spacecraft television pic-
tures. Cloud characteristics are summarized below.

Altitude Above .. ]
Cloud Layer Remarks Mean Surface (km) Composition
Yellow Local and global dust 0-30 Surface dust;
storms 10-300 um
White-Low High topographical 8-10 Water ice
features; late afternoon .
White-High Wave clouds associated 5-30 Mostly water ice
with irregular topogra-
phy
Blue Principally in polar 45.65 Water ice (south
regions polar region);
CO, ice and pos-
sibly water ice
{north polar hood)
Blue Haze Diffuse, variable Not uniform Not known;
phenomenon - usually over entire sources speculative
visible; rapid changes atmosphere;
in state - random from probably high
opacity to near trans- altitude
parency
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