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APPLICATION OF BOUNDARY INTEGRAL EQUATIONS

TO BLASTOPLASTIC PROBLEMS

A. Mendelson and L. U. Albers
NASA Lewis Research Center

n	 Cleveland, Ohio
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ABSTRACT

The application of Boundury Integral Equations to elastuplastic problems is re-
viewed. Details of the analysis as applied to torsion problems and to piano problems
is discussed. Results are presented for the clastoplastic torsion of a square cross
suction bar and for the plane problem of notched beams. A comparison of different
formulations as well as comparisons with experimental results are presented.

INTRODUCTION

Methods of analysis in elasticity and plasticity, as in most other scientific and
engineering fields, have been revolutionized by the advent of the modern digital com-
puter. Thus the availability of the computer made it possible to implement practically
purely numerical methods such as finite. difference and finite elements, as well as
analytical methods such as complex variable methods.

Similarly the boundary Integral equation (RIE) methods, while having their origin
in classical elasticity, hove only in recent years begun to play a significant role in
solid mechanics. Solutions to problems in elasticity by these DIE methods have been
obtained by various investigators using different formulations, as for example in Refs.
L,?). A review o-' wuch of the literature is given in Ref. t,.

The extension of the DIE method to clustoplastic problems has received much less
attention. The basic theories and equations have been formulated in Refs. L,, but
few applications have been reported. The present paper reviews some of these appli-
cations and presents details of the analyses as applied to elastoplastic torsion prob-
lems, and to the plane elastoplastle problem, with particular reference to edge-notched
beams in bending. Comparisons of different formulations as well as comparisons with
experimental results are presented.



ELAMPLASTIC TORSION

The clasteplaetic torsion problem can be formulatod in several ways (Rd. V). For
example, using the Pmndtl stress function, F, the basic differential equation becomes
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whom G Is the shear modulus, o, the linear coefficient of thermal expansion and
t zx,csy are the plastic shear strains. The corresponding BIE is

xF(p) =fIf(Q)ln rpQ dx dy + / ":(ln rte) •• F' In rp ldq	 (2)
it	 J L \	 4

C

where primes denote derivatives with respect to the outward normal and where the
coordinate system and the associated notation are shown in Figs. 1 and 2. For an in-
terior point P, the multiplier of F(p) in EtI. ( 2) becomes 2r instead of m.

As an illustration of the use of Eq. (2) and its ability to solve the elastoplastic
torsion problem, consider the case of a circular shaft of radius a. The radial coor-
dinate will be designated by p, to distinguish it from r, the distance between the
fixed point and the variable point appearing in Eq. (2). In polar coordinates, because
of symmetry, the function I appearing in Eq. (2) becomes
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p 
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For linear strain he rdening

	

'p0 = Ap + B	 (4)

where
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v is Poisson 's ratio, c o is the yield strain, and no is the strain hardening parameter

	

(slope of strain hardening curve divided by the modulus). 	 -3
On the boundary F(a) = 0 and because of axial symmetry Pin) = constant. Eq . (2)

then becomes i^
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which upon solving for P(a) gives

Pis) = Gja(2A - a) +2131

!fence for any interior point

2xflp) = 20/ f('A - a M ilo p, dx dy - Pin) f In rl^q dq
R

or

1'(P) '= 2 2A - o ) lp2 - a2 1 + 4B(p -a
2 1( 	1)

and the shear stress r is given by

r=-f-2Cr(--A)(P-131
Op	 2

which agrees with the solution obtained in a entirely different fashion In Rof. (L5.). Note
that this solution is valid only In the plastic legion, that is, for p s p e, where pe,
the elastic plastic boundary. Is given by

2(l + v)t
p c =	 °	 (9)

t^ a

The formulation given by Eq. (2) cnn of course be used to obtain the elastoplastic
solution for almost any shape cross section and any type of strain hardening. In gen-
eral, however, it would seem that a lormulation In terms of the warping function (axial
displacement) should be preferable, since the warping function is physically more
meaningful than the stress function and more importantly, the distinction between sim-
ply connected and multiply connected regions disappenrs. We will therefore formulate
the problem in terms of the warping function and show in some detail how the solution
Is obtained for a bar with a square cross section.

The BlE in terms of the warping function w is (Ref. (J)

M(P) = f f gR)ln rpQ dA i 
Jc
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Note that Eqs. (1) and (10) imply the use of the deformation theory of plasticity. How-
ever, as :. hown by Prager ( Itef. (7)), both the total and incremental theories of plas-
ticity furnish the same solution to the torb 'on problem provided either the cross section
is circular or the mater!ul is perfectly plastic. It is reasonable to assume, therefore,

r,

10)
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that this will be approximately true for most practical problems. Indeed. it has boon
shown in Rot. () that for the case of a square cross section with strain hardening
there is little difference between incremental and deformation theories. the use of
incremental theory does not appreciably complicate the problem and can be used in a
stepwiso manner as for the plane problems to be discussed subsequently.

The boundary condition W be satisfied by the warping function is (ftuf. L))

)w _ w' t off y - cox) +'d(f c xz +cotpTn
On

whore f, m are the direction cosines of the outward normal, and when for a rectangular
boardary segment parallel to one of the coordinate axes, the second term on the rift
side of Eq. (12) always vanishes. The normal derivative of the warping function appear-
ing in Eq. (10) is thus known from Eq. (12) and the only unknown in Fq. ( 10) is w(p).

Numerical Procedure

To solve Eq. (10) for t
h

e unknown function W (P), the straightforward procedure of
replacing the integral* ly e summations can Ix. used. The boundary is divided into n
intervals with a nodal point taken at the center of each interval. The unknown function
Is assumed constant over each interval. Similarly, the region R Is divided into a
number of calls and the function f assumed constant over each cell. Eq. ( 10) to than
written for such nolel point as follows:

n	 n

(ail - b ilr)wi 'r bii"I + Ri	 1 = 1, 2, . . , n	 (12)
t	 }=1

'Thu coefficients a il , b it , :cod Ii i are given in Appendix A. We thus have n equations
for the n unknowns, IN 'rhis set of equations can readily be solved by any standard
procedure.

Once the w) are known on the lxamtlur), &1. ( 10) can he used to calculate w at
any interior point, with a replaced by 2x. However, in order to calculate the strains
the derivatives of w are. needed. 'These can be obtained by differentiating Eq. (10)
under the integral sign to give
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For ew(?)/Dy we intorchnnge x and y.
Again the Integrals am replaced by sums resulting in

Dw(xi Yi) = 1 (	
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where the coefficients Ai)k, BI)k' Ci)k, and Di)kf are listed in Appendix A. E it

	

the sum for all the plastic calls In the region.	
k,/

From the derivatives of w the total strains are computed as

i = 1 ay 
+awlxz 2	 Dx/
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The plastic strains appearing in the definition of the [unction f(x,y) are of course
in turn nonlinear functions of the warping [.rrlion w. They can be determined from

Cps xz = C at a xz
C et

(17)

p = Ep
yz	

cyz

of

where

Eor
 V3

_ (Exz) +(ryz )	 (18)
3

and

`P f(cet)	 (18)

Eq. (18) represents the uninxlal stress -strain curve in terms of equivalent plastic
strain against equivalent total strain; that is,

(ao)_ 1 °e
Ep=Cot 3 G

where oe, the equivalent stress, represents the stress on the uniaxial stress-strain
curve and ap the plastic strain on taut curve. Thus, for a given stress -strain curve,
the rotation between c

P 
and ee, represented by Eq. (18) can be determined using

Eq. (20). For the case of linear strain hardening, the relation (18) can be written as

iP =
	

2	 m

c ct - = I1 + rl¢u
3	 (al)
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Since as noted the function f is implicitly a nonlinear function of the warping funo-
that w, the solution is obtained iteratively by starting with f - 0 and calculating Im-
proved values via Eqs. (13). (15), (16), (17), (I1), and back to (13), ate. This is the
method of successive elastic solutions or method of Initial strains. The tangent modu-
lus method could be used equally well and may save on computer time. Complete do-
tails of the calculations performed heroin are given in Rot. V.

Results

Calculations were performed by this technique for a bar of square cross section as
shown in F%. 3, The dimensionless angle of twist per unit length if, defined as era/eel
where a Is 1/2 the side of the square, was increased in steps of one from I = 1 to
'I - U. Linear strain hardening was assumed with values of the strain hardening param-
etor taken as 0 (perfect plasticity), 0. 05, U. 1, and 0.2. Poisson's ratio was assumed
as 0.3 in all calculations.

For 3 - 1, the bar is clastic and a comparison was made between the analytical
solution as given, for example, in Ref. l) as well as with the finite difference solution
of Rcf. (10). The results are shown in Tables 1 to Ill. Table I shows the warping func-
tion as computed on the boundary of the bar cross section. The comparison with the
analytical solution of lief. () shows very good agreement with just four unknowns to
solve for in the boundary integral method.

Table II shows the comparison for the maximum shear stress (at the center of the
edge of the square) and the moment with the analytical solution of Ref. U and the finite
difference solution of Ref. U. Again it is seen that with just four unknowns to the
boundary integral method very good results are obtained, as good as the results ob-
twined for the finite difference method using 55 unknowns.

Table Ill presents the dimensionless shear stress distribution In the x-direction
(rXz/2Ge,) throughout the cross section using 10 unknowns for the boundary Integral
method and rib unknowns for the finite difference method. Again excellent agreement
was obtained. Actually, the results with four unknowns using the boundary integral
method are almost as good, but the results with 10 unknowns are presented to match the
actual (x,y) values of the finite difference results without having to cross plot.

The dimensionless angle of twist per unit length 0 was then Increased in unit stops
to a maximum value of p = 6 for each value of the strain hardening parnmeter m. 'fie
total boundary was divided into 80 intervals resulting in 10 equations for 10 unknowns.
Several test calculations were made with fewer intervals, and the results Indicated that
using 48 intervals (six unknowns) changed die moment and maximum stress by at most
one in the third significant figure and changed the maximum plastic strain by about3per-
cent. All the subsequent results are them-fore shown for 80 intervals (10 unknowns),
although from an engineering viewpoint 48 or even 32 intervals would be sufficient.

The results of the calculations are summarized in Table IV and Figs. 4 to 6.
Fig. 4 shows the dimensionless moment defined as M • = M/2Gr oa3 for vartces values
of 0 and m. Fig. 5 shows the corresponding dimensionless maximum shear stresses
defined as rmax = r/2Ge 0 and Fig. d shows the spread of the plastic zones with an in-
crease of the angle of twist ,a.

The degree of convergence of the iterative process was determined from a relation
of the form
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where M Is the total number of points P i Rowing plastically and k-1 and k are two
successive iterations. The convergence criterion K can be made as small as desired.
In all the calculations the mnvergenoo number K was taken either as 0.0001 or
0.00001. In many of the calculations both numbers were used In turn. The differences
in the results were found to be insignificant. For example, the number of iterations
for convergence for the csee of maximum plastic flow, which occurred for ;i = 6 and
m = 0, was 39 for K = 0.0001 and 68 for K = 0. 00001, and the results were all the
same to at least throe significant figures. For the case 0 = 5 and M = 0, the numbor
of iteration for K = 0.0001 was 33. For the same case using finite differences,
203 iterations were requited.

The boundary integral method Is thus soon to be very suitable for the clastoplastic
analysis of the torsion of prismatic bars. Very good accuracy can be obtained by using
retativoly small sets of linear algebraic equations.

A comparison with the finite difference method indicates a great savings in the
number of unknowns that have to be determined and also a much faster convergence rate
using the method of successive elastic solution for both formulations. This should be
reflected in appreciable savings in computer time, although computer time in not a
limiting factor in r1^v case for the torsion problem.

The boundar3 Integ. t , ncthod can readily be programmed in a straightforward
manner for a digital computer. The use of the warping function to formulate the prob-
lem permits applying the method wit, equal ease to both simply connected and multiply
connected bodies.

TIDE PLANE PROBL%*M

As for the torsion problem, the plane problem can be formulated in several ways,
as a nonhomogeneous bibarmonic problem for the stress function ( Ref. (2)), or in
terms of the Navier equations of equilibrium for the displacements ( Refs. 3 1 ^). Both
methods will be applied herein to the problem of an edge-notched team in pure bonding.

The Biharmonic Formulation

The problem of determining the state of stress and strain In a plane cinstoplastic
problem can be reduced to solving the following inhomogencou,, biharmotic equation for
the Airy stress function, W, as shown in Ref. L)

V' I " = g(x,A

L	 o r
`	 l 9(X' Y) 	 M. 'LIly'-2 /̂ P,641) ^2\ p+A(l) y. ,i" (^ P 4&t \I-p 	 \	 ix	 xny	 )
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for the plane strain case, and

g(x.Y)=_EIa^ Cx+fix/«Ux2\Y+yP/_20x0 (c><Y+^uY/^ 	 (26)
I
L	Y

for the plane .rose case, where e P, ry, and `xY 
represent the accumulation of plas-

tic strain Increments from the beginning of the leading history up to, but not Including
the current increment of the load, and &P, ary, and AEP are the increments of

XYplastic strain due to the current Increment of load.
The stress function v' must satisfy appropriate boundary conditions. For the

problem under consideration ( Fig. 7), 1p(x,y) and its outward notma' derivative Oolan
must satisfy the following boundary conditions ( Rof. U:

m(x, Y) = 0; 2V = 0	 along boundary GA and QA'
On

,p is, Y) ° 0; 2 0 = 0	 along boundary AB and A'B'
an

x	 °max !K3 , ux2 .;, 2x + ° * °max^x2 + ax + a2/WI ,Y) = - w 
I
\4	 3	 \\2	 2 (26)

25P=0
an

'L
mix, Y) _ °muxw u = 0

6 on

along boundary BC and 114^

along Ixxindary CD and C'D'

To solve Eq. ( 23) by means of the boundary integral method, use is made of
Green's second theorem to reduce this equation to coupled integral equations, as shown
in Refs. (J and̂  (I f). The result is

tl nm(x.D -	 VgQ,*11dk do J ^W `L (O2P) -	 p21, +} `S_ p^dq	 for PC R
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x4(x0 y) -	
^n	 an

IJ g(l;,p)In r d; dv J ^4 (In r) - A In rJdq	 for PC C	 (90)
R 

where

4 a V2 '11

pc r2 In 

and r(x,y; 4,,)) Is the distance between any two points Piz, y) and q(4, n) in the ro-
gion R bounded by the curve C. such that PC R + C and q C C ( Fig. 8).

Eq. (27) would, for a known function g(x,y), give us directly a solution to the
blitarmonie Eq. (29) provided the functions w(x,y), aw(x,y)/On, V2w(x,y), and
a[V2w(x,y)]/On were known -a the boundary C.

However, only the stress function w and Its outward normal derivative ao/On
are specified (Eq. (20)). The values of V 24) a 4 and O(V2w) /an • 04/On on the
boundary must be compatible with the given values of w and Ow/0n. To assure this
compatibility, we have to solve the system of coupled integral Eqs. (28) and (20),
which contain the unknown functions 4 and O4 /On.

once the values of 4 and Wan on the boundary C of region R are known we
can proceed with the calculation of the stress field in the region R utilizing Eq. (27)
and the equations which define w, namely,

2n 	 2ax _J_	 o' _i)24,

	

rzy^	 l31)
;)	 ax ay

The calculation of the function g(x,y), which is obtained iteratively, will be dis-
cussed subsequently.

Solution of the integral Equations

To solve the system of couple) integral equations analytically, a numerical method
is utilized in which the integral Eqs. (28) and ( 30) arc replaced by a system of simul-
taneous algebraic equations.

For simplicity of notation the normal derivatives are denoted by prime super-
scripts. The lxamclary is divided into n intervals, not necessarily equal, numbered
consecutively in the direction of increasing q. The center of each interval to desig-
anted as a node. The values of 4 and 4' are assumed constant on each interval and
equal to the values calculated at the node.

In similar manner the interior of region R is covered by a grid, containing in
cells. The cells do not have to have equal areas. Their nodel points are located at the
controids. The value of g(t,h)) is assumed constant over each cell and equal to the
value calculated at the centroid. The arrangement of boundary and interior subdivisions
Is shown in Pigs. a and 10.

Using these assumptions, Eqs. (28) and (:)e) can be replaced by a system of 2n
simultaneous algebraic equations with 2n unknowns, that is, 4 1 and 41.

s	 t
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where I= 1, 3, 3, . .. , n, r ik is the distance from idn node to the conlrold of the kilt

call, Ak is the area of file k ilt cell, and
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where Integration Is taken over the Jut interval, and riJ is the distance from tut

node to any point in the J
t
' interval. 'Phu normal derivatives in Eqs. (33) are taken

on tine Jut Interval.

For curved boundaries the coefficients given by Eqs. (33) can be evaluated, If nec-

essary, . by, 	 simpson's rule for I / J. For f = J, bveatme of the singular nature of the
Integrand, the Integrals for the coefficients must be evaluated by It limiting process.

For boundary intervals, such as for the problem treated herein, which can be ropm-
sented by straight lines it closed form solution can be obtained for those coefficients.

Boundary Eqs. (:.L) expressed in matrix form become.

InIJ-Sijr] IbiJl [ #J J IInr lk l [al [ol [,gA)kl

n x n n - n n'• 	1 n - m n - n nrn mx1
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*1 [fill 10j]
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'0j,
n*!
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Thus, the problem is reduced to the solution of the following matrix systatn:

[BjtX) ° (R)	 (35)

where JBJ Is 2n x 2n matrix and (X1 and ( R; are 2n x 1 column matrices.
Matrix [B] is dependent tmly on geometry, that Is, number of nodes and their dis-

tributlan on the boundary. Since the matrix {R1 contains the noWnear function g(4,n),
which depends on the stress field and therefore on matrix JX1, an iterative process will
be used to obtain the solution.

To calculate strosses, at any nodal point in the region R, from the stress function
w, we need not perform any numerical differentiation. Eq. (27) can be differentiated
wider the Integral alga and once 4 and 4' are known on the boundary the stresses
can be obtained by the same type of numerical integration as in Eqs. (32). Applying
Eqs. (31) to Eq. (27) yields for the case of a rectangular grid the following stress
equations:
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 -_4 )2 + (Y - a)L ik	
1=1

k=1	 ilk

where now t = 1, 2, 3 9 .	 , m refers to the centrold of the Ith cell. 6 x and 6t,
represent, respectively, a-directional and y-directional dimension of the cell. no
coefficients A il , Bit , C if , Dip E ly FIJI G il , it i1, III, and Kit are obtained by up-
proprinle differentiation under the integral sign of the coefficients given by Eqs. (33)
and tiro listed in Appendix B.

,(36)
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The stress function o la not oonstant on the loaded boundaries BC and B'C'.
The assumption that t ' :s piece-wiso constant may lead to appreciable errors in the
numerical results. To eliminate this source of urror, the summations given In
Eqs. (32) and (30) for Intervals lying on the loaded boundaries and involving the stress
function are replaced by direct Integ.-ttmn,

Boundary Interval and Interior Grid Size

The number of nodal points prescribed for the. boundary is thcoratically unlimited.
liowhvur, computer storage capucity for die computer used and difficulties associated
with inversion of large matrices limited the order of One coefficient matrix [B] of
Eq. (3I) used heroin to 140.

Because of geometric and lending symmetry about the x-axis, It is possible to re-
duce the number of unknowns. For 2n total number of nodal points the number of
equations and unknowns 4'i and +1, is reduced I rum 4n to 2n. Additional reduction
In the number of unknowns is accomplished by taking into consideration St. Vonant's
effect at the loaded boundaries (Re(. (IS)).

Since the vicinity of the crack tip is of greatest interest, a fine nodal spacing along
the notch was chosen. To reduce the error Introduced by the change In the interval
size (Ref. (13)) around boundary points A and A' and at One same time to obtain fine
resolution at the tip of the not ch, the boundary along the notch was divided into a number
o^ =v ula progressively decreasing In length. The rate of change in the interval

r:,tth and the resulting length of the smallest interval was found to have a great influ-

snco on l.':, stress field In the vicinity of the tip of the notch. The rate of change In the
interval 's length along these boundaries was optimized by the method presented in
Ref. (14). For the cases considered optimum ratios of the IengOs of two consecutive
boundary intervals were found to be In the range of 1 . 05 to 1.10. The resulting small-
est dimensionless boundary inte rval length varied from 0.0001 to 0.0002. A set of
140 equations containing 140 unknowns was used. Note that the corner points are al-
ways designated as interval points, never as nodal pubnls, thus eliminating discan-
tinuous functions from numerical analysis.

The choice of the size of the grid, which has to cover the region where plastic
Row is expected to occur, is of utmost importance. A too course grid will not detect

changes in the yaloes of plastic-straln for small loading Incremens. A too fine mesh
size muy result In distorted values of second-order derivatives of plastic strains,
which appear in the function g(x,y). The loading increment and the grid size tare re-
lated to each other. A bod choice of either of them could result in the divergence of the
Iterative process. To allow One maximum of grid points to be within the expected plas-
Oc zone, ;t variable grid spacing was chosen. The grid used for plane stain conditions
was tune r, in general, than the one used for plane stress cases.

The interior region, where plastic flow^ Is expected, was divided into r n. s rec-
tangular cells. llue tr symmetry ;lout the x-axis. One number of unknown functions g,
appeuriog in die bound "y Eqs. ( 32) and stress Eqs. (36), was reduced from r x s to
in r is . 1)12, where now the coefficients of these functions represent the sum of
the effect of left-hand and right-hand sides of the plastic field. Because of computation
time limitations, the grid was a rranged In a 27 x 23 cell pattern, resulting in the num-
ber of unknowns g to be equal to 1124. BY increasing tht number of unknowns to 400,
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the computation time for one iteration almost doubled. The smallest calls, located in
the vicinity of the Up of die notch, have dimensions B x/w = 0.004. 5 /w - 0.000 for
plane strain cases, and b x/w - o. oa4, d v /w = 0.016 for plane atrmr'i cases.

The solution to the problem was obtained by the meth«! of successive elastic solu-
tions as discussed for the torsion problem and described in detail in Refs. U, and (15).
no computattens were performed on a digital computer using a FORTRAN IV program
with single-provision arithmetic. The matrix system given by Eq. (35) was solved
using the motbified Gauss eliminative method, which utilizes pivoting and forward and
backward substitutions.

Results

A number of beam problems were solved for both plane strain and plane stress
cases. These included notch depth to beam depth ratios of 0.3 and 0. 5, notch atteas of
30 and IC, strain hardening parameter values of O.05 and 0.10. In addition, calcula-
tions were performed using the actual stress-strain curve of a 5003-0 aluminum alloy.
For all cases Poisson's ratio was set at 0.

The load increment size used was necessarily a compromise between the accuracy
desired and computational time required for convergonce. For strain hardening param-
ater m = 0.05 the load increment size Oq defined as Ao rnxx/oo was taken equal to
0.05; while for m = 0. 10, Aq = 0. to. For the case of a 5053-0 aluminum alloy, whore
the actual stress-strain curve was used, the load was ineromented by Aq = 0.025.

For the beam with dimensionless notch depth a = 0.5 the minimum load required
to produce plastic Row at the most highly stressed grid points was found to be q = o. 30,
and for a = 0.3 the initial load was found to be q - 0.50. The maximum load wnsi&
ered was q = 0.7 for the a = 0.5 cases, and q = 0.0 for the e - 0.3 cases. in the
process of solving the aforementioned probluma, the case with strain hardening param-
eter at = 0.06 required approximately 50 iterations for each increment of load ti. o.
4 = 0.05) Pir the relatively fine convergence parameter used. For cases where lee
strain ho i 1ening parameter m = U. 10 the average number of Iterations needed for aach
Increment of load (i. e. , Gq = 0.10) was reduced to 40, while use of the actual stresa-
strain curve resulted In convergence In approximately 30 iterations for the plane strain
case and In 20 iterations for the plane stress case.

Typical results of the computatiuns are presented in Figs. 11 to 18 and Tables V
and VI. Complete detailed results are given in Ref. Q).

The growth of die plastic zone with load is shown in Figs. 11 to 14. It is seen that
the shapes of the elasloplabuc boundaries remain similar to each uther as the load in-
em-aces. As expected, phistic Row starts around the Up of the notch and as the load
increases appears also at the boundary opposite the notch. Comparison of figs. 11
and 12 with Figs. 13 and 1 .1 shows that for the same loads the size of the plastic zones
for plane strain am. cunslderably smaller than for plane stress.

In the case of an ulastoplastic prublom the stress intensity factor K  must be
generalized U the form

Kliamax) = li U 
2a rnuy(r, 0)I	 (37)

0=0

where the exponent n is a function of the applied load, amex. For linear elastic

r
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behavior Ki Is identical with K I and n = 1/2. For the elaslaptaatic case the varia-
tion of n with load Is shown in Tables V and VI. In the case of plane strain the stress
singularity n decreases slowly as the load increases. For the plane stress case,
there is a sudden drop in n from its elastic value as plastic flow appears. Subse-
quently n slowly increases approaching a limit as the load increases.

Variation of the dimensionless generalized stress Intensity factor with lead Is
#]town In Fig. 15 for the case of a specimen w,th notch depth of —a=  0.0 and a- 100,
under plane straln condition and two values of strain hardening parameter m. The
stress Intensity factor stows no significant increase over the linear elastic value up to
an applied load of q = 0.40. Above this load Kr increases progressively for both
m 1s, at the faster auto for the lower strain hardening parameter.

The products of y-directional stress and total strain were also calculated for var-
ious cases. The order of singularity of that product was determined by platting
Into ye y) against In r and by making a least squares fit of a straight line through the
plotted points. It was found to be very close to unity for all cases considered.

The y-directional notch opening displacement was obtained for each case by numor-
tell Integration of tae relation c ij - (1/2)(ui j + uj I) along straight lino paths. For
each case a number of paths were chosen through into plastic region near the notch, and
the resulting displacements were averaged. In general, the notch opening displacement
varies linearly with the load until the plastic zone is established at the bounda_y oppo-
site the notch. Then It Increases raplaiy, reaching values several times that which
would be calculated from the elastic solution.

In order to verify in part the accuracy of tae method used, a comparison of notch
opening displacements was made with experimental Pastille obtained by Ilubsey and
Jones (private communication from R. T. Bubscy and M. If. Jones of NASA Lewis
Research Cantor). The specimen used in this experiment, made of aluminum 0083-0
with a length to width ratio of 4 and a crack length a = 0, 5, was subjected to three-
point bending. The stress-strain curve for Oils specimen is shown In Fig. 10. The ex-
perimental results as shown in Fig. 17 are in good agreement with numerical results
obtained herein.

Finally, the J integral was evaluated for several cases. As in notch opening dis-
placement calculations, straight line paths were chosen through the plastic zone near
the tip of the notch. The integral was evaluated using values of stresses, strains, and
displacements at cell centroids for a number of paths. The path independence of J was
not conclusive, since the reaulta varied up to 15 percent from the averaged value. It is
possible that the results obtained herein do not indicate that the path independent prop-
erty is lost but rather that the field values of the displacements are not calculated with
sufficient accuracy.

The average values of the dimensionless 7 integral as a function of lead are
plotted in FIg. 18 for a case of it specimen with a 100 edge notch, n = 0. 5, m = 0. 05,
and plane strain condition. A! the slut or plastic now J Increases rapidly with lead.
This is followed-bv almost linear ,riation with additionta load.

From the above results It ,;.Pars that the RIE method applied to the plane problem
and formulated in terms of th% 11: J stress function is capable of giving detailed results
such as stress and strain distriixhtiuns around the tip of the notch and, related to them,
the shapes of plastic zones. This was accomplished using a relatively small number of
unknowns.
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The presence of a singularity at the Up of the notch makes accurate answers very
difficult to obtain. Nevertheless good agreement was obtained between the calculated
results and experimentally measured notch opening displacement as shown in Fig. 17.
Some improvement in the solution techniques and further Investigation of the influence
of the boundary nodal spacing and interior grid size on the resulting stress and strain
fields, and therefore, on the notch opening displacements and J integrals, is still
desirable.

THE DISPLACEMENT FORMULATION

Although the biharmonic formulation previously described appears as a viable
approach in solving the plane elastoplastic problem, some difficulties are encountered
in calculating displacements since numerical differentiations are required in the proo-
cuss which can lead to appreciable orrors and inconsistency of results. A more direct
formulation of the problem is given in terms of the Wavier equilibrium equations for the
displacements. The general equations are given in Ref. U and several problems using
those relations are reported in Ref. U.

As shown in Ref. (J the Navier equations with plastic Row can be converted to the
DIE	

f	 pAui(P) _f (UijPj - Tijuj)dq +,/R Ejki(̀ jk + jk)dA	 (38)

where uj and P  are the boundary displacements and boundary loads, respectively,
and the usual tensor notation is used. The tensors U ij , Tij , and £jki are given by

U ij = C l(b IjC2 In r - r, jr, j)	 (39)

Tij 
=L3 Faanr

 (6 ijC4 + 2r, I r, j ) + C4 (r, jni - r.InjI	 (40)
r 

C
Ejkf= r ^C4(bijrlk+aki"j- bjkr#.i) +2r,Ir,jr,I^	 (41)

with

C1=-
B+rG(11 

-P)  , C2=3-4v

(42)

C3	 1	 . C4 = 1 - 2µ
era - v )

and r is the distance from the fixed point P to the variable point of integration, q.
The above equations are for the case of plane strain. For plane stress one replaces µ
by µ/(1 +µ). The coefficient la is equal to 1, if P is an interior point and is equal to
1/2, if P = p is a boundary point.

The solution is now obtained by replacing the integrals by sums as before, result-
ing in 2n simultaneous equations for the case of n boundary segments. These can be
written as the matrix equation

I..



k..1

AAlI	

B B3 w^= ]-[DJ+[AD,	
443)

2

where A, B, A', and B' am a x n matricus of known coefficients. u and v am the
x and y displacement vectors for the boundary nodal points. y and 6 are vectors
given by

Y = aps + JPY

(44)

d = n ips f p'Py,

where a, R, a', and R' am known n . n matrices and Its, PY are the x and y
boundary force vectors at the nodal points. The vectors C and D are functions of
the accumulated plastic Row and arc known at the beginning of each load increment.
The vectors AC and AD depend on the plastic Row increments during the current
load increment and are obtained by iteration. All the terms appearing in Eqs. (43)
and (44) are listed in Appendix C.

For the first boundary value problem where the loads are specified over the com-
plete boundary, Eq. (43) is solved directly for the unknown displacements tit the bound-
ary nodes. For a mixed boundary value problem, whom the displacements at some of
the nodes are specifics! and the loads are unknown at these nodes an obvious interchange
of the appropriate columns of the coefficient matrices must be made.

Once Eq. (43) is solved for the unknown displacements (and loads if any), the total
strains are computed at any interior point by differentiating Eq. (38) with A = 1. At an
interior point Pij - P(x i , yj) we can write

n
e x(P ij ) _ Z ( pxmEijm + PymFijm - umG iim - vmli ljm I + 4j 

1- Alij
m=1

n

c Y ( P ij) _

	

	 (PxmEljm , PymFljm - um6'jm - vmli iim) + tIj +nisi 	 cast
m=1

n
C .(P )=	 (P E" ^P F" -u G" - v R ) + I'+Ainxy ij	 xm ij	 ym tjm	 m ijm	 m j}m	 Ij	 Ij

m=1

All the coefficients are given in Appendix C. The plastic strain increments are then
computed from the plastic strain-total strain relations and the stress-strain curve as
given in Refs. (3,.D), the method of successive elastic solutions being used to obtain
these strain increments iteratively:

It is shown in Ref. (16), that greater accuracy can be obtained for the same number
of nodal points by assuming linear variations of the unknowns on the boundary intervals.
This of course complicates to some extent the calculation of the coefficient matrices.
Furthermore the nodal points can no longer be taken at the midpoints of the intervals,
but must be taken at the end points. This introduces some further complication when a



nodal point occurs at a corner, since firstly, the boundary load may be discontinue= at
a corner and secondly, the Jump in the boundary integral at a corner is no longer 1/2,
but depends on the corner angle.

Although these additional complications can be taken care of as was done In
Ref. U, a somewhat different but approximately equivalent approach was attempted
heroin. The nodal points were kept at the centers of the intervals. Each interval was
divided Into a number of subintervals and the integral for each subinterval was weighted
linearly according to its distance from the nodal point. This approximates a linear var-
iation of the unknowns over the intervals.

This approach did indeed give Improved results. For example, forthe boom of
Fig. 7, with a/w = 0.5, L/w = 1.2, the plane strain elastic maximum crack opening is
Ev/6M = 5.67. The value obtained using 90 nodal points was 4.92 assuming constant
values over each interval, and was 5.62 using the linear weighting technique.

Results

Calculations were made by the above technique for the same problem as was solved
by the biharmonic formulation previously described. Some preliminary results are
shown in Figs. 17 and 19. Fig. 17 e., apares both the biharmonic formulation and the
displacement formulation with exper h -:ental results for the maximum notch opening.
The beharmonic and displacement formulations give results which are in very good
agreement. The same is seen in Fig. 19 where the stress a y at a value of x very
close to the notch tip is plotted against the distance from the notch centerline, It. The
agreement between the two formulations is again very good. The calculations for larger
load increments using the displacement formulation have not yet been carried out.
These are presently under way.

A preliminary comparison of the convergence rate of the two formulations indicates
that the plastic flow computations converge more rapidly using the displacement formu-
lation. A comparison of the computer times, however, could not be made, since the
two types of calculation were carried out on different computers.

CONCLUDING REMARKS

This preliminary survey of the use of DIE methods for elostoplastic problems indi-
cates that they forma viable and worthwhile approach for solving such problems. The
torsion problem in particular can easily be solved for almost any geometry cross
section.

The plane elastoplastic problem can be solved by using either a blharmonic formu-
latiun or a displacement formulation. Both appear to give good results with relatively
small sets of equations, even for problems with singularities, such as beams with
notches.

Although no comparison was made heroin with the finite element method, such com-
parlsons were made in Ref. (1b). It is indicated in Ref. U that the computer times
for the finite element method and DIE method (using the displacement formulation) are
comparable. Finer resolution can however be obtained by the DIE method.

The application of the DIE method to claslopbtslic problems is still in its early sta-
ges. Much work remains to be done in refining the techniques for optimum application.

i



APPENDIX A

BOUNDARY INTEGRAL COEFFICIENTS FOR TORSION PROBLEM

The division of the boundary into Intervals with their corresponding nodal points is
shown in Fig. 20. The x and y coordinates of a boundary nodal point p i am design
natal as (xbi , ybt). The coordinates at the beginning and and of an interval (say Inter-
val J) are designated by (F 1 , >Y at the boginnini; of the interval and by (E J+I , n))+1) at
Ono and of the interval. The Interval lengths h l need not be equal. 7%e coordinates of
the centrold of an interior cell wham plastic now occurs are designated by (xk, ye).

The coofncionts in Eq. (19) are then given by

	

aii = J	 an (In rpiq)dq

q
qJ-(1/2)

` h (xbl xbi)Q1 + (ybt - y0c.1l	
1 # 1

	

1	 2

rid

aiI = n -	 alk
kt

"a last rotation follows from the Gaussian condition, that Is,

a In r dq = a
C 'mq P4

To evaluate the bit coefficients Simpson's rule is used for the case i # j and
closed form integration is used for the case. I = } since the integrand is singular for
I = J. The result is

h	 I^
bll G 

InlrI.J-(1/2) +.I In r i} +In 
rl.J*(l /2)] 	 1 0 j

\ Inn
bit = hl In — - 1/

2

1
R  =- I	 Pk@ In rik@ AAkQ

.Q

where 
L.+ 

is the sum for till the plastic cells in the region and AA M is the area of
k,Q

the col) with coordinates (xk , yr).
The coefficients A iJk, Bilk, Cilk, and Di}kt are given as follows using Simpson's

rule:

1

(40)

(47)

(48)

1 ^ --]



f

AiJk	
(xt - f k)2 - (Y - nk)2 + i lxt - xhk12 - 

(Y( - Yhk)2 + (xi - E k+1)2 - (Y - nk+l)
6	 4	 4	 4

^tl^ k-ll/2) 	' IJk	 ri), k+(1/2)

(49)

I'

D	
hk (X

i 
- 40(y - nk) + 4 (xt - xyk)(Y1 - Yhk) h Ix i - { k+l)(Y) - nk+l)

ijk	 (!(0)
2	

ii, k-(1/2)	 Ilk	 rl,k+(1/2)

	

C - !Lk xt - Ek + 4 xi - xbk + xi - Ek+l	 (81)t)k'
ri1k	 ^ij,k+(1/2)

I'

Ai)kP =	
x^- xk	

2
 LAW	 (52)

(at - xk) + (Y) - YO)

4

1

i

i

I'

I

li
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APPENDIX 6

COEFFICIENTS OF TIIE STREW EQUATIONS (36)

The coefficients appearing in stress Eqs. (36) are given by the following relations:

Ail -
	a2 

( oil) = 4	 a	 (xI - 4)2 - (Yi - M2
Y^ an
	
ieY-	 [xi - 4) 2 * (Y i - 77)1

1

D = 82 If ) = 4	 (Yi - 71)2 - (xi - 4 )2 d9
a	

1

1
By	 I(xi - 4) 2 + (Yi - *1)21

. [xi - 4) 2 + (YI - 71)2]+	
2(Y) - 71)2

	

an	 (xi - 4)2 + 0 1 - 71)2

r

D11 = a2 ( dil) = -

i

	inHxi- 4)2 +(Yi-71)2]+	
2(Y

I -71 a)	 + I

	

ey2	 (xi -4)2 +(YI -71)2

	

2	 a(	 4)2
E I =a lci ) _	 kin(( Xi- 4) 2 + (Y I -71) 11 +	 d9

	

1 8x2 	1	 On	 L	 (xi-F)2 +(Yi-17i2
1

2(x	
4)2

F11 =a
2 

(dil ) _-	 tn((xI-4)a +(Yi-71)^]+	 I	 +1 dq

	

8x2 	L	 (xi-4)2+(YI-9)2
1

z
Cif = a2 (cIJ) =

aY2

i

(53)

Gij	
32 l

o iJ) _ -8	
a	 (xi - 4)(Y - 71)	 - 

dV
ax 8Y	 1	 an ^xi - 4)

2 + (Y i - 71)2]

fl(	 (con

o

1 -._—ij



• (53)

j

ag	 (xi - E)IYi - a)

lj ax DY U	
Exi - f)g + (ri - o)g^

1	 C

_L2	
(xi a	 (xi - 0(Yi - +1) 

1dQ
liJ ax aY
	 an Ixi - E )2 * (Yi - al2

1

K _ a^ (d ).-2	 (xi- "(ri- +1) 
Sd4

iJ ax by i1	
(xi - E)g + (ri - +1)

1

The evaluation Of these integrals is given in Rot. (l•
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m+1
E l _ el

m

m+1
EZ = sin 0 cox U

m

E3 = ain20 
m+1

l
m

m+1
E5 = In r

im

m+l
E0 - casgB

m

M+1
ET < sin4U

Im

m+1
Es = tan 0 In ri

m

m+1
E8 =tan OI

m

D = rm cos Um

where

Then

APPENDIX C

COEFFICIENTS OF DISPLACEMENT FORMULATION EQUATIONS

The coefficients sppearinq in Eqs. (45) to (45) are given as follows:

Lot

(54)

^1.

_/ Y	
Y ' 	

m x	 x\
Um =sin l in m - _ m m - I

rim	 rim



A U - C3[lC4 + 4El + (t 2 - m2)E2 - 2tmE3]

Bt) - C3[2tmE2 + (I2 - m2)E3 + C4E5]

Ai) - CP[21mE2 + ( Q 2 - m2)E3 - C4E5]

)1b - C4 [(C4 + 1)EI - (t' - m2)E2 +2QmE2]

li

i

(55)

atj - DC1[C2 - (I 2 - m )) El - 4C2 + m"iEp + 21mE5 + C2E`]

,Pty - aSj - DC,[ 21mEI + ImEO - (1 2 - m2)E6]

Rij - C1D[(C2 + 1 2 - m2) EI - (C2 + @ IEg - 21mE 6 + C2 Eel

Etjm = - C I [( C2 - (1 2 - m ))t El + (@ 3 - 3Qm2)E2

+ (m3 - 3mt2)E3 - m(C2 - 21 )E6]

Fijm =-Clr 2Q 2mE t - (m3 - 3t 2m)E2 + lQ 3 - 3@m IE.1 - Q( Q2 - m IEB]

E tjm = - C l r 2Qm2 E 1 - (4 3 - 31M2) E2- (m3 - 3Q 2m)E3 - m(1 2 - m2)E5]

Fljm = - Cl[(C2 + 1 2 - m2 )ME I + (m3 - 392m)E2

- (@ 3 - 31m2)E 3 + I(C2 - 2m2)E3]

E j}m = - Cl [( C4 - 
(Q2 - 

m2)) ME l - (m3 - 3I2m)E2

+ (I') - Urn 2)E3 + I(C4 + 2m2)E,]

Y Ijm = - Cl[(C4 + 12 - m2) Q E l - (Q 3 - 31m2)E2
	 (5G)

+ (m3 - 3Qm2)E3 - m(C4 +2f 2)E5]

Gijm = - C3 I4 - W 2 - ( 4 ) C E2 + (C.) - 2 + lot ")m E3
D

+ 3Q(4Q l - 3) E4 + 2m(4m2 - 3)E7]

(continued)
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HijM s-C3i,2-612-C4)mE2+(-C4-2+lOm^'N
D ll

- 2m(4m2 - 3)E4 +21(41 2 - 3)E71

C+Ijm - C3 [ 2 - 6m2 - C .1"2 - (- C4 - 2 t lot 2)mE3
D
	

(66)

- 21(41 2 - 3)E+ +2m(4m2 - 3)E71

ll1jm ° -5[ (4 - 6m2 - C4)mE2 - (Cl - 2 + IOm2)1 E3

+ 2m(4m2 - 3) E4 - 21(41 2 - 3)q

Dlym =-C3 [m(6m2 - 5)E2 + f(tom2 - 3)E3 - 2m(4m2 - 3)E4 +21(41 2 - 3)E^
J	 D

11 111m --L3 [ ¢(61 2 - 5)E2 + m(3 - l0f 2) E3 - 2f(4¢ 2 - 3)E ,/ - 2m(4m2 - 3)E7,

and r

ill = "'k1 181111(piJ' Qk1 )ExlQk¢ l +51122 (Plj Qk1)cy(Qk¢)

+ 2 51112(piJ'Qkf)6zy(Qkl)1AAk¢
0.C(57)

IIJ' 'kf (82211` x ` 82222` y ` 2 '42212' p ^^kl

))j - F, 81211 x 51222Ey 2 51212(xy)^k¢
k¢

and

_lr8 r ^^	 J r	 1
SijkP 2 0x .// 	 k¢i + ax .//	 klj	

1581

J A ke	 1 Ak¢

whore k¢ represents an interior cell.
If the nodal point i and the integration Interval j am on the same straight seg-

ment of the boundary, then D _ 0 and d - ,r/2, where the plus sign is used when j is
ahead of I, and the minus sign is used when j is behind I. 11As leads to 0 x . in the
calculation of pij and d(j. A simple limiting process shows that for this case, with
t/J,
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pil - *Cl'lmllrl+l - r/)

I1. 
aCk 20J41 to rl+l' rl In 9- (C2 «lJ)Ir1+l - r,])

and for i - J

llil . 2C l 1 1 ml rJ+1	

(60)

OU - 
2Cl [C2 r1+1 In r1 +1 - (C2 + fjjr1+1J

r-

3

(HA



REFERENCES

I. symm, G. T., "Integral Equation Methods in Elasticity and Potential Theory,"
Report pr mmd for National Physics Lab., MA-51, 1964.

2. Risso, F. J., I /An Integral Equation Approach W Bor radary Value Problems of
Classical Elastostaties," Quart. Awl. Math., Vol. 25, Apr. 1967, p. 84.

3. Mendelson, A., "Boundary-Integral Methods In Elasticity and Plasticity," NASA
TN D 7418, 1973.

4. Swedlow, J. L. and Cruse, T. A., "Formulation of Boundary Integral Equations
for Threo-Dimensional Elasto-Plastic Flow," Int. J. Solids strwe a. s, Vol. 7,
1971, p. 1673.

5. Mendelson, A., Plasticity: Theory and AyOicatio . Macmillan, Now York, 1968.

6. Mendelson, A., "Solution of Elastoplastic Torsion Problem by Boundary Integral
Method," NASA TN D 7872, 1075.

7. Pragor, W., IIAn Introduction to the Mathematical Theory of Plasticity," J. Aanl.
Phys., Vol. 18, Apr, 1947, p. 375.

8. Bluth, J. H., "A Note on Plastic Torsion," J. Alwiled Mach., vol. 22. Sept. 1955,
p. 432.

9. Sokotn6wff, 1. S., Mathematical Theory of Elasticity. 2nd od., McGraw-Hill, Now
York, 13tut.

10. Mendelson, A., "Elastic-Plastic Torsion Problems for Strain-Hardening Mate-
rials," NASA TN D 4391, 1968.

11. Rzasnicki, W., "Plano Elasto-Plastic Analysis of V-notclied Plate Under Bonding
by Boundary Integral Equation Method," Ph. D. Thesis, Univ. of Toledo, 1973.

12. Gross, B. , "Some Plane Problem Elastostatic solutions for Plates (laving a
V-Notch," Ph.D. Thesis, Case Western Reserve Univoislty, 1970.

la. Walker, G. E., Jr., "A study of P - ApplicaWlity of the Method of Potential to
Inclusions of Various Shares in Two- and Three-Dimensional Elastic and Thermo-
Elastic Stress Fields," Ph.D. Theals, Univ. of Washington, 1969.

1.1. Rzasnicki, W., Mendelson, A., and Albers, L. U., "Application of Boundary
Integral Mat hod to Elastic Analysis of V-Notched Beams, 11 NASA TN D 7424,
1973.

15. Rzasnicki, W., Mendelson, A., Albers, L. U., and Raftapoulos, D. D., "Appli-
cation of Doundnry Integral Method to Elastoplaslic Analysis of V-Notched
Beams, 11 NASA TN D 7637, 1974.

16. Riecurdella, P- C., "An Implementation of the Boundary-Integral Technique for
Planar Problems in IClasticily and Elasto-Placticity," Ph.D. Thesis, Carnegla-
Mcllon Univ., 1973.

.4

t



r.

i

fI

e'

^f

!i
r1!

1

x-•	 U a

^S	 Yi

i!	 t ,̀

1.

Ij

Ii

ii

,

	

	 II
I:

f^.

I

1A

F^

S^
ii
is

z

I	 ^1

P	
V^,

1

TABLE 1. - COMPARISON OF VALUES OF DIMENAONLESS WARPING FUNCTION ON BOUNDARY

OF ELASTIC SQUARE PLATE WITH EXACT ELASTIC SOLUTION

TABLE I1. - COMPARISON OF ELASTIC SOLUTIONS FOR MAXIMUM

DIMENSIONLESS SHEAR STRESS AND DIMENSIONLESS

MOMENT FOR SQUARE DAR

Exact solution Finite difference Doundary integral method
method

Intervals, n(55 egs.i

4 8

Dimensionless moment, M • 1.125 1.122 1.128 1.127
Dimensionless maximum .6754 .6725 6724 .6747

shear stress, 'max

Poundary Exact Value of carping function by Boundary Exact Value of warping function by
value, warping boundary integral method value, warping boundary Integral method

y yfunction,
W

Intervals, n
function,

w Interval*, n

4 a 12 IS 4 8 12 16

0.09125 0.01095 0.01095 0.4912 0.1424 0.1424

.04167 .01450 0.01459 .5417 .1499 0.1499

.0625 .02185 0.02184 .5625 .1448 0.1446

.09975 .09264 .03264 .5998 .1461 .1400

.1250 .04926 0.04911 .04926 .6250 .1461 0.1446 .1461

.1569 .05974 .06972 .6569 .1449 .1449

.1875 .05990 .06986 .6875 .1422 .1419

.2089 .07050 .07051 .7089 .1996 .1995

.2189 .07980 .07977 .7188 .1980 .1980

.2819 ..09295 .09294 .7819 .1244 .1244

xi17 .09527 .09525 .7917 .1214 .1212

.9125 .1009 11009 .8125 .1149 .1140

.9438 .1090 .1090 .8498 .1029 .1027

.9756 .1165 .1159 .1164 .8750 .08864 .08826 .08811

.4069 .1299 .1292 19069 .07166 .07129

.4976 .1299 .1292 .9975 .05169 .05142

.4589 .1929 .1929 .0599 .09644 .09621

.4668 .1940 .1946 .9688 .u2808 I 1 1	 .02796
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Figure 1. - Prismatic bar subject to twisting couple.

t

TABLE V. - ORDER OF STRESS SINGULARITY n AT Tl1E TIP OF THE NOTCH

FOR A SPECIMEN WITH A SINGLE EDGE NOTCH SUBJECTED TO

PURE DE.NDINC - PLANE STRAIN

(Putsaun's ratio o . 0.331

Dimension .
IVNN notch

Nutch
angle.

Strain hard ,
CNng Ita•

Elastic DinionNioltll'$$ load. ii

depth. .r. ralnc;vr. 0 4 U.5 1	 0.0 1	 0.7 0.8 0.9

it dog UI

0.3 3 0_10 0.4099 -•--- U. 4110 0.4UU 0. A87 0.473 0.47"
.3 10 .10 .-... .40ti qy7 .492 -480 487

5 10 05 I 0.499 .400 480 473 --- -••
5 10 .IU 1 .406 4UU 4t10 .47tl ••• --

TABLE VI. - ORDER OF STRESS SINGULARITY n

AT THE TIP OF THE NOTCII FOR A SPECIMEN

WITH A SINGLE EDGE NOTCH SUBJECTED

TO PURE BENDING - PLANE STRESS

(Di awns Ionics$ notch dcplh .1 - 0.3t notch angle
a-30u; strain hardcaing par6nle t (• r Ih - U. III:
I'u;seun'N ratio , -. U. 33.1

Elastic DuuenslenlcsN load. q

U.5 0.0 0.7 U.9 0.9

0.4099 0.419 1	 0.434 U. 448 0.453 U. 459



Figure 2. - Region R, boundary curve c, and
geometric quantities entering Into boundary
Integrals.
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Figure 3. - Square cross section.
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Dimensionless of angle of twist per unit length, 0
Figure 4. - Variation of dimensionless moment with dimensionless

angle of twist per unit length for several values of strain- hardening
parameter for square cross section.
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Figure B. -Sign convention for simply connected region R.
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Figure 1Q - Boundary and interior region sub-
divisions for P(x,yl c R.

x. E

Figure 7. - Single-edge V-notched beam subject to
pure bending load.
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Figure 11. Growl 	 zone size with load for specimen with single edge notch subjected to pure

	

bending, Plane	 ensionless notch depth à w 0.3; notch angle a w 100; strain hardening

	

parameter m -0	 n's ratio y w 0.33.
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Figure 1?	 of plastic zone size with load in vicinity of notch for specimen
with si	 otch subjected to pure bending, Plane strain; dimensionless
notch	 .3; notch angle a w 100 ; strain hardening parameter
m • 0.	 's rat to p w 0.33.
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Figure 13. - Growth of plastic zone size with load for specimen with single edge notch subjected to pure
bending. Plane stress; dimensionless notch depth 7 . 0.3; notch angle a • 100; strain hardening
parameter m • 0,10; Poisson's ratio y • 0.33.

z

Figure 14. - Growth of plastic zone size with load in vicinity of notch for a specimen
with single edge notch subjected to pure bending. Plane stress; dimensionless
notch depth a • 0.3; notch angle a • 10 0; strain hardening parameter m • 0.1D;
Poisson's ratio y • 0.33.
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Strain hardening

Dimensionless load, Z

Figure 15. -Variation of dimensionless generalized stress Intensity factor with load for
specimen with single edge notch subjected to pure bending. Plane strain; dimensionless
notch depth 3'' 0.5; notch angle a • 100; Poisson's ratio p • 0.33.

Strain, c

Figure 16. - Stress-strain curve for aluminum 5083-0 used in test (private communication from
R. T. Bubsey and M. H. Jones of NASA Lewis Research Center). Young's modulus of elas-
ticity E • 7.79406 newtons per square centimeter (11.3x10 6 Win. 2); Poisson's ratio
p • 0.33.
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1
Test data obtained for three-point bending of

edge cracked specimen with length to width
6 ratio of 4, dimensionless crack depth of

0. 5, and Polsson's ratio of 0.33 (private
communication from R. T. Bubsey and
M. H. Jones of NASA Lewis Research
Center)

— — Elastic
Reference (11)

4
	 O	 Displacement Formulation

kt I

r-

Dimensionless load, q

figure 17. - Dimensionless p lane strain y-directional notch opening displacement for
specimen with single edge notch subjected to pure bending. Dimensionless notch
depth a • 0.5; notch angle a • 100 ; Poisson's ratio p • 0.33; stress-strain curve
given by figure 16.
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Figure 18. - Dimensionless plane strain 7 integral for specimen with single edge notch
subjected to pure bending. Dimensionless notch depth i • 0.5; notch angle a • 100;
strain hardening parameter m • 0.05; Poisson's ratio y • 0.33.
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Figure 20. - Boundary and interior notation for computing co-
efficients given in Appendix A.
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