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1.1 PURPOSE 

1 

INTRODUCTION AND SUMMARY 

A number of attempts have been made to establish multiple disci­

pline user data requirements for earth resources data acquisition 

systems. Previous results have been unsatisfactory, primarily because 

of the very limited experience of the users with the developing 

technology and the paucity cf hard data of adequate quality and rele­

vance on which to base firm analytic studies. As a result of the 

Skylab S191 and S192 programs, the ERTS program, and data collected 

by several airborne multispectral scanners, however, an exte~sive 

base of such hard data now exists. 

The p"rpose of this study was to use actual MSS data to outline 

parametrically the trade-offs between user performance requirements 

and hardware performance and limitations so as to allow subsequent 

evaluation of compromises which must be made in deciding what system(s) 

to build. 

1.2 SCOPE 

The study {Contract NAS9-13386, CCA2; Multispectral Scanner Data 

Ap?lications Evaluation) was conducted during the period January 1, 

1974 through June 30, 1974 and is reported in two volumes. Skylab 

S192 Multispectral Scanner (MSS), and Ancillary Aircraft Scanner data 

were used in evaluating the characteristics of projected future MSS 

systems. The study took the viewpoint t~at overall system (sensor 

and processing) characteristics and parameter values should be deter-

mined largely by user requirements for automatic information extraction 

performance in quasi-operational earth resources surveys (the other 

major factor being hardware limitations imposed by state-of-the-art 

technology and cost). 
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1. 3 APPROACH 

The approach consisted of a User Applications Study (Task I, 

reported herein) and a Sensor System Study (Task II, reported in 

Volume II of this report). In the User Applications Study, S192 and 

~~ci11ary Aircraft Scanner data (collected as nearly simultaneously 

as possible) were machine processed with the ancillary data simulating 

data from various possib~e satellite MSS sensors of varying character­

istics to obtain automatic information extraction performance results 

in four important disciplines: agriculture, urban land use, geology, 

and water and marine studies. A prime requirement was the availability 

of good quality, cloud free, MSS j£ta from S192 and aircraft, ana at 

least adequate ground informatic:r'. The empirical results obtained 

were augmented by critir.a1 reviews of existin~ literature, and by 

ERIM's experience in working with user applications. The effects of 

varying spectral bands, spatial resolution, and radiometric fidelity 

on the achievable classification performance were addressed in the 

User Applications Study. 

In the Sensor Systems Study, parametric curves for severa! 

critical variables were derived to allow trade-off analysis and assess­

ment of impact of user requirements on sensor feasibility, high risk 

technology areas and hardware cost. This task was performed under 

subconcract by the Honeywell Radiation Center (HRC), Lexington, 

Massachusetts. 

The two studies interact to produce an assessment of feasibJ..: 

hardware characteristics capable of meeting the user datp. require­

ments with an acceptable level of technological risk at costs which 

are not excessive. 

1.4 RESULTS 

Based upon the results discussed in Sectiun 3 through 5, and 

Appendices A and B of this report, the following conclusions and 

reconunendations based upon these conclusions are presented: 

14 
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Spectral Study 

A thematic mapping system equirped with optimum spectral bands 

required by users in all ~iscip1ines would req~ire an unacceptable 

level of cost and technological risk. (Within an acceptable range of 

other system parameters.) In view of this conclusion, the spectral 

bands listed below are recommended to support missions optimized 

for Agriculture, Urban Land Use, and Water Resources investigations. 
0 0.45-0.52 llm 
0 0.52-0.60 llm 
0 0.63-0.69 llm 

0 0.80-0.95 llm 

0 1.55-1.75 llm 

0 10.4-12.5 llm 

0 0.42-0.48 llm or 8.3-9.3 llm 

Radiometric Study 

With the exception of some of the specifications desired by 

Water Resources and Marine and Oceanographic users, radiometric require­

ments can be met with an attendant acceptable 'cost and level of 

.' :technological risk. The results presenteJ in Section 5 of this nn')rt 

dictate the radiometric specifications listed below. 

oNE~p for reflective bands-0.5%·* 

o NE~T for thermal bands -'0.S9K 

0:,' Maxim.umallowable· gain variatiori L4~ of full scale 

C) ··Maxlmum allowable offset variation -0.38%' of full scale 

o . Automatic Gain Contr.ol to provide .therecommended NEtlp . and· 

NE~T·for reflectancesranging from 2.0% to 60.0% .and 

Temp~ratures ranging from 2600 K to 340°r-: 

*The recommended·NF.6pis based upon the data presented in Tables 
4-8 through 4-11. Jl!mpirical results do not support this recommendation 
for the reflective !! portil)n, ,due to the :uncert~nties, ~n th.elR data 
bands. • . . '. . 
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Spatial Study 

Little improvement in classification ae:curacy and area'estimation 

will be realized in Agriculture and Urban Land Use disciplines for a 

spatial resolution finer than 30 meters. Stu~y results do indicate,. 

however, appreciable degracation in classification accuracy as spatial 

resolution is coarsened from 30 meters to 60 &Eters. Since the effect 

of resolutions between 30 meters and 60'meters upon classification 

accuracy was not investigated, a preci,3e spatial resolution is not 

,recommended. Pending further study the recounnended spatial resolu­

tion is 30 meters to 60 meters • 

. ----- -
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2.1 GENERAL . 

_ .. __ i __________ . 

2 

APPROACH 

The study approach was organized into two tasks. Task 1, User 

Applications 8tudywas to analyze 8192 and aircraft scanner data sets 

collected as nearly simultaneously as possible, and to supplement the 

results thus obtained with a critical review of existing literature 

and theoretical results in an effort to quantify the effects on auto­

matic classification accuracy by varying sensor parameters. Four sites 

were selected, each representing a specific user discipline such as 

Agriculture or Urban Land Use. A second prime requirement for 

selecting these sites was the availability of both airborne and space­

borne multispectral scanner data and adequate ground observation data. 

The available data were processed to determine the ways in which data 

quality factors such as spatial and spectral resolution influence the 

accuracy of processed outputs such as crop identification or acreage 

measurements. 

In the second task, Sensor System Study, reported in Volume II, 

the available performance of several types of orbital scanners were 

parametrically studied. For each approach, trade-off studies were 

undertaken to find ways in which high risk technology could be 

avoided at minimum cost to performance parameters. 

Finally, the two tasks were integrated to demonstrate the extent 

to which r&alistic user requirements could be met by various orbital 

acquisition systems and supporting telemetry and ground processing 

systems. Further, the reduction in data utility for the several 

classes of users by reducing system performance to minimize cost and 

technological risk were studied. The results were organized to facili­

tate selection of an optimum data acquisition system for a variety of 

constraints, such as limited development time or changed relative 

priorities among user goals. 
i7 
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The effects of varying number of spectral bands, spectral band 

placement, spatial resolution, and radiometric accuracy on the perf~r­

mance of proven earth resources classification and parameter estimation 

algorithms for various user disciplines were determined. Because of 

time and funding constraints processed examples were not generated 

for each discipline by varying each of the four parameters discussed 

above. Rather, the approach was to select examples which critically 

influence the selection of spectral bands, spatial resolution, and 

radiometric parameters. Further, the suggested processing effort was 

supplemented by a review of appropriate literature (especially on the 

subject of optimum spectral bands), and by close coordination with 

efforts et NASA-ERL to determine optimum spectral bands. 

In studies of radiometric accuj~ac." where these parameters were 

varied and the effect on extractive ~rocessing algorithms demonstrated, 

Sensor Systems Study personnel (Task II) suggested the reasonable 

variations to make in the sensor parameters. This insured that the 

simulated cases were reasonable and achievable within current and 

projected hardware technology. 

In studies of spatial resolution effects, attempts were made to 

simulate the 10, 30, and 60 meter resolutions currently being 

considered for advanced spacecraft instrumentation. A theoretical 

calculation on the effect of resolution element size in determining 

field acreages for various size and shape fields was also performed. 

To assist in determining the effects of varying system parameters 

on the performance of established classifier algorithms, subcontract 

support was solicited from Honeywell Corporation, Minneapolis, 

Minnesota. Rather than generate processed data products and tables 

of performance from multispectral data sets, Honeywell studied the 

feasibility of using their "information model" to predict the perfor­

mance of a classifier without actually classifying data. A comparison 

18 
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of the classifier approach and the "information model" approach was 

conducted for the Land Use case study. 

2.2 PROCESSING 

2.2.1 MICHIGAN TEST SITE (AGRICULTURE) 

2.2.1.1 General 

The purpose of processing data from the Michigan Test Site 

was to obtair. further information about the optimum spectral bands to 

be used for classifying agricultural scenes, and to demonstrate t~e 

effects of spatial resolution and radiometric variation on classifi­

cation accuracy. Aircraft data sets were processed for this phase 

of the study. Characteristics of the data used for this segment of the 

study are shown in Table 2-1. The S192 data processing and analysis 

approach is discuSSEd in Appendix C. 

2 •. 2.1.2 Aircraft Data 

The first step in processing the aircraft data was to 

generate the 28.7 m and 57.2 m resolution data sets from the basic 

14.3 m data by smoothing. (Hereafter theSE spectral resolutions are 

referred to by their nominal values - 15, 30 and 60 meters.) following 

smoothing, three data sets w~re processed similarly to prepare recog-
.-
~ition maps of terrain ~ategories and to evaluate performance. 

First a map of a red band was prepared for each data set to 

permit locating training sets and verifying data coverage. Then 

statistics for 3-5 fields of each agricultural :rop to be recognized 

W\H'e extracted from the data. The 30 m data map was used to select 

training sets as a test of the ease of locating these sets on imagery 

of that resolution. 

the other d~fta sets. 

Training set locations were then transferred to 

This was done without plotting the training sets 

on the other graymaps beca~se the 30 and 60 m data sets were derived 

(by smoothing) from the 15 m data, and thus line and point numbers 

bore a knovn relationship between data sets. 

19 
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TABLE 2-1. DATA CHARACTERISTICS 

Michigan Ancillary Data 

Project 102806 - Contract NAS9-13386 

SPECTRAL CHANNELS AVAILABLE 

.41 - .48 llm .58 - .64 

.46 - .49 .62 - .70 

.48 - .52 .67 - .94 

.50 - .54 . 1.0 - 1.4 

.52 - .57 1.5 - 1.8 

.55 - .60 9.3 - 11. 7 

SPATIAL RESOLUTION CASES CONSIDERED 

14.3 meters 

28.7 meters 

57.2 meters 

OTHER PERTINENT DATA 

Date of Collection: 5 August 1973 

Flight Altitude: 10K ft above terrain 

Sensor: ERIM M-7 MSS 

Time of Day: 1421 - 1433 GMT 

Quantity of Data: 3 x 24 miles 

20 
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Following an analysis of signatures, the signatures for the same 

crop type were combined to form a composite signature for recognition. 

The composite signatures were fed to the channel selection algorithm 

which selected the seven optimum channels for further analysis. In 

the process, the utility of all channels was determined and the 

channels were ordered by increasing utility in separating the signa­

tures. Next the data were classified using the signatures and 

the optimum twelve, seven, and four channels. The classified results 

were displayed, and test sets analyzed to determine accuracy of 

. field acreage estimation by crop types. The flow of operations for 

this segmen~of th~ processing of agriculture data is shown in Figure 

2-1. 

Figure 2-2 show!: the flow of processing operations for the l:adio­

metric study of agriculture aircraft scanner data. The approach was to 

obtain signatures from radiometrically correct data, then classify 

radiometrically degraded data. .".s shown in Figure 2-2, two cases of 

radiometric degradation were explored for each of the three parameters. 

The radiometrically "correct" raw data set constituted a third case 

for ~ach parameter. 

Thirty meter resolution, angle corrected data from the aircraft 

scanner were processed for this study. The data were degraded by 

artificially inducing two levels of offset, gain slope, and noise to 

the original data. The quantizing accuracy of the data was adjusted 

as the noise was varied, and 9, 8, 7, 6, and 5 bit cases were 

considered, with noise levels matched to the digitization precision. 

Gain slope and offset variations of + 33%.~d ± 66% of average 

signatures separation of mapped classes were also introduced. Each 

variation constituted a separate data set for processing. The optimum 

seven spectral channels were used in the classification of data. 

21 
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2.2.2 WHITE SANDS TEST SITE (GEOLOGY) 

2.2.2.1 General 

Sky lab S192 data and NASA 24 channel scanner (MSDS) data 

collected over White Sands, New Mexico were used for the geology 

discipline study. The afrcraft data characteristics are shown in 

Table 2-2. These ,'ata were processed (see Figure 2-3) to ascertain 

the optim~ spectr.~l ~ands and to determine the effects of variation 

of the number of spectral bands on geologic classification accuracy. 

The S192 data processing and analysis approach is discussed in 

Appendix c. 

2.2.2.2 Aircraft Data 

The basic 6 m resolution MSDS data was smoothed by 5 to 

simulate 30 m resolution data. Next a graymap of the red band was 

prepared for location of training sets and verification of data 

coverage and quality. Using ground information gathered from geologic 

maps and past geologic studies, training sets for important rock and 

soil types in the White Sands Area were located on the graymap. 

B8fore signatures were extracted for the geologic materials, a 

set of promising ratio features were defined by analysis of Earth 

Resources Spectral Information System (ERSIS) data of the materials 

likely to be found in the scene. ERSIS library spectra were then 

edited using standard editing programs, to yield spectra of materials 

likely to be in the scene. A set of likely materials was then determined 

from analysis of ground truth information. Of 98 possible ratios, twenty 

promising ratios were defined by calculating reflectance ratio data fro~ 

ERSIS (band averaged over MSDS spectral bandwidths), and selecting ratios 

which separate the scene materials in ERSIS. 

When the twenty promising ratios were identified, signatures from 

the training sets, previously located on the graymap, were extracted. 

A transformation routine was then used to calculate ratio feature 

24 
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TABLE 2-2. DATA CHARACTERISTICS 

White Sands Ancillary Data 

SPECTRAL CHANNELS AVAILABLE 

MSDS Chan' Bandwidth MSDS Chan II 

1 .34 - .40 11 
2 .40 - .44 *12 
3 .46 - .50 13 
4 .53 - .57 17 
5 .• 57 - .63 19 
6 .64 - .68 20 
7 .71 - .75 21 
8 .76 ... • 80 22 
9 .82 - .87 1t23 

10 .97 -1.05 *24 

SPATIAL RESOLUTION CASES CONSIDERED 

30 m 

OTHER PERTINENT DATA 

Date of Collection: 22 February 1974 

Bandwidth 

1.18 - 1.30 
1.52 - 1. 73 
2.10 - 2.36 
8.30 - 8.80 
9.30 - 9.80 

10.10 - 11.00 
11.00 - 12.00 
12.00 - 13.00 
1.12 - 1.16 
1.05 - 1.09 

F~ight A"ltitude: (9800 - 12,000 ft actual) requested 10,000 ft 

Sensor: MSDS 

Time of Day: 1719 - 1746 GMT 

Quantity of Data: 3 runs, 2.6 x 24 mi. total 

*Noisy data per mission flight lo~s. 
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signatures directly. Before forming the ratio features for signature 

calculation, the darkest object level was subtracted from each signal 

value in the channels to be divided. 

Signatures extracted from the training sets were then analyzed 

for consistency, and signatures of like materials combined to form 

training set statistics more characterisic of the class to be 

recognized. The optimum ratio features, and the spe~al channels 

comprising these ratios were prioritized by the feature selection 

program. 

Data was then classified, using the composite training set 

statistics, the optimum 15, 7, or 5 spectral channels, and the 

darkest object levels previously determined in preprocessing. 

Rec~gnition maps were displayed and analyzed to determine the correct 

and incorrect classification of geologic materials. 

2.2.3 BALTIMORE TEST SITE (LAND USE) 

2.2.3.1 General 

The purpose of the processing of the data from the Baltimore 

Test Site was to obtain-further informatlon about the optimum spectral 

bands to be used for classifying urban land use categories to Levels 

I and II of the Anderson Land Use Classification System and Level III 

of the State of Maryland Land Use Classification System to d~monstrate 

the effects of radiometric variation on classification accuracy. Both 

S192 and aircraft scanner data sets were processed for this phase of 

the study. Characteristics of the data used for this segment of the 

study are shown in Table 2-3. All processing of S192 data for the 

Baltimore Test Site was conducted by Honeywell and is detailt-d in 

Appendix C. 

27 



TABLE 2-3. DATA CHARACTERISTICS 

Baltimore Ancillary Data 

SPECTRAL CRAHNELS AVAILABLE 

"-7 Chamaela 

.41 - .49 .... 

.46 - .49 

.48 - .52 

.50 - .54 

.52 - .57 

.5S - .60 

.58 - .,64 

.62 - .70 

.57 - .94 

1.0 - 1.4 

SPATIAL RESOLUTION CASES CONSIDERED 

7.2.eters 
14.4 aeters 

28.8 meters 
57.6 meters 

OTHER PERTINENT DATA 

Date of Collection: 11 May 1972 

Flight Altitude: 5000 ft above terrain 

Sensor: ERIM M-7 scanner 

Ti_ of Day: 1745 GMT 

Quantity of Data: 2 x 25 ailes 
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2:.2.3~2 . -Aircraft 'Data 

Figure 2 ... 4 details the " processill$flowforthe study to 

-deteFtnine tl:l~'Ord~ring 0,£ spectral. chann~ls-for land use ·classifica-
. , . - " 

tiona The'fi.rst_stepinprocess:t.ng-was to ,smooth data. averaging 

4. x 4 to yield a. data set simuladng'30-meterresolution. A red 

cb.annel map' w~s made to facilitate selection of training sets and to 

'. validate data quality·. -

Using USGS-supplied :ground. information; training sets~e 

'.~ .. 

_ .·selected from all Level land '11 land use types. -This step was 

. . 

. -, augmented by Level .IIIand IV'gro\llldtru:th o1:».tained f~om the Maryland 

Stat~ Plam!ing.Division and from photointerpretation. Five samples 

_ 'Of .' each type or land use' were selected _ 'to· JIlOre completely span the ' 

~ange:~f variability of the landl.lse,,:typ~ •. ,· Tbe selection of, these 

,training-sei:s'~as .to,-·be, cooidinat~d -with,Hoileyweil:-personnel at 

examinationDf the -Signatures .. , determine any anomalies, the signa­

. tures.reproes..enting the liame land use class were combined and scaled,.' 

Combined signatures for each class were then fed to the optimum 'channe! 

progr~_ todete~ine the order: oispectral chann¢ls' in, classify.ing-' 
- -

. - -, . -
-.land. use -types. ;,Opti1l1um.,fourand·~eveD channelsweret~en -identified 

.' -' . ' - .,' , .' '. 

~nd Jlsed.to cl~sifydata.: . All spectral~hannels 'available were' .~so 

.usedto~~tudy,the . effects of'~umber of spectral channe;ts;?n class1fi~ 

. c;t,tion accuracy. , ::<. 
. ' -"-~ 

" . 

The processillg apprgacl,l usedin:'delI1~)Qstrating .the effect of< 
, . 

, radiontetricvariations . on .. classification accuracy was identical to 

.the.'approac~ detailed in Section. ~. 2.1. 2 ~(ksh~~n Figure 2-2. 

'" :'. ~ :. -. -.- f 

_ _2 .:f. 4.1.Gene.ral: ' :. ' 

Thej>1.lrposeof pr()cessing, d~ta from the Atchafalayatest site 
. ' 

was to obt.ain f1.lrth~rinfo.rtl).8tion on optimum spectra.l ballds to be used 
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for mapping turbidity (both organic and inorganic)~ current patterns 

and natural coastal vegetation communities which may influence the 

aquatic·eco~ysteru. The ~~DS data· collected is outlined in Table 2-4. 

2.2.4.2 Aircraft Data 

MSDS data was processed according to the general flow 

diagram of Figure 2-5 •. Aircraft data at 12 meters resolution was 

smoothed. by 2 to approach a nominal 30 meter.reso1ution size. Training 

sets for organic and inorganic turbidity differences along with 

vegetation were seiected and signatures computed. The ~ignatures were 

analyzed and the optimum channels to. use for turbidity and current. 

mapping selected. The optimum single channels were then used to 

select channels for ratioing in order to map organic turbidity and 

natural vegetation communities. 

Single channel andratioed graymaps were produced and analyzed. 

2.3 HONEYWELL APPROACH TO SPECTRAL-SPATIAL FEATURE CLASSIFICATION 

At Honeywell-Minneapo1is~ investigators used aircraft scanner data 

from the Baltimore Test Site for a study of the classification accuracy 

of Land Use categories using a K-Class classifier and spectral and 

spatial features. The spectral features used were the seven optimum 

features selected by ERIM from an analysi..s of" cpe(~tral signatures of 
. . 

a number of land use classes. Spatial features, representing the 

energy in the scene at particular spatl,i11.lTequencies~ were generated 
~--~ .. 

as discussed below. Then a number of c.1 'l~'3ification and channel 

ordering runs were made on the data and the results evaluated. 

2.3.1 GENERATION til SPATIALH:ki'URES 

The spatial features us~d in this study were generated by 

takiAs·the Fourier Transform of the data, followed by mathematical 

manipulations to create features that were "rotationally invariant". 
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TABLE 2-4. DATA CHARACTERISTICS 

Atchafalaya Ancillary Data 

SPECTRAL CHARNELS AVAILABLE 

.34 - .40 lJIl 

.40 - ~44 

.46 - .50 

.53 - .57, 

.57 - .61 

.64 - .68 

.71 - .75 

.76 - .80 

.82 - .87 

.97 - 1.05 

1.18 - 1.30 
1.52 - 1.73 
2.10 - 2.36 
3.54 - 4.00 
4.50 - 4.75 
6.00 - 7.00 

. 9.30 - 9.80 
10.10 - 11.00 
11.00 - 12.00 
12.00 - 13.00 

SPATIAL RESOLUTION CASES CONSIDERED 

30 m 

OTHER PERTINENT DATA 

Date ~f Collection: 21 September 1913 

Flight Altitude: ' 20.000 ft above terrain 

Sensor: ~DS, RC-8 

Time of Day: 1631 - 1805 GMT 

1.12 ~ 1.16 
. 1.05 - 1.09 

Quantity of Data: 2 Rnns, each 5.3 x 40 n. mi. 
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By making the features rotationally invariant, the values of the 

spatial features for a square building would be the same regardless 

of the orientation of the building with respect to the scan line. 

To generate the spatial features, the first eigenvector constructed 

from the seven optimum channels was used. This eigenvector contains 

the most variation of any spe(tral feature and was thus felt to be 

good for the generation of spat '.81 features. Next the raw spatial 

features were formed by a Fourier Transform on 8 x 8 (56 x 56 m) arrays 

of points (4 x 4 arrays, still representing 56 x 56 m arrays, were used 

for the 14 m data). The choice of a 56 ~ array was arbitrary, and in 

retrospect, not entirely appropriate to this application. Subsequent 

data analysis for the Honeywell Information Model showed that most of 

the spatial information in the scene was contained in spatial 

frequencies lower than 1/56 m. Spatial features representing scene 

energy at these low frequencies could not be generated with the arrays 

of points chosen. The spatial features generated for the 7 m data 

and for the 14m data are shown in Table 2-5. These rotationally 

invariant features were generated from the raw Fourier Transform 

data. In the nomenclature of Table 2-5, rotationally invariant features 

are denoted by BO-BS and the raw Fourier Transformed data by (a,b). 

Fourier Transform feature (0,0) is the average energy in the 8 x 8 

or 4 x 4 pixel block. For the 8 x 8 pixel block four spatial 

frequency components can be derived for each direction. These 

correspond to energy at 1/56 m, li42 m, 1/28 m, and 1/14 m, (0,1), 

(0,2), (0,3), and (0,4) respectively. Then the Fourier Transform 

data in the x and y directions were combined as shown to yield the 

"B" features actually shown in Table 2-5. For the 1-'. m data, the 

Fourier Transformed features (0,1), and (0,2) corresponded to 

energy at spatial frequencies of 1/56 m and 1/28 m respectively. 

They were combined as shown to yield the rotationally invariant "B" 

featul:es. 
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TABLE 2-5. TEXTURAL FEATURE GENERATION 

8 x 8 PEL GRID. (5 x 5 SPATIAL F~QUENCY GRID) 

B .. (0,0) 
o 

B1 = (1,0) + (0,1) + 0.65 (1,1) 

B2 = (2,0) + (0,2) + 0.8[(2,1) + 1,2)] 

+ 0.35(1,1) + 0.1(2~2) 

B3 = (3,0) + (0,3) 

+ 0.9[2,1) + (1,3) + (2,2)] 

+ 0.3[(3,1) + (1,3) + (2,2)] 

f 
Y 

~ 

+0.3[(3,2) _ (2,3)] + 0.2[(2,1) + (1,2)] 

f x--+ 

° 1 

2 

3 

4 

° 

B4 = (4,0) + (0,4) + (4,1) + (1,4) + 0.35[(4,2) + (2,4)] 

1 

+ 0.7[(3,2) + (2,3)] + 0.1[(3,1) + (1,3)] + o.e (3,3) 

B5 = 0.65~(4,2) + (2,4)] + (4,3) + (3,4) + (4,4) + 0.2 (3,3)· 

4 x 4 PEL GRID (3 x 3 SPATIAL FREQUENCY GRID) 

B = (0,0) 
o 

B1 = (0,1) + (1,0) + 0.65 (1,1) 

B2 = (0,2) + (2,0) + (1,2) + (2,1) 

+ (2,2) + 0.35 (1,1) 

35 

2 3 4 



- ; 

I 
r 
\ 
( 

" j " .. ,- ',"~ "i',' I 

2.3.2 CLASSIFICATION PROCEDURE 

I 
1 , 

i 

Several classification runs were made with the spectral and 

spatial features on 7, 14, and 56 m data. In summary, these are 

listed in Table 2-6. Class designations for each of these runs are 

listed in Table 2-7. The intent of the classification was to demon­

strate what spatial features added to the classification accuracy of 

urban land use classes at various spatial resolutions. Also, results 

using simulated 56 m data demonstrate the effect of varying numbers of 

channels on the ability to separate Level III land use classes. 

2.4 LITERATURE SURVEY 

To augment and extend the empirical results obtained during this 

study, a review was performed of ell published literature detailing 

the optimum spectral bands for each discipline. The review was 

confined to publications which were directed at obtaining optimum 

spectral bands for a given investigation. Previous empirical analysis 

and theoretical publications were surveyed for each discipline and 

three previously conducted syst~ms studies were cited for all 

diSCiplines. Results of the literature survey are presented in 

Section 3. 



l. 

2. 

3. 

4. 

5. 

6. 

7. 

TABLE 2-6. BALTIMORE SPECTRAL/SPATIAL FEATURES 
GENERATED BY HONEYWELL 

7 m data 7 spectral, 6 spatial features 

14m data 7 spectral, 3 spatial features 

14 m data 7 spectral features 

14 m data 7 best features (6 spectral, 1 spatial) 

56 m data 7 spectrcl. features 

56 m data 4 spectral features 

56 m data 2 spectr.lil features 

Note: Fifteen Level III training sets, as shown 
in Table 2-7, were used for this analysis. 
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TABLE 2-7. CLASS DESIGNATIONS FOR BALTDI>BE DATA SETS 

ERIK Honeywell 

Description Class Desisnation 

Residential. Single Family 111 1 

Residential. Multiple Family III 2 

CODDllercial, Retail 121 3 

Industrial, Wholesale/Light Ind. 122 4 

Industrial, Metal 132 5 

Industrial, Chemical 134 6 

Transportation, Railroads and Yards 152 7 

Transportation, Freeways/Highways 153 8 

Transportation. Marine Terminals 154 9 

'fI'ansportation, Utilities 155 10 

Institl.ltional 160 14 

Institutional, Secondary Schools 162 11 

Institutional, Colleges 163 12 

Institutional, Military Installations 164 13 

Institutional, Other (e.g., Hospitals) j.,65 14 

Open/Other (Urban Parks, Recreational) 190 15 
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SPECTRAL REQUIREMENTS STUDY 

3.1 GENERAL 

The spectral study addressed the selectioll of optimum spectral 

bands for each discipline and the determination of the effect of the 

number of spectral bands upon classification accuracy for representa­

tive disciplines. At the study's inception, it was felt that spectral 

band selection would depend on the application. Optimum bands for the 

Agriculture, Geology, Land Use, and Water and Marine test sites were 

selected by processing algorithms as described in Section 2, Task 1. 

Classification was then conducted using the optimum 12, 7, and 4 

spectral bands from these prioritized iists of bands for Agriculture 

and Land Use, and the optimum 15, 7, and 5 bands for Geology to assess 

the eff~ct on classification accuracy. The empirical study alone, 

however, was inadequate to allow conclusions as to the optimum bands 

or the effect of the number of bands on classification accuracy for a 

given discipline. 

The empirical results were compromised, first of all, by the fact 

that the selection of optimum bands for each discipline was made from 

a limited set of spectral bands available in present instrumentation 

(see Section 2). Proper empirical selection was further compromised 

by the fact that, while a band may have been available, it was not 

selected as an optimum band because it was noisy. In addition, the 

test site data used did not encompass all anticipated disciplinary 

objectives. The empirical channel selection from the agriculture test 

site, for example, was based only upon the availability to classify 

various types of vegetation and soil. The bands selected would likely 

have differed if an attempt h~d been made to assess such parameters as 

plant vip,or and soil moisture content. 
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In view of the above qualifications on the empirical results, a 

literature survey was conducted, and the results of this survey were 

analyzed in an atteMpt to pinpoint the optimum precise location and 

bandwidths for each discipline in the spectral region 0.3-15 ~m. The 

theoretical results were also used with results of the sensor perfor­

mance analysis to make our final band selection. The reader will be 

able to trace the ar~lment for the final band selection in each 

discipline. 

3.2 AGRICULTURE/RAN~E/FORESTRY 

The optimum bands selected for the Michigan Agriculture test site 

are shown in Table 3-1. As shown in the table, the bands were 

prioritized by the STE?LIN Program [26] for simulated 15 m, :)0 m, and 

60 m resolutions whicu resulted in some variation in band selection 

and priorities. The variations are a result of signature extrac~ion of 

the various resolutions. The smoothing technique used to simulate 

these resolutions necessarily produced changes in signature covariances 

for the agricultural scenes, hence, changes in the average pairwise 

probability of misc1assification for the spectral bands. As can be 

seen in Table 3-1, however, channels 6, 8, 9, 11, and 12 were among the 

optimum seven channels selected for all simulated resolutions. In 

addition to these consensus bands, channels 1, 3, and 10 were each 

selected among the optimum seven channels in two CI the simulated 

resolution cases. 

Figure 3-1 is a graphic presentation of the performance results 

shown in Tables 3-2, 3-3, and 3-4 for the Michigan Agriculture data 

set using the optimum 12, 7, and 4 spectral channels for the simulated 

30 m resolution case. As indicated in the figure, little or no 

improvement is seen in classification accuracy of five vegetative 

classes as the number of spectral channels is increased beyond four, 

and some of the vegetative classes show a decline in classification 
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ORDER OF 
SELECTION 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 I 

TABLE 3-1. OPTIMUM CHANNELS FOR 15, 30, and 60 METER DATA SETS 
MICHIGAN AGRICULTURE TEST SITE 

\ 

15 METER DATA 30 METER DATA 
CHANNEL (Wavelength AVERAGE PAIRWISE CHANNEL AVERAGE PAIRWISE 
INUMBER Eand) PROB. OF MISCLA. NUMBER PROB. OF MISCLA. 

8 (.62 - .70 \.1m) .1137443 8 .1081104 
I 

11 (1.5 - L8 11m) .0286739 11 .0255942 

1 (.41 - .48 \.I1D) .0134848 1 .0110883 

9 (.67 - .94 \.1m) .0095766 9 .0078789 

6 (.55 - .60 \.1m) I .0072649 6 .0054141 

12 (9.3 - 11.7 \Jm) .0056775 10 .0041438 

3 C.48 - • 52 \.1m) .0046731. 12 .0033340 

10 (1.0 - 1.4 \Jm) .0039585 4 .0025448 

5 (.52 - .57 \,1m) .0035252 3 .0022475 

4 (.50 - .54 \Jm) .0033057 2 .0021041 

2 (.46 - .49 lJlll) .0031141 5 .0020351 

7 (.58 - .64 \Jm) .0029816 7 .0019880 

------

60 METER DATA 
CHANNEL AVERAGE PAIRWISE 
NUMBER PROB. OF MISCLA. 

8 .0893117 

11 .0202345 

3 .0087382 

12 .0052736 

6 .0035129 

10 .• 0020811 

9 .0015100 

4 .0012222 

1 .0010751 

2 .0010041 

7 .0009554 

5 .0009340 
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SCENE CLASS 
(No. of Pixels) 

CORN . (812) 

~OYBEANS (284) 

RIPE OATS (20) 

WOODS (860) 

OTHER (1168) 

,TABLE 3-2. PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SiTE 

4.0ptimw Channels - 30m ResoluUon 

-

'. PER CENT MISCLASSIFICATION 

PER CENT CORRECT SOy- RIPE 
CLASSIFICATION CORN BEANS OATS WOODS OTHER 

r 

92.6 0.5 6.9 

72.9 10.2 16.9 

90.0 10.0 

95.2 0.1 4.7 

83.7 11.2 2.8 0.8 1.3 

We. Average =88.2 
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SCENE CLASS 
(No. of Pixels) 

CORN (812) 

SOYBEANS (284) 

RIPE OATS (20) 

WOODS (860) 

OTHER (1168) 

-'-".02,,1 :~~'-,~,-" <.;,,',", 
, ' 

TABLE 3-3. PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

7 Optimum Channels - 30 m Resolution 

. ":"'';;''',,-

PER CENT MISCLASSIFICATION 
~.-. 

PER CENT CORRECT SOY- RIPE 
CLASSIFICATION COR.~ BEANS OATS WOODS OTHER 

94.1 0.7 5.2 

70.4 7.8 21.8 

100.0 

~ 

96,4 1.9 1.7 

85.7 9.8 0.4 0.9 3.1 

Wt. Average" 89.5 

44 



TABLE 3-4. PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

12 Optimum Channels - 30 m aeso1ution 

PER CENT MISCLASSIFlCATION 

SCENE CLASS PER CENT CORRECT SOY- RIPE 
(No. of Pixels) CLASSIFICATION CORN BEANS OATS WOODS OTHER 

CORN (812) 93.8 0.6 5.5 

SOYBEANS (284) 68.0 6.3 25.7 

RIPE OATS (20) 90.0 10.0 

WOODS (860) 97.6 1.3 1.2 

OTHER (1168) 83.3 9.7 0.4 1.1 5.3 

Wt. Average = 88.6 

---
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accuracy. This decline in classification was caused by the spectral 

location of the non-consensus channels and the observation condition 

on the data collection date. Flight logs for data collection over 

the Michigan Agriculture test site indicate high haze concentL"ation on 

the August 5 flight. Such conditions produce scattering in the lower 

wavelength channels and absorption in the additional mid IR channels, 

and this haze may reduce classification accuracy of scenes extended 

beyond training sets. 

The marked increase in the classification accuracy of ripe oats 

using the optimum 7 channels is also deceptive. The August data 

collection period was coincident with the harvest period for oats at 

the Michigan test site. As a result, few fields of unharvested ripe 

oats were located, and a total of only twenty pixels (at 3~ meters) 

of this class is represented. Using 7 channel data only two additional 

pixels were correctly classified which had been misclassified using 

the 4 ancl. 12 channel data. 

There ,i1as a wide variability in the condition of soybean fields 

during the data collection period, resulting in generally low classifi­

cation accuracy for the 12, 7, and 4 channel data. Gruund information 

and low altitude photography indicated that this wide variation was 

caused by variations in planting dates and cultivation practices. 

Discounting the anomalies of the ripe oat and soybean classes and 

the influence of these classes on average classification accuracy, the 

classification accuracy for the five vegetative classes tested improves 

little as the number of spectral bands is increased from four to seven. 

Since the five classes are fairly representative of the Agriculture 

discipline, the results indicate that adequate vegetation classifica­

tion can be accomplished as well with four or five optimized channels 

as with twelve. The con{Oensus channels empirically :~ehcted from 

Michigan agriculture data were 0.62-0.70 ~m, 1.5-1.8 : ~'. 0.67-0.94 vm, 

0.55-0.60 vm, and 9.3-11.7 vm. 
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As shown in Figure 3-2, these bands are located in spectral regions 

lolhere the vegetation signature is most different from other signatures. 

Channels 6 and 8 are located in the areas of chlorophyll transmittance 

and absorption, at 0.55-0.60 ~m and 0.62-0.70 ~m respectively. Channel 

9 is located in the area of high vegetative infrared reflectance near 

0.8 ~m; and channel 12, though not shown in the Figure 3-2 reflectance 

curve, is located in the thermal infrared. Channel 11, at 1.5-1.8 ~m, 

is located in a region where the vegetation response is strongly 

influenced by the moisture content of the foliage. 

The results of the literature survey for the Agriculture/Range/ 

Forestry discipline, shown in Table 3-5, provide corroboration to the 

spectral regions empirically selected for the Michigan test site. (The 

precise widths and locations of the empirically selected bands were, 

however, fixed prior to data collection.) Further optimization of 

these bands may be realized by further analysis of Figure 3-2. The 

0.62-0.70 ~m band is centered on a region of maximum chlorophyll A 

absorptance, hence measurement in this region is indicative of plant 

chlorophyll A content and useful in species differentiatirL1 and 

assessment of plant health and growth stage. Measurements in this band 

are most useful when the band is as near the absorptance trough aa 

possible. It can be seen from Figure 3-2 that the lower and upper band 

limits of the empirically selected band encompass reflectance rises 

toward the yellow and near infrared spectral regions respectively, To 

optimize meaSlll"ement in this spectral region, the bandwidth should be 

reduced to 0.63-0.69 ~m. 

The 0.67-0.94 ~m band contains not only the high reflectance 

plateau, but also the reflectance rise between the red and infrared 

regions. The lower band limjt should be raised to 0.75 ~m to allow 

reflectance on the near infrared plateau where vegetative reflectance 

is greatest. The optimum upper band limit for lhis band should be at 

o. 95 ~m to avoid measurement in the water absorp"rance region centered 
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TABLE 3-5. LITERATURE SURVEY RESULTS - AG/RANGE/FORESTRY 

SOURCE WAVELENGTH (jJ.m) 
.4 .5 .6.7.8.91 2 3 4 5 6 78910 

Allen, Grosman, • • • Richardson - 1970 
Theoretica~ Earing, Ginsbe rg - 1-4 I ... I 
Results 1969 

Carnaggie - 1967 ........ -4 ... - -4 ...-. 

Wagner, Colwell -
~ ... 

1972 
Empirical Sadowski., Thomson -

~ 1-4 ~ 1-- ...... ~ ... ~ 
Results 1972 

(. Nalepka, Vincent, 
. 

f:. r---. ...... 
Thomas - 1974 

SEOS - 1973 
I"\. ~ ....... 

~ 
.'1 .. ... 

100-01 

Systems ..... 
~ 

Studies EOSPDG - 1973 ... .... -f-t ~ 100-01 ~ 

Advanced Scanners H 
M .. 

and Imaging ~y~!ems =-1~_72 ------- -- -------

i 
I 
I 
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TABLE 3-5A. LITERATURE SURVEY RESULTS - AGRICULTURE/RANGE/FORESTRY 
OPTIMUM SPECTRAL BANDS (~m) 

Allen, Gausman, Richardson 

1. 25, A \ 

1 65 J no ur.. 

2: 20 I specified 

Wagner, Colwell 

0.40 - 0.44 
v.52 - 0.55 
0.62 - 0.66 
0.66 - 0.72 
0.72 - 0.80 
0.80 - 1.0 

SEOS 

0.5L - 0.56 
0.57 - 0.59 
0.59 - 0.62 
0.62 - 0.68 
0.69 - 0.75 
2.0 - 2.3 
8.3 - 9.3 

10.5 - 12.5 

THEOREl' I CAL 

Eari.l1g. Ginsberg 

0.62 - 0.66 
0.66 - 0.72 
0.72 - 0.79 

EMPIRICAL 

Sad~wski, Thomson 

0.41 - 0.48 
0.52 - 0.57 
0.58 - 0.64 
0.62 - 0.67 
1.0 - 1.4 
1.5 - 1.8 
2.0 - 2.6 
9.3 - 11. 6 

SYSTEMS STUDIES 

EOSPDG 

0.52 - O.S?' 
0.63 - 0.1>8 
0.74 - O. '9 
0.80 - 1.0 
1.55 1. 75 
2.05 2.35 

10.3 12.6 

Carnaggi c 

0.32 - 0.38 
0.50 - 0.57 
0.62 - 0.66 
0.80 - 1.0 
1.50 - 1.8 
8.0 - 14.0 

Nalepka, Vincent, Thomas 

0.50 - 0.54 
0.52 - 0.57 
O.'1l - 0.69 
0.72 - 0.92 
LO - 1.4 
1.5 - 1.8 

Advanced Scanners 
and Im.!lging 2ystems 

0.55 - 0.58 
0.66 - 0.70 
0.70 - 0.74 
1.50 - 1.8 
2.0 - 2.6 
8.0 - 14.0 

.. ~. ~ .... 
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at 1.16 ~m. The 0.55-0.60 ~m band is an area of chlorophyll transmit-

tance useful in assessing the growth stage and health of vegetation. 

As shown in Figure 3-3, peak reflectance in this region is bhifted 

toward the 0.60 ~m region with either vegetative maturity or disease 

infestation. 

The 10.4-12.5 ~m region has bee~ the most often used and recom­

mended thermal band. This band is selected to avcid water absorption 

regions on either side of the band limits and to provide broa' band 

temperature data. Temperature has demonstrated utility in vegetative 

discrimination. The effects of canopy shading, evapotranspiration, and 

percent bare soil are often manifested as a difference in thermal 

radiation in vegetative scenes. The 9.3-11. 7 ~m band empirically 

selected would probably be replacec by the 10.4-12.5 ~m band for 

satellite applications. EXdct placement of a thermal band may, however, 

be of less importance to vegetative investigations than to other 

dis_iplines, so long as the selected theiual band provid~s accurate 

temperature measurements. The 1.5-1.8 ~m band may be used as an 

indicator of leaf moisture content, and is thus useful in discritidnation 

of vegetative type, growth and health. The band, however, unneces­

sarily overlaps into water absorpti.on bands at each band limit, and 

should be narrowed to 1.55-1.75 ~m. 

The five bands discussed thus far are considered good for classifi­

cation of vegetative species. In addition to species classification, 

it is desirable to assess plant health and vigor. In combination with 

one or more of the previous bands, spectral bands located at 0.69-

0.75 ~m, and 2.05-2.35 ~m have been shown to be indicators of vegeta­

tive stress, insect or disease infestation, and vigor. The mid­

infrared band (2.05-2. 35 ~m) is a furthe.L ':'1Hiicator of leaf moisture 

content. The 0.69-0.75 ~m band is located on the slope between the 

chlorophyll absorptance band (0.63-0.69 ~m) and the high reflectance 

near infrared band (0.75-0.95 l-m). As s~lOwn in Figure 3-3, measuremen~+'" 
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in this region may also be used as an indicator of growth stage 

and stress. 

Prioritized recommended spectral bands for the Agriculture/Range/ 

ForestIY discipline are shown in Table 3-6. Based upon the empirical 

and theoretical results pre~ented, the first five bands are considered 

optimum for classifying vegetutive scenes. The remaininb two bands 

are added to assess vegetative health and vigor. The L.05-2.35 ~m 

band is included in Table 3-6 as an option to the 1.55-1.75 ~m band. 

3.3 URBAN LAND USE 

The bands shown in Table 3·7 wer-e selected from the Baltimore Land 

Use data for the simulated 30 m resolution case. Bands 8, 9, and 12 

ranked high as vegetative discriminators; channel 10 was used primarily 

for detection of water; and channels 1, 4, and 11 were found to be good 

for the discrimination of impervious materials. Tables 3-8 through 

3-13 present detailed performance res·llts of Levels I, II, and III 

land use classification using the best 4, 7, and 12 spectral channels. 

Table 3-14 summarizes the percentage correct classification of 

Tables 3-8 through 3-13. Analysis of the Table 3-14 results indicates 

that none of the individual Urban Land Use classes showed a marked 

increase classification accuracy as the number of spectral bands was 

increased from 4 to 12. 

The weighted average results of Levels I, II, and III Urban Land 

Use classification accuracies using 12, 7, and 4 channel data are 

detailed in Table 3-15 and shown graphically 1.n Figure 3-4. As in the 

agriculture case, there is little improvement in the classification 

accuracy for Levels I and II, or III as the number of channels is 

increased. Empirically then, four channels appear to be adequate for 

Levels I, II, and III, Urban Land Use ciassification. 

Insufficient literature dedicated to asses~ment of optimum bands 

was found for Urban Land Use investigations. In view of this, the 
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TABLE 3-6. RECOMMENDED OPTIMUM BANDS 

AGRICULTURE/RANGE/FORESTRY 
(PRIORIT IZED) 

AGRICULTURE/RANGE/FORESTRY 

0.63 - 0.69 },lm 

0.75 - 0.95 },lm 

10.4 - 12.5 llm 

0.55 - 0.60 },lm 

*1.55 - 1. 75 },lm 

2.05 - 2.35 },lm 

0.69 - 0.75 11m 

* or 2.05 - 2.35 },lm 

S4 

... 



TABLE 3-7. CHANNEL ORDERING AND PROBABILITY OF MISCLASSIFICATION 
FOR 4 x 4 SMOOTHED BALTIMORE AIRCRAFT DATA 

(28.8 m RESOLUTION) 

(CLASSES SHOWN IN TABLE 3-9) 

CHANNEL PROBABILITY OF MISCLASSIFICATION 

10 (1.0 - 1.4 \lm) .0473 

1 (0.41 - 0.48 ~m) .0080 

12 (9.3 - 11. 7 ~m) .0035 

9 (0.67 - 0.94 \lm) .0019 

8 (0.62 - 0.70 \lm) .0011 

4 (0.50 - 0.54 \lm) .0007 

11 (2.0 - 2.6 ~m) .0006 

2 (0.46 - 0.49 ~m) .0005 

7 (0.58 - 0.64 ).1m) .0004 

3 (0.48 - 0.52 ~m) .0004 

5 (0.52 - 0.57 \lm) .0004 

6 (0.55 - 0.60 ).1m) .0004 
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4 Channels 

AGGREGATED COMPUTER SPEctRAL CLASSES 

r GROUND T1UJTH URBAN AG FOREst WATER UNCLAS. 

URBAN (1) 85.9 7.9 .£..3 5.1 

AGRlCtJLTURE (2) 14.3 69.1 4.8 11.9 

FOREST (4) 14.8 88.2 
3.0 

WATER (5) 70.0 30.0 
, 

LEVEL II LAND USE* 

AGGREGATED COMPUTER SPECTRAL 

RES COM/ 
AG PAST FOR GROUND TRUTH l'W 

RESIDENTIAL (11) 63.1 23.6 7.7 0.1 1.9 

COMMERCIAL/ 26.5 58.2 4.1 3.1 
INDUSTRIAL (12/13) 

-

CROPLAND (21) 13.3 46.7 13.3 6.7 

PASTURE (22) 14.8 11.1 61.8 3.7 

FOREST 8.8 88.2 
Deciduous (41) 

WATE~{ (50) 

*ANDERSON ~~D USE CLASSES ARE 6HO~ IN PARENTHESES 
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CLASSES 

WATER UNCLAS. 

3.2 

8.2 

20.0 

7.4 

3.U 

70.0 30.0 

'" ~ .' , ~ 

. ...." . '" 



V. 
"-.l 

~~ 
8~ TABLE 3-9. rERFORMANCE MATRIX 

BALTIMCRE, ~t~~LAND 
~l: 
.g~ 

~~ 
LEVEL tIl COMPUTER SPECTRAL CLASSIFIC;fION OF LAND usE" 4 ChallnelB 

51 FAM APTlI _ APT2 RLlII SOIL IASPH H!~_I DR SOILlcROP PASTURe FOREST 
Number Single 

of Family Multiple Commer.cial Indu!'Jtrial Cropland Pasture Deciduolls 
:H Points Res. (111) Family (H2) (121/122) (130) (210) (220) ;;'or·',st (410) 

Sln!;lc r:lmlly 
62.7 16.0 1.3 2.7 10.? 4.0 Residential (111) 

" 

l!u1li-Lle".ily (112) 15.9 32.7 12.2 29.3 4.9 1.2 
aad Institutional 

(160) 

C0".:ocrc1al (121/122) 11.8 19.1 33.:1 25.:- 2.0 3.9 

I"duslrial (D) 4.3 17.0 42.5 14.9 6.4 2.1 i • ----
t Cropland (210) 6.7 6.7 46.7 13.3 6.7 

! '---, 
P~sture (210) 7.4 7.4 11.1 i 

61.8 I '3.7 

Dcc14uous Forest 8.8 i 88.2 
,410) • -_ .. --

Water (500) I - - ---- ---------- ---. ---------- -~~ .. - -----
*State of Maryland Land Use Classes are shown in parentheses 

Water 
(500) Unclassified 

2.7 

3.7 
I 
I 
I 

3.9 i 
I 

i 

12.8 

20.0 , 

---
7.4 

3.0 

I 
-=-:J_ 30.0 



TABLE 3-10. PERlO~~CE MATRICES 

LEVEL I LAND USE* 7 Cha'·.nels 

__ XREGATED COMPUTER SPECTRAL CLASSES 

GROUND TRUTH URBAN AG FOREST \-lATER UNCLAS. 

URBAN (1) 83.9 6.3 1.2 2.0 

AGRICULTURE (2) 14.3 71.4 7.2 7.2 

FOREST (4) 5.9 94.1 

WATER (5) 12.5 87.5 

LEVEL 11 LAND USE* 7 Channels 

AGGREGATED COMPUTER SPECT~~ ClASS-S ; 

RES COM/ AG PAST FOR GROUND TRUTH IND 

RESIDENTIAL (11) 66.3 21.7 6.4 0.6 1.9 

COMMERCIAL/ 
25.5 52.0 4.1 1.0 INDUSTRIAL (12/13) 

CROPLANI' (21) 6.7 6.7 60.0 6.7 6.7 

PASTURE (22) 
~ 

11.~;l~ 59.3 7.3 : 

FOREST 94.1 Deciduous (41) 

WATER (50) 

*ANDERSON Lk~D USE CLASSES ARE SHOWN IN PARENTHESES 
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WATER UNCLAS. 

3.2 

17.4 

13.3 

3.7 

100 
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TABLE 3-11. PERFORMANCE MATRrX 

BALTIMORE, MARYLAND 

LEVEL III COMPO :tR SPECTRAL ::L.'.!;SJFICATION OF LAND USE* 7 Channels 

I'M! APTlI APT 2 RLR I SOIL_bg!! HDR I DR SOILlcROP PASTURE 
Number Single 

of Family Nultiplc Commcrci31 Industrial Crop13nd P3sture 
GROUND TRUTH PoInts Res. (111) Family (112) (121/122) (130) (210) (220) 

Stngle r"ml1y 
62.7 16.0 2.7 9.3 1.3 Residential (Ill) 

--
Mu1tl-f"ml1y (112) 

13.4 41.5 13.4 25.6 3.6 and In~titutional 
(160) 

-
Cor."~ercia1 (121/122) 11.8 15.7 29.4 31.4 2.0 2.0 

----
Industt 1.:1 (13) 6.4 17.0 i;.2 23.4 6.4 

._- ------- -----
Cropland (210) 6.7 6.7 60.0 6.7 

-
Pasture (220) 5.9 3.0 11.8 47.1 

Dec1duo'19 Forest 3.0 3.0 
(410~ 

- ._----_.- . --.. - ----
WnLcr (:;00) 

*State of Maryland Land Use Classes are shown in parentheses. 

FOREST 

Deciduous 

ORIGt:'4.t F A.GI, is 
' ~ Pooa QlTiI.lJTi 

Water 
Forest (410) (500) Unc1assifl(:d 

4.0 4.0 

2.4 

--
7.9 

27.7 I 

I 
-

__ r ___ 

'-.-. 

6.7 n.3 

5.9 3.0 

94.1 

~ .---. . -_.,.- _._-_ .. -
12.5 87.5 

._,.,-------
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TABLE 3-12. PERFORMANCE MATRLCES 

loKVEL I LAND U~ 12 Channels 

AGGR~GATED COMPl~ER SPECTRAL CLJtSSES ---
GROUND TRUfH URBAN AG FOREST WATER UNCLAS. -.-
URBAN (1) 85.9 7.1 0.8 6.3 

AGRICULTURE (2) 11.9 73.8 7.2 7.2 

FOREST {4} 8.9 3.0 88.2 

WATER (5) 2.5 20.0 77 5 

LEVEL II LAND USE* 12 Channels 

AGGREGATED COMFtrrER SPECTRAL CLASSES 

RES COMI AG PAST FOR GROUND TRUTH iND 

RESIDENTIAL (11) 64.3 23.6 8.3 1.3 1.3 

COMMERCIAL I 34.7 48.0 2.0 1.0 
INDUSTRIAL (12/13) 

CROPLAND (21) 13.3 53.3 13.3 6.7 

PASTURE (4:2) 11.1 14.8 63.0 7.4 

FOREST 8.9 3.0 88.2 
Deciduous (41) 

WATER (50) 2.5 

*ANDERSON L&~D USE CLASSES ARE SHOWN IN PARENTHESES 
60 

WATER 

20.0 

UNCLAS. 

1.3 

14.3 

13.3 

3.7 

77 .5 
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CROUSD rr:UTl! 

Number 
of 

Point" 

TAl3IE 3-13. PERFORMANCE MATRIX 

nALTlI!ORE. II.ARVI.AND 

LEVEL Itl COMPUTER SPECTRAL CLA5StFICATtON OF LAND USE * 12 Channels 

Fh~~ __ ArT)_l~~~rj}:J .. ~-'.'BIi.Oi!J"s~lll_l!~RlDR .IWll~(~1 l'hSTUR~OREST ---i 
Stngle 
Family 
Res. (111) 

Multiple 
Fllmily (112) 

COT!lJ11crcial 
(121/122) 

Industrial 
(DO} 

Cropland 
(210) 

Pasture 
(220) 

Deciduous 
Forest (41C) 

Water 
(500) Unc1assificd 

------------+------f------J------- -------.- -t 
Single F3mlly 
Rc~idpntlal (111) 58.7 17.3 4.0 12.0 2.7 2.7 

----- -I----·-------I----t--.---I----+------'--------
~hltt-r, .... ily (112) 
~nd In~!ltutlonal 

(160) 

14.6 39.0 13.4 25.6 4.8 2.4 

----1-----1------- .. -----~ .. ---. I- 1-·--1-----

CO-''' 1'<' 1,,1 (121/122) ':/.8 23.6 31.', 25.~ 2.0 2.0 5.9 

Indu9t"al (ll) 

--- ._--.----- ~ 1·-------- -----~ .... ~ .. -----. -----.. _._.---1---- -I I---~ 
10.6 Z5.5 21.3 ~7.0 2.1 

... ---.- -----.----- ._. --. --.- -.-----~------... -------.-- I --'1-----------
Cropl1n" (210) 6.7 6.7 53.3 13.3 6.7 13.3 

-----+-----l-- ... _-- ---- ---1----1·_·---1 
rasturt' (220) 11.1 14.8 63.0 7.4 :;.7 

-------- ----I- 1-----1---- I----t 1----.. -------
iK'clduo1l11 For<!st 

(4iO) 
5.9 3.0 3.0 88.2 

--. ____ ~ --- -01·- ------ -I ~ -.--~.--.- .. ----------.,.-.-----.-- •. , -·-·-----. _____ .-...-_I· ____ .. ~_I_-----_~-__ _ 
W.1t<!r (00) 2.5 20 

----.1- ,______ I L ____ .. __ ,_ -----J--. ____ . ___ .. 
*State of Maryland Land Use Classes are shown in parentheses 

77.5 



TABLE 3-14. PROB,~.BILITY OF CORRECT CLASSIFICATION 

FOR VARIOUS NUMBERS OF CHANNELS 
Bal timore Land Use Test Site 

ANDERSON LEVEL I 

4 7 1.2 

Urban (1) 85.9 83.9 85.9 

Agriculture (2) 69.1 11.4 72.8 

Forest (4) 88.2 94.1 88.2 

Water (5) 100 100 100 

--- - .--
ANDERSON LEVEL II 

Residential (11) 63.1 66.3 64.3 

Commercial/ 58.2 52.0 48.0 Industrial (12/13) 

Cropland (21) 46.7 60.0 53.3 

Pasture (22) 61.8 59.3 63.0 

Forest (41) 88.2 94.1 88.2 

Water (50) 100 100 100 

--------------------
MARYLAND LEVEL III 

Single Family 62.7 62.7 58.7 Residential (111) 

Multi-family (112) 32.7 41.5 39.0 and Institutional (160) 

Commercial (121/122) 33.3 29.4 31.4 

Industrial (130) 14.9 23.4 17.0 

Cropland (210) 46.7 60.0 53.3 

Pasture (220) 61.8 47.1 63.3 

Deciduous Forest (410) 55.2 94.1 88.2 

Water (500) 100 100 100 
------ -----.----- ------------

6? 



TABLE 3- 15. PERFORMANCE MATRIC 'S 

BALTU10RE, MARYLAt.W - AVERAGE ACCURACY 

% ERRORS 

4 Channels 
% CORRECT 

Commission Omission 

LEVEL I 
85.7 9.2 5.1 

LEVEL II 
67 . 4 27 . 5 5.1 

LEVEL III 51.8 42. 5 5 .1 

% ERR01{S 
7 Channels % CORRECT 

Com:nission Omission 

LEVEL I 85. 2 8.1 6 . 7 

" 

LEVEL II 67.9 25.4 6 .7 

LEVEL II I I 54.9 38.4 .7 

12 Channels 1% CORRt~ r. ERRORS 
. Commis 'i ioTl L.n ission , - , 

LEVEL I 86.3 8 .~ 5 . 1 

I 
LEVEL II 65. 5 29. ). 1 

LEVE III 52.6 42.3 5.1 

• OJ. - • 
. . • u " • 

, ' .. " 
~ 
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Urban Land Use results are based primarily upon the Baltimore data 

results presented in this study and an analysis of laboratory reflec­

tance data on materials to be encountered in Land Use scenes. 

With the exception of channel 10, the channels selected for the 

1 I d use study were generally in the spectral regions predicted 

theoretically. Band 10 was ranked unusually high as a result of its 

use as a land/water boundary identifier. A more appropriate band for 

land/water interface delineation ~. n urban land use studies (not 

available in the Baltimore data) would be an 0.8-1.1 ~ m band. This 

band would aid in vegetative discrimination in addition to delineating 

land/water interfaces and would replace both channels 9 and 10 shown 

in Table 3-7. The 0.6 2-0.70 ~m and the 9.3-11.7 ~m bands would be 

modified to 0.63-0.6S ~m and 10.4-12 . 4 ~m , respectively, as described 

in the Agriculture/Range/Forestry study. The remainder of the top 

seven banns in Table 3-7 would remain unchanged . 

The anticipated task for Urban Land Use is to classify urban 

areas at least to the Anderson Lev 1 II categories. To accomplish 

this, selected bands wi ll be r qu i r ed to c lassify var ious ty?es of 

pervious and i mpervious materials, differentia te between vegetat ive 

typ s, and de lin ate land/water bounda ries. The 10 . 4-12.5 ~ m band 

would be the most useful band ( r urban l and li se c lassif icat i 11, 

provided that data are col lect d near noon, W;k,l maximum temperature 

contrast b tween man-mad~ and natural categories occurs. Temperatur 

has been found to bE: an i ndicator o f the concentration of man 's 

activities and ~~~ also been useful in vegetati n discrimina i on f or 

land use applications. The 10.4-12.5 ~m band w uld probably no t be 

as useful if data were coI L e ted at 0930 hour~. The 0.63-0 . 69 Jm band 

is primarily a vegetation band as described in th Agr i cultur / R ng~/ 

Forestry portion of the study. The 0.50-0.54 ~m. 2.0-2 . 6 ~m, an 

0.42-0.48 ~m bands are pervious/imp rvi us mat rials and vcg t Li on 

disc riminators . Though r anked nil Ll empirically, lh 0.58-0. 4 Jm i 
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deemed necessary to land use classification becau3e of its utility in 

radiation balance and albedo measurements. Recommended spectral bands 

for the Urban L~nd Use discipline are shown in Table 3-16. 

3.4 GEOLOGY AND SOILS 

The geological classification task undertaken was lithological or 

mineral soil classification. As oppos~·d to .the delineation of 

structure which may be done with color imagery or black and white 

single channel imagery collected under suitable conditions, a diversity 

of spectral bands may be required for successful lithologic classi f i­

cation. Twenty-one materials were identified in the White Sands data. 

These classes appear in Table 3-17. 

Data from the White Sands Geology test site were evaluated first 

to determine the optimum ratios from the training data. Ratios were 

selected as input features because of previous experience indicating 

that spectral shape information was more useful than the spectral 

reflectance information in delineating certain lithologic units such 

as different silicates and iron-bearing format i ons. GeneraLion of the 

optimum ratios, shown in Table 3-18, was accomplished by evaluating 

121 individual target areas representing 21 different classes of 

materials to be recognized. Spectral bands comprising these ratios 

we re then prioritized. These prioritized spectral band results appear 

in Table 3-19 . The prioritization represented in Tables 3-18 and 3-19 

are attempts to minimize the overall p~obability of misclassification 

for all scene classes. The prioritization did not maximize the 

probability of detecting a particular material of economic or 

geological inferential importance. As may be een in the analysis of 

data test sets, the addition of banda directed towards identifying 

particular materials does increase the probability o f identifying that 

material. 

For the White Sands Geology test site, the twenty one separate 

scene materials were classified using 15, 7, and 5 spec tral channe l s . 

66 



TABU: 3-16. RECOMMEN!)EC OPTIMUM BANDS URBAN LAND USE 
(PRIORITIZEL) 

URBAN LAND USE 

10.4 - 12.5 lJm 

0.8 - 1.1 lJm 

0.63 - 0.69 lJm 

0.50 - 0.54 lJm 

2.0 - 2.6 lJm 

0.42 - 0.48 lJm 

0.58 - 0.64 lJm 
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Scene Class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE 3-17 

WHITE SANDS GEOLOGY TEST SITE 

Scene Classes to be Recognized 

Name 

Gypsum sand near 
alkali flat 

Soil (rece:lt?) 

Red alkali deposit 

Soil (dissected) 

Dark drainage soil 
(most recent?) 

Red alkali deposit 

Alluvial fan -
geologic map shows 
Qal 

Soil 

Pediment - Paleo­
alluvial fan 

Soil (erosional 
remnant) 

Precambrian 
c.:ystallines 

68 

Descript ~ on 

white deposits associated 
alkali flat, partially gy~sum 
sand, may include some quartz sand 

a background soil type cut by 
youngest drainage deposits 

distinct red deposit north of 
the white sands 

a distinct 80il type considered 
younger th~n target 2 and of 
different composition or cover 

appears very dark in natural 
color photography, may be some 
vegetative cover 

broad region of alkali flats 
orange-red to red-brown 
sediment materials 

fan on eastern San Andres at mouth 
of Grapevine Canyon and some remnant 
sediment on the pediment 

second background soil type 

appears to be the remaining exposed 
foot of a previous period of alll~ium, 
probably with associated soil remnants 
on the pediment 

r~mnants of a pediment soil highly 
dissected and appear i ng dark 
greenish-gray 

granite chiefly. Other core 
exposures of metamorphics are not 
specifically known, but may be 
omitted from this class and hopefully 
will class with some of the more 
mafic rich so11s 



, 

. ~ 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

TABLE 3-17 (cont.) 

Dolomite 

Limestone and 
calcareous sediments 

Abo Redbeds 

Yeso and San Andres 
Fl)rmations 

Slope material 

Multi-colored 
drainage soil 

Lake Lucero 

Gypsum sand 

Bolson sediment 

Darkest bolson 
deposits 

69 

several Ordovician and a Siluri an 
dolomite stratigraphically contiguous. 
An Ordovician basal sandstone is 
also included here, but considered 
of insignificant thickness. It may 
interfere with the boundary between 
crystRllines and dolomites 

Devonian through Upper Pennsylvanian 
calcareous sediments of mixed 
description. Statistical stratif i­
cation failed to separate limestone 
from mixtures of silts and sands 
with carbonaceous shale. 

dark reddish-brown shales and 
siltstone, some grey and red a l so 

iron stained sandstone and 
calcareous sediments 

general valley fill material not 
recognizable as rock outcrop and 
likely to have mixtures of rock 
types, highly weathered, with 
partial soil development and/or cover 

a unique soil type of extremely 
mottled appearance in the red 
seen to dissect mos t soil classes 

playa lake deposits 

dark material s een to underlie or 
be in close proximity to t he gy psum 
sand deposits 

similar situation to target 22 , 
but spectrally distinctive . 

, 
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Ranking 

1 

2 

., 
J 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

TABLE 3-18. PRIORITIZED RATIOS 
GEOLOGY TEST SITE 

Ratio 

0.71-0.75/0.46-0.50 

1.18-1.30/0.71-0.75 

0.57-0.63 / 0.40-0.44 

0.64-0.68 / 0.53-0.57 

2.10-2.36 / 0.82-0.87 

0.97-1.05/0.76-0.80 

0.46-0.50 / 0.34-0.40 

9.30-9.8 / 8.30-8.80 

2.10-2.36 / 0.64-0.68 

0.97-1.05 / 0.64-0.08 

0.82-0.87 / 0.53-0.57 

2.10-2.36 I 1.05-1.09 

0.46-0.50 / 0.40-0.44 

Probability of 
Misc1assification 

.14870 

.06174 

.03793 

.02822 

.02181 

.01839 

.01574 

.01365 

.01242 

.01107 

.01055 

.01011 

.00970 



TABLE 3-19. P1UORlTIZED SPECTRAL BANDS 

WHITE SANDS GEOLOGY TEST SITE 

Ranking Spectral Ba:ld 

1 0.71 - 0.75 

2 0.46 - 0.50 

3 1.18 - 1.30 

4 0.57 - 0.63 

5 0.40 - 0.44 

6 0.64 - 0.68 

7 0.53 - 0.57 

8 2.10 - 2.36 

9 0.82 - 0.87 

10 0.97 - 1.05 

11 0.76 - 0.80 

12 0.34 - 0.40 

13 9.30 - 9.80 

14 8.30 - 8.80 

15 1.05 - 1.09 
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~_I~M~-----------------------------F~O~R~ME~R~LY~W~I~LL~O~W~R~U~N~~~~~RA~T~OR~' E~S~. T~H~E~UN~'V~£~~~"~Y~O~F~~~H~~N 

The classification results are given in Tables 3-20, 3-21, and 3-22. 

As can be seen in Figure 3-5, a marked improvement in average classifi­

cation ~~curacy was realized as the number of spectral channels was 

increased from 5 to 15. However, some scene classes (3, 15, 18, 20, 

and 21) show little decrease in classification accuracy as the number 

of spectral channels is reduced to five. Table 3-23 is a useful summary 

of this data. 

This dependence of classification accuracy upon the number of 

s?ectral bands follows from the relatively large number of scene 

materials to be classified. This la~ge number of classes, however, is 

representati ve of the variety of the geology and soils found in arid 

regions such as New Mexico, and thus the numbe r of bands may be 

indicative of the spectral requirements. 

The soils and sediments are well identified by the first four 

bands of Table 3-19. A marked improvement in cla3sification is noted 

for class 10, a probably ferrous iron cont aining soil identified with 

the aid of t he 0.46-0.50 ~m/O.34-0.40 ~m rati~ brought in the 7 ratio 

data. Class 1, gypsum and quartz sand, and class 11, granite, are 

identified by the silicate reststrahlen registered by channels 

9.3-9.8 ~m and 8.3-8.8 ~m. Class 12 and 13 are carbonates i dentifi ed 

best by channels 1.1-1.35 ~m and 2.0-2.35 ~m both available only in 

the 15 channel classification. Class 6 contains limonite and goethite 

ferric oxides and ~lass 14 contains thematite, another ferric oxide. 

Improvements in clas;. ification (5 optimum versus 7 optimum spectral 

channels) are based on the availability vf the ratio 0.64-0.68 ~m/ 

0.53-0.57 ~m in the 7 channel data. The improvement classification in 

the 15 channel data is due to the availability of the ratio 

0.97-1.05 ~m/0.64-0 . 68 ~m. Both these ratios delineat e ferric iron 

containing materials from other scene materials. This leads to the 

empirical results for the identification of quartz (silicat~s), ferrous 

and ferric (iron oxides), and carbonates given in Table 3-24. 
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SCENE 
1<:1.ASS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
20 

21 

% 
CLASS 1 2 

63.0 5.5 

56.4 ~5.~ 

92.6 7.4 

75 . 7 3 .• 11.1 

75.8 O. 
79.2 

21.5 

80.Q 

34.3 

67.1 

2.6 1.4 

20.4 0.2 

65 . 8 

75.9 

69.4 

59.9 

83.2 

92 . 7 

81. 7 
96.4 

95.5 

TABLE 3-20. PERFORMANCE MATRIX - WHITE SANDS GEOLOGY TEST SITE 
3 OPTIHUH RATIOS, 4 OPTIHUH CHANNE1.S 

TRAINING SET NUMBER (SEE TABLE 3-17) 

3 4 5 Ij 7 8 9 10 11 12 13 14 15 16 

~2.C 2.6 0.1 6.0 0.1 0 .7 

4.C 13.3 0. 4 C.l 0 .4 

0.8 4. 8 2.5 0.4 0.7 

0.3 6.3 0.8 4.3 3.5 1.5 3.8 3.5 

2.7 2.8 5.4 

2.5 2.2 2.2 4.8 1.2 0.2 14.6 163.1 

17.5 

7.1 0.7 5.7 0.7 41.4 

1.4 8.6 14.3 5.7 '} Q 
1.7 5.0 1.8 2.9 0.4 1.6 2.4 12.2 10 . 5 17.4 17.4 17.0 

0.1 0.1 0.2 0.2 0.2 2.7 12.4 18.9 32.2 11.7 
0.2 0.1 0.4 0.2 0.8 0.3 6.4 9 . 8 2.Z 13.9 

0.2 0.9 4.6 4.9 4.9 8.5 

0.1 0.8 3.6 3.2 3.9 2.0 16.9 

0.1 0.4 0.1 2. 5 i6.0 1.0 1.5 l.b 5,4 -'3,2 ItA.4 

17 

3.6 

WEIGHTED AVERAGE ACCURACY OF CLASSIFICATION - 66.4% 

IUH 
18 19 20 21 CLASS. 

3.7 

n .1 

n 4 Q.n 7.4 

3.7 .1..6 

112.9 0.1 5.l 

3.4 1.1 
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" V1 

SCENE 
~S_ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

I j 

14 

15 

16 

17 

18 

19 

20 

2J 

% 
CLASS 1 

75 .3 

58.9 ~7.1 

94.0 5.7 

72.2 .' . 6 

79.3 

79.2 

38.0 

90.0 

37.1 

84.3 

14.5 

26 .5 

69.0 

86.1 0. 6 

C1Q.9 

65.S 

84 . I 

93. · 

80.6 

96 .4 

96 . 6 

TABLE 3-2... . PERFORMANC E MATRI X - WHT1'E SANDS GEOLOGY TEST SITE 

" OPTIMUM RATIOS. 7 OPTIMUM CHANNELS 

TRAINI NG SE'r NUMBER (SEE TA3LE 3-17) 

2 3 4 5 6 7 8 9 10 11 12 1j 14 15 16 

8.4 1.0 3.4 

0.113.( 

0.3 

5.0 6.8 10.9 0 . 7 0.7 

0.5 17.8 1.0 Is.o 12.3 1.0 :',0 

14 .0 1.3 Ii : 4 

0.5 2.4 5 .3 1.5 8.2 0.5 0 . 7 32.9 

5.0 5.0 

3. 6 U .9 7. 1 2.9 '\{, l. 

1. 4 1.4 8 . 6 4,1, 

0.1 0 .5 3.7 1.1 3 . 4 0 . 3 0.9 2. 8 116.6 9 . 5 69 121 .5 114.9 

0.1 0.2 0.1 0.1 0 . 1 5.5 17.2 35 1'\0.4 15.4 

0.4 0.3 0.4 1.9 8.4 03 9 . 2 II 0 7 

0.4 2.8 1.3 8 7 

b , 5 0.4 3. 1 5.5 3.0 0 .7 It 7 2 

p.l O. 3.0 5 ,0 0.8 2. 2 2. 7 4.7 7. 6 112 . 7 

17 

'1.6 

WEIGHTED AVERAGE ACCURACY OF CLASSIFICATION - 66. 8% 

%UN 
18 1.9 20 21 CLASS. 

0.2 

0.1 

3,5 

o .1 n.7 

0.2 

n I 

0 . 1 12.8 2 .7 

3.9 2. ~J 

11.2 0.1 8 .1 

2. 3 1.1 



"-oJ 
a-

SCENE 
c.LASS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

% 
CLASS 1 

90.4 

77.5 0.4 

99.7 

80.4 0.3 

83.4 
96.6 

80.6 

100.0 

85 .0 

95.7 

43 . 7 

57.7 

73.7 

96.1 

72.6 

79.8 

94.2 

99.0 

98.2 

96.8 

98.9 

TABLE 3-22. PERFORMANCE HATRIX - WHITE SANDS GEOLOGY TEST SITE 

13 OPTIHUH RATIOS, 15 OPTIKUH CHANNELS 
TRAINING SET NUMBER (SEE TABLE 3-17) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

4.3 0.2 1.7 

1.5 0.2 0 .. 1 0 .. 3 

0.3 

8.9 4.0 0.1 0.1 o 2 

1.8 ILo .8 0.8 0.8 1.'> 

2.7 0.7 

0.7 2.9 1.0 3.4 1.7 1.5 5.1 3 2 

3.6 0 . 7 1.4 0.7 0.7 7 .. 9.. 

1.4 2.9 

0.1 119.1 10.9 7.1 4 7 2.6 

~ 
0 .6 0.1 6.6 10.7 5 1 9./t. 4.0 

], 3 0.1 2,8 8.9 2 .5 1.7 2.7 

0.2 0 . 8 0.3 0 .5 2,1 

1.4 3.0 9.2 o 7 1.1 111 .1 

0 .. 4 2.8 0.4 0 .• l.l 4.9 9.0 

17 

3.2 

WEIGHTED AVERAGE ACCURACY OF CLASSI FICATION - 81.5% 

%UN 
18 19 20 21 CLASS. 

3. 4 

1.0 

11.8 

5..1 

6.2 

n ., 

0.7 

..1.D 

'LII ILL-

1.0 

:n~ 0,1 1.2 

1.1 



TABLE 3-23. PROBABILITY OF CORRECT CLASSIFICATION 
FOR 5, 7, and 1.5 CHANNELS 

GEOLOGY 

CLASs/iCLASSES 5 7 15 

1 63.0 75.3 90.4 

2 56.4 58.9 77.5 

3 92.6 94.0 99.7 

4 75.7 73.3 86.4 

5 75.8 74.3 83.4 

6 79.2 79.2 96.6 

7 20.5 38.0 50.0 

8 80.0 90.0 100.0 

9 34.3 37.1 85.0 

10 67.1 84.3 95.7 

11 2.6 14.9 43.7 

12 20.4 36.5 57.7 

13 65.8 69.0 73.7 

14 75.9 86.1 96.1 

15 69.9 61.9 72.6 

16 59.9 65.8 79.6 

17 R3.2 84.3 74.2 

18 93.7 93.4 99.0 

19 81. 7 80.6 8.2 

20 96.4 96.4 96.8 

21 95.4 96.6 9 .9 
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TABLE 3-24. BANDS FOR ~"fiNERAL IDENTIFICATION 

MINERAL SPECTRAL BANDS (Micrometers) 

Silicate 

Fel"ric 

Ferrous 

Carbonates 

9.3 - 9.8, 8.3 - 8.8 

0.64 - 0.68, 0.53 - J.57, 0.91 - 1.05 

0.46 - 0.50 

1.1 - 1.35. 2.0 - 2.35 
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In the geology discipline, the assumed objective was the classifi­

cation of soils and mineral resources. Theoretical and other empirica l 

studies support the spectral channel ordering results. The results 

from the theoretical and empirical studies review, Table 3-25, and 

their band selection Table 3-25A are discussed below. The 8.3-9.3 ~m 

and 10.4-12.5 ~m thermal bands 1n the silicate reststrahlen region 

have been shown to be effective in t~e differentiation of silicates 

from other rock types and of differentiation between various silicate 

types. Measurements in the 0.63-0.69 ~m region provide albedo info~'­

mation necessary to assess thermal inertia and heat capacity o~ various 

rock types. This band, combined with a band in the mid-infrared region 

is also effective in detecting the presence of vegetative cover (such 

as lichen or grass) on geologic materials. The 0.52-0.56 ~m band, in 

combination with the 0.63-0.69 ~m band is an indicator of the presence 

of iron oxide, and hence, ferric iron. The 2.05-2.35 ~m band may 

indicate the presence of hydroxyl ions in surface materials and thu 

can be used to differentiate soil types and metamorphic and other r ock 

types. 

The 1.1-1.35 ~m band is also useful for carbonate identifica t "on . 

The 1.55-1.75 ~m band is potentially useful in the detectit~ of bauxit 

types. The 0.45-0.50 ~m band is in a : errous iron absorption band, 

and is thus useful for detection of ferrous iron containing mat rials . 

If the identification of various minerals is prioritized 

according to some measure of economic impor tance such as construc t 0 11 

material (silicates, especially saud), iron ore (Ferric ~ Ferr us ), 

heat balance and vegetation rejector, and carbonate (limestone ), 

the channel priorities ~hown in Table 3-26 are obtained. 

3.5 WATER AND MARINE RESOURCES 

The selection of spectral band placement and bandw i dth fo . 

and marine resources depends n the phenomena to be de lineat d. rhe 

assumed objective o f water resources applica t i on o r this s tud y · s 
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TABLE 3-25. LITERATURE SURVEY RESULTS - GEOLOGY 

SOURCE WAVELENGTH (jJ.m) 
.4 .5.6.7.8.9 1 2 3 4 5 6 78910 15 

Ross, Adler, Hunt -
~~ • .4 • 1967 

Theoretical 
Vincent - 1974 ~~ Results 

to-

Kondratyev, et al - ..... ~ I--t 
1973 

Dillman, Vincent, ..... H ~ ~ -~ Hasell -
~ Empirical 

Vincent - 1973 '"4 ., ~ io--4 t--t ~ Results --
Dillman, Thomson - ... M 1971 

I---t ..., --~ -of -' ....... SEOS - 1973 t-4 

Systems ~ ~ ... - .. - ... 
EOSPDG - 1973 t--f t-i ~ 

Studi~s ... 1.. .. H 
Advanced Scanners ..-~ ~~ ~ "I t----t 

and Imaging Systems -1972 --~ -

LITERATURE SURVEY RESULTS - GEOLOGY 
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TABLE 3-25 A. LITERATURE SURVEY RESULTS - GEO~OGY 
OPTIMUM SPECTRAL BANDS (~Im) 

Ross, Adler, Hunt 

0.50 { 
1.45 
1. 95 
2.35 

Vincent 

0.5 - 0.54 
0.63 - 0.69 
1.0 - 1.4 
1.5 - L8 
2.0 - 2.6 

EOSPDG 

0.45 - 0.55 
0.55 - 0.65 
0.65 - 0.75 
0.75 - 0.85 
0.85 - L 10 
1.10 - 1.35 
1. 55 - 1. 80 
2. 05 - 2.35 

2 bands 

no t.).. 

specified 

be tween 10.4 - 12.6 

THEORETICAL 

Vincent 

8.1 - 9.2 
8.2 - 10.2 
9.3 - 11. 3 
9.8 - 11. 2 

EMPIRICAL 

D ~llman, Thomson 

0.44 - 0.47 
0.54 - 0.56 
1.0 - 2.6 

SYSTEMS STUO";ES 

Advanced Scanners and Imaging Systems 

0.44 - 0.55 
0.68 - 0.80 
0.80 - 1.0 
8.0 9.5 

10.5 - 14.0 

Kondratyev. et a1 

0.6 - 0.7 
0.8 - 1.1 

Dillman, Vincent, Hasell 

0.47 
0.51 
0.67 
2.5 
9.1 

0.43 -
0.49 -
0.63 -
2.0 
8.0 
8.8 - 10.5 

SEOS 

0.50 
0 .56 
0.68 
1.1 
1.4 

0.40 -
0.52 -
0.62 -
0.80 -
1.0 -
2.0 
8.3 

2.3 
- 9.3 

10.5 - 12.5 



.. 

TABLE 3-26 . RE COMMENDED OPTIMUM BANDS FOR GEOLOGY 
(PRI ORITlZED) 

8.3 - 9 . 3 

10.4 - 1. 25 

0.63 - 0.69 

0.52 - 0.56 

1.1 - 1. ' 5 

0.8 - 1.1 

1.55 - 1.75 

2.05 - 2.35 

0. 45 - 0.50 
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assessment of water quality. The minimum requi rements for water 

quality determination are assessment of aquatic vegetation and algae 

concentration (chlorophyll), transparency suspended solids concentra­

tion, temperature gradients, and oil detection. 

The primary objective of Water/Marine discipline applications was 

assumed to be Marine ~ld Coastal Zone water surveys. In view of these 

objectives, bands which are indicators of aquatic vegetation will 

receive higher priority than in water resources appljcations because 

of coastal zone requirements. Similarly bands found to be indicators 

of oil, hence associated marine life or spills by tankers will receive 

higher priority than in the water resource discipline. 

Limited empirical evidence for band selection was achieved wIth 

MSDS data from the Atchafalaya River and delta test site in Louisiana. 

Because of data quality aspects of the empirical study, prime reliance 

was placpd on the literatu~e survey and theoretical results in de rivi ng 

the recommended spectral bands. 

The literature s urvey results are presented in Tables 3-27A and 

3-28A and in more graphical form fo r easy comparison in Tebles 3-27 

and 3-28 . Before beginning a dis cussion of these results or presenting 

the empiric al study results, let us give the recommended spectral bands 

i n order of priority for each of these two discipline areas. The 

re commended bands for Water Resources are: 

0.48-0.52 ~m 0.42-0.48 lJm 

0.52-0.58 ~m 0.58-0.64 lJm 

0.62-0.68 lJ m 0.69-0.74 ll m 

10.40-12.5 lJm 0.50-0 .54 lJ m 

0.80-1.10 lJm 0.32-0.38 lJ m 

83 

, . ~ .. 
. w 

. . . . 
, . \ . 

~- _ . ~ . . l • til • -.....:..L... _ < ~ , • " 

~\ ~~ 



():) 
l:'-

TABLE 3-27. LITERATURE SURVEY RESULTS - MARINE/OCEAN 

SOURCE 
WAVELENGTH (/lm) 

.4 .5.6 .8 1 2 3 4 5 6 7 8910 

Polcyn - 1971 rt ~H H 1-1-
H 

Theoretical Clark, Ewing, t::. t::. 
Results Lorenzen - 1969 

I 
Keene, Pearcy - 1973 H IHI~ 

Empirical 

Results 
Polcyn - 1972 ~ ~IU ~H H ~ ~ t-H 

Brown , et al - 1971 H M4 H 

... h 
. 

SEOS - 1973 H. 
H 

; 

Systems . " 

Studies 
EOSP.L'( - 1973 

HHH~ Advanced t;canners and 
Imaging Systems - 1972 ~ _ ..... _H.....J_ -

LITERATURE SURVEY RESULTS - MARINE/OCEAN 

"I 
15 

I 
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TABLE 3-27A . L:::TERATURE SURVEY RESULTS - HARlt\F. AND OCEAN 
OPTIM1~ SPECTRAL BANDS (~m) 

Polcyn 

0.40 -
0.50 -
0.55 -
0.62 -
0. 80 -
8.00 -

10.00 -

0.44 
0.52 
0.5S 
0.68 
1.00 

14.Q0 
12.00 

Polcyn 

0.32 -
0. 40 -
0.45 -
0.50 -
0. 55 -
0. 62 -
0 .80 
9. 30 -

0.38 
0.44 
0.47 
0 .52 
0.58 
0.68 
1.00 

11. 70 

Advanced Scanners and Imaging Syste~s 

0.36 
0.40 -
0.46 -
0.49 -
0.52 -
0.64 -

10 .10 -

0.39 
0.45 
0.49 
0.52 
0.56 
0.68 

14.00 

THEORETICAL 

Clarke, Ewing, Lorenze n 

0.46 
0.54 

no C:.A 
specified 

EMPIRICAL 

SYSTEY.5 STUDIES 

,Keene, ?earcy 

0.45 - 0.47 
0.52 - 0.55 
0.58 - 0.63 

.Brown, e t a1 

0.47 - 0.48 
0.52 - 0.55 
0.55 - 0.58 
0.63 - 0.68 

SEOS 

0.42 
0.48 -
0.52 -
0.62 -
0.66 -
0.80 -

10.50 -

0.48 
0.52 
0.58 
0.66 
0.70 
1.20 

12.50 
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TABLE 3 ?8 . LITERATURE SURVEY RESULTS - HYDROLO~ !WATER RES0URCES 

SOURCE WAVELENGTH (/lm) 
.4 .5 .6 .8 1 2 3 4 5 6 7 8 10 

Wezp.rnak - 1974 H fo4 I'" 
Theoret-

H ica~ Mitsch - 1973 
H HH 

Results .... 
Ko~dra , " " :t al - 1973 

t-I-H 

Brown, Thomson, 
t-t ~ , ~ ~ Thomson - 19€~ ~ 

Empirical, Wezernak, P,)lcyn 
H .. ~ 

Results 1970 
I-- ak " Wp.zern ,Lowe , 

H ~ H H ~ I-Polcyn - 1967 

I~ 
~,.. t"'" H SEDS - 1973 ~ t-4 

Systems t-
I-EOSPDG - 1973 1-1-~ Studies 

u- ~ I AJvanced Scanners and I 1-1-H Imaging Systems - 1972 
~-

LITERATURE SURVEY RESULTS - HYDROLOGY/WATER RESOURCES 

15 
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TABLE 3-28A. LITERATURE SURVEY RESULTS - HYDROLOGY/WATER RESOURCES 
OPTIHUM SPECTRAL BANDS (llm) 

Wezernak 

0.42 - 0.48 
0.50 - 0.51. 
0.63 - 0.70 

Brown, Thomson 

0.42 - 0.46 
0.52 - 0.55 
0.58 - 0.62 
0.66 - 0.72 
0.52 - 0.66 

SEO~ 

0.48 
0.52 
0.58 
0.70 
1.10 

0.4:' -
0.48 -
0.5 2 -
0.60 -
0.80 -
2.0 2.30 

- 12.5 10. 5 

THEORETICAL 

Mitsch ----
0.30 - 0.45 
0.41 - 0.47 
0.54 - U. 58 
0.62 - 0.67 
0.63 no 1l'A 
0.65 no D.A 
8.00 - 14.00 

EMPIRICAL ----_. 
WezerEak, Polcyn 

0.40 - 0.44 
0.44 - 0.46 
0.55 - 0.56 
0.58 - 0.62 
0.66 - 0.72 
0.72 - 0.80 
e.oo - 10.00 

SY~'3 STUDIES 

EOSPDG 

0.50 - 0.60 
0.60 - 0.70 
0.80 - 1.10 

10.4 - 12.0 

Kondratyev, et a1 

0.70 - 0.8 
0.80 - 1.1 

Wezernak, Lowe, Polcyn 

0.32 - 0.38 
0.40 - 0.44 
0.55 - 0.58 
0.62 - 0.68 
0.80 - LOO 

Adva~ced Scanners 
~£.,}Inaging Sys terns 

0.48 - 0.64 
0.80 - 1.10 
8.0 -Y .. O 



and recommended bands for Marine Resources are: 

0.62-0.68 ~m 0.80-1.10 ~m 

0.48-0.52 ~m 0.58-0.64 ~m 

0.42-0.48 ~m 0.69-0.74 ~m 

10.40-12.5 lJm 0.50-0.54 ~m 

0.52-0.58 lJm 0.32-0.38 ~m 

For the assessment of the concentration of suspenoed solids, 

measuremencs are required in the 0.48-0.52 ~m, 0.52-0.58 lJm, and 

0.63-0.68 ~m bands. The 0.48-0.52 lJm and 0.62-0.68 um bands are 

also indicators of chlorophyll content, hence aquatic vegetation or 

phytoplank,)n. The 10.4-12.5 um thermal band is an indicator of water 

temperature. The 0.80-1.1 um band is useful in delineating land-water 

interfaces. The 0.42-0.48 ~m band, along with the 0 . 58-0.64 and 0.69-

0.76. flm regions are used for the detection of algae blooms (the 0.58-

0.64 urn is a peak reflectance region fo..:: the "red tide" phenomenon). 

The 0.50-0.54 lJm region is useful in water depth measurements and may 

provide baseline information on the deLe~tion of phytoplankton 

concentrations. The use of the 0.32-0 . 38 Um band for oil detection is 

probably not feasible from satellites. It is however, a desirable 

band for water and marine resource users as an indication of presence 

of oil. 

The optirn'.lrn bands for Marine/Ocean a ppl ications diffe:r from water 

resource bands only in priority. The bands for detection and identifi­

cation of aquatic vegetation were given higher priority in marine 

resources than water resources because of the stated objective of 

Coastal Zone water surveys where this information is very important. 

Atchafalaya Empirical Study 

Scanner data and ground truth problems seriously limited the scope 

of this water study. Examination of 7 x 7 reconnai~sance graymaps of 

the two MSDS flightlines flown over the test site on 19 September 1973 

revealed that the targets of interest were in tre first two thirds of 
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flightline 1. It was decided, in the interests of increased efficiency 

and reduced cost, to restrict further aircraft data processing ~u this 

subset of data. 

Upon detailed examination the MSDS data was found to have several 

general problems associated with it that compromised its usefulness 

for this study. The most important problem was a condition described 

as the "sticky bit" phenom;-:lon. This caption describes the presumed 

source of the problem and refers to the preference exhib~Led by the 

MSDS for having a certain digital bit turned on during the in-flight 

analog-to-digital data conversion. The least significant bit was 

found to be affected in this manner in all channels except for 

channell. 

The effects of this problem can !>e observed in Table 3-29, where 

it is described as a "cycle of 2" striping pattern in the data histo­

grams. Unfortunately, this problem was not confined to the least 

significant bit, as evidenced by the appearance of a "cycle of 4" 

striping pattern, indicating that the second least significant bit 

is similarly affected. In general, however, this cycle of 4 is mu ch 

less pronounced. 

Since ~his condition would seriously compromise the performance 

of standard ~attern r.ecognition techniques it was felt necessary 0 

remove it. This was accomplished by dividing each original data value 

by 2 and then rounding to the nearest integer value_ :he resul t s I s 

a data set with a dynamic range reduced by one half, but with th 

relative significance of the original sig1)al maintained. In effec t, 

the data, which originally had 8 b~ts significance, now had 7 bits 

significance. 

At this point it should also be pointed out that, even befo r 

scaling, :he sensor's nominal dynamic range was never more th an 50~ 

utilized. 

Finally, it was also necessary to omit 5 of the 20 availabl 

spec tral bands for other problems: channel 7 (2.10-2.36 m)-
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TAPE 
CBANHEL AI-A, 

1 .34-.40 

2 .46-.50 

3 .57-.63 

4 .71-.75 

5 .82-.87 

6 1.18-1.30 

7 2.10-2.34 

8 4.50-4+.75 

9 9.)0-9.80 

10 11.00-12. ()( 

11 1.12-1.16 

12 .40-.44 

13 .53-.57 

14 .64-.68 

15 .76-.80 

16 .97-1.05 

17 1.52-1. 73 

18 3.54-4.00 

19 6.00-7.00 

20 10. 10-11. OC 

21 12.00"13.0C 

22 1.05-1.09 

TABLE 3-29. HSDS DATA QUALITY 

ATCHAFALAYA DATA 

DYNAMIC RANGE BISTOGlWf STlUPlNG 

(0-256) (DATA PATTERN DUE TO 

VALUES) % "STICKY BIT" 

114-147 13 Not apparent 

87-111 10 Cycle of 2* 

69-.67 39 Cycle of 4"'· 

49-147 39 Cycle of 4 

35-159 49 Cycle of 4 

37-123 34 Cycle of 4 

0 0 

0-77 30 Cycle of 4 

13-55 17 Cycle of 4 

19-99 32 Cycle of 4 

0-57 23 

112-140 11 Every 4th bin 

81-163 32 Cycle ot 4 

51-137 46 Cycle of 2 

41-147 46 Cyr.le of 4 

36-154 46 Cycle of 4 

7-111 41 Cycle of 2 

3-33 12 Cycle of 4 

0-137 54 Every other bin 

19-51 13 Cycle of 4 

11-85 29 Cycle of 4 

23-155 52 Cycle of 4 

·Least significant bit haa a preferred value 

•• Second least significant bit baa • preferred value 
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%.74 clipped L.L •••• 

.23% clipr - ~ L.L. 

.18% clipped L.L. 

1.04% clipped L.L. 

26.5% clipped L.L. 

.Lover Limit 



dota; channel 12 (0.40-0.44 ~ m) and channel 19 (6.0-7.0 ~m) - empty 

bins; and channel 8 (4.50-4.75 ~m) and channel 11 (1.12-1.16 ~m) -

excessive data cl~pping. 

Because of the compromises on the available data for the 

Atchafalaya tes~ site, the spectral study for this dat u set was limited 

to a determination of the optimum 4 bands for coastal zone surveys. 

The separate sets of optimum bands shown in 7able 3-30 were selected 

for water turbidity and for surroundi~g terrestrial cover including 

natural vegetation. .-later turbidity was classified fo r four turbidity 

levels ranging from clean water t;) light, moderate, and heavy turbid it :l . 

t he terrestrial cover types examined logically separate into the 

three fol lowing general categories: (1) natural vegetation cOClDlunities, 

(2) cult u.al vegetation, and (3 ) con-vegetation. 

The natural vegetation type~ studi~d includi . g the following: 

1. Duckweed 

2. Emergen t vegeta tion 

3. Water hyacinth 

4. Young willows on newly accreted sites 

5 . Old wi 110ws 

6. A mixtu r e of cyp r ss and tupelo c mpletely floo ded 

7. A mixture of cypress and tupe lo partially flvoded 

8. A ~~and o f upland fo rest 

Cultu r al vegetation types, in contrast, cons isted o f : 

1. Up l and grass 

2 . Sugar cane 

3. Other c ~ op (presumably ri c~) 

The fi nal ca tegory of C0V r types, whi h r e pre en ts the non-

v ge t a ti ve t a rgets i ncluded: 

1. Stubble in a l ield of dry ri e 

2. Stuhble in a field of we t r ice 

3. Dry bar soil 
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RANK 

1 

2 

3 

4 

RANK 

1 

2 

J 

TABLE 3-30. OPT:MUM FOUR CHANNELS 
ATCHAFALAYA COASTAL ZONE TEST SITE 

WATER TURBIDITY 

PAIRW1 E PROBAJILITY 
SPECTRA', CHANNEL OF KlSCLASSIFlCATION 

0.57 - 0.63 lJm 0.013 

0.71 - 0.75 lJm 0.007 

0.34 - 0.40 lJm 0.003 

0.46 - 0.50 IJm C.004 

TERRESTRIAL COVER 

PAIRWISE PROBABILITY 
C:;PECT.RAL BAND OF MISCLASSIFICATION 

0.97 - 1.05 lJm 0.060 

J.40 - 0.50 um 0.015 

0.34 - 0.40 IJm 0.008 

1.18 - 1.30 um 0.OG6 
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4. 

5. 

6. 

Wet bare soil 

Clear water 

Highly turbid water 

The optimum four channels selected for the w3ter turbidity segment 

of this study are shown in the tOF section of Table 3-30. The technique 

used for determining turbidity was a ~ ingle band level slice. In the 

ranking of channels, a NIR band (0.71-0.75 um) .as the second best 

chan~el; this band provides information on organic material concentra­

tions. The orange band (0.57-0.63 um) was slightl) bett~r than the red 

band (0.64-0.68 um), but this is explainable by the fact that the red 

band was noticeably noisy at Jow signal levels (determined by graymap 

inspection). The selection of the NIR band as the second best channel 

indicated that enough water penetration was still possib l e in that 

spectral band to provide some information regarding the presence of 

suspended organic material and possibly vegetatjon. 

A rat io map of the orange / NIR band was made in an attempt to 

exploit this pheno~enon and provide a means of orga~ic turbidity 

discrimination and mapping . The orange band w .. \s substituted for the 

red band because it had 3 cl ~ rer signal. 

For the natural and cultura l vegetation targets and non-vegetation 

targ ts se : ected , only two s ect ral channels were needed to provide 

essep':.ially all s pec tral disc rimire,t ~ on of these cover tYtles that is 

possible at this time of yecr (~ee t~ e bottom of Table 3-30). The 

two banos that \o,ere selected were (1) a I IR band, 0.97-1. 05 \.l rn. and 

( 2) n blue band, 0.46-0.50 urn. The choice of the bl:. '. ~an~, in whi ch 

chlorophyll absorption 0 c.urs, was presulIlilbly in !leu of the ':ed band 

(U.64-0.68 m) whi h is in the chlorophyll absorption band, and the one 

~c uld e, p ct to be selec ted in this type of work. But as previously 

not d , th r d band was noisy in this data set . :h choice of the °IR 

band is accounted fo r by the uniqueness of the can py charact risti s 

and backgrounds encountered in th vegetation types xamined. The 
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1.lS-1.30 ~m was possibly se_ected as an aid in vegetative discrimina­

tion and the 0.34-0.40 ~m band for turbidity determination, and for 

separation of the bare soil classes from the vegetation classes. 

Table 3-31 shows the accuracy of delineating the four water quality 

categories using a slicing technique on the orange/NIR ratio. The very 

heavy turbidity class was most accurately recognized, the clear water 

class next most accurately recognized. The intermediate classes of 

turbidity sh(,:'~cd the poorest recognition accuracy. The data of Table 

3-31 were obtained on test set data, and water turhidity classes were 

delineated by photointerpretation. 

As with many natural problems, the variation of water quality is 

continuous attempts were made to break the quality into five levels 

by s licing an orange/NIR ratio. When a ratio is sliced into too many 

segments, poor accuracy results because the nois~ on the ratio exceed~ 

the width of the slicing interval. Improved accuracy will result if 

fewer classes are used. Also there may be errors of + 1 level of water 

quality in the photointerpretation used to pick the test sets. 

As a result of thes~ uncertainties, and in an effort to assess the 

acc uracy of detection of sharp boundaries separating water masses of 

different quality, the mapped data were analyzed. The bottom of 

Table 3-31 shows the results of the analysis. The average accuracy of 

correct classification of the five classes of water quality is 4S.1%. 

If misc1assification of + 1 wat r qual ~ ty level is ignored, the accuracy 

increases to S5.2%. Indeed, the only water type not perfectly 

c1assifj ~d + 1 level is the light turbidity class. The accuracy of 

detecting a bound~ry between 'water of different quality levels was 92%. 

This number was la~ger than the average accuracy of co rrect recognition 

of wa te r quality types because of the large turbidity differe nces I/hi ch 

exist ac ross boundaries of water masses in rivc cs and lakes. 
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TABLE 3-31. TURBIDITY GLASS BOUNDARY 
DETECTOR ACCURACY FOR MSDS DATA 

ATCt4\FALAYA DATA SET 

CW Lt . T M. T. H.T. 

Clear Water 45.5 36.4 18.2 

Light Turbidity 11.1 33.3 44.4 11.1 

Moderate Turbidity 41. 7 25.0 

Heavy Turbidity 18.2 

Very Heavy Turbidity 9.1 

Average Accuracy 48.1% 

± 1 Class 85.2% 

V.H.T. 

33.3 

n.7 

90.1 

Identifying d boundary ~hen one was p :ese~t ~2% 
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3.6 CONCLUSIONS AND RECOMMENDATIONS - SPECTRAL STUDY 

Table 3-32 summarizes the priority spectral bands by discipline. 

It is a compilati,)n of several tables which have appeared in this 

section of the report. In examining the requirements of each 

discipline, there are several consensus bands which every discipline 

needs. 

A band of 0.63-0.69 um is hIgh on the list of every discipline. 

This band is required for the detection of chlorophyll a~sorbtion in 

vegetation and in phytoplankton. Additionally, it serve.s a useful 

purpose in geology by assisting in the detection of ferric iron 

containing materials. 

A thermal band in 10.4-12.5 um also seems high on the list in each 

discipline. Thi9 broad, radiometric temperature measuring band is also 

useful as on~ component of a two thermal band reststrahlen ietection 

scheme for det~rmining the pr~sence and nature of silicate minerals for 

geology. The second ~hermal band for the geologic application is 

8.3-9.3 llm, in the middle of the reststrah12n emissivity dip for pure 

quartz. 

A third consensu:; band in all discipli:1es is a 0.75-0.95 um band. 

This is useful for vegetation cl assification because i t covers the near 

infrared high reflectance plateau, useful for del i neating water-Iann 

bound~~ics because of the large differential reflectan ce bet~een water 

and land, and useful to sorne extent in geology for mapping materials con­

taining ferric iron and for. delineating vegetation cover on rock 

surfaces. It is recommended that the lower ed~e of the hanti he moved 

from .75 to .80 to imprcve land water interface ~elinp.atj~n. 

A hand in the 0.55-0.60 urn or 0.52-0.58 um re~don rates hip.h on 

the list for. all disciplines except urban lanti use. In a~riculture, 

the band i~ useful for assessing the growth state of vep,~tation by 

monitoring the green r~flectance peak. In the water resources, the band 

can be used in a t'jrbidity estimation alp,orithm and to measure ~1atcr 
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TABLE 3-3l. PRIORITIZED SPECTRAL BANDS BY DISCIPLINE 

AG/RP~GE/FORE$TRY WATER RESOURCES MARINE/OCEAN GEOLOGY URBAN LAND USE 

.63 - .69 ~m .48 - .52 llm .62 - .68 11m 8.3 - 9.3 llm 10.4 - 12.5 ~m 

.75 - .95 llm .52 - .58 llm .48 - .52 llm 10.4 - 12.5 llm .8 - 1.111m 

10.4 - 12.5 ~m .62 - .68 lJm .42 - .48 um .63 - .69 um .63 - .69 llm 

~ .SS - .60 llm 10.4 - 12.5 um 10.4 - 12.5 ~m .52 - .56 ~m .5 - .54 um ...., 

*1. 55 - 1. 75 ;JDl .8 - 1.1 llm .52 - .58 llm 2.05 - 2.3.5 lJm 2.05 - 2.35 um 

2.05 - 2.35 jlIIl .42 - .48 llm .8 - 1.1 ).lm .8 - 1.1 ).lm .42 - .48 um 

.69 - .75 um .58 - .64 ).lm .58 - .64 ).lm 1. 55 - 1. 75 lJm .58 - .64 um 

.69 - .74 llm .69 - .74 }.1m 1.1 - 1. 35 lJm 

.5 - .54 lJJI .50 - .54 lJm .45 - .50 u."l 

.32 - .38 Um .32 - .38 ).lm 

*or 2.05 - 2.35 



depth. In the Geology discip line, the 0.5 2- 0 . 56 ~m band is use f ul in 

the detection of ferric iron compounds (in conjunct i on with the 0.63-

0.69 ~m band). 

The last consensus band i s one in the near infrared port :f.on of the 

spectrum. There is a slight p~eference for 2.05-2.35 ~m in Geology 

and t; rban Land Use, for thE: detection of t.ydroxyl ions and man-made 

features respect ively. However, the engineering difficulties i n 

obtaining an adequa t e s i gnal to noise ratio in this band appeac to be 

such as to bias desi re s in favor of a 1.55-1. 75 ~m band. As previously 

noted, fur vege t ation vi gor assessment, either 1.55-1.75 um or 2.05-

2.35 ~m bands a r e acc pt able. 
lbe water reso ur~e s , marine/ocean, ~eologyt and urhan land use 

disciplines rated ands in the 0.42-0.52 urn region C d hi~h priority. A 

single compromise band of 0.45-0.52 ~m would satisfy these disciplines 

'-lith little degrad:'.cion of information requirel'1ents. The lower end of this 

comprondse band shou d be shifted to 0.45 ~m to reduce scatterin~ effects 

of shorter wavelengths. 

Reyond these six bands, a further consensus is difficult to identify. 

Depending on the discipline, a seventh band might be 8.3-S.3 urn (for 

reststrahlen detection aoc' bet ter Hater temperature estimates) or 0.42-

0.48 um (for more accurate delineation of chlorophyll and suspended 

solids concen~ration). 

The above analysis suggests a seven band scanner sYF+;em for the 

FOS thematic mapper. The proposed set of banns is different from the 

baseline specifications in that some of the b~nrls are narrowed, the 

2.05-2. 35 ~m band is replar.ed with a blue-p,reen band. a'lld t he 0.7-0.8 urn 

band is replaced with either a blue or a second thermal (8.3- 9.3 urn) 

balld. The bands are listed in Table 3-33. 
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TABLE 3-33. RECOMMENDED SPECTRAL BANDS 1 

(PRIORITIZED) 

0.63 - 0.69 \lID 

0.80 - 0.95 \lID 

10.4 - 12.5 \lID 

0.52 - 0.60 \lID* 

1.55 - 1. 75 \lID 

0.45 - 0.52 t )lID 

0.42 - 0.48 or 8.30 - 9.30 lJID 

1 OptiIDized for Agriculture, Water Resources 
and Land Use. 

* ComproIDise between 0.55 - 0.60 )lID and 0.52 - 0.58 )lm. 

t Compromise between 0.42 - 0.48 j..iID and 0.48 - 0.52 \lID. 
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4 

RADIOMETRIC REQUIREMENTS STUDY 

4.1 GENERAL 

This aspect of the systems study addressed various user discipline 

needs for data calibration, stability, and signal sensitivity. Or in 

other words, the amount of data miscalibration, instability, and noise 

which could be tolerated in different remote sensing applications 

using multispectral scanners to measure spectral radiance. These 

sources of error in the recorded signal levels of a scanner can cause 

such sizeable problems to occur in the automatic classification of 

features within a scene that little information is obtained. The 

interaction between these sources of signal inaccuracy and the classifi­

cation accuracy which can be obtained for a given user application must 

be understood and taken into account in the scanner design to produce 

optimum or even acceptable information for the user. It is the user 

requirement for classification accuracy which defines the acceptable 

error or instability in sensor parameters. 

Variations in (I) recording precision, (2) gain and offset, and 

(3) noise level of scanner data were examined in an empirical manner to 

determine the signal accuracy required of an assumed optimum seven­

spectral band orbital scanner for each of the five separate user 

disciplines. In addition, theoretical calculations were carried out 

for water quality and water depth mapping applications to estimate 

the noise equivalent reflec~ance difference (NE~p) required in various 

spectral bands to achieve the information extraction performance 

required. The noise equivalent reflectance (or temperature) 

difference (NE~p) is the change in ground reflectivity which produces 

a signal equal to the scanner noise, e.g., SIN = 1. Achieving low 

NE~p MSS systems fo~ satellites is costly and affects the size of the 

optics and number of detectors per spectral band. Th~refore, some 

guidelines are very important. 
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4.2 DISCUSSION OF RADIOMETRIC PRECISION DATA 

One method of simulating MSS data with various sensitivity levels 

is to change the signal-to-noise ratio by changing the digital 

representation of the data. Reduced sensitivity levels can be simu·· 

lated by reducing the number of binary places or bits in the digitil 

form leaving fewer significant places to the signal. Thus we are 

simulating instrument noise with quantization noise (for nata suf­

ficiently free of instrument noise). 

Simulated orbital MSS data from both Baltimore and Michigan were 

processed to demonstrate the effect of improved or reduced data signi­

ficance on the correct classification of urban land use and agriculture 

categories. Through ground radiometric measurements tdKen concurrently 

with acquisition of the multispectral scanner data, the quantum equi­

valent reflectance difference(QE~p/~T) of one bin width in each 

spectral band was calculated. For the thermal band, the temperature 

difference associated wi~h one bin width was computed. 

By calculating the quantum equivalent reflectance of Jne bin 

width, the quantum equivalent reflectance of bins which were twice 

and four times as wide as the origina.l digitized bin width are also 

known. These correspond to the cases where the least significant one 

and two bits (and three and four bits for the Michigan data) were 

dropped from the data to simulate data having various noise equivalent 

reflectance differences (NE6p) as might be characteristic of different 

MSS systems. 

Procedure 

Eight- and seven-bit data sets were generated fol. seven optimum 

channels of the simulated orbital 30 m data. The seven bands used were 

optimum for the 9-bit data. Then signatures were extracted from each 

data set using identical training locations to those used for the 9-bit 

data. (The 7- and 8-bit data were generated by dividing data values 

ill ehe seven optimum channels by 2 and 4, then truncating the fractional 
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part of the quotient. Such a procedure effectively reduces the 

significance of the data by 1 and 2 bits respectively.) 

Classification was carried out on the data using signatures 

extracted from each data set. Accuracy figures on test areas removed 

from training areas were tabulated for each level of significance. 

Results 

Tables 4-1 and 4-2 show the quantum equivalent 6p and 6T for one 

bin width at each level of data significance for both Baltimore Land 

Use and Michigan Agriculture data. The change in reflectance on the 

ground corresponding to a given change in radiance received by the 

scanner, calculated from the ground truth data for these two data 

sets, was multiplied by the change in radiance represented by one 

signal count level to obtain the QE~p/~T values listed in Table 4-1 

and 4-2. Th~ reflectance or temperature corresponding to one bin 

width gets larger by a factcc of 2 every time an additional low order 

b it is dropped. 

Figures 4-1 and 4-2 show the effect on test area recognition 

accuracy for the Baltimore Land Use and the Michigan Agriculture data, 

respectively. In the Baltimore results there is very little effect on 

classification accuracy as we go from 9-bit to 7-bit data. The Level 

I classes are not affected, and there is only a slight drop in the 

accuracy of recognition of the Level III classes. This indicates 

that NE~p/~T values equal to t~e QE6p/~T values found by multiplying 

by 2 the values in the 7-bit column of Table 4-~shou1d be appropriate 

for Land Use mapping. These average less than two percent NE~p. 

Although further reduction of data significance was not carried out, 

the expectation is that Level III accuracy would not drop quickly . 

until the 5-bit case if the data were reduced in significance over the 

7-bit case, and that Level II recognition accuracy would also not be 

affected until the 5-bit case. Further experimenta are required to 

show exactly the quantitative nature of the recognition performance 
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CHANNEL 

*.41 - .48 

*.46 - .49 

.48 - .51 

.50 - .54 

.52 - .57 

.55 - .60 

.58 - .64 

*.62 - .70 

*.67 - .94 

* 1 - 1.4 

*1.5 - 1.8 

*9.3 - 11. 7 

TABLE 4-1. EQUIVALENT I:!.p (I:!.T) FOR BALTIMORE 
DATA SIGNIFICANCE STUDY 

Equivalent I:!.p (I:!.T) 

9 BITt 8 BITt 

.00079 .00158 

.00085 .00170 

.00083 .00165 

.00092 .00185 

.00112 .00224 

.00108 .00216 

.00074 .00148 

.00101 .00202 

.00280 .00560 

.0188** .0376** 

.0082* .0164** 

O.043°K 0.086°K 

* Channels used in analysis • 

7 BITt 

.00316 

.00340 

.00330 

.00369 

.00447 

.00432 

.00296 

.00404 

.01120 

.0752** 

.0328** 

O.li " OK 

. **Data values in this channel subject to considerable unce~tainty 
because of uncertainty of irradiance measurement. 

t This number does not reflect the data word size in a rf:al sense, 
but is only a method of simulating the NEl:!.p(I:!.T). 
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TABLE 4-2. EQUIVALENT Ap (AT) FOR MICHIGAN AGRICULTURE 
DATA SIGNIFICANCE STUDY 

CH&mEL 9 BITt 8 BITt 7 BIT t 6 BIT t 5 BIT t --
*.41 - .48 .00057 .00115 .00230 .00460 .00920 

.46 - .49 .00029 .00058 .00116 .00232 .00464 

.48 - .51 .00039 .00079 .00158 .• 00316 .00632 

.50 - .54 .00036 .00072 .00144 .00288 .00576 

.52 - .57 .00034 .00068 .00136 .00272 .00544 

*.55 - .60 .00037 .00073 .00146 .00292 .00584 

.58 - .64 .00037 .00074 .00148 .00296 .00592 

*.62 - .70 .00043 .00086 .00172 .00344 .00688 

*.67 - .94 .00171 .00341 .00462 .00924 .01848 

* 1 - 1.4 .00094 .00187 .00374 .00748 .01496 

*1.5 - 1.8 .00108 .00216 .00432 .00864 .01728 

*9.3 - 11.7 .032°K .063°K .126°K .252°K .540 oK 

*Channe1s used in the study • 

• 00115 - 0.115% equivalent reflectance difference. 

tThis number does not reflect the data word size ito a real sense. 
but is only a method of simulating the NEAp (AT). 
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deg=adation. Performance matrices showing the correct classification 

accuracy and the errors of commission and omission by class are 

given in appendix A. 

The recognition of representative crops and fields (Figure 4-2) 

does not seem materially affected by dropping three bits of data 

significance. Thus the QEbp and QEbT numbers shown in Table 4-2 

under the 6-bit column probably represent better NEop/~T performance 

than is actually required to map these crop types. Dropping an 

additional bit of significance does begin to have a small effect on 

crop and field recognition, however, as one might expect. The 5-bit 

performance probably is acceptable. The average NE~p for the 5-bit 

data is about 0.6 percent in the visible and 1.5 percent in the near IR 

bands where vegetation reflectance is higher. This result from the 

empirical study is taken into account in the user radiometric results 

presented in section 4.6. 

4.3 DISCUSSION OF "GAIN" Al.'JD "OFFSET" STUDIES 

The basic automatic pattern recognition approach to the classifi­

cation of terrain materials rests on the premise that the spectral 

reflectance patterns of scene materials ar.e characteristic of these 

classes of materials and are different enough to permit their 

separation by statistical decision approaches. In a typical remote 

sensing implementation, the spectral radiance of scene materials is 

measured in discrete wavelength bands by a sensor physically removed 

from the objects. The objects are illuminated by the slln and reflect, 

or emit energy which is detected by the sensor after passage through 

the atmosphere. 

In supervised and unsupervised pattern recognition f the classifier 

must first be taught what patternr, to recognize before it can rf;al-l~:ti­

cally classify unknown data. Usually, the classifier is trained hy 

extracting class statistics from known scene areas, either by normally 
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identifying training sets (supervised) or by cluste~ing procedures 

(unsupervised). A key assumption in the pattern recognition approaches 

is that the spectral radiance of materials, as measured at the sensor~ 

are representative of the materials. Thus, once trained, the processor 

expects to see the same spectral radiance from, e.g., a corn field, 

as it saw from the training set corn field. 

But factors not under control of the user can influence the 

radiance the sensor measures from the scene materials aud the resultant 

sensor output electrical signals on which the pattern recognition 

classifiers operate. These factors change the transfer function 

between scene reflectance and the sensor output voltages. (The 

Transfer function is assumed invariant for pattern recognition 

approaches other than adaptivevues). Basically, the relationship 

between scene reflectance and sensor output voltage is linear: 

V=A+Mp 

Factors contributing to the additive term A are sensor bias factors 

and the path radiance in the atmosphere. Factors contributing to the 

multiplicative factor ~ are sensitivity (volts/watt), solar illumina­

tion, and atmospheric transmission. Variations in any of these 

sensor, atmospheric, or illumination parameters can change tpe transfer 

function between scene reflectance and scanner output voltage and thus 

invalidate the assumption of a constant transfer function. The 

variations will have serious effect when they occur between the 

collection of training set data and the collection of the unknown data 

to be classified because they are generally unknown and destroy the 

ability of the processor to achieve acceptable classification accuracy. 

Regarciless of what causes the transfer function to vary, it is 

of interest to know the effect of such variations on the classifier 

performance. It was assumed for this study, that the variations 

occurred in parameters of the simulated orbital MSS systems between 

training and classification of unknown data. The "gain" study modelled 
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the effects of varying the above coefficient M on the classification 

accuracy. The "offset" study modelled the effect ·of varying the 

coefficient A. 

Studies were performed for the Baltimore Land Use and the Michigan 

Agriculture data sets. Gain and offset were varied independently and 

the result on test set classification noted. The signature areas used 

were the same as for the 30 m, 7 optimum channel data previously 

discussed, and on which this study was performed. Rather than vary 

th~ data, the signatures were varied to simulate the gain and offset 

variations. Each parameter was varied by amounts related to the 

average signature's separability for the classes considered, primarily 

to obtain reasonable ranges of classifier accuracy variation. Table 

4-3 relates the nomenclature of the graphs to be presented to the 

actual variation in gain (in percent) and offset (as a percentage of 

the sensor dynamic range) for the two cases studied. 

Figures 4-3 and 4-4 summarize the results in graphical form for 

the Baltimore Land Use data, and Figures 4-5 and 4-6 for the Michigan 

Agriculture data. Appendix A contains the detailed performance 

matrices. Referring to the Baltimore data, the general effect of both 

gain and offset variations (away from the conditions of training, 

represented by ~ero) is a reduction of classification accuracy. 

Generally the curves are not symmetrical about the zero point. This 

occurs for at least two reasons. First the actual distribution of 

test set points is not Gaussian and does not necessarily have the same 

mean and standard deviation as the training set. Second, the detailed 

behavior of classification results depends on the structure of the 

decision space. If decision boundaries are not located symmetrically 

around distributions, the effects of increasing and decreasing offset 

or gain will be different. As gain and offset are varied. the major 

feature of the classification results is the rapid increase in the 

size of the not classified category. At ±. 2/3 gain or offset, nearly 
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TABLE 4-3. GAIN OFFSET VARIATIONS FOR BALTIMORE LAND USE 
AND MICHIGAN AGRICULTURE CASES 

Gain Variation Percent Variation 
(GraEhs~ in Sensor Gain 

Baltimore: ± 1/3 19.4 

± 2/3 38.8 

Michigan: ± 1/3 7.1 

± 2/3 14.2 

Offset Variation Percent of Sensor 
(GraEhs) Dynamic Range 

Ba1tim"re: ± 1/3 3.3 

± 2/3 6.6 

Michigan ± 1/3 1.9 

± 2/3 3.8 
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all the points are not classified whereas at ± 1/3 gain or offset a 

sizeable number of points are misclassified rather than not classified. 

This behavior seems intuitively correct. As gain or offset vary, the 

first effects noticed will be misclassification. As more extreme 

variations are encouatered, no classification decision at all will be 

made becaus~ the signatures and data differ by such gr~at amounts that 

-the X2 test is not satisfied. 

Qualitatively, the same remarks that were made for the Baltimore 

data apply to the agriculture data of Figures 4-5 and 4-6. The same 

general types of behavior occur although woods and "other" have an 

unexplained anomalous behavior. 

The impli~ations for system design of these results fall -mainly 

in the areas of system calibration stability, inter-detector calibra­

tion within a spectral band, and in the implementation of radiometric 

corrections for changing solar ~_ llumination and for varying atmospheric 

transmission and path radianc( effects. These corrections will be 

important in applications such as agriculture which require survey of 

large areas. Over these large areas, the solar elevation angle fInd 

atmospheric state are likely to vary considerably. Approaches for 

taking these illumination and atmospheric effects into account in 

preprocessing or adaptive classifiers have been studied at ERIM . 

4.4 DISCUSSION OF RADIOMETRIC REQUIREMENTS FOR WATER QUALITY MAPPING 

One of the most important water resources and marine resource 

study requirements is the mapping of water quality. Of the m3DY 

variables affecting water quality we will deal here ~ith chl~rophyll 

content and suspended solids concentration. Because o~ the absorbing 

properties of the chlorophyll molecules and the scattering properties 

of the suspended sediments, choice of spectral bands is important. 

Water transmission and the fact that suspended sediments and chlorophyll 

often occur together make the spectral band choice a compromise, and 
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the precision in these bands is expected to be high because of the low 

water reflectance. 

To extract chlorophyll concentration and s uspended sol ds infor­

mation from multispectral scanner data, ratios of two bands are 

commonly used. Using field measurements coupled with theoretical 

calculations, b~~h the form of the relationship between chlorophyll 

and suspended sediments and the reflectance ratio and the constants 

required for calculation can be deduced. Wezernak at ERIM presented 

a paper at the Ninth Symposium un Remote Sensing of Environment
l 

describing such relationships. 

From those equations, relationships can be derived between the 

NE6p of the sensors and the equivalent chlorophyll and su~pended 

solids measurement precision. 

Table 4- 4 lists the equations Wezernak derived for chiorophyll 

concentration and for water transparency depth, a parameter related to 

suspended solids required to calculate NE~p . 

We calculated two cases for transparency and chlo rophyll - an 

oceanic and a coastal case. The v~ lues assumed cor each case are 

shown in ~able 4-5. 

The values of r eflectance are reasonable on s for the concentra-

tion and trans parency conditions considered. 

Figures 4-7 and 4-8 show the results of the calculations for 

chlorophyll and transparency. Chloro~hyll accuracy for a given NE6p 

is best in the oceanic case where concentrations are low, provided that 

a sensor can be built to achieve these NE6 ' s at the low radiances 

t ypically found over de~p oceanic water. For the coastal case , th 

precisioll is poorer in absolute terms, but t he concentration of 

chlorophyll is higher. The reflectance of water may also be somewhat 

1 
Use of RernLte Sensing in Limnological Studi s, C T . We ze rnak, Ninth 
Symposium on Remote Sensing ~f Environment, in pubJi cation . 
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TABLE 4-4. WEZERNAK EQUATIONS FOR CHLOROPHYLL AND TURBIDITY 

log Transparency depth (m) -0.6235 + 0.8788 

log Chlorophyll (mg/m3) -2.4761 + 5.5668 

p(0.5-0.54) 
p(O.62-0.70) 

~62-0. 70) 
p(0.42-0.48) 

To calculate the effect of NE~p on these computations. we derived the 

equations shown below. 

~T 1.247 T ~p 
o 

~CH 4.9522 CH ~p Pl+P2 o 

where T • CH reference transparency and chlorophyll levels 
o 0 

~p NE~p of both channels (assumed equal) 

Pl.P2 reflectances in the two bands. 
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TABLE 4-5. PARAMETERS ASSUMED FOR CALCULATIONS 

Oceanic Case 

3 1 mg/m chlorophyll 

PI 2.0% 

P2 0.4% 

20m Transparency 

PI 4% 

D2 0 .5% 

Coastal Case 

10 J mg/m chlorophyll 

PI 2.4% 

r::2 0.5% 

10m Transparency 

PI '" 10% 

P2 3% 
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higher. For a given level of NEt of 0 . 007 In buth channels, these 

calculations indicate a La percent precis ion measur~ment of c hlorophyll 

in both oceanic and coastal cases can b mad~ . 

Fer the transparency resu Lts, the same comments may be made . 

Fluctuaticls in transparency in oceans may be so small that the 0 .1 m 

precisi.on ob tainable at 0.007 t\E!1. may be unaccept ably large. In the 

roastal c?se (also typical of some of th~ inland lakes) good pr~cision 

of transparency measurement at 0 . 007 [,\E.~. is indicat",d bv these 

calculations. Noise in the data woul d cause fluctuations of 0.4 m 

on a typical 10 m transparency estimate. 

As a footnote to these calculations, i.:ezernak has IIsed ER1S data 

to map suspended solLds in the Detroit Ri\. r (Junall into Lake Erie. 

He found by slicing the red band (with d quot",d ~l\::':' .. of abuut .9)/) 

that sediment concentration of 3 mg/ could De measur~J. lhis is more 

than a factur of 3 from the desired lev~l cf pre~ision . Thus this 

application may require <1 0 . 007 ~E' if the st~'ed USl!r requirements 

are to be mt't totally with a s:HellllL sys!",r. But uSt'ful s~dimenl 

mapping could bL dun~ wilh byslefub of 10W0r r3dinmetri~ prl!cision. 

l' . 5 TliEURETll.\L L{A.\IJ!,\ATIO:\ Ot RADlmn lRIC RE(~UIREME~;IS fOR \o.'\fER 
DEPTH MAPP DiG 

~lapping deplhs of water in LI)aslal arLas is on(' nt the important 

water resourl~S ur marine tasks. Man} shoal areas are poorlv charted 

and are in remote areas both 3S thp SPilth P<ltific and Southern 

Caribbean Sea. 

U!:'~ng multispectral S,·,lnrl..'r data, w,ler JL'pth has tralit]pnal1v 

been ml:'as ur~d by one of lwo techniques. Fi I h,'r ;J density 51 iell If 

band in the hlue - green or green has bel'n m .. dl , (lr a rati() of b ,lt',1c h:Jc, 

been sliced. 

livl'ly less sensitive tf' bliltom (,l1tTlPOSilil)n. KIth I"chlli':' J'!" ' .. ;' 

I'n bLing able to see till' h·'tlnm .In! 1n II(' si h:, .. : I"dn till lilt· " 

i 11 C rea sin f.;. ,) s WoJ L l' r g l: t S S 11.1 I i Olh ( • r . 
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Using the formula for calculat ing the water depth by the ratio 

technique, we developed an equation to compute the "noise equivalent 

water depth" given an equal NEtlO in two spectral bands. Because the 

equation relating the water depth to reflectance is non - linear, the 

"noise equivalent water depth" will vary depending on the depth of the 

water. We calculated "noise equivalent depth" curves vs . NE.3 for 

3 and 5 m water depths. Other reasonable assumptions were made as 

shown in Table 4- 6. 

The results of calculations are shown in Figure 4- 9. No t ice that 

the measurement of depths at 5m with a precision greater than 5 m 

requires an NEA of 0.0017 or better in both channels . At 3 m, an 

NEA~ of about 1% (off the chart) yields a depth precision of 3 m and an 

NEil of about 0 .003 yields a depth precision of l m. The latter number 

is within a factor of 2 of ERTS performance. (Even Lhough MSS- 4 and 

MSS-5 are Ioeated slightly differently . The difference in absorplion 

coefficient 1 was about the same . ) The 1 m precision was about that 

obtained by Lyzenga and Polcyn in the Bahamas area using low gain ERTS 

data. 

Calculations show what radiometric accuracy is required for given 

depth precision. The relatively _r ingent requirements on NE~r can 

probably be achieved at the expense of spatial resolution for the 

water depth case . A resolutiun of 30 m fur such applications is 

probaLly too fine for the shoal reconnaissdnce mission rlquirld for 

satellite; 80 m might be more reasonable. Lat~r aircraft surveys can 

more precisely chart and d fine the depths of shoals discovered hy 

satellite . But to detect the 5 m deep water, and to distinguish it 

from deeper water, the calculations show that 0.002 NE~, is probably 

required. 

4.6 CONCLUS IONS AND RECOMMF:NDATl ONS - RAD I OMETR Ie STUDY 

Tables 4-7 through 4-11 give the rc co lTUll~nd~d Nt:", o r SE'T for 

each spectral band for the five user dis c ipline .lred S ('llns idered in ttw 
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TABLE 4- 6 . ASSUMPTIONS FOR WATER DEPTH CALCULAT I ONS 

Bands .50 - .54 and .58 - .64 

-1 -1 
Water absorbtion coeffici~nts (x) O.27m and O.48m respectively 

(mean coastal wat. er) 

Solar elevation angle 45° 6 

View angle 0° = ~ 

2 

1 I n K 
( C11 - (1, ) (seco+s ec?) 

Bottom reflec t ance 

Depth 

12 1 
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.", 

B AND (p.m) Tl/p 1 

0.55-0.60 0.05 

0.63-0.69 0.02 

0.69-0.75 0.08 

I O. 75-0 .9 5 0.1 5 

1. 55-,1. 75 0.20 

2. 05 - 2.35 0.15 

10.4-12. 5 2700 K 

TABLE 4-7. RADIOMETRIC REOUIREMENTS 

Ag/R angel Forestry 

T2/p2 NE~T/NE~p MEASURED PARAMETER 

0.20 0.005 Chlol"opllyll transmittance . absorption by other pig ments 

0.15 0.005 Chylorophyll-A absorbancC' 

0.45 0. 005 Slope between r. hlu rophy ll-A abs. and c ell s tructu "C' 

0.60 0.005 NIH. high reflectanc e (lC'af cell s t ructure) 

0.45 0.005 Leaf moisture 

0.30 0.005 Leaf mois tu re 

3130 K 10 K T(\mperature 
---- ----- ----- -- -- - -- - - ------ -

-

I 
I 

! 
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TABLE 4-8. RADIOMETRIC REQUI REM ENTS 

Geology 

BAND (J-Loo) Tl/pl T2/p2 NE~T/NE~p MEASURED PARAMETER I 

0.45-0.50 0.04 0.70 0.007 Fe absorption, carbonate 

0.52-0.56 0.04 0. 75 0.007 Strong green absol'bance of rocks with iron oxide stain; in-
creased reflectance of rocks containing minerals with ferrous 
iron ., 

0,63-0.68 0.04 0.78 0.00'1 Strong red reflectance of rocks with iron-oxide stain i 

! 

0.8-1.1 0.06 0.85 0.008 Fe absorption of both ferric and ferrous iron, copper sulfides I 

1.1-1. 35 0.06 0.90 0.006 Soils 

1. 55-1. 75 0.06 0.95 0.005 Aluminum oxide hydrate (gibbsite) 

2.05-2.35 0.06 0.95 0.005 Carbonate mO!.ecular vibration absorption (OH) in clay min-
erals for soil identification 

8.3-9.3 2500 K 3400 K 10 K (1) thermal inertia 

2500 K 
(2) changes in the ratio of these two indicating migration of 

10.5-12.5 3400 K 10 K restrahlen (Si0
2 

emittance) 
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..... 
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BAND (/lm) 

0.32-0.38 

0.42-0.48 

0.48-0.52 

0.5-0.54 

0.52-0.58 

0.58-0.64 

0.62- 0.68 

0.69-0.74 

0.8-1.1 

10.4- 12.5 

TABLE 4-9 . RADIOMETRIC REQUIREMENTS 

Water Resources 

Tl/p 1 T2/p2 NE6T/NE6p MEASURED PARAMETER 

Fis h oils and petroleum 

0.02 0.10 0.005 Chlorophyll-A absorption 
0.002 

0.02 0.15 0.005 Chlorophyll-A absorption, suspended solids, turbidity, 
0.002 transparency 

0.02 0.20 0.005 Wate r depth, suspended solids 
0.002 

0.02 0.20 0.005 Water depth , turbidity, trnspare ncy , s uspend ed solids 
0.002 

0.02 0.20 0.00 5 Red tide (red algae) 
0.002 

0.02 0.15 0.005 Chlorophyll-A absorption, sediments 
0.002 

0.02 0.15 0.005 Algae bloom near surface 
0.002 

0.02 0.20 1.0 Land-water interface 
! 0.5 

2700 K 3050 K 0.50 K I 

0.250 K 
Temperatu r e 

I -~-~ 
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TABLE 4 -10. RADIOMETRIC REQUIREMENTS 

Marine/Oceanography 

BAND (jJ.m) Tl/pl T2/p2 NEAT/NEAp MEASURED PARAMETER 

0.32-0.38 Fish oils and petroleum 

0.42-0.48 0.02 0.10 0.001 Chlorophyll-A absorption 

0.48-0.52 0.02 0.15 0.001 Chlorophyll-A absorption, suspended solids, turbidity, 
transparency 

0.5-0.54 0.02 0.20 \ 0.001 Water depth. suspended solids 

0. :::~ : -0.58 0.02 0.20 0.001 Water depth, turbidity, transparency, suspended solids 

O. '.', -0.64 0.02 0.20 0.001 Red tide (red algae) I 

I 

0.62-0.68 ~ (l .02 0.15 0.001 Chlorophyll-A absorption sediments 
_ _ _ l _ 

0.69-0.74 ! 0.02 0.15 0.001 Algae blooms near surface 

0.B-1.1 0.02 0.20 0.5 Land-water interface 

10.4-12.5 2700 K 3050 K 0.50 K Temperature 



~ 
N 

BAND (11 m) 

0.42-0.48 

O. 5 -0. ~4 

0.58-0.64 

0.63-0.69 

0.8-1.1 

2 - 2.6 

10.4-12. 5 

Tl/p 1 

0.05 

0.03 

J 03 

0.02 

0.03 

0.03 

2600 K 

TABLE 4 - 11. RADIOMETRIC REQUIREMENTS 

Urban Land Use 

f2/p 2 NE t.. T /NE t..p MEASUhED PARAMETER 

0.25 0.005 Asphalt-concrete-grass vs. vegeta~ion 

0. 20 0.008 Asphalt-concrete-bare soil vs. g rass and trees 

0.30 0.010 Albedo 

0.25 0.010 Vegetation-albedo (chlorophyll-A, absorption) 

0.60 0.010 Vegetation-albedo-wa~er (leaf scattering) 

0.40 0.010 Asphalt-concrete-bare soil vs. grass-trees 

3130 K 0.50 K Temperature 

NOTE: 

These data are based upon preliminary empirical re-
sults of Baltimore/ Washington 8-192 and ancillary data pro-
cessing only. 

I 

I 

I 

I 



study. The columns Tl/ pl and T2/p2 are the minimum temperature or 

reflectance and maximum temperature or reflectance respectively. The 

remarks in the measured parameter column list the primary phenomena of 

interest fo r that spectral band. Table 4-12 lists the achieved NE6p 

for Sl92. 

These tables require some discussion. The stated r equirement for 

0.5% NE6p in Agriculture and Water Resources is based ~~inly on 

experience and the study results. The Agriculture NE6p/6T is based on 

the empirical results of the noise simulation and from past experience . 

The Water Resources NE6p/6T is based on the theoretical study and ERTS 

experience. The Geo l ogy NE6p/6T is based on experience with ERTS. 

The Marine Resources NE6p/6T comes from theoretical considerations and 

ERTS experience but can be met by spatial averaging as this application 

needs only coarse spatial resolution. The Land Use NE6p/6T is based 

on the empirical study and experience. 

The dynamic range &hould be considered anG held to 256 if possible 

so as to allow an 8-bit data value with linear encoding. Comparison 

of the maximum radiance value expected with the noise equivalent 

radiance NEL yields the dynamic range . For .005 NE6p in the 

0.62-0.68 ~m band we expec t an NEL of .047 for an L of 20.3. This 
max 

gives a dynamic range of 431. This indicates a 9-bit data value unless 

some type of automatic gain control is used. But it is not expected 

this will prove difficult to accommodate in the design. 

A result with which we have some experience is also confirmed by 
2 

Chang, namely, agricultural applications and many spectral bands from 

which to choose . Some noisy bands can be tolerated if the choices of 

optimum b~nds will still provide the discrimination between classes to 

enable classification accuracy on test areas better than 90%. 

') 

.... C. Y. Chang, "Skylab Sl92 Data Evaluation: Comparisons with ERTS-l 
Results," LEC-llll, JSC, Houston, January 1974. 
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TABLE 4-12. NE6p (~T) FOR 8192 

WAVELENGTH BAND 8L2 NE~phT 8L3 NE6p/~T 

.41 - .41) 1 1.3 1,3 

.46 - . ~l 2 1.0 1.1 

.52 - .56 3 1.3 1.2 

.56 - .61 4 2.8 2.8 

.62 - .67 5 3.1 2.5 

.68 - .76 6 1.5 1.5 

.78 - .88 7 1.8 1.7 

.98 - 1.03 8 1.5 1.5 

1.09 - 1.19 9 0.9 1.2 

1.20 - 1.30 10 1.9 1.7 

1.55 - 1.75 11 1.6 1.8 

2.10 - 2.35 12 2.0 1. 5 

10.2 - 12.5 13 2.5°K 2.6°K 
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Some additional comments should be noted. There is an atmospheri c 
3 phenomenon sometimes referred to as the IIgreen haze ll effect in which 

the received radiance from a ground resolution element takes on or is 

contaminated by the spectral characteristics of surrounding objects not 

in the receiver's instantaneous field of view (IFOV). The primary 

component of this nontarget radiation is being reflected by objects 

outside the IFOV and is being scattered by the intervening atmosphere 

into the receiver. This path radiance effect, if large, could in some 

cases of coastal zone or water re~ources applications near highly 

reflective terrain provtde a limiting noise effect. Radiative transfer 

model calculations for the atmosphere by Turner at ERIM are being 

pursued to estimate the magnitude of the effect under various conditions . 

Other atmospheric effects, such as scintillation due to turbulence, 

are also being calculated to determine if they are second order 

effects of some consequence. 

3 R. F. Nalepka, et Cll., IIInvestigations of Multispectral Sensing o f 
Crops," University of Michigan Willow Run Laborator ies, Re port 
31650-30-T, May 1971. 
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5 

SPATIAL RESOLUTION STUDY 

5.1 GENERAL 

One of the more difficult problems in establishing user applica­

tion requirements, and subsequently sensor design , is that of defining 

the spatial resolution required for a given application. With insuf­

ficient spatial resolution, objects of interest to the user will not 

be resolved and the necessary information will not be available. On 

the other hand, systems providing excessive spatial resolution, impos 

serious requirements un the design of the data acquisition, telemetry , 

and data processing systems. Also, the additional amount of data 

generated by the excessive spatial resolution increases ~he time and 

cost of data processing. Clearly then, an accurate definition of 

required spatial resolution is required. This section addresses 

this problem both from a theoretical and empirical viewpoint for 

Agriculture and Land Use. 

5 . 2 SPATIAL RESOLUTION EFFECTS ON ACREAGE ESTIMATION 

Section 5.2.1 discusses the effects of spat ial resolution on 

agricultural field centers (portions of fields excluding all 

boundaries) as determi ned from the classification of aircraft scanne r 

data. A discussion is then presented of the effects of spatial 

resolution on acreage estimation when the boundaries are included. 

Typical field sizes in various U. S. agricu1tura communities are 

presented and the results of acreage estimation on a set of f ie l ds i n 

the aircraft data are provided and discussed. 

5.2.1 SPATIAL RESOLUTION EFFECTS WITHIN FIELDS 

Aircraft multispectral scanner data gathered ov r t h 

Michigan agricultural tes site were used to empirically dete rmin e th ~ 
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effect of spatial resolution on classification accuracy. These data 

were processed to generate three separate digital tapes, each 

containing data for the scene at one of three spatial resolutions 

(nominal values of 15, 30, and 60 meters). 

Utilizing the full 9-bit data, each of the data sets was 

classified with the optimum seven channels specified for each. The 

results of these classifications for field center pixels in test 

fields are shown in Tables 5-1, 5-2, and 5-3 for 15, 30, and 60 

meter, respectively. The field center pixels for this aspect of the 

investigation are those pixels which were identified to fall within 

the boundaries of the test fields. l". very conservative selection of 

field center pixels was made to insure that the selected pixels would 

not cross field boundaries at any of the three spatial resolutions. 

In fact, the selection was based on the 60 meter resolution data and 

the pixels selected for the 30 meter and 15 meter data sets were only 

those which were combined to generate the selected 60 meter pixels. 

As a result, the same ground area was covered in each field at each 

spatial resolution. 

Table 5-1 shows that, with the exception of soybeans, the percent 

correction classification exceeds 80 percent. In fact, three of the 

classes (corn, ripe oats, and woods) exhibited accuracies exceeding 

94 percent. As seen in Tables 5-2 and 5-3 which are for 30 dnd 6G 

meters, the same comments apply. 

Some of the information included in Tables 5-1, 5-2, and 5-3 is 

depicted graphically in Figure 5-1. In this figure classification 

ac curacy is plotted for each class as a function of spatial resolution. 

Also included is a plot of the weighted average of the individual 

results with the weighting being dependent on the number of pixeJ s 

i n each of the classes. On examining Figure 5-1, two majo r 

characteristics are obvious: 1) the percent correct classification f u r 

field center pixels for corn, ripe oats, woods, and "ot he r" is eithe r 
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15 Meter Data 
7 Optimum Channels 
9 Bit Data 

TABLE 5-1. PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

PER CENT MlSCLASSIFICATION 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLASSIFICATION 

CORN (3248) 94.6 

SOYBEANS (1136) 59.9 

RIPE OATS (80) 100.0 

WOODS (3400) 95.5 

OTHER (4672) 80.6 

Average - 86.1 

Wt. Average .. 86.5 

SOy- RIPE 
CORN BEANS OATS WOODS OTHER 

0.1 0.8 4.5 

14.3 25.8 

2.8 0.1 1.6 

11.0 0.5 2.1 5.5 
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30 Meter Data 
7 Optimum Channels 

TA8LE 5-2. PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

9 Bit Data PER GENT MISCLASSIFICATION 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLAS S I FI GA TI ON 

CORN (812) 94.1 

SOYBEANS (284) 73.9 

RIPE OATS (20) 100.0 

WOODS (860) 96.7 

OTHER (1168) 84.8 

Average " 89.9 

Wt. Aver age 2 89.6 

. 

SOy- RIPE 
CORN BEANS OATS 

5.3 

1.9 

9.5 0.4 1.0 
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60 Meter Data 
7 Optimum Channels 

TABLE 5-3. PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

9 Bit Data PER CENT MlSCLASSIFICATION 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) ( LASSIFICATIO~ 

CORN (812) 93.6 

SOYBEANS (284) 29.6 

RIPE OATS (20) 100.0 

WOODS (860) 97.7 

OTHER (1168) 87.0 

Average - 81. 6 

Wt. Aver age - 85.7 

SOY- RIPE 
CO~' BEA.~S OATS 

0.5 

29 .6 

1.9 

8.6 2.7 
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essentially flat or increases slightly with a coarsening of spatial 

resolution and 2) the percent correct classification for soybean 

field center pixels increases dramatically between IS and 30 meters 

and decreases even more dramatically between 30 and uO meters. 

On examining the results for soybeans, in some detail, possible 

explanations for the action betwp.en 15 and 30 meters were determined 

(see Appendix B), however within the time and funding limItations 

of this investigation no reasonable explanations were d termined fo r 

the reduction in classification accuracy between 30 and 60 meters. 

The result depicted here for soybeans is considered atypical and 

should not be used to select the opt imum spatial r esolution for 

the EOS sensor. 

On the other hand, the results for the remaining classes (corn, 

ripe oats, woods, and "other") can be reasonably explained . For corn 

and ripe oats there is essentially no change i n the classification 

accuracy with coarsening resolution. The test fields f o r the classes 

were relativel y unifo rm in appearance and contained no regular 

structure at or near the spatial resolution being considerod . This 

was not the case fur woo ds and " othe r" , however. Tes t fields fClr 

these classes were relatively nonuniform and, ther fo r e , as the 

effective spatial r esolution was reduced 1n inc reasing numuer of these 

nonuniformiti es were included within single pixels with the r esult 

that the variability from pixel to pixel was red u ed and the c lassifi ­

cation accuracy increases sl ightly. 

In summary, it has been demonstrated th at , f o r agricultural field 

center pixels, a sele c tion of a sp ific spatial r esolutio n b tw en 

15 and 60 meters is not c ritical. In fact , for fj ld c nt r pixel s , 

there is a slight prefere nce for th coarse spatia] r soluti n 

( 60 meters in this case). 
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5.2 . 2 WHOLE FIELD ACREAGE ESTIMATION (THEORETICAL) 

In the previous discussion our attention was intentionally 

limited to field center pixels. It is obvious, however, that those 

pixels which are located so as to overlap the boundary of adjoining 

fields need also be con$idered when specifying the required system 

spatial resolution. As a matter of fact, on an intuitive basis, it 

is the boundary pixels which will contribute most to errors in 

acreage estimation since each boundary pixel contains within it (by 

definition) portions of two or more fields which may be different 

crops. The radiatio~ received from such pixels is a mixture from two 

or more classes and may, therefore, not be characteristic of either 

or any of the classes. The result of this mixture is likely to be that 

many of the boundary pixels will be incorrectly classified and the 

resulting field acreage estimate will be in error. 

The following paragraphs present a simple theoretical approach 

to quantify the magnitude of this acreage estimate er~or and present 

the reE~lts of calculations of field acreage accuracy versus field 

size for a selection of spatial resolutions. 

In order to mathematically model the si~uation at hand, some 

simplifying assumptions were made. The geometry shown in Figure 5-2 

was assumed for modeling. A rectangular field is shown having 

dimensions A and Band piJ{els having dimensions "a" and "b" which are 

parallel to their opposite members. The equations for r ~lculating 

the number of center and boundary pixels are sho~\ below. 

Number of pL.els = 

( ~ ~ -1) (~ 1 -1) 
where A,B are field dimensions and atb are pixel dimensions. 

~ 1 is the quotient of A and a rounded to the next lowest integer. 

If a=b, aspect ratios of fields do not influence acreage accuracy vs. 

pixel size. 

Boundary Elements = (.;. 1 + ~ 1 + 2 ) 
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FIGURE 5-2. MODELING GEOMETRY 
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Using the above equations the number of cente- and boundary pixels 

and associated acreage were calculated for spatial resolutions of 10, 

30, 60, and 80 meters for fields ranging in s ize from 5 to 2560 acres . 

These results are presented in Tables 5-4 through 5-7. 

If two extreme situations a re now considered: 1) all pixels, 

center as well as boundary, are classified as belonging to the class 

contained within the field ~nd 2) all boundary pixels are classified 

as belonging to a cl~ss otrer than that within the field while all 

field center pixels are correctly classified, the range of possible 

values of field ac reage accuracy can be determined. Such calculations 

were carried out using the data contained in Tables 5-a through 5- 7 

and the results are depicted in graphical form in Figures 5-3 through 

5-6. 

On examining these figures it is clear the acreage overestimates 

occur for condi tion (1) and under-es timates ?ccur for condition (2) . 

As the field size is reduced for a given spatial resolution, the range 

of possible values increases significan t ly . This is especially true 

for spatial resolutions 30 meters or larger . There fore , even though 

classification of some boundary pixels will match that of the fielj in 

practice, the uncertainties in acreage estimation accuracies will 

increase with decreasing field size and spatial resolution . This is 

shown more clearly in Figure 5- 7 where we plot the maximum fractional 

error versus spatial resolution for various field sizes . Note that it 

is assumed in deriving these results that all field center pixels are 

perfectly classified. This may not be true in practice. 

The potential seriousness of boundary pixel misclassification 

can be understood if one determines the average field sizes in many 

agricultural areas and then refers to Figure 5-7. Table 5-8 is a 

tabulation of field sizes and their distributions which were extracted 

from Statistical Reporting Service records for Kansas, Missouri, South 

Dakota, and Idaho. Only in Kansas, with its large wheat fields, is the 

average field size large enough (109 acres) to expect relatively small 
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TABLE 5-4. FIELD <::ENTER AND BOUNDAR-{ PIXELS 

10 m RESOLUTION 

pixel = 0.02471 acres 32.81 ft on a side 

Field Size (acres) Center Pixels (acres) Boundary Pixels (acres) 

2560 2530 31.8 

*1280 1257 23.9 

640 625 15.9 

* 320 310.3 12.0 

160 154.2 B.01 

* 80 76.1 6.03 

40 37 . 6 4.05 

* 20 18.3 3.06 

10 8.92 2.0B 

* 5 4.23 1. 58 

*Fie1ds with 2:1 aspect ratio 
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TABLE 5-5. FIELD CENTER AND BOUNDARY PIXELS 

30 m RESOLUTION 

pixel = .2224 acres = 98.425 ft on a side 

Field Size (acres) Center Pixels (acres) Boundary Pixels (acres) 

2560 2499 96.1 

*1280 1226 72.1 

640 601 48.0 

* 320 289 36.0 

160 139 24.0 

* 80 66.7 18 .23 

40 32 12.0 

* 20 13.3 9.34 

10 5.56 6.0 

* 5 2.22 4.89 

*Fie1ds with 2:1 aspect ratio 
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Field Size 

2560 

*1280 

640 

* 320 

160 

* 80 

40 

* 20 

10 

* 5 

TABLE 5-6 . FIELD CENTER AND BOUNDARY PIXELS 

60 m RESOLUTION 

pixel - .8896 acres - 196.25 ft on a side 

(acres) Center Pixels (acres) Boundary 

2405 

1156 

556 

267 

128 

53.4 

22.2 

8.9 

3.56 

0 

*Fields with 2:1 aspect ratio 
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Pixels (acres) 

192.2 

144 

96.1 

72.9 

4g . 8 

37.4 

24.9 

19.6 

14.2 

10.7 



Field Size 

2560 

*1280 

640 

* 320 

160 

* 80 

40 

* 20 

10 

* 5 

TABLE 5-7. FIELD CENTER AND BUUNDARY PIXELS 

80 m RESOLUT ION 

pixel = 1.581 acres = 262.47 ft on a side 

(acres) Center Pixels (acres) Boundary 

2405 

1172 

571 

270 

128 

56 '.9 

25.3 

6.32 

1.58 

0 

*Fie1ds with 2:1 aspect ratio 
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Pixels (acres) 

259 

196 

132.8 

101.2 

69.6 

53.8 

37.9 

28.5 

19.0 

15.8 
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TABLE 5-8 FIELD SIZE DISTRIBUTIONS 

Teat (Numbers in parenthesis are cumulative percentage.) Site 

KAnsaa I'fiu9uri South Dakots Idaho 

U-'1.9 'Fields 96 355 215 634 
Acres 374.6 1,493.7 1,095.9 2,908.1 
%Total 0.5 (0.5) 11. 3 (11.3) 4.4 (4.4) ~.7 (9.7) 

10.C-14.9 'Fields 29 123 108 211 
Acres 316 . 5 1,415.1 1,231.6 2,483.0 
%Total 0.4 (0.9) 10.7 (22.0) 5.0 (9.4) 8.3 (18.0) 

15.0-19.9 'Fielda 30 75 87 131 - --
Acres 505.3 1,247.0 1,440.5 2.171.5 
%Total 0.6 (1. 5) 9.5 (31. 5) 5.8 (15.2) 7.2 (25.2) 

20.0-29.9 IFiel.ds 52 98 165 130 
Acres 1,248.1 2,276.8 3,842.6 3,ll8.1 
%Toul 1.5 (3.0) 17.2 (48.7) 15.5 (30.7) 10.3 (35.5) 

30.0-39.9 'Fie1da 57 53 711 72 
~ Acres 1,908.4 1,777.3 2,582.5 2,418.8 
\J1 %Total 2.4 (5.4) 13.5 
N 

(62.2) 10.4 (41.1) 8.0 (43.5) 

40.0-99.9 'Fielda 234 60 175 123 
Acres 14,919.9 2,375.4 10,245 . 7 7,507.1 
%Total 18.3 (23.7) 25 . 6 (87.8) 41.4 (82.5) 25.0 (68.5) 

100.0-499.9 'F1elda 222 11 30 39 
Acres 41,829.3 1.604.0 4,342.1 1,053.7 
ITotal 51.4 (75.1) U.2 (100.0) 17.5 (100.0) 23.5 (92.0) 

500.01 'Fields 25 0 a 3 
Acre. 20,ill.0 0.0 0.0 2.409.3 
%Total 24.9 (100.a) 0.0 0.0 8.0 (100.0) -----

! -'TAL TEST SIn: 
'Fielda 745 ns 831 1,314 
Acre. 81,317 .1 13,189.3 24,780.9 30,064.3 

Average Field Acreage 109 17 30 23 
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maximum fractional acreage estimation errors as a result of spatial 

resolution greater than 30 meters . For the oth2r three states listed, 

as well as the Corn Belt states of Illinois and Indiana for which 

some field size information is available, the maximum fractional 

acreagp. estimation error will fall in the 0.2 to 0.6 range for 

sp~t ial resolutions of 30 and 60 meter~. 

5.2.3 WHOLE FIELD ACREAGE ESTIMATION (EfPIRICAL) 

The question addressed in the previous paragraphs (acreage 

estimation errors) on theor _tical grounds was also examined empiri­

cally using the aircraft multispectral scanner data gathered over the 

Michigan agricultural site . The procedv~e followed and the results 

achieved are described in the remainder of this seccion. 

The processing of the agriculture data set was described in 

Section 2.2.1, ~hich resulted in three c lassification maps, one each 

for IS, 30, and 60 meter spatial resolution data. A total of fifty 

fields of five types (bare soil, corn, soybeans, stubble, and hardwoods) 

w~re located on these maps. The region in the immediate vicinity of 

each of these fields was then examined to identify the number of pixels 

classified as th~ t.arget field. The number of pixels were then 

transformed to field acreage. The results achieved in following this 

procedure are provided in Table 5-9 which lists the actual acreage 

as Qeasured from aerial phutography, along with the computer 

determined field acreage for ead. field. In this table the resul ts 

are also broken out for each scene class according to five size 

classes (0-10, 10-20, 20-40,40-80, and 80-160 acres). 

The table shows that both underestimates and overestimates in 

field acreage occur, although underestimates predominate. In o rd e r 

to get a more general picture of these results, the absolute 

dlf~eren ce between the computer dete l mined and actual field acr age was 

determined for each field. The results were combined according to 
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TABLE 5-9. AGRICULTURE SPATIAL STUDY - FIELD AREA AS A 
FUNCTION OF SPATIAL RESOLUTION 

t.CTUAL FIELD 

I SrZE ACREAGE (AS 
COKPUTf:R. DETERMINED ~l~ 0 ACM.At;E 

SCENE CLASS I'IEASURE,) FRf'M 

CLASS (ACRES) P~()GR.u'riY) ISH DATA 30H DATA 60H DATA 

Bare Soil 0-10 3.7 3.56 ! 4. '? 3. ~ r; 

4.3 3.08 3. 47 4.86 
4.5 3.75 3.79 4.06 

c---
).0-20 18.3 13.40 13.90 11.39 

12.0 8.38 9.03 7.64 
14.0 13.47 13.59 13 .27 

20-40 25.7 22.87 4.97 24.02 
31. 7 30.49 29.09 30.05 
27.7 23.98 25.58 24.30 

Com 0-10 9.7 8.l)] 9.11 7.03 
8.0 4.73 3.82 3.47 
8.2 6.56 6.77 5.56 

10-20 23.0 16.42 14.39 13.43 
19.7 17.42 15.97 18.91 
14.3 , 12 .17 12.56 7.37 

20·-40 36.2 33.84 35.18 32.17 
21.3 19.53 14.70 14.07 

40-80 45.2 44.96 42.38 42.22 
76.8 75. 53 75.45 77 .37 
62.7 53 .47 50.95 56.27 
77.2 78.41 76.96 26.22 

80-160 141.0 136.37 136 . 20 140.72 
53.2 147 . 39 141.57 141. 74 

Soybeans 10- 20 11.5 9.47 10.76 8.47 
15.3 15.07 14.87 15.98 
17.2 15.19 15.51 17.90 

20-40 28.0 26.34 27.17 30.05 
32.2 26.47 26.24 21.38 



TABLE 5-9 (Cor.~tnued) 

I ACTUAL 7IELD 
SIZE ACREAGE (AS COMPUTER DETERHINED FIELD ACREAGE 

SCENE CLASS MEASURED FROH 
CLASS ~ACRES) PHIn'XRAPHY >- 15M DJ.TA 30M DAl"A 60H DATA 

Stubble 0-10 7.0 7.77 8.51 9.73 
(Cut Hay) 8.7 9.25 10.25 9.73 

10.7 9.13 9.38 7.37 

10-20 11.5 13.65 13.07 12.73 
19.5 17.21 16.42 18.09 
18.8 14.66 13.40 9.38 

20-40 28.7 25.lI2 24.62 28.13 
33.8 29.36 31.27 29.18 

40-80 49.3 44 . 69 45.07 43.56 

Hardwoods 0-10 6.8 6.70 6.53 4.02 
5.1 6.19 5.91 8.31 
6.1 4.56 5.04 3. 47 

10-20 15.3 12 .31 12.71 9.78 
9.7 10.27 10.39 9. 67 

10.6 10.86 11.38 8.85 

20-40 38 . 2 31.85 33.88 28.67 
23.7 19.88 22.06 16.88 
33.5 29.88 31.09 20.57 

40-80 67.2 58.59 59.98 55.62 

I 80-160 144.2 139 . 51 154 . 01 138.21 
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size class and spatial resolution and average absolute acreage 

esti'.3tion accuracy was determined. These: results are tabulated in 

Table 5-10 and depicted graphically in Figure 5-8. 

t.s expected, the acreage errors show a tendency to decrease with 

increasing field size and increasing (finer) spatial resolution, 

althougil the differences in the errors between 15 and 30 meters are 

small a~J variJble . For smaller fields (those more commonly found) 

the averQ~~ errors range from 11 to 20 percent for 15 and 30 meter 

T ' solution and from 20 t o 38 percent for 60 meter resolution. 

Acconii~~,. t o these resul ts it seems that there is a break point 

between 30 and 60 meter spatial resolution and that a resolution of 

30 meters would clearly increase the accuracy while a further reductiun 

to 15 meters would not change the results much. 

In the above examples the boundaries of each of the fields on the 

classification maps were not located with e--r. reme accuracy s o it was 

felt that several example s wh~re this was done would be interesting ar.d 

perhaps further heJp Identify the optimum spatial resolution for the 

EOS sensor. 

The procf .lure followed here was t'J manually estimate the location 

of and draw the field boundary on the 15 meter resolution classificat i o 

map . The drawn boundary was restricted to f all between pixels and 

therefore, b .: cause of the procedure, there were no boundary pixels on 

the 15 meter J "1 . The boundary was then transferred to the 31") and 60 

meter maps and boundary pixels (those through which the transferred 

boundary passed) anL field ccnt~ pixels were ident ified. Then using 

the area de f ined by t he boundary on the 15 meter map , the accuracy 

of the effective area identified by the field center and boundary pixeLS 

was determined for the 30 and 60 meter resolution data. 

The above procedure was app i ed to five fields ranging ~n size 

from 14 tc 32 acres. The results are shown in Tabl ~ 5-11 where we 

see that with t he exception of the 14 acr~ field ther e seems to be no 

trend at all and that th2 absolute errors are fairly small, sometime 
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TABLE 5-10. FIELD ESTIMATION ERRORS 

NUMbER SIZE AVERAGE ABSOLUTE ACREAGE ESTIMATION ERRORS 
OF CLASS 
FIELDS (ACRES) 15-M 30-M 6o-M 

12 0-10 0.203 0.190 0.182 

15 10-20 0.193 0.196 0.290 

12 20-40 0.128 0. 107 0.1')4 

6 40-80 0.071 0.079 0.260 

3 80-160 0.046 0.061 0.042 
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TABLE 5-11 . FIELD CENTER AND BO~DARY ACREAGE ERRORS 

I I 15 METER 30 METER 60 METER 
I FIELD SIZE FIELD WHOLE FIELD WHOLE FIELD WHOLE 
I 

(ACRES) CENTER FIELD CENTER FIELD CENTER FiELD 

14 0 . 060 0 .060 0.000 0.007 0.000 0.21 7 

I 15 0.038 0 . 038 0 . 015 0 . 054 0.017 0.009 

20 0.000 0.000 0.095 0. 060 0 . 000 0 .050 

32 0.003 0 . 003 0.000 0.050 0 . 000 0.006 

32 0 . 039 0 . 039 0. 064 0.071 0 . 030 0 . 000 

I 
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smaller fo r the whole field than for the field center~ only . These 

results seem to indicate that boundary pixels are more or less 

randomly being classified according to the class of the target field 

with the result that there is little change in the accuracy of the 

a reage stimated . 

There is some concern that these results may be unrepresentative 

because of the small size of the sample (only five fields) dno the 

~ act that e ac h of the fields exhibited higher field center classifica­

tion accuracy than was typical for this data set. Perhaps the pro­

cedure employed for this aspect of the investigation forced the 

selection of atypical cases . In any case, these questions were not 

examined because of limited study scope . 

5 . 2.4 CONCLUSIO S AND RECO~lliNDATIONS - AGRICULTURE SPATIAL 

In t~is sec tion the problem of defining the spatial resolu­

tion of a s paceborne multispectral scanner for A~ri~ulture applica­

tions was addressed . The prime user application consiciered here 

was the de t e rmination of agricultural field acreage at thr~e specific 

spat . al res olutions (15, 30 , and 60 meters). 

It was demonstra t ed for the agric ultural data set available for 

this study tha t the classification accuracy (and therefore, 

acreage estimate accu racy) for f ield center pix~ls is essentially 

not affected by a reduction in resoluti on from 15 t o 60 meters. 1n 

fac t, a slight improvem nt i n a : curacy was achieved fo r those c lasses 

whi ch w r 1 5 homo g n ous and contained nunun i formtties on ~he orde r 

o f the final r ol ution . 

Wh n incluulng bounda r y pixels, however, theore ~ i cal viden e 

p inted t o cont inued reduction of acre ge estima tion aLcuracy wi t h 

de r asing ft Id size a nd coar e r spa t ial resol ut '~n. Empiri cal 

results onfirmeJ the redu · t ion in a curac y with de ' r a- ing fl ld siz 

but indicat d no r edu' i on i n accura "y i~ jerr a i~ the s patial 
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resolution f .. - n. ' ) l" , 30 .1letcrs for fields as small 3S fm.lr 

"tc " , !:;. 

3ased or: thr;: empirical results presented in this section, a spL.tial 

resolut.:. .)n finer than 30 meters is not warranted. These resul ts do 

surF · 'rt a case for a ,;patial resoJlution finer than 60 meters, but a 

preCise re ~ o lution between 30 and 60 meters was not defined. It is 

s uggested that studies such as these be made using data collected at 

more optimum times in the growing season in orde!' to more clearly 

define resolution requirements. 

Specific suggestions for the continuation of this stud t include 

the ~se of accu~ate ~0undary location t echniques under dpvelopment 

at ERIM to aid in the evaluation of bo ndary effects o~ classification 

accuracy and acreage estimation. In addition, larger area~ i~ the 

scene for which there is complete ground information and which 

include many boundaries should be examined to determine whether errors 

of one kind in one location are co.npensa t ed for by errors of another 

kind in another location. Also, there is a need to determine if there 

are fixed biases in acreage e stimat ion and how these bi3ses are 

affected by varying distributions in field size and type. Another 

area of investigation suggested to be pursued is the f urther develop­

ment and testing of proportion estimation techniques which has been 

pioneered by ERLM. Such techniques permit the es timati on of propor­

tions of individual classes in pixels which contain more than one 

class. Perhaps an approach of this kind wi l l in the future permit 

the use of coarser spatial resolution sensors with their attendant 

lower system electronics, telemetry, data acquis ition, and processing 

costs while still retaining a capability fo r accurate area det e r­

mination. 
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5.3 SPATIAL-SPECTRAL IDENTIFICATION STUDY 
URBAN LAND USE - BALTIMORE 
(HO EYWELL-MINNEAPOLIS) 

The de termination of the spatial resolution for an earth observing 

sensor mus t take into account the use of spatial information for obje c t 

identificat ion . Two aspects of spatial information are commonly used 

to disc riminate between objects, texture and shape . These spatial 

fea tur s a re commonly exploited by the photointerpreter . Since th is 

study was o ri nted towards automatic identification of scene elements, 

spatial dis c riminants were added t o the spe c tral features in the om­

puter impleme nted i denti Hcation routine . It was felt that spatial 

features were of great importance in the identification of urban land 

use, thus the selection of Baltimore as a test site. It was also 

expected tha t urban land use identification would be degraded with 

degrading spatial r esol ution . It s e emed obvious at the study's in cep­

tion t ha t of 11 poten tial remot e sensing applications, urban land use 

identi fic t ion would be the most sensitive t o changes in the spa tial 

r e s olution of the sensor . 

It is impo rtant to und rstand t ~w spat ial features were used 

in the study . The same scen wa s v iewed with fUlldamental r s o luti ons 

o 7 , 14 nd 56 me t r . An 8 x 8 grid of surrounrl~ng resolution 

eleme nlS was associated wi th each 7 m r eso lution elemen t . A 4 x ~ grid 

of 'urr unding r e olu tion lements was assoc iated with ea'h 14 m 

r solution element. Thus , i n ea ch case , th grid co v r ed 3136 m
2 

the en . Each g r id provid s a small portion of the scene surround i 

th r solution I ment . This sc ne grid provides the spatial data for 

th id nlification d i sc riminant. 

Fi ~u r 5- 9 i llust r a t s how a ( 4 x 4) r ec tangular 

intensily A 
A su rround d by scene e l ments of intensit y 4 a n b 

c nstru t d from fo r t xture patterns. The intensity of th s had d 

c 11 is ~ and the cl a r ar as 1 . The number i associated with a h 

of th four l xlur pJ tt rns is al l d th ampli tud o f th p tt r 
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If each cell in the textu -e pa tt erns of Figure 5- 9 has si-:ie 14 m. th n 

th f1 rs t l\-I textur p tterns hav .:l spa tial fr quenc. of 1 cy 1 /28 m, 

th last tw a ~ patial t r quency 0 12 yel /28 m. 

Th m til d used in this s tt:dy [or measuring the spatial featu r s 

in tho:! r sulution elem nt grids is similar to the method depicted in 

Fi ur 5-9 . Each grid resolution elements is xpressed as a weighted 

bum 0 F uri r t xtur' basis patt rns . The wights are cal led am litudes 

of lhe fr gu n -y of the Fouri r b3sis pattern . Each Fourier basis 

pa t'rn has sin 1 spatial [requ n y asso~i ted with it . 

Figure 5-10 shows th pati a~ f r e quencies produced by the 8 x 

rid with c 11 sid 7 m. Th point (f x' 

pret..Jtion : Th Fl uri r [Lequen pattern 
f 

x- xis r th grid givel' by tan 
Ex 

and 

) has the following i nt r ­
y 
is at an angle with the 

th frequency of the pattern 

is • f· + f Fo r xample, the 
x 

point (l,2 ) r lated to a periodic 
y :2 

patt rn o riented tan .< = - r 'J 60° t o the x-axis a nd has frEquen cy 
1 

~ 

.5 ye! 5 /56 m, o r 0. 04 cy/r.. . Th pattern ( , 4) has a spatia1 fre -

quency 4 . } cyc l~s/5 m, or 0.1 cy/m. Th amplitude associated with 

thL' FlIurier 'pa iaJ f n 'q uen c' pat e rn (fy" f,) is denoted by A(fx' 

dnd Lhes.., dmplitud, were C mpu l d b the Fa l F uri r Tran form 

,hniqu<. [rLl m lh t> rl S_,lll tion elem nt ampl i uJ s 0 h grid. 

ThL' 1." lues of tlH.' x .ll1d 4 x 4 res lution lement grids w r 

gcnc rat~ bv the tirst principal c0mp oncn 0 Karhunen-Loev lrans-

fllrm..-d spL' c tral f atures. Both thl' maximum .:ig·nvaiu riteri nn and lhL' 

C I ass iii ~ r ta p pin g E r ru r (' tEI:- i t e r i () n rl.' x min d for princip, 

com onent b , lclliun to g nLrate rid values . It turn~d Qu t th t s I c-

tiu ll ,It lh ' prinl' ipal compon nr ,I' nv t or , 'so ' iat d with he maximum 

ssif i ra tion a uracy . Th ne d for l o ta-

liullally-invJrianl , ill:; "'l'lJ d:,; :"r 1l1ationall '-invari nt . a ur 

rc ogniz d . flc 2-0 Fouri r TrJnsform was us d to cb tYin an ( / ~ - l) 

an , x c: 1 I , Hl td t jon i nv 

oJ t! x c·ll. b partitioning an 

IlInh l l ill' Foul' L'r p nral r "q uen ' i Ls s cI('c;c rihed in Tabl 5-1~ , 

. , 

/ -/ ,. . . 
" '., . . ' . . 

, " . 
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FIGURE 5-10. SPATIAL FREQUENCY LATTICE 

TABLE 5-12. TEXTURAL FEATURE SPECIFICATION 

8 x 8 Grid 

Feature: 

50 .. A(O,O) 

51 = A(1,0) + A(O,1) + 0.65 A(1,1) 

52 = A(2,0) + A(0,2) + 0.8[A(2,1) + A(1,2)] 

+ 0.35 A(1,1) + 0.1 A(2,2) 

53 = A(3,0) + A(0,3) + 0.9[A(3,1) + A(I,3) + A(2,2)] 

+ 0.3[A(3,2) + A(2.)] + 0.2[A(2,1) + A(I,2)] 

54 = A(4,0) + A(0,4) + A(4.1) . ~ A(1,4) + 0. 35 [A(4,2) + A(2,4)] 

+ 0.7[A(3,2) + A(2,3)] + 0.1[A(3.1) + A(I ,3)] + 0.8 A(3,3) 

55 = 0.65[A(4,2) + A(2,4)] + A(4,3) + A(3.4) + A(4.4) + 0.2 A(3,3) 

4 x 4 Grid 

50 = A(O,O) 

51 - A(O,I) + A(l,O) + 0.65 A(l,l) 
52 = A(0,2) + A(2.0) + A(I,2) + A( ~ ,l) + A(2.2) + 0.35 A(l.l) 
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The proportionality constants for combining Fourier spectral 

frequencie3 tabulated in Table 5- 12 were sel cted empirically from 

s t udies performed upon t r a nsformations of rotated 8 x 8 patterns . The 

features a re th weighted sum of t he ampli tude s of Fouri r patterns of 

approximately the same frequency bu t in al l t he available directions . 

This Is an approximation to rotationa l inva r iances . 

The features 50-55 are ampli tude r epresentations similar to the 

ampli t~des in a sp ctral channel . These spatial features are used n 

the lassifier in the same way as are spectral features. Spe c t r al ­

spatial signatures a re obtained frG~ training sets in the usual fas hio n . 

These spectral-spatial signatures are then used to classify the test 

sets . Honeyw 11 uses a K- class linear discriminant as classifiers . 

There are many methods for using spatial properties in a classi­

fier . The Fourier technique is only one . Given a classification 

proble m, we may expec t to find one method preferred over ano her . 

Neither resource s nor time allowed comparison of other t e 'hniques on 

this data. It is possible (but not likely) that the :esults pre sented 

wo uld b radi ca lly changed by a change of technique. The Fourier 

t chnique i s J bO Ul as e xhau bLive as any available t c hni que and it 

ertainly should be responsive to the variations in th spatial resc lu­

rio n of the dat a . Another te c ht ~que c uld no doubt improve c lassifi ca­

tion re~ults for each spatial resolution . It is doubted, howeve r, 

th at a no ther cJ assifier co ulJ change the relat ion o f cIa sif l ca tion 

a ccu r cy a nd r es0 1ution variation r vealed by thjs study . 

Ord r:i n a t l l-Spectral Channels 

Th c l ssif i ca tion xerc ise undertak n on the Ba l Limore da t a was 

h id e ntifl ca Lion f 15 And rson Level III class s given jn Ta ble 5-13 . 

Thr a pproac hes to hann 1 o rdering wer Lake n in thi s eval uation; 

orward , r v r se , and xh a u t'v. In th forward evalu ti on, Lh b's l 

s in 1 ' hann i d t rmin d Ind th e s nd bcs Is added, th -n th 

third hl'sl i s dd d t o th s t · ... o , e tc . , unLil all tw lv ' c halln is hrtv 
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TABLE 5- 13. CLASS DESIGNATIONS FOR BALTIMORE DATA SETS 

Description 

Resider •• l<'l, Single Family 

Re3id : t_ . . Multiple Family 

Counu.: ... ·· · Ii ~ . Retail 

Industrial, Wholesale/Light Ind. 

Industrial, Metal 

Industrial, Chemical 

Transportation, Railroads & Yards 

Transportation, Freeways/Highways 

Transportation, ~~rine Terminals 

Transportation, Utilities 

Institutional 

Institutional, Secondary Schools 

Institutional, Colleges 

Institutional, MilitRry Installations 

Institutional, Othe r (e.g., Hospitals) 

Open/Other (Urban Parks, Recreational) 
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Anderson 
Class 

III 

112 

121 

122 

132 

134 

152 

153 

154 

155 

160 

162 

163 

164 

165 

190 

Honeywell 
iJesignation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

13 

14 

15 
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been categorhed., In the reverse pvaluati01}*.' the least effective 

channel is deleted first~ then a second least' effective channel is 

added to this~ etc.~ until all twelve have be.en categorized. 

In the exhaustive search~ the most effective channel is 

determined~ then the two most effective are determined~ the three most 

effective, etc •• until all twelve have been analyzed. The difference 

here is that the n + 1 most effective need to con.tain all n of the n 

most effective; that is~ selected chaunels canb~. deleted as the number 

of· channels increases. 

The ordering of channels selected by these three schemes is 

,.' given in Table 5-14. A curve of mapping error for the exhaustive 

schemes is given in Figure 5-11. 

Surprisingly~ feature 51 is the only spatial feature ranked 

ahead of a spectral feature and all r~maining $patial features and 

feature 51 has a basis frequency of one cycle per 56m, the lowest 

frequency available. The highest frequency 4 cycles/56 m is ranked 

very low by both the forward and reverse methods. Figure 5-11 further 

stfengthens this result. The spatial channels decrease the probability 

,oi-misclassification by only a small amount. Results of the next 

, section :will- ,further amplify this result. 

Effects on Classification Accuracy of Changes in Resolution 

The "working data" was extracted from the Baltimore flight using 

the provided graymap, scanner "photos" and ground truth map. About 

2200 8 x 8 cells (56 m/side)~ belonging to the classes adequately 

represented, were selected~ assigned a class number, and extracted 

from the original high-resolution data tape. Sometimes the Level 'III 

classification was further broken down when such a class was composed 

of obvious dissimilar "subgroups". This was to allow more flexibility 

and selectlvity where necessary in subsequent processing. 

Training and testing sets of data were defined among the extracted 

data. If a subgroup had> 80 cells in it, every other cell,ot that 
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TABLE 5-14. CHANNEL 'ORDERING 
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Porward: 12 10 9 51 8 1 

Reverse: 12 9 8 110 52 
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subgroup in sequence on the extracted data tape was assigned to the 

~raining set, and th~ remaining cells to the testing set. Where the 

population was < 80 cells, every cell was assigned to both sets. This 

assured an adequate statistical representation of every class in subse­

quent classifier processing. This is almost tan experiment on training 

sets. The results are given in the form of performance matrices, 

Tables 5-15 to 5-26 •. The diagonal elements are the probability of 

correct classification for each class. The off diagonal entries are 
. ~ ~ 

. the probabilities of calling the i class (row I), the j class 

(column I>. The "best" seven features ar'-!shown' in Table 5-27. The 

twelve performance matrices represent· the three resolution levels and 

the different spectral-spatial features used with each resolution. 

Table 5-28 is a summary of the weighted average of correct classifica­

tion. Weights were determined by the number of resolution elements 

in each class. 

It is apparent that at each resolution the addition of spatial 

information improves classification accuracy. Further comparing the 

accuracy for 4 spectral channels to 7 spectral channels plus all 6 

of the available spatial features at 7 m resolution, results in an --.---;---accuracy increase of 13 percent. At 14, m resolu~lig the 4 

best spectral channels with the 7 best spec~r~channels plus all 3 

available spatial features, an accuracy increase of 7.1 percent is 

realized. The addition of spatial feat~res then, appears to have more 

impact at high resolution than low. But notice that the accuracy of 

spectral discrimination. alone improves markedly with degraded resolution. 

Obviously, the integration of scene elements implicit in degraded 

resolution is reducing the spectral variability within the scene's 

classes and thus markedly improving the accuracy of the spectral 

discrimination. This integration effect is so strong that although 

the 7 m, 7 s~ectral channel, 6 spatial feature accuracy is slightly 

better than 14 m, 7 spectral c~annel, 3 spatial feature accuracy, the 
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Tabl. 5-15. Cla.edUcation P"reentas.e 
7 Kater C.ll, 2 H.at '.atur.e. 
(2 Spectral aande) 

:s ~ CLASSInCATION 

1/ 2/ 3/ 4/ 5/. 6/ '7/ 
CLASS 1/ 21.1 t.' 
CLASS 2/ I.T 8.5 

CLASS 3/ 4.7 6.8 

CLASS 4/ 3.3 8.1 

. CLASS s/ .8 .2 

CLAS~ 6/ 6.7 4.3 

CU.sf "1 1.4 1.4 

eLll~ 8/ 1.6 U.1 

~'.,,-,. 9/ .3 6.6 cu...., 10/ 2.~ 5.4. 

CLMIS ·.:W 5.8· lI •• 

CLASS 12/ '.4" u..5 

CLASS uf Ife£; '3.' 

CLASS 14/ 9.2 8~6 

CLASS 15/ .... •• 

.0 2.0 .0 

.0 16.0 1.6 

.0 38.2 .' 

.0 44.6 . 2.8 

.0 21.7 16.5 

.0 ta.5 '7.3 

.0 3.' 2.2 

.0 7.4 .0 

.0 58.8 .5 

.0 6.4 1.0 

.0 33.7 7.7 

.0 12.5 .0 

.0 22.1 2.8 

.0 28.1 3.8 

.0 1.1 .1 

*SpecUal Cbalmala 10 lUUl 12 ( .... 'fable 5-27) 

,~.", 
~""'t 

.8 .2 

1.2 .0 

1.3 3.3 

2.6 .9 

1.9 11.5 
2.8 5.0 

1.1 2'7.8 

2.7 .2 

'.1 .0 

1.3 4.8 

4.8 3.8 

.0 15.8 

1.1 .8 

1." 4.8 

.1 .6 

8/ 9/ 
1.2 1.8 

.8 3.1 

.0 . 2.2 

.0 1.9 

.0 11.5 
1.5 4.8 

• 0 .0 

.0 .4 

•• 13.1 

.0 2..9 

.0 1.0 

.0 .0 

.0 .8 

.0 3.15 

2.4 .0 

'~\''c. 
,',,' 

10/ 
12.4 

11.1 
4.9 

2.4 

2.3 
11.8 

1.1 . 

9.0 

.8 

25.0 

3.8 

6.2 

4.1 

4.2 

1 •• 

., .... 

11/ 

.1 
1.t 

4.1 

8.1 
16.1 

10.4 

45.3 

1.0 

.5 

15.1 

·13.1 

3.1 

2.1 

9.8 

.2 

11/ 

•• a 
2.8 

6.1 

2.1 
1&.5 
8.2 

1.8 

1.4 

.i 
15.8 

15.8 

21.9 

2.9 

4.4 

6.1 

13/ 
2a.1 
.ao.o 
10.4 

1.1 

1.0 

10.8 

4.1 

36.3 

4.1 

26.3 

8.1 

9.4 

24.1 

14." 

10.1' 

14:/ 
1.1 

11.0 
1'.0 

14.8 

.a 
'.9 
1.8 

14.3 

11.e 
1.1 

1.1 

'.4 , .. -
~ 
.'t& 

11/ 
1.1 
.0 

.1 

.0 

.0 

.1 

.0 

.6 

.1 

1.1 

.0 

.0 

.1 

.S 

38.1 
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Table '-16. Cln •• ifie.Cion Pereenca.e. 
1- ___ 

7 MeCer Cell. 4 leet F.atura. * I 
I 

(4 sp~c~ral Band.) 
I 

nwz" ' CLASS , CLASSlnCATICIf 

1/ 2/ 3/ 4/ 51 e/ 71 81 9/ 101 111 ' ul 11/ 14/ '11/ 
CLASS 1/ 38.0 8.0 .8 1.5 .3 .4 • 4 .. 8 .1 7.7 1.7 I.' 14.7 I." 1 .... 

CLASS 1/ 10.3 9.4 1.1 9.4 1.3 3.4 .7 1.7 1.7 le.l 4.7 1.1 18.' 11.' 3.1 
CLASS 3/ 7.4 4.1 4.0 31.a .5 a~9 a.a 4.1 a.8 4.1 4.9 4.1 e.o 17.1 .9 

.... CLASS 4/ 2.4 2.8 3.1 3a.8 1.2 13.2 .9 3.3 4.7 3.0 8.7 1.1 S.3 1&.5 .3 

..... 
CLASS 5/ .1 .0 .0 15.2 30.7" 27.& &.7 .5 .3 .s 11.4 3.~ .0 2.8 w .2 

CLASS ' -/ .5 .2 1.1 19.3 .9 38.3 1.8 4.8 8.7 4.5 , 9.8 5.9 .1 ' 8.4 .1 

CLASS 7/ 5.0 .8 .0 .6 6.9 10.3 26.7 .0 .0 .3 41.1 1.9 4.1 ,2.2 .0 

CLASS 8/ 7.0 3.3 .0 1.6 1.6 14.3 .2 14.5 10.4 81.5 1.8 .4 ".5, 18.1 1.0 

CLASS ./ .0 .4 1.a 60.1 .3 12.9 .0 5.6 11.4 .5 .4 .3 .0 &.9 .0 

CLUS 10/ 19.2 6.1 1~0 7.4 .0 9.3 1.9 a.8 a.a 15.1 5.4 a.8 8.4 9.9 4.a 

CLASS 11/ 3.8 1.1' .0 30.8 4.8 2.9 7.7 1.0 1.0 3.8 17.3 1.9 5.8 13.5 1.t 

CLu8 11/ 3.1' 3~1 .0 ,12.5 .0 9,4 12.6 .0 3.1 8.1 3.1 Sl.2 8.2 t ... .0 

CLASS 13/' 29.8' 3.8 .6 18.9 .8 " 1.7' .e .& 1.4 8'.8 3.4 1.8 11.1 ' 11.S 4.1 

CLASS 14/ •• a 4." 1.1 21.a 1.3 6.9 1.9 3.8 6.0 ... '1 11.3 6.3, 2.7 11;. 1.7 

CLAS8 lal 31.a 1.a .4 .a .0 .0 .... .0 .O"~" 1.5 .3 1.8 I.e .3 11.1 

*Speccl'al Channela 1. 8. 10. and 12 (S .. Table 5-27) 
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~abl. 5-17. Cl •• ,ificat1on P.rcentase. 
7 Met.r Cell. 7 B •• t Yeatur •• * 
(6 Spectral Band •• 1. Textural Feature) 

''l'IUB ............ 
CLASS ................ CLASSlrICA1:IOH 

1/ 2/ 3/ 4/ 5/ 8/ 7/ 
CLAlIs 
CLASS 

CLASS 

1/ 47." 

2/ 12.9 

CLASS 

CLASS 

3/ 
4/ 
5/ 

('~:"",?9 Sl 
CLASS 7/ 

CLASS 8/ 

<CLASS 9/ 

8.5 

3.3 

.2 

1.4 

5.3 

3.9 

.0 

, ¢LASS 10/ 1'1.0 
' .... 'c. 
cLAss 11/ 6.7 

. ci:Ass 12/ S.l 

CLASS 13/ ..... 
,~';~S 14/ I iI;..e 

'1.5 1.0 1.0 

14.9 8.3 9.5 

3.3 18.2 25.2 

.3 

2.6 

.9 

.8 

2.7 

8.4 

.8 

.3 

3.0 

1.6 

.0 

5.4 35.4 2.4 12.7 1.0 

.2 8.2 44.0' 25.5 12.9 

.e 2.2 20.3 2.0 33.8 1.7 

.3 .3 1.1 9.2 6.7 39.2 

3.7 4.5 2.7 2.0 17.6 .8 

.1 12.1 41.8 .4 12.4 .0 

3.2 3.5 5.4 1.0 7.4 1.9 

4.0 6.7 21.2 4.8 2.9 5.8 

Su1 12.5 3.1 .0 9.4 3.1 

. 4..0 9.0 l~,:i. .2 2.7 1.1 

'~I 8.1 16.', 3.8 9.2 2.1 

8/ 
.0 

.5 

1.'1 

3.3 

.1 

5.3 

.0 

25.8 

4.1 

3.2 

1.0 

.0 

.9 

3.0 

9/ 10/ 11/ 12/ IS/ 
.0 '1.5 

.4 1&.0 

1.8 5.2 

.• 4 

4.8 

T.8 
8.0 

5.0 

2.8 1'1.'1 

1.8 18.5 

4.0 3.0 

2.8 

.'1 

3.5 

.0 

2.5 

20.8 

3.8 

1.9 

.0 

.:1 

1.1 

3.5 

1.2 

1.2 

1.1 

'.8 ,"'., 1.1 
1.7 30.0 2.8 

18.'1 2.'1 •• 

2.1 1.3 .1. 

2.3 

".0 

.5 

3.1 

3.3 

.1 

<··.".~S 1$/ U~., 
.""../ .. " 

.. ' ~~,-",~Spcctral CbaDn.18 

.2 .0 .7 .0 .0 .8 
,. - ,. .... 

28.2 4.8 3.8 

9.6 17.3 4 •• 

3.1. 3.1 48.t 

1.9 4.'1 1.5 

F.O 8.1 6.0 

:.8 .8 2.8 

10.8 

4.8 

.0 

18.8 

3.3 

4.0 

1. 8. 9. 10, 11. aDd 11 (See Ta~l& 5-27), Textural r .. tur. 51 (Sea Tabl. 5-11). 
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14/ 

I.r. 
".1 
8.t 

1.'i.0 

.9 

lS.4 
, .8 

10.1 
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10.8 

12.1 
, 3,',' 

~T." 
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10.2 
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.3 
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.0 

.0 
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Table 5-19. 'Cl.assification Per'celltages 
14 Meter Ce1~. 2 Beat Features. 
(2 Spectral Banda) 

CUSS "CLASSIFICATION 

1/ 2/ 3/ 4/' 5/ 6/ 7/ 8/ 9/ 10/' 11/ 12/ 13/ 14/ 15/ 
CLASS 

CLASS 

CLASS 

CUSS 

CLASS 

CI.,\S,S 

CLASS 

Ct~~S 

CLASS 

CLASS 

CLASS 

1/ 36.2 17.7 

2/ 12.4 23.4 

3/ 7.3 13.0 

4/ Z.8 14.9 

5/ 2.1 .0 

6/ 14.J 7.1 

7/ 2.8 2.2 

8/ 10.2 ZO.:! 

9/ .0 10.9 

10/ 10.9 

11/ 5.8 

13.5 

13.5 

CLASS 12/ 12.5. Ie. 7 

CLASS 13/ 32~0 11.n 

CU • .'lS 14/ I.! 16.9 

CLASS 1&/ 44.7 ,6 

.0 .2 .0 1.5 ,2 3,9 .9 14.9 ,0 7.5 12.1 I.' 
1.3 15.6 .3 2.7 .0 4.0 .8 9.7 .3 2.4 15.3 ii .• 
2.5 32.0 1.9 3.2' 4.4 .3 .9 2.5 3.5 1.9 4.1 a2.5 

2.1 35.6 4.5' 6.6 1.0 .3 3.5 2.1 5.9 .7 4.2 15.6 

.8 33.6 17.2 3.1 17.3 .0 3.4 ~.5 9.7 11.2 .6 .5 

.6 15.8 8.3 6.2 4.9 2.4 4.3 4.3 7.7 8.3 7.3 1.5 

.0 2.R 18.9 6.1 33.9 .0 .0 3.9 24.4 3.9 .6 .6 

.8 1,2 ,0 15.6 .0 12.9 .0 7.4 2,7 .8 14.8 12.9 

.5 5!.G .0 1,9 .0 .8 16.2 .3 .3 .0 2.7 10.6 

.6 3.8 1.9 

.0 25.0 15.4 

2,6 

7,7 

5.1 

3.8 

7.7 

,0 

2.6 20.5 

.0 5.8 

4,5 

9,6 

3.8 
a n .. 

10.9 

1,9 

4.5 

5.8 

2.2 

.0 

.0 

.0 

.0 

.0 

.0 

.4 

.3 

7 .1 

.0 

.0 12.:1 .0 .0 12.5 .0 ,0 .0 6.2 12.5 6.2 .0 

1.2 i,8.9 

.il 22.7 

.0 .4 

1.8 

8.5 
:~O 

1.8 .9 

3.5 4.6 

.6 1.4 

.3 

1.9 

5.5. 

,3 11.9 

1.9 4.6 

.0, 7.9 

1.2 

5.8 

.2 

1.: 9.5 7.8 .3 

3.1 5.0 11,2 1.5 

3.5 1.4 1.~ 32.9 

*Spectral Channelli 10 and' 12 (See Tab1.e 5-27) 
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, ,table 5-20. 

~ ~ CLASstnCA'lI(M 

etASS 

CtJ,SS 

CLASS 

CLASS 

CLASS 

C:..\SS 

CLASS 

CLASS 

CLASS 

CLASS 

Cl.ASS 

CLASS 

CLASS 

CLASS 

CLASS 

1/ 1/ 3/ 4/ 5/ 
1/41.6 

2/ 9.4 

3/ 5.4 

4/ 2.8 

5/ .0 
C/ .4 
7/ 6.7 

8/ 5.5 

9/ .0 
10/ 19.2 

11/ 1.9 

12/ 6.: 

13/ n.3 
14.j ',8_8 

15/ 35.6 

8'.2 

15.1 

6.0 

3.5 

.0 

.0 

.0 

1.2 

.0 

2.6 

3.8 

.0 

2.7 

4.2 

.0 

.2 .2 .0 

1.1 7.0 .0 

4.4 ,23.4 .0 

3.1 35.4 1.4 

.2 12.7 35.1 

.9 19.0 .2 

.6 .6 2.2 

.0 1.2 .8 

.5 51.6' .0 

.6 5.1 .0 

1.9 25.0 1.9 

.0 6.2 .~ 

.9 14.6 .0 

1.5 18.5 1.9 

.0 .4 .0 

Clas.ification Percentale. 
14 Meter ~e11. 4 Beat Peatur .. * 
(4 Spectral Banda) 

6/ 7/ 
.0 .4 

1.6 .5 

4.4 3.5 

12.5 .7 

35.9 5.5 

40.0 1.7 

25.6 29.4 

20.3 .0 

17.0 .0 

9.0 1.9 

3.8 9.6 

18.7 25.0 

4.6 .9 

7.7 3.5 

.0 1.2 

,8/ 
1.1 

1.6 

3.8 

5.6 

.5 

9.0 

.0 

27.7 

7.7 

7.7 

3.8 

, .0 

.6 

3.1 

.2 

9/ ,10/ 
.0 7.1 

.8 13.4 

'2.5 4.7 

4.9 :!.1 

.5 .6 

4.3 3.8 

.0 .0 

3.1 23.8 

15.4 .5 

2.6 18.6 

.0 5.8 

.0 .0 

.9 8.1 

3.8 6.9 

.0 .8 

*Spectral ChanneL. 1, 8; '9. and 12 (See Tabl. 5-27) 
:1, 

11/ ,11/ 13/ 14/ '15/ 
.0 1.3 20.3 .' 11.7 

1.6 5.4 14.2 1'.4 1.9 

·3.2 9.8 5.4 '12.2 1.3 

3.1 7.6 S.2 1 •• 2 .0 

6.0 2.5 .0 .3 .3 

6.4 8.1 .0, 1.8 .0 

27.2' 1.1 5.0 1.7 .0 

.0 3.1 3.9 9.0 .4 

.0 2.9 .0 '.3 .0 

2.6 10.3 6.4 7.1 8.4 

15.4 3.8 9.6 11.5 1.9 

.0 37.5 .0 8.2 .0 

1.8 4.0 15.5 10.4 4.6 

7.3 10.4 4.2 11.8 1.5 

.0 .8 3,5 .' 87.3 
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Table !-21. C1~.1f1cat1on Percent.sea 
14 :te1::er Cell, 7 Beat Feature,* 

(7 Specera1 Bands) 

c~ " CLASSlnCAfi(lf 

1/ 2/ 
cuss Ii 45.0 5.8 

CLASS 2/ 15.1 14.5 

CLASS 3/ 7.0 5.1 

CLASS 4/ 2.4 3.8 

CLASS 5/ .2 .0 

CLASS e/ 1..1 .0 

CUSS 7/ 5.6 .6 

CLASS 8/ 4.7 2.0 

ClASS 9/ .0 .0 

CLASS ~~/ 16.0 3.2 

CLASS 11/ 5.8 1.9 

CLASS 

CLASS 

CLASS 

CLASS 

12/ 

13/ 

14/ 

15/ 

6 . .2 

33.2 

8.8 

47.2 

.0 

4.9 

4.2 

.2 

3/ 4/ 5/ 6/ 7/ 8/ 

.0 .0 .0 .4 J.O .9 

2.2 5.4 1.1 2.2 .3 3.2 

15.8 18.0 .3 5.1 3.8 6.0 

4.5 36.1 2.4 11.8 .7 4.9 

.0 3.8 46.8 30.4 8.0 .5 

2.8 17.5 2.4 3r,.e 1.9 6.0 

.6 .6 10.0 8.e 33.3 .0 

.8 2.0 I.? 20.7 .8 31.2 

6.4 40.4 .0 12.0 .0 8.8 

2.6 1.9 .6 5.1 .6 6.4 

9.6 17.3 1.9 3.8 5.8 .0 

12.5 

7.6 

6.2 

.0 

12.5 

12.8 

18.~ 

... ..... 

.0 

.0 

4.2 

.0 

12.5 

4.6 

8.8 

.2 

12.5 

.9 

3.1 

.0 

.0 

.0 

4.2 

.2 

*Spectra1 Channel. 1. 2, 8, 9. 10, II, and 12 (See Table 5-27) 

'~\ •• - ..... -." """"'+I~'''',," 

9/ 10/ 11/ 
.0 8.0 .0 

.0 18.0 2.7 

1.3 5.7 9.5 

2.8 5.2 7.8 

.3 1.4 3.4 

1.7 9.4 4.3 

.0 3.3 30.6 

1.2 21.9 2.3 

23.1 5.3 1.1 

3.8 31.4 5.8 

l.~ 11.5 17.3 

.0 

.6 

1.9 

.0 

12.5 

6.1 

6.9 

1.0 

.0 

4.0 

9.2 

.2 

12/ 

.2 

.8 

4.4 

1.4 

2.9 

8.8 

2.8 

2.0 

.3 

7.1 

3.8 

31.2 

1.5 

5.8 

2.2 

f. 

13/ 14/ 15/ 

18.5 1.9 21.1 

14.8 16.9 3.0 

3.2 13.0 1.9 

1.4 14.2 .7 

.0 2.3 .2 

1.1 6.4 .0 

.6 2.2 1.1 

2.3 6.2 .8 

.0 2.7 .0 

8.4 2.6 ••• 

5.8 11.5 1.9 

.0 

15.5 

'.' I.'" 

• 

.0 .0 

. ~., 1.5 

11.'1.,1.2 

1.0· •• 3 

-- .-----"""'" 

.'. 

'"' 
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Table 5-22. Classification Percentages 
14 Meter Cell, 7 Beat Features* 

(6 Spectral Bands, 1 Texture Featur~) 

C~ ~ CLASSVICATION 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

1/ ~.' 3/ 4/ 

1/ 24.8 li.2 .4 .2 

2/ 9.1 25.5 3.0 8.~ 

3/ ~.5 7.0 21.e 20.6 

4/ .7 2.4 4.2 38.2 

5/ .0 .0 .0 5.2 

6/ .2 .2 1.9 19.9 

7/ 3.9 .S .0 1.7 

8/ 1.2 3.5 1.2 .8 

9/ .0 .3.9.3 37.5 

10/ 12.2 9.0 2.6 3.8 

11/ 1.9 7.7 5.8 15.4 

12/ .0 .0 12.5 6.2 

13/ 9.1 6.7 7.9 15.~ 

14/ 5.0 (.2 6.9 19.6 

15/ 9.4 .0 .0 .6 

5/ 6/ 
.0 .4 

.8 1.9 

.3 5.4 

1.7 11.5 

47.1 30.2 

.4 38.2 

11.7 7.2 

1.6 20.3 

.3 11.7 

.0 5.8 

.0 1.9 

.0 12.5 

.0 3.0 

2.3 8.8 

.0 .2 

7/ 8/ 

.4 .2 

.3 .3 

4.1 1.6 

.3 2.1 

9.0 .2 

1.1 4.9 

34.4 .0 

.8 28.\) 

.0 2.7 

.6 4.5 

3.8 .0 

.0 6.2 

1.2 .0 

1.2 5.4 

.0 .0 

9/ 
.2 

.0 

2.2 

3.8 

.3 

2.8 

,0 

2.3 

29.0 

3.8 

1.9 

.0 

1.2 

1.2 

.0 

10/ 11/ 12/ 13/ 14/ 15/ 

3.2 .4 .4 12.9 1.5 43.5 

14.t 2.7 .3 !9.6 8.3 4.6 

4.4 8.9 1.9 4.7 9.5 4.4 

3.8 5.6 .3 3.5 19.4 2.1 

1.5 4.9 .8 .0 .5 .3 

7.3 4.9 4.1 1.3 12.2 .6 

2.8 33.3 1.1 1.1 .0 2.2 

18.4 2.7 .0 1.4 9.0 2.0 

1.1 1.9 .0 .0 6.4 .0 

28.2 8.3 5.1 3.8 1.9 10.3 

7.7 26.9 .0 5.8 15.4 5.8 

.0 12.5 37.5 6.2 ~O 6.2 

3.7 4.6 .6 20.1 3.0 22.9 

3.1 8.1 5.8 3.8 18.5 6.2 

.• 8 .0 2.0 3.0 .6 83.5 

*Sp~ctral Channel. 1. 2, 8, 9, ll,and 12 (See Table 5-27); ~extura1 Feature 51 (See Table 5-12) 
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Table 5-23. Clasaification Percentages 
14 Meter Cell, 10 Best Features'" 
(7 Spectral Janda, 3 Texture Features) 

tRUE ............... 
CLASS ~CLASSI~ICATION 

CLASS 11 37.~ 1.~ 

CLASS 21 13.2 22.3 

CLASS 3/ 4.7 5.4 

CLASS 4/ 1.0 4.2 

CLASS 5/ .3 .0 

CLASS 6/ .6 .6 

CLASS 7/ 3.9 .0 

CLASS 8/ 1.6 1.2 

CLASS 9/ .0 .0 

CLASS 10/ 7.7 2.6 

CLASS 11/ 3.8 .0 

CLASS 121 6.2 .0 

.CLASS 

CLASS 

CLASS 

,13{ 

!4i 

1':.,' 

21.'_' 

5,8 

~~".i.. 

3.7 

is 
.c 

.0 .0 ,0 .0 

1.9 11.8 ,5 1.6 

17.7 26.6 .3 6.0 

3,8 35.1 1.4 10.4 

.0 5.1 47.1 27.3 

1.5 18.6 1~1 36.8 

.6 1.7 10.6 5.0 

2.3 1.2 1.2 16.0 

3.7 35.6 .0 11.2 

1.9 5.8 .0 6.4 

7.7 17.3 1.9 3.8 

12.5 .0 .0 12.5 

7.0 

6.5 

.0 

14.8 

19_2 

.2 

.0 

2.7 

.0 

4.3 

5.8 

.2 

,2 

.3 

4.1 

.3 

8.9 

1.3 

36.7 

2.3 

.0 

1.3 

,0 

12.5 

,6 

1.5 

.0 

" 

,4 

,0 

3.8 

2.8 

.3 

4.9 

,0 

29.3 

4.5 

3.2 

5.8 

,0 

1.8 

5.4 

.0 

,0 

1.1 

.9 

6.6 

,0 

1.3 

.0 

5.9 

41.5 

1.3 

.0 

,0 

.0 

.4 

,0 

6.2 

16.4 

4.4 

4.2 

1.5 

7.5 

3.9 

1&.9 

2.4 

34.0 

11.5 

,0 

7.3 

6.9 

,6 

,0 

2.4 

6.0 

4.5 

5.1 

3.6 

32.8 

3;5 

.3 

7.7 

19.2 

6.2 

3.4 

6.5 

,0 

1.0 17,0 2.2 33.4 

,8 12.9 13.2 1.6 

6.0 1.6 7.9 4.4 

5.6 1.4 17.4 1.4 

3.4 .0 1.1 ,0 

8.1 ,6 13.2 .2 

1.7 1.7 ,0 1.1 

1.6 6.2 4.7 1.2 

.3 .0 .~ ,0 

5.1 8.3 2.6 12.2 

5.8 7.7 11.5 3.8 

48.7 .0 6.2 .0 

2.7 

8.5 

2.2 

20.1 3.0 

4.6 18,8 

1.8 1.0 

10.4 

5.4 .. 
71.3 

"'Spect!'al Chl'.:'"leb 1. 2, 8, 9, 10, 11, and 12 (See Table 5-27); :''!x':~ral 7eatures SO, 51, and 52 (See Table 5-12) 
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TRUE' 
CLASS .............. CLASSIFICATION 

Table 5-24. Classifi~ation Percentages 
56 Meter Cells .. 2 Features* 
(2 Spectral Bands)' 

1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 
CLASS 

CLASS 

CLASS 

1/ 42.4 6.8 

2/ 16.2 18.4 

~I 3.9 11.8 

CL~~S 4/ .0 10.4 

CLASS ~/ 12.6 3.7 

CLASS 6, .6 9.9 

CLASS 7/ 17.8 7.8 

Ck\sS 8/ 4.7 28.9 

CLASS 9/ .0 1.1 

CI.ASS 10/ 5.1 23.1 

CLASS 11/ .0 23.1 

CLASS 12/ .0 .0 

CLASS 13/ 1,1.0 29.3 

CLASS 14/ 7.7 18.S 

CLrS 15/ 1.1.9 2.8 

.0 .0 

.0 5.9 

.0 28.3 

6.3 .0 

.5 15.1 

3.9 3.1 

7.9 .5 

2.2 17.8 

.0 9.4 

.0 9.4 

.5 15.1 

.8 12.6 

.0 ~7.8. .0 13.2 .? ~.6 6.9 9.7 

.0 .4 35.4 .4 16.3 4.1 .0 21.5 

.0 15.1 .6 22.7 .0 25.0 7.0 6.4 

.0 .0 14.4 .0 20.0 .0 .0 34.4 

.0 6.2 .0 26.6 1.6 7.8 9.4 10.9 

.0 16.6 .0 41.2 .5 10.7 26.7 .5 

.0 10.3 .0 2.6 5.1 15.4 .0 7.7 

.0 7.7 .0 .0 7.7 7.7 .0 38.5 

.0 ?O .0 .0 .0 .0 .0 50.0 

.0 '.8 2.4 6.1 1.2 9.8 244 8.6 

.0 J.8 1.5 9.2 1.5 10.8 .0 16.9 

.0 ,0 .8 .0 .0'.0 .0 .0 

*Spectral Channels 10 and 12 (See Table 5-21) 

11/ 
.0 

.0 

.0 

.0 

,0 

,0 

.0 

,0 

,0 

.0 

.0 

.0 

.0 

.0 

.0 

12/ 13/ 14/ 15/ 

.0 3.7 .5 22.5 

'.5 3.2 3.8 .5 

.8 .0 22.8 2.4 

1.4 .0 20.8 1.4 

.0 .0 5.7 .0 

5.8 .0 7,0 .0 

1.1 ,0 4.4 ,0 

,0 3.9 .0 .0 

1.1 ,0 1.6 .0 

7.7 .0 12.8 10.3 

7.7 .0 7.7' .0 

.0 .0 • 25.0 .0 

1.2 13.4 3.7 1.2 

9.2 .0 18.8 .0 

.0 4.7 .0 79.8 

I 
/ 

c) 
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Table 5-25. C·:.1"siCicaUon I'cnc~nta8cs 
5(; :·'C!~"r Ce1111, 4 Fcatures'" 
(4 Spectrkl ,Band3) 

TIUIE ........... 
CLASS ~ CLASSIFICATION 

1/ 2/ 3/ 4/ 5/ 6/ 7/ 

CLASS 1/ 91.1 .0 .0 .0 .0 .0 .0 

CLASS 2/ 9.2 5.t 1.1 .0 9.7 2.7 .0 

CLASS 3/ 7.9 1.6 11.8 25.2 3.9 1.5 2.4 

CLASS 4/ .0 .7 12.5 38.9 6.9 7.6 .7 

CLASS S/ .0 .0 .0 .0 68.7 lll.9 6.9 

C~S 6/ .6 .0 3.5 14.5 5.2 52.3 1.2 

CLASS 7/ 2.2 .0 6.7 .0 1.1 15.6 56.7 

CLASS 8/ 3.9 .0 .0 .0 .0 16.4 3.1 

CLASS 9/ ,0 .0 .5 40.6 3.7 14.4 .0 

CLASS 10/ 15.4 .0 S,l .0 .0 5.1 .0 

CLASS 11/ 7.7 .0 .0 23.1 ';.7 7.7 .0 

CLASS 12/ .0 vO 25.0 .0 .0 .0 25.0 

CLASS 13/ 36.6 .0 7.3 13.4 4.9 .0 1.2 

CLASS 14/ 13.' .0 9.~ 13.8 7.7 .0 4.6 

CLASS 15/ 41.1 .. G .0 .0 .4 .4 .0 

*Spectral ChanDel. 1, 8, 9. and 12 (See Table 5-27) 

8/ 9/ 10/ 

.0 .0 .5 

3.2 1.6 9.7 

.8 .8 2.4 

2.8 4.9 2.8 

.0 .0 .0 

5.2 L.7 1.2 

.0 .0 .0 

26.6 9.4 29.7 

2.7 37.4 .0 

15.4 5.1 23.1 

.0 .0 15.4 

.0 ,0 ,0 

1.2 1,2 2.4 

4.6 6.2 4.6 

.0 .0 .0 

11/ 12/ 13/ 14/ 15/ 

.0 .0 2.6 .0 5.8 
I 

.0 12.4 35.7 8.6 .0 

3.1 8.7 11.0 17.3 1.6 

5.6 6.2 3.5 5.6 1.4 

1.2 3.3 .0 .0 .0 

8.7 5.2 .6 .0 .0 

8.9 3.3 5.6 .0 .0 

.0 .0 10.9 .0 .0 

.0 .5 .0 .0 ,0 

6.1 2.6 5.1 12.8 5.1 

15.4 .0 23.\ .0 .~ 

.0 50.0 .0 .0 .0 

.0 7.3 15.9 1.2 7.3 

6.2 9.2 7.7 'is. 1 .0 

.0 1.~ .4 .0 56.i 

• 

-. .:. _. 

j 
:1 
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Table 5-26. Classification Percentages 
56 Meter Cells, 7 Features. 
(7 ~pectral Bands) 

~ 
co 
w 

TRUE .......... 

CLASS "" .. CLASSIFICATION 

CLASS 

CLASS 

CLASS 

ClASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

CLASS 

C\...A.';S 

CLASS 

CLASS 

CLAa8' 

1/ 2/ 3/ 4/ 5/ 6/ 7/ 
t/ 48.7 1.6 .0 .0 .0 

.5 

.0 .Il 
~/ 10.8 23.2 1.L 1.t 2.7 :'0 

3/ 2.4 10.2 19. ' ~5.7 .8 1.6 2.4 

4.i 

5/ 
0/ 
7/ 

.0 

.0 

.6 

1.1 

8/ 3.1 

9/ ~O 
10/ 7.7 

11/ 1:>.4 

12/ .0 

13/ 11.0 

ttl 6,.2 

IS/- 1l~50' 

2.1 

.0 

.0 

.0 

2.3 

.0 

.0 

7.7 

.0 

I~'; 

V.2 
.. 0 

6.9 47.2 .0 10.4 .7 

.0 .4 ~3.8 22.8 5.3 

1~2 21.5 .0 54.7 2.3 

3.3 .0 .0 15.6 52.2 

.8 

2.7 

5.1 

15.4 

25.0 

15.9 

7.7 

0& 

.8 

28.9 

.0 

.• 0 

.0 

8.5 

13.8 

.4 

.0 

.5 

.0 

.0 

.0 

.0 

3.1 

.0 

26.6 

13.9 

2.6 

.0 

.0 

1.2 

4.6 

.4 

1.6 

.0 

.0 

15.4 

25.0 

.0 

3.1 

.0 

8/ 
.0 

4.3 

.8 

2.1 

.0 

3.1i 

.0 

33.6 

2.7 

5.1 

•• 0 

.0 

2.4 

.0 

.0 

*Spectral ct.&llnelR 1. 2, 8, 9, 10, 11. and 12 (See Table 5-27) 

9/ 10/ 

.0 .5 

.5 11.~ 

.8 . 3.9 

ll/ 
.0 

.0 

7.1 

3.5 

.0 

4.2 3.5 

1.2 . 4.1 

.0 

.0 

0.2 4.7 

4.4 14.4 

7.0 18.0 

41.2 6.4 

.0 . 51.3 

7.7 23.1 

.0 .0 

1.2 4.9 

3.1 12.3 

.0 .8 

.0 

1.1 

5.1 

7.7 

.0 

2.4 

3.1 

.0 

'> 

12/ 
.5 

8.1 

7,1 

4.9 

1.2 

4.1 

5.6 

.0 

.5 

5.1 

7.7 

50.0 

7.3 

,9.2 

2.0 

13/ 14/ 15/ 

3.1 .0 45.5 

8.1 25.4 2.2 

.8 19.7 7.1 

2,8 10.4 

.0 1.2 

.0 1.7 

2.2 ,0 

3.1 

.0 

5.1 

.0 

.0 

28.0 

.1.7 

.4 

.8 

;2.1 

.0 

.0 

.0 

20.4 

16.9 

.4 

1.4 

.0 

.6 

1.1 
2.3 

.0 

12.8 

.• 0 

.0 

11.0 

.0 

84.2 

~.--. .--
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TABLE 5-27. ORDERING OF SPECTRAL AND TEXTURAL FEATURES 
FOR HONEYWELL BALTIMORE LAND USE DATA 

Seven Optimum Features 

7 m Data 14 &1 Data 56 m Data 

9.3 - 11. 7 \-1m (12) 9.3 - 11. 7 \-1m (12) 9.3 - 11.7 \-1m 

1.0 - 1.4 \-1m (10) 0.46 ;.. 0.49 j,lm (2) 0.46 - 0.49 \-1m 

0.41 O.49J,lm (1) 0.41 - 0.49 \-1m (1) 0.41 - 0.49 J,lm 

0.62 0.70J,lm (8) 0.62 0.70 \-1m (3) 0.62 0.70 \-1m 

0.57 0.94J,lm (9) 0.52 0.94 J,lm (9) 0.57 0.94 \-1m 

2.0 - 2.60J,lm (11) 2.0 - 2.60 J,lm (11) 2.0 - 2.60 \-1m 

1/56 m texture (51) 1/56 m texture (51) 1.0 1.40 J,lm 

2 

NOTE: Features are not necessarily in 
the order selected by the program. 
Numbers in parentheses are spectral 
channel or textural feature number. 

TABLE 5-28. PERCENT CORRECT CLASSIFICATIO~. 
15 MARYLAND LEVEL III CLASSES 

7 m 14 m 

Best Spectral 18.0 19.1 

56 m 

21.1 

4 Best Spectral 23.5 27.0 37.5 

7 Best Spectral 29.2 4l.5 

6 Spectral 1 Spatial 29.2 33.5 

7 Spectral 3 Spatial 34.1 

7 Spectral 6 Spatial 36.5 

184 
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(2) 
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~R_I_M--------------------------------~F~OR~M~E~R~LY~W~'~LL~O~W~'R~U~N~LA~B=O~R7,AT~O~R~'E~S.~TH~E~U~N~'V~E~RS~'T~Y~O~F~M~'C~H~~~AN 
56 m resolution 7 spectral channel accuracy is the highest of all. As 

far as overall average classification accuracy goes, spectral discrimi­

nation dominates a~d th~ coarse resolution 56 m simulated sensor data 

is best. This result is surprising ani if this conclusion is generally 

applicable, it is a contradiction of the popular wisdom. The first 

objection that the lCeader might raise is: Is t~le fundamental 7 m data 

really 7 m reso1ction? Figures 5-12 and 5-13 provide the answer. The 

autocorrelations fo; the residential areas were computed. Note the 

zero crossings of 10 ~ in the ~-direction and 12 m in the y-direction. 

This is consistent with resolutions of 10 and 12 meters in the x, y 

directions respectively and that the scene probably does contain 

frequencies _.t approximately 3 cycles/50 m. But as the channel 

ordering results show, it is the low frequencies that do the work, not 

the high. In fact, the results strongly suggest that total pattern 

size should have been increased to at least 112 meters, thus obtaining 

even lo~e~ frequencies for the spatial features. This would probably 

have improved the overall classification accuracy from its present low 

level. 

Table 5-29 shows that, while the above discussion is valid for 

overall performance, there are individual classes where acc~racy 

improves with final resolution. At each resolution the set of 

spectral/spatial features which gave the best performance was selectad. 

At 7 m resoluticn, this selection was 7 spect~al channels and 6 spatial 

features. At 14 m, 7 spe,:tral and 3 spatial was selected, and at S6 m, 

the selection was 7 spectral channels. The justification is clear. 

Given that the sensor has 7 spectral ehann.:!ls at (;aeh resolution, tile 

spatial features are free (the resolution is not). The institutional 

classifications, colleges, secondary schools, hosritals, military 

installations, are improved somewhat by imp~oved resolution. Resi­

dential and commercial classifications a):c, for all pract.ical purposes, 

unchanged by resolution changes. 

185 
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TABLE 5-29. CLASS ACCURACIES 

7 m 14 m 56 m 

1 47.5 37.5 48.7 
2 22.6 22.3 23.2 
3 18.7 17.7 19.7 
4 14.2 35.1 47.2 
5 53.4 47.1 63.8 
6 25.6 36.8 54.7 
7 46.7 36.7 52.2 
8 31.4 29.3 33.6 
9 59.0 41.5 41.2 

10 30.4 34.0 51.3 
11 21.2 19.2 7.7 
12 59.4 48.7 50.0 
13 30.0 20.1 28.0 
II, 21.0 18.8 16.9 
15 66.0 71.3 84.2 
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In view of the low classification accuracies obtained for Anuer-

son Level III, classification was next perfOnllC(l for Anderson Level II 

classes. This classification was accomplished by aggregating the 

class data from Table 5-15 through 5-26. 1'\\0 aggregates were made. One 

aggregation of classes produced the Anuersml Lev.:.' 1 11 classes. The 

second aggregation was oriented towards improving classification 

accuracy at a coarser use level. Table 5-30 presents this class aggrega-_~ 

lion. 

Table 5-31 through 5-54 present the perlurmance matrices for 

these UNO aggregations. Table 5-55 pre~ent.s a summary or the Gver'~ll 

weighted averages for each resolution and feature set. The trends in 

this Tab Ie are the same as before only m"re pronounced. This result 

might have ~een expected since the Level 11 classes are cuarser. The 

Remote Sensing Classification shm.s high classifil:ation ac'~uracies at 

the expense of utility of the classifiratiun. It should be regarded 

as a first atten~t to find a useful counterpart for the Anderson 11 

classificatinn scheme which produces better remote sensint; classifica­

tion, a useful project beyond the SCl)pe of this study. 

Figure 5-14 tells the whole storv. Improved ]-esulution does not 

improve urban land "se cl"'":sificathm accuracy <is ilad originally bellI1 

assumed at the study's inception. In fact, ('"-'l'l"all Iwrformance 

dccJ"easc..s \>lith improved res,)luti(m. Spectral 

t'l.>;-lLures (ilmlinate the overall classiticatiollll';'Urac\-. lhw might argue 

that anl)ther method of handl ing spat" i;i!_ fedllll-,'S WOUl,l have reversed 

the resu.!ts. IL might improv(' overall <lC(,111-;1Ci('s. Improvem(>nts SUdl 

as addition of lO\Jer frequencies in t.llt' sjliltia.! t"f.!atul"es rmd use of 

:c;p<?lial :~'atures m,)re directed towards "m;lt.-llt'J" 1 i 1 L(-ring an object 

size would improve ac('ur;ll'Y hut nOl t iw rt' I at it'n of accuracy to 

resullltilm. Every piece of evid(~nc'_' proollceJ herein leads to Lilis 

etH1C 1 us ion. 

10') 
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T \aLE 5-30. URBA.'i LAND USE CLASS AGGREGATION 

AGGREGATION III 

Designation Anderson Honeywell Designation 
~umber Level II Class Classes (Table 5-13) 

1 11 1, 2 

2 12 J, 4 

3 13 5. 6 

4 15 7, 8. 9, 10 
5 16 

11. 12, 13. 14 
6 19 15 

190 
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TABLE 5-31. Classification Percentages - Aggregation #1 
7 Meter Cell, 2 Best Features* 
(2 Spectral Bands) 

TRUE 

~ CLASS CLASSIFICATION 
7, e~ 

.h....~ ~ ~ . hl:2. 
1, 2 2R.4 8.3 1.7 16.0 

3, 4 11. R 41. R 3.6 7.9 

5, 6 5.2 19.5 14.9 24.4 

7, 8, 9, 10 10.0 26.6 2.3 19.2 

11. 12. 13, 14 23.0 25.2 5.2 9.0 

15 40.8 1.1 0.2 4.1 

Average, Correct Identification 29.6 
W~ighted Average, Correct Identification 27.1 

*Spectral Channels 10 and 12 (See Table 5-27) 

11, 12, 
13, 14 

42.6 

34. R 

36.0 

1.0.4 

37.2 

17.7 

\ 

IS 

3.1 

0.1 

0 

1.6 

0.5 

36.1 
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TRUE 
CLASS 

1. 2 

3, 4 

5. 6 

7. 8. 9, 10 

TABLE 5-32. Classification Percentages - Aggregation #1 
7 Meter Cell, 4 Be3t Features* 
(4 Spectral Bands) 

" 

"" 
CLA.::' S I FI CATION 

8, l1, 12, 
.h.1. ~ ~ 9. 10 13. 14 

34.3 5.9 2.5 14.0 31.6 

8.5 37.0 10.2 12.7 30.9 

0.4 } ,7, 49.5 12.0 20.7 

8.1 25.7 14.0 28.2 23.1 

11~ 12,13, 14 22.8 21. '] 5.3 14.5 32.8 

15 37.3 0.6 0 1.9 

Ave~age, Correct Identification 39.5 
Weighted Average, Correct Identification 39.l. 

*Spectra1 Channels 1, 8, 10, and 12 (See Table 5-27) 

5.0 

15 

1l. 7 

0.7 

0.2 

1.0 

2.9 

55.2 

., -.. ------".~ 
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CLASS 

1, 2 

3, 4 

5, 6 

.( 

7. 8, 9, 10 

11. 12. 13. 14 

15 

.' 

' .. ~ ~" 

~ .. ,,~,~-,,~~ .. ~ ....... _._- .. -. ,. , ... 

Table 5-33. Classification Percentages - Aggregation #1 
7 Meter Cell, 7 Best Features* 
(6 Spectral Bands, 1 Texture Feature) 

CLASSIFICATION 
7, 8, 

1 ., 
~ ~ 5, 6 9, 10 

43.1 8.1 2.9 13.1 

8.5 42.1 ' 12.1 11.1 

G.7 14.3 55.5 15.9 

6.4 24.:> 14.4 36.7 

," 

23.0 25.5 7.5 11.0 

60.1 0.7 0 2.4 

Average, Correct Identification 39.9 
Weighted Average, Correct 'Identification 41.7 

11, 12, 
13, 14 

., 26.5 

25.9 

13.6 

p.6 

32.6 

7.7 

15 -
6.3 

0.,3 

0 

0.5 

0.5 

29.4 

,*Spectral Channels 1,8,9,10, 11 and 12 (See Table 5-27); Textural Feature 51 (See Table 5-12) 
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Table 5-3/~. Classification Percentages - Aggregation 81 
I Mpter Cell, 13 Best Features* 

TRUE 
CLASS 

1. 2. 

3, 4 

5, 6 

7, 8, 9, 10 

'" 

11, 12, 13, 14 

15 

(7 Spectral Bands, 6 Texture F~atures) 

CLASSIFICATION 
7. 8, 

~ lL.! h.! 9, 10 

43.4 4.7 2.0 15.1 

6.9 25.4 9.2 15.6 

0.9 6.3 l; 8.2 :23.1 

3.6 8.3 9.7 55.9 

\. 
8.6 13.5 8.6 13.2 

19.8 0 0.2 " 4.5 

Average, Correct Identification 47.8 
Weighted Average, Correct Identification 47.9 

11, 12, 
13, 14 

28.0 

41.6 

21.3 

20.7 

48.1 

9.4 

15 

6.8 

1.4 

0.1 

L9 

7.9 

66.0 

*S~ectral Channels 1, 2, 8, 9, 10, 11,. and 12 (~ee Table 5-27); Textural Features 50-55 
(See Table 5-12) 
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Table 5-35. ~lassification Percentages - Aggregation #1 
14 Meter Cell, 2 Best Features* 
(2 Spectral BanQs) 

"" .. 

TRUE 

"" 
~ '''~f;:'?~';,. 

CLASS CLASSIFICATION 
',' \ .. ,.-:,,; "";11~ " 12::~ 

1, 2 

3, 4 

5, 6 

7, 8, 9, 10 

l' t 12', 13, 14 

15 

7, a, 
lL.1. ~ ~ 9,10 13, 14 

45.8 7.7 2.2 17.6 

19.0 36.1 ' 8.0 7.6 

10.3 26.9 17.9 18.9 

17.3 23.6 10.2 21,.9 

33.8 21.5 8.4 13.0 

45.3 0.4 0.5 14.8 

Average, Correct Identification 30.0 
Weighted Average, Correct Identification 28.9 

25.7 

29.3 

26.1 

22.8 

22.4 

6.1 

*Spectral Channels 10 and 12 (See Table 5-27) 

., 
~ 

--' 

~--

L. ~ C'_~ 

15 / 

' , 

1.2 

0 

0 
~ ,j', 

T',.' 

' 1.3 

0.8 " ,;:+ 
!- ~I.} 

" . __ ... t 

32.9 
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~'It~~ . . .. ' 

"~-€~0~~"?,:~:,\ :":' . 

~,Cl.assification Percentages - Aggregation 111 
",,,~1114 Meter Cell, 4 Best Features * 

(4 Spectral Bands) 
~ ~) 

Average, Correct Identification 42.7 
Weighted Average, Correct Identification 43.1 

*Spectra1 Channels 1, 8, 9, and 12 (See Table 5-27) 
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Table 5~37. Classification Percentages - Aggregation #1 
14 Meter Cell, 7 Best Features* 
(7 Spectral Bands) 

TRUE ", CLASS CLASSIFICATION 
7, 8~ 

h..! ~ ,la..! 9, 10 

1, 2 41.4 3.3 1.7 13.4 

3, 4 9.3 37.1 9.6 15.2 

5, 6 0.5 10.7 61.3 13.8 

7, 8, 9, 10 6.0 19.8 14.9 42.7 

11, 12, 13, 14 25.0 22.6 8.2 12.3 

15 4-,.4 0.2 0.2 1.2 

Average, Correct Identification 43.2 
Weighted Average, Correct Identification 44.9 

~\: 

*Spectra1 Channels 1, 2, 8, 9, 10, 11, and 12 (See Table 5-27) 

11, 12, 
13, 14 

27.2 

27.5 

13.6 

15.2 ' 

30.5 

'4.7 

,I, 

I 
I, !! i 

13.0 L , 

1.3 

0 

1.4 

,1.4 
-I 

, 
I 

46.3 

,) 

i, 
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Table 5-38. Cla~sification Percentages - Aggregation Ul 
14 Meter Cell, 7 Best Features 'I< 
(6 Spectral Bands, 1 Textural Featu:",e) 

TRUE "'. CLASS CLASSIFICATION 
7, 8,· 

~ ~ ia...! 9, 10 

1, 2 35.4 5.6 1.4 9.0 

.3, 4 6.9 42.2 9.3 11.3 

5, 6 0.2 12.1 61.2 . ·13.1 

7, 8, 9, 10 5.6 20.0 14.9 38.7 

11, 12, 13, 14 12.3 24.5 6.4 8.5 

is 9.4 0.6 0.2 0.8 

Average, Correct Identification 4.9.1 
Weighted Average, Correct Identification 48.1 

11, 12, 
13, 14 

22.2 

26.8 

12.9 

18.0 

33.7 

5.5 

~ 

26.2 

3.5, 

0.4 

2.6 

14.5 

,83.5 

*Spectral Channels 1,2, 8, 9, 11 and 12 (See Table 5-27);. Textural Feature 51 (See Table 5-12>" 
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Table 5-39. Classification Percentages - Aggregation ill 
14 Meter Cell, 10 Bes t Features* 
(7 Spectral Bands, 3 Textural Features) 

TRUE "'. CLASS CLASSIFICATION 
7, B, 11, 12, 

.h..! .!t....! h.! 9, 10 13, 14 . 

1,2 37.4 6.1 1.0 11.7 24.3 

3, 4 7.8 41. 7 8.9 13.6 25.0 

.5, 6 0.7 11.3 59.1 12.5 16.3 

7, 8, 9, 10 3.1 17.9 13.3 47.9 15.2 

11, 12. 13, 14 15.9 23.3 6.3 12.2 34.9 

15 22.8 0.2 0.2 0.6 

Average, Correct Identification 48.7 
Weighted Average, Correct Identification 48.6 

4.9 

if 

~ 

19.3 

3.0 

0 

2.6 

7.6 

n.3 

*Spectral Channels 1,2, 8, 9, 10, 11, ~nd 12 (Sec Table 5-27); Tectura1.Features 50. 51, and 52 
(See Table 5-12) 
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TRUE 

'" CLASS 

1, 2 

3, 4 

S, 6 

7, 8, 9, 10 

'. 

11, 12, 13. 14 

1S 

Table 5-40. Classification Percentages - Aggregation IJ1 
56 Meter Cell, 2 Best Features* 

__ ___ (~cSpectral Bands) 

CLASSIFICATION 
7, 8, 

h...! )~ ,ia..! 9, 10 

42.0 2.9 10.9 ·26.6 

12.9 28.0 10.3 24.0 

13.9 6.5 30.6 40.4 

17.8 9.7 28.2 38.3 

32.3 10.4 8.5 28.0 

14.6 0 0.8 ·0 

Average, Correct Identification 39.8 
Weighted Average, Correct Identification 39.8 

11, 12, 
13, 14 

5.9 . 

22.9 

8.6 

5.2 

20.1 

4.7 

l-
ii 

!! 
11. 7 

1.8 

0 

0.9 

0.6 

79.8 

*Spectra1 Channels 10 and 1~ (See Table 5-27) l 
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TRUE 

" CLASS 

1, 2 

3, 4 

5, 6 

7, 8, 9, 10 

11, 12, 13. 14 

15 

\.\ 

Table 5-41. Classification Percentages - Aggregation Ul 
56 Meter Cell, 4 Best Features* 
(4 Spectral Bands) 

CLASS IFI CAt!ON , 
7, 8, 11, 12, 

1 2 .::.&....::. lL..! ~ 9, 10 13, 14 

53.7 0.5 6.1 7.2 29.3 

4.8 44.6 10.3 8.9 29.9 

0.2 7.4 75.8 7.9 8.6 

2.9 19.1 16.2 52.0 9.2 

24.4 22.0 6.7 12.8 30.5 

41.1 0 0.8 0 2.0 

Average. Correct Identification 52.1 
Weighted Average. Correct Identification 55.2 

*Spectra1 Channels 1. 8. 9. and 12 (See Table 5-27) 
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56.0 

t.:-. 

L 



N 
0 
N 

" 

" 

~. 

Table 5-42. Classification Percentages - Aggregation #1 

/ 

TRUE 

" .CLASS 

1, 2 

3, 4 

5, 6 

7, 8, 9. 10 

11, 12, 13, 14 

15 

56 Meter Cell, 7 Best Features· 
(7 Spectral Bands) 

CLASS In CATION 
7, 8, 

b..1 lz...! iz..! 9. 10 

42.3 1.1 1.6 8.5 

. 7.0 45.4 6.6 9.2 

0.2 9.6 73.4 8.4 

2.5 14.9 17.1 55.0 

15.2 22.6 3.7 15.9 

11.5 0.4 0.4 0.8 

Average, Correct Identification 56.3 
Weighted Average,Correct Identification 57.5 

*Spectra1 Channels 1, 2, 8, 9, 10, 11 ana 12 (See Table S~27) 

11, 12, 
13. 14 

'22.3 

27.7 

8.2. 

8.6 

37.2 

2.8 

.. 

/ 

Y. 
24.2 

4.1 

0.2 

2.0 

5.5 ~\. . 

84.2 
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Table 5-43. Classification P·arcentages - A~gregation 112 
7 .Meter Cell t 2 Best Features* 
(2Spectra~ Bands) 

TRUE " 
"-

:CLASS .... '" CLASSIFICATION 

1, 2 4, 5 . 
13. 14. 15 3, 12 ~. 9, 11 

. 1, 2, 13, 14, 15 67.7 5.7 17 .• 8 

3, 12 38.1 6.0 . 47.0 

4, 5, 6, 9, 11 20.0 8.1 61.3 

7 10.3 7.8 53.1 

8, 10 62.7 3.0 17.2 

Average, Correct Identification 35.6 
Weighted Average, Correct Identification 54.7 

*Spectra1 Channels 10 and 12 (See Table 5-27) 

1 

1.0 

3.9 

5.6 

27.8 

1.9 

• 

'- 8, 10 

7.9 

5.0 

5.0 

1.4 

15.0 

t> 

! 

; . .' 

, 

") 

L_ 
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Table 5-44. Classification Percentages - Aggregation 82 
7 Meter Cell, 4 Best Feature~ * 
(4 Spectral Bands) 

TRUE 
"" CLASSIFICATION CLASS 

1, 2 4, 5 
!3. 14, 15 3, 12 6, 9, 11 

1, 2, ~,3, 14, 15 71.1 3.4 16.1 

3, 12 35.0 9.3 44.6 . 

4, 5, 6, 9, 11 9.8 3.9 78.2 

7 12.2 1.9 58.9 

8, 10 38.6 2.8 27.6 

Average, Correct Identification 43.1 
Weighted Average, Correct Identification 64.2 

*Spectra1 Channels 1, 8, 10, and 12 (See Table 5-27) 

", 

1 

0.7 

3.0 

3.1 

" ~6~1 

",' 

0.9 

8, 10 

8.7 

8.1 

5.1 

0.3 

30.2 

• 

·i~ 

I 
~ 
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Table 5-45. Classification Percentages- Aggregation #2 
7 Meter Cell, 7 Best Features '* 
(6 Spectral Bands, 1 Textural Feature) 

~ CLASSIFICATION 

1, 2 4, 5 
13, 14, 15 3, 12 '6, 9. 11 1 

1, 2, 13, 14, 15 69.8 6.8 14.4 0.9 

3, 12 23.8 1.4.0 42.5 

4, 5, 6, 9, 11 9.7 ' 6.2 72.6 

7, 

8. 10 

9.2 3.1 46.9 

21.7 6.0 25.6 

Average, Correct Identification 49.0 ' 
Weighted Average, Correct Identification 63.8 

,3.0 

5.3 

39.2 

1.2 

'\"~ 

t" .. :.~ .. , '.~,; • .-!o.,_. __ ' _______ , 

t:;if:~~~ '~"~ ,', I, 

I 
I 

I 
~ 
I' 
I 
I 
I 

\,: 1--

8. 10 

8.2 
" 

6.8 

i 

6.2 

1~7 

39.6 

-,-

.Spectral Channels 1, 8, 9, 10, 11, and 12 (See Table 5-27); Textural Feature 51 (See Table 5-12) 
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Table 5-46. Classification Percentages - Aggregation #2 
7 Meter Cell. 13 Best Features* 
(7 Spectral Bands. 6 Textural Featur~s) 

TRUE ~ CLASSIFICATION CLASS 

1. 2 4, 5 .' 
13. 14. 15 3, 12 6. 9. 11 

1, 2, 13, 14, 15 68.8 8.4 11.9 ' 

3, 12 24.1 30.9 31.5 

4, 5, 6, 9, 11 10.3 11.5 62.3 

7 8.9 2.5 40.8 

8, 10 25.5 6.6 . ':,20.9 

" 

Average, Correct Identification'SO.l 

1 8. 10' 

2.3 8.7 

5.3 6.3 

9.3 6.6 

46.9 0.8 

5.7 41.4 

Weighted Average, Correct Identification 60.3,:,,; 
*Spectral Channel& 1, 2, 8, 9. 10, 11 and 12 (See Table 5-27); Textural Features 50 - S5 

(See Table 5-12) 
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Table 5-47. Classification Percentages - Aggregation 112 
14 Meter Cell, 2 Best Features* 
(2 Spectral Bands) , 

TRUE ~ CLASSIFICATION CLASS 

1, 2, 13, 14, 15 

3, 12 

4, 5, 6, 9, 11 

7 

8, 10 

1, 2 4, 5 
13, 14, 15 3, 12 6, 9, 11 

66.3 4.4 14.5 

". 

47.0 5.1 40.4 

22.3 7.2 60.1 

6.1 ' 3.9 52.2 

54.1 2.7 18.0 

Average, Correct Identification 37.7 
Weighted Average, Correct Identification 54.5 

1 

1.2 

4.8 

J.7 

33.9 

1.9 

. "~;{>{:"'< 

. *Spectra1 Channels 10 and 12 (See Table 5-27) 

8, 10 

13.6 

2.7 

2.6 

3.9 
'" 

23.3 
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Table 5-48. Classification Percentages - Aggregation 02 
14 Meter Cell, 4 Best Features. 
(4 Spectral Bands) 

TRUE ~ CLASSIFICAtION CLASS 

1, 2, 13, 14, 15 

3, 12 

4, 5, 6, 9, 11 

7 

8, 10 

1, 2 4, 5 
13, 14,_1~ 3, 12 6, 9, 11 

75.7 4.2 11.4 

38.9 15.4 33.1 

7.1 5.9 n.3 

13.3 1.7 55.5 

28.1 6.0 22.8 

Average, Correct Identification 48.0 
Weighted Average, Correct Identification 67.3 

*Spectra1 Channels 1, 8, 9 and 12 (See Table 5-27) 

1 

1.1 

4.6 

2.8 

29.4 

0.7 

8, 10 

7.6 

8.2 

6.7 
:{:';;.~~;.< 

/ 0 

42.0 
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Table 3··'+9. Classification Percentages- Aggregation 112 
i'J<. ,,14 Meter Cell, 7 Best Features* 

«' '" (7 Spectral Bands) 

TRUE ~'" CLASSIFICATION CLASS 

1, 2 ' 4,5 
13. 14Ll2,' 3', 12 6. 9, 11 

1, 2, 13, 14, 15 74.6' 4.4 11.9 

3, 12 28.9 21.4 33.7 

, 4, 5, 6, 9, 11 8.0 6.6 72.4 

4 7 
10.0 r3.3 50.0 

~, 
~l"'. 

, .. ~;'" 
. '~?8. 10 23.1 5.3 23.5 

Average, Correct Identification 49.8 
Weighted Average, Correct Identification 66.0 

"'Spectra1 Channels 1, 2, 8, 9,10, 11 and 12 (See Table 5-27) 
,~ 
::"';~V!!J;t'lt.-.: 
, : ' . -;-..., ~~1>~~. 

1 

0.6 

4.2 

3.6 

33.3 

' " 0.7 

, I 

I 

" 8, 10 

8.6 

11.8 

9.4 

3.3 

47.3 
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Table 5-50. Classification Percentages - Aggregation #2 
14 Meter Cell, 7 Best Peatures*" 
(6 SpectTa1Bands, 1 Textural Feature) 

~ CLASSIFICATION 
/ ~ 

.1-

1, 2 \; 4, 5 
. 13,' 14, 15 3, 12 6, 9, 11 1 I 

1, 2, 13, 14, 15 76.5, 4.8 .. 12.8 0.5 

(r 

3, 12 '\ 
~ 28.3 24.7 37.1 

4, :S, 6, 9, 11 10.8 4.6 75.3 

7 

8, 10 

;;;.. " 

7.8 1.1 53.9 

28.4 3.6 25.5 

Average, Correct Identification 50.5 
Weighted Avet'age, Correct Identification 67.7 

3.9 

3.7 

34.4 

0.7 

$, 10 

5.7 

6.0 

5.6': 

" 2.8 

41.8 

*Sp~ctra1 Channels 1,·2, 8, 9,11 and 12 (Sec'Tab1e 5-27); Textural Feature 51 (See Table 5-12) 
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Table 5-51. Clas'sification Percentages - Aggregation #2 
14 Meter Cell, 13 Best Features* 
(7 Spectral Bands, 6 Textural Features) 

;.l·i:, . 

CLASS "". CLASSIFICATION .', 'tf~:~;;. 

1, 2, 13, 14, 15 

3, 12 

4, 5,6, 9, 11 

7 

8, 10 

'~ 

1, 2 ' 4; 5 
13. 14, 15 3 12 it 9, 11 ":~i. , . 

74.5 5.0 11.9 0.4 

23.4 25.5 38.1 '4~5 

9.3 6.3 74.1 3.5 

7.2 2.2 ·50.0 36.7 

21.8 5.1 26.5 ' 1.9 

Average, corredt Identification 51.1 ' 
Weighted Average, Correct Identification 66.8 

i". 

'" 
8, 10 

8.1 

7.8 

6.8 

3.9 

44.7 

*Spectra1 Channels 1,2, '8, 9, la, 11 and 12 (See Table 5-27); Textural Features 50- 55 
(See Table 5-12) 
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Table 5-52. Classification Percentages- Aggregation 02 
56 Meter Cell, 2 Best Features* 
(2 Spectral Bands) 

TlWE 
" CLASSIFICATION ciAss 

1, 2 4, S ' 
13,'14,15 3, 12 6. 9. 11 1 

" 
\ 
\ 

1, 2, 13, 14, 15 70.6 1.0' 11.1 2.7 

3, 12 4u.5 0.8 35.9 ,0 

4, 5, 6, 9" 11 18.4 2.0 
". 

51.8 5.6 

7 30.0 1.,1 14.4 20.0 

8, 10 '40.7 1.8 35.3 2.4 

Average, Correct Identification 32.6 
Weighted Average, Correct Identification 51.6 

*Spectr81 Channels 10 and 12 (See Table 5-27) 

''-!: 

~-''''' 

,8· 10 
.:.&.,..:;:. 

\ 

14.6 

22.9 

22.2 

~4.4 

19.8 

", ~;. 
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Classification Percentages -"Aggregation 112 
56 Meter Cell, 4 Best Features* 

~~ :'I/~~"" ~, 
(4 Spectral Band~) 

, 'I, 
j I // '/ 

" 
TBlJE ~ CLASSIFICATION '" CLASS 

( 

1, 2 4, 5 
13. 14, 15 3, 12 6, ,9, 11 

k' 

79.8 " 1 2 13 14 15 "";,c 6.8 8.5 • , • , '··~~;1." 
, . . .. ~~, 

\; 

3, 12 38.1 22'.1 33.6 
"'~·:'.!·:f;!.,~. 

4, 5 t 6. 9" 11 2.9 6.7 84.3 

7 7.8 10.0 25.6 

8, 10 20.4 1.8 23. 'f 

Average. Correct Identification 59.0 
Weighted Average, Correct Identification 74.2 

*Spectral Channels 1, 8. 9. and 12 (See Table 5-27) 

1 

0.5 

3.1 

2'.6 

56.7 

'2.4 

'.I 

8. 10 

4.4 

3.1 

3.4 

0 

52.1 
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Table 5-54. Classification Percentages- Aigregation #2 
.56 Meter Cell, 7 Best Features* ' . 
(7 Spectral Bands) . 

TRUE ~ CLASSIFICATION . CLASS 

1, 2 4, 5 
13, 14, 15 3, 12 6, 9, 11 

1, 2, 13, 14~ 15 81. 7 6.8 5.1 

3, 12 38.9 28.2 25.2 

,~'.~ 

4, 5, 6, 9, 11 5.1 5.0 81.1 

., 

8, 10 

4.4 8.9 30.0 

,) 

15.0 ".3.0 28.1 

Average, Correct'Identification 59.2 
Weighted Average, Correct Identification 73.9 

*Spectral Channels 1, 2, 8" 9, 10, 11 and 12 (See Table 5-27) 

. ,.' 

1 

0.3 

3.0 

2.6 

52.2 

1.2 

~, 10 

6.0 

'4.6 

6.2 

4.4 t' 
tl 

5'2.7 
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TABLE 5-55. PERCENT CORRECT CLASSIFICATION 
TWO CLASSIFICATION AGGREGATES 

AGGREGATION #1 

ANDERSON !.ZVEL II 

Fe~ 
2 Spect~a1.' '-.>_'< 

~/ 
4 Spectral 

7 Spect~al 

7 Best (l Textu~e ) 

/:7 Spect~al 3 Spatial 
..., 

.·ll 7 Spect~al 6 Spatial 
. ~~~~ .. 
t;.~. 

7 m 

27.1 

39.1 

41.7 

47 .• 9 

AGGREGATION 12 

14 m 

28.9 

43.1 

44.9 

48.6 

56 m 

39.8 

55.2 

57.5 

REH>TE SENSING CLASSIFICATION 

2 Spect~a1 54.7 54.5 51.6 

4-Spect~a1 64.2 67.3 74.2 

7 Spectral 66.0 73.9 

7 Best (1 Texture) 63.8 

7 Spectral 3 Spatial 66.8 

7 Spectral 6 Spatial 60.3 
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The reader should be aware thatonlv automatic classification has 

been considered. Photointerpreta~ive classification, where the dominant 

features in the classification are spatial, might produce a different 

r~sult. However, the results of this study are marked enough to 

question even the ass~ption concerning photointerpretative results. 

The powerful technical tool of hindsight leads to the question: What 

can be seen aL 10 m that could not be seen at 60 m? 

5.4 CONCLUSIONS AND RECOMMENDATIONS - SPATIAL STUDY 

The classification .techniques being considered are automatic, 

techniques which can and do handle the spectral information better than 

a photointerpreter. However, one must grant that a photointerpreter, 

who does rely on spatial features for classification, handles spatial 

features far better than any automatic method of spatial feature' 

classification. Spatial resolution, a decisive factor in sensor cost, 

can be expected to affect spatial measurement and spatial feature 

classif-ication,both chores the historical task of the photointerpreter. 

Our study method relied heavily on spectral features and implemented 

automatically the measurement and spatial feature classification. If 

a user relies solely on remote sensing photointerpretation, these 

conclusions may be contrary to the best interests of the photo inter­

pretative craft. 

Figure 5-8 certainly shows little change in acreage estimation 

accuracy by going from 15-30 meters resolution. The smaller fields, 

10-20 acres, which do predominate in U. S. agriculture showed a marked 

decrease in acreage estimate accuracies going from 30-60 meters. This 

change can be at least partially compensated for by processing 

techniques (convex mixture, etc.). Thus, if costs w~re not a factor, 

30 m resolution might be indicated but not at the expense of other 

system specifications. 
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Figure 5-14 tells the tale for the use of spatial features in 

urban land use classification. Spatial features are dominated by 

the spectral ,features and spectral feature classification improves 

with degraded reso1ut}on. Study results indicate that little is gained 

by resolutions finer than 60 m. -Because of the surprising nature of 

:,;. these result~, furth~r stu~y is ·.r~~ommended prior to specification of 

required spatial reso1ut~on. 
"';"l..: 
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CONCLUSIONS AND RECOMMENDKfIONS 

6.1 GENERAL 

1 

I 
I 

The recommended system presented in this section is based on 

limited actual data, and thus the weight of the evidence cannot be 

totally compelling. The evidence is offered as being at least equal 

to any existing evidence on which to guide decisions and the material 

presented merits thoughtful consideration. The conclusions and recom­

mendation~ presented in the following paragraphs are based upon fhe 

study results presented in Sections 3 through 5. 

6.2 SPECTRAL STUDY CONCLUSIONS 

The spectral study addressed the selection of the optjmum number, 

location and width of spectral bands for each of five application dis­

ciplines.This selection was based primarily upon a theoretical 

analysis of applicable literature and upon results of automatic data 

processing of simulated satellite multispectral scanner data collected 

over selected discipline test sites. Published theoretical and labora­

tory band locations and widths were compiled for the Agriculture/Range/ 

Forestry, Geology/Mineral Resources, Hydrology/Water Resources, Urban 

Land Use, and Marine/Oceanographic user disciplines. Analysis of this 

published data and the empirical multispectral scanner data results 

indicated a wide variation in spectral bands required for different 

applications. The spectral band requirements for each of the disci­

plines addressed is presented in Table 3-32. 

To demonstrate the effect of the number of bands upon classifi­

cation accuracy, optimum bands from simulated satellite MSS data for 

the Agriculture, Geology, and Land Use test sites were selected by 

established processing algorithms. Classification was then conducted 

using the best 12,7, and 4 spectral bands from these prioritized lists 
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of bands for Agriculture and Land Use, and the best 15, 7, and 5 bands 

for Geology. The effect of this variation in the number of spectral 

bands upon classification accuracy is shown in Figure 6-1.. For the 

Agriculture and Urban Land Use disciplines, the results show that the 

classification accuracy remains at approximately the same when 4, 7, or 

12 channels.are used for classification. This does not necessar11y 

indicate, however, that a four channel system will produce the indi­

cated classification accuracies for beth disciplines, since the four 

bands used to achieve the Agriculture results differed from those used 

for Urban Land Use classification. The dependence of classification 

accuracy upon the nUmber of spectral b~nds for the Geology discipline 

follows from the relatively large (twenty-one) numb~~ of scene materials 

which were classified. The classification of numerQU~ materials is, 

however, a representative task of Geology discipline users interested 

in arid regions such as the White Sands, New Mexico Test Site used in 

this study. For such g~ologic applications, the study results 

indicate that, unlike the Agriculture and Urban Land Use disciplines, 

a marked increase in classification accuracy vill be realized as the 

number of spectral bands is increased from five to ·ifteen bands. 

Study results indicate that the number of discrete spectral bands 

required to satisfy the needs of users in all disciplines is prohibi­

tively large. If the requirement is limited to scene classification, 

as was the case for the empirical pOSition of the study, then classifi­

cation results of the Agricultural and Urban Land Use discipline 

support a need for no more than four spectral bands for e.ach 

discipline. 

The seven bands presented in Section 6.5 represent the compromise 

bands to satisfy the widest range of user needs. The bands were chosen 

from bands that all disciplines desired, while emphasis was given to 

Agriculture and Urban Land Use. While spectral study results revealed 

that perhaps four bands were sufficient- for automatic data processing 
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classification for anyone discipline. the four bands required were 

not the same-for each discipline; hence a seven band system seems 

justified. 

6.3 RADIOMETRIC STUDY CONCLUSIONS 

This section of the study addressed various user discipline needs 

for calibration. stability. and signal sensitivity in multispectral 

scanner designs. These sources of error in the recorded signal levels 

of a scanner can cause such sizable problems to occur in the automatic 

classification of features with:l.n a scene that little information is 

obtained. The effects of these sources of signal inaccuracy upon 

classification accuracy must be t:aken into 'account in sensor design 

in order to produce acceptable information for the 'users. It is the 

classification accuracy r~quired by these vari~us users which defines 

the acceptable error or instability in sensor parameters. 

Variations inrecotding precision, gain. and offset of scanner 

data were examined in an empirical manner to determine the signal 

accuracy required of an assumed optimum seven-spectral band orbital 

scanner for the Agriculture and Land Use disciplines. In addition, 

theoretical calculations were carried out. for water quality and wa~er 

depth mapping applications to estimate the noise equivalent reflectance 

difference required in various spectral bands to achieve the information 

extraction performance required. 

Empirical results of the radiometric study are shown in Figures 

6-2 through 6-4. Figu.re 6-2 presents the results of varying the 

effective NEl1p(NEl1T) for Agriculture and Urban Land Use. As indicated 

in the figure no appreciable reduction is seen in the accuracy of 

Agricultural classification until the number of data bits is ~educed 

hom 9 to 5. Level II Land Use clast:::ification, on the other hand, is 

affected appreciably when data significance is reduced to only 7 bits. 

As shown in Figures 6-3 and 6-4, studies of the effect of gain and 
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offset variations reveaIed that gain variations of 1.4 percent and 

offset variations of 0.38 percent of full scale a~~rade seven channel 

Agriculture classification accuracy from about 90 to 85 percent. Gain 

variatio,ns of 8 perc'ent and offset variations of I percent of full 

scale reduced Level II Land Use classification accuracies from 64 to 

59 p,ercent. 

These results suggest a sensor system with an NEOp(AT} of 0.5 

percent (0.5°K) which is stable to within about 1.4 percent'of full 

scale in gain and 0.38 percent-of full'scale in offset, if Agricultural 

and Urban Land Use classification accuracies are to be cOmpromise9 

by no more than 5 percent. 

-The empirical study of radiometric precision requirements indicates 

that Agriculture and Anderson ~evel II Land Use classification have 

less stringent radiometric requirements than Water and Marine Resources. 

Analysis of radiance~levels to be encountered in the recommended bands 

indic~te the need for 8 bit data resolution to achieve the desired 

NEAL over the range of radiance (L) encountered. Such data-resolution 

is deemed practical in view of EOS baseline specifications. Because 

of the large lC;;,ng~ in expected radiances encountered in some bands, a 

highly accurate? calibrated AGC system will probably be required. 

6.4 SPATIAL STUDY CONCLU310NS 

The spatial study addresf;ed two distinct problem areas; 1) the 

syste:n spatial resolution, and 2) the utility of combining spatial andc 

spectral features for classification., The system spatial resolution 

investigation consisted of both a theoretical and an empirical study 

with the prime source of data for the empirical study being gathered 

by ERIM's M-7 multispectral scann~r. Two separate data sets,one 

gathered over a Michigan Agricultural area and the other gathered over 

a Baltimore Urban area, were used in the spatial resolution study. 
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The Baltimore datas~t was also used Jor examining the utility 'of 

combining spatial and spectral features for classification. 

, As might be expected, the theoretical investigat10n of spatial 

resolution effects ,showed that more accurate agriculture field acreage 

"estimates could be obtained as t:he resolution element decreased in 

size. O~ course, the same improvement resulted when the resolution 

element size was kept fixed with incraasiug the field size, thus 

pointing out ~hat the important ~actoris the resolution element size 

relative to the size (and shape) of the field. The study 'did show 

that, with 'certain assump'tions, the errors in field acreage estimates 

could be significant even for ERTS-size resolution elements (80 m) 

and common field sizes (20-40 acres). 

For the empirical study of spatial resolution effects, the effec­

tive spatial resolution of the aircraft multispectral scanner data was 

degraded to simulate the resolution of various satellite MSS systems. 

As indicated in Figure 6-5, the expected result that Urban Land Use 

classification and agricultural field acreage accuracy would increase 

with smaller resolution element size was not totally supported by 

the empirical results. Although the field acreage estimation accuracy 

did have a general decrease as resoluti.,n element size increased, the 

t,rend for larger field sizes was much less marked than was expected. 

The apparent reason for this trend for larger fields is that the 

boundary elements (those resolution elements overlapping field 

boundari~s), instead of being primarily unclassified were randomly 
, . ' 

classified'as the available classes. As a result of compensating 

~.'=.~rrors, r:hen, the field acreage accuracy was not highly correlated 

:.' with resolution size. Urban Land Use classification results, on 

the other hand, actually improved somewhat with increasing resolution 

element size. 
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Results of the Baltimore Land Use data processing, where 

s'patial features were used in addition to spectral features, revealed 

that the most useful spatial information was at a frequency attainable 

with a 30 m resolution element size, but that the best spatial feature 

was seventh in order of utility, being preceded by six spectral 

. features. The improvement in classification by adding the best 

spatial feature in place of the seventh best spectral feature was 

4 percent for fifteen State-of-Maryland-defined Level III classes. 

The results of this spatial study do not unconditionally support 

the EOS baseline recommendatio~of a 30 m resolution,element system. 

In fairness, it should be pointed out that only machine implemented 
; 

spectral pattern recognition, augmented with some spatial data, 'were 

studied. The conclusions reached are not neces~arily pertinent to 

photointerpretation data reduction approaches •. 

The empirical spatial study results presented herein did not 

unilaterally support a case for a instantaneous field of view finer 

than 30 meters, especially when achieving this spatial resolution 

with the bands we chose would result in high technological risk. 

For this reason, resolution element size of 30 to 60 meters is 

tentatively suggested, pending a more thorough study of resolution 

between .30 and 60 meters. 

6.5 RECOMMENDED SYSTEM 

Based upon the above conclusions, the·following spectral, 

radiometric and spatial specificatiQns are recommended for a seven 

. band EOS Thematic Mapper optimized to collect data for the Agriculture, 

Land Use, and 'Water Resources disciplines: ' 

Sllectral Bands· 

0 0.45-0.52 lJm 
0 0.52-0.60 lJm 
0 0.63-0.69 ~m 
0 0.80-0.95 lJm 
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Spectral Bands (continued) 

° 1. 55-1. 75 lJm 

° 10.4-12.5 lJm 

o 0.42-0.48llm or-8.3-9.3 pm 

Radiometric Requirements 

° NE6p for reflective bands - 0.5% * 

° NE6T for thermal bands - 0.5°K 

1 

L 

° Maximum allowable gain variation 1.4% of full scale 

° Maximum allowable offset variation - 0.38% of full scale 

° Automatic Gain Control to provide the recommended NE6p 

and NE6T for reflectances ranging from 2.0% to 60.Q% 

and temperatures raning from 2600 K to 3400 K 

Spatial Resolution 

° Recommended IFOV - 30m to 60 m 

-*The reco1llll1ended NF.6p is based upon the data presented in '!'ahles 

I 
I .. -

4-8 through 4-11. Empirical results do not support this recommenda­

tion for the reflective IR portion, due to the uncertainties in "the 

IR. data bands. 
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TABU A-1 PERFORMANCE RESULTS 
MICHIGAN AGR~CULTURE TEST SITE 

30 Meter Data 
,~ 

7 Optimum Channels 
PER CENT MISCLASSIFICATION 9-Bit Data ~ 

, 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLASSIFICATION 

COIN (812) 
94.1 

SOYBEANS (284) 73.9 

". 

RIPE OATS (20) 100.0 

VOOBS (860) 96.7 

OTHER (1168) 84.8 
'. 

Averale • 89.9 
Vt. Averale • 89.6 

~. SOy- lUPE 
-
COR..~ BEANS OATS WOODS OTHER 

0.7 5.2 

5.3 20.8 

1.9 1.4 

9.5 0.4 1.0 4.2 
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30 Meter 

TABLE A-2 - PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

I 
I 

I 
I 

"1 
! 
; 

7 Optimum C~e18 PER CENT MISCLASSIFICATION 8-Bit Significance \ 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLASSIFICATION 

COIN (812) 
94.1 

SOYBEANS (284) 70.4 

-. 
RIPE OATS (20) 100.0· 

WOODS (860) - 96.4 

OTHER (1168) 85.7 

Averale • 89.3 

Wt. Averale. 89.5 

SOY- RIPE 
COlt.~ BEANS OATS WOODS OTHER 

0.7 5.2 

7.8 21.8 

1.9 1.7 

9.8 0.4 0.9 3.1 
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I 
. 30 Meter Data 

TABLE A-3 PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

. 7 Optimum Channels PER CENT MISCLASSIFICATION 
7-Bit Data Significance 

SCENE CLASS 
(No. of Pix'!ls) 

CORN (812) 

SOYBEANS (284) 

". 

RIPE OATS (20) 

VOODS (860) 

OTHER (l168) 

Averase • 

Wt. Avera,e -

. . 
. . 

PER CENT CORRECT 
CLASSIFlCATIO~ 

84.7 

88.3 

96.8 

52.1 

95.0 

9"5.0 

84.7 

CO&'l 

19.7 

2.2 

11.1 
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BEA'S OATS WOODS OTHER. 

0.4 2~8 

.' 

28.2 

5.0 

.. 

2.8 

0.3 1.0 2.8 
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tABLE A-4 PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

.1. 

, 1 Optimum Channels , PER CENT HISCLASSIFICATION 
6-Bit Data Significance 

SCENE CLASS PER CD."T CORRECT 
(No. of Pixels) CLASSIFlCATIO~ . 

CORN (812) 98.0 

SOYBEANS (284) 58.5 

<. 

RIPE OATS (20) . 95.0 

WOODS (860) 9E.1 

OTHER (1168) 84.2 

Average- 84.7 

Wt. Average - 88.3 

-. 
'" 

-.;- 'SOY- RIPE 
COR.~ BEAL~S OATS WOODS OTHER 

2.0 

15.5 26.0 

5.0 

1.6 2.3 

9.9 0.2 
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30 Meter Data 

TABLE A-5 PERFOBMANCE RESULTS 
MICHIGAN AGRICULTUBE TEST SITE 

-7 Optimum Channels 
5-Bit Data Significance PER CENT HISCLASSIFlCATION 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLASSIFICATION 

COIN (812) 97.9 

SOYBEANS (284) 52.1 

... 
RIPE OATS (20) 70.0 

WOODS (860) 89.2 

OTHER (1168) 77.1 
,--/ 

Average - 77.3 

Wt. Average - 83.9 

SOy- RIPE 
COR.~ BEA...'iS OAtS WOODS OTHER 

. 
0~5 1.6 

" 

18.7 0.4 28.8 

30.0 

4.4 6.4 

14.2 1.3 1.9 5.3 

------
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TABLE A-6 PERFORMANCE RESULTS 
HlalIGAN AGRICULTURE TEST SITE 

30 ~Ieter. Data 
7 Optimum Channels PER CENT HlSCLASSIFlCATION +1/3 Gain Variation ~ 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLASSIFICATION 

CORN (812) 16.8 

SOYBEANS (284) 2.8 
, 

-. 
RIPE OA'rS (20) 100.0 

VOODS (860) 99.4 

OTHER (1168) 63.7 

Average - 56.5 

Vt. Average - 52.0 

SOY- RIPE 
COR.~ BEANS . OATS WOODS OTHER 

.4 61.2 21.6 

1.1 7.0 89.1 

, 

.2 , .4 

.5 7.8 28.2 
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TABLE A-7 PERFORMANCE RESUI.:rS 
IIlCillGAN AGRICULTURE TEST SITE 

30 Meter Data 
7 Optimum Chauuels 

PElt CENT IIlSCLASSIFICATION -1/3 Gain Variation 

~ 

'\ 

. 
SCENE CLASS . PER CL'IT CORRECT 

(Ho. of Pixels) CLASSIFlCATlO~ 

CORN (812) 79.0 

SOYBEANS (28") 29.2 

, .. 
RIPE OATS (20) 0 

.1I)()DS (860) 44.8 

OTHER (1168) 62.6 

Average - 43.1 
Wt. Average- 58.5 

SOY- RIPE 
CCR.'l BE&':S OATS WOODS OTHER 

9.2 11.8 

70.8 

'5.0 95.0 

13.7 26.2 15.3 

5~3 31.9 .2 . 
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TABLE A-8 PERFOBMANCE RESULTS 
HICIIIGAN AGRICULTURE TEST SITE 

7 Optimum Channels PER CENT MIS CLASSIFICATION +2/3 Gain Variation 

.. 
'" 

SCENE CLASS 
(No. of Pixels) 

CORN (812) 

SOYBEANS (284) 

--
IUPE OATS (20) 

WOODS (860) 

OTHER. (1168) 

:!..:. 

Ave,rage • 

)~f ··'lIt. Average • 

, .:c.. 

. 
PER CENT -CORRECT 
CLASSIFlCATIO~ 

41.9 

46.8-

0.1 

0 

50.0 

. 99.6 

: .. ~ .-~). 

48.9 

I 

SOY- RIPE 
COR.~ BEANS OATS WOODS OTHER 

.4 95~7 3.8 

7.8 26.1 66.1 

- 50.0 

- . 

• 4 

... 
12.7 38.4 

' , '- .... ~ .' 
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. TABLE A-9 PEUORMANCE RESULTS 
HlQllGAN AGRICULTURE l~ST S'ITE 

30 Meter Data 
.-

7 Optimum Channels 
PER CENT MISCLASSIFlCAXION -2/3 Gain Variation ~ 

. SCENE CLASS PER CENT CORRECT SOY- RIPE 
(Ro~ of Pixels) CLASSlFICATIO~ COR.~ BEANS OATS WOODS OTHER 

'. 

COIN (812) 0 100.0· 

SOYBBANS (284) ." 
0 ·100.0 

". 

RIPE OATS (20) 0 10.0 90.0 

WOODS (860) 1.0 2.5 1.6 94.9 

OTHER (1168) 98.1 1.9 

.. '" .' . , -. /f}:z'f:" 
_~vel"a&e • 19.8 - ':,l?l '. 

• 37.9 . ..' t. Vt~ Average 
. ,:-

',~ " :~, .-" 

.< 
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30 Meter Data 

TABLE A-10 PERFOIUl\NCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

I 
1 .. 

• , 7 Optimum Channels PEIl CENT HISCLASSIFICATION 
! +1/3 Offset Variation 

SCENE CLASS PFoR CENT CORRECT SOY- RIPE 
(No. of Pixels) CLASSIFICATION COR." BE&~S OATS WOODS 0THEIl 

- , .. 

.COIN (812) 5.8 .3 80.4 13.5 

SOYBEANS (284) 1.8 
."~ 

9.5 9.5 79.2 
-. , 

.-
~. -. ~·r 

.:~ 

RIPE OATS (20) -. '. 100.0 

',- -', 
-. --

WODS (860) , 99.5 .1 .4 

~.' ·r 
: ./ 

, .- <, 
OTHER (1168) 58.8' .8 6.9 33.4 

;~. 
'''-~. I~ 

->~. ',,"',/": ' 
.. /.~,~ " 

,-... 
~r 

: - .- .. , 

Averale - .53.2 

Wt. Averale • 

. '.' 
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TABLE A-II PERFORMANCE RESULTS 
HlCllIGANAGRICULTURE TES'! SITE 

30 Heter Data 
7 Optimum Channels 

PER CENT HISCLASSIFlCATION -1/3 Offset Variation· 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLASSIFICATION 

COIN , (812) 76.4 

SOYBEANS (284) 38.7 

". 

IUPE OATS (20' 10.0 

VOODS (860) 45.8 

OTHER (1168) 59.8 

Averaae. 46.1 

Vt. Averaae. 57.9 

SOY- RIPE 
CO&'i BE&~S OATS WOODS OTHER 

6.9 16.7 

" , 

61.3 -

90.0 

26.8 17.4 10.0 

38.9 1.3 
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TABLEA-12 PEltFOlUfANCE RESULTS 
. MICHIGAN AGlUCULTURE TEST SITE 

30 Meter Data 
7 Optimum Channels 

'. PElt CENT HISCLASSIFICATION +2/3 Offset Variation~ 

. SCENE CLASS PER CENT CORRECT 
(No. of Pixel s) CLASSIFICATION 

CORN (812) 0 

SOYBEANS (284) 0 

.. 
RIPE OATS (20) 0 

WOODS (860) 58.0 

OTHER- (1168) 67.4 

Averale - 25.1 

Vt. Averale - 41.2 

SOY- RIPE 
COR.~ BE&~S OATS WOODS OTHER 

.3 99.7 

1.8 50.7 47.5 

100.0 

42.0 

.1 4.4 28.1 
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TABLE A-13 PERFORMANCE RESULTS 
MICHIGAN AGRICULTURE TEST SITE 

30 Meter Data 
7 Optimum Channels 

PEk CENT MISCLASSIFlCATION -2/3 Gain Variation . 

SCENE CLASS PER CENT CORRECT 
(No. of Pixels) CLASSIFlCATIO~ 

CORN (812) 0 

SOYBEANS (284) 0 

.. 
kIPE OATS (20) . 0 

WOODS (860) 5.0 

OTHER (1168) gS.S 

Averase • 20.1 
Wt. Averase - 36.8 

SOy- RIPE 
CORo~ BEA...~S OATS WOODS OTHER 

1.4 98.6 

100.0 

5.0 95.0 

0.4 2.4 92.2 

0.3 4.2 

-
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TABLE A-14. PERFORMANCE MATR.ICES - BALTIMORE LAND USE 
AVERAGE ACCURACY (WEIGHTED) FOR SENSITIVITY VARIATIONS 

(30 Meter Data, 7 Optimum Channels) 

7 Bits % CORRECT 
% _ERRORS 

Commission Omission 

LEVEL I 83.6 lu.8 5.6 

LEVELIl 63.9 30.5- 5.6-
---

LEVEL III 46.1 48.3 5.6 

8 Bits % CORRECT 
% ERRORS 

Commission Omission 

LEVEL I 83.2 10.0 7.8 

LEVEL II 64.7 27.5 7.8 

LEVEL III 47.4 44.8 7.8 

% CORRECT % ERRORS 
9 Bits Commission Omission 

LEVEL I 85.2 8.1 6.7 

LEVEL II 67.9 25.4 6.7 

LEVEL III 54.9 38.4 6.7 

249 

., , 

• • I. • .. 



1 , 

I 
i 
I 

,J 
TABLE A-1S PEUOBMANCE KATlUCES 

BALTIMORE LAND USE 

LEVEL 1 LAND USE. 1 Channels, 9 Bits, 30 Meters 

AGGREGATED COMPUTER SPECTRAL CLASSES 

.~ , 

___ .J ..... _~~~/.o.~~~ ;;.~ 

GROUND TRUTH URBAN AG FOREST t-lATER' U~CLAS. 

URBAN (1) 83.9 6.3 1.2 2.0 

AGRICULTURE (2) 14.3 71.4 1.2 7.2 

'FOREST (4) 5.9 94.1 

WATER (5) 12.5 87.5 

LEVEL II L&~D USE. 7 Channels, 9 Bits, 30 Meters 

AGGREGATED COMPUTER SPECTRAL CLASSES 

RES 
COM/ AG PAST FOR WATER UNCLAS. 

GROUND TRUTH IXD 

RESIDENTIAL (11) 66.3 21.7 6.4 0.6 1.9 3.2 

COMMERCIAL/ 25.5 52.0 
INDUSTRIAL (12/13) 

4.1 1.0 11.4 

CROPLAND (21) 6.7 6.7 60.0 6.7 6.7 13.3 

PASTURE (22)· 11.1 3.1 14.8 59.3 7.3 3.7 

FOREST 5.9 94.1 
Deciduous (41) 

WATER (50) 1("1) 

*AKDERSON L&~D USE CLASSES ARE SHOWN IN PARENTHESES 
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TABLE A-16. PERFOJUWlCE MATRIX. BALTltl>RE. MARYLAND 

LEVEL III COMPUTER SPECTRAL CLASSIFICATION OF ~~D USE 7 Channels. 9 Bits. 30 Meters 

rAM APTH APt2 RLRISOILIASPH MDIl I DR SOILlcllOP PAStURE FOREST 
Single 
FamUy Multiple C~rc1al Industrial Cropland Pasture Deciduoull Water 

CROU:l1l r~1lT1i Rell. (111) FaJa11y (112) (121/12~) (130) (210) (220) Poreat (410) (500) 

. 
Single r".Uy 
Re.idr~tial (111) 62.7 16.0 2.7 9.3 1.3 4.0 

::ultl-f: ... Uy (112) ·13.4 41.5 13.4 25.6 3.6 and In3tlt.utlonal 
(160) .. 

Cor:.erclal (121/122' 11.8 IS.7 29.4 1l.4 2.0 2.0 

It:dustrial (13) 6.4 17.0 19.2 23.4 6.4 

Cropland (210) 6.7 6.7 60.0 6.7 6.7 

Puture (220) 5.9 3.0 11.8 47.1 5.9 

Declduou. Forest 3.0 3.0 94.1 
(410) 

---------- . _._--
VA l c:r (:ioo) 12.5 

s, .. te of NarJlaad L3a4 u.. Cl ..... • hovn in par.alhe •••• 

------------_. __ ._--_._. 

-.';:." 

unClasa~ 
4.0 

2.4 I 
I 
I 

7.9 

27.7 

13.3 

3.0 

-------
87.5 

---.----

~ _____ ..__'L 
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1'ABLEA-17 " PDlOltHANCE 'MATRICES 
~TIMORE LAND USE '~ 

,"-"-

'LEVEL,ILANO USE* 7 Channels, '8 Bits, 30 Meters:.· 

AGGREGATED 'COMPtrrER SPECTR4L CLASSES: 

GROJ1ND TRtrrH AG '-lATER .lnICLAS. 

.. .-_.-
-.'/ 

.<L 
'. 

- - .-~- URBAN (1) 87.9 

~~~-----------------f~~~~~ ........ ~--~~~,~.~~;~~~~ ~ 
"Acn~URE (~) , <, i6~7 "'-7:6c~2::- -7~-2'·"' .. , ,-;.,~.", ," 

~,~." 

Avg.~orr,~~t CJ.ass = 75.2 W Water 
= 8~ .. 1 W/O--Water 

>:l~:'~:c~, 
~'~;i~":~,~,~,' " "?~:'~ -,~>-c~,r:~~_GA~ED ~~;~R::~H~~' CLASSES 

- -,-

PAST WATER UNCUS'. 
. - " " .... 

,-" ~~ 

~,~6,?56'.3 ':.6 'f 2.5' 
, ~ '''' 10, ~~~';;';";"~~""''''''''+-*~'''-''+-~~--f-i-+---1 

~f- .' ··==.~~ti~J~ :_27.~· -~0;.8 .' ~.1'.3'1·· 
: i': __ , .': \:c '~:':-i;~riA~lF{~~):'~_~~::-~ '2Q,~~Qc ,_6Q.,O ' 13:3' 

?~!~'c;~'" ,,~_" -~, -- -,' <-':r ,,~'~~ ~:)~.(2~i~'~ ;':', 14,.7 ,,'0 '1h1'.' '66.7 , >':'~l: ,'''' -0:,,, -- ' "'-

~"lo_ , :; ,-,,~l.OREST:< ,- ,', ':, , 

''.10; . . ..,1loiclll_S(4:)_ ..3.0_ 

'.0::.,,--, 
'. . :-' --" 

, 

, 4.1 

3.2 

" 

74.1 

'. 
6.7 

7.4 ' 

';,- ~::l ',,'-~VATE~'(50)' ,',' - ,,:-:,-~;, ~:~:,~?~.O ", ~ 2.5 ,,42.5 50.0 

\ f':· .'":'-~~~~OI!~~USEcr.AsS~~~~ ,S~g~c!=~~:s _ 6S.1W Water 
-, - ~~ ~ , .. :. ~ .'". ,~ - :,-,::-:;::.- - - . '-.: -':" . 

, ,,', '" '" : .. ·.69.6 lila Wat~~r 
• 'c::''c>:'-,::.c., ~,: "" ',-':.'--",.,; _ ' .. :,: -',':' ',.: -- '=:.' ',-' ':;~' ,':.~ _.", ',': ' 

'-,:- ., 

" ...... ,.. • ,.. -".; ..... ) ... _'. _ c _ ~ . , 

, . . . . ~ , 

... ~ \. '. ..... ~". -'''''." .... .:. ...... - ... .!": - .... I • ..... " : .,'"..-- ''- .. ' '~.' I). ... #t.
T

,. ..{~ 

~ :4 
.;~ 

'
" 

" 
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'l'AaUl .-18. l'ERJOUWlCI HAmi, IALtumu, tcAlYLAlfD, . . ',' 

'um. III c'«lOIIPVrIl IfICTlAL cusllrlCA'rtcill or LAD OSI '7 cbulI.i.; 8 ~t't~; 
I;, 

:'1 . 
J' 

'. 
, .c 

" , 
I c. ~:;/ /', 

,'. 'AM AP'l'11 AP'l'Z RLRISOtLJ!,SPlI MI)l. LDI SOILLCROP l'ASTl/Uc . rourr '/ " 

S1nal. '. ,! .';' / ,/:~;;:{, I 

'. 

c'· 
'" 

GIICiImD ' DUTIl 
, .. U, Multi,l. CoiDerc:1al Inclu.tr1al Cro,l.ncl . Putiire Dtc!cluoue Vetei- ' . /1" , 

.... (111) 1' .. 1, (liZ) (121/12Z) '(130) (Z10) .(220) r0ril.t (410) (500) U..cl".iUe4 

;r' 
... ; .... 

"/:/ .-
... 

,.,', 

/. ./ , " 

511111. ,gU, S4.7 21.3 2.6 1.3 9.3 1.3 S.3 4.0 

"'1dent1nl (111) .·,:.:;·,'Y ",' 
'. 

., " 

Hu1tl-fa.11y (11Z) 14.S U.S 12.0 24.1 3.6 .. ':/, ' 
" Z.4 

and In~tl'uttona1 
,. ,. /, 

", 'i, ) : 

(l60) 
" , 

./. 

- - . 
eo-rc1aJ (H' ;'0:2.1.) " 8.0 20.0 .. 34.0 30.0 2;0 4,.0 • Z.O .. 

• i 
.' " 

' . 
.. /., 

'i· 

--
Indu.u 1";~ ~13) 4.3 23.4 44.7 12.8 6.4 " 2.~ 6 •• 

z" ., 

Cropland (210) 6.7 13.3 60.0 13.3 6.7 

Panure' (2Z0) 7.4 7.4 . 11.1 66.7 7'.4 
.' 

"", 

Dlclduoue rore.t 3.0 3.0 94.1 

(410) 

Vatu (500) .. 5.0 2.5 42.5 50.0' 

- ----
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.TABLE A-19 PEUOIKANCE MATRICES 
BALTIMORE LAND USE 

L£VF.i, 1 LAND USE* 7 Channels, 7 Bits, 30 Meters 
~ ... 

AGGREGATED COMPUTER SPECIRAL CLASSES 

GROl~ TRtrrH . UR.BA.~ AG FOREST WATER ~CLAS.' 

URBAN (1) 86.7 6.7 2.4 4.3' 

AGRICULTURE (2) 19.0 76.2 4.8 

(4) 
- .... - .-

'POREST 5.9 2.9 91.2 
< 

VATER (5) 7.5 2.5 65.0 25.0 

LEVEL II 1.AL'1) USE* 7 Channels, 7 Bits, 30 Meters 

AGGREGATED COMPUTER SPECIRAL CLASSES 

RES 
COM/ AG PAST FOR WATER UNCLAS. 

CROOND TF.-c"H IXI> 

RESIDENTIAL (1]) 61.1 24.2 6.3 .6 3.8 2.5 

COMMERCIAL/ 
. 

INDUSTRIAL (12/13) 28.6 60.2 4.1 2.0 ~.1 

-

CROPIA~D (21) 26.6 46.7 20.0 6.7 

PASTURE (22) 14.8 14.8 66.7 3.7 

FOBEST 5.9 
Deciduous (41) 2.9 91.2 

WATER (50) 
1,5 2.5 65.0 25.0 

*ANDERSON L&~D USE CLASSES ARE SHOWN IN PARENTHESES 
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"1.111,11 1.-211. "I'illll'WHANI:V. Mi.'I'IUX. IIAI.'rl NIIII! , "AWHAHII 

LEV~L III COHrUT!R SPECTRAl. CLAsStFICATtO~ OF LAND US! 7 Ch.nn.1., 7 lit., 30 Hat.r. 

FilM IIrT11 IIrT2 RI.I\ISOll.'/lSrl: 
Imll '"" 

:.on.ICRO!' !'ASTU"r. FnRIlST 

SiIll1. 
'1I.11y Hultipl0 Co_reinl TnduatriAl Cropl~nd P.llture Dodduou. Wator 

CROtll'D TRUTII 10 •• (111) 'all11y (112) (121/122) (130) (210) (220) rorllt (410) ('00) Unel ••• 1Ucc! 

Sinal_ raally n.o 20.0 1.% 5.3 9.3 6.7 5.3 

ac.ldcntlal (111) 

!Iu1U-'OIaUy (112) 19.5 31.7 13.5 
and Inatltut10nal 

26.8 3.6 1.2 1.2 2.4 

(160) 

r~~.,.rclA1 (121/122) 
7.& ,21.6 35.3 27.4 2.0 z.o 3.9 

I -
Industrial (13) 

I 

4.3 23.4 44.7 12.8 6.4 2.1 6.4 I 
I 

Crol,l.nd (210) 
20.0 6.7 46.7 20.0 6.7 

Put'Jre (220) 3.7 11.1 14.8 66.7 3.7 

" 

Decicluoul For •• t 5.9 2.9 91.2 
(410) 

W.tor UC!O) 2.5 5.0 2.5 65.0 25.0 

lut. of .. ~~ IAa4 Vee Clu .... re • .,.. i. ,.r •• t" ..... 

;'(i~'J~ ,;"' • 
• .T1j..,,:~; _. 
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TABLE A-21. - PERFORMANCE MATRICES 

BALTniORE LAND USE - AVERAGE ACCURACY 
(WEIGHTED) FOR GAIN VARIATIONS 

(30 METER DATA. 7 OPTnmK CHANNELS) 

-1/3 Gain % CORRECT 
% ERRORS 

Commission 

LEVEL I 59.7 15.4 

LEVEL II 41.6 33.5 

-

LEVEL 111 25.1 50.0 

+1/3 Gain % CORRECT X ERRORS 
Commission 

LEVEL 1 73.2 17.3 

LEVEL 11 57.3 33.2 

LEVEL 111 42.7 47.8 

--

256 

Omission 

24.9 

24.9 

24.9 

Omission 

9-.5 

9.5 

9.5 
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TABLE A-Z2. ~PERFORMANCE MATRICES 

-BAJ.TIMORE LAND USE- AVERAGE ACCURACY .­
,; (WEIGHTED) -FOR. GAIN VARIATIONS 
(30-1fETERDATA, 7 OPTIMUM CHANNELS)' 

~ ~-" ,--~ 

/' 

.. 
" % ERRORS 

-2/3 Gain % CORRECT Commission 

LEVEL I 6.5 5.7 

LEVEL II· 5.4 6.7 

" 

LEVEL III 1.4 10.8 

+2/3 Gain % CORRECT % ERRORS 
Commission 

LEVEL I 61.7 25.3 

LEVEL II 44.5 42.6 

LEVEL III 31.0 56.1 

257 
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Omission 

87.9 

87.9 

87.9 

Omission 

12.9 
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12.9 
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TABLE A-23 PEBFOllHANCE MATRICES 
BALTIMORE lAND USE " 

LEVEL 1 LAND USE. 7 Channels,~+1/3 Gain, 30 Meter Data 

,., 

AGGREGATED COMPUfER SPECTRAL CLASSES 

GROUND TRUfH 
. URBAN AG FOREST WATER UNCLAS. 

URBAN (1) 84.3 5.1 7.1 3.5 

AGRICULTURE (2) 
-

14.6 26.8 56.1 2.4 

FOREST (4) 2.9 97.1 

-

WATER (5) 5.0 2.5 30.0 62.5 ' 

LEVEL II LAND USE· 7 Channels, +1/3 Gain, 30 Meter Data 

AGGREGATED COMPUTER SPECTRAL C1.ASSES 

- ,/:.:: 

.~-.~/.,-

,I, 

GROUND TRUTH RES COM/ A';; 
nID 

PAST. FOR WATER UNCLAS. 

RESIDENTIAL (11) 72.0 10.2 4.,5 0.6 10.2 2.6 

COMMERCIAL/ 
...... 

INDUSTRIAL (12/13) 41.8 45.9 4.1 1.0 2.0 5.1 
-,. .,-

CROPLAND (21) 21.4 7.1 11.4 , 
.' . 

.. 

PASTURE (22) 11.1 7.4 29.6 48.2 3.7 

. FORES1' . 
Deciduous (41) 2.9 

.- 97.1 
.. 

WATER (50) 2.5 2.5 2.S 30.-0 62.S 

.ANDERSON LAND USE CLASSES ARE SHOWNIN PAlEHTHESES 
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TABLE A-24. PERPORMANCE MATRIX. »ALTlHOI~. MARYLAND 

,,;:' 

.... 

",' '." .' ',,' 

:., 
I.:'i 

,i 

,,) '~iJ' ,', 
" , f.o,~ L'VEL 111 CC»IPUTER SPECTRAL CLASSIP1CATlON OP LAND USE 7 Channel.,. + 1/l Cain. 30 Heta.ra 

;.;. 

PAM APT11 APT2 IU.lISOILIASPII HOIlJDIl SoIL..lCROP PASTIIRE POREST I ," 

SIItAI. , .. n, tlu1tlp1e C:-rcia1 Indu.trlal Cropland p •• tur. Deciduou. lIater 
GaWM!) tllUTtl .. e. (111) , .. 11y (112) (121/122) (130) (210) mOl Forln (UO) (~OO) 

Sinal. F;o_I1, 
"aloenllal (111) 40.0 30.7 1.3 8.0 1.3 16.0 " 

MUlti-llldl, (112) 
an' lnalltulloaal 9 •• 63.4 •• 5 9.8 1.2 4.9 

(160) 
" 

eo..ercl.1 (121/122) 7.8 49.0 23.5 13.7 2.0 2.0 

lnduauleJ (13) 2.1 23.4 )4.1 21.3 6.4 2.1 2.1 
,', , 

Cropl.,.. (210) 14.3 7.1 7.1 71.4 
, 

'.alur. (220) 3.7 7.4 7.4 ,29.6 48.2 

Dectduoue ...... t 3.0 97.0 
(410) 

!latft (500) 2.5 2.5 2.5 30.0 

~~ . - ~1 .. 1RA t ... .ut ...... ~l ...... ar. I.ft .ara • ,r, ...... 

'/ 
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2,07 "':1 

, 
, t-2,.4 ) 
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! 

2.0 " .. 

8.S 
" 

-" 
, 

') 

! 

3.7 
, 

), 

62.5 

) 
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TAlLE A-25 PDFOlUfANCE MATRICES 

BALTIMORE LAND USE 

LEVEL 1 LAND USE. 7 Channels, -1/3 Gain, 30 Meter Data 

AGGREGATED COMPUTER SPECTRAL CLASSES 

GROUND TRUTH URB&~ AG FOREST '-lATER 1J~CLAS. 

URBAN (1) 73.3 8.2 

AGBICULTURE (2) 14.3 59.5 

" 'IOREST (4) , 30.3 48.5 .18.2 

WATER (5) 10.0 7.5 

LEVEL 11 LAND USE· 7 Channels, - 1/3 Gain, 30 Meter Data 

AGGREGATED COMPUTER SPECTRAL CLASSES . 
RES Cm-1/ ' AG PAST FOR GROUND TRUTH I~m 

RESIDENTIAL (11) 47.8 24.8 6.4 3.8 

COMMERCIAL/ 
INDUSTRIAL (12/13) 23.5 51.0 4.1 1.0 

CROPLAND (21) 13.3 13.3 26.7 

PASTURE (22) 11.1 3.7 3.7 66.7 

FOREST 
Deciduous (41) 30.3 30.3 18.2 18..2 

WATER (50) 5.0 5.0 

*AHDERSON L&~D USE CLASSES ARE SHOWN IN PARENTHESES 
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WATER 

7.5 

18.4 

26.2. 

3.0 

82.5 

U~CLAS. 

17.2 ' 

20.4 

46.7 

14.8 

3.0 

82.5 

. . ... ... . ..., . 
• 

, . ,. " .., 
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GROUNl) TRUTH 

Slnl1_ F .. aU, 
Reaid_ntl.l (111) 

~ltl-f .. ll, (112) 
... loatilutlonal 

(160) 

eo.aercl.l (121'122) 

1Hueui.1 (13) 

Cropl .... (210) 

., 
, .. ture (220) 

Decl ....... For .. , 
(410) 

vaur (00) 

lut. o. IIHJlaad -
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TABLE 1.-26. PERFORl1ANCE MATRIX, SALUI«lRE, MARYLAND 

LEV~L ttt COMPUTER SPECTRAL CLASSIFICATION OF LAND USE 7 ChRnnels, -1/3 Gain, 30 Hatera " .!.'/,. ,-•• ~.--

FAM APTlJ Al'T2 IU.ll I SOIL iASPH tlDll DR SOILlcROP PASTUllE FOREST 

S1011. 
, .. U, MulUpl. eo-l'Ci.l Indund.: Crop Iud P.atura Dadduo"a W.ter 

Rae. (111) F .. U, (112) (121/121) . (130), (210) (110) Foreat (410) (500) UocleleiU.d 

28.0 33.3 1.3 2.7 12.0 4.0 n.7 

4.9 30.5 .15.9 28.1 1.2 3.7 lS.9 

5.9 19.6 27.5 21.6 2.0 2.0 . .21.6 

4.3 17.0 44.7 8.5 6.4 19.2 

6.7 6.7 13.3 26.7 46.7 

3.1 7.4 3.7 3.7 66.7 14.8 

JO.3 30.3 18.2 18.2 '3.0 

S.O . 2.5 Z.~ 
7.5 82.5 

I 
- .. -- . . L . p - _ ... ----

.;.,;,:.;;~,::~,.~,. -
;~~r.;\. ", 

~7.:"., .• < __ 
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TABLE A-27 •. PERFOllHANCE MATRICES 

BALTIMORE LAND USE 

LEVEL 1 ,LAND USE* 7 Channels, +2/3 Gain, 3~ Meter Data 

AGGREGATED COMPUTER SPECtRAL CLASSES 
r-

GROUND TRUTH URBAN AG FOREST \-lATER UNCLAS. 

URBAN (1) 72.9 3.1 16.9 7.1 

AG1lICUI.TURE (2) 14.3 2.4 83.3 

FOREST (4) 100.0 

WATER. (5) 2.5 2.5 20.0 75.0 

LEVEL 11 ~~D USE* 7 Optimum Channels, +2/3 Gain, 30 Meter Data 

A! GATED COMPUTEr. SPECTRAL CLASSE.S. 

RES 
COM/ AG PAST FOR 

GROUND TRUTH INn 

RESIDENTIAL (11) 51.0 17.2 2.6 22.9 

COMMERCIAL I 
INDUSTRIAL (12/13) 37.8 42.9 - 4.1 7.1 

, 

CROPLAND (21) 6. 7 ~, 93.3 

-.---0-

PASTURE (22) 18.5 3.7 77.8 

FOREST 100.0 
Deciduous (41) 

WATER (50) 2.5 

*ANDEllSON LAND USE CLASSES ARE SHOWN IN PARENTHESES 
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WATtR 

20.0 

UNCLAS. 

6.4 

8.2 

75.0 
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TAIILE A-28. PEIU'ORHANCE MATRIX, BALTIHOR!, HAAYLAND 

UVI::L III COMPUTER S"ECTRAL CLASSIFICATION OF LAND USE 7 Channels, + 2/3 Csin, 30 Heten 

FAIt APTll APT2 RLlISOILIASl'Il MDR I DR SOILlcllOP PASTURE FOREST 
Sioale 
r.u, Multl,le c-rc1el lncluatrlel Cto,la1ld • eeture Dedduou • Wa,8'&' 

.:QOUIIO TIWTII llee. (111) '.U, (112) (121/122) (130) (210) (220) 'oreat (410) (500) UllClaa.tUH 

Slnl1e '.aU, 
17.3 28.0 2.7 2.7 4.0 36.0 9.3 aealde1ltl.l (Ill) 

1fu1U-f ... l, (112) 
8.~ 47.6 9.8 18.3 1.2 11.0 ~ 3.7 

aDd Inattluttoaal 
(160) 

eo..arcl.l (121/122) 3.9 41.2 19.6 17.7 2.0 9.8 5.9 

~"uetr1al (1') •• 3 25.5 27.6 21.3 6.10 4.3 10.6 

Cropland (210) 6 7 93.3 ". 

raature (220) 7.' 11.1 3.7 77.8 

DM:lduoue '_t 100.0 
(410) 

Veter UCIO) 2.5 2.5 20 75.0 

Iuu 01 Mary1 ... I .... U .. Clea ... are 10 paran ~h ... a. 

> 

I 

I 
I 

I 
~--­
I 

I 
I 
~C 
1 



TABLE A-29. PERFORMANCE MATRICES 

BALTIMORE LAND USE 

LEVEL I LAND USE* 7 Channels, -2/3 Gain, 30 Meter Data 

AGGREGATED COMPUTER SPECTRAL CLASSES 

GROUND TRUTH URBAN AG FOREST WATER UNCLAS. 

URBAN (1) 9.4 2.4 88.2 

AGRICULTURE (2) 100.0 

FOREST (4) 11.8 26.5 61.8 

WATER (5) 5.0 95.0 

LEVEL II L&~D USE* 7 Channels, -2/3 Gain, 30 Met~r Data 

AGGREGATED COMPUTER SPECTRAL CLASSES 

RES COM/ AG PAST FOR 
GROUND TRUTH INn 

RESIDENTIAL (11) 7.0 1.3 1.9 

COMMERCIAL/ 
INDUSTRIAL (12/13) 2.0 9.2 3.1 

CROPLAND (21) 

PASTURE (22) 

POREST 
Deciduous (41) 11.8 26.5 

WATER. ( 50) 5,0 

*ANDERSON LAND USE CLASSF.S ARE SHOWN IN PARENTHESES 
264 

WATER 

" 
, 

. ~ 

UNCLAS. 

89.8 

85.7 

100.0 

100.0 

61.8 

95.0 

, 
,-.. ,.-~' -.-, 

- . \. - - . 
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f..,j 
0-
Ut 

GIlOUND TRUTH -_ .. 
51nll. , ... 11, 
H •• idential (Ill) 

I 

"ultl-fa •• ly (112) 
and In.tltutlonal 

(160) 

eo.eerciaa (121/122) 

Indu.trial (ll) 

Cropl .... (2.10) 

'anur. (ZZO) 

Declduoua ror •• t 
(410) 

Vata~ (~) 

'/ 
;/ 
I 

'"' ,., 
....... ". .. '. 
~ ... 

TABLE A-30. PEI\FORHANCE MATRIX. BALTIHORE.MARYLAND 

LEVEL III COMPUTrR SPECTP\L CLASSIFICATION OF LAND USB 7 Channels, -2/3 Cain, 30 Metara 

FAM APTII APT2 RLRISOILIASPH MDR I DR SOILICRO'=t:ASTURB I FOREST 
Sin&1_ 

Cropl.... ::: -J Deciduous Faally Multipl. eo-rcial Industrial 
lea. (111) F .. Uy (112) (121/122) (130) (2!·':'.,., (1.211!l 'oreat (410) . --. ~ , ~ 

-',':"" ' .. ~"'/.;..... -
~' , 

10.7 4.0 

3.7 2.4 

2.0 ~.O 

2.1 14.9 4.3 4.3 

8.8 3.0 26.5 

5.0 

Stat. of Maryland LlPd U.. Claa... ar. .hown in p.r.nth .... 

('I 

j-

! 

I 
~-.- _ .. 

Va~.r 

UOO) Unclaaa1f1ed 

.-
85.3 

I 

93.9 

96.0 

~ 100 

100 

61.8 

95.0 I 
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TABLE' A-31.:'P~ORMANCE '!-t"l.'fR1CES 

BALTIMORE.LAND USE -AVERAGE ACCURACY 
'. ~·(WEiGHTim) FOR OFFSET VARIATIONS 
'--(30 METER DATA, 7_ ~OPTIMUM C~S) 

::- '-' .. ' .. " . 

% ERRORS' 
+i/3 Offset % CORRECT Commission Omission 

.. ; .. 
···.LEVEL I" . 1.2.9 71.4 

LEVEL II . 9.7 '18.9 71.4 

LE~III 7.3 21.3' 71.4 

r. ERRORS 
-1/3 Offset % CORRECT 

Commission Omission 
-

'LEVEL:I .' .. 55.5 20.2 24.3 

/ 

LEVEL II 42.6 33.1 24.3 

, 

.' 

LEVEL III 21.0 54.7 24.3 
, 

. .. 
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~ +2/3 Offset 

LEVEL 

LEVEL 

'-l.EVEL 

....... 

-2/3 Offset 

. 

I 

.. - oj .. -~ 

.,._ .. 1 .1 

TABLE A-32. PERFORMANCE MATRICES 

BALTIMORE LAND USE - AVERAGE ACCURACY 
(t.JEIGHTED) FOR OFFSET VARIATIONS 

(30 HETERDATA. 7 OPTIMUM·CHANNELS) 

% ERRORS 
% CORRECT Commission 

0.0 3.2 

II '0.0 3.2 

-

~I~- 0.0 3.2 

-
. ,. 

-,.- --. 

. .:.... 

I 

Omission 

96.8 

96.8 

96.8 

'.'-'.' 
,.' . 

. ,,"--, ~: ERRORS %-coaRECT 
Co_ss100 ODiission 

, .. .:::---:. ; .••.. . ·c.'.. • 

LEVEL I . 3.9-''''. "'"'.c 88.1 
-~- . .{ 

.-

11.1 "88.1 
".r·,' 

0.8 

267 

1. 

/" 
"~ 



TABLE A-33. PEllFOltHANCE HATlUCES 

BALTIMORE LAND USE' 

. LEVEL 1 LAND USE. 7 Channels, +1/3 Offset, 30 Meter Data 

'>'. 

AGGREGATED COMPUTER SPECTRAL CLASSES 

GROUND TRUIH URBAN AG FOREST WATER UNCLAS. 

URBAN (1) 13.7 9.8 0.4 76.1 

AGRICULTURE (2) 7.1 . 76.2 16.7 

FOREST (4) 29.4 70.6 

WATER (5) 100.0 

LEVEL II LAND USE* 7 Channels, +1/3 Offset, 30 Meter Data 

AGGREGATED COMPUTER SPECTRAL CLASSES 

RES 
COMI AG PAST FOR 

GROUND TRUTH IND 

RESIDENTIAL (11) 9.6 . 1.9 ! 
14.7 

COMMERCIAL I 
INDUSTRIAL (12/13) 9.2 8.2 2.0 

CROPLAND (21) 73.3 

PASTURE. (22) 11.1 77.8 , 

POREST 
Deciduous (41) 29.4 

WATER (50) 

*ANDERSON L&~D USE CLASSES ARE SHOWN IN PARENTHESES 
268 

WATER 

1.0 

UNCLAS. 

73.9 

79.6 

26.7 

11.1 

70.6 

100.0 
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TAIILE A-34. PY.RFORKI\NCF. MATRIX, IIAt.TIHORE, MARYLAND 

LEV~L III COMPutER SPECTRAL CLASSIFICATION or LAND USE 7 Chnnneh •. + 1/3 Of hat," 30 Moton 

FAH APTll "I'n RI.KI 501 L IASPII HUll I DR :;oll.ICIIOP PASTURB FOREST 

Slnale 
, 'uUy Multiple C_reial lndunrial Cropland , .. tllra Dedduolil Water 

caOUNO TRutH .... (111) Faa11y (112) (121/121) (130) (110) (110) ror .. , (410) (SOO) 

Slnll. F .. aUy 
1.1 2.7 1.3 21.3 

aelldenllul (Ill) 

" 

Hult1-fa.ily (112) 1.2 12.2 2.4 8.S 

and InlClllitlonal 
(J60) '. 

eo...rcl.J (lll/122) 
. 

3.9 .7.8 3.9 2.0 

IndulerlaJ (13) 
6.4 U.8 1.1 2.1 

Cropland (210) 73.3 

Pa.tllre (220) 11.1 77.8 

Deciduoue 'or.I' 29.4 
(410) 

Vatu (HO) 

Stace of "'ryland ..... III. ClUH pi 
" -

,", 

I 
I 

I 
L,-
I. 
I 

t 

Unc1a .. iUed 

71.0 

75.6 

82 •• 

76.6 

! 

26.7 
I 

1 

11.1 

70.6 

100 

1: .," 
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TABLE A-35. PEIlFORHANCE HATlUCES-- - . 

BALTIMORE LAND USE' 

LEVEL I LAND USE* ' 7 Channels, -1/3 Offset, '30 Meter Data 

AGGREGATED COMPutER SPeCTRAL CLASSES 
" 

GROUND TRtrrH URBAN AG FOREST WATER UNCLAS. 

URBAN (1) 70.4 5.5 
. 

24.1 

AGlUCULTURE (2) 35.7 54.8 9.5 

FOREST (4) 67.7 32.4 

, , 

WATER (5) 25.0- 12.5 62.5 

LEVEL II LAN~* 7 Channels, -1/3 Offset, 30 Meter Data 

GGREGATED COMPUTER SPECTRAL CLASSE..S ' 

RES COM/ AG PAST FOR GROUND TRUTH I~ID 

RESIDENTIAL (11) 52.2 15.9 5.1 1.9 

COMMERCIAL I 
INDUSTRIAL (12/13) 18.8 55.2 1.0 2.1 

CROPLAND (21) 46.7 33.3 

PASTURE (22) 25.9 3.7 66.7 

FOREST 
Deciduous (/,1) 67.7 14.7 17.7 

WATER (50) 7.5 17.5 

. *ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES 
270 

WATER UNCLAS. 

24.8 

22.9 
-' 

20.0 

3.7 

12.5 62.5 

" . . 
- _. ' I' . ,~,' , , 

:- . , ' 

i •• ~ • 

~ • #c • 
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TABLE A-36. PERFO~ICF. MATRIX, BALTIMORE, MARYLAND 

LEV~L III COMPUTER SPECTRAL CLASSIFICATION OF LAND USP. 7 Channell, -1/3 OHnt, 30 Hace,. 

FAH APTll APT2 IILIllsOILIASPH KDR I DIl SOIL I CROP PASTURE FOUST 
SlnSl. 
, .. Uy Multiple C-~clal Indult~lal C~opland 'a.tu~. D.cldllOUA Watn 

CItOVMD TRUTH .. a. (111) Full, (112) (121/122) (130) (210) (220) ,o~ .. t (410) (500) 

Sins Ie F •• Uy 8.0 61.3 .. aldentla1 (Ill) 2.7 9.3 2.7 

.. 
Hultl-la.lly (112) 2.4 34.2 26.8 1.2 1.2 1.2 and Inatllutlonal 

(160) 

Co ... ~clal (121/122) 2.0 21.6 39.2 . 3;9 2.0 3.9 
, 

lnduatrlal (1) 13.3 66.7 2.2 

C~opland (210) 13.3 33.3 33.3 

--' 
'uture (220) 7.4 18.5 • 3.7 66.7 

- ~ 

Daclduoua For.at 61.8 5.9 14.7 17.7 
(410) 

. Vater (500) 7.5 5.0 12.5 12.5 

Itat. of Karyl ... ·La .. Ua. el ..... a~ •• hown·la pa~aath .. e •• 

! . 

Uncia .. U l" 

16.0 

32.9 

27.5 

17.8 

.' 20.0 

'. 
3.7 

, 

62.S 

I 

I 

I 

I 

I 

~-.-­
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I 
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TABLE A-37. PERFORMANCE K\TRICES 

BALTL'10RE LAN"D USE 

LEVEL I LAND USE* 7 Channels, +2/3 Offset, 30 Meter Data 

AGGREGATED COMPUTER SPECTRAL CLASSES 

GROUND TRUTH URBAN AG FOREST ' WATER UNCLAS. 

" 

URBAN (1) 4.7 95.3 

AGRICULTURE (2) 11)0.0 , 

FOREST (4) lOO.r) -

WATER (5) 100.0 

LEVEL II L&~D USE* 7 Channels, +2!3 Offset, 30 Meter Data 

AGGREGATED COMPUTER SPECTRAL CLASSES . 

RES 
. COM/ 

AG PAST FOR WATER UNCLAS. GROUND TRUTH DiD 

RESIDENTIAL (11) 4.5 

COMMERCIAL! 
INDUSTRIAL (12/13) 5.1 

CROPLAND (21) 

PASTURE (22) 

FOREST 
Deciduous (41) 

:i' 

WATER (50) 

.ANDERSO~L&~D USE CLASSES ARE SHOWN IN PARENTHESES 
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95.5 

94.9 

100.0 

. 

100.0 

1f)r).O 

100.0 

. . ., .'. . 
f . \ , 

, .' ~ ~ . , . ," ,. " . . 
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TAIIW A-38. l't:RFORMAN(;t: MATRIX, ' HALTlHORl:, ""RYLAND 

-

LEVEL 111 COHPUTER SPECTRAL 'CLASSIFICATlON OF LAND US! 1 Channels, + 2-13 Ofhet, 30 Meten 

FAIl APTll APT2 IlLRISOILIASPJI KDR I DR ~c:.!ill'.. PASTURE rOREST 
Sinal. 
r .. lly, Multiple Co_relal Indultdll Cropllnd p .. ture Dec:1duoul liner 

CROUND TRUTH Re •• (111) r_l1, (112) (121/122) (130) (210) (220) ror8lt (410) (sao) 

-
Sinal. , •• u, 6.7 
Reel'.ntlal (111) 

~ltt-fa.f1, (112) 
8Ad lnetllutlOD31 2.4 

(J60) 

eo..erclal (121/122) 2.0 

ladueulaJ (U) 8.S 

Cropland (210) 

.aetur. (220) 

Oecl.uou. 'oreet 
(410) 

Vecee (HO) 

Unchl.iU14 

93.3 1 

97.6 

98.0 

91.5 

100.0 

100.0 

100.0 

100.0 

.... 1.,.+ ~.) 

(:' ' 

f 
,J ' 

)' 

I 

''. 
i 

1-'._'" 

I 
k. 
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TABLE A-39. PERFORMANCE MATRICES 

BALT~ORE LAND USE 

LEVE~ I LAND USE* 7 Channels, -2/3 Offset, 30 M~ter bata 

, , 
, '1 -~.,;<~.~ 

AGGREGATED COMPtrrER SPECTRAL CLASSES 

GROUND TRtTrH URBAN AG " FOREST l-lATER UNCLAS. 

URBAN (1) 11.4 

. AGRICULTURE (2) 2:4 2.4 

FOREST (4) 23.5 2.9 

WATER (5) 10.0 -

LEVEL II LAND USE* 7 Channels,~-2/3 Offset, 30 Meter Data . 
AGGREGATED COMPUTER SPECTRAL CLASSES 

RES COH/ AG PAST FOR GROUND TRlITH nm 

RESIDENTIAL (11) 3.8 3.8 

COMMERCIAL/ 
INDUSTRIAL (li/13) 17.4 

CROPLAND (21) 6.7 6.7 

PAS'lURE (22) 

FOREST 
Deciduous (41) 23.5 2.9 

'WATER (50) 2.5 7.5 " 

, 

*ANDERSON LJ",~D USE CLASSES ARE SHOWN IN PARENTHESES 
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WATER 

1 G'. ,'. 

88.6 ' 

95.2 

13.5 

90.0 

UNCLAS. -
92.4 ' 

82.7 

86.7 

100.0 

73.5 

90.0 

, " : '.. '.' , . " " . , , 



tAUL& 1.-40. PERFORMANCE KA'rtllX,BALTUIlRE, MARYLAND 

L~L III COKPUTEk SPECTRAL CLASSIFICATION OF LAND US, 7 Ch.nnel., -2/3 Off.et, 30 Heter. 

FAM APTll APT2 RLaISOIL IABPII KDR I DIl SOlLlcllOP PABTUU FOUST 

Sinal· 
, .. U, ~lU.pl. c-rdal Indu.trial Cropl.nd 'aaCura Dec1duoQ Vatar 

CltOUIID TIW11l .... (111) , .. U, (112) (121/122) (1)0) (210) (220) 'or .. e (UO) (SOO) , 

51n&le , .. U, , 8.0 2.7 
a..ideotta1 (111) 

1: .. 1tt-fa.U, (112) 4.9 
and Inaclt .. tlonel " 

(160) 

eoe.e~clal (121/122) 2.0 

N 
~...I 

VI t ...... trial (11) 31.9 2.1 

Croplud (210) 6.7 6.7 

•• .e .. r. (220) \ 

Decl.uoue ror .. e 23.5 2.9 

(1ol0} 

-
"-eft UGO) 2.5 7.5 

St.ta or 118"1_ Lalli I u.. e1_... .~a abCJV:I In Darancna ••• 

Uncl .. dfia4 

89.3 I 

I , 

95.1 
, 

9B.0 

,66.0 

86.7 

100.0 

73.5 

90.0 

! 
l~ __ 
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I 
I 
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APPENDIX B 

ADDITIONAL DETAILS OF AGRICULTURAL RECOGNITION RESULTS 

MICHIGAN AGRICULTURE 
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ADDITIONAL DETAILS OF AGRICULTURAL RECOGNITION RESULTS 

The makeup and spectral separability of classes and their 

relative importance to the user are key factors that must be considered 

whenever recognition processing results are evaluated. Another key 

point is the 'quality and nature of ground truth information. The 

assigned to fields frequently are too broad or not sufficiently 

descriptive to indicate the full variability present in the scene. 

labels 

Major crops which tend to be uniformly planted are better described 

by a single label, like "corn", than are other agricultural areas like 

. pastures. Even in major crops there can be substantial differentes in 

percent cover and crop condition, among other differences. The 1973 

growing season in Michigan was unusual in that excessive rain and 

wetness in fields delayed some plantings by several weeks, five weeks for 

one particular corn field. As a consequence, it was found necessary to 

define separate-signatures for both·dense and sparse corn. Differences 

between individual fields of other types, for example, pastures, har­

vested fields, and idle or fallow fields, can be much larger than for 

major crops, dependiIJg on level of use and recent management practices. 

The effort required to collect gOf)d ground truth information is too 

often underestimat:ed. The ground truth available for the agricultural 

dataset in this study was among t~~ best we have ever utilized, 

but even so, it had not been p'~'actical to visit every field on the 

ground and describe all char~cteristics of these fields. Photointer­

pretation and Agricultural Stabilization and Conservation Service 

(ASCS) records were utilized to supplement ground visits. 

If members of two or more relatively unimportant classes are 

frequently confused or if one or more unimportant classes is poorly 

recognized, a misleading assessment might be made of overall recogni­

tion perfOrlllance. The agricultural data set discussed in the main body 

of this report 1s a casein point. 
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Results are presented in the main body for. five recognition 

classes: corn, soybeans, oats, woods, and other. The first four 

are the significant crops for the test area, while the last includes 

everything else in the scene, including points not assigned to any 

recognition signature because of their distance from them (Le., the 

low likelihood that these points belonged to anyone of the signature 

distributions) • Four distinct signatures were dl!termined and used to 

represent the "other" class; these are bare soil, stubble/cut hay, 

pasture/grasses, and dense green vegetation. 

Initially, results were tallied and reported separately for each 

of the four major classes and the.four "other" subclasses (five witlt 

the not-recognized subclass). These initial results w.ere'subjected to 

extensive analysis which is reported in this appendix. Particular 

attention is paid to confusjon among the "other" subclasses. Never­

theless, it is believed that the five-class results of the main hody 

represents the more appropriate and pertinent picture of recognition 

performance for this study. 

By way of illustration before discussing the eight-class results, 
; 

an example of differences between eight and five-class performance 

summaries is appropriate. Table B-1 presents eight-class results for 

lJ m data with seven optimum spectral channels. A weighted class 

average of 75.1 percent correct was achieved, ranging from 31.6 percent 

... to 100 percent. The corresponding five-class performance summary, 

Table B-2, shows an overall class average of 86.5 percent correct, 

with a low of 59.9 percent for soybeans. Thus, it can be seen that 

one might reach substantially different conclusions about recognition 

performance, depending upon which performance summary was examined. 

B.l ANALYSIS OF lS-M AGRICULTURAL RECOGNITION RiSULTS 

Results for agricultural data \\'ith 15 m resolut ion already have 

been presented (rable B-1) for eight recognition classes. An exami-
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TABLE B-1. SAMPLE EIGHT-ClASS RECOGNITION PERFORMANCE SUMMARY 
7-Channe1 Data, 15-m Spatial Resolution 

lS METER DATA - 7 OPTIMUM 
CHANNELS PER CENT HISCLASSIFlCATION 

SCEN~ (No. of % CORRECT BARE SOY- STUBBLE RIPE PASTURE DENSE 
CLASS Fixela) CLASS. SOIL CORN BEANS CUT HAY OATS GRASSES- GREEN 

BARE SOIL 
(736) 76.8 2.3 1.2 0.1 

CORN 
(3248) 94.6 0.1 0.2 0.4 3.8 

SOYBEANS 
(1136) 59.9 2.3 14.3 0.7 19.4 

STUBBLE 
CUT HAY 
(1648) 36.0 44.3 2.2 0.4 5.8 8.4 0.5 

lUPE OATS 
(80) 100.0 

PASTURE-
GRASSES • 

(864) 31.6 \ , 18.1 22.1 0.6 15.4 .. -
DENSE GREEN '" (1424) 62.5 22.7 0.1 

. 
WOOS " 

(3440) 95.S 2.8 0.1 0.1 1.3 
----

Weiahted AveraaeCorrect Clas8ification .75.1% 

1--

I ; 
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TABLE B-2.· SAMPLE FIVE-CLASS RECOGNITION PERFORMANCE 
SUMKARY, CO~_PONDING TO TABLE B-1 

;0 

:.;; . ~TER DATA - 7 OPTIMUM 

.j 

.-:: .-o;c.C._·. .:o::..~ 

CHA...~S PER CENT MISCLAS3IFICATION 

SCENE.CLASS PER CENT CORRECT SOY- RIPE 
(No. of Pixels) CLASSIFICATION COR.'i BEA..'iS OATS WOODS OTHER 

CORN (3248) 94.6 - 0.1 O.d 4.5 

.. 
.' 

SOYBEANS (:.136) 59.9 14.3 0.1 25.8 

- .. ' ... . 

J 
RIPE OATS (80) 100.0 .. 

___ -

WOODS (3440) 95.5 2.8 0.1 1.6 

OTHER· (4672) 80.6 11.0 O.S 2.1 5.5 

. Wt. Average = 86.5% 
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nation on large-scale aerial photographs was made of each test field 

in which a large number of pixels were either misclassified or not 

recognized,. The following paragraphs sUDlDlarize results for each class 

~,_' of ground cover, giving explanations for patterns of misclassification 

wherepossible~ 

Bare Soil 

The major problem with this elass was the num~er of not-recognized 

pix~ls, which amounted to almost 20 percent of the test set. 'Fields, 

'.:'w,ith substanti~l amounts of not-recognized points contained dtuk soil 

in patterns similar to the patterns of non~classification. Dark bare 

soil was notllsed as a training set, '9~nce this non-classification is 

logical. OC'2asiona.1weedy patches were called soybeans. 

Corn " -.--
Co:ra was in general well recognized. 'However, almost 4 percent 

" 

of the points were misclassified as dense green. The points so 

classified proved to b~ weedy patches in the corners or along the 

edges of corn, fields. ' Occasional bare spots in 'corn fields were not 

classified • 
. '-, 

Soybeans 

Recognition of' this class showed greacvariability from field t(l 

field ~S a resultoo;.variation if' percentage cover of the soybeans at 

this time of ,year ,'and because of::.he presence of weedy patches 

alwaysfound~n soybeans. The soybean training set was selected hv.:l 

.' ~1'ields'having uniform 'and high cover. Even so, the Eoybean'signature 

was simi*ar to the dense green signature and problems of misclassifica­

tion between these two classes were anticipated. 

In general, dense stands of soybeanF were correctly classified. 

~?edy dense stands,were called dense green. Sparse stands were called 
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sparse corn, accounting for the large fraction of test set called 

corn. Some very sparse areas were called.bare soil. Occasional areas 

of sparse cover with dark soil backgrounds were not recognized. 

The general problem with accurate soybean recognition seems to 

be the great variation in percentage cover at this time in the growing 

season (the date of data collection was 5 August, in a late growing 

season which means not all plants were fully mature) and the presence 

of weedy patches in fields. 

Stubble/Cut Hay 

This was another spectral1y variable, poorly recognized category. 

The train~ng set included stubble fields with little or no green weed 

growth and some dea~ ~~alks showing the false-color infrared (ClR) 

photography. The major misclassification were bare soil, ripe oats, 

pastures, and a little corn. 

Areas where the straw had been gathered appeared like bare soil 

and were so classified. Areas where there was consi~erable weed 

growth (or a legu~nous cover crop, which fr~quently is planted 

. in stubble L.elds following wheat harvest) were called pastures. A 

few exceedingly dense spots were called corn. 

The cause of low recognition accuracy of this class was the 

-extre~e spectral variability of stubble fields at this time of year. 

Depending on field treatment, this class could look very much like 

cats (non-harvested or lodged-· areas), stubble, bare soil (straw 

gathered), or pasture (leguminous understory developed). 

, Ripe Oats 

Test fields were perfectly classified. At this time of year, oats 

were fairly uniformly yellow in color. They were harvested one week 

after MSS data collection,l/lhich was about one month later than usu~l. 
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Pasture/Grasses 

This class was poorly recognized, probably because of the great 

spectral variability in the class. ' The training set included areas of 

medium vegetatioD,c.over,' with some bare soil apparent from the tone on 

the erR photography. Major'misclassifications occurred, a.s corn, 

stubble, dense gre.en, and woods. General comments are ,given below, 

while a more detail~d analysis of pastul'e recognition_is presented j.n 

Section B.3. 

Corn recognition occurred in three of the nine original pasture 

test field~. When inspected on large-scale (1:2000) low-altitude 

black-and-white photography, one ~f ti .. ase fi.!lds (64) exhibited a 

row structure which identified it as actually being corn, 'so it was 

del~ted from the pasture class. The other two fields where substantial 

corn ~isclassification occurred were in very lush and obviously ungrazed 

areas. 

Stubble recognition occurred in pasture areas which were unusually 

spa~se - bare soil was visible in the CrR photography.' In view of what 

has already been said about the stubble training set, these results s~~m 

plausible. 

Dense green recognition occJrred in areas of pasture which were 

lush~ but not as lush as those areas called corn. There ""as a 

definite difference in the red color of CrR photography between pasture 

areas called corn, dense green, and pasture, although the Signatures 

for dense green, pasture,stubble, and bare soil represent a cont ... nuum 

of percentage grass vegetation cover-from large percentage cover (dense 

green) to no cover (bare soil). One would lor,ically expect spectrall~ 

variable areas such as pasture to exhibit s~me 'recognition from each 

of these categories. 

A few scattered trees in pasture areas were called woods. 
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,Dense 'Green 

This _class" as noted above, represents dense green vegetation (or 

alfalfa) growing in fields. The major misclassifications in dense 

green fields were corn and woods. 

Corn rec()gnition,occurred in the more sparse areas of the dense 

green test set. These points were_recognized by the sparse corn 

signature. Woods recognition occurred occasionally, scatterea-through 

fields. Some, but not all, of the woods misclassification can be 

explained b~' trees in fields; the rest seem to be genuine misclassifi-

cations. 

Woods 

Woods in this area are mainly oak-hickory hard~ood forests with 

, varying per,,::entage cover. The-only misclassif~ cation of significance 

here was corn. That occurred in one sparse woods, area in the corner 

of one of the test set fields. Dense green recognition also was 

observed there. 

Summary 

Corn, ripe'cats, and woeds were well recognize1. Soybean recogni­

tion was low because of misclassifications as dens~ green vegetation_ 

and corn, resulting from vari'ltions in percent gr:ound coveL and the 

presence of weeds. Bare soil recognition was reduced by a failure 

to train on and recognize dark soil areas. Stubble and pastures 

exhibited substantial spectral variability and consequent misclassifi­

cation, while sparser areas of dense green vegetation were misclassified. 

B.2 COMPARISLN OF 15 M, 30M, AND 60 M RECOGNITION RESULTS, 

Eight-class recognition results for spatial resolutions of 30 m 

and 60 m arc presented in Tables B-3 and B-4, respectively. They were 

compared ,with Table B-1 for detection of trends in recognition accuracy 
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TABLE B-3. FIELD CENTER CLASSIFICATION ACCURACIES 
7 CHANNEL DATA, N.OMINAL 30-M SPATIAL RESOLUTION 

30 MET IA 7 OPTIMUM 
PER CENT MlSCLASSIFICATION 

SCENE (No~ of % CORRECT BARE SOY- . ··STUBBLE RIPE PASTURE DENSE 
CLASS Pixels) CLASS. SOIL CORN BEANS CUT HAY OATS GRASSES GREEN WOODS 

3AKE SOIL I (;~) 87.0 0.5 

CO~· . .. 
(812) 94.1 0.7 0.1 3.9 0.7 

SOYBEANS 
(28 .. ) 73.9 3.2 5.3 :, 13.0 .. 

STUBBLE 
CUT HAY .' 
(412) ..... 37.4 51. 7 1.2 0.7 2.9 2.7 0 .• 2 1.2 

~ 

RIPE OATS 
(20) 100.0 

PASTURE-
GRASSES 
(~l6) 33.8 0.9 14.4 17.1 13.4 13.4 

DENSE GREEN 
(356) 70.8 21.1 0.6' 0.3 4.5 

WODS 
(860) 96.7 1.9 O.i 1.0 

We11hted Averaae Correct Classification. 78.4% 

§. 
. ~ ~ 

UNCLAS. 
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60 METER DATA - 7 OPTIMUM 

N 
OD ...... 

SCENE (No. of 
CLASS Pixels) 

BARE SOIL 
(46) 

CORN 
(203) 

SOYBEAt~S 

(71) 

STUBBLE 
CUT HAY 

(103) 

RIPF. OATS 
(5) 

PASTURE-
GRASSES 

(54) 

DENSE GREEN 
(89) 

--
weODS 

(215) 

% CORRECT 
CLASS. 

c' 

84.8 

93.6 

29.6 

46.6 

100.0 

24.1 

71.5 

97.7 

TABLE B-4. FIELD CENTER CLASSIFICATION ACCURACIES 
7 CHANNEL DATA" NOMINAL' 60-M SPATIAL RE~OLUTION 

PER CENT MISCLASSIFICATION 

BARE SOY- STUBBLE RIPE PASTURE DENSE 

SOIL COBN BEANS' CUT HAY OATS GRASSES GREEN WOODS 

0.5 3.9 0.5 

29.6 38.0 

37.9 1.0 2.9 -

18.5 14.8 9.3 13.0 7.4 

15.7 1.1 1.1 

. 
1.9 0.5 

-- _.- -- -- -- - ------- ------- -----~~. 
L- ____ L ____ ---' ___ 

Weighted Avera,e Correct Classification. 75.7% 

UNCLAS. 

15.2 

1.5 
I 

2.8 

, 

, 

12~6 
I 

i 
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I 
! 
I 

13.0 
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when spatial resolution was degraded from 15 to 30 to 60 m. Again, 

performance in·each of the t2St fielQs was examined and related to 

the pattern of errors previously discussed ··in Section B.L 

Bare Soil 

The major factor influencing the re~ognition accuracy for bare 

soil (as resolution w~s varied) was the not-Lecognized class. ·At 

15m, 3.6 percent of.areas were misclassified, while 19.6 percent of 

points were not classified· for reasons riiscussed before. At 30.an'~ 

60 m resolution, the small weedy patches were averaged with other bare 

soil points so that misclassification dis:lppeared. 

The test for the not-recognized· class is based on the sizes of 

signature sta~dard deviations·{a X2 test is used). Sinc~ signature 

standard deviations decrease. in going irom 15 to 30. to 60 m resolution, 

one could expect more pixels to be not classified at the larger 

resolutions. However, this effect was offset here to an extent by 

the averaging of dark bare soil pixels with light bare soil pixels at 

boundaries - these boundary areas being subsequently called bare 

soil. This averag.i.!'.6 cau.::.d the not-elas·sified category to be smaller 

at 30 m than at 1.5 m. Correct soil recogniti(ln increased, but centers 

of dark bare soil areas still were not recognL~ed. At 60 m, where 

fields of 4 to R pixels were common a,ld only 46 pix€'.s were tested 

for bare soil, "lone pixel shift betwepn categories is sufficient to 

shift resJltsby 2 percent; bare soil recognition decreased by that 

amount from the percentage for 30 m, while the not-recognized category 

inccease~ about the same. 

Corn 

The recogn~,tion accuracy of corn remair.ed nearly constant as a 

function of spatial resolution. Only a slight increase in the size 

of the not-classified category was observed in going from 15 ':0 60 m, 
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. and misclassifications as dense green and woods remained substantially 

constant. 

Soybeans 

Major changes. occurred in the accuracy and pattern of mlsclas­

sificationsin the soybeans data. Qualitatively, this was caused by 

the spectral variability of soybeans and a typical field mottling 

patlern at a scale of 30 to 60 m observed on the photos. Thi~ point 

will be elaborated belo~. 

In going from 15 to 30 m \esolution, there was a major decrease 

in corn and dense green misclassification. Bare soil misclassification 

decreased slightly, while the not-classified category.increased 

slightly • 

. Bare soil misclassification 'occurred in the same two fi~lds in the 

30 m data as in the 15 m data, but at a reduced percentage of the total 

area. Bare spots were fairly small and localized (even though the 

percentage cover in the fields where bare soil recognit; , occurred 

was genzrally low and variable). In generation of the coarser resolu­

tion data, l'ixels alon~ edges of the barz soil a;-eas were averaged with 

soybean ~ixe1s.to produce composite pixels recognized as soybeans in 

the 30 m data. 

Major decreases in false C('L',: recugnition occurred in two of the 

three soybean fields when going from 15 to 30 m resolution. Many 

pixels called sparse corn on the 15 m data were ca11ed'soybea-", 

on the 30 m data. 

In comparing the standard deviation-s and means of the ,'parse corn 

and soybean signatL'rp.s at 15 and 30 m, we find that standord deviations 

for corn at 30 m are ~buut 91 perc~nt of those at 15 m, while soybean 

. standard deviatibns at 30 mare 98 percen~ of thuse at 15 m. The 

effect of the reduction in standard deviations is magnified by the 

fact that in six of the seven channels used for 'l:~,ccgnitioh, the 
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mean separation between soybeans and sparse corn is less than one 

standard deviation of so)beans. These changes could cause a shift 

of the decision boundary betwl.!en sparse corn and soybeans so as to 

favor soybean recognition. 

The same explanation holds for the decrease in dense green 

recognition, although the dense green spots were generally small and 

woald tend t·:) be averaged with more normal soybeans points and be called 

soybeans. Examination of the recognition maps for 30m and 15 m data 

reveals that dense green points on the 15 m map are averaged with 

points called soybeans oni::he map. The result is called soybeans on 

the 30 m man, resulting in a decrease in misclassification of soybeans 

as dense green. 

When going from 30 mto 60 mdata, the dra~atic decrease in the 

classification-accuracy of soybeans is' caused by the rather solid 

misclassification of two of the four test fields ~s sparse corn and as 

dense green. There also was substantial recognition of sparse corn 

and dense green in these fields at 15 m resolution. 

Stubble 

The major effect on stubble recognition in going from 15 to 60 M 

was a decrease in misclassificat10n as bare soil and an increase of 

tne not-classified category. Compared with 15 m data, misclassifica­

tions as corn, dense green, pastules, at':.d soybeans all decreased 3'3 

resolution element size was increased, because the previously mis­

classifieo areas were small anp were averaged with pixels normally 

called stubble. 

Increases in the not-recognized category occurred in three 

fields at 60 m resolution. In one field. nea~ly totally misclassified 

as baresoll (it looks like bare soil on the photography). not­

classified area~ correspond to dark bare soil areas withi~ the field. 

In another fiel~. !he 60 m data show not-classified points at the 
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.. euge between a bare soil section and a section where there ~ppears to 

be straw on the ground. The mixture appears dissimilar to either bare 

soil or stubble~ In a third field, the area is so mottled that at 

60m, sizable averaging of green vegetation, stubble, and dark bar~ 

soil o' curs. The field is quite small (only 3 pixels at 60 m) and the 

resulls of the averaging are data points which do not resemble any 

signature enough to be recognized. 

Ripe Oats 

Since ripe oats were perfectly recognized at all spatial resolu­

tions, no further discussion of accuracy will be made. 

Pasture 

The pasture class is spectrally quite variable, ranging from 

lush green pastures to nearly bare soil. The training set was 

selected from pastures of intermediate, but uniform, gra£3 cuver, as 

judged from the erR photography. 

The major effects on past' .:e r~L0gnition when goin.~ from 15 to 

60 m data are the decrease in stubble misclassification, the increase 

at 30 m and then decrease of woods misclassification, and the increase 

in the not-recognized case at both 30 and 60 m. Summaries of results 

for indivioual fields are presented in following paragraphs, with 

detailed discussion in Section-B.3. 

Substantial stubble recognition occurs in four fields. Inane, 

the field is so sparse that it is completely classj:ied ad stubble 

at each resolution. Two fIelds have stubble recognition in sparse 

co-"rered areas 'which are sme.l1 and ,jLstrl;i.~'ted through the field. 

Averaging of pixels lumps data from these sparse areas along with 

normal points, and the resultant data are called (incorrectly) sparse 

corn. At 60 ro, the field is only 2 pixels wide and 4 pixels long, 

and at this r~s0:ution the averaging is so severe that all pixels arc 
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incorrectly called sparse corn. A fourth field shows stubble recogni-

tion in areas of sparse vegetation cover adjacent to dark bare soil. 

As the pixels 'are averaged with ~he dark-bare-soil pixels, the points 

are not classified (at the coarser resolutions). 

Woods recognition is primarily in two pasture areas, one where 

there is substantial brush in one corner, and the other with one or 

two trees. Woods recognition d.ecreases in the pasture with one or two 

trees as resolution element size increases. This oc~urs because of 

th~ averaging of the tree pixels with the surrounding pasture pixels. 

In the other pasture, the tree recognition stays about the same as 

pixel size is increased because the area of brush is relatively large. 

The not-recognized category increases in size as we move from 15 

to 60 m resolutiuu. This increase can be explained by the av~raging 

0f dark soil pixels with normal pasture pixels at the coarser resolu­

tions. Resultant composite pixels are not classified, thus increasing 

the size of the not. classified class. 

Dense Green 

The major effect on den3e green recogriition when going from 15 

to 60 m is a reducLion in the amount of woods misclassification. Trees 

are generally scattered throughout some of the dense green fields just 

as th~y were through pastures. Since the woods are scattered. 

averaging with valid dense greep'points produces data which are ~alled 

dense green. 

Woods 

The only significant effect of increasing the resoluticn element 

si~e on woods recognition is a slight reduction in the corn misclassi­

fication. As previously noted, corn recognition occurs in small areas 

of sparse woods. Again, the averaging ot these small areas with more­

homo,gcncolls areas of woods at the larger resolution elemenL sizes 

results in pixels classes as 'Joods. 
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B.3 ANALYSIS OF PASTURE RECOGNITION 

Because the_test set evaluation of pasture yielded very low 

accuracy re~ults at all spatial resolutions, and because our analysis 

of test set data with eIR photography revealed that pastures are a 

spectrally variable class, we decided to do a more thorough analysis 

. of the recognition patterns in pasture areas. 

The August data set registered pasture areas at very nearly their 

most variable stage. Some pastures had-not been grazed and had 

developed·lush dense green canopies. Other areas had been grazed and 

showed a typically mottled pattern varying from gray or blue (bare soil) 

. to pink (dense vegetation) on the erR film. The variation within 

pasture areas was ii, some cases as great as the variation between 

bare soil and dense green vegetation. 

In a mission sense, a bett~r time to collect data for pasture 

recognition would be in spring, right after fields had been plowed, or 
,. 

possibly early spring when pastures are green (along with winter 

wheat), and cattl~ have not been allowed to graze on the forage. At 

those times, pastures as a class would be spectrally more homogeneous. 

and easier tu separate from other scene materials. 

We performed two analyses on the pasture test l:oet data, the first 

a quantitative compar~son invo].ving the test set classification results 

-where the results were compared to a trained, unbiased photointerpreter's 

estimate l)f the composition of each test field. Results are discussed 

in a secti0n below. Second, for one pasture test set, we quanti~atively 

estimated the percentage~~mposition by a dot-grid technique applied 

to the photography. The quantitative estimate was then compan.:d with 

the 'recogr .. tion estimate. 

In deriving the photointerpreted results, the distinction between 

density classes of vegetation (represented by tlJe-classifier classes 

dense green. sparse corn, pasture, stubble, and bare soil, progressing -. 
from dense to sparse vegetation cover) was subjectively estimated. 
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Discrepancies of ± one density class- are to be expected L'etween 

photointerpreted results and classifier results. For example. the 

photointerpreter might have called a particular area sparse corn while 

the processor called the ar~a pasture or perhaps dense green. 

A total of eight pasture test sets were examined. These are 

discussed individually in following para~raphs. Definitions are given 

in Table 8-5. 

Field 61 (Table 8-5) 

Fj eld 61 is a pasture in the southern end of the flight line. The 

photointerpretation and recognition resul~~ ar~ summarized in Ta~le 

8-5. It is a fairl~ typi~al pasture with sparse grass cover in the 

middle and lush grass along the southeastern and \-:~stern field 

borders. Some deCld grass SPO\;S are noticeable in the center. 

Field 62 (Table B-C) 

1his pasture is a fairly lush pasture with some sparse aredS 

apparent in the center. Isolated small bare spots are also visible. 

Table 8-6 summariz~s the accuracy 01 the classification and compares 

the recognition output "I;;ith the photointerpreted results. 

Field _ 63 J.Table_ 8-7) 

This relatively lush pasture is very similar in appearanc~ to 

Field 62. Vegetation percentage cover differences are apparent on 

tht:: photography, with areas in the north ce.nter of the field having 

lower cover than other a!'eas·. Table 8-7 compares recognition and 

photointerpretation results. 

Field 65 (,fable 8-81 

This field is a very lush pasture which has not been &:1Zed for 

~ome ti:::e, although animal trails a~ld bare spors where a watering 
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TABLE B-5. FIELD 63 RECOGNITION AND PI DATA 
96-15m Pixe1sir. the Field Test Set 

PERCENTAGE COMPOSITION 

CLASS RECOGNITION PHOTO-INTERPRETATION -
Woods 8.3 1 

.;.f" 

Pasture 80.1 69 

Ripe Oats 4.2 20 

Sparse Corn 7.4 10 

Weighting Factor* • .1111 
Accuracy** • 72.46% 

*Weighting factor is the fraction of the total test set size 
present in this field. 

**Defined as: 100-[E(%rec - XPI)2]1/2. where rec is computer 
recognition and PI is 
photo-interpretation 

TABLE B-6. FIELD 62 RECOGNITION AND PI DATA 
96-1Sm Pixels in the. Field Test Set 

PERCENTAGE COMPOS IT lOtI 

RECOv1N IT ION PHOTO-INTERPRETATION 

Dense Green ~;: 

Spcrse Corn 

Woods 

67 

'33 

o 
Weighting Factor • 0.1111 
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TABLE B-7. FIELD 63 RECOGNITION AND PI DATA 
16-15m Pizels in the Field Test Set 

PERCENTAGE COMPOSITION 

CLASS RECOGNITION PHOTO-INTERPRETATION . 

Sparse Corn 18.8 30.0 

Stubble 43.7 50.0 

Pasture 0 20.0 

Dense Green 37.5 0 , 

Weighting Factor - 0.0185 

Accuracy - 55.73% 

TABLE B-8. ,iFIELD 65 RECOGNITION AND PI DATA 
,/ 128-l5m Pixels 'in Field Test Se.t 

Dense Green 

Sparse Corn 

Stubble 

RECOGNITION 

o 

86 

14 

Weighting Factor ~. 0.1481 

Accuracy • 74.86% 

PERCENTAGE COMPOSITION 
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trough or food bins have been are apparent. It was recognized­

primarily as sparse corn because of the relatively lush vegetation 

"-- groweh • 

Field 66 (Table B-9) 

I 

This pasture, near the 1-96 freeway, is very spars~ly covered with 

grass and has considerable bare soil showing. The field was 100 per­

cent recognized as stubble. This is caused by the Rresence of some 

apparently dead vegetation (yellow tones on the C1R film). 

Field 67 (Table B-lO) 

This pasture, just north of. the 1-96 freeway, has lush vegetation' 

spots, along with areas of dark bare soil and considerable brush 

growing in the southwest corner of the test set. The lush spots are 

recognized as dense green, while the brush areas are recognized as 

trees. Pasture and sparse corn split the remainde,r of th~ ~est set, 

with areas of sparser grass cover being recognized as pasture. 

Field 68 (Table B-ll) 

This pasture is quite variable, with lush vegetation apparent in 

the northwest corner and in twc.north-south strips in the field center. 

The remainder of the area is quite sparse grass cover with considerable 

bare soil apparent. Some strictly bare soil spots are visible. " 

Table B-ll summarizes recognition and photointerpretation results.~ 
',;<" 

. !ff. 
f 

Field 60 (Table 8-12) 

This field has relatively dense vegetation cover, but is h~ttled, 

indicating some variation of cover over the tield. Some areas of dark 

bare soil or possibly stubble are apparen~_in the south central part of 

the field. Table 8-12 summarizes the recognition ~d photolnterpreta­

tion results. 
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. TABLE B-9. FIELD 66 REC~ITr~N AND PI DATA 
64-15. Pixels in Field Tt:st Set· 

PERCENTAGE COMPOSITION . 

CLASS RECOGNITION PHOl'O-INTERPRETATIort 

Dense Green 20 

Stubble 100.0 80' 

Weighting Factor a 0.0741 

Accuracy 

, 'CLASS --
Woods 

Sparse Corn 

Dense Green 

Pasture 

- 71.72% 

TABLE B-10. . FIELD 67 RECOGNITION AND PI DATA 
144-15m .. Pixels in Field Test Set 

PERCENTAGE COMPOSITION 

RECOGNITION PHOTO-INTE~RETATION 

55.·5 25.0 

1.4 30.0 

19.4 20.0 

22.9 25.0 

Weighting Factor - 0.1667 

Accuracy - 58.13% 
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TABLE B-ll. FIELD 68 RECOGNITION AND PI DATA 
256-l5m Pixels in Field T.eat Set 

PERCENTAGE COMPOSITION 

" CLASS RECOGNITION PHOTO-INTERPRETATION 

, I 

! 

'I 

~ 

, . 
. -:: ;. Stubble 31.5 48.0 

... ,.: ... ft,. .. : 
- -:.:~ : .. 

. .: 

'~:\:J" 
'f£:." 'i 

5S'" . 

Sparse Corn 1.0 

Bare Soil o 

Pasture 63.7 

. Not .Classified 3.1 

Weighting Factor - O~2963 

Accuracy - 69.53% 

10.0 

2.0 

40.0 

o 

TABLE B-12. FIELD 60 RECOGNITION AND PI DATA 
64-l5m Pixels in Field Teat Set 

CLASS RECOGNITION 

Bare Soil 0 

Stubble· 32.9 

Dense Gre~n 51.6 

Sparse Green 0 

Dense Corn 1.6 

Not Classified 14.0 

Weighting Factor - 0.0741 

Accuracy • 73.45% 

PERCENTAGE COMPOSITION 

PHOTO-INTERPRETATION 

10.0 

25.0 

45.0 

20.0 

0 

0 
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Detailed Analysis of Field 67 (Table B-13) 

To more quanticatively explore the correlation between the 

photointe·rprete"d estimates of field content and recognition results, 

- additional analysis was performed on Field 67. Photointerpretation 

quantitatively estimated the percentage of each cat(~gory within. the 

test set boundaries in Field 67 using a dot-grid.technique.The 

results were then compared to the recognition results as shown in 

Table B-13. 

The average accuracy. using this comparison method was 36.1 per­

cent compared with 58.1 percent for the accuracy using the qualitative 

field composition analysis. The ·major discrepancy in both the results 

occurs in the recognition of the brush category. Recognition proces­

sing overestimates this category within this particular field, and 

this accounts for the reduced field recognition accuracy. In general,· 

it is not likely that brush of this density will occur in pastures, 

so the condition in this test set is somewhat abnormal for pastures 

in general. 

I 

B.4 EFFECTS OF COST!FACTORS ON CLASSIFIER PERFORMANCE ON PASTURES 
, 

In an effort 'Coiimprove the co:-rect classification of pastures 
J 

by reducing false alarms from sparse corn, dense green, and ripe 

oats, cost factors were introducea in the decision rule to selectively 

penalize various misclassifications, e.g., pasture misclassified as 

sparse corn was penalized more heaVily than sparse corn misclassified 

as pasture. Originally, equal weights (costs) were used. 

Using cost factors as shown in Table B-14, the test set was 

reclassified using the same signatures and channels as the original 

case. The 15 m data were used for this test. 

Results of the classification, for pastures, are shown in Table 

B-15~ along with the results from the equal-cost case previously run. 

There was modest improvement in the pasture recognition accuracy 
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. TABLE B-13. QUANTITATIVE RECOGNITION AND PI 
COMPARISON FOR FIELD 67 . 
144-15mPixe1s in Field Tes~ Set 

PERCEN!AG~ COMPOSITION 

CLASS RECOGNITION PHOTO-INTERPRETATION 

Woods 55.5 9.6 

Sparse Corn. 1.8 35.8 

Dense Green 19.8 1.3 

Pasture 22.9 35.4 

Stubble 0 17.9 

Averag& Accuracy - 36.1% 
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TABLE :B-14. COST PACTORS FOR REVISED RECOGNITION . OF PASTURES 

C1assifi~r Class 
., 

BS DS SC SOY ST RO P DG W· 

./ -
, .Bare Soil X 1 1 1 1 1 1 1 1 

.. --

Dense Corn 1 X 1. 1 1 1 1 1 1 

Sparse Corn 1 1 1. 1 1 1 0 1 1 

Soybeans 1 1 2 X 1 .1 1 2 1 

Stubble 1 1 1 1 X 1 1 1 1 

Ripe Oats 1 1 1 1 1 X 1 1 1 

. Pasture 1· I CD 1 2 2 X 2 1 

Dense Green 1 1 2 1 1 1 1 X 2 

Woods 1 1 1 1 1 1 1 1 X 

e.g.: The cost of calling pasture sparse corn is 2. 

The cost of calling sparse corn pasture is 1. 

, 
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over~ll, but -the classification of some pastures did not change 

(e.g., 63 and 66). The change in the classification of other areas 

was more modest. 

The reasons why the classification did not change more dramati­

cally are probably because of the extr~me spectral variability.in 

pastures and because the cost factors were not enough different from 

unity to cause major changes in recognition boundaries. 

When photointerpret('d results are taken to be the true composi­

tion of the eight pastures, the computer recognition accuracy becomes 

70 percent, compared with 31.6 percent if all points in pasture were 

actually pasture. 

The use of cost far tors to bias the re.:ognition results to permit 

more pa~ture recognition in pastures and fewer false alarms of sparse 

corn, dense green and oats improved recognition in pastures slightly 

from 31.6 percent to 33.7 percent. Apparently, more drastic cost 

factors than the 2:1 factors used are required to materially alter the 

processing results on this data set. 
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PROCESSING AND ANALYSIS OF 8192 DATA 

C.l INTRODUCTION 

At the outset of the study, it was felttbat processed 8192 data 

would provide a valuable baseline on the performance of pattern 

recognition devices on multispe·~tra1, broad spectral coverage (0.4-

. 12.5 ~m) spacecraft data. Accordingly, test sites were selected 

loIhere 8192 data and supporting aircraft under-flight data were avail­

able. Previous sections of the report have dealt with the analysis 

and processing of the aircraft scanner data. This section details 

the processing and analysis of the 8192 data. 

Although S192 data were ordered from five test sites, data from 

only four w·'re processed and analyzed. The fifth data set, from North 

Dakota was retained as a backup. Processing of White Sands and 

Atchafalaya data were completed at ERIM and Baltimore data were 

processed at H~neywel1-Minneapolis. Processing the Michigan data was 
'" started at ERIM,"'but was not completed br the end of the contract 

because of technical a:fficulties. 
"-Because the S192 data were noisy when originally co11~cted (the 

sensor was not operating in normal fashion), noise reduction techni­

ques were designed to preprocess the data before analysis could begin. 

These noise reduction techniques, developed in February 1974 before 

the production processing ·system was fully operational, were success­

ful in reducing the noise on the data, but noise was not entirely 

e1i~inated. The resultant data were thus noisy enough to represent 

the upper limit of NElIp for most applications we e~,amined. Accord­

ingly, the aircraft data simulated cases of higher radiometric 

fidelity than the S192 sensor. Because oi the radiometric quality of 

the S192 data, the planned radiometric studies were not performed. 

Studies were performed Cln the rank ordering of 5192 spectra). channel.8 

for various applications and the classification accuracy obtainable 
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with different numbers of bands. 

in this appendix. 

C. 2. APPROACH 

These study results are reported 

As previously mentioned, noise reduction algorithms were designed 

and implemented before the actual processing of the data commenced. 

In this section, both the noise reduction and the processingj~pproaches 

will be discussed. 

C.2.l NOISE REDUCTION 

The 5192 data, as recorded on the spacecraft, were more noisy 

than expected, as a result of non-ootimum sensor operation. Three 

types of noise appeared at unexpected levels in the data -l/f or low 

frequency noise with a period of several scan lines, herringbone 

medium frequency noise caused by mechanical cooler piston action, and 
/ 

high frequency white noise. These tYP2S of noise had been recognized 

. early in the analysis of data, and ERIM were already under contract to 

assist JSC personnel in defining the filtering schemes and filter 

parameters to reduce noise to acceptable levels. 

As a first step in the processing, power spectra analyses were 

performed on the data from each of the five areas to determine the 

dominant frequencies of the neise source~ and the amplitude of each 

source. Then filtering schemes and coefficients were designed. 

The reduction of l/f noise was handled dLfferently from the 

reduction of herringbone noise. Because the l/f noise had a frequency 

of only fractions of a cycle per scan, the dark level clamping algor­

ithm alrcadyplanned for use as part of the calibration system package 

would be effective in reducing this noise level. The noise appeared 

as a "bounce" on the signal, and to & first approximation, eacn pOint 

of a given scan line was offset from the corresponding point on the 

previous line by a constant amount. The amount of this offset varied 
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from line to line. Because an offset was involved, the clamping 

system should have removed all of tb~ variation. However, it was 
~. 

difficult to obtain an.accurate estimate of the dark level (or _old 

referenL~ plate for th~ thermal channel) because some of .the data 

values exceti.tJ.ed the dynamic range of the AID converter on board the 

spacecraft. Accordingly, a revised dark level was estimated by 

fitting a Gaussian curve to the valid data points, then estimating a 

new mean value for the dark reference. This new mean value was used 

as the dark reference. Clamping all data values to this revised dark 

reference effectively reduced tbe llfnoise because a new dark refer­

ence was calculated by each scan line. The noise varied for signal . 

level at rates considerably less than the scan line rate. 

A different filtering approach was used to remove the herringbone 

noise. Because the noise consisted of a set of well defined frequen­

cies in the video bandwidth, sharp notch filters were designed to 

"remove the energy at the frequencies of the noise. Becausesharp 

notch filters transient response includes ringing, and the ringing is 

more severe for narrower·iilter notches (for a given notch shape), the 

best filter for removing" the herringbone noise While retaining as much 

of the original video data unaltered was a compromise. The suitable 

filters were implemented as digital filters, using a program developed 

by the Jet Propulsion Laboratory (JPL). 

Both the clamping and the digital filtering of data were per­

formed byNASA'at JSC. Data calibration and scan line straightening, 

to produce standard product S053, completed the preprocessing: of th~ 

'S].92 data. 
~ 

C.2.2 PROCES~ING TECHNIQUES 

Processing techniques used for the S192 data were very similar 

to those used for the aircraft data as discussed in Section 2. 

However, the approach will be further discussed here. 
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C.2.2.l WHITE SANDS GEOLOGY DATA PROCESSING 

The White Sands data for the Geology 'case were collected' 

on the SL-2 mission on 14 June 1973, and pertinent characteristics 

'.If the data are summarized in Table ;C-l. 

The first step in processing was to copy the 9 track 800 bpi 

,- data" sets to the 7 track 800 bpi ERll1 standard format for further 

processing. This step was accomplished on an IBM 360 co~uter. 

Special software was developnd for this task, with support for the 

development cOming'partly from this contract and partly from other 

Skylab investigations at ERIK. 

The next processing step (see Figure C-l) was to prepare a graymap 

of the red band for location of training sets and verification of 

data cqverage and quality. 'Using ground information gathered from 

geologic maps and past geologic studies, training sets for important 

rock and soil types in the White Sands Area were located on the graymap. 

Before si~natures were extractedfQL the geologic materials, a 

set of promising ~atio features were defined by analysis of Earth 

Resources Spectral Information System (ERSIS) data of the materials. 

likely to be found in the scene. ERSIS library spectra were then 

'edited, using standard programs, to yield spectra of Ltaterials 

likely to be in the scene. A set of likely materials was then 

determined from analysis of ground truth information. Of 98 possible 
! 

ratios, twenty promiSing ratios were defit.ed by calculating. reflect-

ance ratio data from ERSIS (band averaged over S192 spectral band­

widths), and selecting ratios which separated the scene materials. 

When the twenty-four promising ratios were identified, signatures 

fr<?m the training sets, previously located on the graymap, were 

extract~d. A transformation routine was then used to calculate ratio 

feature signatures directly. Before forming the ratio features for 

signature calculation, the darkest object level was subtracted from 

each signal. value in the channels to be divided. 
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- . TABLE C.,..l. DATA CHARACTERISTICS 

White Sands S-192 Data 

·~SPECTBAL CHANNELS AVAILABLE . 

.41 - .46 11m 

.52 - .56 

.56 - .61 

.62 -.67 

.68 - .76 

.78 - .88 

• 98 - 1.03 

1.09 - 1.19 

1.20 - 1.30 

1.55- 1.75 

2.10 - 2.35 

SPATIAL RESOLUTION CASES CONSIDERED 

80 m 

OTHER PERTINENT DATA 

Date of Collection: 14 June 1973 

Flight Altitude: 260 n. mi. 
, 

-
&& 

Sensor: S-192, S-190A SL-2 Mission 

Time of Day: 1444:42.3- 1445:00.0 GMT 

Quant1.ty of Data:· 40 x 100 n. mi. 
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Signatures extracted from the training sets were then analyzed 

for consistencY9 and signatures of like materials combined to form 

training set statistics more characteristic of the class to be 

recognized. The optim~ ratio features 9 and the spectral channels 

_comprising these ratios were prioritized by ·the feature selection 
,;;:'-" 

program. 

Data were then classified 9 using the composite' training set 

statistics9 the optimum 13, 79 or 4 channels and the darkest 

object levels previously determined in preprocessing. Recognition 

maps were displaye4 and analyzed to determine the correct and 

incorrect classification of geologic materials. 

C.2.2.2 BALTIMORE LAND USE DATA PROCESSING 

The ~192 data for the Baltimore Land Use Test Site were 

collected on the SL~3 mission on 5 August 1973, and pertinent char­

acte!"istics of this data set are shown in Table C-2. All processing 

of the Baltimore S192 data was done at Honeywell-Minneapolis. 

After format conversion, all bands of the S192 data were converted 

to imagery on the Optronics filmwriter. Also digital computer graymaps 

of the red band were made to allow selection of training sets and to 

~tocate the area covered by the S192 data (see Figure C-2) • 

. ~ Before continuing with the processing9 Anderson Level II ground 
',,:----

'----' information provided by R. Alexander of USGS was digitized and merged 
'-- - - - ~ .. 
'----.witbthe S192 data to provide a base for selection of training sets 

-and, fol:' _evaluating the ultimate map product. Then training sets for 

Anderson Level' II categories were extracted from three sub-areas of 

the total 5192 data - Washington, D. C., Baltimore, and an area 

halfway betJken Washington and Baltimore. 
\~.-

.--' 

Af~~·training sets had been selected, and the various samples of 

each 'Level 'II land use class combined to .create composite signatures, 

the ordering of spectral channels was performed using the mapping 
error cril€;rion. 
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TABLE C-2. DATA CHARACTERISTICS 

Baltimore S~192 Data 

-SPECTRAL CHANNELS AVAILABLE 

.41 - .46 \.1m 

.46 - .51 

.52 - .56 

.56 - .61 

.62 - .67 

.68 - .76 

.78- .88 

.98 -1.03 

1;,09 - 1.19 

- 1.20 - 1.30 

1.55 - 1.75 

2.l0 - 2.35 

SPATIAL RESOLUTION CASES CONSIDERED 

OTHER PERTINENT DATA-

Date of Collection: 5 August 1973 

Flight Altitude: 235 n. mi. 

I 
, I 
_ J 

10.2 .- 12.5 

Sensor: 5-192, S-190B, S-190A, SL-3 Mission 

Time of Day: 1503: 48.6 - 1504: 01.3 GMT 

Quantity of Data: 40 x 61 n. mi. 
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Classification was performed using the K-class classifier and 

various approaches. The first approach was a conventional one-pass 

classification approach using the best seven and all thirteen spectral 

bands. In another approach, sequential classification was attempted, 

using a few channels to distinguish broad land use classes, then uS1ng 

other channels and the broad class assignment to perform more detailed 

recognition. Finally, an approach combining the sequential classifi­

cation with a modification of the decision rul~ which adjusted the 

recognition of a pixel to conform to the identification of its neigh­

bors, was implemented. The details of this procedure are discussed 

in Section C.3.2 of this appendix. 

The classification results were evaluCited using a 'test set of 

points. A color coded recognition map of the data was also prepared. 

C.2.2.3 ATCHAFALAYA WATER QUALITY DATA PROCESSING 

Th~ Atchafalaya data for the water quality study was 

collected on the SL-3 mission on September 19, 1973, and pertinent 

characteristics of this data set are summarized in Table C-3. 

After format conversIon, both red and near/infrared (0.78-0.88 vm) 

bands were mapped to provide a picture of the terrain. Both bands 

were mapped to provide a picture of the vegetation classes (portrayed 

by the red band) and the vegetation - water interface (portrayed by 

~hp near infrared band). 

Because of the priority of the water quality study, relative to 

the mapping of the agri~ulture classes (nearly all of the agricultur~ 

was ~ugar cane) and the natural vegetation (a great deal of which was 

cypress-tupelo forest), this investigation-was pursued, as shown in 

Figure C-3. 

Initially, the data were edited to cover the same general area 

as the MSDS data previously discussed, but there was incomplete 

overlap of the aircraft coverage and the S192 coverage. After editing, 
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TABLE C-3. DATA CHARACTERISTICS 

Atchafa1aya S-192 Data 

SPECTRAL CHANNELS AVAILABLE 

.41 - .46 lCD .78 - .88 

.46 - .51 .98 - 1.03 

.52 ..; .56 1.09 - 1.19 

.56 - .61 1.20 - 1.30 

.62·- .67 1.55 - 1. 75 

.68 - .76 2.10 - 2.35 

SPATIAL RESOLUTION CASES CONSIDERED 

80m 

OTHER PERTINENT DATA . 

Date of Collection: 19 September 1973 

Flight Altitude: 260 n. mi. 

Sensor: S-192, S-190B, S-190A 

10.2 - 12.5 

Time of Day: 1345:57.8 - 1346:16.8 GMT 

Quantity of Data: 40 x 76 n. mi. 
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water of various turbidity classes were identified on S190A and RC-8 

photography and located on graymaps of the area. 

At the same time as signatures were being located and extracted, 

an analysis of data quality was made to determine the level of noise, 

and to obtain some estimate of the number of classes of water quality 

which could'be discriminated. 

Signatures for various water .quality types were combined to yield 

a set of composite signatures for water quality mapping and determina­

tion of optimum channels for mapping~. Then the optimum channels 

were determined. 

A map of water quality was made using the S192 data. Prior to 

mapping v~rious water quality types, the water data was separated 

. from the land data by slicing the 0.78-0.88 lJmband. The map was. 

later analyzed as reported in Section 3.3 of this report. 

C.2.2.4 MICHIGAN AGRICULTURE DATA PROCESSING 

Although the intent was to process the S192 data collected 

over the Michigan Agriculture test site on 5 August 1973, to obtain 

a recognition map of crops, this effort was not completed by the end 

of the, (..ontract. The major problem encountered with this data set 

was the difficulty in locating training sets for the major crops. Two 

factors are felt to be responsible for this difficulty. First, the 

data were collected on a very hazy day, and the contrast of the scene 

was reduced as a result. Second. the field patterns in the Michigan 

data are relatively small, with many fields less than 20 acres and 

nearly all fields less than 80 acres. Under these conditions with 

ERTS data, training fields of 40 acres or less have proven difficult 

to find·, 

Procedures were initiated to locate training sets by locating the 

sets on a topographic map and photography, then translating the 

location t~ the S192 data through the use of control pOints visible 
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on both S192 and photography or map data. We were unable to complete 

this work before the end of the contract, and it is being continued 

under our Sky1ab investigations. 

C.3 PROCESSING RESULTS 

As a result of the processing procedures detailed in Section 2, 

processed products were obtained for the Baltimore, White Sands, 

and Atchafa1aya sites. In this section, the intermediate and final 

results of the processing are presented and discussed. 

C.3.1 WHITE SANDS DATA RESULTS 

After preparing a red band graymap, and consulting existing 

geologic maps and other information, a number of training sets were 

selected from the data. After considerable analysis of the signatures, 

the thirty signatures shown in Table C-4 were defined for classifying 

the data. The signatures are divided into five main groups roughly 

organized according to composition - ferric iron containing materials, 

calcareous materials, igneous rocks, c1ayp, and other materials. 

In parallel with the effort to locate training sets, we 

instituted an investigation to define promising ratio features from 

S192 data using the spectral ref1ecta~c€ information from the ERSIS 

Library. Analysis defined the twent)1-four ratio features shown in 

Table C-5 as ones which well separated the thirty signatures. Next, 

the ordering of the features was accomplished by a digital computer 

program STEPL [26]. The results of the analysis are shown in Table 

C-6. Shown in Table C-6 along with the ratios, in order of selection, 

is the average pairwise probability of misclassification for the 

thirty training sets. 
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TABLE c-4. S-192 WRITE SANDS DA7A 
TRAINING SETS 

Ferric Iron Containing Materials 

Red soil and sediment 
Recently deposited'red soils 
Red soil 
Red sandstone? (Sacramento Mountains) 
Red sandstone? '(Sacramento Mountains) - 2nd sample 
'Brown soil 
Red so11 - 2nd sample 
Red soil - 3rd sample 
Iron stained sandstone - Yeso - San Andres Formation 

Precambrian lseeous Materials 

Precambrian crystalline granite and schist 

Calcareous Materials 

Dolomite and dolomitic sandstone 
Calcareous shales and argillaceous limestones 
Argillaceous limestones and calcareous dastics - Hueco formation 
Dark colored limestone 
Sediment - Jarilla Mountains 

Clay Materials 

Dark drainage deposits} Dark Bolson Sediment 
Dark colored sediment 
Dark pediment } Bolson Sediment 
Valley sediment 
Rem1nant rock 

Other 

Gypsum sands 
Multicolored sediment 
Light colored pe~iment 
Gray soil 
Crystalline rock - Jarilla Mountains 
Pediment 
Pediment - 2nd sample 
Valley fit1 
Valley sediment 
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- TABLE C-S. RATIOS SELECTE,D FROM ERSIS FOR S-192 

White Sands Geology Data 

2.10--2.34/1.03-1.19 

2.10--2.34/0.77-0.89 

2.10-2.34/0.60--0.65 

1.55-1.73/1.15-1.28 

1.55-1.73/0.93-1.05 

1.15-1.28/1.03-1.19 

1.15-1.28/0.93-1.05 

1.15-1.28/0.65-0.73 

1.15-1.28/0.50--0.55 

1.03-1.19/0.93-1.05 

1.03-1.19/0.65-0.73 

1.03-1.19/0.50-0.55 

321 

0.93-1.05/0.77-0.89 

0.93-1.05/0.60-0.65 

0.93-1.05/0.50-0.55 

0.77-0.89/0.65-0.73 

0.77-0.89/0.50-0.53 

0,.65-0.73/0.50--0.53 

0.65-0.73/0.45-0.~O 

0.60-0.65/0.50-0.53 

0.60-0.65/0.45-0.50 

0.60-0.65/0.42-0.45 

0.50-0.55/0.42-0.45 

0.45-0.50/0.42-0.45 

~' ;;.. . 



·.J 

. TABLE C-6. THIRTEEN OPTIHUM RATIOS, IN ORDER OF 
PRIORITY, FOR S-192 WHITE SANDS DATA 
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FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN !.", 

C.3.1.l CHANNEL ORDERING RESULTS . 
'. There is physical significance to the band ratios selected. 

The first ratio (2.10-2.34 \.Im/0.77-0.89 \.1m) is the ratio of two bands 

which separate the carbonates from those classes containing ferric 

iron.' In 0.77-0.89 \.1m, the ferric ir\)n containingma'terials have 

lower reflectance than at 2.i-2.35 \.1m because of the absorption by 

the ferric ion in 0.71-0.89 \.Im~ Conversely,the carbonates have 

higher reflectance in 0.77·-0.89 \.1m than at 2.1-2.35 \.1m because of 

." 

.. absorption of the carbonate ion at .the longer wavelength.s. Thus,the· i 

ratio value for carbonates will be high and low for ferric iron 

containing materials. 

With ~he second ratio (1.03-1.19 Ilm/0.50-0.5S \.1m), ferrous 

iron containing materials are separated from those containing 

ferr.ic iron.· In the 1.03-1.19 J.Im region the reflectance of ferrous 

iron compounds is low ~ecause of absorption by that ion. Ferric 

compounds show intermediate reflectivity. At 0.50-0.55 J.Im the 

refl~..;tance of ferrous iron.compounds is relatively high,'while the 

reflectance of ferric iron compounds is low because of absorption by 

that ion. Cons.equ~ntly; 'thi~second ratio' will have lo.w values for 

ferrous iron and bigh values for ferric iron containing materials. 

The third ratio separates the ferric iron containing materials 

from all others in the scene. As a result of ferric iron absorption, 

the reflectance of ferric iron containing materials is very low in 

the green region (0.50-0.55 \.1m). In the far red region, there is no 

absorption by this ion. Consequently the red/green ratio 

0.67-0.73 J.Im/0.SO-0.55 J.Im.has1arge values for ferric irCln containing 

materials and intermediate or low values for other materials. 

The fourth ratio separates the hydroxyl ion containing materials r.. . 

(primarily clays) and the ferrous iron containirg ma~erials frov the 

carbonates and light fe1sitic igneous rocks. The reflectance of the 

former materials drops in the region covered by the two b::mds, while 
the ratio for the latter materials will be low. 
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Beyond these four ratios s: there are few of obvious physical 

significance. Ratio 11 (0.60-0.65 lJm/O.50-0.55 lim) is a ratio similar 

to ratio 3 (0.65-0.73 ~m/0.5O-0.55 lim) with the red band placed 

partially in the ferric iron absorption band. Band ratios having 

the 2.1-2.35 lJm channel in the numerator probably are effective in 

delineating carbonates and ciays from the other materials because of 

hydroxyl and carbonate ion absorption in that band. 

C.3.l.2. RECOGNITION RESULTS 

Recognition.maps of a portion of the White Sands Test Site 

were prepared using the best threes four and eleven ratios, corres­

ponding to Ss 7s and 13 channels respectively. The area processed s 

Figure ~-4, was one with relatively good ground information ana one 

containing a majority of the training sets. The area shown is 

47 km x 37 km in dimension, located near the gypsum dunes of the White 

Sands National Monument. The eleven ratio recognition map and 

associated color code are shown in Figure C-S. Recognitio~ accuracy 

chekcs were carried out for training sets only since limited ground 

truth data and low altitude aerial photography precluded identifica­

tion of suitable' test sets. 

The dat~ was analyzed two ways. First, the accuracy of deline-e 

ating four of the five basic compositio~al ·L~~es of materials in . '. . " ~ .. ' 
the scene was assessed. Accuracy was then assessed fot a six cla~s 

map where each compositional type had :o~~··r,r :nore subclasses. 

Satisfactory classification accuracy "~''=.1 c'1(\t obtained on all the 

thirty signatures that we chose for the recognition, so the recognition 

of some of . these signatur~.s were ":~bined. 

C.l.l.2.l Three Ratio Res'Jlts 

Tables C-7, C-8, and C-9 show the classification accuracy 

results for both four and six class cases with three, four, and 
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COLOR CLASS 

Light Blue GYFsum sand 

Hedium Blue Bolson sediment 

Dark Blue Terrain Shadow 

Green Alluvium 

Dark Green Dark Bolson sed il'len t 

Pink Red Alkali Soil 

Red Red Alkali Deposits 

Dark Red Gypsiferous Soils 

Gray Soils 

Black Precambrian T.ocks 

FIGURE C-SA. COLOR CODE FOR S-192 RECOGNITIO MAP (Fig. C-S) 
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TABLE C-7. WHITE SANDS S-192 PROCESSING RESUL S 
THREE RATIO CASE 

4 classes 

Classification Iron Mtls Igneous Calcareous 

Gnd Info 

Iron mtls 56.8 0.7 0.9 

Igneous 2.0 2.0 14.0 

Calcareous 23.9 2.4 11.6 

Clays 46.8 0 0.3 

Average Accuracy 25.3% 

6 classes 

Red Red Precam- Calcare-
Classification Alkali Sediment brian ous 

Gnd Info 

Red Alkali 53.4 23.6 0 0 

Red Sediment 2.8 27.8 1.7 2.2 

Precambrian 0 2.0 2.0 14.0 

Calcareous 2.0 21. 9 2.4 11. 6 

Bolson Sediment 10.5 23.1 0 0.7 

Dk. Bolson 30.8 28.2 0 0 Sediment 

Avera~e Accuracy 23.1% 

Clays Other 

21.6 20.0 

40.0 42.0 

34.7 21.4 

30.8 n.l 

Dark 
Bolson Bolsvn Other 

5.9 0.4 18.4 

6.6 34.3 24.6 

8.0 32.0 42.0 

4.4 30.3 27.4 

41.3 1.4 23.0 

17.3 2.5 21.2 



TABLE C-B. WHITE SANDS S-192 PROCESSING RESULTS 
FOUR RATIO CASE 

4 classes 

Classification Iron Mtls Igneous Calcareous 

Iron Mtls 53.4 3.2 4.1 

Igneous 6.0 16.0 22.0 

Calcareous 24.9 7.8 16.7 

Clays 47.3 0.3 8.0 

Average Accuracy = 29.2 

6 classes 

Red Red Pre- Calcare-
Classification Alkali Sediment cambrian ous 

Red Alkali 5~.5 lB.6 0 2.6 

Red Sediment 1.7 2B.9 7.2- 6.1 

Precambrian a 6.0 16.0 22.0 

Calcareous 2.3 22.6 7.f] 16.7 

Bolson Sediment 11.9 21.0 0 3.5 

Dark Bolson 
33.3 28.2 0.6 12.1 Sediment 

Average Accuracy = 27.2 
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Clays Other 

18.9 20.4 

26.0 30.0 

27.9 22.7 

30.8 13.6 

Dark 
Bolson Bolson Other 

7.7 1.3 17.3 

7.B 23.9 24.4 

8.0 18.0 30.0 

4.7 23.2 22.7 

48.9 0.7 23.0 

13.4 0 12.4 



TABLE C-9. WHITE SANDS S-192 PROCESSING RESULTS 
ELEVEN RATIO CASE 

4 classes 

Classification Iron Mtls Igneous Calcareous 

Iron Mtls 61.4 1.9 2.4 

Igneous 4.0 16.0 14.0 

Calcareous 19.8 6.5 29.0 

Clays 35.1 0.6 1.5 

Average Accuracy 38.0 

~ classes 

Red r.ec Pre- Calcare-

16.0 

16.0 

12.8 

45.4 

Dark 
ClasE:;if ication .Ukali St:dlmen l cambria.l ous Bolson Bolson ---

Red Alkali 49.1 29.3 0.4 0.9 7.3 0.8 

Red Sediment 0 39.4 3.9 4.5 10.5 15.5 

Pre :ambricln 0 4.0 16.0 14.0 8.0 8.0 

Calcareous 1.7 18.1 6.5 29.0 4.8 .' .9 

Bolson Sediment 6.4 14.0 0 0 65.7 0 

Dark Bolson 22.4 28.2 1.3 3.2 23.8 0 Sediment 

Average Accuracy D 33.2 
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Other 

18.2 

50.0 

32.0 

17.4 

Other 

12.2 

26.2 

50.0 

32.0 

13.9 

21.1 



~R~I~NI~---------------------------------r O-R-M~r-RL-T-~-'-LL-O-W-A-U-N-l-.-DO-A-'-'-O-AI-rS--r~-[-U-N-I -f-A-S'-" -O-'-M-'C-H-'G-.-N 

elev n ratios respectively . Referring to Table C- 7, the results of 

these analyses are summarized . \"ith three ratios, th aver .... g correct 

clas ification is 25 . 3 percent (or the four clas~ and 23 . 1 perc nt 

[or the six Cl~55 cases. The numbers of the four class are quit 

low, and dominated by the poor recognition accuracy of the igneous 

Precambrian rocks (2 percent) and the calcareous rocks . Pre cambrian 

r ucks are confused with the calcareous rocks and the clays b~cause 

the our bands were used [or the three ratio recognition, the 

lighl [ 1sitic igneous rOLl\.s appear similar lo the clays and ca rbonates 

(all have fairly flat spec tra over the regi uns covered by the first 

three r ;1tios). Only when fourth ratio is added does the separiltiun 

of igneous (rum clays and cal~areuus rocks 0ccur. The fourth ratio 

was one which separated carbonates and clays (rom light felsitic 

minerals because of absorption bands in the spec tra 0f the first two 

materials in the bands covered by the fourth ratio. Th re is on­

siderable co n (us ion of tl.e ca lcareous mater 1al s with the iron-

ontaining materials and clays. On ce again this is caused by the 

fact that the thr e ratios do not contain the bands in which one would 

expe t separation of these mat rials. 

In the six class case th correct re cognition percentage is a 

bit l ower, dominated again by the poor r cognition accuracy o f the 

Pre cambrian ign ous and calcareous r ucks . There also is a fair 

amuunt 6f misclassifi ca lion between the two r ed (iron cont ai nin g) 

materials and t!Il' two sediments. But the distinctions b tween these 

ar fine distinctions which cannot be r e liably mad e with onl~· thre 

rat ios , and the three rati os us d for this map, in parti c ul a r. 

Tn both cast's , there is a great dea l of mis c lassifiC3 tinn of 

igneous and ca l a r (lIlS r o ks as nth r . 1h o ther c lass consis t s 

mainly of sl'c1im~nts whi ch rl r mixtur's of <"lays nd 51 lit· .). Tltu;,; it 

may b xpec ted th a t e r oded a r as of th' ca l ca r ous and ign eous ro ' k 

units may 1)(' l og ica ll y c la ssif i ed as th ' IthL'r c l ass. Confi rm a ti on 
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of lhis fact required either low altitud> photography o r ground 

checking . 

C . 3 . l . 2 . 2 Four Ratio Resulls 

As staled previously , the exp ~' l ed r e sult of addi'lg the 

fourlh rJtio would b~ to s paral the hydroxyl and ferrous iron con ­

ta~~ing ma t erials from th igneous and ca rbonate r ocks . To some 

~x tent , this exp cratiun is born out by the empirical d ta o The 

major effect of adding the lourth ratio is to slightly improv~ the 

L1assifi at ion aCLUr..lcy Lli all class~s excL'pt t,le rcd s dirr.ent (and 

consequ~'n tl y r d mareriais cl..l~s in the tour class resul ts). "; ,Ie 

major effec t on misclassification is LO reduce the misclassification 

uf calcareuus material as clay and to reduc the misclassificatinn of 

calcareous materials as Bulson sedimenl in the six class r sult~ . 

~iscldssification b~tw~Ln r~d alkali deposit and the red sediment and 

)~t\"'L:en the red sedimen L dnu B,)lsllll seuiment are rL'duLed . Bolson 

sediment apparently llll1tains :-'·lbsl.1ntial ferrous iron «(rum ils 

gray-green color des,riptilll1), Lhus it is logic..!l that the t'"'urth rati " 

",'uuld s<'para t e Lhis mau.'rial trClm callilrL·t1us and f~'rric iron conta ining 

matL' rials. 'lhl' overall ('1.1ssilic~ltil)n ilCLurac' inLre,1SL'S frnID 25 . 3 

to 29.2 perc, .l tnr the tour, lass ,aSl' and frum 23 .1 to 27.2 pt:'rcent 

lor thl! six ' ILl!> ' caSl' W!1L'1l g,ling trpm lilr ~ lu tflur ralios . 

C . 3.1.2.J r,IL'Vl'n Rati,. Rlsults 

Ih comp,lrispn with tIll lour r.llio rL'~ults, thl' classification 

,1l'I'UralY llsing lhirtt:L'n rillit , :-, intrl'ilSl' S (,)r remains th~' sam) f(lr 

all class's l'XI'(,'pt til!' n~d :llkali dl?p,)siL ll)r lh. six llilSS cas' , when' 

inl'r'dsed Inllfllsilln with till rlu seuim'nts UCLllrS. WI1'n (1Imp,lring 

the :-esults .qt 13 r,llills lompared ""ilh tPUT ratills , m.my ,1\ tlw mis-

classifications del rease. HOWL'\er. tl1l' misllilSsil i <Ilion elf Prt'c mbrian, 

CaiC<ln'()lIS , dlld dJrk Bolson s dim III ,IS (lthl'r , ,IIlU til· misl llsslt i ation 

'" rl'J sl'ulmellts ,1nd <.I'lrk B(lls(ln svdimvnts ,IS l'\pls,'n sL'diml'nt inl J't'J!-oe . 
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The increase in misclassification for th~se classes is unexplained. 

Ordinarily , mlsclassificatlon would be xpected to decrease as more 

features are added to the classificat ion process, but in c~ses where 

the features are noisy , increases in misclassifications are sometimes 

observed a~ the noisy eatures are added . 

C. 3 . l.) COlCLUSIO'S 

The r esults of the S192 pro~essing and analysis show some 

promise for the S192 as a lithologic mapping device , at least for the 

r~d, ferric iron containi ng formations . There is evidenc f r om ERTS 

results that the mapping of these formations can be accomplished with 

a si:1g1e gre, Ired ratio band . The relatively mediocre performance 

at separali n this igneous Precambrian gr anit from the o~her materials 

co uld be improved by the addition uf a second thermal tand (to exploit 

the rests~rahlen effects) at about 8 . 3- ~ .3 J m. Alternatively, a pass 

later in the. ay when the rocks had heated appreciably (the data 

processed were collected at abuut 0800 hrs MDT, and solar heating 

had not progressed far) might ,Idve produced thermal data which could 

hav~ separated many of the rock types on the basis of thermal inertIa . 

Thermal data of good radiometric fidelity would be required . These 

data were collected early in the Sky lab mission when the S192 instru­

ment was still being adjusted for optimu~ performance. As a result , 

the dala cannot be judged as repres ntacivc of what other Investiga-

tions may obtain with other data sets. In addition, no visits were 

made to the site for ground ch cks of accuracy of classification . 

Jnst ad, geologic maps dnd literature were usc-d for asst'ssment pf what 

scene classes were to be mapped . Field wo rk and/or examinalion of 

photography could change andlysis and results of thLs dnln. 
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C. 3. 2 ATCHAFALAYA DATA PROCESSI1G RESULTS 

I\t the outset of the proc ssing , it was concluded that data 

quality would be an impurtant issue in this phase of the effort 

because of the low r~flectance targ ts and with small reflectance 

differences in thuse 1'-,'", reflectance targets caused by water quality 

diff~rences . Accordingly, a data quality xamination was begun. 

R>sults oi that investigation are shown in Table C-IO . Two 

conditions are apparent fr0~ Table C- IO that compromise the value of 

this parti ular data set for water quality work . First, the dynamic 

ranges of many of the chann'ls which penetrate the water are s verely 

reduceJ, probably as a result of a conservative calibration and 

scali.ng philosophy in the produc tion software . This low dynamic range 

i5 particularly apparent in SDO's 1, 3, 5, and 18 . These SDO's are 

i n the s pectraJ region of maximum water penetration and all have 

dynarnL rdnges (fo r Lh.., whole dHa Slt, including land data) of less 

than p'lcent ol f rill ''if) I " ssihl l('vels . T11i5 SC..1 " g reduced 

t he i t lIeSe ,I ~;' , l ne wat, r qualilY in ves tigatjol1, 

: . 5 , 2 . 1 R'-;UL~;, (f TCR::;, TY DELINEATION 1. ' WATER 

To otH,lin ,J qua I it at I 'C CSl ima t o f the kinds of water 

"'rbi lity \vhich "auld be mappe d \viLh these data, <;ignatures wer 

tr,l('ted for di fre rl!nt Wdll' r qual ity types identi ied on RC-8 and 

o.;l90A dnd B dat a . JIll' ml:ans and s tandard deviations L f two watcr 

q\l<llity type s , I I '..l r (5 cases) and turbid (5 cases ) are shown in 

Tobit':, C-] 1. 

The very large standard dl!viations obsc rv d in certain channels 

(e. g " SGO 1. 3. and 7) of on· signdturc, but no t in th sam channels 

in adjaLcnt signatures uf the s~me lurbidity c lass illustrate the 

~[fe c ts and magnitude of lh~ rand0m lnw-fr0quenry noise probllms in 

III 5192 data . 
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ERIM I 
\->'2 FORMAT 

SDO T.C.* (~m) 

] 1 .52-.56 

2 2 . 52-.56 

3 3 .56-.61 

4 4 .56-.61 

5 5 .62-.67 

6 6 .62-.67 

7 7 .68-.76 

8 8 .68-.76 

9 9 .78-.88 

10 10 .78-.88 

11 11 1. 55-l. 75 

12 12 1.55-1.75 

13 13 2.10-2.35 

14 14 2.10-2.35 

17 15 1.20-1.30 

18 

I 
16 0.46-0.51 

19 17 0.98-1. 03 

[I 18 1. 09-1. 19 

19 10.2-12.5 

22 ! 20 0.41-0.46 
I 

I 

*T.C. Tape Channel 

TABLE C-IO. S-192 DA7A QUALITY 
ATCHAFALAYA DATA 

I DYNAMIC RANGE : 
(0.256) I 

I DATA VALUES % LOWER LIM 

I 42-55 
I 

5 I 0 

I 43-55 5 0 

34-48 6 0 

34-48 6 0 

27-42 6 0 

27-41 6 I 0 

44-76 13 0 

44-77 13 0 

39-61 12 0 

39-61 12 0 

42-58 7 0 

42-59 7 0 

0-7 3 0 

0-5 2 0 

34-74 16 0 

70-91 9 0 

29-67 15 0 

33-64 13 0 

119-146 11 0 

I 55-86 13 0 
I 

% POINT CLIPPED 
UPPER LIM OTHER 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 218-L33+ 2nd Distri-

0 218-233+ bution 

61.6 

61.6 I 

I 
I 

0.2 

0 

0 

0 

0 

0 



TABLE C-11. ~-192 ATCHAFALAYA WATER QUAL[TY SIGNATURES 

SDO 22 18 1 3 5 7 21 
A= 0.41-0.46 0.46-0.51 0.52-0 .56 0.56-0.61 0.62-0.67 0.68-0.76 10 . 4-12.5 

Clear 1 m 70.13 82.57 56.27 41. 67 33 .35 51.27 132.97 
E (4.58) (3.18) (21. 42) (13.25) (1. 97) (2.49) (4.01) 

2 m 70.76 83.00 48.70 39.94 33.16 50.27 134.43 
E (5.11) (2.86) (1.59) (1.78) (2.02) (3.65) (4.49) 

3 m 7'L.. 57 84.57 54.62 37.35 34.37 47.97 132.73 
E (5.41) (2.84 ) (39.93) (4.80) (7.20) (25.73) (4.15) 

4 m 70.38 84.10 48.13 39.46 l) 33.71 51.03 133.27 
E (6.40) (3.84) (1. 92) (2.02) (5.59) (15.94) (4.61) 

5 m 72.10 84.13 47.92 39.54 32.87 49.38 133.78 
w E (5.20) (3.13) (1. 96) (1. 86) (1. 77) (2.95) (4.61) 
w 
0-

Turbid 1 73.00 86.02 51. 71 44.03 37.78 59.21 137.02 
(5.54 ) (3.00) (1. 59) (2.13) (1. 84) (2.54) (4.72) 

2 72.60 86.79 51.92 44.24 38.37 61.08 128.13 
(S.40) (2.8) (2.22) (1.99) (2.10) (2.71) (3.75) 

3 73.97 86.10 51.56 43.73 38.21 6.2.56 137.S6 
(4.36) (.'3.17) (1.76) (1. 64) (2.18) (3.38) (4.26) 

4 73 . 83 86.33 52.41 44.S6 38.48 59.98 137.79 
- (4.76) (3.12) (1.58) (1.53) (1. 49) (2.80) (4.27) 

5 73.24 87.02 52.62 43.87 37.98 61.30 135.17 
(5.30) (3.26) (1. 77) (2.25) (2.34) (3.24) (3.5S) 
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Composite signatures or bo t h turbidity classps we r e generated 

using clear water training sets 2 and 5 and turbid tolater tr-aining 

sets 1-5. The composite signature statistics are presen ted in 

Table C- 12 . 

These composite signatures were then used as input to the STEPL 

program (ref. 1) average pairtolise probabilities of misclassification 

(APPM) , a measure of how likely it is that a pair of targets will be 

confused ; the resulting p. p.m . 's for each channel considered inde­

pendently and the bes t combination of vrdered spe : ral channels are 

given in Table C- 13 . 

Low frequency noise problems, result i ng in & serious circular 

striping pattern in the data apparent from the maps, and a limited 

dynamic range allotol the discrimination between only high and low water 

turbidity levels in aquatic environments with these S192 data . 

Unfor t unately, no significance was found within the turbid water 

classes the blue spectral bands (SOO ' s 18 and 22) both singly, or in 

combination with the other visible tolavelength bands . This means that 

there is no way in these data to separate inorganic and organic 

turbidity, since this would require observing a negative correlation 

in signal level between a blue band and one of the visible bands 

~eyond O. 52 ~m . 

As a result, the only type of turbidity mapped with these S192 

data was changes in the ccncentr " ~ion of total suspended solids . The 

optimum turbidity ma[ ping technique for the S192 data is tben, simply, 

a level-sliced map of thp red band. 

Figure C-6 shows a color photograph of the Atchafalaya study area. 

The photo is an enlarged segment of an Sl90A photograph. The color 

coded turbidity map usin g a slicing technique on he red band 0.68-

0 . 73 ~m is shown in Figure C-7 . The colors in the map denote turbidity 

levels from blue (cle ar) to red (turbid) . Gre n areas are areas of 

interm dia e turbidity . Th water ar as only are shown in Figur C-7. 
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TABLE C-12. COMPOSITE CLEAR AND TURBID WATER SIGNATURES FOR ~-192 ATCHAFALAYA DATA 

18 22 1 3 5 7 21 

0.41"0.46 0.46-0.51 0.52-0.56 0.56-0.61 0.62-0.67 C.68-0.73 10.4-12.5 ----

Clear m 71. 43 83.56 48.31 39.74 33.02 49.83 .'.34.10 

1: (5.20) (3. OS) (1. 83) (1. 83) (1. 90) (3.35) (4.56) 

Turbid m 73.33 86.45 52.04 44,15 38.16 60.83 1.17.19 

E (5.12) (3.10) (1. 80) (1.97) (.Z0.26) (3.18) (4.27) 



TABLE C-13. CHANNEL ORDERING RESULTS FOR MAPPING TURBIDITY 5-192 ATCHAFALAYA DATA 

). 0.41-0.46 

PPM .427 

Rank 7 

IJ 

0.46-0.51 

.319 

5 

Channels 

1 

2 

3 

4 

Single Channel Results 

0.52-0.56 

.152 

4 

Channel Ord~ring 

SDO's --
7 

7,5 

7,5,1 

7,5,1,3 

0.56- 0.61 

.123 

3 

0.62-0.67 

.095 

2 

APPM 

.046 

.018 

.011 

.009 

.~ 

0.68-0.76 

.046 

1 

10.4-12.5 

.363 

b 

- ---
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Land areas were edited out by slicing the 0.98-1.03 m channel to 

exclude the highly reflective areas. The pattern of turbidity 

displayed by the map corresponds qualitatively to that observed in 

the S190A and B photography. Quantitative checks were not made on 

the accuracy of recognition because of time limitations and lack of 

appropriate quantitative water suspended ~olids measurements. 

C.3.2.2 CONCLUSIONS 

Low frequen cy noise, hazy atmosphere, and th low dynamic 

range of the data all combined to compromise data utility. The hannel 

ordering results show that the cleanest, widest dynamic range channel 

(0.68-0.73 m) was first selected for delineating water suspended 

solids differences even though this channel penetrat es water only 

marginally. Data quality seems to have been the dominant factor 

influencing the choice of the best channel. Because of this and 

other data quality factors previously mentioned, the results a r e 

neither indicative of the channels to be used for water quality 

meastlrements nor the exp.:::c ted p.~ rformance from satelli t E:: sensors. 

C. 3. 3 BALTIMORE LAND USE CLASSIFICATIO r RESULTS 

S192 data of the Baltjmore-Washington ar~a were processed at 

Honeywell to rank order the 5192 spectral bands for Land Use mapping 

and to demonstrate the classification accuracy of Anderson Level II 

Land Use classes obtainable with varying numbers of spect ra l bands. 

The classes used in the re cognition operation ar listed in Table 

C-14. The class numbers cor respond to the Aoderson Level II numb ring 

system with the exception of classes 81 and 82, whi ch are second 

samples of classes 11 and 12. 

The rank ordering of spectral f atur s was p~rf rmed using the 

mapping error as a criteri n. This param t r is analog us L th 

probability of mi sc1assiflca t ion for maximum likeli hood c1a sit fer :-. 

The results of the channel ordering are SHOwn in Table C-lS. 
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TABLE C-14. RECOGNITION CLASSES FOR 5-192 BALTIMORE DATA 

Code Class Number Class 

1 11 Residential 

2 12 Commercial 

3 13 Industrial 

4 15 Tcansportation 

5 16 Institutional 

6 81 High Density Residential 

7 82 High Density Commercial 

8 19 Open and Others 

9 21 Cropland 

10 22 Orchards, Fruit Bush, Vineyard, ~tc. 

11 41 Heavy Crown Cover Forestland 

12 42 Light Crown Cover Forestland 

13 31 Cloud Shadows 

14 51 Streams and Waterway 

15 52 Lake 

16 53,54 Reservoirs and Bay 

17 37 Cloud 
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TABLE C-15. S-192 PERFORMANCE ORDERING 
BALTIMORE-WASHI GTON DATA 

SDO NUMBER WAVELENGTH ( )..lm) 

21 10.2 - 12.5 

9 0.78 - 0.88 

22 0.41 - 0.46 

13 2.10 - 2.35 

7 0.68 - 0.76 

18 0.46 - 0.51 

1 0.52 - 0.56 

5 0.62 -

17 1.2 - 1.3 

19 0.98 - 1. 03 

11 1. 55 - 1. 75 

20 1.09 - 1.19 

3 0.56 - 0.61 

3 

RANK 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 



The results of the channel ordering show that the th rmal band 

is most useful a t s~parating the Level I I land use classes. This is 

because of the urban and non-urban c lasses and the overlight t i me nea r 

noon when the temperature differenc,,-s becween urban and non-urban 

areas are large . The second selected band was 0.78-0.88 ~m a band in 

which the vegetation has high re flec tance and the water has low 

r efle tance . The third band hos en was the blue band 0 . 41-0. 46 m 

,here the urban ca t ego ries a r e more highly reflec t i ve than the 

vegetation . The fo urth channel selected was 2 . J - 2 .35 m whe r e urban 

a r eas are bright, and wate r and vegetation dark. The clos o rrelation 

b~tween tne channel o rdering r e sults fo r the 5192 data and the aircraft 

scanne r data should be noted . The only channel dif fe r e nt in the t p 

fo ur i~ the 2 . 1-2 . 35 ill channel r e placing the 0.6 2-0.70 m band of 

the ai r raft data. But a s previously no t ed, the r ed band s eemed 

r la ti ely noisy in o ther dat a sets, and probably is in the Balti mor e 

da t a s t al s o . This may accoun t for its r latively 1 w o r der i n the 

channel sele tion. Table C-16 compa r es the o rdering of cha nn Is f 

519 2 data with thos of the ai r craft data disc v ~sed in Se tion 3 . 

C. 3 . 3.1 PP.ELI~fI lAP-'! CLA~ FICATIO RFS1TLTS 

5 v r al t pes f las ifi ati n we r p r for m d o th 5192 

data . Fir t , tr ai nin g was don 

r ughly c rr sp nding t And rs n L 

co gniz fiv 

1 1 land us 

las s C land us 

The k- cla s 

1a si(i r was u d t r c n iz th cl as s su ing th b ~ t fo ur, 

en , and all thirt n hannel s of 19 d ~tCi . 'C h r u1 1 ( e 

Tabl. s C- 17 thr ugh C- 19) shO\.J impr v m nt in th lassif i ati n 

a ura y f r m 8 . 7 p r ent t 72 . p r nt s t h numb r f h nn 1s 

i d f r m t 13. Pr bably a a r suIt f p tr I \'a r i -

abilit i n t h cl ss , th a ri ultur nHi n 1 w l 

r a ll f th fi v las a ll th r ' chann 1 5 t 5 . Th ur ba n 

1a i ns 1. t ntl th b st r c n lz d a nd i f w di unt mt -
345 



TABLE C-16. CO~WARI 50 OF 5-192 and AIRCRAFT DATA 
CHAN EL ORDERI 'G - BALTIMORE DATA 

Order 5-192 Channel Aircraft Channel 

1 10.2 12.5 1.0-1.4 

2 0.78 - 0.88 0.41-0.48 

3 0.41 - 0.46 9.3-11. 7 

4 2.10 - 2.35 0.67-0.94 

5 0. b8 - 0.76 O. 2-0.70 

S 0.46 - u. 51 0. 50-0.54 

7 0.52 - 0.56 2.0-2.6 

8 0.62 - 0.67 0.46-0.49 

9 1.2 - 1. 3 0.58-0.64 

10 0.98 - 1. 03 0.48-0.52 

11 1.55 - 1. 75 0.5 2- 0 .57 

12 1.09 - 1.19 0.55-0.60 

13 0.56 - 0.61 



TABLE C-17. S-192 CONFUSION MATRIX RESULTS 
FROM BALTIMORE-WASHINGTON DATA 

CLASSES 

1. Agriculture 
2. Forest 
3. \vater 
4. Urban 
5 . High Density Residential and Commercial 

CLASSIFIER 

1 2 3 4 

1 51.42 14.69 11.84 1.05 

2 6.30 6 ... 57 27.56 0.79 

3 11.88 21. 78 64.36 0.99 

4 3.06 0.00 2.38 82.31 

5 29.94 1.13 3.95 1.69 

A ' r~ g Cl~ if Lca t ion Accurac y - 68.66 

5 

20.99 

0.79 

0.99 

12.24 

.-
63.28 

feJture UJed = Top 4 10.2-12.35, 0.78-0.88, 0.41-0.46, and 2.1-2.35 
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TABLE C-18. 5-192 CO FUS I ON MATRIX REs ULTS 
FROM BALTIMORE -WASHINGTON DATA 

CLASSES 

1. Agr iculture 
2 . r. rest 
3. \.[a ter 
4. Ur ban 
5 . f igh Density Residential and Commercial 

CLASSI FIER 

1 I 2 3 I 4 
--

I 51. 1 16.19 8.85 2.25 

2 11.81 63.78 23.62 0.79 

3 11.39 20.30 65.35 2 . 48 

4 0.68 0.00 0.68 98.64 

5 29.32 2.82 3. 39 0.00 

Aver age Class i fica t i on Acc uracy = 65.18 

I 5 I 
21.59 

0 . 00 

0.50 

0.00 

64.41 

Fea tures Used = Top 7. Top 4 plus 0.68-0.76. 0.46 h O.5I, al'd 0.52-0.56 
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TABLE C-19. S-192 CO FUSIO MATRIX RESULTS 
FROM BALTIMORE-WASHINGTON DATA 

CLASSES 

1. Agriculture 
2. Forest 
3. Hater 
4. Urban 
5. High Densit y Resident ial and Commercial 

CLAS ~ (FIER 

1 2 3 4 

1 56.67 12.59 12.44 0.15 

2 3.94 70.87 22.83 0.70 

J 9.90 18.32 71. 29 0.50 

4 0.68 0.00 0.34 97.62 

5 31.64 I 1.69 1.13 0.00 

-

Av~rao e Cla ification Accur acy 72.39 

Feature ed = all 13 
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1. 57 
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1.36 
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classif ications of urban a high density urban, this is even more so 

the recognition accuracy approaches 100 percent with 7 channels and 

is always above 90 percent. The slight decreases in recognition 

accuracy of agriculture and forest classes are probably not signi f icanc 

in view of the sma ... l sample us€:d for assessing classifi.catiun accuracy. 

Even at the thirteell channel level, persistent misclassification 

of Agriculcure as Forest , Water, High Density i\eside(:_ia":' vccu ~· . Also 

W ter is mis lassified as Forest , and High Density Urban is misclas­

sifi ~d as Agriculture. Some of t~e misclassification involving 

Agriculture may be the result of bare soil areas in the Agriculture 

areas being confused with High Density residential and vice versa. 

The Agriculture-Forest misclassificati0n may be understood since 

d nse green vegetation is involved in both cases. The misclassification 

of water a s (orest cannot be explaineJ, since the two have radically 

di fferenc€: r ,' flectance ir. the near IR bands around 1 ].J m. In spite o f 

~ hese diEficul Lies, the results show a high classification accuracy 

" 'erall f r t he 13 chann;;; l case . 

C. · FURTHER r.L \ ; : ~ I H CATIO!'! }{£SULTS 

(, assiil. ' at ion wa s per fortr~d using the K-class classifier, 

tie s v nl e n training s e ts shown in Table C-14, and the thirteen 

~ Ik tral hannels . Res ults of the classification are shown in 

TJ ble C-20. Ov raIl classification accuracy of 42 .1 percent was 

hi ved . Then a sequential approach to classification was tested, 

~s dia~~amm d in Figure C-8 . By separating scene materials into 

broad lasses, then further subdividing those classes us ing other 

chann 1 se ~ s , a n improvement to 53 . 14 percent accuracy was ubtained. 

Confusion mat . ix results a re pres nted in Table C-2l. 

On e final improvement was performed on the 13 channel sequential 

l assification xperiment. The single point misclassifications were 

filter d out by accepting the s cond most likely decision . The 

filt ring pro dure was perform d as follows . 
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!£)~ TABLE C-20. CONFUS 1D: , HATR1X FOR BALTIMORE S-192 PROCESSED DATA 
d j ~Iii 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ 15/ 16/ 17/ 

1/ 62.33 3.82 .86 1.17 4.69 .09 .00 4.19 7.03 .81 6.80 6.26 .72 .05 .r .27 .90 

2/ 23.8C1 22.12 4.42 14.16 15.93 2.65 .00 3.54 5.31 .88 1. 77 4.42 .05 .00 .00 .00 .88 
)/ 4 . ... J :\.0.23 34.'iO 21.35 11.40 7.02 .88 .00 .58 .29 .00 .00 .58 .00 .00 1.46 7.60 

4/ - ; 5 18.42 11.58 47.37 10.00 2.11 1.05 2.63 .53 .53 .00 1. 05 LOS .00 .00 .00 .53 

5/ .!'1 . J r3 6.57 .73 8. 94 27.74 1.09 .55 11.68 6.75 .91 .36 2.19 .91 .55 .00 .36 1.2 

6 { '31.32 12.88 4.17 9.85 14.02 12.50 3.03 4.55 2.27 .00 .CO 3.03 , 38 .00 .00 .00 1.52 
w 7/ 9.79 4.90 
VI 

. 00 19.58 2.10 5.99 55.94 .00 .00 .70 .00 .00 .00 .00 .00 .00 .00 
...... 8/ 30.19 3.08 .32 2.11 4.22 .00 .00 31.82 21.10 1.62 1.45 1.14 .00 .00 .00 .J2 2.60 

i)/ 25.17 .19 .00 .89 1.86 .08 .00 13.69 40.65 2.17 6.83 7.84 .08 .00 .00 .00 .54 

10/ 10.00 .00 .00 .00 .00 .00 .00 3.33 33.3j 53.33 .00 .00 .00 .00 .00 .00 .00 

11/ 27 59 .15 . 00 .23 .15 .00 . 08 .91 6.67 .34 51.13 11.75 .38 .04 .00 .08 1. 45 

12i 24.84 .00 . 00 .32 4.19 .00 .00 2.90 12.90 .65 10.00 41.29 1.29 .00 .00 .32 1.29 

13/ 6.87 .00 .00 1.53 2.29 .76 3.05 .00 .00 .00 .76 1.53 76.34 .00 .00 .76 6.11 

14/ l.10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 40.66 39.67 2.20 16.48 .00 

15/ .00 4.76 .00 .00 .00 .00 .00 .CO .00 .00 .00 .00 28.57 23.81 4.76 28.10 .00 

16/ 2.49 .28 .00 .00 .00 . 00 .68 .00 .00 .00 .23 .45 56.33 5.66 .00 33.48 .45 

17/ 12.95 .00 . 00 , 00 .00 .01) .00 .00 1.44 .00 4.32 .00 .00 .00 .00 .00 81.29 

Cl ••• ification Accuracy H.an • 42.131 
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~~ TABLE C-21. CONFUSION MATRIX RESULTS FOR BALTIMORE S-192 DATA 

Ie 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ 15/ 16/ 17/ 

1/ 53.54 .77 .14 1.44 1.04 3.06 .00 5.50 5.68 2.2~ 10.68 15.86 .00 .00 .00 .05 .00 

2/ 17.70 40.71 6.19 15.04 2.65 5.31 .00 1. 7 7 2.65 .00 .88 7.08 .00 .00 .00 .00 .00 

3/ 4.39 2.63 61.40 7.89 1. 75 1!1. 88 1. 75 .00 .00 .00 .00 .00 .00 .00 .00 .29 .00 

4/ 8.42 4.74 4.74 67.89 .53 13.16 .00 .00 .00 .00 .00 .00 .00 .00 .53 .00 

5/ 23.36 3.28 1.09 7.85 41. 97 4.56 .18 2.92 .00 .55 .00 .00 .36 

6/ 32.95 3.70 3.41 7.20 4.55 40.91 .00 3.03 .00 .00 .00 .00 .00 

7/ 3.50 1.40 .00 1.40 .00 2.80 .00 .00 .70 .00 .00 .00 .00 . 00 

~ 
8/ 16.07 2 .76 .00 2.27 8. 93 .65 7. 79 .32 1. 79 1.14 .00 . 00 .00 .00 1.14 

\Jl 

9/ 4 . 03 .08 .00 1. 28 2.01 2.75 76.18 1.28 5 . 34 5.19 .00 . 04 .00 .00 . 93 

10/ .00 . 00 .00 .00 .00 .00 .00 3.33 9(.. 67 .00 .00 .CO .00 .00 .00 .00 

11/ 2.01 .00 . 00 .38 . 1~ .27 .38 2.39 .67 87.23 3.03 .00 . 11 .00 .00 .64 

12/ 8. 39 .00 . 00 .65 1.61 9.58 . 00 2.26 10.97 .00 2.58 63.55 .00 .00 .00 .32 . (1 1) 

13/ 1.82 .00 . 91 2.73 .00 .91 .00 .00 .00 .00 .00 3.64 88.18 . 00 .00 1.82 .00 

14/ 5.49 . 00 . 00 .00 .00 14.29 1.10 .00 .00 .00 .00 .00 .00 72.53 .00 6.59 .00 

15/ .00 .00 4.76 .00 .00 9.52 .00 .00 .00 .00 .00 .00 .00 .00 71.43 14.29 .00 

16/ 1.81 .00 .00 .00 .00 9.28 2.26 .00 .00 .00 .23 .90 .00 3.62 .00 81.90 .00 

17/ .83 .00 .00 .00' .00 .00 . 00 . 00 3.31 .00 1.65 1.54 .00 .00 .00 .00 92.56 

Classification Accuracy Kean • 69.647 



abc 

d x 

When attempting to determine the class of point x, if the highest 

de cision numbe r from K-class is the same as in a, b, c, or d, it is 

us d t point x. However, if the highest decision number, indicating 

the most probable class, is not in a, b, c, or d, the next mcst likely 

lass o r n xt highest numbe~ is checked. By cleaning up the themati c 

map in this manner, the classification accuracy is inc reased to 69.64 

p r f':1 t, as shown in Tabl C-22. Note that with these advanced 

procedu ' es t hat the ave rage r ecogn i tion accuracy for the seventeen 

c l ass c ~e. representing And~rson Level II classification, is nearly as 

good as I I " . Level I r ec g ition using the K-class classifier in a one 

pi'! ' :.-1 ' ' tion ope r . L n. 

rh ar I processed is shown in Fi gu re C-9, and a color coded map 

f t he c gil it ion , wit h legend, is shown in Figure C- l O. 
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TABLE C-22. CONFUSION MATRIX FOR BALTIMORE S-192 DATA 

1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ 15/ !.6i 17/ 

1/ 48.76 1.44 .32 1.44 2.88 .45 .pO 5.36 5.45 2.39 11.04 17.17 2.75 .09 .C7 .36 .00 

2/ 31.36. 12.39 6.19 17.70 9.73 5.31 .00 2. 65 2.65 .00 .88 7.96 .88 .00 .88 .88 .00 

3/ 3.80 2.92 36.26 25.15 3.22 6.43 3.51 .00 .00 .00 .00 .29 3.80 .58 6.43 7.50 .00 

4/ 8.95 9.47 14.21 44.74 3.68 4.74 4.21 .00 .00 .00 .00 .00 1.58 .53 3.1f) 4.74 .00 

5/ 35.58 5.84 .55 12.04 20.99 2.01 .73 6.20 7.48 .00 .36 3.47 2.55 .36 1.09 .36 . 36 

6/ 39.77 9.85 6.06 8.71 5.68 14.77 7.20 .38 .76 .00 .no 2.65 2.65 .00 .38 1.14 .00 

7/ 6.29 2.10 .00 6.29 .00 3.59 79.72 .00 .00 .00 .00 .00 .00 .00 .00 .co .00 

w 8/ 16.88 1. 70 .00 1. 79 10.71 .00 .00 28.57 32.63 2.11 2.27 1. 30 .65 .00 .16 .00 1.14 
U1 

#, 3.59 . 15 .00 1.25 2. 72 .00 .00 10.05 60.28 1. 97 8.36 9.83 . 91 . 00 .00 .00 .91 U1 

10/ ,00 .00 .00 .00 .00 .00 .00 .00 20.00 ?6.67 .00 3.33 .00 .00 .00 .00 .00 

11/ 1. 39 .04 .00 .34 .19 .00 .23 .87 3.73 1.52 69.03 18.93 2.45 .19 . 04 .34 .64 

12/ 7.74 .32 .32 .65 2.26 .00 .00 4.52 18.06 .00 6. 13 50.00 7.42 . 00 .00 2 . 58 .00 

13/ .75 .00 2.26 f:...77 .00 .75 1. 50 .00 .00 3.01 .00 3.76 3.76 4 . 51 3.01 69.92 . 00 

14/ 5 . 49 .00 .00 .00 .00 .00 .00 . 00 .00 .00 .00 .00 1.10 58.24 9.89 23.27 .00 

13/ .00 .00 .00 . 00 .00 4.76 .00 .00 .00 .00 .00 .00 .00 4 . '/e, 52.38 38.10 .00 

16/ 1.58 .00 .00 .00 .00 .00 .45 .00 .00 .00 .23 .90 .45 10.41 8.82 77 . 15 .00 

17/ .00 .00 .00 .00 .00 .00 .00 5.04 4.32 .00 5.04 4.32 .00 , 00 .,)0 . 00 81.2 ') 

ClaaaUlcaUon Accuracy Hean - ~ 7.9407 
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