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FOREWORD

This report describes part of a comprehensive program concerned
with advancing the state-of-the-art in remote sensin3 of the environ-
ment from aircraft and satellites. The research was carried out for
NASA's Lyndon B. Johnson Space Center, Houston, Texas, by the
Environmental Research Institute of Michigan (ERIM), Ann Arbor,
Michigan, and by Honeywell Radiation Center, Lexington, Massachusects.

The Multispectral Scanner Data Applications study consisted of
two tasks: Task I, the User Applications Study reported hereinj and
Task II, a Sensor Systems Study reported in volume II. The integrated
results of Tasks I and II are presented in an Executive Summary,
published as a separate document.

Substantial contributions of written material for this volume
of the report were made by: J. Braithwaite, R. Dillman, W. Malila
B. Salmon, N. Roller, and F. Sadowski.

The work of the following staff members on the User Applications
Study is also appreciated: T. Austin, C. Bennett, A. Kerber, D. Rebel,
R. Turpner, D. ~“rbassik, W. Pillars, and C. Wezernak.

Ground observation data were graciously made to us by
Professors L. Manderscheid and E. Safir, Michigan State University,
for the Michigan Agricultural Site; Dr. R. Alexander USDI/USGS, for
the Baltimore Land Use Site; and Dr. R. Cartmill, NAS../MTF/ERL, for
the Atchafalaya Test Site.
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1
INTRODUCTION AND SUMMARY

1.1 PURPOSE i

A number of attempts have been made to establish multiple disci-
pline user data requirements for earth resources data acquisition
systems. Previous results have been unsatisfactory, primarily because
of the very limited experience of the users with the developing
technology and the paucity cf hard data of adequate quality and rele-
vance on which to base firm analytic studies. As a result of the
Skylab.819l and S192 programs, the ERTS program, and data collected
by several airborne multispectral scanners, however, an exteasive
base of such hard data now exists.

The prrpose of this study was to use actual MSS data to outline
parametrically the trade-offs between user performance requirements
and hardware performance and limitations so as to allow subsequent
evaluation of compromises which must be made in deciding what system(s)

to build.

1.2 SCOPE

The study {Contract NAS9-13386, CCAZ; Multispectral Scanner Data
Applications Evaluation) was conducted during the period January 1,
1974 through June 30, 1974 and is reported in two volumes. Skylab
§192 Multispectral Scanner (MSS), and Ancillary Aircraft Scanner data
were used in evaluating the characteristics of projected future MSS
systems. The study took the viewpoint that overall system (sensor
and processing) characteristics and parameter values should be deter-

mined largely by user requirements for automatic information extraction

performance in quasi-operational earth resources surveys (the other
major factor being hardware limitations imposed by state-of-the-art

technology and cost).

PR
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1.3 APPROACH
The approach consisted of a User Applications Study (Task I,

reported herein) and a Sensor System Study (Task I1I, reported in
Volume II of this report). In the User Applications Study, S192 and
Ancillary Aircraft Scanner data (collected as nearly simultaneously

as possible) were machine processed with the ancillary data simulating
data from various possible satellite MSS sensors of varying character-
istics to obtain automatic information extraction performance results
in four important disciplines: agriculture, urban land use, geology,
and water and marine studies. A prime requirement was the availability
of good quality, cloud free, MSS Jzta from S192 and aircraft, and at -
least adequate ground informaticr. The empirical results obtained
were augmented by critical reviews of existing literature, and by
ERIM's experience in working with user applications. The effects of
varying spectral bands, spatial resolution, and radiometric fidelity
on the achievable classification performance were addressed in the
User Applications Study.

In the Sensor Systems Study, parametric curves for several
critical variables were derived to allow trade-off analysis and assess-
ment . of impact of user requirements on sensor feasibility, high risk
technology areas and hardware cost. This task was performed under
subconcract by the Honeywell Radiation Center (HRC), Lexington,
Massachusetts.

The two studies interact to produce an assessment of feasible
hardware characteristics capable of meeting the user dats require-
ments with an acceptable level of technological risk at costs which

are not excessive.

1.4 RESULTS
Based upon the results discussed in Section 3 through 5, and

Appendices A and B of this report, the following conclusions and

recommendations based upon these conclusions are presented:

14
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Spectral Study

A thematic mapping system equirped with optimum spectral bands
required by users in all disciplines would require an unacceptable
‘level of cost and technological risk. (Within an acceptable range of
other system parameters.) In view of this conclusion, the spectral °
bands listed below are recommended to support missions optimized
for Agricultute, Urban Land Use, and Water Resources investigatioms.

.o 0.45-0.52 um
» o 0.52-0.60 um
- o s  0.63-0.69 um
o 0,80-0.95 m
o 1.55-1.75 um
o 10.4-12.5 ym

o  0.42-0.48 ym or 8.3-9.3 um

Radiometric Study

With the exception of some of the specifications desired by

;water Resohrces and Marine and Oceanographic users, radiometric require-

i ments can-be met with an attendant.acceptable‘cost and level of
'5‘technological risk. The results presented in Section 5 of this report

‘::dlctate the radiometric speclficatlous listed below.f

o - NEAp for reflective bands = 0.5% ST ;’  .
o NEAT for thermal bands - ‘0. 5°K g>; Ha
 ° j?Maximum ‘allowable ‘gain variation -1, AA of full scale
o Maximum' allowable offset variation - 0 .38% of full scale
= 9:‘.Automatic Gain Control. to provide the recommended NE&p .and
lﬁ3NEAT for reflectances. ranging from 2.0% to 60 OZ and 'F“

Vy Temperatures ranging from 260°K to 340°%

*The recommended NFAp is based upon the data presented in Tables
4~8 through 4-11. Fmpirical results do not support this recommendation

for the reflective IR portion, due to the uncertainties Ln the IR data S

bands.

15 -
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Spatial Study

Little improvement in classification accuracy and area estimation
will be realized in Agriculture and Urban Land Use disciplines for a
Spatial resolution finer than 30 meters. Studv results do indicate,
however, appreciable degradation in classification accufacy as spatial
resolutioh is coarsened from 30 meters to 60 meters. Since the effect
of resolutions betwéen 30 meters and.60‘metefs upon classification
accuracy was not investigated, a precise spatial resolution is not -
‘recqmmendedi Pending further study the recommended spatial resolu-

tion is 30 meters to 60 meters.

16
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_ 2
APPROACH

2.1 GENERAL -

The study approach was organized into two tasks. Task I, User

- Applications Study was to analyze S192 and aircraft scamner data sets’

collected as nearly simmltaneously as possible, and to supplement the

‘results thus obtained with a critical review of existing 1iterature

and theoretical results in an effort to quantify the effects on auto-

V matic classification accuracy by varying sensor parametera. Four sites
. were selected, each representing a specific user discipline such as

Agriculture or Urban Land Use. A second prime requirement for

selecting these sites was the availability of both airbornme and space-
borne multispectral scanner data and adequate ground observation data.
The available data were processed to determine the ways in which data
quality factors such as spatial and spectral resolution influence the

accuracy of processed outputs such as crop jdentification or acreage

measurements.

In the second task, Sensor System Stud&, reported in Volume II,
the available performance of several types of orbital scanners were
parametrically studied. For each approach, ’trade-off studies were
undertaken to find ways in which high risk technology could be
avoided at minimum cost to performance parameters.

o Finally, the two tasks were integrated to demonstrate the extent
to which realistic user requirements could be met by various orbital
acquisition systems and supporting telemetry and ground processing

systems. Further, the reduction in data utility for the several
classes of users by reducing system performance to minimize cost and

technological risk were studied. The results were organized to facili-

- tate selection of an optimum data acquisition system for a variety of

constraints, such as limited development time or changed relative

priorities among user goals. o
17
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The effects of varying number of spectral bands, spectral band

e o e+ e o b SO

placement, spatial resolution, and radiometric accuracy on the perfor-
mance of proven earth resources classification and parameter estimation
E algorithms for various user disciplines were determined. Because of
time and funding constraints processed examples were not generated

for each discipline by varying each of the four parameters discussed

above. Rather, the approach was to select examples which critically

influence the selection of spectral bands, spatial resolution, and
radiometric parameters. Further, the suggested processing effort was
i ' supplemented by a review of appropriate literature (especially on the
subject of optimum spectral bands), and by close coordination with .
efforts at NASA-ERL to determine optimum spectral bands.

In studies of radiometric accuracy, where these parameters were

varied and the effect on extractive -rocessing algorithms demonstrated,

T T M, < TR

Sensor Systems Study personnel (Task II) suggested the reasonable-
variations to make in the sensor parameters. This insured that the
simulated cases were reasonable and achievable within current and

projected hardware technology.

A e e ¢V

In studies of spatial resolution effects, attempts were made to

i simulate the 10, 30, and 60 meter resolutions currently being

g considered for advanced spacecraft instrumentation. A theoretical -

E calculation on the effect of resolution element size in determining

? field acreages for various size and shape fields was also performed.
To assist in determining the effects of varying system parameters

; on the performance of established classifier algorithms, subcontract

i support was solicited from Honeywell Corporation, Minneapolis,

| - Minnesota. Rather than generate processed data products and tables .

% of performance from multispectral data sets, Honeywell studied the

i feasibility of using their "information model" to predict the perfor-

mance of a classifier without actually classifying data. A comparison

18
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of the classifier approach and the "information model" approach was

conducted for the Land Use case study.

2.2 PROCESSING

2.2.1 MICHIGAN TEST SITE (AGRICULTURE)

2,2.1.1 General

The purpose of processing data from the Michigan Test Site

was to obtain further information about the optimum spectral bands to
be used for classifying agricultural scenes, and to demonstrate the
effects of spatial resolution and radiometric variation on classifi-
cation accuracy. Aircraft data sets were processed for this phase
of the study. Characteristics of the data used for this segment of the
study are shown in Table 2-1. The S192 data processing and analysis

approach is discussed in Appendix C.

2.2.1.2 Aircraft Data
The first step in processing the aircraft data was to
generate the 28.7 m and 57.2 m resolution data sets from the basic
14.3 m data by smoothing. (Hereafter these spectral resolutions are
referred to by their nominal values — 15, 30 and 60 meters.) ‘Following

smoothing, three data sets were processed similarly to prepare recog-

inition maps of terrain categories and to evaluate performance.

First a map of a red band was prepared for each data set to
permit locating training sets and verifying data coverage. Then
statistics for 3-5 fields of each agricultural :rop to be recognized
wore extracted from the data. The 30 m data map was used to select
training sets as a test of the ease of locating these sets on imagery
of that resolution. Training set locations were then transferred to
the other data sets. This was done without plotting the training sets
on the other graymaps because the 30 and 60 m data sets were derived

(by smoothing) from the 15 m»data, and thus line and point numbers

bore a knoim relationship between data sets.
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TABLE 2-1. DATA CHARACTERISTICS
Michigan Ancillary Data
Project 102806 - Contract NAS9-13386

OIS YL TG 700 VP MO P A o St 407 - T T ST

SPECTRAL CHANNELS AVAILABLE - 3
41 - .48 um .58 - .64
% .46 - .49 .62 - .70 )
; .48 - .52 .67 - .94
i .50 - .54 1.0 - 1.4
| .52 - .57 1.5 - 1.8
% .55 - .60 9.3 - 11.7

crrms

SPATIAL RESOLUTION CASES CONSIDERED

14.3 meters

28.7 meters

57.2 meters

OTHER PERTINENT DATA .

e, e~ $4A ora R G BT LR AT T T A Al APV W TR T, R

Sensor:

Time of Day:

SN VG <ot e e s ene o

Flight Altitude:

20

Date of Collection: 5 August 1973

10K ft above terrain
ERIM M-7 MSS

1421 - 1433 GMT

Quantity of Data: 3 x 24 miles
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Following an analysis of signatures, the signatures for the same
crop type were combined to form a composite signature for recognition.
The composite signatures were fed to the channel selection algorithm
which selected the seven optimum channels for further analysis. In
the process, the utility of all channels was determined and the
channels were ordered by increasing utility in separating the signa-
tures. Next the data were classified using the signatures and
the optimum twelve, seven, and four channels. The classified results
were displayed, and test sets analyzed to determine accuracy of

" field acreage esvimation by crop types. The flow of operations for
this segment of thé processing of agriculture data is shown in Figure
2-1. -

Figure 2-2 showe the flow of processing operations for the radio-
metric study of agriculture aircraft scanner data. The approach was to
obtain signatures from radiometrically correct data, then classify 4
radiometrically degraded data. As shown in Figure 2-2, two cases of
radiometric degradation were explored for each of the three parameters.
The radiometrically “correct" raw data set constituted a third case
for each parameter.

Thirty meter resolution, angle corrected data from the aircraft
scanner were processed for this study. The data were degraded by
artificially inducing two levels of offset, gain slope, and noise to
the original data. The quantizing accuracy of the data was adjusted
as the noise was varied, and 9, 8, 7, 6, and 5 bit cases were
considered, with noise levels matched to the digitization precision.
Gain slope and offset variations of + 33% ..nd + 66%Z of average
signatures separation of mapped classes were also introduced. Each
variation constituted a separate data set for processing. The optimum

seven spectral channels were used in the classification of data.
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14.3 m DATA PREPROCESSED

28.7 m DATA

SMOOTH
2 x 2 4 x4

| 14.3 m DATA

MAP

PICK T.S. (3-5)
FOR CROPS TO BE
RECOG.

|

_SIMILAR ANALYSIS
TO 14.3 m DATA.

EXAMINE SIGS.,
COMBINE AND
SCALE

v

RUN OPT. CHNS.

57.2 m DATA

SIMILAR ANALYSIS
TO 14.3 m DATA

N

T.S.: STATS >

CLASSIFY Fé—

—» CHANNEL ORDERING

v

MAP

4

EVALUATE
PERFORMANCE

7 OPT. CHNS.

FIGURE 2-1. FLOW OF PROCESSING FOR AGRICULTURE CASE STUDY
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30 m DATA

STMULATE Jli—f SIMULATE
+ 33% & 662 SIMULATE + 33% & 66%
GAIN ERRORS 8,7,6,5 BIT OFFSET ERRORS
DATA
7 OPT. CLASSIFY OLD EXTRACT OLD CLgii:FY éHSZT’
CHNS. — 2|  DATA TRAINING |SIGNATURES TRAINING —> )
SETS SETS
MAP AND COMBINE MAP AND
AND ANALYZE :
ANALYZE SCALE
7 OPT. CLASSTFY
CHNS. —2|  DATA
MAP AND
ANALYZE,
FIGURE 2-2. PROCESSING AND ANALYSIS FLOW - RADIOMETRIC STUDIES
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2.2.2 WHITE SANDS TEST SITE (GEOLOGY)
2.2.2.1 General
Skylab $192 data and NASA 24 channel scanner (MSDS) data

collected over White Sands, New Mexico were used for the geology
discipline study. The aircraft data characteristics are shown in
Table 2-2. These 'ata were processed (see Figure 2-3) to ascertain
the optimum spectral hands and to determine the effects of variation
of the number of spectral bands on geologic classification accuracy.
The S192 data processing and analysis approach is discussed in

Appendix C.

2.2.2.2 Aircraft Data
The basic 6 m resolution MSDS data was smoothed by 5 to

simulate 30 m resolution data. Next a graymap of the red band was
prepared for location of training sets and verification of data
coverage and quality. Using ground information gathered from geologic
maps and past geologic studies, training sets for important rock and
soil types in the White Sands Area were located on the graymap.

Before signatures were extracted for the geologic materials, a
set of promising ratio features were defined by analysis of Earth
Resources Spectral Information System (ERSIS) data of the materials
likely to be found in the scene. ERSIS library spectra were then
edited using standard editing programs, to yield spectra of materials
likely to be in the scene. A set of likely materials was then determined .
from analysis of ground truth information. of 98 possible ratios, twenty
nromising ratios were defined by calculating reflectance ratio data from
ERSIS (band averaged over MSDS spectral bandwidths), and selecting ratics
which separate the scene materials in ERSIS.

When the twenty promising ratios were jdentified, signatures from
the training sets, previously located on the graymap, were extracted.

A transformation routine was then used to calculate ratio feature

24
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TABLE 2-2. DATA CHARACTERISTICS
White Sands Anciliary Data

SPECTRAL CHANNELS AVAILABLE

MSDS Chan # Bandwidth " MSDS Chan # Bandwidth

1 .34 - .40 11 1.18 - 1.30
2 40 - 44 *12 1.52 - 1.73
3 46 - .50 13 2.10 - 2.36
4 .53 - .57 17 8.30 - 8.80
5 .57 - .63 19 9.30 - 9.80
6 .64 - .68 20 10.10 - 11.00

. 7 71 - .75 2 11.00 - 12.00
8 .76 ~ .80 22 12.00 - 13.00
9 .82 - .87 - %23 1.12 - 1.16
10

.97 -1.05 *24 o 1.05 - 1.09

SPATTAL RESOLUTION CASES CONSIDERED

30m

OTHER PERTINENT DATA

Date of Collection: 22 February 1974

Flight Altitude: (9800 - 12,000 ft actual)~requested 10,000 ft
Sensor: MSDS
Time of Day: 1719 - 1746 GMT

Ouantity of Data: 3 runs, 2.6 x 24 mi. total

*Noisy data per mission flight logs.
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signatures directly. Before forming the ratio features for signature
calculation, the darkest object level was subtracted from each signal
value in the channels to be divided.

Signatures ektracted from the training sets were then analyzed
for consistency, and signatures of like materials combined to form
training set statistics more characterisic of the class to be
recognized. The optimum ratio features, and the spectyal channels
comprising these ratics were prioritized by the feature selection
program.

Data was then classified, using the composite training set
statistics; the optimum 15, 7, or 5 spectral channels, and the
darkest object levels previously determined in preprocessing.
Recougnition maps were displayéd and analyzed to determine the correct

and incorrect classification of geologic materials.

2.2.3 BALTIMORE TEST SITE (LAND YUSE)

2.2.3.1 General

\

The purpose of the processing of the datavfrom the Baltimore
Test Site was to obtain. further information about the optimum spectral
bands to be used for classifying urban land use categories to Levels
I and II of the Anderson Land Use Classification System and Level III
of the State of Maryland Land Use Classification System to demonstrate
the effects of radiometric variation on classification accuracy. Both
§192 and aircraft scanner data sets were processed for this phase of
the study. Characteristics of the data used for this segment of the
study are shown in Table 2-3. All processing of S192 data for the
Baltimore Test Site was conducted by Honeywell and is detailed in
Appendix C. .
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TABLE 2-3. DATA CHARACTERISTICS
Baltimore Ancillary Data

SPECTRAL CHANNELS AVAILABLE

M-7 Channels

| . .41 - .49 um
46 - 49 .
.48 - .52
.50 - .54

52 - 57

.55 - .60

.58 - Q,64

.57 - .94

1.0 - 1.4

SPATIAL RESOLUTION CASES CONSIDERED

7.2 meters
14.4 meters

28.8 meters
57.6 meters

OTHER PERTINENT DATA
Date of Collection:
Flight Altitude:
Sensor:

Time of Day:

Quantity of Data:

11 May 1972

5000 ft above terrain
ERIM M-7 scanner

1745 GMT

2 x 25 miles
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2 2 3.2 Aircraft Data “Tfj
Eigure 2-4 details the’ processing flow for ‘the study to

";idetermine the hrdering of spectral channels for- land use classificar
C_tion. "The’ first step in processing was to’ smooth data, averaging
_ :4 x 4 to yield a data set simulating 30'meter resolution. A red

i; tchannel map’ was, made - to facilitate selection of . training sets and to
‘“‘vaalidate data quality.»- RN A o
o ' Using USGS-supplied ground information, training sets were
_»frselected from all Level I and II land use types. This step was
j'faugmented ‘by Level -11I and IV- ground truth obtained from the Maryland
iistate Planving.- Division and from photointerpretation.v Five samples ;

bh~‘}o£ each type of land use ‘were selected to more completely span ‘the .

:“f’s_training sets was - to “be - coordinated with Honeywell personnel at

Minneapolis, who rarricu Sut’ related studies.ff“"'f 5"*,'»‘5$-2-az;3:

'tZ;examlnation of the signatures . determine any anomalies, ‘the signa—~*lil

;tures representing the same land use class were combined and - scaled.

Hfiééf :program to determine the order or: spectral channels in- classifying

lgrland use types. Optimum,four and ‘seven channels were “then identified“

‘.Tand used to classify data.’ . All spectrai «channels available vere also

E cation accuracy g i
©" The processing approach used in demonstrating the effect of

'3kzradiometric variations on classification accuracy was identical to

- :‘Zitheﬁapproach detailed in Section.z,z.l.z and;shogn,in Figure 2-2,

: N 2 2 4 ATCHAFALA?A TEST QITE (WATER AND MARINE)
2 2.4.1 ‘General:’ ’ ) |
AT The - purpose of processing data from the Atchafalaya test site

© Was to obtain further information on optimum spectral bands to be used
Con L e e T R 29 D

1frange of variability of the 1and use: types. " The selection of these pfv”
*151gnarures were extracted.for each training set sample. . After -

i,Combined signatures for each: class were then fed.to the optimum channel :

n,used to study the effects of number of spectral channels on classifi—gf;

pUSPIUESRUUUR P
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for'mapping.turbidity (both organic and inorganic), current patterns

‘and natural coastal vegetation communities which may influence the

aquatic’ ecouysteni. The MSDS data collected is outlined in Table 2-4.

2.2.4.2 Aircraft Data

MSDS data was processed according to the general flow _
diagram of Figure 2-5. -Aircraft data at 12 meters resolution was
smoothed by 2 to approach a nominal 39 meter resolution size. Traihing
sets for organic and inorganic turbidity differences along with _
vegetation were selected and signatures computed. = The signatures were
analyzed and the optimum channels to use for turbidity and curremnt.
mapping selected. The optimum single channels were then used to
select channels for ratioing in order to map organic turbidity and
natural vegetation communities.

Single channel andAratioedigraymaps weré produced and analyzed.

2.3 HONEYWELL APPROACH io SPECTRAL-SPATIAL FEATURE CLASSIFICATION
~ At Honeywell-Minneapolis, investigators used aircraft scanner data

from the Baltimore Test Site for a study of the classification aécuracy

" of Land Use categories using a K~Class classifier and spectral and

spatial features. The spectral features used were the seven optimum.<”¥"

features selected by ERIM from an analysgs of cpertral signatures of
a number of land use‘classes. Spatial féatures, repfesenting the
energgfin the scene at particuiar spattailﬁrequencies, were génerated
as\aiscussed below. Then a number of éiéssification and ciiannel :

ordering runs were made on the data and the results evaluated.

2.3.1 GENERATION UF SPATIAL¥WAZURES
- The spatial features usad in this study were generated by
takifig ‘the Fourier Transform of the data, followed by mathematical

manipulations to create features that were "rotationally invariant".
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TABLE 2-4. DATA CHARACTERISTICS
Atchafalaya Ancillary Data

SPECTRAL CHANNELS AVATLABLE

.34 - .40 \m 1.18 - 1.30 1.12 - 1.16
.40 - .44 1.52 - 1.73 -1.05 - 1.09
046 - 050 2.10 - 2-36 -
«53 - .57 3.54 - 4.00
57 - .61} 4.50 - 4.75
.64 - .68 . 6000 - 7.00
[% .71 - .75 9.30 - 9.80
. .76 - .80 10.10 - 11.00
.82 - .87 11.00 - 12.00
.97 - 1.05 o 12.00 - 13.00
. SPATTIAL RESOLUTION CASES CONSIDERED
30m
OTHER PERTINENT DATA
ﬁﬁte~of Collection: 21 September 1973
Flight Altitude: - ; 20,000 ft above terrain
' Sensor: S MSDS, RC-8
Time of Day: - 1631 - 1805 GMT
Quantity of Data: 2 Rms, . each 5.3 x 40 n. mi. , .
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By making the features rotationally invariant, the values of the

spatial features for a square building would be the same regardless

A L £ .7 pp A - e L et

of the orientation of the building with respect to the scan line.
To generate the spatial features, the first eigenvector constructed
~from the seven optimum channels was used. This eigenvector contains

the most variation of any spectral feature and was thus felt to be

AR TR AR L ST e
.

good for the generation of spai'sl features. Next the raw spatial
features were formed by a Fourier Transform on 8 x 8 (56 x 56 m) arrays
of points (4 x 4 arrays, still representing 56 x 56 m arrays, were used

for the 14 m data). The choice of a 56 m array was arbitrary, and in

- v s, g a b

retrospect, not entirely appropriate to this application. Subsequent
data analysis for the Honeywell Information Model showed that most of
the spatial information in the scene was contained in spatial
frequencies lower than 1/56 m. Spatial features representing scene
energy at these low frequencies could not be generated with the arrays

of points chosen. The spatial features generated for the 7 m data

e o £ aRG A S PR < R h e

i and for the 14 m data are shown in Table 2-5. These rotationally

; invariant features were generated from the raw Fourier Transform

¢ data. In the nomenclature of Table 2-5, rotationally invariant features
% are denoted by BO—B5 and the raw Fourier Transformed data by (a,b).
Fourier Transform feature (0,0) is the average energy in the 8 x 8

or 4 x 4 pixel block. For the 8 x 8 pixel block four spatial

frequency components can be derived for each direction. These

correspond to energy at 1/56 m, 1/42 m, 1/28 m, and 1/14 m, (0,1), -
| (0,2}, (0,3), and (0,4) respectively. Then the Fourier Transform
; data in the x and y directions were combined as shown to yield the .
“B" features actually shown in Table 2-5. For the 1% m data, the
i Fourier Transformed features (0,1), and (0,2) corresponded to
energy at spatial frequencies of 1/56 m and 1/28 m respectively.

They were combined as shown to yield the rotationally invariant “B"

¥ features.




TABLE 2-5. TEXTURAL FEATURE GENERATION

8 x 8 PEL GRID. (5 x 5 SPATIAL FREQUENCY GRID)

’ b4
B, = (0,0) ¢
B, = (1,0) + (0,1) + 0.65 (1,1) y
= (2,0) + (0,2) + 0.8[(2,1) + 1,2)] l

+ 0.35(1,1) + 0.1(2,2)

SN o

By = (3,0) + (0,3)
o+ 0.9[2,1) + (1,3) + (2,2)]
+ 0.3{(3,1) + (1,3) + (2,2)]
+0.3[(3,2) _ (2,3)] + 0.2[(2,1) + (1,2)]
B, = (4,0) + (0,4) + (4,1) + (1,4) + 0.35[(4,2) + (2,4)]
+0.70(3,2) + (2,3)] + 0.1[(3,1) + (1,3)] + 0.2 (3,3)
B = 0.65[(4,2) + (2,4)] + (4,3) + (3,4) + (4,4) + 0.2 (3,3)

4 x 4 PEL GRID (3 x 3 SPATIAL FREQUENCY GRID)

B = (0.0) x>0 1 2
o b
B, = (0,1) + (1,0) + 0.65 (1,1) £ 0
B, = (0,2) + (2,0) + (1,2) + (2,1) !
+ (2,2) + 0.35 (1,1)
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2.3.2 CLASSIFICATION PROCEDURE

Several classification runs were made with the spectral and
spatial features on 7, 14, and 56 m data. In summary, these are
listed in Table 2-6. Class designations for each of these runs are
listed in Table 2-7. The intent of the classification was to demon-
strate what spatial features added to the classification accuracy of
urban land use classes at various spatial resolutions. Also, results
using simulated 56 m data demonstrate the effect of varying numbers of

channels on the ability to separate Level III land use classes.

2.4 LITERATURE SURVEY

To augment and extend the émpirical results obtained during this
study, a review was performed of 21l published literature detailing
the optimum spectral bands for each discipline. The review was
confined to publications which were directed at obtaining optimum
. spectral bands for a given investigation. Previous empirical analysis
and theoretical publications were surveyed for each discipline and
three previously conducted systems studies were cited for all
disciplines. Results of the literature survey are presented in

Section 3.




i TABLE 2-6. BALTIMORE SPECTRAL/SPATIAL FEATURES
? GENERATED BY HONEYWELL

1. 7 m data 7 spectral, 6 spatial features
‘ 2. 14 m data 7 spectral, 3 spatial features
3. 14 n data 7 spectral features
4., 14 m data . 7 best features (6 spectral, 1 spatial)
5. 56 m data 7 spectral features
6. 56 m data 4 spectral features

7. 56 m dsta 2 spectral features

Note: Fifteen Level III training sets, as shown
in Table 2-7, were used for this analysis.
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i TABLE 2-7.CLASS DESIGNATIONS FOR BALTIMORE DATA SETS

% ' ERIM Honeywell

§ Description Class .  Designation
% Residential, Single Family 1 1 ‘ .
E Residential, MultipLe Family o 112 2

é Commercial, Retail 121 3

E Industrial, Wholesale/Light Ind. 122 4

? Industrial, Metal 132 5

z Industrial, Chemical 134 6

2 Transportation, Railroads and Yards i 152 7

; Transportation, Freeways/Highways 153 8

i Transportation, Marine Terminals 154 9

% Transportation, Utilities 155 10

% Institutional 160 14

% Institutional, Secondary Schools ' 162 11

% Institutional, Colleges 163 12

E Institutional, Military Installations 164 13

g Institutional, Other (e.g., Hospitals) 165 14 -
? Open/Other (Urban Parks, Recreational) 190 15
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3
SPECTRAL REQUIREMENTS STUDY

3.1 GENERAL
The spectral study addressed the selection of optimum spectral

bands for each discipline and the determination of the effect of the
number of spectral bands upon classification accuracy for representa-

tive disciplines. At the study's inception, it was felt that spectral

A et RS 4T 8 e

band selection would depend on the application. Optimum bands for the
Agriculture, Geology, Land Use, and Water and Marine test sites were
selected by processing algorithms as described in Section 2, Task I.
Classification was then conducted using the optimum 12, 7, and 4
spectral bands from these prioritized iists of bands for Agriculture
and Land Use, and the optimum 15, 7, and S5 bands for Geology to assess
the effect on classification accuracy. The empirical study alone,
however, was inadequate to allow conclusions as to the optimum bands
or the effect of the number of bands on classification accuracy for a
given discipline.

The empirical results were compromised, first of all, by the fact
that the selection of optimum bands for each discipline was made from
a limited set of spectral bands available in present instrumentation
(see Section 2). Proper empirical selection was further compromised
by the fact that, while a band may have been available, it was not
selected as an optimum band because it was noisy. In addition, the
test site data used did not encompass all anticipated disciplinary
objectives.‘ The empirical channel selection from the agriculture test
site, for example, was based only upon the availability to classify
various types of vegetation and soil. The bands selected would likely

have differed if an attempt had been made to assess such parameters as

plant vigor and soil moisture content.
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In view of the above qualifications on the empirical results, a

It m s

literature survey was conducted, and the results of this survey were
analyzed in an attempt to pinpoint the optimum precise location and

bandwidths for each discipline in the spectral region 0.3-15 um. The

N et Lk

theoretical results were also used with results of the sensor perfor-

mance analysis to make our final band selection. The reader will be

b

able to trace the argument for the final band selection in each

discipline.

3.2 AGRICULTURE/RANSE/FORESTRY
'f ’ The optimum bands selected for the Michigan Agriculture test site
| are shown in Table 3-1. As shown in the table, the bands were
prioritized by the STE’LIN Program [26] for simulated 15 m, 50 m, and
60 m resolutions whicu resulted in some variation ip band selection
$ and priorities. The variations are a result of signature extraccion of
the various resolutions. The smoothing technique used to simulate
these resolutions necessarily produced changes in signature covariances
% for the agricultural scenes, hence, changes in the average pairwise
_ probability of misclassification for the spectral bands. As can be
seen in Table 3-1, however, channels 6, 8, 9, 11, and 12 were among the
optimum seven channels selected for all simulated resolutions. In .
% addition to these consensus bands, channels 1, 3, and 10 were each '
§ selected among the optimum seven channels in two ci the simulated
resolution cases.

Figure 3-1 is a graphic presentation of the performance results

i shown in Tables 3-2, 3-3, and 3-4 for the Michigan Agriculture data .
! set using the optimum 12, 7, and 4 spectral channels for the simulated

30 m resolution case. As indicated in the figure, little or no

improvement is seen in classification accuracy of five vegetative

classes as the number of spectral channels is increased beyond four,

and some of the vegetative classes show a decline in classification
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TABLE 3-1. OPTIMUM CHANNELS FOR 15, 30, and 60 METER DATA SETS

MICHIGAN AGKICULTURE TEST SITE

|

15 METER DATA

30 METER DATA

60 METER DATA

ORDER OF [CHANNEL (Wavelength AVERAGE PAIRWISE | CHANNEL AVERAGE PATRWISE CHANNEL AVERAGE PAIRWISE
SELECTION |NUMBER Rand) PROB. OF MISCLA. | NUMBER PROB. OF MISCLA. NUMBER PROB. OF MISCLA.
1 8 (.62 - .70 um) .1137443 8 .1081104 8 .0893117
2 11 (1.5 - 1.8 um) .0286739 11 ;0255942 1i .0202345
3 1 (.41 -~ .48 ym) .0134848 1 .0110883 3 .0087382
4 9 (.67 = .94 um) .0095766 9 .0078789 12 .0052736
5 6 (.55 - .60 pm) .0072649 6 ,0054141 6 .0035129
6 12 (9.3 - 11.7 um) .0056775 10 .0041438 10 ~,0020811
7 3 (.48 - .52 ym) .0046734 12 ,0033340 9 .0015100
8 10 (1.0 - 1.4 um) »,0039585 4 .0025448 4 .0012222
9 5 (.52 - .57 um) .0035252 3 .0022475 1 .0010751
10 4 (.50 - .54 um) .0033057 2 +0021041 2 .0010041
11 2 (.46 - .49 um) .0031141 5 .0020351 7 . 0009554
12 7 (.58 -~ .64 um) .0029816 7 .0019880 5 .0009340
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- TABLE 3-2. PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST S:iTE
" "4 Optimuu Channels - 30'm Resolution

"~ PER CENT MISCLASSIFICATION
" SCENE CLASS { PER CENT CORRECT | | soy- | RipE
(No. of Pixels)] CLASSIFICATION { CORN| BEANS{ 0aTs | woops| OTHER
C foory @l 926 | - )} fos | 69

COYBEANS = (284) 72.9 | 10.2 - ‘ 16.9
) RIPE. OATS (20) g0 -} ' ' 10.0

woops  (860)]  es.2 - 1 }o.a . 4.7

OTHER  (1168) 83.7 11.2§2.8 {o.8 | 1.3

Wt. Average = -,88.2
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TABLE 3-3. PERFORMANCE RESULTS

MICHIGAN AGRICULTURE TEST SIIE

7 Optimum Channels - 30 m Resoluticn
PER CENT MISCLASSIFICATION
SCENE CLASS PER CENT CORRECT SOY- | RIPE

(No. of Pixels) CLASSIFICATION CORN | BEANS] OATS WOODS OTHER
CORN  (812) 94.1 0.7 5.2
SOYBEANS (284) 70.4 7.8 21.8
RIPE CATS (20) 100.0
WOoOoDS (860) 96.4 1.9 1.7
OTHER (1168) 85.7 9.8 | 0.4 0.9 3.1

Wt. Average = 89.5
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TABLE 3-4. PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SiTE
12 Optimum Channels - 30 m Resolution

PER CENT MISCLASSIFICATION

SCENE CLASS PER CENT CORRECT SOY- | RIPE
(No. of Pixels)| CLASSIFICATION CORN | BEANS| OATS | WoODS| OTHER
CORN (812) 93.8 0.6 5.5 ‘
SOYBEANS (284) 68.0 6.3 25.7
RIPE OATS (20) 90.0 10.0
WOODS (860) 97.6 1.3 1.2
OTHER (1168) 83.3 9.7 0.4 | 1.1 5.3

Wt. Average = 88.6
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accuracy. This decline in classification was caused by the spectral
location of the non-consensus channels and the observation condition
on the data collection date. Flight logs for data collection over

the Michigan Agriculture test site indicate high haze concentration on
the August 5 flight. Such conditions produce scattering in the lower
wavelength channels and absorption in the additional mid IR channels,
and this haze may reduce classification accuracy of scenes extended
beyond training sets.

The marked increase in the classification accuracy of ripe oats
using the optimum 7 channels is also deceptive. The August data
collection period was coincident with the harvest period for oats at
the Michigan test site. As a result, few fields of unharvested ripe
oats were located, and a total of only twenty pixels (at 30 meters)
of this class is represented. Using 7 channel data only two additional
pixels were correctly classified which had been misclassified using
the 4 and 12 channel data.

There was a wide variability in the condition of soybean fields
during the data collection period, resulting in generally low classifi-
cation accuracy for the 12, 7, and 4 channel data. Ground information
and low altitude photography indicated that this wide variation was
caused by variations in planting dates and cultivation practices.

Discounting the anomalies of the ripe oat and soybean classes and
the influence of these classes on average classification accuracy, the
classification accuracy for the five vegetative classes tested improves
little as the number of spectral bands is increased from four to seven.
Since the five classes are fairly representative of the Agriculture .
discipline, the results indicate that adequate vegetation classifica-
tion can be accomplished as well with four or five optimized channels
as with twelve. The consensus channels empirically zeizcted from
Michigan agriculture data were 0.62-0.70 um, 1.5-1.8 :i, 0.67-0.94 um,
0.55~0.60 ym, and 9.3-11.7 um.

46




Z FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

As shown in Figure 3-2, these bands are located in spectral regions
where the vegetation signature is most different from other signatures.
Channels 6 and 8 are located in the areas of chlorophyll transmittance
and absorption, at 0.55-0.60 um and 0.62-0.70 um respectively. Channel
9 is located in the area of high vegetative infrared reflectance near
0.8 um; and channel 12, though not shown in the Figure 3-2 reflectance
curve, is located in the thermal infrared. Channel 11, at 1.5-1.8 um,
is located in a region where the vegetation response is strongly
influenced by the moisture content of the foliage.

The results of the literature survey for the Agriculture/Range/
Forestry discipline, shown in Table 3-5, provide corroboration to the
spectral regions empirically selected for the Micbigan test site. (The
precise widths and locations of the empirically selected bands were,
however, fixed prior to data collection.) Further optimization of
these bands may be realized by further analysis of Figure 3-2. The
0.62-0.70 um band is centered on a region of maximum chlorophyll A
absorptance, hence measurement in this region is indicative of plant
chlorophyll A content and useful in species differentiatica and
assessment of plant health and growth stage. Measurements in this band
are most useful when the band is as near the absorptance trough as
possible. It can be seen from Figure 3-2 that the lower and upper band
limits of the empirically selected band encompass reflectance rises
toward the yellow and near infrared spectral regions respectively. To
optimize measurement in this spectral region, the bandwidth should be
reduced to 0.63-0.69 um.

The 0.67-0.94 um band contains not cnly the high reflectance
plateau, but also the reflectance rise between the red and infrared
regions. The lower band limit should be raised to 0.75 ym to allow
reflectance on the near infrared plateau where vegetative reflectance
is greatest. The optimum upper band limit for this band should be at

0.95 um to avoid measurement in the water absorprance region centered
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TABLE 3-5. LITERATURE SURVEY RESULTS - AG/RANGE/FORESTRY

WAVELENGTH (um)
SOURCE
.4 .5.6.7.8.91 2 3 4 5678910 15

Allen, Grosman, » A A A

Richardson - 1970
Theoretical |Earing, Ginsberg - Y N
Results . 1969

Carnaggie - 1967 — [ bt

Wagner, Colwell -

& 1972 sl
Empirical [Sadowski, Thomson - ‘
Results | 1972 ' .
‘I Nalepka, Vincent, L -
Thomas - 1974 -
2% " —

SEOS - 1973 L s
Systems 1
Studies EOSPDG - 1973 , . — et

Advanced Scanners M

and Imaging Systems -1972 — —




TABLE 3-5A. LITERATURE SURVEY RESULTS ~ AGRICULTURE/RANGE/FORESTRY
OPTIMUM SPECTRAL BANDS (um)

THEOQRETICAL
Allen, Gausman, Richardsen Earing, Ginsberg Carnaggic
1722 Jno & 0.62 - 0.66 0.32 - 0.38
2'20 { specified 0.66 -~ 0.72 0.50 - 0.57
: 0.72 - 0.79 0.62 - 0.66
0.8 - 1.0
1.50 - 1.8
800 - 14.0
EMPIRICAL
o Wagner, Colwell Sadowski, Thomson Nalepka, Vincent, Thomas
0.40 - 0.44 0.41 - 0.48 0.50 - 0.54
0.52 - 0.55 0.52 - 0.57 0.52 -~ 0.57
0.62 - 0.66 0.58 - 0.64 0.51 - 0.69
0.66 -« 0.72 0.62 - 0.67 0.72 - 0.92
0.72 - 0.80 1.0 - 1.4 1.0 - 1.4
0.80 - 1.0 1.5 - 1.8 1.5 - 1.8
2-0 - 206
9.3 -~ 11.6
SYSTEMS STUDIES
Advanced Scanners
SEOS EOSPDG and Imaging Cystems
0.5z - 0.56 0.52 - 0.5¢
0.57 - 0.59 0.63 - 0.08 0.3~ 03
0.59 - 0.62 0.74 - 0.9 0'70 _ 0'74
0.62 - 0.68 0.80 - 1.0 1'50 _ 1.8
0.69 - 0.75 1.55 - 1.75 2'0 _ 2.6
2.0 - 2.3 2.05 - 2.35 8.0 _ 14'0
8.3 - 9.3 10.3 - 12.6 ‘ :
10.5 =~ 12.5
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at 1.16 ym. The 0.55-0.60 um band is an area of chlorophyll transmit-
tance useful in assessing the growth stage and health of vegetation.
As shown in Figure 3-3, peak reflectance in this region is shifted
toward the 0.60 um region with either vegetative maturity or disease

- infestation.

The 10.4-12.5 pm region has been the most often used and recom-
mended thermal band. This band is selected to avcid water absorption
regions on either side of the band limits and to provide broa: band
temperature data. Temperature has demonstrated utility in vegetative
discrimination. The effects of canopy shading, evapotranspiration, and
percent bare soil are often manifested as a difference in thermal
radiation in vegetative scenes. The 9.3-11.7 um band empirically
selected would probably be replacec by the 10.4-12.5 um band for
satellite applications. Exact placement of a thermal band may, however,
be of less importance tn vegetative investigations than to other
dis.iplines, so long as the selected theimal band provides accurate
temperature measurements. The 1.5-1.8 um band may be used as an
indicator of leaf moisture coantent, and is thus useful in discrimination
of vegetative type, growth and health. The band, however, unneces-
sarily overlaps into water absorption bands at each band limit, and
should be narrowed to 1.55-1.75 um.

The five bands discussed thus far are considered good for classifi-
cation of vegetative species. In addition to species classificationm,
it is desirable to assess plant health and vigor. In combination with
one or more of the previous bands, spectral bands located at 0.69-

0.75 ym, and 2.05-2.35 um have been shown to be indicators of vegeta-
tive stress, insect or disease infestation, and vigor. The mid-
infrared band (2.05-2.35 um) is a furthe. liadicator of leaf moisture
content. The 0.69-0.75 um band is located on the slope between the
chlorophyll absorptance band (0.63-0.69 um) and the high reflectance

near infrared band (0.75-0.95 im). As shown in Figure 3-3, measuremenmgxé
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in this region may also be used as an indicator of growth stage
and stress.

Prioritized recommended spectral bands for the Agriculture/Range/
Forestry discipline are shown in Table 3-6. Based upon the empirical
and theoretical results presented, the first five bands are considered
optimum for classifying vegetutive scenes. The remaining two bands
are added to assess vegetative health and vigor. The 2.05-2.35 umﬁ

band is included in Table 3-6 as an option to the 1.55-1.75 um band.

3.3 URBAN LAND USE

The bands shown in Table 37 were selected from the Baltimore Land
Use data for the simulated 30 m resolution case. Bands 8, 9, and 12
ranked high as vegetative discriminators; channel 10 was used primarily
for detection of water; and channels 1, 4, and 11 were found to be good
for the discrimination of impervious materials. Tables 3-8 through
3-13 present detailed performance results of Levels I, II, and I1l
land use classification using the best 4, 7, and 12 spectral channels.
Table 3-14 summarizes the percentage correct classification of
Tables 3-8 through 3-13. Analysis of the Table 3-14 results indicates
that none of the individual Urban Land Use classes showed a marked
increase classification accuracy as the number of spectral bands was
increased from 4 to 12.

The weighted average results of Levels I, II, and III Urban Land
Use classification accuracies using 12, 7, and 4 channel data are
detailed in Table 3-15 and shown graphically in Figure 3-4. As in the
agriculture case, there is little improvement in the classification
accuracy for Levels I and II, or III as the number of channels is
increased. Empirically then, four channels appear to be adequate for
Levels I, II, and III, Urban Land Use ciassification.

Insufficient literature dedicated to assessment of optimum bands

was found for Urban Land Use investigations. In view of this, the
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TABLE 3-6., RECOMMENDED OPTIMUM BANDS

AGRICULTURE/RANGE/FORESTRY
(PRIORITIZED)

AGRICULTURE/RANGE/FORESTRY

0.75 - 0.95 um
10.4 - 12.5 um

0.55 = 0.60 um

*¥1.55 - 1.75 um
2.05 = 2.35 um

0.69 - 0.75 um

* or 2,05 - 2,35 ym
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TABLE 3-7. CHANNEL ORDERING AND PROBABILITY OF MISCLASSIFICATION
FOR 4 x 4 SMOOTHED BALTIMORE AIRCRAFT DATA
(28.8 m RESOLUTION)

(CLASSES SHOWN IN TABLE 3-9)

CHANNEL PROBABILITY OF MISCLASSIFICATION
10 (1.0 - 1.4 um) .0473
1 (0.41 - 0.48 um) ‘ .0080
12 (5.3 - 11.7 um) .0035
9 (0.67 - 0.94 um) .0018
8 (0.62 - 0.70 um) .0011
4 (0.50 - 0.54 pm) .0007
11 (2.0 - 2.6 um) , .0006
2 (0.46 - 0.49 pm) .0005
7 (0.58 = 0.64 um) .0004
3 (0.48 - 0.52 um) .0004
5 (0.52 - 0.57 um) .0004
6 (0.55 - 0.60 um) .0004
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TABLE 3-8. PBRYORMANCE MATRICES

LEVEL I _LAND USE® 4 Channels

AGGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH 1» URBAN AG roazsr WATER UNCLAS.
|, URBAN (1) 85.9 7.9 1.3 5.1
|
AGRICULTURE (2) 14.3 69:1 4.8 11.9
FOREST (4) 14.8 88.2 3.0
WATER (5) 70.0 30.0
; D

LEVEL II LAND USE*

AGGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH RES C?ﬁé AG | PAST | FOR | WATER|UNCLAS.
RESIDENTIAL (11) 53.1 § 23.6 7.7 0.1 1.9 3.2
gggﬁiigiﬁi/(12ll3) 26.5 fs8.2 | 4.1 | 3.1 8.2
CROPLAND (21) 13.3 46.7 §13.3 6.7 20.0
PASTURE (22) 14.8 11.1 J61.8 3.7 7.4
FOREST 5.8 88.2 3.0
Deciduous (41)

h WATER (50) 70.0 § 30.0

*ANDERSON LAND USE CLASSES ARE BHOWN IN PARENTHEBES
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LEVEL III COMPUTER SPECTRAL CLASSIfICATION OF LAND USE®

TABLE 3-9.

BALTIMCRE, MaFULAND

PYERFORMANCE MATRIX

4 Channels

FAM aPT1 | apT2 | RLr[sorL]asen] mpr pr  [sornlcwop { rasture | FoReST
Number } Sinple
of Family Multiple Commercial Industrial| Cropland | Pasture Deciduovs Water
GROUND TRUTH Points | Res. (111) Family (112) (121/122) (130) (210) (220) Torast (410) (500) | Unclassified
Single Family
Residential (111) 62.7 16.0 1.3 2.7 10.7 4.0 2.7
talti-facily (112) 15.9 32.7 i2.2 29.3 4.9 1.2 3.7
aad Institutional
(160)
Cowmerclal (121/122) 11.8 19.7 33.1 25.% 2.0 3.9 3.9
Industrial (13) 4.3 17.0 42.5 14.9 6.4 2.1 12.8
'
Cropland (210) 6.7 6.7 46.7 13.3 ¢ 6.7 20.0
¢ .
¢
Pusture (220) 7.4 7.4 11.1 61.8 ! 3,7 7.4
Deciduous Forest 8.8 88.2 3.0
(410)
Water (500) 70.0 30.0
*State of Maryland Land Use Classes are shown in parentheses
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TABLE 3-10. PEKFORMANCE MATRICES

LEVEL 1 LAND USE#* 7 Charnels

..oGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH UREAN AG FOREST WATER | UNCLAS.
URBAN (1) 83.9 6.3 1.2 2.0
AGRICULTURE (2) 14.3 71.4 7.2 7.2

|~_§0REST (4) 5.9 94.1
WATER (5) 12.5 § 87.5

LEVEL ITI LAND USE*%* 7 Channels

AGGREGATED COMPUTER SPECTRAL CLASS®S

GROUND TRUTH RES ngé ac | past | ror | water}uncLas.
RESIDENTTAL (11) 66.3 | 21.7 | 6.4 0.6 |1.9 3.2
53§§§§§§:§’<12,13) 25.5 § 52.0 § 4.1 1.0 17.4
CROPLAND (21) 6.7 ] 6.7 §60.0 6.7 |6.7 13.3
PASTURE (22) 5 11.1 v fiae §59.3 7.3 3.7
ngiiguous (41) 94.1

WATER (50) 100

*ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES




TABLE 3~11. PERFORMANCE MATRIX , _——

BALTIMORE, MARYLAND ()Izlt;fifkij
- i N * . OF “ P4
LEVEL II1 COMP' 'ER SPECTRAL TuL'SSIFICATION OF LAND USE 7 Channels " R QU < IS
{
FAM APT1| apr2 | rirlsorL[aseu] ror Tor [soii]crop | PASTURE | FOREST _
Number | Single
of Family Multiple Commercial Industrial| Cropland Pasture Deciduous Water
GROUND TRUTH Points Res. (111) Family (112) (121/122) (130) (210) (220) Forest (410) (500) Unclassificd
Single amily
Residential (111) 62.7 16.0 2.7 9.3 1.3 4.0 4.0
Multi-family (112) '
and Institurional 13.4 41.5 13.4 25.6 3.6 2.4
(160)
o | Commereial (121/122) 11.8 15.7 29.4 31.4 2.0 2.0 7.9
w
Industzizl (13) 6.4 17.0 i3.2 23.4 6.4 27.7
Cropland (210) 6.7 5.7 60.0 6.7 6.7 13.3 —
Pasture (220) 5.9 3.0 11.8 47.1 5.9 3.0
Deciducus Forest 3.0 3.0 94.1 B
(410}

Water (500) 12.5 87.5

*State of Maryland Land Use Classes are shown in parentheses. . -
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TABLE 3-12. PERFORMANCE MATRICES

LEVEL I LAND USE* 12 Channels

AGGREGATED COMPUTER SPECTRAL CLASSES

CROUND TRUTH \ URBAN AG FOREST WATER UNCLAS.
a—
URBAN (1) 85.9 7.1 0.8 6.3
I AGRICULTURE (2) 11.9 73.8 7.2 7.2 .
FOREST (4) 8.9 3.0 88.2
WATER (5) 2.5 20.0 775

LEVEL II LAND USE* 12 Channels

AGGREGATED COMPUTER SPECTRAL CLASSE

GROUND TRUTH RES C?gé ac | past | For | warer|uncras.
RESIDENTIAL (11) 6s.3023.6 | 8.3 | 1.3]1.3 1.3
gggﬁ??ﬁiii/(12/13) 34.7 f48.0 | 2.0 1.0 14.3
CROPLAND (21) 13.3 53.3 | 13.3 | 6.7 13.3
PASTURE (22) 11.1 14.8 fe63.0 7.4 3.7
ngiiguous @ 8.9 3.0 | 88.2

WATER (50) 2.5 20.0 § 77.5

*ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES
60




TABLE 3-13., PERFORMANCE MATRIX

BALTIMORE, MARYLAND

LEVEL I1I COMPUTER SPECTRAL CLASSIFICATION OF LAND USE * 12 Channels

TAM art1 [ arr2 | rerlsorrfases] tor Tor_ Jeorn|croe | oasTure | FOREST
Number | Single
of Family Multiple Commercial Industrial| Cropland | Pasture Deciduous Water

CROUND [RUTH Points | Res. (111) Family (112) (121/122) (130} (210) (220) Forest (41C) (500) Unclassificd

Single Family

fesidential (111) 58.7 . 17.3 4,0 12.0 2.7 2.7

Mauled-family (112)

and Institutional 14.6 39.0 13.4 25.6 4.8 2.4

(1¢0)

o | Commerelal (121/122) J.8 23.6 31.4 25.9 2.0 2.0 5.9
—

Indust. al (13) 10.6 25.5 21.3 17.0 2,1 23.4

Cropland (210) 6.7 6.7 53.3 13.3 6.7 13.3

Pasture (220) 11.1 14.8 613.0 7.4 3.7

Deeiduous Forest 5.9 3.0 3.0 88.2

(410)
water (500) 2.5 ] 20 77.5

*State of Maryland Land Use Classes are shown in parentheses
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TABLE 3-14. PROBABILITY OF CORRECT CLASSIFICATION

f FOR VARICUS NUMBERS CF CHANNELS
‘ Baltimore Land Use Test Site

ANDERSON LEVEL I

f # of Channels
: Classification 4 ? 12

g Urban (1) 85.9 83.9 85.9

‘ Agriculture (2) 69.1 1.4 72.8
Forest (4) 88.2 94.1 88.2
water (5) 100 100 100

D —

i ANDERSON LEVEL II

Residential (11) 63.1  66.3  64.3
°°"?§§ﬁ§§iial (12/13) 8.2 820 480
Cropland (21) 46.7  60.0  53.3
Pasture (22) 61.8  59.3  63.0
Forest (41) 88.2  94.1  88.2
Water (50) 100 100 100

MARYLAND LEVEL ITI

Single Family
Residential (111)
Multi-family (112)

f and Institutional (160) 2+ 415 39.0

62.7 62.7 58.7

Commercial (121/122) 33.3 29.4 31.4
Industrial (130) 14.9 23.4 17.0
Cropland (210) 46.7 60.0 53.3
Pasture (220) 61.8 47.1 63.3

% Deciduous Forest (410) 55.2 94.1 88.2

’ Water (500) 100 100 100

i

;
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TABLE 3-15.

PERFORMANCE MATRICES

BALTIMORE, MARYLAND - AVERAGE ACCURACY

% ERRORS
% CORRECT
4 Channels Commission} Omission
LEVEL I -
85.7 9.2 5«1
LEVEL 1I
67.4 27.5 5:1
LEVEL III 51.8 42.5 5.1
% CORRECT 2 ShpEs
7 Channels Commission| Omission
LEVEL I 85.2 8.1 6.7
LEVEL [I 67.9 25.4 6.7
LEVEL III 54.9 38.4 6.7
- < 7 ERROR
12 Channels % CORKL.T C — - —
ommissiorn | (.nission
LEVEL 1 86.3 8.h 5.1
LEVEL II 65.3 29.8 5.1
LEVEL 111 52.6 42.3 5.1
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Urban Land Use results are based primarily upoan the Baltimore data
results presented in this study and an analysis of laboratory reflec-
tance data on materials to be encountered in Land Use scenes.

With the exception of channel 10, the channels selected for the
land use study were generally in the spectral regions predicted
theoretically. Band 10 was ranked unusually high as a result of its
use as a land/water boundary identifier. A more appropriate band for
land/water interface delineation in urbtan land use studies (not
available in the Baltimcre data) would be an 0.8-1.1 um band. This
band would aid in vegetative discrimination in addition to delineating
land/water interfaces and would replace both channels 9 and 10 shown
in Table 3-7. The 0.62-0.70 vm and the 9.3-11.7 um bands would be
modified to 0.63-0.65 um and 10.4-12.4 pm, respectively, as described
in the Agriculture/Range/Forestry study. The remainder of the top
seven bands in Table 3-7 would remain unchanged.

The anticipated task for Urban Land Use is to classify urban
areas at least to the Anderson Level II1 categories. To accomplish
this, selected bands will be required to classify various typnes of
pervious and impervious materials, differentiate between vegetative
types, and delineate land/water boundaries. The 10.4-12.5 um band
would be the most useful band for urban land use classification,
provided that data are collected near noon, wi.a maximum temperature
contrast between man-made and natural categories occurs. Temperature
has been found to be an indicator of the concentration of man's
activities and hzs also been useful in vegetation discrimination for
land use applications. The 10.4-12.5 um band would probably not be
as useful if data were collected at 0930 hours. The 0.63-0.69 ,m band
is primarily e vegetation band as described in the Agriculture/Range/
Forestry portion of the study. The 0.50-0.54 pym, 2.0-2.6 pm, and
0.42-0.48 um bands are pervious/impervious materials and vegetation

discriminators. Though ranked ninth empirically, the 0.58-0.64 ,m is
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deemed necessary to land use classification because of its utility in
radiation balance and albedo measurements. Recommended spectral bands

for the Urban Land Use discipline are shown in Table 3-16.

3.4 GEOLOGY AND SOILS

The geological classification task undertaken was lithological or
mineral soil classification. As opposed to .the delineation of -
structure which may be done with color imagery or black and white
single channel imagery collected under suitable conditions, a diversity
of spectral bands may be required for successful lithologic classifi-
cation. Twenty-one materials were identified in the White Sands data.
These classes appear in Table 3-17.

Data from the White Sands Geology test site were evaluated first
to determine the optimum ratios from the training data. Ratios were
selected as input features because of previous experience indicating
that spectral shape information was more useful than the spectral
refleccance information in delineating certain lithologic units such
as different silicates and iron-bearing formations. Generacion of the
optimum ratios, shown in Table 3-18, was accomplished by evaluating
121 individual target areas representing 21 different classes of
materials to be recognized. Spectral bands comprising these ratios
were then prioritized. These prioritized spectral band results appear
in Table 3-19. The prioritization represented in Tables 3-18 and 3-19
are attempts to minimize the overall probability of misclassification
for all scene classes. The prioritization did not maximize the
probability of detecting a particular material of economic or
geological inferential importance. As may be ~een in the analysis of
data test sets, the addition of bands directed towards identifying
particular materials does increase the probability of identifying that
material.

For the White Sands Geology test site, the twenty one separate

scene materials were classified using 15, 7, and 5 spectral channels.

-
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TABLE 3-16. RECOMMENDEL OPTIMUM BANDS URBAN LAND USE
(PRIORITIZED)

URBAN LAND USE

10.4 - 12.5 um
0.8 - 1.1 um
0.63 - 0.69 um

0.50 - 0.54 um

[a]
o
I

2.6 um
0.42 - 0.48 um

0.58 - 0.64 um
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TABLE 3-17
WHITE SANDS GEOLOGY TEST SITE

Scene Classes to be Recognized

Scene Class Name Description
1 Gypsum sand near white deposits associated
alkali flat alkali flat, partially gypsum

sand, may include some quartz sand

2 Soil (receat?) a background soil type cut by
youngest drainage deposits

3 Red alkali deposit distinct red deposit north of
the white sands -

4 Soil (dissected) a distinct soil type considered
younger than target 2 and of
different composition or cover

5 Dark drainage soil appears very dark in natural
(most recent?) color photography, may be some
vegetative cover

6 Red alkali deposit broad region of alkali flats
orange-red to red-brown
sediment materials

7 Alluvial fan - fan on eastern San Andres at mouth
geologic map shows of Grapevine Canyon and some remmant
Qal sediment on the pediment

8 Soil second background soil type

9 Pediment - Paleo- appears to be the remaining exposed
alluvial fan foot of a previous period of allvvium,

probably with associated soil remnants
on the pediment

10 Soil (erosional remnants of a pediment soil highly
remnant) dissected and appearing dark
greenish-gray
11 Precambrian granite chiefly. Other core
crystallines exposures of metamorphics are not

specifically known, but may be
omitted from this class and hopefully
will class with some of the more
mafic rich soils
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TABLE 3-17 (cont.)

12 Dolomite several Ordovician and a Silurian
dolomite stratigraphically contiguous.
An Ordovician basal sandstone is
also included here, but considered
of insignificant thickness. It may
interfere with the boundary between
crystallines and dolomites

13 Limestone and Devonian through Upper Pennsylvanian
calcareous sediments calcareous sediments of mixed
description. Statistical stratifi-
cation failed to separate limestone
from mixtures of silts and sands
with carbonaceous shale.

14 Abo Redbeds dark reddish-brown shales and
siltstone, some grey and red also
15 Yeso and San Andres iron stained sandstone and
Formations calcareous sediments
16 Slope material general valley fill material not

recognizable as rock outcrop and
likely to have mixtures of rock
types, highly weathered, with

partial soil development and/or cover

i7 Multi-colored a unique soil type of extremely
drainage soil mottled appearance in the red
seen to dissect most soil classes

18 Lake Lucero playa lake deposits
19 Gypsum sand
20 Bolson sediment dark material seen to underlie or

be in close proximity to the gypsum
sand deposits

21 Darkest bolson similar situation to target 22,
deposits but spectrally distinctive.
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Ranking

10
11
12

13

TABLE 3-18.

PRIORITIZED RATIOS

GEOLOGY TEST SITE

Ratio

0.71-0.75 / 0.46-0.50

1.18-1.30
0.57-0.63
0.64-0.68
2.10-2.36
0.97-1.05
0.46-0.50
9.30-9.80
2.10-2.36
0.97-1.05
0.82-0.87
2.10-2.36

0.46-0.50

/
/
{
/
/
/

/
/
/
/
/
/

0.71-0.75
0.40-0.44
0.53-0.57
0.82-0.87
0.76-0.80
0.34-0.40
8.30-8.80
0.64-0.68
0.64-0.08
0.53-0.57
1.05-1.09

0.40-0.44
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Probability of
Misclassification

.14870
.06174
.03793
.02822
.02181
.01839
.01574
.01365
.01242
.01107
.01055
.01011

.00970




TABLE 3-19. PRIORITIZED SPECTRAL BANDS
WHITE SANDS GEOLOGY TEET SITE

Ranking Spectral Band
1 0.71 - 0.75
2 0.46 - 0.50
3 1.18 - 1.30
4 0.57 - 0.63
5 0.40 - 0.44
6 0.64 - 0.68
7 0.53 - 0.57
8 2.10 - 2.36
9 0.82 - 0.87

10 0.97 - 1.05
1 0.76 - 0.80
12 0.34 - 0.40
13 9.30 - 9.80
14 8.30 - 8.80
15 1.05 - 1.09
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The classification results are given in Tables 3-20, 3-21, and 3-22.

As can be seen in Figure 3-5, a marked improvement in average classifi-
cation cccuracy was realized as the number of spectral channels was
increased from 5 to 15. However, some scene classes (3, 15, 18, 20,

and 21) show little decrease in classification accuracy as the number
of spectral channels is reduced to five. Table 3-23 is a useful summary
of this data.

This dependence of classification accuracy upon the number of
spectral bands follows from the relatively large number of scene
materials to be classified. This large number of classes, however, is
representative of the variety of the geology and soils found in arid
regions such as New Mexico, and thus the number of bands may be
indicative of the spectral requirements.

The soils and sediments are well identified by the first four
bands of Table 3-19. A marked improvement in classification is noted
for class 10, a probably ferrous iron containing soil identified with
the aid of the 0.46-0.50 um/0.34-0.40 pm ratic brought in the 7 ratio
data. Class 1, gypsum and quartz sand, and class 11, granite, are
identified by the silicate reststrahlen registered by channels
9.3-9.8 um and 8.3-8.8 pm. Class 12 and 13 are carbonates identified
best by channels 1.1-1.35 pym and 2.0-2.35 pm both available only in
the 15 channel classification. Class 6 contains limonite and goethite
ferric oxides and class 14 contains thematite, another ferric oxide.
Improvements in claszification (5 optimum versus 7 optimum spectral
channels) are based on the availability o{ the ratio 0.64-0.68 um/
0.53-0.57 um in the 7 channel data. The improvement classification in
the 15 channel data is due to the availability of the ratio
0.97-1.05 pm/0.64-0.68 um. Both these ratios delineate ferric iron
containing materials from other scene materials. This leads to the
empirical results for the identification of quartz (silicates), ferrous

and ferric (iron oxides), and carbonates given in Table 3-24.
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TABLE 3-20. PERFORMANCE MATRIX - WHITE SANDS GEOLOGY TEST SITE

3 OPTIMUM RATIOS, 4 OPTIMUM CHANNELS

o TRAINING SET NUMBER (SEE TABLE 3-17)
- ‘a; SCENE | X ) T UN
§ E LASS |cLASs ! 1] 2 (3 )45 )|6]718]9({10 1112213 )16 |35 216|217 [18 |19 [20 |21 | cLass.
5] F 1 63.0 5.5[2.0] 2.6[0.1]6.0]0.1 0.7
L v 2 56.4 P5.4 4.0[13.3[ 0.4 c.1 0.4
= g 3 926 |7.4
st*:\ 4 75.7 |3.2011.900.8 4.8]2.5]0.4 0.7
7] 5 75.8 0.3 0.3]6.3 0.8[4.3]3.5]1.5(3.8 3.5
6 79.2 2.7 12.8 5.4
7 21.5 2.5[2.2]2.2 4.811.2 0.2 4.6 163.1
8 80.0 17.5
- 9 34.3 7.1010.7 5.7 0.7 41.4
e 10 67.1 1.4(8.6 14.3/5.7 2.9
11 2.6 1.4 1.7]5.0(1.8{2.9 0.4 1.6] 2.4 12.2[10.5 |17.4 [17.4 [17.0 3.7
12 20.4 0.2/0.1 0.1{0.2 0.2| 0.2 2.7 12.4 [18.9 [32.2 [11.7
13 65.8 0.200.1]0.4 0.2| 0.8 0.3] 6.4 9.8 2.2 [13.9
14 75.9 0.2 0.9| 4.6 | 4.9 4.9| 8.5
15 69.4 0.1 0.8 3.6/ 3.2]3.9]2.0 16.9
16 59.9 0.100.40.1(2.5 6.001.0/1,511,615,413,208.4 0.1
17 83.2 419.0 7.4
18 92.7 i 1.6
19 81.7 12.9 0.115.3
20 96.4 3.6
21 95.5 3.4]1.1

WEIGHTED AVERAGE ACCURACY OF CLASSIFICATION - 66.4%




TABLE 3-2.. PERFORMANCE MATRIX - WHITE SANDS GEOLOGY TEST SITE
4 OPTIMUM RATIOS, 7 OPTIMUM CHANNELS

E;: é TRAINING SET NUMBER (SEE TABLE 3-17)
o &3 SCENE | % % UN
& 2, erass lcass |1l213lals|efz{8|9olrotarjaz2]13jaelrs | 16127 {16 119 120 121 CLAS.
z [;_: 1 75.3 8.4 [11.0/3.4 0.2
c 2 s8.9 Pr.1 |o0.1113.d
5‘8 3 94.0 |5.700.3
%) 4 72.2 |’.605.0 6.80.910.7 0.7 0.1
5 79.3 0.5 17.8 1.0/5.0.311.0 3.0
6 79.2 1.0 1.3 4
7 38.0 0.5]2.4 5.3(1.5]8.2]0.5 ho.7 [32.9
8 90.0 5.0/5.0
9 37.1 3.6 12.9 7.112.9 6.4
v 10 84.3 1.4 1.4]8.64.4
11 14.5 0.1 0.53.7 L.1 3.4 |0.3] 0.9] 2.8 h6.6 19.5 6.9 |21.5014,9 3.5
12 26.5 1 b.2 l0.1]{0.10.1]5.5 17.2] 3.5 (30,4 15.4 0.1 0.7
13 69.0 0.4 0.310.411.9]8.4 0.319.2 10,7 0.2
14 86.1 [0.6 0.4 |2.8 1.3 18,7
15 £9.9 b.5 0.4 3.115.5(3.00.7 17,2
[ 16 | es.5 p.1]0.43.0 5.000.812.2]2.714.717.6 12,7 oL
17 84. 4 0.1]12.8 2.7
e |93. 1.9 2.1
9 | 80.6 11.2 0.1] 8.1
20 | 96.4 3.6
2 [ 96.6 2.3| 1.1

WEIGHTED AVERAGE ACCURACY OF CLASSIFICATION - 66.82
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TABLE 3-22.

PERFORMANCE MATRIX - WHITE SANDS GEOLOGY TEST SITE
13 OPTIMUM RATIOS, 15 OPTIMUM CHANNELS
TRAINING SET NUMBER (SEE TABLE 3-17)

SCERE | % % UN
LAss |cLass | 1] 2 alslelzlalolro o |12 13 |a6]15 136117 18 |19 |20 |21 | cLass.
1 90.4 4.3 0.2 1.7 3.4

2 77.5 p0.4 11.50.2 0.1 0.3

3 99.7 0.3

4 80.4 [0.3[8.9 4.0 0.1 0.1 0.2

5 83.4 1.8 10.8 0.8l0. 1.5 1.0

6 96.6 2.7 0.7

7 80.6 0.7 2.9/1.0(3.4]1.7]1.5 5.113.2

8 | 100.0

9 85.0 3.6 0.7 1.4 0.710.717.9

10 95.7 1.4 2.9

11 43.7 0.1 19,10010.917,1 14,7 12.6 11.8
12 57.7 0.6 0.1 6.6 10.705.119.4 4.0 5.1

13 73.7 1.3 0.1 2.818,9 2.5 11.7 2.7 6.2

14 96.1 0.2 /0.8 0.3 0.5 12,1 0.2

15 72.6 1.4 3.019.2 10.7 11.1 11.1 0.7

16 79.8 0.4 2.8 0.4 0.4 {1.314.,919.9 1.0

17 94.2 1.9 1.9

18 99.0 1.0

19 98.2 0.6 0.1 1.2

20 96.8 3,2

21 98.9 1.1

WELGHTED AVERAGE ACCURACY OF CLASSIFICATION - 81.5%




TABLE 3-23. PROBABILITY OF CORRECT CLASSIFICATION
FOR 5, 7, and 15 ('HANNELS

GEOLOGY

CLASS/#CLASSES 5 7 15
1 63.0 75.3 90.4
2 56.4 58.9 77.5
3 92.6 94.0 99.7
4 75.7 73.3 86.4
5 75.8 74.3 83.4
6 79.2 79.2 96.6
7 20.5 38.0 50.0
8 80.0 90.0 100.0
9 34.3 37.1 85.0

10 ‘ 67.1 84.3 95.7
11 2.6 14.9 43.7
12 20.4 36.5 57.7
13 65.8 69.0 73.7
14 75.9 86.1 96.1
15 69.9 61.9 72.6
16 59.9 65.8 79.6
17 83.2 84.3 74.2
18 93.7 93.4 99.0
19 81.7 80.6 8.2
20 96.4 96.4 96.8

21 95.4 96. 6 98.9




TABLE 3-24. BANDS FOR {INERAL IDENTIFICATION

MINERAL SPECTRAL BANDS (Micrometers)

Silicate 9.3 - 9.8, 8.3 - 8.8

Ferric 0.64 - 0.68, 0.55 - J.57, 0.91 - 1.05
Ferrous 0.46 - 0.50

Carbonates 1.1 - 1.35, 2.0 - 2.35
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In the geology discipline, the assumed objective was the classifi-
cation of soils and mineral resources. Theoretical and other empirical
studies support the spectral channel ordering results. The results
from the theoretical and empirical studies review, Table 3-25, and
their band selection Table 3-25A are discussed below. The 8.3-9.3 im
and 10.4-12.5 pym thermal bands in the silicate reststrahlen region
have been shown to be effective in the differentiation of silicates
from other rock types and of differentiation between various silicate
types. Measurements in the 0.63-0.69 um region provide albedo info.-
mation necessary to assess thermal inertia and heat capacity oi various
rock types. This band, combined with a band in the mid-infrared region
is also effective in detecting the presence of vegetative cover (such
as lichen or grass) on geologic materials. The 0.52-0.56 um band, in
combination with the 0.63-0.69 um band is an indicator of the presence
of iron oxide, and hence, ferric iron. The 2.05-2.35 ym band may
indicate the presence of hydroxyl ions in surface materials and thus
can be used to differentiate soil types and metamorphic and other rock
types.

The 1.1-1.35 um band is also useful for carbonate identification.
The 1.55-1.75 um band is potentially useful in the detectica of bauxite
types. The 0.45-0.50 ym band is in a ferrous iron absorption band,
and is thus useful for detection of ferrous iron containing materials.

If the identification of various minerals is prioritized
according to some measure of economic importance such as construction
material (silicates, especially sand), iron ore (Ferric + Ferrous),
heat balance and vegetaticn rejector, and carbonate (limestone),

the channel priorities shown in Table 3-26 are obtained.

3.5 WATER AND MARINE RESOURCES
The selection of spectral band placement and bandwidth for watc
and marine resources depends on the phenomena to be delineated. The

assumed objective of water resources applications for this study was
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TABLE 3-25. LITERATURE SURVEY RESULTS - GEOLOGY

5
SOURCE WAVELENGTH (j+m)
4 .5.6.7.8.91 2 3 4 5678910 15
Ross, Adler, Hunt -
1967 A 44
Th tical
pocole ¢4 | vincent - 1974 .
Kondratyev, et al - -
1973 '
Dillman, Vincent,
Hasell - oL N o — Lot
=3 Empirical
° R:lsilllt.;ca Vincent - 1973 -t |— gt =
Dillman, Thomson - B
1971 Ll '
- —
SEOS - 1973 e | —
Systems _ =TT —
Studi=s EOSPDG - 1973 d — -
Advanced Scanners — | W = [—y
and Imaging Systems -1972 -

LITERATURE SURVEY RESULTS - GEOLOGY
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TABLE 3-25A. LITERATURE SURVEY RESULTS - GEOLOGY
OPTIMUM SPECTRAL BANDS (um)

THEORET ICAL
Ross, Adler, Hunt Vincent Kondratyev, et al
0.50 8.1 - 9.2 0.6 - 0.7
1.45 no AA 8.2 - 10.2 0.8 - 1.1
1.95 specified 9.3 - 11.3
2.35 9.8 - 11.2
EMPIRICAL
Vincent Dillman, Thomson Dillman, Vincent, Hasell
0.5 - 0.54 0.44 - 0.47 0.43 - 0.47
0.63 - 0.69 0.54 - 0.56 0.49 - 0.51
1.0 - 1.4 1.0 - 2.6 0.63 - 0.67
1.5 - 1.8 2.0 - 2.5
2.0 - 2.6 8.0 - 9.1
SYSTEMS STUDES Sl =103
EQOSPDG Advanced Scanners and Imaging Systems SEOS
0.45 - 0.55 0.44 - 0.55 0.40 - 0.50
0.55 - 0.65 0.68 - 0.80 0.52 - 0.56
0.65 - 0.75 0.8 - 1.0 0.62 - 0.68
0.75 - 0.85 8.0 - 9.5 0.80 - 1.1
0.85 - 1.10 10.5 - 14.0 1.0 - 1.4
1.10 - 1.35 2,0 - 2.3
1.55 - 1.80 8.3 - 9.3
2.05 - 2.35 1.5 - 12.5

2 bands

between 10.4 - 12.6



TABLE 3-26. RECOMMENDED OPTIMUM BANDS FOR GEOLOGY

(PRIORITIZED)
8.3 -9.3
10.4 - 1.25
0.63 - 0.69
¢.52 - 0.56
1.1 - 1.35
0.8 - 1.1
1.55 - 1.75
2.05 - 2.35

0.45 - 0.50
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assessment of water quality. The minimum requirements for water
quality determination are assessment of aquatic vegetation and algae
concentration (chlorophyll), transparency suspended solids concentra-
tion, temperature gradients, and oil detection.

The primary objective of Water/Marine discipline applications was
assumed to be Marine and Coastal Zone water surveys. In view of these
objectives, bands which are indicators of aquatic vegetation will
receive higher priority than in water resources applications because
of coastal zone requirements. Similarly bands found to be indicators
of oil, hence associated marine life or spills by tankers will receive
higher priority than in the water resource discipline.

Limited empirical evidence for band selection was achieved with
MSDS data from the Atchafalaya River and delta test site in Louisiana.
Because of data quality aspects of the empirical study, prime reliance
was placed on the literature survey and theoretical results in deriving
the recommended spectral bands.

The literature survey results are presented in Tables 3-27A and
3-28A and in more graphical form for easy comparison in Tables 3-27
and 3-28. Before beginning a diccussion of these results or presenting
the empirical study results, let us give the recommended spectral bands
in order of priority for each of these two discipline areas. The

recommended bands for Water Resources are:

0.48-0.52 um 0.42-0.48 um
0.52-0.58 um 0.58-0.64 um
0.62-0.68 um 0.69-0.74 um
10.40-12.5 um 0.50-0.54 um
0.80-1.10 um 0.32-0.38 yum
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TABLE 3-27. LITERATURE SURVEY RESULTS - MARINE/QCEAN

SOURCE WAVELENGTH (1m) 1
.4 .5.6 .81 2 3 4 56178910 15 -
Polcyn - 1971 ~ HHH —
Theoretical Clark, Ewing, ala
Results Lorenzen - 1969 1L
Keene, Pearcy - 1973 HHKH 3
® Empirical
= Polcyn - 1972 I HHRH A A H—
Results
Brown, et al - 1971 HlIH I
— —i
SECS - 1973
Systems
. EOSPL( - 1973
Studies
Advanced Scanners and Hr—l"
Imaging Systems - 1972 - —
|

LITERATURE SURVEY RESULTS - MARINE/OCEAN



c8

TABLE 3-27A.

Polcyn
0.40 - 0.44
0.50 - 0.52
0.55 - 0.58
0.62 - 0.68
0.80 - 1.00
8.00 - 14.00

10.00 - 12.00

Polcyn
0.32 - 0.38
0.40 - 0.44
0.45 - 0.47
0.50 - 0.52
0.55 - 0.58
0.62 - 0.68
0.80 - 1.00
9.30 - 11.70

LITERATURE SURVEY RESULTS ~ MARINF. AND OCEAN

OPTIMUM SPECTRAL BANDS (um)
THEORETICAL

Clarke, Ewing, Lorenzen

0.46 no AA
0.54 specified
EMPTRICAL

SYSTEMS STUDIES

Advanced Scanners and Imaging Systems

0.36
0.4C
0.46
0.49
0.52
0.64
10.10

0.39
0.45
0.49
- 0.52
0.56
0.68
4.00

Keene, 2learcy

0.45 - 0.47
0.52 - 0.55
0.58 - 0.63

Brown, et al

0.47 - 0.48
0.52 - 0.55
0.55 - 0.58
0.63 - 0.68
SEOS
0.42 - 0.48
0.48 - 0.52
0.52 - 0.58
0.62 - 0.66
0.66 - 0.70
0.80 - 1.20

10.50 - 12.50



TABLE 3 28. LITERATURE SURVEY RESULTS - HYDROLOCY/WATER RESCURCES

SOURCE WAVELENGTH (um)
4.5.6 .81 2 3 4 5617810 15
Wezernak - 1974 M 3

Theoret-

ica’ Mi - H -
ica Mitsch - 1973 b=t | 1w
Results -
Kondra. v tal- 1973 .
1" Brown, Thomson,
o Thomson - 19€3 = Hlﬁ_{i
Emplrxcal' Wezernak, Polcyn H R
S Results | 1970 H '
Wezernak, Lowe,
Polcyn - 1967 Ll a Ly Hl
[=|
- B H

SEOS - 1973 ) —

Systems

EOSPDG - -
Studies G- I3 | 4 L_A'
Advanced Scanners and t 4

Imaging Systems - 1972 -

LITERATURE SURVEY RESULTS - HYDROLOGY/WATER RESOURCES
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TABLE 3-28A.

Wezernak
0.42 - 0.48
0.50 - 0.54
0.63 - 0.70

Brown, Thomson

—

0.42 - 0.46
0.52 - 0.55
0.58 - 0.62
0.66 - 0.72
0.52 - 0.66
SEOS
0.42 - 0.48
0.48 - 0.52
0.52 - 0.58
0.60 - 0.70
0.80 - 1.10
2.0 - 2.30
0.5 - 12.5

Wezernak, Polcyn

THEORETICAL

Mitsch

0.30 -

0.41
0.54
0.62

0.45
0.47
0.58
0.67
no AA
no Aa
14.00

EMPIRICAL

SYSTEMS STUDILES

0.40
0.44
0.55
0.58
0.6€
0.72
€.00

0.44
0.46
0.58
0.62
0.72
0.80
1¢.00

LITERATURE SURVEY RESULTS - HYDROLOGY/WATER RESOURCES
OPT1IMUM SPECTRAL BANDS (um)

Kondratyev, et al

0.70 - 0.8
0.8 - 1.1

Wezernak, Lowe, Polcyn

1

EOSPDG

0.50
0.60
0.80
0.4

0.32 - 0.38
0.40 - 0,44
0.55 - 0.58
0.62 ~ 0.68
0.80 - 1.00

Advanced Scanners
and Imaging Systems

0.48 - 0.64
0.80 - 1.10
§.0 =140
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and recommended bands for Marine Resources are:

0.62-0.68 um 0.80-1.10 um
0.48-0.52 pym 0.58-0.64 um
0.42-0.48 pm 0.69-0.74 um
10.40-12.5 um 0.50-0.54 um
0.52-0.58 um N.32-0.38 um

For the assessment of the concentration of suspended solids,
measurements are required in the 0.48-92.52 pm, 0.52-0.58 um, and
0.63-0.68 ym bands. The 0.48-0.52 pym and 0.62-0.68 um bands are
also indicators of chlorophyll content, hence aquatic vegetation or
phytoplanki on. The 10.4-12.5 pm thermal band is an irdicator of water
temperature. The 0.80-1.1 ym band is useful in delineating land-water
interfaces. The 0.42-0.48 um band, along with the 0.58-0.64 and 0.69-
0.74 um regions are used for the detection of algae blooms (the 0.58-
0.64 ym is a peak reflectance region for the 'red tide" phenomenon).
The 0.50-0.54 um region is useful in water depth measurements and may
provide baseline information on the de.cction of phytoplankton
concentrations. The use of the 0.32-0.38 um band for oil detection is
probably not feasible from satellites. It is however, a desirable
band for water and marine resource users as an indication of presence
of oil.

The optimum bands for Marine/Ocean applications differ from water
resource bands only in priority. The bands for detection and identifi-
cation of aquatic vegetation were given higher priority in marine
resources than water resources because of the stated objective of

Coastal Zone water surveys where this information is very important.

Atchafalaya Empirical Study

Scanner data and ground truth problems seriously limited the scope
of this water study. Examination of 7 x 7 reconnaissance graymaps of
the two MSDS flightlines flown over the test site on 19 September 1973
revealed that the targets of interest were in the first two thirds of
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flightline 1. It was decided, in the interests of increased efficiency
and reduced cost, to restrict further aircraft data processing %o this
subset of data.

Upon detailed examination the MSDS data was found to have several
general problems associated with it that compromised its usefulness
for this study. The most important problem was a condition described
as the "sticky bit" phenom-norn. This caption describes the presumed
source of the problem and refers to the preference exhibited by the
MSDS for having a certain digital bit turned on during the in-flight
analog-to-digital data conversion. The least significant bit was
found to be affected in this manner in all channels except for
channel 1.

The effects of this problem can be observed in Table 3-29, where
it is described as a "cycle of 2" striping pattern in the data histo-
grams. Unfortunately, this problem was not confined to the least
significant bit, as evidenced by the appearance of a ""cycle of 4"
striping pattern, indicating that the second least significant bit
is similarly affected. In general, however, this cycle of 4 is much
less pronounced.

Since this condiiion would seriously compromise the performance
of standard pattern recognition techniques it was felt necessary to
remove it. This was accomplished by dividing each original data value
by 2 and then rounding to the nearest integer value. The results is
a data set with a dynamic range reduced by onme half, but with the
relative significance of the original signal maintained. In effect,
the data, which originally had 8 bits significance, now had 7 bits
significance.

At this point it should also be pointed out that, even before
scaling, the sensor's nominal dynamic range was never more than 507
utilized.

Finally, it was also necessary to omit 5 of the 20 available
spectral bands for other problems: channel 7 (2.10-2.36 um) - no
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TABLE 3-29.

MSDS DATA QUALITY
ATCHAFALAYA DATA

DYNAHMIC RANGE

HISTOGRAM STRIPING

TAPE (0-256) (DATA PATTERN DUE TO
CHANNEL Ay =iy VALUES) X "STICKY BIT" OTH:2

1 .34-.40 114-147 13 Not apparent

2 .46-.50 87-111 10 Cycle of 2%

3 .57-.63 69-.67 39 Cycle of &4%*

4 .J1-.75 49-147 39 Cycle of &

5 .82-.87 35-159 49 Cycle of 4

6 1.18-1.30 37-123 34 Cycle of &4

7 2.10-2.34 0 0 No date

8 4,50-4.75 0-77 30 Cycle of 4 2.74 clipped L.L.%***
9 9,30-9.80 13-55 17 Cycle of 4

10 11.00-12.0( 19-99 32 Cycle of 4

11 1.12-1.16 0-57 23 .23% clipr-1 L.L.
12 .40-.44 112-140 11 Every 4th bin

13 .53-.57 81-163 32 Cycle of &4

14 .64-.68 51-137 46 Cycle of 2
15 .76-.80 41-147 46 Cycle of &4

16 .97-1.05 36-154 46 Cycle of 4

17 1.52-1.73 7-111 41 Cycle of 2 .18% clipped L.L.
18 3.54-4.00 3-33 12 Cycle of 4 1.04% clipped L.L.
19 6.00-7.00 0-137 54 Every other bin 26,.5% clipped L.L.
20 10.10-11.0d 19-51 13 Cycle of 4

21 12,00-13.00 11-85 29 Cycle of 4

22 1.05-1.09 23-155 52 Cycle of 4

*Lower Limit

*Least significant bit has a preferred value

#%Second least significant bit has a preferred value

90



. FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

data; channel 12 (0.40-0.44 pm) and channel 19 (6.0-7.0 um) - empty
bins; and channel 8 (4.50-4.75 ym) and channel 11 (1.12-1.16 pm) -
excessive data clipping.

Because of the compromises on the available data for the
Atchafalaya tes*. site, the spectral study for this dat: set was limited
to a determination of the optimum 4 bands for coastal zone surveys.

The separate sets of optimum bands shown in Table 3-30 were selected
for water turbidity and fer surroundirg terrestrial cover including
natural vegetation. Jater turbidity was classified for four turbidity
levels ranging from clean water to light, moderate, and heavy turbiditv.

The terrestrial cover types examined logically separate into the
three following general categories: (1) natural vegetation cormunities,
(2) cultural vegetation, and (3) ron-vegetation.

The natural vegetation types studied includi. g the following:

1. Duckweed
Emergent vegetation
Water hyacinth
Young willows on newly accreted sites

01ld willows

A mixture of cypress and tupelc completely flooded

~N O S W

A mixture of cypress and tupelo partially flooded
8. A scand of upland forest
Cultural vegetation types, in contrast, consisted of:
1. Upland grass

2. Sugar cane

3. Other crop (presumably rice)

The final category of cover tvpes, which represents the non-

vegetative targets included:

1. Stubble in a tield of dry rice

2. Stubble in a field of wet rice

3. Dry bare soil
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TABLE 3-30. OPTIMUM FOUR CHANNELS
ATCHAFALAYA COASTAL ZONE TEST SITE

WATER TURBIDITY

RANK SPECTRA®. CHANNEL
1 0.57 - 0.63 um
2 0.71 - 0.75 um
3 0.34 - 0.40 um
4 0.46 - 0.50 um

TERRESTRIAL COVER

RANK SPECTRAL BAND
1 0.97 - 1.05 um
2 9.40 - 0.50 yum
3 0.34 - 0.40 ym
¢ 1.18 - 1.30 um
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PATIRWTSE PROBABILITY
OF MISCLASSIFICATION

0.013
0.007
0.005

C.004

PATRWISE PROBABILITY
OF MISCLASSIFICATION

0.060

0.015

0.008

0.006
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4. Wet bare soil
5. Clear water
6. Highly turbid water

The optimum four channels selected for the water turbidity segment
of this study are shown in the top section of Table 3-30. The technigue
used for determining turbidity was a single band level slice. In the
ranking of channels, a NIR band (0.71-0.75 um) was the second best
channel; this band provides information on organic material ccncentra-
tions. The orange band (0.57-0.63 pm) was slightly bett=r than the red
band (0.64-0.68 um), but this is explainable by the fact that the red
band was noticeably noisy at Jow signal levels (determined by graymap
inspection). The selection of the NIR band as the second best channel
indicated that encugh water penetration was still possibie in that
spectral band to provide some information regarding the presence of
suspended organic material and possibly vegetation.

A ratio map of the orange/NIR band was made in an attempt to
exploit this phenomenon and provide a means of organic turbidity
discrimination and mapping. The orange band was substituied for the
red band because it had a cle rer signal.

For the natural and cultural vegetation targets and non-vegetation
targets se'ected, only two spectral channels were needed to provide
esseptially all spectral discrimiration of these cover types that is
possible at this time of yeer (see the bottom of Table 3-30). The
two bands that were selected were (1) a NIR band, 0.97-1.05 um. and
(2) 2 blue band, 0.46-0.50 ym. The choice of the bl»- rand, in which
chlorophyll absorption occurs, was presumably in lieu of the -ed band
(().64-0.68 um) which i{s in the chlorophyll absorption band, and the one
would expect to be selected in this type of work. But as previously
noted, the red band was noisy in this data set. The choice of the NIR
band is accounted for by the uniqueness of the canopy characteristics

and backgrounds encountered in the vegetation types examined. The
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1.18-1.30 um was possibly selected as an aid in vegetative discrimina-

tion and the 0.34-0.40 pm band for turbidity determination, and for
separation of the bare soil classecs from the vegetation classes.

Table 3-31 shows the accuracy cf delineating the four water quality
categories using a slicing technique on the orange/NIP ratio. The very
heavy turbidity class was most accurately recognized, the clear water
class next most accurateiy recognized. The intermediate classes of
turbidity showved the poorest recognition accuracy. The data of Table
3-31 were obtained on test set data, and water turbidity classes were
delineated by photointerpretation.

As with many natural problems, the variation of water quality is
continuous — attempts were made to break the quality into five levels
by slicing an orange/NIR ratio. When a ratio is sliced into too many
segments, poor accuracy results because the noisc on the ratio exceeds
the width of the slicing interval. Improved accuracy will result if
fewer classes are used. Also there may be errors of + 1 level of water
quality in the photointerpretation used to pick the test sets.

As a result of these uncertainties, and in an effort to assess the
accuracy of detection of sharp boundaries separating water masses of
different quality, the mapped data were analyzed. The bottom of
Table 3-31 shows the results of the analysis. The average accuracy of
correct classification of the five classes of water quality is 48.1%.
If misclassification of + 1 wat r quality level is ignored, the accuracy
increases to 85.2%. Indeed, the only water type not perfectly
classifi=d + 1 level is the light turbidity class. The accuracy of
detecting a boundary between water of different quality levels was 92%.
This number was larger than the average accuracy of correct recognition
of water quality types because of the large turbidity differences which

exist across boundaries of water masses in rivers and lakes.
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TABLE 3-31. TURBIDITY CLASS BOUNDARY
DETECTOR ACCURACY FOR MSDS DATA

ATCAAFALAYA DATA SET

CwW Lt. T M.T. H.T. V.H.T.
Clear Water 45.5 36.4 18.2
Light Turbidity 11.1 33.3 44.4 11.1
Moderate Turbidity 41.7 25.0 33.3
Heavy Turbidity 18.2 72.7
Very Heavy Turbidity 9.1 90.1

Average Accuracy 48.1%
+ 1 Class 85.2%

Identifying a boundary when one was p.esent Y2%
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3.6 CONCLUSIONS AND RECOMMENDATIONS - SPECTRAI. STUDY

Table 3-32 summarizes the priority spectral bands by discipline.
It is a compilation of several tables which have appeared in this
section of the report. In examining the requirements of each
discipline, there are several consensus bands which every discipline
needs.

A band of 0.63-0.69 um is high on the list of every discipline.
This band is required for the detection of chlorophyll ahsorbtion in
vegetation and in phytoplankton. Additionally, it serves a useful
purpose in geology by assisting in the detection of ferric iron
containing materials.

A thermal band in 10.4-12.5 um also seems high on the list in each
discipline. This broad, radiometric temperature measuring band is also
useful as one component of a two thermal band reststrahlen cetection
scheme for determining the presence and nature of silicate minerals for
geology. The second thermal band for the geologic application is
8.3-9.3 um, in the middle of the reststrahlen emissivity dip for pure
quartz.

A third consensus band in all disciplines is a 0.75-0.95 um band.
This is useful for vegetation classification because it covers the near
infrared high reflectance plateau, useful for delineating water-land
boundzries because of the large differential reflectarce between water
and land, and useful to some extent in geology for mapping materials con-
taining ferric iron and for delineating vegetation cover on rock
surfaces. It is recommended that the lower edge of the pand be moved
from .75 to .80 to imprcve land water interface delineation.

A band in the 0.55-0.60 um or 0.52-0,58 um region rates high on
the list for all disciplines except urban land use. In agriculture,
the band is useful for assessing the growth state of vepetation by
monitoring the green reflectance peak. In the water resources, the band

can be used in a turbidity estimation alporithm and to measure wvater
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GEOLOGY

8.3 - 9.3 Hm

10.4 - 12,5 um

TABLE 3-32. PRIORITIZED SPECTRAL BANDS BY DISCIPLINE
AG/RANGE/FORESTRY WATER RESOURCE MARINE/OCEAN
.63 - .69 um .48 - .52 um .62 - .68 ym
.75 - .95 um .52 - .58 um .48 - .52 um
10.4 - 12.5 uym .62 - .68 um 42 - .48 um

.55 - .60 um
*1.55 - 1.75 um
2.05 - 2,35 um

.69 = .75 um

*or 2.05 - 2.35

10.4 - 12,5 um

.8 - 1.1 um
.42 - .48 um
.58 = .64 um
.69 - .74 um
.5 - .54 un
.32 - .38 um

10.4 - 12.5 um

.52 - .58 um
.8 - 1.1 um

.58 - .64 um
.69 - .74 pm
.50 = .54 um
.32 - .38 um

.63 - .69 um
.52 - .56 um
2,05 - 2,35 um
.8 - 1.1 um
1.55 - 1.75 um
1.1 - 1.35 um

.45 - .50 um

URBAN LAND USE

10.4 - 12.5 um

.8 -1.1 um
.63 - ,69 um
.5 - .54 um

2,05 - 2.35 um
.42 - .48 um

.58 - .64 um
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depth. In the Geology discipline, the 0.52-0.56 pm band is useiul in
the detection of ferric iron compounds (in conjunction with the 0.63-
0.69 um band).

The last consensus band is one in the near infrared portjon of the
spectrum. There is a slight preference for 2.05-2.35 um in Ceology
and Urban Land Use, for the detection of Lydroxyl ions and man-made
features respectively. However, the engineering difficulties in
obtaining an adequate signal to noise ratio in this band appear to be
such as to bias desires in favor of a 1.55-1.75 pm band. As previously
noted, for vegetation vigor assessment, either 1.55-1.75 um or 2.05-

2.35 um bands are acceptable.
The water resources, marine/ocean, geology, and urban land use

disciplines rated bz=nds in the 0.42-0,52 um repgion <s high priority. A
single compromise bLand of 0.45-3.52 um would satisfy these disciplines
with little degrad~cion of information requirements, The lower end of this
compromise band shou’d be shifted to 0.45 um to reduce scattering effects
of shorter wavelengths.

Beyond these six bands, a further consensus is difficult to identify.
Depending on the discipline, a seventh band might be 8.3-5.3 um (for
reststrahlen detection and better water temperature estimates) or 0.42-
0.48 um (for more accurate delineation of chlorophyll and suspended
solids concen‘ration).

The above analysis suggests a seven band scanner sy=ztem for the
FOS thematic mapper. The proposed set of bands is different from the
baseline specifications in that some of the bands are narrowed, the
2,05-2,35 ym band is replaced with a blue-green band, and the 0.7-0.8 um
band is replaced with either a blue or a second thermal (8.3-92.3 um)
barnd. The bands are listed in Table 3-33.

98



TABLE 3-33. RECOMMENDED SPECTRAL BANDS1

(PRIORITIZED)
0.63 - 0.69 um
0.80 - 0.95 um
10.4 - 12.5 um
0.52 - 0.60 um*
1.55 - 1.75 um
0.45 - 0.52 um+

0.42 - 0.48 or 8.30 - 9.30 um

Optimized for Agriculture, Water Resources
and Land Use.

* Compromise between 0.55 ~ 0.60 um and G.52 - 0.58 um.
+ Compromise between 0.42 ~ 0.48 um and 0.48 - 0.52 pm.
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4
RADIOMETRIC REQUIREMENTS STUDY

4.1 GENERAL

This aspect of the systems study addressed various user discipline
needs for data calibration, stability, and signal semsitivity. Or in
other words, the amount of data miscalibration, instability, and noise
which could be tolerated in different remote sensing applications
using multispectral scanners to measure spectral radiance. These
sources of error in the recorded signal levels of a scanner can cause
such sizeable problems to occur in the automatic classification of
features within a scene that little information is obtained. The
interaction between these sources of signal inaccuracy and the classifi-
cation accuracy which can be obtained for a given user application must
be understood and taken into account in the scanner design to produce
optimum or even acceptable information for the user. It is the user
requirement for classification accuracy which defines the acceptable
error or instability in sensor parameters.

Variations in (1) recording precision, (2) gain and offset, and
(3) noise level of scanner data were examined in an empirical manner to
determine the signal accuracy required of an assumed optimum seven-
spectral band orbital scanner for each of the five separate user
disciplines. In addition, theoretical calculations were carried out
for water quality and water depth mapping applications to estimate
the noise equivalent refleclance difference (NEAp) required in various
spectral bands to achieve the information extraction performance
required. The noise equivalent reflectance (or temperature)
difference (NEAp) is the change in ground reflectivity which produces
a signal equal to the scanner noise, e.g., S/N = 1. Achieving low
NEAp MSS systems for satellites is costly and affects the size of the
optics and number of detectors per spectral band. Therefore, some
guidelines are very important.

100



Z FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

4.2 DISCUSSION OF RADIOMETRIC PRECISION DATA

One method of simulating MSS data with various sensitivity levels
is to change the signal-to-noise ratio by changing the digital
representation of the data. Reduced sensitivity levels can be simu-
lated by reducing the number of binary places or bits in the digital
form leaving fewer significant places to the signal. Thus we are
simulating instrument noise with quantization noise (for cata suf-
ficiently free of instrument noise).

Simulated orbital MSS data from both Baitimore and Michigan were
processed to demonstrate the effect of improved or reduced data signi-
ficance on the correct classification of urban land use and agriculture
categories. Through ground radiometric measurements taken concurrently
with acquisition of the multispectral scanner data, the quantum equi-
valent reflectance difference(QEAn/AT) of one bin width in each
spectral band was calculated. For the thermal band, the temperature
difference associated wiith one bin width was computed.

By calculating the quantum equivalent reflectance of Jne bin
width, the quantum equivalent reflectance of bins which were twice
and four times as wide as the original digitized bin width are also
known. These correspond to the cases where the least significant one
and two bits (and three and four bits for the Michigan data) were
dropped from the data to simulate data having various noise equivalent
reflectance differences (NEAp) as might be characteristic of different

MSS systems.

Procedure

Eight- and seven-bit data sets were generated for seven optimum
channels of the simulated orbital 30 m data. The seven bands used were
optimum for the 9-bit data. Then signatures were extracted from each
data set using identical training locations to those used for the 9-bit
data. (The 7- and 8-bit data were generated by dividing data values
in che seven optimum channels by 2 and 4, then truncatiug the fractional
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part of the quotient. Such a procedure effectively reduces the

significance of the data by 1 and 2 bits respectively.)
Classification was carried out on the data using signatures

extractcd from each data set. Accuracy figures on test areas removed

from training areas were tabulated for each level of significance.

Results

Tables 4-1 and 4-2 show the quantum equivalent Ap and AT for one

bin width at each level of data significance for both Baltimore Land
'Use and Michigan Agriculture data. The change in reflectance on the
ground corresponding to a given change in radiance received by the
scanner, calculated from the ground truth data for these two data
sets, was multiplied by the change in radiance represented by one
signal count level to obtain the QEAp /AT values listed in Table 4-1
and 4-2. The reflectance or temperature corresponding to one bin
width gets larger by a factcr of 2 every time an additional low order
bit is dropped.

Figures 4-1 and 4-2 show the effect on test area recognition
accuracy for the Baltimore Land Use and the Michigan Agriculture data,
respectively. In the Baltimore results there is very little effect on
classification accuracy as we go from 9-bit to 7-bit data. The Level
I classes are not affected, and there is only a slight drop in the
accuracy of recognition of the Level III classes. This irdicates

that NEAp/AT values equal to the QEAp/AT values found by multiplying

o T L g et SR B s CURE AL SR vt i b i NEEL 2 At oy btk d

by 2 the values in the 7-bit column of Table A-J’should be appropriate
for Land Use mapping. These average less than two percent NEAp.
Although further reduction of data significance was not carried out,
the expectation is that Level III accuracy would not drop quickly
until the S5-bit case if the data were reduced in significance over the

At - AT T oK

7-bit case, and that Level II recognition accuracy would also not be
affected until the S5S-bit case. Further experiments are required to

show exactly the quantitative nature of the recognition performance

TR AN e s e .
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* TABLE 4-1. EQUIVALENT Ap (AT) FOR BALTIMORE
DATA SIGNIFICANCE STUDY

Equivalent Ap (AT)

CHANNEL 9 BTt smrrt 2 mirt
*.41 - .48 .00079 .00158 .00316
*.46 - .49 .00085 .00170 .00340
.48 - .51 ~ .00083 .00165 .00330
.50 - .54 | .00092 .00185 .00369
.52 - .57 .00112 .00224 .00447
.55 - .60 .00108 .00216 .00432
.58 - .64 . .00074 .00148 .00296
*.62 - .70 .00101 .00202 .00404
%67 - .94 .00280 .00560 .01120
* 1 - 1.4 .0188%x .0376%% .0752%%
*1.5 - 1.8 .0082% L0164%* .0328%%
*9.3

- 11.7 0.043°K 0.086°K 0.1;-°K

* Channels used in analysis.

_**Data values in this channel subject to considerable ﬁncertainty

because of uncertainty of irradiance measurement.

t This number does not reflect the data word size in a real sense,
but is only a method of simulating the NEAp (AT).
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§ TABLE 4-2. EQULVALENT Ap (AT) FOR MICHIGAN AGRICULTURE

E DATA SIGNIFICANCE STUDY

| |

1 CHANEL 9 piTt g pirt 72BITt 6 BITt 5 pITt

§ .41 - .48 00057 00115 .00230 .00460  .00920 ’

g' 46 - 49 ,00029 .00058 .00116 00232 00464

% 48 - .51 .00039 .00079 .00158 ".00316  .00632
| § .50 - .54 .00036 .00072 .00144 .00288 .00576

; .52 = .57 .00034 00068  .00136 .00272 .00544

; *,55 - .60 .00037 .00073 .00146 .00292 .00584
. ? .58 - .64 .00037 .00074 .00148 .00296 .00592
'§ *.62 - .70 .00043 .00086 .00172 .00344 .00688

% .67 - .9  .00171 .00341 .00462 .00924 .01848

; * 1-1.4 .00094  .00187 .00374 .00748 .01496

? *1.5 - 1.8 .00108 .00216 .00432 .00864 .01728

%9.3 - 11.7 .032°K .063°K .126°K .252°K .540°K

%
)
;
i
:
;

*Channels used in the study.
.00115 = 0.1152 equivalent reflectance difference.

tThis number does not reflect the data word size i1 a real sense,
but is only a method of simulating the NEAp (AT).
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AVERAGE CLASSIFICATION ACCURACY (%)
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FIGURE 4-1. EFFECTS OF INCREASING NEAp (NEAT)
ON THREE ANDERSON LEVELS OF LAND USE CLASSIFICATION

BALTIMORE DATA 28.8 m, 7 OPTIMUM CHANNELS
1345 hours
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degradation. Performance matrices showing the correct classification
accuracy and the errors of commission and omission by class are
given in appendix A. '

The recognition of representative crops and fields (Figure 4-2)
does not seem materially affected by dropping three bits of data
significance. Thus the QEAp and QEAYT numbers shown in Table 4-2

under the 6-bit column probably represent better NEAp/AT performance
than is actually required to map these crop types. Dropping an
édditional bit of significance does begin tc have a small effect on
crop and field recognition, however, as one might expect. The 5-bit
performance probably is acceptable. The average NEAp for the 5-bit
data is about 0.6 percent in the visible and 1.5 percent in the near IR
bands where vegetation reflectance is higher. This result from the
empirical study is taken into account in the user radiometric results

presented in section 4.6.

4.3 DISCUSSION OF "GAIN" AND "OFFSET" STUDIES

The basic automatic pattern recognition approach to the classifi-
cation of terrain materials rests on the premise that the spectral
reflectance patterns of scene materials are characteristic of these
classes of materials and are different enough to permit their
separation by statistical decision approaches. 1In a typical remote
sensing implementation, the spectral radiance of scene materials is
measured in discrete wavelength bands by a sensor physically removed
from the objects. The objects are illuminated by the sun and reflect,
or emit energy which is detected by the sensor after passage through
the atmosphere.

In supervised and unsupervised pattern recognition, the classifier
must first be taught what patterns to recognize before it can rcalisti-
cally classify unknown data. Usually, the classifier is trained by

extracting class statistics from known scene areas, either by normally
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identifying training sets (supervised) or by clustering procedures
(unsupervised). A key assumption in the pattern recognition approaches
is that the spectral radiance of materials, as measured at the sensor,
are representative of the materials. Thus, once trained, the processor
expects to see the same spectral radiance from, e.g., a corn field,

as it saw from the training set corn field.

But factors not under control of the user can influence the
radiance the sensor measures from the scene materials aund the resultant
sensor output electrical signals on which the pattern recognition
classifiers operate. These factors change the transfer function
between scene reflectance and the sensor output voltages. (The
Transfer function is assumed invariant for pattern recogniticn
approaches other than adaptive cnes). Basically, the relationship

between scene reflectance and sensor output voltage is linear:
V=A+Mp

Factors contributing to the additive term A are sensor bias factors
and the path radiance in the atmosphere. Factors contributing to the
multiplicative factor M are semsitivity (volts/watt), solar illumina-
tion, and atmospheric transmission. Variations in any of these
sensor, atmospheric, or illumination parameters can change the transfer
function between scene reflectance and scanner output voltage and thus
invalidate the assumption of a constant transfer function. The
variations will have serious effect when they occur between the
collection of training set data and the collection of the unknown data
tc be classified because they are generally unknown and destroy the
ability of the processor to achieve acceptable classification accuracy.
Regardless of what causes the transfer function to vary, it is
of interest to know the effect of such variations on the classifier
performance. It was assumed for this study, that the variations
occurred in parameters of the simulated orbital MSS systems between

training and classification of unknown data. The "gain" study modelled
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the effects of varying the above coefficient M on the classification
accuracy. The "offset" study modelled the effect of varying the
coefficient A.

Studies were performed for the Baltimore Land Use and the Michigan
Agriculture data sets. Gain and offset were varied independently and
the result on test set classification noted. The signature areas used
were the same as for the 30 m, 7 optimum channel data previously
discussed, and on which this study was performed. Rather than vary
the data, the signatures were varied to simulate the gain and offset
variations. Each parameter was varied by amounts related to the
average signature's separability for the classes considered, primarily
to obtain reasonable ranges of classifier accuracy variation. Table
4-3 relates the nomenclature of the graphs to be presented to the
actual variation in gain (in percent) and offset (as a percentage of
the sensor dynamic range) for the two cases studied.

Figures 4~3 and 4-4 summarize the results in graphical form for
the Baltimore Land Use data, and Figures 4-5 and 4-6 for the Michigan
Agriculture data. Appendix A contains the detailed performance
matrices. Referring to the Baltimore data, the general effect of both
gain and offset variations (away from the conditijons of training,
represented by zero) is a reduction of classification accuracy.
Generally the curves are not symmetrical about the zero point. This
occurs for at least two reascns. First the actual distribution of
test set points is not Gaussian and does not necessarily have the same
mean and standard deviation as the training set. Second, the detailed
behavior of classification results depends on the structure of the
decision space. If decision boundaries are not located symmetrically
around distributions, the effects of increasing and decreasing cffset
or gain will be different. As gain and offset are varied, the major
feature of the classification results is the rapid increase in the

size of the not classified category. At + 2/3 gain or offset, nearly
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all the points are not classified whereas at + 1/3 gain or offset a
sizeable number of points are misclassified rather than not classified.
This behavior seems intuitively correct. As gain or offset vary, the
first effects noticed will be misclassification. As more extreme

variations are encountered, no classification decision at all will be 1

made because the signatures and data differ by such great amounts that

the X2 test is not satisfied.

Qualitatively, the same remarks that were made fdr the Baltimore

data apply to the agriculture data of Figures 4-5 and 4-6. The same i
general types of behavior occur although woods and "other" have an
unexplained anomalous behavior.

The implications for system design of these results fall mainly
in the areas of system calibration stability, inter—-detector calibra-
tion within a spectral band, and in the implementation of radiometric
corrections for changing solar ;1lumination and for varying atmosrpheric
transmission and path radiancc effects. These corrections will be
important in applications such as agriculture which require survey of
large areas. Over these large areas, the solar elevation angle &and
atmospheric state are likely to vary considerably. Approaches for
taking these illumination and atmospheric effects into account in

preprocessing or adaptive classifiers have been studied at ERIM.

4.4 DISCUSSION OF RADIOMETRIC REQUIREMENTS FOR WATER QUALITY MAPPING
One of the most important water resources and marine resource

study requirements is the mapping of water quality. of the many

variables affecting water quality we will deal here with chlorophyll

content and suspended solids concentration. FEecause o7 the absorbing

properties of the chlorophyll molecules and the scattering properties

of the suspended sediments, choice of spectral bands is important.

Water transmission and the fact that suspended sediments and chlorophyll

often occur together make the spectral band choice a compromise, and
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the precision in these bands is expected to be high because of the low
water reflectance.

To extract chlorophyll concentration and suspended solids infor-
mation from multispectral scanner data, ratios of two bands are
commonly used. Using field measurements coupled with theoretical
calculations, bo:h the form of the relationship between chlorophyll
and suspended sediments and the reflectance ratio and the constants
required for calculation can be deduced. Wezernak at ERIM presented
a paper at the Ninth Symposium on Remote Sensing of Environment1
describing such relationships.

From those equations, relationships can be derived between the
NEAp of the sensors and the equivalent chlorophyll and suspended
solids measurement precision.

Table 4-4 lists the equations Wezernak derived for chiorophyll
concentration and for water transparency depth, a parameter related to
suspended solids required to calculate NEAp.

We calculated two cases for transparency and chlorophyll — an
oceanic and a coastal case. The vrlues assumed “or each case are
shown in Table 4-5.

The values of reflectance are reasonable ones for the concentra-
tion and transparency conditions considered.

Figures 4-7 and 4-8 show the results of the calculations for
cklorophyll and transparency. Chlorophyll accuracy for a given NEAp
is best in the oceanic case where concentrations are low, provided that
a sensor can be built to achieve these NEAp's at the low radiances
typically found over deep oceanic water. For the coastal case, the
precision is poorer in absolute terms, but the concentration of

chlorophyll is higher. The reflectance of water may also be somewhat

lUse of Remcite Sensing in Limnological Studies, C T. Wezernak, Ninth
Symposium on Remote Sensing 5f Environment, in publication.
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TABLE 4-4. WEZERNAK EQUATIONS FOR CHLOROPHYLL AND TURBIDITY

log Transparency depth (m) = -0.6235 + 0.8788 p(0.5-0.54)
0(0.62-0.70)

log Chlorophyll (mg/m>) = -2.4761 + 5.5668 0(0.62-0.70)
0(0.42-0.48)

To calculate the effect of NEAp on these computations, we derived the

equations shown below.

AT = 1.247 T, bp p1tp2
p1 P2

ACH = 4.9522 CHO AQ 01+p2

p1 P2

where To’ CHo = reference transparency and chlorophyll levels

NEAp of both channels (assumed equal)

Ap

reflectances in the two bands.

P1sP2



TABLE 4-5. PARAMETERS ASSUMED FOR CALCULATIONS

Oceanic Case

1 mg/m3 chlorophyll
p1 = 2.0%

0.4%

P2

20m Transparency

py = 4%

pp = 0.5%

Coastal Case

10 mg/m° chlorophyll
py = 2.47%
£2 = 0.5%
10m Transparency
pp = 10%

pp = 3%
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higher. For a given level of NE&p of 0.007 in both channels, these
calculations indicate a 10 percent precision measur2zment of chlorophyll
in both oceanic and coastal cases can be made.

For the transparency results, the same comments may be made.
Fluctuaticas in transparency in oceans may be so small that the 0.1 m
precision nbtainable at 0.007 NEAp may be unacceptably large. In the
roastal case (also typical of some of the inland lakes) good precision
of transparency measurement at 0.007 NEA» is indicated by these
calculations. Noise in the data would cause fluctuations of 0.4 m
on a typical 10 m transparency estimate.

As a footnote to these calculations, wezernak has used ERT5 data
to map suspended solids in the Detroit Rivcr outfall into Lake Erie.
He found by slicing the red band (with a quoted NEXc of about .95%)
that sediment concentration of 3 mg/, could be measured. This is more
than a factor of 3 from the desired level cf precision. Thus this
application may require a 0.007 NE. if the stated user requirements
are to be met totally with a satellite system. But useful sediment

1d

< mapping could be done with systems of !ower radiometric precision.

=
4,5 THEORET[CAL EXAMINATION OF RADIOMETRIC REQUIREMENTS FOR WATER
DEPTH MAPPING
Mapping depths of water in coastal areas is one of the important
3 water resources or marine tasks. rany shoal areas are poorly charted
£y and are in remote areas such as the South Pacific and Southern
e Caribbean Sea.
. Using multispectral scanncr data, water depth has traditionaily
been measured by one of two techniques. Fither a density slice «f 1
. band in the blue-green or green has been made, or a ratio of bards has

been sliced. The latter technique has the advantage of being re.a-
tively less sensitive to bottom composition. Barh techniques dop
on being able to see the bottom and on the signal rrom the bottom
increasing as wacer gets shallowcr.
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Using the formula for calculating the water depth by the ratio
technique, we developed an equation to compute the "noise equivalent
water depth" given an equal NEAo in two spectral bands. Because the
equation relating the water depth to reflectance is non-linear, the
"noise equivalent water depth" will vary depending on the depth of the
water. We calculated "noise equivalent depth" curves vs. NEAp for
3 and 5 m water depths. Other reasonable assumptions were made as
shown in Table 4-6.

The results of calculations are shown in Figure 4-9. Notice that
the measurement of depths at 5m with a precision greater than 5 m
requires an NEAp of 0.0017 or better in both channels. At 3 m, an
NEA¢ of about 1% (off the chart) yields a depth precision of 3 m and an
NEAp of about 0.003 yields a depth precision of 1 m. The latter number
is within a factor of 2 of ERTS performance. Even chough MSS-4 and
MSS-5 are located slightly differently. The difference in absorption
coefficient « was about the same.) The 1 m precision was about that
obtained by Lyzenga and Polcyn in the Bahamas area using low gain ERTS
data.

Calculations show what radiometric accuracy is required for given
depth precision. The relatively ~Lringent requirements on NEAp can
probably be achieved at the expense of spatial resolution for the
water depth case. A resolution of 30 m for such applications is
probably too fine for the shoal reconnaissance mission required for
satellite; 80 m might be more reasonable. Later aircraft surveys can
more precisely chart and define the depths of shoals discovered by
satellite. But to detect the 5 m deep water, and to distinguish it
from deeper water, the calculations show that 0.002 NEAp is probably

required.

4.6 CONCLUSIONS AND RECOMMENDATIONS - RADIOMETRIC STUDY
Tables 4-7 through 4-11 give the recommended NEX¢ or NEAT for

each spectral band for the five user discipline areas considered in the
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TABLE 4-6. ASSUMPTIONS FOR WATER DEPTH CALCULATIONS

Bands .50 - .54 and .58 - .64

Water absorbtion coefficients (x) 0.27m—l and 0.48m_1 respectively
(mean coastal water)

Solar elevation angle 45° = §

A

View angle 0° = ¢

AZ = 2 Ap s + Lpo
f1 P2
5 = 1 _ In K [5% PR2
(ay-z;) (secd+secy) P2 PB1
DB = Bottom reflectance

Z2 = Depth




UNCERTAINTY IN WATER DEPTH, #, METERS

0 ,002 ., 004 ,006
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FIGURE 4-9. NEAp REQUIREMENTS FOR WATER DEPTH MAPPING
0.50-0.54 & 0.58-0.64 um
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TABLE 4-7,

RADIOMETRIC REQUIREMENTS

Ag/Range/Forestry
BAND (pm) T1/p1 | T2/p2 | NEAT/NEAp MEASURED PARAMETER
0.55-0.60 0.05 0.20 0.005 Chlorophyll transmittance, absorption by other pigments
0.63-0.69 0.02 0.15 0.005 Chylorophyli-A absorbance
0.69-0.75 0.08 0.45 0.005 Slope between chlorophyll-A abs. and cell structure
0.75-0.95 0.15 0.60 0.005 NIR high reflectance (leaf cell structure)
1.55-1.75 0.20 0.45 0.005 Leafl moisture
2.05-2.35 0.15 0.30 0.005 Leaf moisture
10.4-12.5 270°K | 313°K 1°K Temperature
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TABLE 4-8,

RADIOMETRIC REQUIREMENTS

Geology

BAND (um) ; T1/p1| T2/p2 | NEAT/NEAp MEASURED PARAMETER

0.45-0.50 0.04 0.70 0.007 Fe absorption, carbonate

0.52-0.56 0.04 0.75 0.007 Strong green absoibhance of rocks with iron oxide stain; in-
creased reflectance of rocks containing minerals with ferrous

i iron

0.63-0.68 0.04 0.78 0.007 Strong red reflectance of rocks with iron-oxide stain

0.8-1.1 0.06 0.85 0.008 Fe absorption of both ferric and ferrous iron, copper sulfides

1.1-1.35 0.06 0.90 0.006 Soils

1.55-1.75 0.06 0.95 0.005 Aluminum oxide hydrate (gibbsite)

2.05-2.35 0.06 0.95 0.005 Carbonate mo'ecular vibration absorption (OH) in clay min-
eralis for soil identification

8.3-9.3 250°K | 340°K 1%k (1) thermal inertia
(2) changes in the ratio of these two indicating migration of

10.5-12.5 250°K | 340°K 19K restrahlen (SiO2 emittance)




TABLE 4-9.,

RADIOMETRIC REQUIREMENTS

W ater Resources

T2/p 2 ‘ NEAT/NEAp

BAND (um) | T1/p1 MEASURED PARAMETER

0.32-0.38 Fish oils and petroleum

0.42-0.48 0.02 0.10 0.005 Chlorophyll-A absorption
0.002

0.48-0.52 0.02 0.15 0.005 Chlorophyll-A absorption, suspended solids, turbidity,
0.002 transparency

0.5-0.54 0.02 0.20 0.005 Water depth, suspended solids
0.002

0.52-0.58 0.02 0.20 0.005 Water depth, turbidity, trnsparency, suspended solids
5.002

0.58~0.64 0.02 0.20 0.005 Red tide (red algae)
0.002

0.62-0.68 0.02 0.15 0.005 Chlorophyll-A absorption, sediments
0.002

0.69-0.74 0.02 0.15 0.005 Algae bloom near surface

: 0.002

0.8-1.1 0.02 0.20 1.0 Land-water interface
0.5

10.4-12.5 270°K | 305°K 0.5°K A
0.950K Temperature




TABLE 4-10. RADIOMETRIC REQUIREMENTS
Marine/Oceanography

BAND (pm) | T1/p1 | T2/p2 | NEAT/NEAp MEASURED PARAMETER

0.32-0.38 Fish oils and petroleum

0.42-0.48 0.02 0.10 0.001 Chlorophyll-A absorption

0.48-0.52 0.02 0.15 0.001 Chlorophyll-A absorption, suspended solids, turbidity,
= transparency
® 0.5-0.54 0.02 | 0.20 10.001 Water depth, suspended solids

0.77-0.58 0.02 0.20 0.001 Water depth, turbidity, transparency, suspended solids

0. -0.64 0.02 0.20 0.001 Red tide (red algae)

0.62-0.68 ; ,-L.C'DE 0.15 0.001 Chlorophyll-A absorption sediments

0.69-0.74 ! 0.02 0.15 0.001 Algae blooms near surface

0.8-1.1 0.02 0.20 0.5 Land-water interface

10.4-12.5 970°K | 305°K 0.5°K Temperature
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TABLE 4-11,

RADIOMETRIC REQUIREMENTS

Urban Land Use

BAND (pm) | T1/p1 | T2/p2 NEAT/NEAp MEASURED FARAMETER

0.42-0.48 0.05 0.25 0.005 Asphalt-concrete-grass vs. vegetation

0.5-0.54 0.G3 0.20 0.008 Asphalt-concrete-bare soil vs. grass and trees

0.58-0.64 203 0.30 0.010 Albedo

0.63-0.69 0.02 0.25 0.010 Vegetation-albedo (chlorophyll-A, absorption)

0.8-1.1 0.03 0.60 0.010 Vegetation-albedo-water (leaf scattering)

2 - 2.6 0.03 0.40 0.010 Asphalt-concrete-bare soil vs. grass-trees

10.4-12.5 260°K | 313°K 0.5°K Temperature
NOTE:

These data are based upon preliminary empirical re-

sults of Baltimore/Washington S-192 and ancillary data pro-
cessing only.
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study. The columns T1/pl and T2/p2 are the minimum temperature or

reflectance and maximum temperature or reflectance respectively. The

remarks in the measured parameter column list the primary phenomena of

interest for that spectral band. Table 4-12 lists the achieved NEAp

for 5192. -

These tables require some discussion. The stated requirement for
0.5Z NEAp in Agriculture and Water Resources is based mainly on
experience and the study results. The Agriculture NEAp/AT is based on
the empirical results of the noise simulation and from past experience.
The Water Resources NEAp/AT is based on the theoretical study and ERTS
experience. The Geology NEAp/AT is based on experience with ERTS.

The Marine Resources NEAp/AT comes from theoretical considerations and
ERTS experience but can be met by spatial averaging as this application
needs only coarse spatial resolution. The Land Use NEAp/AT is based

on the empirical study and experience.

The dynamic range should be considered and held to 256 if possible
so as to allow an 8-bit data value with linear encoding. Comparison
of the maximum radiance value expected with the noise equivalent
radiance NEL yields the dynamic range. For .005 NEAp in the
0.62-0.68 um band we expect an NEL of .047 for an Lmax of 20.3. This
gives a dynamic range of 431. This indicates a 9-bit data value unless
some type of automatic gain control is used. But it is not expected
this will prove difficult to accommodate in the design.

A result with which we have some experience is also confirmed by
Changz, namely, agricultural applications and many spectral bands from
which to choose. Some noisy bands can be tolerated if the choices of
optimum bands will still provide the discrimination between classes to

enable classification accuracy on test areas better than 90%.

 J
“C. Y. Chang, "Skylab S192 Data Evaluation: Comparisons with ERTS-1
Results," LEC-1711, JSC, Houston, January 1974.
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TABLE 4-12. NEAp (AT) FOR S192

WAVELENGTH BAND SL2 NEAp /AT  SL3 NEAp /AT
41 - 46 1 1.3 1.3
46 - L1 2 1.0 1.1
.52 - .56 3 1.3 1.2
.56 - .61 4 2.8 2.8
.62 - .67 5 0 | 2.5
.68 - .76 6 1.5 1.5
.78 - .88 7 1.8 1.7
.98 - 1.03 8 1.5 1.5

1.09 - 1.19 9 0.9 1.2

1.20 - 1.30 10 1.9 1.7

1.55 - 1.75 11 1.6 1.8

2.10 - 2.35 12 2.0 1.5

10.2 - 12.5 13 2.5°K 2.6°K
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Some additional comments should be noted. Therc is an atmospheric

phenomenon sometimes referred to as the "green haze" effect3 in which
the received radiance from a ground resolution element takes on or is
contaminated by the spectral characteristics of surrounding objects not
in the receiver's instantaneous field of view (IFOV). The primary
component of this nontarget radiation is being reflected by objects
outside the IFOV and is being scattered by the intervening atmosphere
into the receiver. This path radiance effect, if large, could in some
cases of coastal zone or water resources applications near highly
reflective terrain provide a limiting noise effect. Radiative transfer
model calculations for the atmosphere by Turner at ERIM are being
pursued to estimate the magnitude of the effect under various conditions.
Other atmospheric effects, such as scintillation due to turbulence,

are also being calculated to determine if they are second order

effects of some consequence.

3R. F. Nalepka, et al., "Investigations of Multispectral Sensing of

Crops," University of Michigan Willow Run Laboratories, Report
31650-30-T, May 1971.
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5
SPATIAL RESOLUTION STUDY

5.1 GENERAL

One of the more difficult problems in establishing user applica-
tion requirements, and subsequently sensor design, is that of defining
the spatial resolution required for a given application. With insuf-
ficient spatial resolution, objects of interest to the user will not
be resolved and the necessary information will not be available. On
the other hand, systems providing excessive spatial resolution, impose
serious requirements on the design of the data acquisition, telemetry,
and data processing systems. Also, the additional amount of data
generated by the excessive spatial resolution increases the time and
cost of data processing. Clearly then, an accurate definition of
required spatial resolution is required. This section addresses
this problem both from a theoretical and empirical viewpoint for

Agriculture and Land Use.

5.2 SPATIAL RESOLUTION EFFECTS ON ACREAGE ESTIMATION

Section 5.2.1 discusses the effects of spatial resolution on
agricultural field centers (portions of fields excluding all
boundaries) as determined from the classification of aircraft scanner
data. A discussion is then presented of the effects of spatial
resolution on acreage estimation when the boundaries are included.
Typical field sizes in various U. S. agricultural communities are
presented and the results of acreage estimation on a set of fields in

the aircraft data are provided and discussed.

5.2.1 SPATIAL RESOLUTION EFFECTS WITHIN FIELDS
Aircraft multispectral scanner data gathered over the

Michigan agricultural test site were used to empirically determine the
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effect of spatial resolution on classification accuracy. These data

were processed to generate three separate digital tapes, each
containing data for the scene at one of three spatial resolutions
(nominal values of 15, 30, and 60 meters).

Utilizing the full 9-bit data, each of the data sets was
classified with the optimum seven channels specified for each. The
results of these classifications for field center pixels in test
fields are shown in Tables 5-1, 5-2, and 5-3 for 15, 30, and 60
meter, respectively. The field center pixels for this aspect of the
investigation are those pixels which were identified to fall within
the boundaries of the test fields. A very conservative selection of
field center pixels was made to insure that the selected pixels would
not cross field boundaries at any of the three spatial resolutions.

In fact, the selection was based on the 60 meter resolution data and
the pixels selected for the 30 meter and 15 meter data sets were only
those which were combined to generate the selected 60 meter pixels.
As a result, the same ground area was coverecd in each field at each
spatial resolution.

Table 5-1 shows that, with the exception of soybeans, the percent
correction classification exceeds 80 percent. In fact, three of the
classes (corn, ripe oats, and woods) exhibited accuracies exceeding
94 percent. As seen in Tables 5-2 and 5-3 which are for 30 and 60
meters, the same comments apply.

Some of the information included in Tables 5-1, 5-2, and 5-3 is
depicted graphically in Figure 5-1. In this figure classification
accuracy is plotted for each class as a function of spatial resolution.
Also included is a plot of the weighted average of the individual
results with the weighting being dependent on the number of pixels
in each of the classes. On examining Figure 5-1, two major
characteristics are obvious: 1) the percent correct classification for

field center pixels for corn, ripe oats, woods, and "other" is either
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TABLE 5-1. PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

15 Meter Data

7 Optimum Channels
9 Bit Data
PER CENT MISCLASSIFICATION

SCENE CLASS PER CENT CORRECT SOY- | RIPE
(No. of Pixels) CLASSIFICATION CORN | BEANS| OATS | WOODS OTHER
CORN (3248) 94.6 0.1 0.8 4.5
SOYBEANS (1136) 59.9 14.3 25.8
RIPE OATS (80) 100.0
Wwoops  (3400) 95.5 2.84 0.1 1.6
OTHER  (4672) 80.6 11.0§ 0.5 2.1 505

Average = 86.1
Wt. Average = 86.5
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TABLE 5-2. PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

30 Meter Data

7 Optimum Channels

¥ Bit Data PER CENT MISCLASSIFICATION :
SCENE CLASS | PER CENT CORRECT soY- | RIPE

(No. of Pixels)| cLAsSIFIcaTION | corn| BEANS| oars | woops| orHER

CORN (812) 94.1 0.7 5.2

SOYBEANS (284) 73.9 5.3 20.8

RIPE OATS (20) 100.0

WOODS (860) 96.7 1.9 1.4

OTHER  (1168) 84.8 9.5 | 0.4 | 1.0 4.2

Average = 89.9
Wt. Average = 89,6
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TABLE 5-3. PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

60 Meter Data

7 Optimum Channels
9 Bit Data ' PER CENT MISCLASSIFICATION

===

SCENE CLASS | PER CENT CORRECT SoY- | RIPE

(No. of Pixels)| (LASSIFICATION | CORN | BEANS| OATS | WOODS| OTHER
CORN (812) 93.6 0.5 0.5 4 5.4
SOYBEANS (284) 29.6 29.6 40.9
RIPE OATS (20) 100.0
WOODS (860) 97.7 1.9 0.4
OTHER  (1168) 87.0 8.6 2.7 1.6

Average = 81.6
Wt. Average = 85.7
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essentially flat or increases slightly with a coarsening of spatial
resolution and 2) the percent correct classification for soybean
field center pixels increases dramatically between 15 and 30 meters
and decreases even more dramatically between 30 and 40 meters.

On examining the results for soybeans, in some detail, possible
explanations for the action between 15 and 30 meters were determined
(see Appendix B), however within the time and funding limitations
of this investigation no reasonable explanations were determined for
the reduction in classification accuracy between 30 and 60 meters.

The result depicted here for soybeans is considered atypical and
should not be used to select the optimum spatial resolution for
the EOS sensor.

On the other hand, the results for the remaining classes (corn,
ripe oats, woods, and "other'") can be reasonably explained. For corn
and ripe oats there is essentially no change in the classification
accuracy with coarsening resolution. The test fields for the classes
were relatively uniform in appearance and contained no regular
structure at or near the spatial resolution being considered. This
was not the case for woods and "other'", however. Test fields for
these classes were relatively nonuniform and, therefore, as the
effective spatial resolution was reduced in increasing numver of these
nonuniformities were included within single pixels with the result
that the variability from pixel to pixel was reduced and the classifi-
cation accuracy increases slightly.

In summary, it has been demonstrated that, for agricultural field
center pixels, a selection of a specific spatial resolution between
15 and 60 meters is not critical. In fact, for field center pixels,
there is a slight preference for the coarse spatial resoluticn

(60 meters in this case).
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5.2.2 WHOLE FIELD ACREAGE ESTIMATION (THEORETICAL)

In the previous discussion our attention was intentionally
limited to field center pixels. It is obvious, hcwever, that those
pixels which are located so as to overlap the boundary of adjoining
fields need also be considered when specifying the required system
spatial resolution. As a matter of fact, on an intuitive basis, it
is the boundary pixels which will contribute most to errors in
acreage estimation since each boundary pixel contains within it (by
definition) portions of two or more fields which may be different
crops. The radiation received from such pixels is a mixture from two
or more classes and may, therefore, not be characteristic of either
or any of the classes. The result of this mixture is likely to be that
many of the boundary pixels will be incorrectly classified and the
resulting field acreage estimate will be in error.

The following paragraphs present a simple theoretical approach
to quantify the magnitude of this acreage estimate error and present
the results of calculations of field acreage accuracy versus field
size for a selection of spatial resolutions.

In order to mathematically model the situation at hand, some
simplifying assumptions were made. The geometry shown in Figure 5-2
was assumed for modeling. A rectangular field is shown having
dimensions A and B and pixels having dimensions "a" and "b" which are
parallel to their opposite members. The equations for c~2lculating

the number of center and boundary pixels are shown below.

(51) (R19)

where A,B are field dimensions and a,b are pixel dimensions.

Number of pi.els =

% l is the quotient of A and a rounded to the next lowest integer.

If a=b, aspect ratios of fields do not influence acreage accuracy Vvs.

pixel size.

Boundary Elements = (%»l +<g l + 2)
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Using the above equations the number of cente~ and boundary pixels
and associated acreage were calculated for spatial resolutions of 10,
30, 60, and 80 meters for fields ranging in size from 5 to 2560 acres.
These results are presented in Tables 5-4 through 5-7.

If two extreme situations are now congidered: 1) all pixels, .
center as well as boundary, are classified as belonging to the class
contained within the field and 2) all boundary pixels are classified
as belonging to a class other than that within the field while all
field center pixels are correctly clascsified, the range of possible
values of field acreage accuracy can be determined. Such calculations
were carried out using the data contained in Tables 5-4 through 5-7
and the results are depicted in graphical form in Figures 5-3 through
5-6.

On examining these figures it is clear the acreage overestimates
occur for condition (1) and under-estimates occur for condition (2).
As the field size is reduced for a given spatial resolution, the range
of possible values increases significantly. This is especially true
for spatial resolutions 30 meters or larger. Therefore, even though
classification of some boundary pixels will match that of the field in
practice, the uncertainties in acreage estimation accuracies will
increase with decreasing field size and spatial resolution. Tnis is
shown more clearly in Figure 5-7 where we plot the maximum fractional
error versus spatial resolution for various field sizes. Note that it
is assumed in deriving these results that all field center pixels are
perfectly classified. This may not Le true in practice.

The potential seriousness of boundary pixel misclassification
can be understood if one determines the average field sizes in many
agricultural areas and then refers to Figure 5-7. Table 5-8 is a
tabulation of field sizes and their distributions which were extracted
from Statistical Reporting Service reccrds for Kansas, Missouri, South
Dakota, and Idaho. Only in Kansas, with its large wheat fields, is the

average field size large enough (109 acres) to expect relatively small

142




TABLE 5-4. FIELD CENTER AND BOUNDARY PIXELS

10 m RESOLUTION

pixel = 0.02471 acres = 32.81 ft on a side
Field Size (acres) Center Pixels (acres) Boundary Pixels (acres)

2560 2530 31.8
*1280 1257 23.9
640 625 15.9

* 320 310.3 12.0
160 154.2 8.01
* 80 76.1 6.03
40 37.6 4.05
* 20 18.3 3.06
10 8.92 2.08

* 5 4.23 1.58

*Fields with 2:1 aspect ratio
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TABLE 5-5. FIELD CENTER AND BOUNDARY PIXELS

30 m RESOLUTION

pixel = .2224 acres = 98.425 ft on a side
Field Size (acres) Center Pixels (acres) Boundary Pixels (acres)

2560 2499 96.1
*1280 1226 72.1
640 601 48.0

* 320 289 36.0
160 139 24.0

* 80 66.7 18.23
40 32 12.0

* 20 13.3 9.34
10 5.56 6.0

¥ 5 2.22 4.89

*Fields with 2:1 aspect ratio
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TABLE 5-6. FIELD CENTER AND BOUNDARY PIXELS

60 m RESOLUTION

pixel = .8896 acres = 196.25 ft on a side

Field Size (acres) Center Pixels (acres) Boundary Pixels (acres)

2560 2405 192.2
*1280 1156 144

640 556 96.1

* 320 267 72.9

160 128 45.8

* 80 53.4 37.4

40 22.2 24.9

* 20 8.9 19.6

10 3.56 14.2

* 5 ’ ¢ 10.7

*Fields with 2:1 aspect ratio
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TABLE 5-7 . FIELD CENTER AND BOUNDARY PIXELS

80 m RESOLUTION

pixel = 1.581 acres = 262.47 ft on a side
Field Size (acres) Center Pixels (acres) Boundary Pixels (acres)
2560 2405 259
*1280 1172 196
640 571 132.8
* 320 270 101.2
160 128 69.6
* 80 56.9 53.8
40 25.3 37.9
* 20 6.32 28.5
10 1.58 19.0
* 5 0 15.8

*Fields with 2:1 aspect ratio
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TABLE 5-8 FIELD SIZE DISTRIBUTIONS

;z't (Numbers in parenthesis are cumulative percentages)
Field .
Description Kansas Missouri South Dakota Idaho
u-9.9 #Fields 96 355 215 634

Acres 374.6 1,493.7 1,095.9 2,908.1

XTotal 0.5 (0.5) 11.3 (11.3) 4.4 (4.4) 9.7 9.7)
10.C-14.9 #Fields 29 123 108 211

Acres 316.5 1,415.1 1,231.6 2,483.0

*Total 0.4 (0.9) 10.7 (22.0) 5.0 (9.4) 8.3 (18.0)
15.0-19.9 #Fields 30 75 87 131

Acres 505.3 1,247.0 1,440.5 2,171.5

XTotal 0.6 (1.5) 9.5 (31.5) 5.8 (15.2) 7.2 (25.2)
20.0-29.9 #Fields 52 98 165 130

Acres 1,248.1 2,276.8 3,842.6 3,118.1

XTotal 1.5 (3.0) 17.2  (48.7) 15:5 (30.7) 10.3 (35.5)
30.0-39.9 #Fields 57 53 78 72

Acres 1,908.4 1,777.3 2,582.5 2,418.8

XTotal 2.4 (5.4) 13.5 (62.2) 10.4 (41.1) 8.0 (43.5)
40.0-99.9 #Fields 234 60 175 123

Acres 14,919.9 2,375.4 10,245.7 7,507.8

ATotal 18.3 (23.7) 25.6 (87.8) 41.4 (82.5) 25.0 (68.5)
100.0-499.9 {#Fields 222 11 30 39

Acres 41,829.3 1,604.0 4,342.1 7,053.7

ZTatal 51.4 (75.1) 12.2  (100.0) 17.5 (100.0) 23.5 (92.0)
500.01 #Fields 25 0 0 3

Acres 20,215.0 0.0 0.0 2,409.3

ITotal 24.9 (100.0) 0.0 0.0 8.0 (100.0)
T-TAL TEST SITE

#Fields 745 775 831 1,314

Acres 81,317.1 13,189.3 24,780.9 30,064.3
Average Field Acreage 109 17 30 23
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maximum fractional acreage estimation errors as a result of spatial
resolution greater than 30 meters. For the othar three states listed,
as well as the Corn Belt states of Illinois and Indiana for which
some field size information is available, the maximum fractional
acreage estimation error will fall in the 0.2 to 0.6 range for

spatial resolutions of 30 and 60 meter:.

5.2.3 WHOLE FIELD ACREAGE FESTIMATION (EMPIRICAL)

The question addressed in the previous paragraphs (acreage
estimation errors) on theor.tical grounds was also examined empiri-
cally using the aircraft multispectral scanner data gathered over the
Michigan agricultural site. The procedv.e followed and the results
achieved are described in the remainder of this seccion.

The processing of the agriculture data set was described in
Section 2.2.1, which resulted in three classification maps, one each
for 15, 30, and 60 meter spatial resolution data. A total of fifty
fields of five types (bare soil, corn, soybeans, stubble, and hardwoods)
were located on these maps. The region in the immediate vicinity of
each of these fields was then examined to identify the number of pixels
classified as the ftarget field. The number of pixels were then
transformed to field acreage. The results achieved in following this
procedure are provided in Table 5-9 which lists the actual acreage
as measured from aerial phutography, along with the computer
determined field acreage for each field. 1In this table the results
are also broken out for each scene class according to five size
classes (0-10, 10-20, 20-40, 40-80, and 80-160 acres).

The table shows that both underestimates and overestimates in
field acreage occur, although underestimates predominate. In order
to get a more general picture of these results, the absolute
di fference between the computer deteimined and actual field acreage was

determined for each field. The results were combined according to
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TABLE 5-9. AGRICULTURE SPATIAL STUDY - FIELD AREA AS A
FUNCTION OF SPATIAL RESOLUTION

ACTUAL FIELD
SIZE ACREAGE (AS g .
SCENE CLASS MEASURED FROM COMPUTER DETERMINED TISID ACAREAGE )
CLASS (ACRES) PHUTOGRAFAY) 15M DATA 30M DATA 60M DATA
Bare Soil 0-10 3.7 3.56 4.9? 3.3
4.3 3.08 3.47 4.86
4.5 3.75 3.7¢ 4.06
12-20 18.3 13.40 13.90 11.39
12.0 8.38 9.03 7.64
14.0 13.47 13.59 13.27
20-40 25.7 22.87 24.97 24.02
31.7 30.49 29.09 30.05
27.7 23.98 25.58 24.30
Corn 0-10 9.7 8.07 9.11 7.03
8.0 4.73 3.82 3.47
8.2 6.56 6.77 5.56
10-20 23.0 16.42 14.39 13.43
19.7 17.42 15.97 18.91
14.3 12.27 12.56 7.37
20-40 36.2 33.84 35.18 32.17
21.3 19.53 14.70 14.07
40-80 45.2 44,96 42.38 42,22
76.8 75.53 75.45 77.37
62.7 53.47 50.95 56.27
77.2 78.41 76.96 26.22
80-160 141.0 136.37 136.20 140.72
153,2 147.39 141,57 141,74
Soybeans 10-20 11.5 9.47 10.76 8.47 -
15.3 : 15.07 14.87 15.98
17.2 15.19 15.51 17.90
20-40 28.0 26.34 27.17 30.05
32.2 26.47 26.24 27.38
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TABLE 5-9 (Cor*inued)

ACTUAL FIELD
SIZE ACREAGE (AS COMPUTER DETERMINED FIELD ACREAGE
. SCENE CLASS MEASURED FROM

CLASS (ACRES) PHOTOGRAPHY) 15M DATA 30M DATA 60M DATA

Stubble 0-10 7.0 7.77 8.51 9.73

(Cut Hay) 8.7 9.25 10.25 9.73

10.7 9.13 9.38 7.37

10-20 11.5 13.65 13.07 12.73

19.5 17.21 16.42 18.09

18.8 14.66 13.40 9.38

20-40 28.7 25.02 24.62 28.13

33.8 29.36 31.27 29.18

40-80 43.3 44.69 45.07 43.56

Hardwoods 0-10 6.8 6.70 6.53 4.02

5.1 6.19 5.91 8.31

6.1 4.56 5.04 3.47

10-20 15.3 12.31 12.71 9.78

9.7 10.27 10.39 9.67

10.6 10.86 11.38 8.85

20-40 38.2 31.85 33.88 28.67

23.7 19.88 22.06 16.88

33.5 29.88 31.09 20.57

40-80 67.2 58.59 59.98 55.62

L 80-160 144.2 139.51 154.02 138.21

I
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size class and spatial resolution and average absolute acreage
estiation accuracy was determined. These results are tabulated in
Table 5-10 and depicted graphically in Figure 5-8.

As expected, the acreage errors show a tendency to decrease with
increasing field size and increasing (finer) spatial resolution,
althougn the differences in the errors between 15 and 30 meters are
small ard variuble. For smaller fields (those more commonly found)
the average errors range from 11 to 20 percent for 15 and 30 meter
rosolution and from 20 te 38 percent for 60 meter resolution.

Accordi.. to these results it seems that there is 2 break point

between 30 and 60 meter spatial resolution and that a resolution of

30 meters would clearly increase the accuracy while a further reduction
to 15 meters would not change the results much.

In the above examples the boundaries of each of the fields on the
classification maps were not located with extreme accuracy so it was
felt that several examples whure this was done would be interesting ard
perhaps further help identify the optimum spatial resolution for the
EOS sensor.

The proce.lure followed here was to manually estimate the location
of and draw the field boundary on the 15 meter resolution classification
map. The drawn boundary was restricted to fall between pixels and
therefore, b cause of the procedure, there were no boundary pixels on
the 15 meter » *». The boundary was then transferred to the 30 and 60
meter maps and boundary pixels (those through which the transferred
boundary passed) anc field center pixels were identified. Then using
the area defined by the boundary on the 15 meter map, the accuracy
of the effective area identified by the field center and boundary pixeus
was determined for the 30 and 60 meter resolution data.

The above procedure was applied to five fields ranging in size
from 14 to 32 acres. The results are shown in Tabi= 5-11 where we
see that with the exception of the 14 acr2 field there seems to be no

trend at all and that tha absolute errors are fairly small, sometimes

156




TABLE 5-10. FIELD ESTIMATION ERRORS

NUMBER SIZE AVERAGE ABSOLUTE ACREAGE ESTIMATION ERRORS
OF CLASS
FIELDS (ACRES) 15-M 30-M 60-M
12 0-10 0.203 0.190 0. 382
15 10-20 0.193 0.196 0.230
12 20-40 0.128 0.107 0.13%4
6 40-80 0.071 0.079 0.260
3 80-160 0.046 0.061 0.042
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TABLE 5-11. FIELD CENTER AND BOUNDARY ACREAGE ERRORS

15 METER 30 METER 60 METER

; FIELD SIZE FIELD WHOLE FIELD WHOLE FIELD WHOLE
(ACRES) CENTER FIELD CENTER FIELD CENTER FLiELD

1 14 0.060 | 0.060 | 0.000 | 0.007 | 0.000 | 0.217
15 0.038 | 0.038 | 0.015 | 0.054 | 0.077 | 0.009

20 0.000 | 0.000 | 0.095 | 0.060 | 0.000 | 0.050

32 0.003 | 0.003 | 0.000 | 0.050 | 0.000 | 0.006

32 0.039 | 0.039 | 0.064 | 0.071 | 0.030 | 0.000
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smaller for the whole field than for the field centers only. These
results seem to indicate that boundary pixels are more or less
randomly being classified according to the class of the target field
with the result that there is little change in the accuracy of the
acreage estimated.

There is some concern that these results may be unrepresentative
because of the small size of the sample (only five fields) and the
cact chat each of the fields exhibited higher field center classifica-
tion accuracy than was typical for this data set. Perhaps the pro-
cedure employed for this aspect of the investigation forced the
selection of atypical cases. In any case, these questions were not

examined because of limited study scope.

5.2.4 CONCLUSIONS AND RECOMMENDATIONS - AGRICULTURE SPATIAL
In this section the problem of defining the spatial resolu-
tion of a spaceborne multispectral scanner for Agriculture applica-
tions was addressed. The prime user application considered here
was the determination of agricultural field acreage at three specific
spat.al resolutions (15, 30, and 60 meters).

It was demonstrated for the agricultural data set available for
this study that the classification accuracy (and therefore,
acreage estimate accuracy) for field center pixels is essentially
not affected by a reduction in resolution from 15 to 60 meters. In
fact, a slight improvement in a:curacy was achieved for those classes
which were less homogeneous and contained nonuniformities on *he order
of the final resolution.

When including boundary pixels, however, theoretical evidence
pointed to continued reduction of acreage estimation accuracy with
decreasing field size and coarser spatial resolut 'on. Empirical
results confirmed the reduction in accuracy with decreasing field size

but indicated no reduction in accuracy in decreasing the spatial
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resolution fr-a 'S v. 30 neters for fields as smzll as four

AC"t S.

Jete lased or thz empirical results presented in this section, a spatial
:i‘_ resclut on finer than 30 meters is not warranted. These results do
supp-'rt a case for a2 spatial resolution finer than 60 meters, but a
precise resolution between 30 and 60 meters was not defined. It is
suggested that studies such as these be made using data collected at
more optimum times in the growing season in order to more clearly
define resolution requirements.

Specific suggestions for the continuation of this study include

the use of accurate .oundary location techniques under development

i 20

at ERIM to aid in the evaluation of boundary effects on classification
X pig accuracy and acreage estimation. In addition, larger areas in the
| scene for which there is complete ground information and which

wa include many boundaries should be examined to determine whether errors
of one kind in one location are cowmpensated for by errors of another
kind in another location. Also, there is a need to determine if there
are fixed biases in acreage estimation and how these biases are
affected by varying distributions in field size and type. Another
area of investigation suggested to be pursued is the further develop-
ment and testing of proportion estimation techniques which has been
pioneered by ERIM. Such techniques permit the estimation of propor-
tions of individual classes in pixels which contain more than one
class. Perhaps an approach of this kind will in the future permit

. the use of coarser spatial resolution sensors with their attendant
lower system electronics, telemetry, data acquisition, and processing
costs while still retaining a capability for accurate area deter-

mination.
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Ser3 SPATIAL-SPECTRAL IDENTIFICATION STUDY
URBAN LAND USE - BALTIMORE
(HONEYWELL-MINNEAPOLIS)

The determination of the spatial resolution for an earth observing
sensor must take into account the use of spatial information for object
identification. Two aspects of spatial information are commonly used
to discriminate between objects, texture and shape. These spatial
features are commonly exploited by the photointerpreter. Since this .
study was oriented towards automatic identification of scene elements,
spatial discriminants were added to the spectral features in the com-
puter implemented identification routine. It was felt that spatial
features were of great importance in the identification of urban land
use, thus the selection of Baltimore as a test site. It was also
expected that urban land use identification would be degraded with
degrading spatial resolution. It seemed obvious at the study's incep-
tion that of all potential remote sensing applications, urban land use
identification would be the most sensitive to changes in the spatial
resolution of the sensor.

It is important to understand how spatial features were used
in the study. The same scene was viewed with fundamental resolutions
of 7, 14, and 56 meters. An 8 x 8 grid of surrounding resolution
elements was associated with each 7 m resolution element. A 4 x 4 grid
of surrounding resolution elements was associated with each 14 m
resolution element. Thus, in each case, the grid covered 3136 m2 of
the scene. FEach grid provides a small portion of the scene surrounding
the resolution element. This scene grid provides the spatial data for
the identification discriminant.

Figure 5-9 illustrates how a (4 x 4) rectangular s:cene element of
intensity A surrounded by scene elements of intensity % can be
constructed from four texture patterns. The intensity of the shaded
E and the clear areas 1. The number % associated with each
of the four texture patterns is called the amplitude of the pattern.

cells is
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If each cell in the texture patterns of Figure 5-9 has side 14 m, then
the first two texture patterns nave a spatial frequency of 1 cycle/28 m,
the last two a spatial frequency of V2 cycles/28 m.

The method used in this study for measuring the spatial features
in the resolution element grids is similar to the method depicted in '
Figure 5-9. Each grid of resolution elements is expressed as a weighted
sum of Fourier texture basis patterns. The weights are called amplitudes
of the frequency of the Fourier basis pattern. Each Fourier basis
pattern has a single spatial frequency associated with it.

Figure 5-10 shows the spatial frequencies produced by the 8 x 8
grid with cell side 7 m. The point (fx’ fy) has the following inter-
pretation: The Fourier frequency pa%tern is at an angle 8 with the
x-axis 't the grid giveu by tan 8 = fl and the frequency of the pattern

——

X
is vEL + f . For example, the point (1,2) related to a periodic
3 y :

pattern oriented tan % = i or 4 = 60° to the x-axis and has frequency
¥5 cycles/56 m, or 0.04 cy/m. The pattern (4, 4) has a spatial fre-
quency 4v2 cycles/56 m, or 0.1 cy/m. The amplitude associated with

the Fourier spatial frequency pattern (f,, f ) is denoted by A(fx' f )

\U v

and these amplitudes were computed by the Fast Fourier Transform
technique from the resolution element amplitudes of the grid.

The values of tne 8 x 8 and 4 x 4 resolution element grids were
generated by the first principal component of the Karhunen-Loeve trans-
formed spectral features. Both the maximum eigenvalue criterion and the
Classifier Mapping Error (CME) criterion were examined for principal
component selection to gencrate grid values. It turned out that selec-
tion of the principal component eigenvector associated with the maximum
eigenvalue vielded the best classification accuracy. The need for rota-
tionally-invariant, as weli as translationally-invariant, features was
recognized. The 2-D Fourier Transform was used to obtain an (N/2-1) x

(N/2-1) matrix of "energy" values from an N x N cell. Rotation invari-

I}

ance was approximated for 8 x 8 and 4 x 4 cells by partitioning and

combining Fourier spectral frequencies as described in Table 5-1..
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FIGURE 5-10. SPATIAL FREQUENCY LATTICE

TABLE 5-12. TEXTURAL FEATURE SPECIFICATION

8 x 8 Grid
Feature:
50 = A(0,0)
51 = A(1,0) + A(0,1) + 0.65 A(1,1)
52 = A(2,0) + A(0,2) + 0.8[A(2,1) + A(1,2)]
+ 0.35 A(1,1) + 0.1 A(2,2)
53 = A(3,0) + A(0,3) + 0.9[A(3,1) + A(1,3) + A(2,2)]
+ 0.3[A(3,2) + A(2,3)] + 0.2[A(2,1) + A(1,2)]
54 = A(4,0) + A(0,4) + A(4,1) + A(1,4) + 0.35[A(4,2) + A(2,4)]
+ 0.7[A(3,2) + A(2,3)] + 0.1[A(3,1) + A(1,3)] + 0.8 A(3,3)
55 = 0.65[A(4,2) + A(2,4)] + A(4,3) + A(3,4) + A(4,4) + 0.2 A(3,3)
4 x 4 Grid
50 = A(0,0)
51 = A(0,1) + A(1,0) + 0.65 A(1,1)
52 = A(0,2) + A(2,0) + A(1,2) + A(2,1) + A(2,2) + 0.35 A(1,1)
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The proportionality constants for combining Fourier spectral

frequencies tabulated in Table 5-12 were selected empirically from
studies performed upon transformations of rotated 8 x 8 patterns. The
features are the weighted sum of the amplitudes of Fourier patterns of
approximately the same frequency but in all the available directions.
This is an approximation to rotational invariances.

The features 50-55 are amplitude representations similar to the
amplitudes in a spectral channel. These spatial features are used in
the classifier in the same way as are spectral features. Spectral-
spatial signatures are obtained frcm training sets in the usual fashion.
These spectral-spatial signatures are then used to classify the test
sets. Honeywell uses a K-class linear discriminant as classifiers.

There are many methods for using spatial properties in a classi-
fier. The Fourier technique is only one. Given a classification
problem, we may expect to find one method preferred over another.
Neither resources nor time allowed comparison of other techniques on
this data. It is possible (butnot likely) that the :iesults presented
would be radically changed by a change of technique. The Fourier
technique is about as exhaustive as any available technique and it
certainly should be responsive to the variations in the spatial resclu-
tion of the data. Another technique could no doubt improve classifica-
tion results for each spatial resolution. It is doubted, however,
that another classifier could change the relation of classification

accuracy and rescolution variation revealed by this studv.

Ordering of Spatial-Spectral Channels

The classification exercise undertaken on the Baltimore data was
the identification of 15 Anderson Level 111 classes given in Table 5-13.
Three approaches to channel ordering were taken in this evaluation;
forward, reverse, and exhaustive. 1In the forward evaluation, the best
single channel is determined nd the second best is added, then the

third best is added to these two, etc., until all twelve channels have
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TABLE 5-13. CLASS DESIGNATIONS FOR BALTIMORE DATA SETS

Description
Residen: wol, Single Family

Reszid:nr.. , Multiple Family

Comwer* "a:, Retail

Industrial, Wholesale/Light Ind.
Industrial, Metal

Industrial, Chemical

Transportation, Railroads & Yards
Transportation, Freeways/Highways
Transportation, Marine Terminals
Transportation, Utilities
Institutional

Institutional, Secondary Schools
Institutional, Colleges
Institutional, Military Installations
Institutional, Other (e.g., Hospitals)

Open/Other (Urban Parks, Recreational)
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Anderson Honeywell
Class Designation
111 1
112 2
121 3
122 4
132 5
134 6
152 7
153 8
154 9
155 10
160 11
162 12
163 13
164 13
165 14
190 15
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been categorized.« In the reverse evaluation, the least effective
,channel is deleted first, then a second least effective channel is- V;;
’added to this, etc., until all twelve have been categorized _

_ In the exhaustive search, the most effective channel is i f,ii
~ determined, then the two most effective are determined the three most . ';?t _ v
effective, etc., uantil all twelve have been analyzed. The difference o '
here is that the n + 1 most effective need to contain all n of the n
b'most effective; that is, selected chaunels can ‘b2 deleted as the number -

,Aof'channeISfincreases.

- The ordering of channels selected by these three schemes is
”glven in Table 5-14. A curve of mapping error for the exhaustive
schemes is given in Figure 5-11. ‘

Surprisingly, feature 51 is the only spatial feature ranked
ahead of a spectral feature and ell remaining gpatial features and
feature 51 has a basis frequency of ome cycle per 56 m, the loweet
frequency availabtle. The highest frequency 4 cycles/56 m is ranked
_very low by both the -forward and reverse methods. Figure 5-11 further
1strengthens this result. The spatial channels decrease the probability
quﬁmiselassification By only a small amount. Results of the next

’7>;$ection;wd;1f£urther amplify this result.

Effects on Claseification Accuracy of Changes in Resoluticn

>.The "working'data" was extracted from the Baltimore flight using
the provided graymap;‘scanner "photos" and ground truth map. About
7‘ 2200 8 x 8 cells (56 m/side), belonging to the classes adequately
‘represented, were selected, assigned a class number, and extracted .
from the original high-resolution data tape. Sometimes the Level III
classification was further broken down when such'e class was composed
of obvious dissimilar "subgroups". This was to allow more flexibility
and selectivity where necessary in subsequent processing.

Training and testing sets of data were defined among the extracted -

data. If a subgroup had > 80 cells in it, every other cell of that
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TABLE 5-14. CHANNEL 'ORDERINE' ' S
" Porward: 12 10 9 51 8 1 11 2 52 55 |
Reverse: .12 9 8 1 10 52 11 2 52 54 53 55 50
Exhaustive: 12 . R
12 100 . -~ o
3 S12 10 9
O
, . 12 9 8 .
| 12 10 9 1
12 10 9 8 51
) N !fl' “" »
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subgroup in sequence on the extracted data tape was assigned to the
training set, and the remaining cells to the testing set. Where the

" population was < 80 cells, every cell was assigned to bofh sets. This
assured an adequaterstétist;cal representa;ion-of every class in subse-
quent classifier processing. ‘This is almost an experiment on training
sets. The results are given in the form of performance matrices,
Tables 5-15 to 5-26. ' The diagonal elements are the probability of

) correct classification for each class. The off diagonal entries are

wxz» - 'the probabilities of calling the ith

class (row #), the jth class
- (column #). The "best" seven features ar~ shown in Table 5-27. The
twelve performance matrices represent the three resolution levels and
the different spectral-spatialAfeatures used with each resolution.
Table 5-28>is a summary of the weighted average of correct classifica-
tion. Weights werekdetermined by the number of resolution elements
in each class.
It is apparent that at each resolution the addition of spatial
information improves classification accuracy. Further comparing the
accuracy for 4 spectral channels to 7 spectral channels plus all 6
of the available spatial features at 7 m resolution, results in an
accuracy increase of 13 percent. At 14 m resolution c the 4
best spectral channels with the 7 best séecbr&i’channels plus all 3
available spatial features, an accuracy increase of 7.1 percent is
- . realized. The addition of spatial features then, appears to have‘more
impact at high resolution than low. But noticerthat the accuracy of
. spectral discriminétion.alone improves markedly ﬁith degraded resolution.
‘. Obviously, the integration of scene elemcnts implicit in degraded '
resolution is reducing the spectral variability within the scene's
classes and thus markedly improving the accuracy of the spectral
discrjmina;;gn. This integration effect is so strong that although
the 7 m, 7 spectral channel, 6 spatial feature accuracy is slightly

better than 14 m, 7 spectral channel, 3 spatial feature accuracy, the -
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Table 5~15. Classificntion Parcentages
7 Meter Cell, 2 Mest Features®

E , (2 Spectral Bands)
B ,

TRUE
CLASS : v

1/ 3/ s/ s/ 8/ e -7/ 8/ o/ 10/ 1/ 13/ 13/ 4/ 18/
aass 1/ 269 9.7 0 2.0 .0 .8 2 1,2 1,8 134 .8 9,85 256 33 5.6
cuass 2/ 9.7 8.8 .0 16,0 1.6 1.2 .0 8 3,9 11,7 1.9 2.8 30,0 13,0 0
CLASS 3/ 4.7 6.6 .0 30,2 9 1,3 3.3 0 . 32,2 4,9 4,9 8.3 10.4 16,0 8
CLAsS 4/ 3.3 8.9 .0 44,6 2,6 2.6 0 O 1,0 2.4 8,7 2,1 73 4.8 .0
cLass s/ ] .2 Q0 21,7 165 1,0 11,8 0 11,8 2,3 16,7 18,8 1.0 8 .0
6/ 6.7 4.3 0O 18,5 ‘7.3 2.8 5,0 1,8 4,8 11.8 . '10.4 8,2 10,8 9.9 ol
crs: T/ 1.4 1.4 .0 3.8 2,2 1,7 27.8 0 L0 1,1 45,3 7.8 4,7 28 .0

cLiiR 8/ 8.6 1.1 O 7.4 O 2.7 .2 .0 4 9.0 7.0 1.4 36,3 143 .8

(47
11

e’ 9/ .3 6.8 .0 888 L5 . - .0 .9 187 8 .8 A 47 1,6 .5 -
CLA '+ 30/ 2.6 5.4 O 6.4 1,0 1,3 458 0 2,9 250 51 58 283 6.7 7.7 5

ctass .11/ 5.8 3.8 .0 837 7.7 4.8 3.8 0 1,0 3.8 138 5.8 8,7 7.7 .0 i
CLASS 13/ 9.4 "13,8 0 13,5 .0 O 15,6 0 O 6.3 3,1 21,9 0.4 9.4 .0 5}

caass 13/ #y 3.8 L0 22,1 2.8 1.1 8 .0 B 4l 27 29 243 73 .6 3
cLass 14/ 9.2 8.8 0 28,1 3.8 1,7 4,6 0 3,5 4,2 9.8 4.4 14,8 &2 .8 ':""

cass 18/ 89,8 . .9 .8 L1 .1 1 .6 24 0 0 L2 2 67 10,7 8 S8 {

: : ]

#Spectral Channals 10 and 12 (Sea Table 5-27) i

§
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‘TRUE , ,
CLASS  \\_CLASSI
1

CLASS
ClASS
CLASS
CLASS
CcLASS
CLASS
CLASS

CLASS

CLASS

' CLASS

CLASS
cLAsS
CLASS
cLASS
cLASS

Y/
3/
3/
s/
s/

»

7/
8/
9/
10/

1/

13/

18/ -

14/

18/

FICATION

/ 2/ 3
38.0 8,0 .8
10,3 9.4 1.1
7.4 4,1 4,0
2,4 2.6 3.1
.1 .0 .0
.5 2 1.
5.0 .8 .0
7.0 3.3 .0
&0 od 1,2
19.2 6.1 1.0
3.8 1.9 .0
s.1 3 .0
29,3 3.8 .8
2.8 4.4 2.1
38.8 1.5 .4

Table 5-16.

4/
1,8
9.4
31,8
35.6
15,2
19.3
.8
1.6
60,1
7.4

- 30,8
h3.8

18,9
21.2
2

s/
.3
1.3
3
1.2
30,7
)
6.9
1,6
.3
0
4.8
.0
.8
1.3
.0

Classification Percentages
- 7 Meter Cell, 4 Best Peatures®

(4 Specctral Bands)

s/
o4
3.4
8,9
13,2
27,8
36,3
10,3
14,3
12,9
2.3
2,9
9.4
1.7 ¢
6.9
0

#*Spectral Channels 1, 8, 10, and 12 (See Table 5-27)

o4
o7
2,5
.9
8,7
1,8
26,7
2
«0
1.9
7.7
12,5
6
1.9

4

‘

8/
8
1.7
4.1
3.3
8
4.6
.0
14,8
5.6
5.8
1,0

0

0

8/ 10/
ol 7.7
1,7 16,1
2,8 4,1
401 3.0
I L3
8.7 4,5
.0 .3
10,4 31,5
11,4 o5
2,2 18,1
1,0 3.8
3.1 6.2
2.4 8.8
5,0 6,3
0~ 1,8

T,

1/
201

4,9
8,7
12,4
. 9.8

41,1

i.8
o4
8.4
17,3
3.1
3.4
11,3
3

2.8
1,2
41
1.3
3.0
5.9
1.9
ot
.3
5.8
1.9
1.2
1,8

1.0

S,

13/

14,7
16,8
6.0
3.3
.0

3
4,2

4.8
.0
6.4
8.8
6.2
11,1
2.7
2.8

2/
9,4
18,8
17.1
16,8
2.8
8.4
2,2
18,2
6.9
2.9
13.8
9.4

' 18,3

18,6
o3

18/
18,4
3.2
o9
.3
2

«0
1.0
o0
4.5
1.9
0
4.1
1,7
86.2




Table 5~17. Claseification Percentages '
7 Meter Cell, 7 Best Teatures®
(6 Spectral Bands, 1 Textural Feature)

e mm
CLASS . CLASSIFICATION
. 1/ 2

/ s/ 4/ s/ sf 7/ .s/ o/ 10/ 1w/ 13/ s/ 14/ 18/

CLASS l./ 47,7 7.5 1.0 1,0 3 o8 N .0 «0 7.8 e 2.6 17,7 2.7 10.2

CLASS 2/ 12,9 14.9 6.3 9.5 2,8 2.7 .3 .5 .4 180 48 1.6 165 7.5 1.3

cass 3/ 8.5 3.3 18.2 25.2 .9 8.4 3.0 1.7 1,6 5.2 7.8 40 3.0 8.8 .3 Y
ctass 4/ 3.3 1.6 5.4 35,4 2,4 2,7 1,0 33 2,8 3.5 8,0 1,2 2.3 17,0 2 #
ctass - s/ .2 .0 .2 82 44,0 265 12,9 .1 7 1,2 8,0 11 0 .9 .0 4

P eries 8/ 1.4 .0 2,2 203 2,0 9.8 1.7 53 3.5 68 .47 53 5 134 .0 i
= aass 7/ 53 .3 .3 11 9.2 67 30,2 .0 .0 1,7 30,0 28 31 .6 0
8/ 3.9 3.7 45 27 20 17.6 .8 288 2,6 187 2,7 6 3.3 10,8 .6 :
o/ .0 a1 12,0 416 .4 124 0 41 20,6 21 1,3 .1 .1 49 .0
to/ 17,6 32 35 54 10 7.4 1,8 32 38 28,2 4.8 88 108 3.8 1.9 . 3

11/ 6.7 4.0 6.7 21,2 4.8 2,9 8.8 1,0 1.9 2.6 17.3 4.0 4,8 10.6 1,0 - ';“ -
12/ L1 31 128 31 .0 9.4 31 .0 .0 31 3.1 468 .0 138 .0 g
13/ 206 4.0 9,0 17,2 2 2,7 12 K I 5.9 47 1,6 18,6 3.4 .6 :

14/ '\ 25 8.1 16 3.8 9,2 2,8 3.5 1,3 €0 81 60 3.3 i7.7 .4 % '

18/ 897 2 .0 .7 0 .0 .8 & . L8 .6 2.8 40 & 293 .

. L —

'“‘;;;‘{Sptctral ‘Channels 1, 8, 9, 10, 11, and 12 (See Table 5-27); Textural Festure 51 (Ses Table 5-12).
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TRUE -
CLASS \cussxnmnw

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

1/
2/
3/
4/
s/
&/
7/
8/
9/
10/
11/
12/
13/
14/
is/

47,5
10,2
4.7
9
ol
-0
3.1
1.0
.0
7.1
4.8
.0
5.6
8.4

19.8

1.4
22.8
1.7
3.0
3
1,6
.6
2.0
S
4.5
.0
.0
4.1

3.1

N

el
4.2
18.7
7.6
.1
2.9
.3
2.9
8.1
2.2
8.7
.0
9.9
7.5
.2

Table 5-18.

|
6,2
10,0
14.2
o7
11,2
.0
.8
10.9
1.6
5.8
.0
T4
8.9

.0

1.0
2.3
1.7
2.4
53.4
4.4
11.7
5.7
1.1

~
.

Classification Percentages
7 Meter Cell, 13 Best Features®
(7 Spectral Bands, 6 Texture Featurss)

.1 2.2 3 .0 8.9 .6 5.2 13.4 c.,” 10.8

B .0 L1 1.0 168 8.5 655 7.9 13,9 2.2
5.4 4.8 1,7 2.5 68 13,8 108 25 13,8 2.4
9.0 . .9 3.3 8.2 3.0 11,3 148 1,4 is.8 .3
8.0 23.2 1.2 .0 .8 6.4 3.7 . 21 .2
25.6 2.4 7.8 56 45 5.8 13,9 1.7 12,9 .0
1,8 46.7 .0 0 .8 26,9 2,3 3.6 .8 .8
5.1 5.7 81,4 3.7 13.7 7.4 4.1 8.4 6.2 1.0
8.0 .0 4.9 5.0 1.9 2.0 3.5 .0 21 0

4.8 5.8 4.8 2,9 30,4 8,3 3,5 10,3 4,8 9.0
1,0 9.6 5.8 1.9 29,6 21,2 8.7 4,3 13.8 3.8

6.2 12.8 3.1 .0 .0 15.6 50.4 0 3.1 .0
1.8 1.7 1.8 .0 6,2 10.5 4.0 30.0 3.4 11,7
4.2 3.8 4.8 4 5.8 11,7 1.2 2.1 21.0 .44

.0 3.0 .0 £ 1.6 1.2 1.8 6.6 .1 66.0

*Spectral Channels 1, 2, 8, 9, 10, 11, and 12 (See Table 5-27); Textural Peatures 50-55 (See Table 5-12).
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TRUR
CLAS

S\\\\\\\CLASSI?ICATION
1/

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

#Spectral Channels 10 and 12 (See Table 5-27)

2/ 3/

1/ 3s.2 17.7 .0
2/ 12,4 23,4 1.3
a/ 7.3  13.0 2.
af 2.8 14.9 2.
5/ 2.3 .0 .
6/ 143 7.1 .
1/ 2.8 2.2 .
8/ 10,2 20,3 .
9/ .0 10,9

10/ 10.9 13.5 .
11/ 5.8 13.5 .
12/ 12.5 . 1E.7 .
13/ 32,0 1.0 1,
14/ 8.3 18,8 .
18/ 44,7 .6 .

.
S E N © O O o O G & o« W

Table 5-19. 'Classifitation Percentages
14 Meter Cell, 2 Beat Features#
(2 Spectral Bands)

.2 !

15,6

32,0

35.8
33.6
15.8
2.8
1.2
52.6
3.8
25.0
12,5
18,9
22.7
.4

s/
.0
.3
1.9
4.5

17.2

8,3
18,9
.0
.0
1.9

15.4

.0
1.8
8.5

‘o

6/
1,5
2,7
3.2
6.6
3.1
6.2
6.1

15.8
1,9
2.6
7.7

.0
1.8
3.5

7/
.2
.0
4,4
1,0
17,3
4,9

23.9

. O ’

.0
5.1
3.8

12.5

4.8
1.4

o/
' 3,9
4,0
3
«3
.0
2,4
.0
12,9
.8
7.7
.0
.0
3
1.9
8.8

o/
9
8

e
3.8
3.4
4,3

.0
.0
16,2
2.8
.0
.0
3
1.9

.0

10/

14,9
9,7
2,8
2,1
«.5

4.3

2,8
7.4
+3
20.5
§.8
N
11,9
4.8
7.9

11/

.o !

3
2.5
5.9
9.7
7.7

24.4
2.7

.3
4.5
9.6
8,2
1.2
8.8

2

12/
7.8
2.4
1.9
.7
11,2
8.3
3.9

13/

12.%

15,3
4,1
4.2

8
7.3
.8

14,8
2.7

10,9
1.9

12.5
8.5
5.0
1.4

14/ 13/
2.8 2,2
ii.s - .0
42,5 .0
1.8 .0
.5 .0
8.5 .0
.6 .0
12.9 .4
20.6 .3
45 7.
5.8 .0
6.2 .0
7.8 .3
1.2 1,8
1.9 32,9
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crx.g: \cusst
1/

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

1/
2/
3/
4/
s/
¢/
7/
8/
9/
10/
1/
12/
13/
14/
15/

41,6
8.4
5.4
2.8

-0
.4
6,7
5.5
.0
19,2
1.9
€.2
2.3
:3@8
~35.6

FICATION

2/ 3/
8.2 .2
15,1 1,1
6,0 4.4
3.5 3.1
.0 2
.0 .9
.0 .6
1.2 .0
.0 .5
2.6 .
3.8 1,9
-0 .
2,7 .
4,2 1.8
.0 .0

. .Table $-20, .
4/ s/
.2 )

7,0 . .0
123.4 .0
3s5.4 1.4
12,7 35,1
19.0 o2

.8 2,2

1,2 -8
51.6 .0

5,1 .0
23,0 1,9

6.2 Ry
14,6 .0
18.3 1.9

A .0

Classification Percentages
14 Meter Cell, 4 Best Festures'
(4 Spectral Bands)

8/ 7/ -8/ 9/ w0/ 1/ 13/ 13/

.0 ‘4 1,1 0 7.1 .0 1,3 20,3
1.6 S 1.8 8 13,4 1.6 5,4 24,2
4,4 35 .3.8 2,5 4,7 -3,2 9,8 5.4

12,8 o7 85,6 . 4,9 2.1 3.1 7.6 5.2
35,9 5.5 .5 .5 .6 6,0 2.8 .0
0,0 1,7 90 43 38 6,4 868 .0
25.8 29,4 .0 .0 O 27,2 1,1 p.b
20.3 .0 277 3.1 238 0 31 3,9
17.0 L0 7.7 15.4 .5 .0 2.9 .0
9.0 1,9 7.7 2,6 18,6 2,6 10.3 6.4

3,8 9,6 3.8 L0 858 154 38 9.6

18,7 25.0 ..0 .0 .0 .0 37,8 .0
4,8 0 N 9 6,1 1.8 4,0 18.8

7.7 3.5 3.1 3.8 8.9 7.3 10.4 4.2

L 1.3 2 .0 .8 .0 .8 3.8

*Spectral Channels 1, 8,9, and 12 (kee Table 5-27) PR

i4/

6.4
‘22,2

12,2
3

1.7
8.0
4.3
7.1
11.8
8.2

10,4

19,6

18/
18,7
1.9
1.9
o0
.3
.0
0
o4
0
6.4
1.9
.0
4.6
1.5
87.3




Table ©-21. Claveification Percentagea
14 Yeter Cell, 7 Beat Features® b
(7 Speccral Bandg)

1/ / 3/ a/ 5/ 6/ 7/ 8/ s/ 10/ ' 11/ 12/ 13/ 14/ 18/

TRUE
cLass \ CLASSTFICATION
2

CLass 1/ 45.0 5.8 .0 .0 L0 .4 .0 .8 ,0 60 0 .2 185 1.9 211
class 2/ 15.1 145 2.2 5.4 L1 22 .3 3.2 .0 180 27 .8 148 160 3.0
CLASS 3/ 7.0 5.1 5.8 18.0 3 5.1 3.8 6.0 1.3 5.7 9.5 4.4 3.2 13,0 1.9
cass 4/ 2.4 3.8 4.5 2361 2.4 11,8 7 49 2,8 52 7.6 14 14 142 7
CLASS 5/ 2 .0 0 3.8 46,8 . 30.4 8.0 5 «3 1.4 3.4 2,9 .0 2.3 ’.2
5 cwass ¢ 11 .0 28 115 24 3me Lo 60 L7 9.4 43 88 LI 6.4 .0
cass 7/ 5.6 .6 .6 .6 100 82 333 .0 0 33 306 28 6 2.3 L1
CLASS 8/ 4.7 2,0 .8 2,0 1.2 20,7 8 31.2 l.2 21,9 2,3 2.0 2,3 8.2 .8
CLASS 9/ .0 «0 6.4 40.4 0 12,0 .0 8.8 23.1 5.3 1.1 3 .0 2.7 .0
cass a0/ 16.0 3.2 2.6 1.9 .6 51 .8 6.4 3.8 ‘3.4 58 71 64 26 6.4
class 11/ 5.8 1.9 9.6 17.3 1.9 3.8 58 .0 LI 115 17.3 3.8 5.8 1S 1.9
CLASS 12/ 6.2 -0 12.5 13,5 .0 12.8 12.5 0 o0 12,5 .0 3,2 o0 .0 .0
cLass 13/ 33.2 4.8 7.6 12,8 .0 46 .9 .0 .6 61 4.0 13 155 .6 1.3
ctass 14/ 8.8 4.2 6.2 181 4.2 6.8 3.1 43 1.9 6.8 9.3 58 &6 A8y 1.2
ctaas 18/ 47.2 .2 .0 .2 .0 .2 .0 .2 L0 1,0 2 2.2 1.4. 1,00 46,3

#*Spectral Channels 1, 2, 8, 9, 10, 11, and 12 (See Table 5-27)
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Table 5-22. Classification Percentages
14 Meter Cell, 7 Best Features™
(6 Spectral Bands, 1 Texture Feature)

TRUE :
CLASS \\\‘~\\ CLASSIZICATION

1/ 2/ 3/ 4/ s/ 6/ 7/ 8/ s/ 10/ 11/ 12/ 13/ 14/ 18/

cLAss 1/ 24.8 11.2 .4 .2 .0 .4 .4 .2 2 3,2 4 .4 12,9 1,3 435
cLass 2/ 9.1 25,5 3,0 8.9 .8 1.9 .3 .3 0 14,0 2.7 3 49.6 8,3 4.6
cLass 3/ 3.5 7.0 21t 20,6 .3 5.4 4,1 1,6 2,2 4.4 89 1.9 47 9.5 4.4
— cLiss 4/ 7 2.4 4,2 38,2 1.7 11,5 3 21 3.8 3,8 5,6 W3 3.5 19.4 2.3
& cLass 5/ .0 .0 O 5.2 47,1 30,2 9.0 2 3 1.5 4,9 .8 .0 .5 .3
cLass 6/ .2 2 1,9 19.9 .4 38,2 1,1 4,9 2,8 7.3 4,9 4,1 1.3 12.2 .6
cLass 7/ 3.9 .6 L0 1,7 11,7 7.2 34.4 0 0 2,8 3.3 1. 1. L0 2.2
ctass 8/ 1,2 3.5 1.2 .8 1.6 20.3 .8 28,9 2,3 18,4 2.7 L0 7.4 9.0 2.0
cLass  9f .0 .3 9.3 315 3 1.7 L0 2,7 29,0 1,1 1.9 .0 0O 6.4 .0
CLASS 10/ 12,2 2.0 2.6 3.8 0 5.8 o6 4,5 3.8 28,2 8,3 5.1 3.8 1.9 10.3
cLAss 11/ 1,9 7.7 5.8 15.4 L0 1,9 3.8 0 1,9 7.7 26.9 .0 58 15.4 58
crass 12/ .0 0 12,5 6.2 L0 12.5 0 6.2 .0 L0 12,5 37,5 6.2 .0 6.2
CLASS 13/ 9.1 6.7 7.9 15,0 O 3.0 1,2 0 1,2 3,7 4.6 .6 20,1 3,0 22.9
class 14/ 5.0 4,2 6.0 19.6 2.3 8.8 1.2 5.4 1.2 3.1 8.1 5.8 3.8 185 6.2
cLAs3 15/ 9.4 .0 .0 .6 .0 2 .0 0 .0 .8 0 2,0 3,0 .6 83,5

*Spectral Channels 1, 2, 8, 9, 1l,and 12 (See Table $-27); Textural Feature 51 (See Tgble 5~12)
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Table 5-23. Classification Percentages
14 Meter Cell, 10 Best Features®
(7 Spectral 3ands, 3 Texture Features)

TRUE
CLASS\\\\\\\CLASSIFICATION

CLASS 1/ 37.5 1.5 .0 .0 0 .0 o2 .4 0 6.2 ~ .0 1.0 117.0 2,2 33.4

CLAss 2/ 13,2 22.3 1.9 11,8 5 1.6 .3 0 1,1 16.4 2.4 .8 12,9 13.2 1.6
cLass 3/ 4.7 5.4 17,7  26.8 .3 6.0 4.1 3.8 S 4.4 6,0 6.0 1.8 7.9 4.4
cLAss 4/ 1.0 4.2 3.8 351 ).4 10.4 .3 2,8 6.6 4.2 45 5.6 1.4 17.4 1.4
cLass 5/ .3 .0 .0 5.1 47,1 27,3 8.9 .3 L0 1,5 Ss.1 3.4 0 1 .0
= cLass 6/ .6 .6 1.5 186 1.1 36.8 1.3 4,9 1,3 7.5 3.6 8.1 .6 13,2 .2
o cLass 7/ 3.9 .0 .6 1.7 10.6 5.0 36.7 .0 .0 3.9 32,8 1.7 1.7 0 1.7
cLass 8/ 1.6 1,2 2.3 1.2 1.2 160 2.3 29,3 5.9 159 3.5 1.6 6.2 47 1.2
cLass  9f .0 .0 3,7 35.6 L0 11.2 L0 4.5 41,5 2.4 .3 .3 .0 .5 .0
cLass 10/ 7.7 2.6 1.9 5.8 .0 6,4 1,3 32 13 340 7,7 51 83 2,6 12.2
cLass 11/ 3.8 0 7,7 17,3 1.9 3.8 .0 5.8 .0 11,5 1.2 5.8 7,7 11,5 3.8
cLass 12/ 6.2 L0 12,5 .0 .0 12,5 12,5 .0 .0 0 6.2 48.7 .0 6,2 .0
CLAsS 13/ 210 3.7 7.0 14,8 0 4.3 .6 1.8 L0 7.3 3.4 2.7 201 3.0 10.4
CLAss 14/ 5.8 1.8 6.5 19.2 2,7 5.8 1.5 5.4 4 6,8 6.5 8.5 4.6 188 5.4
I

CLASS 13, zl. Ny .0 2 .0 .2 .0 .0 .0 6 .0 2.2 1.8 1,0 71.3

*Spectral Chernels 1. 2, 8, 9, 10, 11, and 12 (See Table S-iff; Tﬁxtural reatures 50, 51, and 52 (See Table 5-12)
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Table 5-24. Clagsifiecation Percentages

56 Meter Cells, 2 Features¥
(2 Spectral Bauda)'

TRUE ‘
CLASS CLASSTFICATION |
1/ 2/ 3/ 4 5/ 6/ 7/ 8/ o/ 1w/ 1/ 12/ 13/ 14/ 18/
cLAss 1/ 42.4 6.8 .0 0 6.3 O 7.9 5 L0 9.4 0 .0 3.7 5 22,5 e
] CLASS 2/ 16,2 18,4 o0 8.9 e 15.1 2,2 17.8 5 15,1 .0 W5 3.2 3.8 5
CLASS 3/ 3.9 11.8 .0 28.3 3.9 3.1 0 9.4 .8 12,6 +0 .8 .0 22.8 2.4
CLASS 4/ «0 10,4 ' 0 27.8. .0 13.2 o' 7.6 6.9 9.7 .0 1.4 . .0 20.8 1.4
o cLass 5/ 12,6 3.7 .0 .4 35.4 4 16,3 4,1 .0 21,5 .0 O L0 5.7 .0 N
T cuass 6/ .6 9.9 L0 151 .6 227 L0 2.0 7.0 6.4 .0 58 .0 7.0 .0 ' T
CLASS 7/ 17.8 7.8 .0 20 14.4 .0 20,0 .0 0 34,4 .0 1.1 .0 4.4 .0 ‘ /
CLASS 8/ 4,7 28,9 1) 6,2 «0 26.6 1.6 7.8 9.4 10,9 .0 0 3.9 0 .0 ’ X
CLASS 9/ o0 1.1 .0 16,6 .0 41,2 5 10,7 26,7 o5 .0 1,1 .0 1.6 .0 7
CLAss 10/ 5.1 23,1 .0 . 10,3 .0 2.6 5.1 15.4 L0 7,7 0 7,7 .0 12,8 10.3 o
cLass 11/ 0 23,1 0 7.7 .0 L0 77 77T .0 385 0 7.7 O 7.7 L0
cLass 12/ .0 .0 O v 0 .0 .0 .0 .0 .0 50,0 .0 .0 0 425,00 L0
cLass 13/ 11.0 29.3 .0 “8 2,4 6.1 - 1,2 9.8 24 8,6 0 1,2 13.4 3.7 1,2
cLAss 14/ 7,7 18.5 L0 28 1,5 9.2 1,5 10,8 .0 16,9 0 9,2 .0 18,8 .0
cLrss 18/ 1v.e i.e .0 .0 .8 .0 L0 - .0 .0 .0 0 L0 4T .0 79.8 v

*Spectral Channels 10 and 12 (Sea Table 5-27)
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TRUE
CLASS

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLAS3
CLASS
CLASS
CLASS

#Spectral Channels 1, 8§,
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~\\‘~\\ CLASSIFICATION

_ 1/ 2/ 3/
1/ 91,1 0 0
2/ 9.2 5.8 1.1
3/ 7.9 1.6 11.8
4/ N 7 12,8
s/ .0 .0 .0
6/ . .6 L0 3.5
7/ 2.2 0 8.7
.8/ 3.9 «0 0
of .0 .0 5
10/ 15.4 0 5.1
11/ 1.7 .0 o0
12/ .0 0 28,0
13/ 36.8 O 7.3
14/ 13,8 O 9.2
15/ 41,1 «0 K]

Table 5-25.

.0
.0
25.2
38,9
0
14,5
0
.0
40.6
o0
23,1
0
13.4
13.8
»0

5/
0
9,7
3.9
6.9
68,7

4.9
7.7
o4

.0

2.7

1.5
7.6
19,9
§52.3
15.6
l16.4
14.4
5.1
1.7
0
.0
0
4

¢, and 12 (See Table 5-27)

+0

0

2.4
7
6.9
1.2
56.7
3.1
.0
+0
.0
28.0

1.2

4,6
«0

.0
3.2
.8
2.8
.0
5.2
0
26.6
2.7
15.4
.0
.0
1,2
4.8

0

Ctavgification Perenntages
5 Mewer Cells, 4 Features*
(4 Spectral Banda)

9/
0
1,6
8
4,9
.0
1.7
]
9.4
37.4
5,1
0
.0
1.2
6.2
0

10/
.5
9.7
2.4
2.8
.0
1.2
.0
29,7
.0
23,1
15.4
.0
2.4
4.6

0

11/
.0
»0

3.1

5.6

1,2

8.7

8,9
.0
.0

5.1

15,4
.0
.0

6.2

0

12/
.0

12,4

8.7
6.2
3.3
5,2
3.3

.0

35.

2,8

0
50.0

7.3
9,2
1.6

2.6
35.7
11,0

3.5

;O
.8

5.6

10,9
0

Sel

23.1

0

15.9

7.7

4
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14/
.0
8.6
17.3
5.6

.0
.0
0

.0
.0
12,8

.0

.0
1.3

12.3
.0

T R R T . oy

15/
5.8
.0
1.6
1.4
»0
0
0
.0
..o
5.1

0
7.3
0
86.1

PRI L e



Table 5-26. Classification Percentages .

56 Meter Cells, 7 Features*
(7 Spectral Bands)

TRUE
CLASS . CLASSIFICATION
-y 2/ 3/ & s/ e 1/ 8 8 1w/ 1/ 13/ 13/ 14/ 18/
cLAss 1/ 48,7 1.6 .0 0 .0 .0 N .0 .0 5 .0 S5 3.1 0 45,5
CLASS %/ 10,8 23,2 1.1 1.1 S5 2.7 30 4,3 W5 11,4 L0 8,1 8,1 25,4 2,2
cLass 3/ 2.4 10,2 19.' 15.7 8 1,6 2.4 .8 8 3,9 7,1 -7, 8 19,7 7.
cLAss 4/ L0 2,1 8.9 47,2 0 104 .7 2,1 3.5 42 3.5 4.9 2,8 10,4 1.4
Eé cuass 5/ .0 .0 .0 .4 63,8 22,8 5.3 .0 © L2 4l L2 0 1z L0 —
cLass 6/ .6 .0 1.2 21,5 0 54,7 2.3 3.5 0 6,2 4,7 4.1 .0 1.7~ .8
cLass 7/ 1. O 3.3 .0 0 15.6 52,2 .0 W0 4,4 14,4 5.6 2,2 L0 1,1
cLASS 8 3.1 2.3 .8 .8 .0 26,6 1.6 33,6 7,0 18,0 .0 L0 3. 8 2,3
crass 9/ .0 O 2.7 28,9 B 13,9 O 2,7 41,2 6.4 - 1,1 5 0 .0 2.l 0
cLass 10/ 7.7 L 5.1 O 0 2.6 L0 5,1 .0 51,3 ° 6.1 5.1 5.1 . .0 12,8 T
cLAss 11/ 15.4 7.7 15.4 .0 .0 0 15,4 WO 7,7 23,1 0 7.7 - 7.7 .0 .0 /40
class 12/ 0 0 25,0 .0 .0 0 25.0 .0 L .0 .0 50,0 .0 O . .0
cLAss 13/ 11,0 3,5 15,9 85 .0 1,2 O 2.4 1,2 4.9 2.4 7.3 28,0 2.4 11,0
14/ 62 92 7,7 13,8 3.1 4,6 3.1 O 3,1 12,3 3,1 9,2 7.7 16,9 .0 o
CLASS

15}« 115 o -0 od .0 o4 .0 .0 .0 8 L0 2,0 4 o4 84,2

*Spectral Channels 1, 2, 8, 9, 10, 11, and 12 (See Table 5-27)
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9.3
1.0
0.41
0.62
0.57
2.0
1/56

~

{

m

-7 Spectral 6 Spatial 36.5

TABLE 5-27. ORDERING OF SPECTRAL AND TEXTURAL FEATURES
FOR HONEYWELL BALTIMORE LAND USE DATA

Seven Optimum Features: -

m Data 14 n Data 56 m Data
11.7 pm (12) 9.3 - 11.7 um (12)‘ 9.3 -11.7 um (12)
1.4 ym (10) 0.46 = 0.49 um (2) 0.46 — 0.49 um (2)
G.4%um (1) 0.41 - 0.49 um (1) 0.41 - 0.49 pm (1)
0.70um (8) 0.62 - 0.70 um (3) 0.62 - 0.70 um (8)
0.9%4um (9) - 0.52 - 0.94 um (9) 0.57 - 0.94 um (9)
2.60pm (11) 2.0 - 2.60 um (11) 2.0 - 2.60 pm (11)

texture (51) 1/56 m texture (51) 1.0 - 1.40 um (10)

NOTE: Features are not necessarily in
the order selected by the program.
Numbers in parentheses are spectral
channel or textural feature number.

TABLE 5-28. PERCENT CORRECT CLASSIFICATION.
15 MARYLAND LEVEL III CLASSES

_ Resolution

Spectral-Spatial

Features
2 Best Spectral ! 18.0 19.1 21.1
4 Best Spectral 23.5 27.0 37.5
7 Best Spectral 29.2 " 41,5
6 Spectral 1 Spatial 29.2 33.5
7 Spectral 3 Spatial 34.1

184
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56 m resolution 7 spectral channel accuracy is the highest of all. As
far as overall average classification accuracy goes, spectral discrimi-
nation dominates anrd the coarse resolution 36 m simulated sensor data
is best. This result is surprising and if this conclusion is generally
applicable, it is a contradiction of the popular wisdom. The first
objection that the veader might raise is: Is tae fundamental 7 m data
really 7 m resolution? Figures 5-12 and 5-13 provide the answer. The
autocorrelations for the residential areas were computed. Note the
zero crossings of 10 u in the ¥-direction and 12 m in the y-direction.
This is consistent with resolutions of 10 and 1Z meters in the x, ¥y
directions respectively and that the scene probably does contain
frequencies ..t approximately 3 cycles/50 m. But as the channel
ordering results show, it is the low frequencies that do the work, not
the high. In fact, the results strongly suggest that total pattern
size should have been increased to at least 112 meters, thus obtaining
even lower frequencies for the.spatial features. This would probably
have improved the overall classification accuracy from its present low
level.

Table 5-29 shows that, while the above discussion is valid for
overall performance, there are individual classes where acéuracy_
improves with final resolution. At each resolution the set of
spectral/spatial features which gave the best performance was selectad.
At 7 m resoluticn, this selection was 7 spectval channels and 6 spatial
features. At 14 m, 7 spectral and 3 spatial was selected, and at 56 m,
the selection was 7 spectral channels. The justification is clear.
Given that the sensor has 7 spectral channels at each resolution, tne
spatial features are free (the resolution is not). The institutional
classifications, colleges, secondary schools, hospitals, military
installations, are improved somewhat by improved resolution. Resi-
dential and commercial classifications are, for all practical purposes,

unchanged by resolution changes.
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i TABLE 5-29. CLASS ACCURACIES

f

_.5 Resolution

%

E Class 7m 14 m 56 m
B

; 1 47.5 37.5 48.7

: 2 22.6 22.3 23.2

; 3 18.7 17.7 19.7

; 4 14.2 35.1 47.2

i 5 53.4 47.1 63.8

g 6 25.6 36.8 54.7

i 7 46.7 36.7 52.2

; 8 31.4 29.3 33.6

{ 9 59.0 41.5 41.2

) 10 30.4 34.0 51.3

i 11 21.2 19.2 7.7

, 12 59.4 48.7 50.0

: 13 ] 30.0 20.1 28.0

; 14 21.0 18.8 16.9

; 15 66.0 71.3 84.2

i

!

'

i

{
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In view of the low classification accuracies obtained for Ander-—
son Level I1I1, classification was next performed 1or Anderson Level I1
é classes. This classification was accomplished by aggregating the
class data from Table 5-15 through 5-26. Two aggregates were made. Une
i aggregation of classes produced the Andersen wevel 11 classes. The
second aggregation was oriented towards improving classirication
- accuracy at a coarser use level. Table 3-30 preseats this class aggrega- -
tion.

Table 5-31 through 5-34% present the performance matrices ror
these two aggregaticns. Table 5-55 presents a summary of the overall
weighted averages for each resolution and feature set. The trends in
this Table are the same as before only mere proncunced. This result
might have been expected since the Level 11 classes are coarser. The
Remote Sensing Classification shows high classirication accuracies at
the expense of utility of the classification. 1t should be regarded
as a first attempt to find a userul counterpart for the Anderson 11
classification scheme which produces better remote sensing classitica-
tion, a useful project beyond the scope of this study.

Figure 5-14 tells the whole story. Improved resolution does not
improve urban land »se clorsification accuracy as had originally been
assumed at the studv's inception. In ract, overall performance
decreases with improved resoluticn. The reason is apparent. Spectral
features dominate the overall classitication iccuracy.  One might argue
that another method of handling spatial features would have reversed
the results. It might improve overall accuracies. lmprovements such
as addition of lower frequencies in the spatial features and use of
spatial Tcatures more directed towards "matehed" tiltering an object
size would improve accuracy but not the relatien of accuracy to
resolution. Lvery picce of evidence produced herein leads to this

conclusion,

14
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i TABLE 5-3G. URBAN LAND USE CLASS AGGREGATION
i
E AGGREGATION {1
? Designation Anderson Honeywell Designation
§ - Number Level II Class Classes (Table 5-13)
! —_—
¢ 1 11 1,2
: 2 12 3, 4
% 3 ‘ 13 o 5, 6
I & 15 7,8, 9, 10
{ 2 16 11, 12, 13, 14
? 6 19 15
f
¢ AGGREGATION #2
? Designation Remote Sensing Class:ification
i Number (Table 5-13)
§ 1 1, 2, 13, 14, 15
; z 3, 12
3 4, 5, 6, 9, 11
; 4 !
5 8, 10
§
¢
i | 190
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TABLE 5-31.

TRCE
CLASS CLASSTFICATION

§, 9, 10

12, 13, 14

Classification Percentages - Aggregation‘#l
7 Meter Cell, 2 Best Features¥*
(2 Spectral Bands)

1, 2

28. 4

11.8

5.2

10.0

23.0

40.8

3, 4 5, 6
8.3 1.7
41.8 3.6
19.5 14.9
26.6 2.3
25.2 5.2
1.1 0.2

9.0

Average, Correct Identification 29.6
Weighted Average, Correct Identification 27.1

*Spectral Channels 10 and 12 (See Table 5-27)

11, 12,

13, 14 15

42,6 3.1
34.8 0.1
36.0 0

40.4 1.6
37.2 0.5
17.7 36.1
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TABLE 5-32. Classification Percentages ~ Aggregation #1

7 Meter Cell, 4 Best Features*
(4 Spectral Bands)

TRUE °
CLASS \\\ CLATSTFICATION

7, 8,

1, 2 3, 4 5, 6 9, 1

1,2 34.3 5.9 2.5 14.0

3, 4 8.5 37.0 10.2 12,7

5, 6 , 0.4 i 49.5 12.0

7, 8, 9, 10 8.1 25,7 14,0 28,2
11, 12, 13, 14 22.8 21.7 5.3 14.5

15 37.3 0.6 0 1.9

Average, Correct Identification 39.5
Weighted Average, Correct Identification 39.1

*Spectral Channels 1, 8, 10, and 12 (See Table 5-27)

11, 12,
13, 14

31.6
30.9
20.7
’23.1
32.8

5.0

11.7

0.7

0.2

1.0

2.9

55.2

P il cal



Table 5-33. Classificaﬁion Fercentages - Aggregation #1
7 Meter Cell, 7 Best Features*
{6 Spectral Bands, 1 Texture Feature)

©rRUE \, ‘
CLASS \_ CLASSIFICATION
| . , 7,8, 11, 12,
1,2 3,4 5,6 9, 10 13, 14 15
1, 2 43.1 8.1 2.9 13.1 - 26.5 6.3
3, 4 8.5 42.1 . 12.1 11.1 25,9 0.3
5, 6 - G.7 14,3 - 55.5 15.9 13.6 0o
- . : , : : :
7, 8,9, 10 6.4 24,5 14.4 3.7  17.6 0.5
11, 12, 13, 14 23.0 25.5 7.5 1.0 - 32,6 0.5
15 - 60.1 0.7 o 2.4 1.7 294

Average,‘Correct Identification 39.9
Weighted Average, Correct Identification 41.7

. *Spectral Channels 1, 8, 9, 10, 11 ‘and 12 (See Table 5-27); Textural Feature 51 (See Table 5- 12)

————
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Table 5-34. Classification‘Percentages - Aggregation #1
7 Meter Cell, 13 Best Features* ,
(7 Spectral Bands, 6 Texture Features)

TRUE  \| ‘ '
CLASS  \  CLASSIFICATION ,
7, 8, - 11, 12,
L2 3, 4 5, 6 9, 10 13, 14 15
1.2 43.4 4.7 2.0 15.1 . 28.0 6.8
3, 4 6.9 25.4 9.2 15.6 4.6 1.4
5,6 0.9 6.3 48.2 23,1 21.3 0.1
7, 8,9, 10 3.6 8.3 9.7 55.9 20,7 1.9
11, 12, 13, 14 8.6 13.5 " 8.6 13.2  48.1 7.9
15 19.8 0 0.2 ¢ 4.5 9.4  66.0

Averagé Correct Identification 47.8
Weighted Average, Correct Identification 47.9

*Spectral Channels 1, 2, 8, 9 10, 11, and 12 (bee Table )-27), Textural Featurea 50-55
(See Table 5-12)
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Table 5-35. ulassification Percentages - Aggregation #1 !
14 Meter Cell, 2 Best Features*
(2 Spectral Bands) O
: - TKUE o B TR i
CLASS CLASSIFICATION . T ;
o | 7,08, At e, |
| 1,2 34 5, 6 9, 10 13, 14 15 | - S
1, 2 - " 45.8 7.7 2.2 17.6 25.7 1.2 ‘
3, 4 19.0 3.1 - 8.0 7.6 29.3 o L
G - . v ' ) '
v 5, 6 10,3 26.9 17.9 18.9 © 26,1 0
7, 8,9, 10 17.3 23.6 10.2 24,9 22.8 1.3 o
. . . “ . . v . y;
17, 12, 13, 14 33.8 21.5 8.4 13.0 22,4 0.8 ' "
15 45.3 0.4 0.5 14,8 6.1 32.9
Average, Correct Identificgtion 30.0 B 3
Weighted Average, Correct Identification 28.9 f N .

*Spectral Channels 10 and 12 (See Table 5-27)
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Table 5- wplassification Percentages - Aggregation #1
' 14 Meter Cell, 4 Best Features*

.”"J‘y*-,

‘*“ﬁ?ﬁgﬁg (4 Spectral Bands)

TRUE N\

CLASS  \ CLASSIFICATION o

| - 7,8, A1, 12,
1, 2 34 5,6 9,10 . 13, 14 15

1, 2 38.5 3.8 0.7 12.1 33.6 11.2
s - , | | | |

3, 4 8.9 32,9 8.9 13.9 . 34,6 " . 0.7

5, 6 02 158 581 12,0 13.8 0.2
7, 8, 9, 10 - 6.5 21.7 18.8 . 34,0 17.8 1.1
1, 12, 13, 1 23.3 18.0 7.0 13.3 . 3.4 3.1

5 35.4 0.4 0 2.2 4.5 57.3

.- Average, Correct identification 42,7
Weighted Average, Correct Identification 43.1

. *Spectral Channels 1, 8, 9, and 12 (See'Table‘5-27)
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Table 5-37. Classification Percentages - Aggregation #1

14 Meter Cell, 7 Best Features*
(7 Spectral Bands)

TRUE

11, 12,

Average, Correct Identification 43.2
~ Weighted Average, Correct Identification 44.9

*Spectral Channels 1, 2, 8, 9, 10, 11, and 12 (See Table

CLASS " CLASSIFICATION B
' : ' o < 7, 8,
1, 2 3, 4 5,6 9, 10 13, 14 15
1, 2 _ 41.4 3.3 1.7 . 13,4 27.2 .+ 13.0
3, 4 9.3 37.1 9.6 15,2 27.5 . L3
5, 6 , 0.5 10.7 61.3 . 13.8 13.6 0
7, 8, 9, 10 6.0  19.8 14.9 42.7  15.2. 1.4
1, 12,13, 1 . 25.0 22.6 8.2  12.3 30,5 1.4
15 < 47.4 0,2 0.2 1.2

5=27)

4.7 46.3
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. Table 5-38. Classification Percentages - Aggregation #1
: 14 Meter Cell, 7 Best Features*
(6 Spectral Bands, 1 Textural Featu;e)

TRUE , .

CLASS  \_ CLASSIFICATION |

| 7, 8, 11, 12,
1, 2 3, 4 5, 6 9, 10 13,14 15
,2 35.4 5.6 L. 9.0 22,2 26.2
3,4 6.9 422 9.3 - 11.3 26,8 3.5
5, 6 0.2 12,1 6l,2 13,1 12,9 0.4
7,8,9,10 ~ ° 5.6 200 149 387 18.0 2.6
11, 12, 13, 12,3 24.5 6.4 85 33.7 14.5
5 - 94 06 - 0.2 0.8 5.5  -83.5

Average, Correct Identification 49 1
Weighted Average, Correct Identification 48.1

*Spectral Channels 1, 2, 8, 9, 11 and 12 (See Table 5-27); Textural Feature 51 (See Table 5= 12)j%E
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Table 5-39. Classification Percentages - Aggregation #1
: 14 Meter Cell, 10 Best Features*
~ (7 Spectral Bands, 3 Textural Features)

TRUE g )
CLASS . CLASSIFICATION
1,2
1, 2 37.4
3, 4 ' . 7.8
5, 6 ' 0.7
7, 8’ 9! 10 ’ 301
11, 12, 13, 14 ©15.9
15 ’ 22.8

3, 4 5, 6

6.1 1.0
41.7 8.9
11.3 59.1
17,9 13.3
23;3 6.3

0.2 0.2

7’ 8.

9, 10

11,7

13.6

12.5

47,9

12,2

0.6

Average, Correct Identification 48.7
Weighted Average, Correct Identification 48. 6

*Spectral Channels 1, 2, 8, 9, 10, 11, and 12 ‘(See Table 5-27); Tectural Featurea 50, 51, and 52

11, 12,
13, 14

24,3
25.0
16.3

15.2

4.9

(See Table 5-12)

19.3

3.0

2.6

7.6

7%.3

?




Table 5-40. Classification Percentages - Aggregation #1
- 56 Meter Cell, 2 Best Features* »
. (2 Spectral Bands)

TRUE
CLASS CLASSIFICATION | ,
' . ) 7’ 8’ } ’ 11’12. !
| 1, 2 3, 4 5,6 9,10 13,14 15
1,2 ' 42,0 2.9 10.9 26,6 C 5.9 11.7
3,4 12,9 28.0 0.3 24,0 22.9 1.8
5,6 13.9 6.5  30.6 40.4 8.6 0
7,89,10 17,8 9.7 282 . 38.3 5.2 0.9
11, 12, 13, 14 32,3 104 8.5 28,0 20,1 0.6 5
15 | 14,6 0 0.8 0 47 79.8

Average, Correct Identification 39.8
Weighted Average, Correct Identification 39.8

*Spectral Channels 10 and 12 (See Table $f27)

"R,
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Table 5-41. Classification Percentages - Aggregatibn 1
56 Meter Cell, 4 Best Features® 5
(4 Spectral Bands)

© CLASS CLASSIFICATTON =~ - 4

7, 8, 11, 12,
1,2 324 5.6 9, 1 13, 14
1,2 sa7 0.5 61 7.2 . 29.3
3, 4 | 4.8 44,6 10.3 8.9 29.9
5, 6 | 0.2 7.4 75.8 7.9 - 8.6

7, 8, 9, 10 2.9 19.1 16.2 52,0 © 9.2
11, 12, 13, 14 24,4 22,0 6.7 12.8 30.5
15 41.1 0 0.8 0 2.0

Average, Corfect Identification 52.1
Weighted Average, Correct Identification 55.2

*Spectral Channels 1, 8, 9, and 12 (See Table 5-27)

15

2.9

1.5

0.5
3.7

56.0
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Table 5-42. Classification Percentages - Aggregation o
56 Meter Cell, 7 Best Features* '
(7 Spectral Bands)

TRUE
.CLASS CLASSIFICATION ‘
‘ : 7, 8 11, 12,

. ' 1,2 34 3,6 9,10 13,14 -3
1,2 42.3 1.1 1.6 8.5 22,3 24.2 . o
3, & . 7.0 45.4 6.6 9.2 27,7 4.1
5,6 . 0.2 . 9.6 73.4 8.4 8.2 0.2
©7,8,9,10 25 1.9 - 17.1 . 550 8.6 2.0
1, 12, 13, 14 15.2 22.6 3.7 15.9 37,2 5.5
15 © 115 0.4 0.4 0.8 2.8 84.2
- Average, Correct Identification'SG.B ; ' , 4*% ' ,
‘ Weighted Average, Correct 1dentification 57.5 Pl l
#Spectral Channels 1, 2, 8, 9, 10, 11 ané 12 (See Table 5<27) ' S o L
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Table 5-43. c1assification Parcentages- Aggregation #2

7 Meter Cell, 2 Best Features*
(2 Spectral Bands)

TRUE . ,
CLASS =\ CLASSIFICATION

1, 2
13, 14, 15

1, 2, 13, 14, 15 ' 67.7

3, 12 | 38,1

4, 5, 6,9, 11 20.0
7 - 1003
8,10 | 52.7

3, 12

. 5.7
6.0

8.1

. 7'8

3.0

o ‘ ’
S )
. ’

N {

’17.8
"47.0
61.3
53.1

17.2

Average, Correct Identification 35.6

Weighted Average, Correct Identification 54.7
: *Spectral Channels 10 and 12 (See Table 5-27)

1.0
3.9
5.6
27.8

1.9

5.0
5.0
1.4

15.0
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Table S-44. Classification Percentages -~ Aggregation‘#Z

7 Meter Cell, 4 Best Features *
(4 Spectral Bands) )

TRUE o
CLASS CLASSIFICATION

1, 2 ' 4, 5
Bl 312 sbu 1 810
1, 2, 13, 14, 15 71.1 3.4 161 0.7 8.7
3, 12 o 35.0 ' 9.3 . 44.6 3.0 - 8.1
4,5, 6,9, 11 | 9.8 3.9  78.2 .1 5.1
7 12.2 1.9 58.9 - - 26.7 0.3
8, 10 | 386 . 2.8 27.6 T 0.9 30.2

. Average, Correct Identification 43.1
Weighted Average, Correct Identification 64.2

aSpectral Channels 1, 8, 10, and 12 (See Table 5-27)

e

£
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Table 5-45. Classification Percentages<- Aggregation #2

7 Meter Cell, 7 Best Features ¥
(6 Spectral Bands, 1 Textural Feature) -

\\\\\\\ CLASSIFICATION

1, 2 4,5
13, 14, 15 EVREINERY A N I
1, 2, 13, 1#. 15 - 69.8 6.8 '14,a' 9.9
3,12 3.8 24,0 42.5 3.0
4, 5, 6,09, 11 9.7 62 726 5.3
7 f 9.2 | 3.1 469 39.2
8,‘16- 27.7 'g.o . 5.6 - L2

Avefage, Correct Identification 49.0
Weighted Average, Correct Identification 63.8

*Spectral Channels 1, 8, 9, 10, 11, and 12 (See Table 5-27); Textural Feature 51 (See Table 5-12)

8.2

6.8

6.2

1.7

39.6
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Table 5-46. Classification Percentages - Aggregation #2
7 Meter Cell, 13 Best Features* '
(7 Spectral Bands, 6 Textural Featur¢s)‘

)

TRUE
CLASS CLASSIFICATION
‘ S 1, 2

13, 14, 15 3, 12 6, 9, 11 17 g,__;_o_

1, i, 13, 14, 15 | 68.8 "8.‘4 1.9 2.3 8.7
5, 12 B | 24.1 | 30.9  31.5 5.3 8.3

4,5, 6, 9, 11 o 10.3 | 115 | 62.3 A’ 9.3 §.6
7 ;‘ 8.9 2.5 40.15 . B 0.8

8, 10 25.5 6.6 209 5.7 41.4

A&erage, Correct Identification 50.1
Weighted Average, Correct Identification 60.3

v*Spectfal Channels 1, 2, 8, 9, 10, 11 and 12 (See Table 5-27); Textural Features 50 - 55

(See Table 5-12)
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Table 5-47. Classification'Percentages - Aggregation #2

14 Meter Cell, 2 Best Features*
(2 spectral Bands) ’

TRUE B
CLASS CLASSIFICATION

1, 2

16,35 312

1, 2, 13, 14, 15 6.3 _' .4.4
3,12 4700 5.1

%, 5, 6,9, 11 22.3 7.2
S 7 6.1 ',3.9
8,10 54.1 2.7

Average, Correct Identification 37.7
Weighted Average, Correct Identification 54.5

v'*Spectrai Channels 10 and 12 (See Table 5-27)

60.1

52-2

18.0

S

1 8,10

1.2 13.6

L 4.8 2.7
1.7 2.6
33.9 3.9
19 23.3
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Table 5—48. Classification Percentages - Aggregation #2

14 Meter Cell, 4 Best Features¥
(4 Spectral Bands)

\\\\\\~ CLASSIFICATION

1, 2 4,5

13, 14, 15 3, 12 6, 9, 11
1, 2, 13, 14, 15 7.7 42 1l.4
3, 12 | '38;9‘" 15.4 33.1
4,5,6,9, 1 | 7.1 5.9 H 77.3
9 | 13.3 1.7 55.5
xa, 10 8.1 “ 6.0 ';2246

Average, Correct Identification 48.0

|~

11
4.6
2.8
29.4 -

0.7

Weighted Average, Correct Identification 67.3

*Spectral Channels 1, 8, 9 and 12 (See Table 5-27)

8.2

6.7

42.0

]
:
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i
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Table 5-49. Classification Percentages- Aggregation #2

i 14 Meter Cell, 7 Best Features¥
T (7 Spectral Bande)

TRUE )
CLASS \\ cmss:rxc.u:xou

1, 2 . L 4, 5
. , 13, 14, 15 3, 12 6, 9, 11
1, 2, 13, 14, 15 , 74.6 4.4 . 119 -
3, 12 | 28.9 o214 337
4. 5.6, 9,11 8.0 6.6  72.4
B, 7 : 10.0 ©3.3 50.0
, 1&,@%%%a. . : '. : | .
‘58, 10 23.1 . 5.3 23.5

Average, Correct Identificaticn 49.8
Weighted Average, Correct Identification 66.0

#Spectral Channels 1, 2, 8, 9, 10, 11 and 12 (See Tablg 5=27)

i
Wy .
i,
? L

0.6

4.2

3.6

33.3

0.7

3.3

- 47.3.
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Table 5-50. Classification Percentages ~ Aggregaﬁion {2
14 Meter Cell, 7 Best Features®
(6 Spectral Bands, 1 Textural Feature)

\S‘\\\\ CLASSIFICATION 2

1, 2 ' g 4y, 5

13, 14,15 3, 12 6, 9, 11 7 8, 10
1, 2,13, 4,15 7.5 48 128 0.5 5.7
v ok o . | iy “
3, 12 . 28.3 24.7 37.1 3.9 6.0
4, 5,6, 9,11 " 10.8 4.6 5.3 3.7 5.6"
7 7.8 11 53.9 3.4 2.8
8, 10 - 28.4 3.6 25.5 0.7 41.8

Average, Correct Identificati&n 50‘5
Weighted Average, Correct Identification 67.7

‘ *Specttal Channels 1, 2 8, 9, 11 and 12 (Sex Table 5-27); TexCural Feature 51 (See Table 5-12)




Table 5-51. Classification Percentages - Aggtegat;on #2

14 Meter Cell, 13 Best Features¥
(7 ‘Spectral Bands, 6 Textural Features)

!

CLASS CLASSTFICATION

L2 . 4,5 -
B 13, 14, 15 3, 12 6,9, 1 1
1, 2, 13, 1, 15 74.5 5.0 1.9 0.4
v 3, 12 - 234 255 8.7 45

= o o o |
4, 5, 6, 9, 11 . 9.3 . . 6.3 74.1 3.5
| 7 R, 7.2 ' 2.2 50.0 36.7
8, 10 © 21.8 5.1 26.5 1.9

v :  Average, Correct Identifiéatioh 51.1

Weiﬁhced Average, Correct Identification 66.8

" aspectral Channels 1, 2, 8, 9, 10, 11 and 12 (See Table 5-27); Textural Features 50 - 55

7.8

6.8

3.9

44.7

(See Table 5-12)
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Table 5-52.

‘Classification Percentages -~ Aggregation #2

56 Meter Cell, 2 Best Features*®
(2 Spectral Bands)

ctass \\*\\\\ CLASSIFICAIION

.
\
\

1, 2, 13, 14, 15
3, 12

4, 5, 6,9, 11

t

1, 2
13, 14, 15

70.6

- 30.0

40.7

3, 12

1.0

0.8
2.0
1-'1

1.8

4, 5 -
6, 9, 11 7
11.1 2.7
35.9 0
s1e 5.6
i@.@ , 20,0

5.3 2.4

Average, Correct Identification 32.6
Weighted Average, Correct ILdentification 51. 6

*Spectral Channels 10 and 12 (See Table 5-27)

14.6

22.9

3.4

19.8
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: . 4&$gble 5-53. Cléssiiication Percentages - Aggregation #2
s f wr"f"’_‘5, 56 Meter Cell, 4 Best Features®
S W, @f*x“” (4 Spectral Bands) :
v “Z>‘(w CL@SS‘ ' CLASSIFICATION
1,2 4, S |
13, 14, 15 -3, 12 6,-9. 11 - 7 8, 10
1,2,13, 4,15 ¥, 79.8° 6.8 8.5 0.5 4.4
4, 5, 6, 9, 11 2.9 6.7 84.3 2.6 3.4
7 1.8 10.0 25.6  56.7 0
8, 10 o 20,4 1.8 23 2.4 52,1

: Average, Correct Identification 59.0 -
Weighted Average, Correct Identification 74.2

*Spectt§1 Channels 1, 8, 9, and 12 (See Table 5=27)
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Table 5-54. Classification Percentages - Aggregation #2
56 Meter Cell, 7 Best Features¥® ‘ ,
" (7 Spectral Bands)

TRUE
' CLASS ~_ CLASSIFICATION

1,2 4, 5 |
sl sz adu 1 B
1, 2,13, 14,15 81.7 6.8 R 0.3 ’5;0
s, 12 - 8.9 a 8.2 - 25.2 3.0 4.6
4, 5, 6, 9,‘11 | : 5.1 5.0 i1 2.6 6.2
7 ) i 8.9 30,0 o s2.2 4
8, 10 10 3.0 2.1 12 527

Average, Correct“fdentification 59.2
Weighted Average, Correct Identification 73.9

*Specttal,Channels 1, 2, 8, 9, 10, 11 and 12 (See Table 5-27)

1'\»
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TABLE 5-55. PERCENT CORRECT CLASSIFICATION
: TWO CLASSIFICATION ACGREGATES

" AGGREGATION #1

ANDERSON LEVEL I1

7m % nmn 56 m

Feature Sgﬁ*’
2 Spectra \T::;f"‘ 27,1 28.9 39.8
4 Spectral © 39.1 43.1  55.2
7 Spectral - 44.9  51.5
7 Best (1 Texture ) 41.7

Spectral 3 Spatial = . 48,6

Spectral 6 Spatial - 47.9.

AGGREGATION #2

REMOTE SENSING CLASSIFICATION

2 Spectral 54,7 54.5 51.6
- 4 spectral . 6h.2 67.3  74.2

7 Spectral ‘ 66.0 73.9
. 7 Best (1 Texture) 63.8

7 Spectral 3 Spatial - 66.8

‘7 Spectral 6 Spatial - 60.3
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The réader should be aware that only automatic élassification has

been considered.Photointerpreté;ive classification, where the dominant

features in the cléssification are spatial, might produce a different
result.  However, the results of this study are marked enough to
question even the assumption concerning photointerpretative results.
The powerful technical tool of hindsight leads to the question: What

can be seen ac 10 m that could not be seen at 60 m?

S.4 CONCLUSIONS AND RECOMMENDATIONS - SPATIAL STUDY

The classification techniques being considered are automatic.
techniques which can and do handle the spectral information better than
a photointerpreter. However, ‘one must grant that a photointerpreter,
who does rely on spatlal features for classification, handles spatial
features far better than any automatic method of spatial feature
classificatlon. Spatial resolution, a decisive factor in sensor cost,

can be expected to affect spatial measurement and spatial feature

‘classification, both chores the historical task of the photointerpreter.

Our study method relied heavily on spectral features and implemented
automatically the measurement and spatial feature classification. If
a user relies solely on remote sensing photointerpretation,'these
conclusions may be contrary to the best interests of the photointer-—
pretative craft. .

Figure 5-8 certainly shows little change in acreage estimation
accuracy by going from 15-30 meters resolution. The smaller fields,
10-20 acres, which do predominate in U. S. agriculture showed a marked
decrease in acreage estimate accuracies going from 30- 60 meters. This
change can be at least partially compensatgd for by processing
‘techniques (convex mixture, etc.). Thus, if costs were not a fac;or,
30 m resolution might be indicated but not at the expense of other

system specifications.
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Figure 5-14 tells the tale for the use of spatial features in

~ urban land use classification. Spatial featurgé are dominated by

the spectral :features and spectrél feature classification improves
with degraded resolution. Study results indicate that little is gained
by resolutions finer than 60 m. ‘Because of the surprising nature of
“these results, further study is recommended prior to specification of

required spatial resolution.
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6
CONCLUSIONS AND RECOMMENDATIONS -

6.1 GENERAL

‘The recommended system presented in this section is based on’

o,

" limited actual data, and thus the weight of the evidence cannot be
totally compelling. The evidence is offered as being at least equal

to any existing evidence on which to guide decisions and the material

. v presented merits thoughtful consideration. The conclusions and recom— -
mendations presented in the following paragraphs are based upon the

study results presented in Sections 3 thtqugh 5.

6. 2. SPECTRAL STUDY CONCLUSIONS
The spectral study addressed the selection uf the optimum number,
location and width of spectral bands for each of five application dis-
ciplines. This selection was based primarily upon a theoretical \
analysis of applicable literature and upon results of automatic data
processing of simulated satéllite multispectral scanner data collected
over selected discipline test sites. Published theoretical and labora-
tory band locations and widths were compiled for the Agriculture/Range/
Forestry, Geology/Mineral Resources, Hydrology/Water Resources, Urban
Land Use, and Marine/Oceanographic user disciplines. Analysis of this
. published data and the empirical multispectral scanner data results
‘indicated a wide variation in spectral bands required for different
.« applications. The spectral band requirements for each of the disci-
plines addressed is presented in Table 3-32. v ‘
To demonstrate the effect of the number of bands upon classifi-~
cation accuracy, optimum bands from simulated satellite MSS data for
the Agriculture, Geology, and Land Use test sites were selected by
established processing algorithms. Classification was then conducted

using the best 12, 7, and 4 spectral bands from these prioritized lists
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-

of bands for Agriculture and Land Use, and the best 15, 7, and 5 bands
for Geology. The effect of this variatioﬁ in the number of Spectral'
bands upon classification accuracy is shown in Figure 6-1.. For the
Agriculture and Urban Land Use disciplines, the results show that the
classification accuracy remains at approximately the same whea 4, 7, or
- 12 channels .are used for classification. This does not.neCESsarily ,

indicate, however, that a four channel system will produce the indi-

cated classification accuracies for beth disciplines, since the four
bands used to achieve the Agriculture results &iffered from those used
for Urban Land Use éiassification. The depéndence of classification
accuracy upon the number of spectral bands for the Geology discipline
follows from the relatively large (twenty-one) number of scene materials
which were classified. The classification of numerous materials is,
thowever, a representative task of Geology discipline users interested
- in arid regions such as the White Sands, New Mexico Test Site used in
this study. For sugh geologic applications, ;he study results ’
indicate that, unlike the Agriculture and Urban Land Use disciplines,
a marked increase in classification accuracy will be realized as the
number of spectral bands is increased from five to ‘ifteen bands.
Study results indicate that the number of discrete spectral bands
required to satisfy the needs of users in all disciplines is prohibi-
tively large. If the requirement is limited to scene Elassification,
as was the case for the empirical position of the study, then classifi- .
cation results of the Agricultural and Urban Land Use discipline
support a need for no more than four spectral bands for each .
discipline. |

The seven bands presented in Section 6.5 represent the compromise

bands to satisfy the widest range of user needs. The bands were chosen
from bands that all disciplines desired, while emphasis was given to

Agriculture and Urban Land Use. While spectral study results revealed

that perhaps four bands were sufficient. for automatic data processing
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Agriculture Classes

‘c‘rf — -0 _a Weighted Average
_ of Geology Classes
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" % CORRECT CLASSIFICATION
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Number of Spectral Channels

FIGURE 6~1. CLASSIFICATION ACCURACY vs NUMBER OF SPECTRAL BANDS:
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classification fqr any one discipline, the four bands required were
- not the same for each discipline; hence a seven band system seems
justified.

6.3 RADIOMETRIC STUDY CONCLUSIONS
This section of the study addressed various user discipline needs
for calibration, stability, and signal sensitivity in multispectral
scanner designs. These sources of error in the recorded signal levels
of a scanner can cause such sizable problems to occur in the automatic >
classification of features within a scene that little information is
obtained. The effects of these sources of signal inaccuracy upon
classification accuracy must be vaken into account in sensor design
in order fo produce acceptable information for thé\users. It is the
classificationkaccuracy rgquired by these varicus users which defines \
the acceptable error or instability in sensor parameters.
Variations in-recording precision, gain, énd offset of scanner : -
data were examined in an empirical manner to determine the signal
accuracy required of an assumed optimum seven-spectral band orbital
scanner for the Agriculture and Land Use disciplines.. In addition, ) B &

theoretical calculations were carried out for water quality and wa.er

Ay

depth mapping applicatipns to estimate the noise equivalent reflectance _ ;f
difference required in various spectral bands to achieve the information 4§
extraction performance required.
Empirical results of the radiometric study are shown in Figures
6-2 through 6-4. Figure 6-2 presents the results of varying the .
effective NEAp (NEAT) for Agficulture and Urban Land Use. As indicated '
in the figure no appreciable reduction is seen in the accuracy of
Agricultural classification until the number of daca bits is reduced
fiom 9 to 5. Level II Land Use clascification, on theiother hand, is
affected appreciably when data significance is reduced to only 7 bits.
As shown in Figures 6-3 and 6-4, studies of the effect of gain and
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offset variationms revealed that gain variations of 1.4 percent and -
offset variations of 0.38 percent of full scale degrade seven channel
Agr1cu1ture classification accuracy from about 90 to 85 percent. Gain
variations of 8 percent and offset variations of 1 percent ‘of full
scale reduced Level 11 Land Use classification accuracies from 64 to
59 percent. o ‘ -
These results suggest a sensor system with an NEdp (AT) of 0.5 .
= - percent (0. 5°K) which is stable to within about 1.4 percent of full ‘ »

scale in gain and 0.38 percent “of full scale in offset, if Agricultural

and Urban Land Use c1a551ficat10n‘accuracies are to be compromised
by no more than 5 percent.
" The empir1cal study of radiometric precision requirements indicates
that Agriculture and Anderson Level II Land Use classification have
'*J{ff less stringent radlometricrequirements than Water and Marine Resources.
: Analys1s of radlance—levels to be encountered in the recommended bands
indicate the need for 8 bit data resolution to achieve the desired
NEAL over the range of radiance (L) encountered. Such data resolution
is deemed practical in view of EOS baseline specifications. Because |
of the large ringe in expected radiances encountered in some bands, a

highly accurate, calibrated AGC system will probably be required.

6.4 SfATIAL STUDY CONCLUSIONS
| The spatial study addresced two distinct problem areas; 1) the .
" systenm spatial resolution, and 2) the utility of combining spatial and
spectral features for classitication.} The system soatial resoslution
investigation consisted of both a thecretical and an empirical study
with the prime source of data for the empirical study being gathered
by ERIM's M-7 multispectral scanner. Two separate data sets, ‘one

gathered over a Michigan Agricultural area and the other gathered over

' . a Baltimore Urban area, were used in the spatial resolution study.
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The Baltimore data get was also used for examining the utility ‘of

comb1ning spatial and spectral features for classification. o _?
" As might be expected, the theoretical investigatlon of spatial’
- resolution effects showed that more accurate agriculture field acreage
| ‘ estimates éould be obtained as the resolution element decreased in »
size. Of coursé, the same improvement resulted when the resolution
élement size was kept fixed with increasing the field size, thus o :
poihting'out that the importaﬁt factor is the resolution element size
relative to the size (and shape) of the field. The study'did show
that, with certain assumptions, the errors in field acreage estimates
could be significant even for ERTS-size resolution élements (80 m)
and common field sizes (20-40 acres).
For ‘the empirical study of spatial reéolﬁtion effects, the effec- T
tive spatial resolution of the aircraft multispectral scanner data was .
degraded to simulate the resolution of various satelliﬁe MSS systems. »
As indicated in Figure 6-5, the expected resu1t~tha£ Urban Land Use
classification and agricultural field acreage accuracy would increase
with smaller resolution element size was not totally supported by '
the empirical results. Although the field acreage estimation accutacy.
" did have a general decrease as :esolutiuh element sizé increased, the
trend for larger field sizes was much less marked than was expected.
The apparent reason for this trend for larger fields is that the
boundary elements (those resolution elements overlapping field
'boundaries), instead of being primarily unclassified were randomly

classifieo as the available classes. As a result of compensating

T :errors, fhen, the field acreage accuracy was not highly correlated
f* -“with resolution size. Urban Land Use classification results, on
the other hand, actually improved somewhat with increasing resolution

element size.
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Results of the Baltimore Land Use data processing, where
spatial features were used in addition to spectral features, revealed
that the most useful spatial information was at a frequency attainable -
- ,  with a 30 m resolution element size, but that the best spatial feature |
' was‘seventh in order of utility, being preceded by six spectral
.features. The improvement in classification by adding the best o

.spatial feature in place of the sevanth best spectral feature was

1 . 4}percent for fifteen State-of-Maryland-defined Level III classes.

2 ‘ The results of this spatial study do not unéonditionally support
the EOS baseline recommendation of a 30 m resolution element system.
In fairness, it should be pointed 6ut th;ﬁ only machine implemented'
spectral pattern recognition, augmented with some spatial data,‘ﬁ%re
studied. The conclusions reaéhed are not necessarily pertinent to
photointerpretation data reduction approaches.

The empirical spatial study resﬁlts presented herein did not
unilaterally support a case for a instantaneous field of view finer
than 30 meters, especially when achieving this spatial resolution
with the bands we chose would result 1in high technological risk.

:Far this reason, resélution element size of 30 to 60 meters is
tentatively suggested,'pending a more thorough study of resolution

between 30 and 60 meters.

’ 6.5 RECOMMENDED SYSTEM
Based upon the above conclusiohs, the - following spectral,
. radiometric and spatial specifications are recommended for a seven
“band EOS Thematic Mapper optimized to collect data for the Agriculture,
Land Use, and Water Resources disciplines: .
Spectral Bands .
o 0.45-0,52 um
° 0.52-0.60 um
° 0.63-0.69 um
° 0.80-0.95 um
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Spectral Bands (continued)
— . 1.55-1.75 um |
o 10.4-12.5 ym
o 0.42-0.48 ym or ‘8.3-9.3 um

Radiometric Requirements
o NEAp for reflective bands - 0.5% *
o NEAT for thermal bands - 0.5°K

o Maximum allowable gain variation - 1.42 of full scale

o Maximum allowable offset variation - 0.38% of full scale

o Automatic Gain Control to provide the recommended NEAp
and NEAT for reflectances fanging from 2.0Z to 60.0Z
and temperatures raning from 260°K to 340°K

Spatial Resolution
o Recommended IFOV - 30m to 60 m

- *The recormended N?Ap'is based upon the data presented in Tables

4-8 through 4-11, Empirical results do not support this recommenda-

tion for the reflective IR portion, due to the uncertainties in the
IR data bands.
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PERFORMANCE MATRICES FOR RADIOMETRIC STUDY. RESULTS}
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TABLE A-1 PERFORMANCE RESULTS
. MICHIGAN AGRICULTURE TEST SITE

' HA » 30 Meter Data o ’ _ F
' PER CENT MISCLASSIFICATION

7 Optimum Channels

3 H 9-Bit Data .

3 . SCENE CLASS | PER CENT CORRECT | ‘Y. sor- | RIPE .
(No. of Pixels)| CLASSIFICATION | CORN | BEANS| OATS | WOODS OTHER
CORN = (812)

94 . l " ' ) 0 . 7 . 5 . 2
SOYBEANS  (284) 73.9 | s.3 - 20.8
RIPE OATS (20) | . 100.0
WOODS (860) 96,7 1.9 1.4
.LOTHER (1168) 84.8 Y 9.5 0.4 1.0 4,2

Average = 89.9
Wt. Average = 89.6
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TABLE A-2 PERFORMANCE RESULTS
. MICHIGAN AGRICULTURE TEST SITE
30 Meter {
Optimum Chana .
e e PER CENT MISCLASSIFICATION
' SCENE CLASS | PER CENT CORRECT - SOY- | RIPE
(No. of Pixels)| crasstFicatioy | cory| BEANS| o0aTs | wooDs| OTHER
CORN (812) : ,A
) R 9".1 017 5.2
1 | soveeans (284)] 70.4 7.8 21.8
RIPE OATS (20) 100.0-
|
WooDS  (860) 96,4 | 1.9 " 1.7
H OTHER  (1168) 85.7 9.8] 0.4] 0.9 |} 3.1
Sumnepmu 4
Average = 89.3
Wt. Average = 89.5
g
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TABLE A-3 PERFORMANCE RESULTS
MICHIGAN 'AGRICULTURE TEST SITE

- 30 Meter Data :
- 7 Optimum Channels ° _ :
© 7-Bit Data Significance | - PER CENT MISCLASSIFICATION
" SCENE CLASS PER CENT CORRECT | SOY- | RIPE

(No. of Pixels) CLASSIFICATION CORN | BEANS| OATS | WOODS OTHER

CORN (812)f 6.8 " ‘ ' | ' 1 0.4 2.8

E SOYBEANS (284) 52.1 - 19.7 : _ | 28.2
RIPE OATS '(;o) | 95.0 5.0
2.8

OTHER  (1168) 84.7 1.1l 03] 10 | 2.8

|woons - (860) 95.0 2.2

.-
lﬂﬂﬂ

Average = 84.7
Wt. Average = 88.3
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'TABLE A-4 PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

T 30 Meter Data r : . \
B _ 7 Optimum Channels | e
- . 6-Bit Data Significance {  PER CENT MISCLASSIFICATION P
SCENE CLASS | PER CENT CORRECT = §'s0Y- | RIPE
| (o. of Pixels)| CLASSIFICATION ~ | CORN | BEANS| OATS | WOODS| OTHER
- F CORN  (812)} 98.0 | 2.0
SOYBEANS  (284) 7 58.5 1s.s) - | 26.0 |
RIPE OATS (20) | - = 95.0 1 1 | 50 l
| fwoops  (860) -96.1 1.6 | 2.3 r
e J OTHER  (1168) 84.2 | 9.9} 0.2
Average = 84.7
Wt. Average = 88.3
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TABLE A-5 PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

30 Meter Data

7 Optimum Channels

5-Bit Data Significance

PER CENT MISCLASSIFICATION

SCENE CLASS | PER CENT CORRECT SoY- | RIPE
(No. of Pixels)| CLASSIFICATION [ CORN | BEANS| o0aTs | wooDS| OTHER
CORN -~ (812) 97.9 0.5 | 1.6
SOYBEANS (284) 52.1 118.7 0.4 128.8
RIPE OATS (20) | 70.0 30.0
wooDs  (860) 1 89.2 4.4 6.4
OTHER (1168) 77.1 14.2§ 1.3 1.9 5.3

Average = 77.3
Wt. Average = 83.9
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. o * TABLE A-6 PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

30 Meter. Data .
7 Optimum Channels

R ’ +1/3 Gain Variation .. ‘. PER CENT HISCLASSIFICATION
SCENE CLASS | PER CENT CORRECT ‘ SOY- | RIPE -

(No. of Pixels)| crassiFIcaTION | coRrx | BEANS| o0aTSs | wooDs| OTHER ‘
CORN @l - 16.8 | .4 | 612 | 21.6 l -
SOYBEANS (284) 28 |11 7.0 | 89.1 | .
RIPE OATS (20) " 100.0 . |
wooDs  (860)| 99.4 .2 4 | i
OTHER  (1168) 63.7 | .5 7.8 | 28.2 o I '

Average = 56.5
Wt. Average = 52.0
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TABLE A-7 PERFORMANCE RESULTS
" MICHIGAN AGRICULTURE TEST SITE

30 Meter ‘Data

7 Optimum Channels [ PER CENT MISCLASSIFICATION

-1/3 Gain Variation

' SCENE CLASS | PER CENT CORRECT | sor- | ripE

(No. of Pixels)] cLaSSIFIcaTIoN | corx | BEaxs| oars | woops| oTHER
“{ cory 12)] 79.0 1 9.2 i 11.8 -

SOYBEANS (284) 29.2 | ] r0.8 |

RIPE OATS (20) - 0 5.0 ’ | 95.0 |

'WOODS  (860) . 44.8 13.7 |26.2 ' 15.3

OTHER  (1168) 62.6 '] 5.3 I31.9 2 i

Average = 43.1
Wt. Average = 58.5
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_ ' TABLE A-8 PERFORMANCE RESULTS
] : - - MICHIGAN AGRICULTURE TEST SITE

30 Meter Data
7 Optimum Channels

" PER CENT MISCLASSIFICATION P

) o +2/3 Gain Variation
' SCENE CLASS | PER CENT CORRECT sov- | riee | -
(No. of Pixels) CLASSIFICATION CORN | BEANS| OATS WOOoDS OTHER
CORN (812) 0.1 | 4 | 95.7 3.8
SOYBEANS (284) o i 7.8 | 26.1 | 66.1
RIPE OATS (20) | 50.0 - o ' - 50.0
woops  (860)] ~  99.6 | ' 4
omer  cues)l - 489 1 | |27 ] 384
! ~ - t

; Avg'tage « 41.9
Ht. Average = 46.8
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- 'TABLE A-9 PERFORMANCE RESULTS
MICHIGAN AGRICULTURE 1EST SITE

_Average = 19.8

‘Wt. Average = 37-9

" Unay .
e e

t(‘m_
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30 Meter Data | '
7 Optimum Channels - ) o
. -2/3 Gain Variation - .PER CENT mscussrnc_umx - | .
- SCENE CLASS PER CENT CORRECT SOY- | RIPE | '
‘ o. of Pixels)]| CLASSIFICATION CORXN | BEANS] OATS | WOODS| OTHER |
CORN T (812)} 0 1oo.o-|
[SOYBE:\NS (284) ‘ 0 ' .100.0 F—
| RIPE OATS (20) ) 0 10.0 90.0
WOOoDS (860) 1.0 2.51 1.6 94.9 | g T
OTHER (1168) 98.1 1.9




TABLE A-10 PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

30 Meter Data
7 Optimum Channels -
+1/3 Offset Variatiom '

[eDsRa

PER CENT MISCLASSIFICATION

SCENE CLASS | PER CENT CORRECT soy- | ripe
(No. of Pixels)| CLASSIFICATION | cory| BEANs| oars | woops| ornER
3 | 80.4] 13.5
9.5 9.5

'" (812)] - 5.8
" ] SOYBEANS (286) L8

. S .
Tllum: oaTs (20) ] - 100.0

[woons C e 99

" [oman | (1168) . 58,87

33.4

Average = 53,2 -
We. Average = 51.47
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TABLE A-11 PERFORMANCE RESULTS -
MICHIGAN AGRICULTURE TEST SITE

30 Mefer Data :
7 Optimum Chanmnels ~ F
~1/3 Offset Variation - PER CENT MISCLASSIFICATION .
SCENE CLASS | PER CENT CORRECT | SOY- | RIPE
(No. of Pixels)] CLASSIFICATION | CORX | BEANS| 0aTs | woobs| OTHER
CORN (812) 76.4 ‘ 6.9 | 16.7
! SOYBEANS (284) 38.7 . 3 I 61.3
RIPE OATS (20" - 10.0 | -] 0.0
WOODS (860) 45.8 26.8 §17.4 ' 10.0
Lo'm:x (a168)] ~ 59.8 : 38.9 1.3
3 A

_ _ Average = 46.1
q "~ Wt. Average = 57.9
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TABLE A-12 PERFORMANCE RESULTS
 MICHIGAN AGRICULTURE TEST SITE

30 Meter Data
7 Optimum Channels

"PER CENT MISCLASSIFICATION _]

+2/3 Offset Variation.
) SCENE CLASS PER CENT CORRECT SOY- RIPE
(No. of Pixe_]s) CLASSIFICATION CORN | BEANS| 0ATS 13010) 1 OTHER
CORN (812) 0 3 | 997 |
SOYBEANS (284) 0 1.8 50.7 I
RIPE OATS (20) 0 100.0 I
WooDS  (860) 58.0 I
OTHER. (1168) 67.4 .1 4.4 28.1 I

Avgtagg a 25.1

We. Average =

41.2
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TABLE A-13 PERFORMANCE RESULTS
MICHIGAN AGRICULTURE TEST SITE

30 Meter Data

——

7 Optimum Channels
-2/3 Gain Variation - PER CENT MISCLASSIFICATION )
SCENE CLASS | PER CENT CORRECT "~ ] soY- | RIPE
| vo. of Pixels)| crassiFicaTzon | cors| BEANS| 0aTS | WoODS| OTHER
| rcom 1)} 0 , 1.4 ~ 98.6
SOYBEANS  (284) 0 . 1 100.0 |
RIPE OATS (20). 0 1s.0 o 95.0
wops  (s60)] 5.0 0.4 | 2.4 : 92.2
OTHER  (1168) 95.5 0.3 | 4.2 . I

Average = 20,1
~ Wt. Average = 36.8
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TABLE A-14. PERFORMANCE MATRICES - BALTIMORE LAND USE
AVERAGE ACCURACY (WEIGHTED) FOR SENSITIVITY VARIATIONS
(30 Meter Data, 7 Optimum Channels)

| 2 correcT 5 BRon
7 t .
Bits 7 Commission Omission
P LEVEL I 83.6 10.8 5.6
LEVEL I1 63.9 30.5° 5.6
LEVEL III 46.1 48.3 5.6
% ERRORS
8 Bits
% CORRECT Commission| Omission
LEVEL 1 ‘ © 83.2 10.0 7.8
LEVEL II ' 64.7 .| = 27.5 7.8
LEVEL III - 47.4 44.8 7.8
. ' % CORRECT % ERRORS
. 9 Bits Commission | Omission
" LEVEL 1 85.2 8.1 6.7
LEVEL II 67.9 25.4 6.7
LEVEL III 54,9 38.4 6.7
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TABLE A-15 PERFORMANCE MATRICES
BALTIMORE LAND USE

LEVEL 1 LAND USE* 7 Channels, 9 Bits, 30 Meters
AGGREGATED COMPUTER SPECTRAL CLASSES

" GROUND TRUTH URBAN AG FOREST WATER - | UNCLAS.
- URBAN (1) 83.9 6.3 1.2 2.0
| AGRICULTURE (2) - | 14.3 71.4 7.2 7.2
"FOREST (4) 5.9 9.1
12.5 87.5

LEVEL ITI LAND USE* 7 Channels, 9 Bits, 30 Meters

AGGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH RES °?§£ ac | past | For | waTerfuncras.
_ ]

RESIDENTIAL (11) 66.3 1 21.7] 6.4 | 0.6 | 1.9 3.2

i | COMMERCIAL/ ) )

) A mousTriar 2/13 | 2 | 30 4 | 0 17.4

» n E—
CROPLAND (21) 671 6.70160.0 § 6.7 | 6.7 13.3
PASTURE (22)- 11.1 3.7} 14.8 1s9.3 |} 7.3 3.7
FOREST

Deciduous (41) 5.9 J9s.1
WATER (50) 100
#ANDERSON LAYD USE CLASSES ARE SHOWN IN PARENTHESES
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LEVEL ITI COMPUTER SPECTRAL CLASSIFICATION OF LAND USE

TABLE A-16.

PERFORMANCE MATRIX, BALTIMORE, MARYLAND

7 Channels, 9 Bits, 30 Meters

FAM apti] apr2 | mir[sortJaseu] wwr {or_ Jsorifcror | pasTURE | _rFomEst

Single .

Family Multiple Commercial Industrial| Cropland | Pasture Deciduous Water
GROUND TRUTH Res. (111) Family (112) (121/122) (130) (210) (220) Porest (410) (500) | Unclassificd
Single Family
Residential (111) 62.7 16.0 2.7 9.3 1.3 4.0 4.0
tiulei-fomily (112) ; .
and Institutional 13.4 41.5 13.4 25.6 3.6 2.4

{160)
Corcnercial (121/122) 11.8 - 15.7 29.64 31.4 2.0 2,0 7.9
Izdustrial (13) 6.4 17.0 19.2 23.4 6.4 7.7
Cropland (210) 6.7 6.7 60.0 6.7 6.7 13.3
Pasture (220) 5.9 3.0 1.8 47.1 ‘5.9 3.0
Deciduous Forest 3.0 3.0 94.1
(610)

Water (500) 12.3 87.5

Stete of Marylend Lsnd Use Classes showvn in parentheses.
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| TABLE A-17

-~ H -
Foods BaaPoh S TR L cz:*n* s hegmoyexes ¢ vox

- PERFORMANCE MATRICES
- BALTIMORE LAND USE

u:vm. I_LAND USEX 7 Channels, 8 Bits, 30 Meters s L

AGGREGATED COMPUTER SPEC'I'RAL CLASSES

URBAN

AG

FOREST -

s NATER \'

2e SR KRR ¢
741

T _:: 5 2"5

O P——

SO

Ff‘gog WATERfUNCLAS|

25| - | 3.2

2.5 | 42.5) s0.0

*ANDERSOH,LAND USE CLASSES ARE SBOWN IN PARENTHESES . IR
: L Avg. COrrect Clags = 65.1°W Water

L= 69 6W/0 Water ‘

2 500 IR

75.2 W Waﬂ:ér' ‘ _
'86.1 W/O-Water
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;- '!ABLB A-18. xmumlc! )IM‘RIX. IALTWIE. HAIYWD
WIL lll mn srm MS“ICATIW 01 LAND Ull ) 7 clunuoh. ‘8 M.n y 30 Mate
§_ FAM l.I mz RLR{SOIL ABPR HD bR S01L CROP I’ASTURB' . YOREST -
- Single : ; . . A I
SR Fauily Multiple | Commercisl Indun:rul Crophnd ‘ pasture | Deciduous o
GROUND TRUTH 1 Ros. (ltl.l)  Pamily (112) (121/122) (130) (210) (220) !pfilt {810) | (SOQ)
Single Pamily - _ Y b -}
Residential (111) 55.7 ‘21.?‘ 236 1.3 9.3._ 1-3' N 5.?
Hulti-fomily (112) 14.5 43.% 32.0 24.1 3.6 '
and [nstitutional . I8 “n
(160) . :
Conperctal (227/322)' | 8.0 20.0 '34.0 10.0 2.0 4,0 . 2.0
Industria: {13) 4.3 23.4 44,7 12.8 6.4 2.1 6.4
Cropland (210) 6.7 13.3 60.0 13.3 6.7
Pasture (220) 7.4 o . 1,1 66.7 7.4
Deciduous Forest .0 3.0 94.1
(410) : . .
Water (500) 5.0 2.5 42.5 50.0
State of Marylanu Land Use C1 h in parenth f
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TABLE A-19  PERFORMANCE MATRICES

BALTIMORE LAND USE : LT

. 1,3“‘1‘, I LAND USE* 7 Channels, 7 Bits, 30 Meters

AGGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH "urBaN |  AG | FOREST | WATER I UNCLAS 1
m GV ’ 86.7 6.7 2.4 H ,,.3.‘
.AGRICiILTURE (2) . 19.ko 76.2 4.8
CFOREST (4) 5.9 2.9 o1z

1.5 2.5 |§ 65.0 " 25.0

.
. LEVEL I1 LAND USE* 7 Chanunels, 7 Bits, 30 Meters
AGGREGATED COMPUTER SPECTRAL CLASSES
r | | caounn‘ ‘fﬁ_.;fn ‘ RES c‘;ff{) AG pasT | FOR | WATER|JUNCLAS.
"§ RESIDENTIAL (11) 61.1 0 24.2 6.3} .6 | 3.8 2.5
{ « —
[ _ COMMERCIAL/ - F :
INDUSTRIAL (12/13)] 28.6 { 60.2 4.1 | 2.0 - 2.1
CROPLAND (21) 26.6 ' 46.7 § 20.0 6.7
PASTURE (22) 14.8 14.8 §66.7 3.7
FOREST : :
Deciduous (41) 59 2.9 91.2

- ®ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES
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TANLE A=200,  PERFIORMANCE MATRIX, u/u.'rmml'.. MARYLAND

LEVEL II1 COMPUTER SPECTRAL CLASSIFICATION OF LAND USE 7 chll"lncll. 7 Bits, 36 Heters

FAM arri] arrz | majsori]asr] ton {nr [rorr]cnop | PASTURE | FOREST
] Single C .
' : Family Multiple Commoreinl Tnduatrial | Cropland | Pasture Dociduous . Water
GROUND TRUTH Ras. (111) ramily (112)] (121/122) (130) (210) (220) Forest (610) | (300). | Unclassificd
Single Faally . ' .
Rostdential AL 52.0 20.0 1.2 5.3 9.3 6.7 5.3
Multi-faaily (112) ) . 6.8 3.6 1.2 1.2 2.4
and Institutional 19.3 a7 1.8 2
(160) '
Coranercial (121/122) : = ‘
7.8 . 21.6 3s5.3 27.4 2.0 2.0 3.9
industrial (13)
. L 4.3 23.4 44,17 12,8 6.4 2.1 6.4
d (2 . P
| Cropland (210) 20.0 6.7 46.7 20.0 6.7
Pasture (220) 1 1.1 1.8 | 66.7 N2
Deciduous Forast
(410) 5.9 2.9 91.2
Water (SOtO) 2.5 5.0 ‘2.8 65.0 25.0

Stete of Maryland Land Use Classes are shown in parenthessa.
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TABLE A-21. . PERFORMANCE MATRICES

BALTIMORE LAND USE - AVERAGE ACCURACY
(WEIGHTED) FOR GAIN VARIATIONS
(30 METER DATA, 7 OPTIMUM CHANNELS)

Z ERRORS

-1/3 Gain ,. : o
. X CORRECT Commission Omission
LEVEL I o 59.7 | 15.4 24.9
' LEVEL II 41.6 33.5 4.9
. LEVEL 1II 1 251 50.0 24.9
r =
[ . .
+1/3 Gain |2 correcT Z_ERRORS -
_ Commission Omission
LEVEL I 73.2 17.3 9.5
LEVEL II ~ | 5.3 | 33.2 9.5
LEVEL III. 42.7 . 47.8 9.5

5
S
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" TABLE A-22. -PERFORMANCE MATRICES i
:  BALTIMORE LAND USE - AVERAGE ACCURACY =~ ~
< ¢ (WEIGHTED) POR GAIN VARIATIONS -
: " (30°METER DATA, 7 OPTIMUM CHANHELS) ~
' . % ERRORS
-2/3 Gain X OORRECT = esion] Omission
LEVEL I 6.5 5.7 87.9
LEVEL II. 5.4 6.7 87.9
LEVEL III 1.4 10.8 87.9
+2/3 Gain X CORRECT %_ERRORS
_ Commission | Omission
LEVEL 1 61.7 25.3 . 12.9
LEVEL 1T 44,5 42.6 12.9
LEVEL III 31.0 56.1 12.9
257
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TABLE A-23 ~ PERFORMANCE MATRICES . T
: BALTIMORE LAND USE- "~ .~ .- _ - i~
. T //'-\
LEVEL 1 LAND USE* 7 Channels, +1/3 Gain, 30 Meter Data .
AGGREGATED COMPUTER SPECTRAL CLASSES -
GROUND TRUTH " URBAN ac | rorest | warer | wncras. o
* URBAN (1) - f 843 5.1 7.1 3 3.5
i e | 1 HE -
i AGRICULTURE (2) } 14.6 26.8 56.1 ' 2.4
,§ o FOREST (4) 2.9 97.1
’(‘-""_“;:"“‘-" ' ) ) -
2 WATER (5) 5.0 2.5 30.0 62.5 "
LEVEL II LAND USE* 7 Channels, +1/3 Gain, 30 Meter Data v
E AGGREGATED COMPUTER SPECTRAL CLASSE
comp trutt - | REs | COM Y s | east | FoR | WATERfuNCLAS
RESIDENTIAL (11) 72.0 § 10.2 | 4.5 | 0.6 | 10.2 T 2.6
COMMERCIAL/ ' NI e | f_T
INDUSTRIAL (12/13)| 41.8 J4s5.9 § 4.3 | 1.0 2.0 5.1
CROPLAND (21) 21.4 700 | e
PASTURE (22) | 11.1 7.4 §29.6 Q42| | 3.7
'FOREST : g
Deciduous (41) 2.9 ( 97.1
WATER (50) . 2.5 | 2.5 2.5 § 30.0§ 62.5
#ANDERSON LAND USE CLASSES ARE SHOWN 1N PARENTHESES |
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TABLE A-24. PERPORMANCE MATRIX, BALTIMOKE, HARYLAND

RS
’ ‘.
)
'
e
) Sk
'
N
-1
Ly
I ’ g
E [
B
) ;
P
i ! &

i i . LPVEL T11 COMPUTER SPECTRAL CLASSIFICATION OF LAND USE 7 Chennels, + 1/3 Cain, 30 Heters
FAM art1 | APtz | mum[sorL]aseu] vor JDR_[sorrfcrop | PASTURE | POREST C
Stugle } o o
Family Multiple Commercisl Industrial ] Cropland | Pasture Deciduous Vater | . L S R o ) A
CROUND TRUTH Res. (111)] ramily (112)] (121/122) (130) (210) 1220) Porest (410) | (500) | un-Yamsatied . § o Aoy
, . v , b i ~
Single Famlly L U SR :
Residential (111) 40.0 30.7 1.3 8.0 1.3 16.0 . 2.7 s Py
. . K L o EE B : /'l Ao v
Lti-family (112 ~ ' N ; o
Mulei-faaily 1D 1 o 63.4 8.5 9.8 1.2 4.9 2.6 , >} 0 'y
(160) ‘ o - o
{ commerctar (12171222) | 7.8 49.0 23.5 13.7 2.0 2.0 20 4
Industrial (13) 2.1 23.4 3%.1 21.3 6.4 2.1 2.1 8.5 R T
) L ’7‘ ., L ) e
Cropland (210) 1.3 7.1 7.1 7.4 o SRR
Pasture (220) 3.7 1.4 7.4 29.6 48.2 2 0. -
B S
' ) S
Deciduous Fotest . 7.0 ‘ ‘ VL
(410) 3.0 4 , o —
B o i o by [
uater (300) 2.5 2.5 2.5 30.0 62.5 b T o ,
'~Ttate of Maryland Land Use Clesses are in patenthessd. L
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TABLE A-25 ~ PERFORMANCE MATRICES
BALTIMORE LAND USE

LEVEL I LAND USE* 7 Channe;s,~-l[3 Gain, 30 Meter Data

" AGGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH URBAN AG FOREST WATER | vuncLas.

URBAN (1) ' 713.3 | 8.2 - 18.4

AGRICULTURE (2) 14.3 59.5 26.2.

'FOREST (4) - 30.3 48.5 § 18.2 3.0

H 10.0 | - 7.5 1 82.5

Lok e Sl i

LEVEL 11 LAND USE* 7,Channels, - 1/3 Gain, 30 Meter Data

AGGREGATED COMPUTER SPECTRAL CLASSES

' ' GROUND TRUTH res | %Y1 ac | ast | For | WATER uNcLas.|

: _

Ej ggsmsuu;u. (11) 47.8 24.8)] 6.4 3.8 17.2-

; - COMMERCIAL/ | , | |

; INDUSTRIAL (12/13) ] 23.5 | s1.0f 4.1 | 1.0 . 20.4

g .

] CROPLAND (21) 13.3 -~ 13.3 §26.7 | 46.7 ' -
PASTURE (22) 1.1 | o3.7] 3.7 ge6.7 14.8
FOREST -l 1
Deciduous (41) 30.3 30.3 18.2 18..2 3.0
WATER (50) H 5.0] 5.0 7.5 | 82.5

®ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES
’ 3 260
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TABLE A-26. PERFORMANCE MATRIX, BALTIH)RE.‘)‘ARYLAND .

P LEVEL 111 COMPUTER SPECTRAL CLASSTIFICATION OF LAND USE ~ 7 Chaunels, -1/3 Gain, 30 Maters T " S
« [ _ran aPT1] AP12 | RiR[soiL]aseu] Mom [DR [sorL]crop | PASTURE | FOREST _
Single o
: Pamily Multiple Commercial Industrial Cropland | Pasture Deciduous Water : : . !
CROUND TRUTH Res. (111)] Femtly (112)} (121/122) (130)- (210) (220) Porest (410) | (500) | UnclassiZied ;
Stngle Famil : : : -
ey ential (111) 28.0 33.3 1.3 27 | 120 4.0 ' 18.7
Mulei-family (112) : E , ,
‘ M et Lus tonal 4.9 30.5 15.9 28.1 1.2 3.7 _ B 15.9
(160) .
Commercial (121/122) 5.9 19.6 27.5 21.6 2.0 2.0 . 21.6
o
- !
Industrial (13) 4.3 17.0 4.7 8.5 6.6 ' ‘ 19.2 :
Cropland (210) : 6.7 6.7 : ' 13.3 26.7 46,7 -
Paature (220) 3.7 7.4 3.7 - 3.7 66.7 ' 14.8
Deciduous Forest : ’ - C . :
(410) 30.3 . 30.3 18.2 18.2 3.0
vater (300) 5.0 , S2.3 2.3 . 7.8 02.5
. . ,

Stats of Maryland Land Use Classes sre shown in parentheses
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- TABLE A-27..

: - | i ' 4
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PERFORMANCE MATRICES

BALTIMORE LAND USE

LEVEL I . LAND USE* 7 Channels, +2/3 Gain, 30 Meter Data

AGGREGATED COMPUTER SPECTRAL CLASSES -

GROUND TRUTH . URBAN AG FOREST WATER | UNCLAS.
URBAN (1) 72.9 3.1 16.9 7.1
. -
AGRICULTURE (2) - 14.3 2.4 83.3
- FOREST (4) 100.0
2.5 2.5 20.0 75.0

LEVEL II LAND USE* 7 Optimum Channels, +2/3 Gain, 30 Meter Data

AGGREGATED COMPUTEE. SPECTRAL CLASS
4‘—

GROUND TRUTH RES cggﬁ 'ac | pasT | FoR ] WATER JuncLAS.
- sy
RESIDENTIAL (11) 51.0 § 17.2 2.6 22.9 6.4
: —
COMMERCIAL/ )
"INDUSTRIAL (12/13)} 37.8 §42.9 §— 4.1 7.1 8.2
CROPLAND (21) 6.7 = 93.3
PASTURE (22) 18.5 3.71 77.8
FOREST
Deciduous (41) 100.0
WATER (50) 2.5 20.0f 75.0
#ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES
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TABLE A-28. PERFORMANCE MATRIX, BALTIMORE, MARYLAND

LEVEL III COMPUTER SPECTRAL CLASSIFICATION OF LAND USE

r:l‘?:‘f{a»,p .

Wiy

7 Chonnels, + 2/) CGain, 30 Meters

FAM apt1] apt2 | mirlsori[aseu[ vom [or  [sorrfcror | PASTURE | FPOREST

Single '

Family " Multiple Commercial Industrial | Cropland | Pasture Deciduous Water ’

- -CROUND TRUTH Res. (111)] Family (112)] (121/122) (130) (210) (220) Forest (410) | (500) | Unclassified
Single Fawmil .
neetdential (111) 17.3 28.0 2.7 2.7 4.0 3.0 9.3
Multi-family (112) ' :
and Institutional 8.5 476 9.8 18.3 1.2 11.0 e 37
(160)
Commercial (12}/122) | 3.9 4.2 19.6 17.7 2.0 9.8 5.9
tedustrial (1) .3 2.5 27.6 21.3 6.4 4.3 10.6
Cropland (210) : 6.7 93.3 )
Pasture (2200 | 7.4 1.1 3.7 77.8
Deciduous Forest ’ 100.0
(410)

Water (300) 2.5 2.5 20 75.0

" State of Maryland Uss Classes are in paron
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TABLE A-29. PERFORMANCE MATRICES

BALTIMORE LAND USE

LEVEL 1 LAND USE¥ 7 Channels, -2/3 Gain, 30 Meter Data

AGGREGATED COMPUTER SPECTRAL CLASSES

CROUND TRUTH URBAN ac | rorest | water | uncras.
URBAN (1) 9.4 | 2.4 | 88.2

: y -y
AGRICULTURE (2) " | 100.0
FOREST (4) | 11.8 26.5 61.8
WATER (5) ' . 5.0 ‘ - 95.0

LEVEL II LAND USE* 7 Channels, -2/3 Gain, 30 Metar Data

4 _ AGGREGATED COMPUTER SPECTRAL CLASS

GROUND TRUTH RES cgﬁé ac | past | For | WATER|uncLAS.
= . » = |
RESIDENTIAL (11) § 7.0 § 1.3 | 1.9 ' 89.8
|
COMMERCIAL/ -
INDUSTRIAL (12/13)] 2.0 § 9.2} 3.1 85.7
—
CROPLAND (21) : -} 100.0
; | asTuRe (22) 100.0
FOREST '
Deciduous (41) 11.8 ; 26.5 61.8
WATER (50) ' 5.0 95.0

*ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES
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LEVEL III COMPUTER SPECTFAL CLASSIFICATION OF LAND USE

TABLE A-30. PERFORMANCE MATRIX, BALTIMORE,MARYLAND

7‘ Channels, =-2/3 Gain, 30 Meters

PAM ArTi] aPr2 | mirlsorrlaseu] wpr for [sorv|cror | pAsTume | rorEsT

Single :

Fanily Mulciple Commercial Industrial | Cropiai. Pasture ' Deciduous Water
GROUND TRUTH Res. (111) Family (112)| (121/122) {130) [¢ 3L (2205 é Forest (410) | (500) § Unclassified

' -
Single Family S
‘/Ruldcathl (111) 10.7 4.0 85.3
Multi-family (112)
and Institutionsl 3.7 2.4 93.9
(160)
Commerctal (121/122) | 2.0 X I 96.0
ladustrial (1)) 2.1 14.9 4.3 4.3 - 76.5
Cropland (210) 100
Pasture (220) 100
Deciduous Forest 8.8 3.0 26.5 61.8
(410) .

Mater (500) 5.0 95.0

State of Maryland Land Use Classes are shown in parentheses
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TABLE A—-3l.; 'PERFORMANCE 7‘IAZ[‘RI(.‘I-:S :

j/ad

PR ‘; BALTIMORE LAND USE - AVERAGE 'ACCURACY
.. . ... -(VEIGHTED) FOR OFFSET VARIATIONS -
ATl (30 METER DATA, 7-0PTIMIN CHANNELS)

S IR [P | % ERRORS
2 - #1/3 Offset % | Coumission] Omission | - S
E CaevEL T o o)1z o] 187 714
E ol wmmun | e {18 e 3
E ) wwmmo o 7.3 a3 | ne
§ s S - ~ ,
§ LT e e - %_ERRORS
- o % CORRECT Z
1/3 Off»_s\'_et‘ : o Commission | Omission
CLEVELI oo} 555 | 202 24.3
g LEVELII . 42.6 33.1 24.3
r 1 eI : 21.0 54.7 2.3
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| TABLE A-32. PERFORMANCE MATRICES

BALTIMORE LAND USE - AVERAGE ACCURACY
(WEIGHTED) FOR OFFSET VARIATIONS
(30 METER DATA, 7 OPTIMUM CHANNELS)

-

% CORRECT

Z ERRORS

Omission

© = +2/3 Offset

LEVEL T

0.0

Commission

3.2

96.8

. LEVEL II

0.0

3.2

96.8

LEVEL III

0.0

32

96.8

-2/3 Offset

KSR

% ERRORS

Commission |

Ouission

 LEVEL' I

1 309

R

NG

T 78,1

Tnal

‘(\‘
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TABLE A-33.  PERFORMANCE MATRICES

" BALTIMORE LAND USE

LEVEL I LAND USE* 7 Channels, +1/3 Offset, 30 Meter Data

AGGREGATED COMPUTER SPECTRAL CLASSES

CROUND ‘TRUTH ureaN |- ac | FomesT | waATER l UNCLAS.
URBAN (1) 1 137 ] 98| oua H 76.1

“ AGRICULTURE (2) : 7.1 | 76.2 B 16.7 l . f
FOREST (4) | | ‘ 29.4 .| 0.6

: WATER (5) I | | S 100.0

;

LEVEL IT LAND USE* 7 Channels, +1/3 Offset, 30VMeter Data

AGGREGATED COMPUTER SPECTRAL_CLASSES

T AR IR T N R ETIR A AR T S TR ST MR YT RETD

—‘
CoM/.
GROUND TRUTH l RES IND AG PAST | FOR WATER JUNCLAS
I RESIDENTIAL (11) 9.6y 1.9] R TR 73.9
COMMERCIAL/ _ N " _ )
INDUSTRIAL (12/13) 9.2 8.2 2,0 1.0 79.6
crorLavp (21) | | 73.3 26.7 .
PASTURE. (22) | N | 1.1 f§ 77.8 nal -
.| FOREST ‘
‘ Deciduous (41) 29.4 . 70,6
WATER (50) 100.0

; \ ' #ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES
; ' - 268 '
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TABLE A-34, PERFORMANCE MATRIX, BALTIMORE, MARYLAND
LEVEL TI1 COMPUTER SPECTRAL CLASSIFICATION OF LAND USE 7 Channels, + 1/3 Off‘nt;' 30 Motors

TEm APTL] Ar1Z | Rim|soiL[aspi; ok {OR [sorfckor | PASTURE | FOREST
. Single . ' .
1 ranmily Multiple Coomexrcisl Industrial} Cropland | Pasture Deciduous Water:
CROUND TRUTH Res. (111) Pamily (112) (121/;22) (130) (210) (220) Forest (410) | (500) ] Unclassified
Single Family - ' : ’ : )
Reefdentiul (111) 2.7 2.7 1.3 1.3 2.0
Multi-family (112) ' ' ; .
and Inetitutional 1.2 }2.2 2.4 B 8.5 75.6
(160)
Commercial (121/122) ) ' : : .
3.9 .1.8 3.9 . 2.0 82.4
Industrial (13 .
userial { ), 6.4 12.8 2.1 2.1 76.6
‘ Cropland (210) 73.3 26.7
Pasture (220) 11.1 ©77.8 1.1
Deciduous Poreet
410) i 29.4 70.6
Water (500) 100

State of Maryland Land Uss Classes are shown in parentheses

[
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] TABLE A-35.  PERFORMANCE MATRICES-- <
. R “\:- \_‘f‘ - \\;;\
'BALTIMORE LAND USE . . . =
~ LEVEL I LAND USE* - 7 Channels, -1/3 Offset, 30 Meter Data T E
| AGGREGATED COMPUTER SPECTRAL CLASSES
cRousp TRUTH | URBAN | AG | FOREST | WATER UNCLAS. | .-
URBAN (1) | 70.4 5.5 ) ol 2a Q
AGRICULTURE (2) 35.7 54.8 o 9.5 )
FOREST (4) 67.7 | 32.4
WATER (5) 25.00 | - - 12.5 "62.5
| i .
: -
t LEVEL II LAND USE* 7 AChannel_s, -1/,:3 Offset, 30 Meter Data _
| > o o
; AGGREGATED COMPUTER SPECTRAL CLASSE
GROUND TRUTH res | 01 ac | east | For | waTeRfuncras
- - N
RESIDENTIAL (11) s2.20 15.9] 5.1 | 1.9 : 24.8
COMMERCIAL/ - o
INDUSTRIAL (12/13)} 18.8§ 55.2§ 1.0 | 2.1 22.9 e
; iv— . c——
CROPLAND (21) 46,7 33.3 20.0}
PASTURE (22) | 25.9} 3.7 66.7 3.7
‘ FOREST
E Deciduous (/1) . 67.7 14.7 §17.7
I_; WATER (50) 7.5] 17.5 12.5 62.5
E * ®ANDERSON LAND USE CLASSES ARE SHOWN IN PARENTHESES
5 ' ' © 270 '
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TABLE A-36. PERFORMANCE MATRIX, BALTIMORE, MARYLAND

LEVEL 11T COMPUTER SPECTRAL CLASSIFICATION OF LAND USE 7 Channels, ~1/3 Of't'lnt. 30 Meters

FOREST

FAM arT1] APtz | RLRIsoiL]aspu] DR JDR JSOIL|CROP | PASTURE
Single ’ '
Fanily Multiple Commercial Industrial ] Cropland | Pasture Deciduous WHater
GROUND TRUTH Res. (111) Pamily (112) (121/122) (130) (210) (220) Torest (410) (500) | Unclessified
Single Family . .
Residential (111) 8.0 61.3 2.7 9.3 . .7 16.0
Multi-family (112)
and lnstfiutional 2.6 34.2 26.8 1.2 1.2 1.2 32.%
(160)
Commercta) (121/122) | 2.0 21.6 39.2 B 2.0 3.9 27.5
Industrisl an 13.3 66.7 2.2 17.8
Cropland (210) 13.3 33.3 3.3 - 20.0
Pasture (220) 1.4 18.5 3.7 66.7 3.7
Deciduous Forast 61.8 5.9 14.7 17.7
(410) . .
{Mater (500) 7.5 5.0 12.5 12.5 62.5

State of Maryland Land Use Classes are shown in parentheses.
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" TABLE A-37.  PERFORMANCE MATRICES

BALTIMORE LAND USE-

LEVEL I LAND USE* 7 Channels, +2/3 Offset, 30 Meter Data

AGGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH . WATER -] UNCLAS.
l URBAN (1) 95.3
AGRICULTURE (2) 100.0

_ » |
FOREST (&) N R B 100.0
WATER (3) | | | 100.0

LEVEL I1 LAND USE* 7 Cbannels; +2/3 Offset, 30 Meter Data

AGGREGATED COMPUTER SPECTRAL CLASSES

GROUND TRUTH res | OO0/ | ac | past | For | warTERjuncLas.
1 RESIDENTIAL (11) | as 95.5

COMMERCIAL/ ,

INDUSTRIAL (12/13) 5.1 | 1 94.9

CROPLAND (21) ' - 100.0
. PASTURE (22) ~ , SR R BLLN

FOREST ,

Deciduous (41) 100.0

WATER (50) | _ F 0 fo.n

*ANDERSON 'LAND USE CLASSES ARE SHOWN IN PARENTHESES
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LEVEL I11 COMPUTER SPECTRAL CLASSIFICATION OF LAND USE

TABLE A-38. l'EKPOWCE MATRIX, * BALTIMORE, MARYLAND

__APTL] APT2

7 Channals, + 2/3 Offset, 30 Maters

S gy i

~
P

FAM rer[sorL [asen] MR [or_ Jso1t{crop "PASTURE | _TOREST _
' Single : . .

Family: - Multiple Commercial Industrisl| Cropland | Pasture Deciduous Water
CROUND TRUTH Res. (111) Femily (112) (}21/122) (130) (210) (220) Forest (410) | (500) | Unclassified
Single Fomily 6.7 93.3
Residential (111) ’
Halti-family (112)
and lnstitutional 2.4 97.6

(160)
Commercisl (121/122) 2.0 98.0
‘Industrial (13) 8.5 91.5
Cropland (210) , 100.0
Pasture (220) 160.0
Deciduoue Forest
pretss . 100.0

Water (300) 100.0

e
)

oo

persE
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TABLE A-39.  PERFORMANCE MATRICES

BALTIMORE LAND USE

LEVEL I LAND USE* 7 Channels, -2/3 Offset, 307Metet Data

AGGREGATED COMPUTER SPECTRAL CLASSES

| 5' o CROUND TRUTH | H urBaN |  AG - FOREST ‘| WATER | UNCLAS. ‘
URBAN (1) 11.4 B - 88.6 -
* AGRICULTURE (2) 2.4 2.4 o o 95.2 | .
FOREST (4) E 23.5 | 2.9 715
| WATER (5)- , 10.0 B 90.6

W

LEVEL II LAND USE* 7 Channels,--2/3 Offset, 30 Meter Data .

AGGREGATED COMPUTER SPECTRAL CLASSES
e —————

g ' GROWND TRUTH 'RES C?gé ac | east | For | WaTER |uncLas.
: ] — s ]
| I¥ RESIDENTIAL (11) [ 3.8 ] 3.8 | | 924
COMMERCIAL/ ‘ ‘ .
INDUSTRIAL (12/13) ' 17.4 82.7
CROPLAND (21) 6.7 6.7 . o 1867 | .
PASTURE (22) : 100.0
FOREST : ' _
Deciduous (41) 23.5 2.9 73.5
‘ ﬂ» WATER (50) 2.5 7.5 5 90.0
*ANDERSON. LAND USE CLASSES ARE SHOWN IN PARENTHESES
274




LEVEL 111 COMPUTER SPECTRAL CLASSLFICATION OF LAND \'!S.F.

TAULE A~40. PERFORMANCE MATRIX, "BALTIMORE, MARYLAND

7 Channels, =2/3 offu‘t. 30 Msters

FAM APTL] APT2 | RLRISOIL [ASPH MDR l DR SOILICROP _ PASTURE FOREST

Single : . .

Family Multiple Commercisl Industrisl Cropland | Pasturs Deciduous Water .
GROUKD TRUTH Res. (111) vanily (112) (121/122) (130) (210) (220) Porest (410) | (500) Unclessified
Single Family 8.0 2.7 89.3
Residential (111) .
Yulti-family (112) 4.9 95.1
snd Institutional : -

(160)
Commercisl (121/122) 2.0 98.0
tadustrisl (13) 1.9 2.1 66,0
Cropland (210) 6.7 6.7 86.7
Pasture (220) ) 100.0
\
Deciduous Forest 23.5 2.9 73.5
(410} .

Vater (500) 2.5 7.5 90.0

‘“State of lhryfm Ea& Use Classes are shown vln paranthesse

»
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APPENDIX B
 ADDITIONAL DETAILS OF AGRICULTURAL RECOGNITION RESULTS.
MICHIGAN AGRICULTURE
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ADDITIONAL DETAILS OF AGRICULTURAL RECOGNITION RESULTS

The makeup and spectral separability 6f classes and their
relative importance to the user are key factors that must be considered
whenever recognition processing results are evaluated. Another key
point is the quality and nature of ground truth information. The labels
assigned to fields frequently are too broad or not sufficiently

descfiptive to indicate the full variability present in the scene.

Major crops which tend to be uniformly planted are better described

by a single label, iike “"corn", than are other agricultural areas like
. pastures. Even in major crops there can be substantial differences in
percent cover and\crop\éondition, among othér'differences. The 1973
growing season in Michigan was unusual in that excessive rain and

wetness in fields delayed some plantings by several weeks, five weeks for
one particular corn field. As a consequence, it was found necessary to
define separate signatures for both dense and sparse corn. Differences
between individual fields of other types, for example, pastures, har- |
vested fields, and idle or fallow fields, can be much larger than for
major crops, depending on level of use and recent management practices.
The effort required to collect gond ground truth information is too

often underestimated. The ground truth available for the agricultural
data set im this study was among tho best we have ever utilized,

but even sc, it had not been piactical to visit every field on the

ground and describe all charucteristics of these fields. Photointer-
pretatioun and Agricultural Stabilization and Conservation Service

(ASCS) records were utilized to supplement ground visits.

If members of two or more relatively unimportant classes are
frequently‘confused or if one or more unimportant classes is poorly
recognized, a misleading assessment might be made of overall recogni-
tion performance. The agricultural data set discussed in the main body

of this report is a case in point.
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Results are presented in the main body for. five recognition

classes: corn, soybeans, oats, woods, and other. The first four

o —

are the significant crops for the test area, while the last includes
everything else in the scene, including points not assigned to any ;
recognition signature because of their distance from them (i.e., the

low likelihood that these points belonged to any one of the signature
distributions). Four distinct signatures were determined and used to

represent the "other" ciass; these are bare soil, stubble/cut hay,
pasture/grasses, and dense green vegetation.

Initially, results were tallied and reported separately for each
of the four major classes and the four "other" subclasses (five with
the not-recognized subclass). These initial results were subjected to
extensive analysis which is reported in this appendix. Parﬁicular
attention is paid to confusion among the "otherﬁ subclésses. Never-
theless, it is believed that the five-class results of the main hody
represents the more appropriate and pertinent picture of recognition
performance for this study.

| By way of illustration before discussing the eight-class results,
an example of differences between eight aﬂa five-class performance
summaries is appropriate. Table B-1 presents eight-class reéults for
15 m data with seven optimum spectral channels. A weighted class
average of 75.1 percent correct was achieved, ranging from 31.6 percent
.to 100 percent. The corresponding five-class performance summary,
Table B-2, shows an overall class average of 86.5 percent correct,
with a low of 59.9 percent for sdybeans.’ Thus, it can be seen that
one might reach substantially different conclusions about recognition

performance, depending upon which performance summary was examined.

B.1 ANALYSIS OF 15-M AGRICULTURAL RECOGNITION R£SULTS
Results for agricultural data with 15 m resolution already'have

been presented (Table B-1) for eight recognition classes. An exami-
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TABLE B-1. SAMPLE EIGHT-CLASS RECOGNITION PERFORMANCE SUMMARY
' 7-Channel Data, 15-m Spatial Resolution

15 METER DATA - 7 OPTIMUM

CHANNELS : PER CENT MISCLASSIFICATION
SCENE (No. of % CORRECT | BARE SOY- | STUBBLE | RIPE | PASTURE | DENSE
CLASS __ Fixels) CLASS. { SOIL | CORN | BEANS| CUT HAY | OATS | GRASSES | GREEN | WOODS | UNCLAS. |
BARE SOIL ‘ . ,
(736) . 76.8 2.3 1.2 0.1 , 19.6
CORN ' | , , T
(3248) 94.6 0.1 0.2 0.4 3.8 |o0.8 0.2 §~
‘ 4
SOYBEANS . :
(1136) ©59.9 | 2.3 | 14.3 , 0.7 19.4 3.4
!
STUBBLE _ N ‘ i
CUT HAY ) o o ‘ i
& | (1648) 36.0 [44.3 2.2 [ 0.4 | 5.8 8.4 0.5 | 0.5 1.9 | i
— . - o o)
RIPE OATS : .
(80) 100.0 7
' // L atemnn
PASTURE- o | - { !
. |GRASSES - : ' . 4
- (864) 31.6 . |18.1 22.1 n.6 15.4° [10.2 | © 2.1 | ; '
. " : |
DENSE GREEN : o L
(1424) 62.5 22.7 | 0.1 11.9 2.9 j
wooDS , _ - ' S
(3440) 95.5 2.8 | 0.1 0.1 1.3 0.3 ‘

 Weighted Average Correct Classification = 75.1% ' : . b




B ¢ 4
‘--f.l,;..: U - i T e
' TABLE B-2,. SAMPLE FIVE-CLASS RECbGNITION PMOWCE
o - SUMMARY, CORRESPONDING TO TABLE B-1

kL

15 METER DATA - 7 OPTIMUM
CHANNELS PER CENT MISCLASSIFICATION

%,

P
" SCENE CLASS " | PER CENT CORRECT SoYy- RIPE ;
(No. of Pixels) CLASSIFICATION CORN § BEANS] OATS WOODS OTHER

o

CORN (3248)] - 94.6 b e 1 0.8 ] a5
soseans 136  se.0  Juasfea | | 2.
RIPE OATS (80) 100.0

WooDS  (3440) 95.5 ‘ 2.80.1 e | 1.6 Y-

omer - (4672)] - 8.6  fu.ofos | 21 5.5

- We. Average = 86.52
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- pixels, which amounted to almost 20 percent of the test'set.l

" soil was notﬂused as a. training set,~hgnce this non-classification is

'_logigal.‘

lf'édgesiof,éorn:fields.

© classified.

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

nation on large-scale aerial photographs was made of each test field

in which a large number of pixels were either misclassified or not

recognlzed.

The follow1ng paragraphs summarize results for each class

.-of ground cover, g1V1ng explanations for patterns of misclassification

where p0551ble. ' N

Bare Soil

The maJor problem with this class was the number of not—recognized

Fleldb

: w1th substantlal amounts of not—recognlzed points contained dark soil

in patterns similar to the patterms of non-classification.

.Corn ¢
- Cora was in general well recognized. ~

of ‘the points were misclassified as dense green.

Ogéasionalxﬁeedy patches‘were called soybeans.

Dark bare

S

However, almost 4 percent .

The points so

'glassified proved to be weedy patches in the corners or -along the

SoxBeans ;f’ .

Recognltion of this class
fleld ~s a‘result’ oL varlat1on
.this time ofzyear, “and because

always. found ‘n soybeans. The

. “fields having uniform and high

" was similar to the dense green

" tion between these two classes

.cover.

-.Occasional bare spots in corn fields were not

1

showed great»variabillty from field to
1P‘percentage cover of the soybeans at
of “he presence of weedy patches

soybean training set was sélected froa
Even so, the soybean signature
signature and problems of misclassifica-

were anticipated.

In general, dense stands of soybeans were correctly classified.

tieedy dense stands were cal;ed

dense green. Sparse stands were called
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‘sparse corn, accounting for the large ftactlon of test set called
corn. Some very sparse areas were called .bare s011. Occasional areas
~ of sparse cover with dark soil backgrounds were not recognized.
The geperal problem with accurate soybean recognition seems to
be the great variation in percentage cover at this time in the growing
season (thé date of data collection was 5 August, in a late growing
. :. season which means not all plants were fully mature) and the presence

of weedy patches in fields.

Stubble/Cut Hay

This was another spectral]y variable, poorly recognized category.

“The tralnlng set included stubble fields with little or no green weed
growth and - °ome dead s +~alks showing the false-color’ 1nfrared (CIR)

: photography. The major misclassification were bare soil, rlpe oats,»:
_pastures, and a little corn.

Areas where the straw had been gathered appeared 1ike bare soil
and were so classified. Areas where there was consilerable weed
growth (or a leguminous cover crop, which frequently is” planted
-in stubble fLelds following wheat harvest) were called pastures. A
few exccedingly dense spots were called corn. -

_The cause of low recognition accuracy of this class was the

- extreme spectral variability of stubble fields at this time of year.
Depending on fleld treatment, this class could look vetry much like
. cats (non-harvested or lodged~areas), stubble, bare soil (straw

gathered), or pasture {leguminous understory developed).

it T~ s S ———cE— {1+ 1 £ o b s -

i Ripe Oats _
- : Test fields were perfectly classified. At this time of year, oats

were fairly uniformly yellow in color. bThey were harvested one week

after MSS data collection, which was about one month later than usual.
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Pasture/Grasses

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

This class was poorly recogn1zed, probably because of the great
spectral vatlabillty in the class. The training set included areas gf
" medium vegetation\tover,ewith.some bare soil apparent from the tone on
4 _ the CIR photography. Hajor-misclassificatiens occurred as corn, \
stubble, dense green, and woods. Geheral comments are given below,
while a more detailed analysis of pasiure recognitlon is presented in
Section B.3. _ '
Corn recognition occurred in three of the nine_original pasture

test fields. When 1nspected on large-scale (1:2000) low-altitude

_black—and—whlte photography, one of tnese fioclds (64) exhibited a
'row structure which identified it as actually being corm, so it was

deleted from the pasture class. The other two fields where substantial

S arle o lo lie A

corn risclassification occurred were in very lush and obviocusly ungrazed
areas. '

Stubble recognition occurred in pasture areas which were unusually

T AT

' sparse — bare soil was visible in the CIR photography. - In view of what
uhas already been said about the stubble trainlng set, these results seex
btt ' plausible. ~ ' ‘ _ o k
; . B Dense green recognition occurred in areas of pasture which were
lush, but not as lush as those areas called corn. There was a «
- definite difference in the red color of CIR photography between pasture
areas called corn, dense green, and pasture, although the signatures
for dense green, pasture, stubble, and bare soil represent 5 cont.nuum
of percentage grass vegetation cover-from large percentage cover (dense n
'green) to no cover (bare soil). One would logically expect spectrally -
variable areas such as pasture to exhibit some recognition from each
of these categories. ' n ‘

A few scattered trees in pasture areas were called woods.
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Dense Green

This class, as noted above, représents dense green vegetation (or
alfalfa) growing in fields. The major misclassifications in dense
green fields were corn and woods.

Corn recognition.occurred in the more sparse areas of the dense

green test set. These points were recognized by the sparse corn

signature. Woods recognition occurred occasionally, scatterea through

fields. Some, but not all, of the woods misclassification can be
explained by trees in fields; the rest seem to be genuine misclassifi-

cations.

Woods

Woods in this area are mainly oak-hickory hardwood forests with

_varying per.entage cover. The-only misclassification of significance’

here was corn. That occurred in one sparse woods areain the corner
of one of the test set fields. Dense green recognition also was

observed there.

- Summary '

Corn, ripe cats, and wocds were well recognized. Soybean recogni-
tion was low because of misclassifications as dens> green vegetation
and‘corn, resulting from variations in percent ground cover.and the A
presence of ‘weeds. Bare soil recognition was redﬁced by a failure
to train on and recognize dark soil areas. Stubble and pastufes
exhibited substantial spectral variability'and consequent misclassifi-

cation, while sparser areas of dense green vegetation were misclassified.

B.2 COMPARISCN OF 15 M, 30M, AND 60 M RECOGNITION RESULTS
Eight-class recognition results for spatial resolutions of 30 m
“and 60 m arc presented in Tables B-3 and B-4, respectively. They were

compared .with Table B-1 for detection of trends in recognition accuracy
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" TABLE B-3.

WO

VAR A, b RTINS SRS L sl K ST R

'FIELD CENTER CLASSIFICATION ACCURACIES
7 CHANNEL DATA, NOMINAL 30-M SPATIAL RESOLUTION
. 30 METER DATA - 7 OPTIMUM — ‘
. CHaNNELS PER CENT MISCLASSIFICATION

'SCENE (No. of % CORRECT| BARE SOY- | --STUBBLE | RIPE | PASTURE | DENSE

CLASS _ Pixels) CLASS. | SOIL | CORN | BEANS | CUT HAY | OATS | GRASSES | GREEN | WOODS | UNCLAS.
3ARE SOIL ‘ : | ' ,
(.84) - 87.0 0.5 12.5
CORN N

(812) 94.1 0.7 0.1 3.9 0.7 0.4
SOYBEANS : 7 , '

(28.) 73.9 3.2 5.3 K 13.0 4.6
STUBBLE

CUT HAY , | : , :
(412) 37.4 |[51.7 1.2| 0.7 2.9 2.7 0.2 1.2 1.9
RIPE OATS :

(20) 100.0

PASTURE-

GRASSES _ S , ,
(216) 33.8 | 0.9 14.4 17.1 13.4 13.4 6.9

~ |DENSE GREEN ”

(356) 70.8 21.1| 0.6 0.3 4.5 2.8
WoODS )

(860) 96.7 1.9. 0.1 1.0 0.2

Weighted Average

Correct Classification = 78.4%
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60 METER DATA - 7 OPTIMUM

TABLE B-4. FIELD CENTER CLASSIFICATION ACCURACIES
7 CHANNEL DATA, NOMINAL 60-M SPATIAL RESOLUTION

PER CENT MISCLASSIFICATION

CHANNELS
SCENE (No. of % CORRECT| BARE | SOY- | 'STUBBLE | RIPE | PASTURE | DENSE | _
CLASS Pixels) CLASS. | SOIL | CORN | BEANS| CUT HAY | OATS | GRASSES GREEN | wooDS | UNCLAS.
BARE SOIL )
(46) 84.8 15.2
CORN .
(203) 93.6 0.5 3.9 | 0.5 1.5
SOYBEANS .
a1 29.6 29.6 38.0 2.8
STUBBLE
CUT HAY Co )
(103) 46.6 37.9 1.0 2.9 12.6
RIPE OATS
(5) - 100.0
PASTURE-
GRASSES ‘ _ : )
(54) 24.1 18.5 14.8 9.3 13.0 7.4 13.0
DENSE GREEN o , ) S
1 (89) 71.5 15.7 1.1 1.1 4.5
WCODS _ |
(215) 97.7 1.9 0.5

Weighted Average Correct Clagsification = 75.7%
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when spatial resolution was degraded from 15 to 30 to 60 m. Again,
performance in each of the tast fields was examined and related to

the pattern of errors previously discussed 'in Section B.l.

"Bare Soil

The major factor influencing the recognition accuracy for bare.

,.,
M‘"";,.‘

15 m, 3.6 percent of areas were misclassified, while 19.6 percent of

points were not classified for reasons discussed before. At 30 .and

© 60 m resolution, the small weedy patches were averaged with other bare

soil points so that misclassification diSappeared;'
The test for the not—recognized»class-is based on the sizes of
signature standard deviations (a x? test is used) .’ Since signature

standard deviations decrease in going irom 15 to 30. to 60 m resolution,

" one could expect more pixeis to be not classified at the largerb

resolutions. However, this effect was offset here to an extent by

the averaging of dark bare soil pixels with light bare soil pixels at
boundaries — these boundary areas being subsequently called bare V
soil. This averaging cauczzd the not-claséified category to be smaller .
at 30 m than at 15 m. Correct soil recogniticn increaséd, but centers
of dark bare soil areas still were not recognived. At 60 m, where .
fields of 4 to 8 pixels were common aud only 46 pixe's were tested .
for bare soil, 21 one pixel shift between categories is sufficient to

shift resalts by 2 percent; bare soil recognition decreased by that

~amount from the percentage for 30 m, while the not-recognized category -
increaseu about the same. T N
Corn

The recognition accuracy of corn remairned nearly constant as a

function of spatial resolution. Only a slight increase in the size

- of the not=-classified categofy was observed -in going from 15 to 60 m,

268 o :
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and misclassifications as dense green and woods remained substantially ‘

constant.

Sozbea

Major changes. occurred in the accuracy and pattern of misclas-

: 51f1cat10ns in the soybeans data. Qual1tat1vely, this was caused by

the spectral varlablllty of soybeans and a typical field mottling

pattern at a scale of 30 to 60 m 9bserved on the photos. Thiv point

" will be eiaborated below.

In going from 15 to 30 m resolution, ﬁhere‘was a major decrease
in corn and dense green misclassification. Bare soil misclassification
decreased slightly, while the not-classified categdry_increased ‘
sliéhtly. ‘> -

- Bare soil m1sc1a551f1cat10n occurred in the same two fields in the
30 m data as in the 15 m data, but at a reduced percentage of the total
area. Bare spots were fairly small and localized (even though the
percentage cover in the fields where bare séil recognit’ 1 occurred
was generally low and variable). In generation of the coarser resolu-‘
tion data, pixels along edges of the bare soil areas were averaged with
soybean pixels. to produce composite pixels recognizéd as soybeans in
the 30 m data. ; *

Major decreases in false cognArecognition occurred in two of the
three soybean fields when going from 15 to 30 m resolution. Many
pixels called sparse corn on the 15 m data were called:soybea*q
on the 30 m data. ’

In compar1ng the standard deviations and means of the ‘parse corn

-and soybean signatures at 15 and 30 m, we find that standurd deviations

for corn at 30 m are z2bout 91 percent of those at 15 m, wh11e soybean

standard deviations at 30 m are 98 percen” of those at 15 m. The

_effect of the reduction in standard deviations is magnified by the

fact that in six of the seven channels used f9r> yecegnition, ;he' ‘

- 289
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mean separation between soybeans and sparse corn is less than one

standard deviation of soybeans. These changes could cause a shift

of the decision boundary betw:en sparse corn and soybeans so as to

-favor soybeanArecognition. » .‘ : e
The same explanation holds for the decrease in dense green

recognition, although the dense green spéts were generally small and -

‘would tend to be averaged with more normal soybeans points and be called

soybeans. Examination of the recognition maps for 30 m and 15 m data

reveéls that dense green points on the 15 m map are‘avéraged with V

points called soybeans on che map. The result is called soybeans on

the 30 m map, resulting in a decrease“in misclassification of soybeans

as dense green. ‘

5 ' ’_‘When going from 30 m to 60 m data, the dramatiC‘decreasé~in the

E -~ - classification-accuracy of séybeans is' caused by the rather solid

’ ‘misclassification of two of the four test fields as sparse corn and as

; E v dense green. There,alsp was substantial recognition of sparse corn

and dense green in these fields at 15 m resolution.

Stubble o - ' ’ , S
Thé'major effect on étubble recognition in going from 15 to 60 n | '

was a decrease in misclassification as bare soil and an increase of

tne not-classified category; Compared with 15 m data, misclassifica-

tions as corn, dense green, pastuies, and soybeans all decreased as_ -

resoiution elément size was increased, because the previocusly mis- ’

classifiea areas were small and were averaged with pixelé normally

called scubble. f |
Increases in the not-recognized category occurred in three

fields at 60 m resolution. In one field, nea:ly totally misclassifieq

as bare ‘soil (it looks like bare soil on the photography), not- ‘

classified areas correspond to dark bare soil areas within the field.

‘In another fielé, the 60 m data show not-classified points at the

g | 290 .
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- edge between a bare soil section and a section where there appears to

be straw on the ground. The mixture appéars dissimilar to either bare
soil or stubble. In a third field, the area is so mottled that at
60 m, sizable averaging of green vegetation, stubble, ahd dark bare
soil o curs. The field is quite small (only 3.pixels at 60 m) and the -
results of the averaging are data points which do not resemble any

signature enough to be recognized.

Ripe Oats .
Since ripe oats were perfectly recognized .at all spatial‘resdlu-

.tions, no further discussion of accuracy will be made.

bPasture
. The pasture class is spectrally quite variable, ranging from
lush green pastures to nearly bare soil. The training set was
selected from pastures of intermediate, but uniform, grass cover, as
judged from the CIR photography.

| The major effects on past' ve rccognition when going from 15 to
60 m data are'the decrease in stubble misclassification, the increase
at 30 m and then decrease of woods misclassification, and the increase
in the not-recognized case at both 30 and 60 m. Summaries of results

for individual fields are presented in following paragraphs, with

- detailed discussion in Section-B.3.

7 Substantial stubble recognition occurs in four fields. In-one,
the field is so sparse that it is cqmpletely classified as stubble

at each resolution. Two fields have stubble recognition in sparse
covered areas which are small and jistriuvted through the field.
Averaging of pixels lumps data from these éparse areas along with
normal points, and the resultant data are called (incorrectly) sparse
corn. At 60 m, the field is only 2 pixels wide and 4 pixels lorng,

and at this resolution the averaging is so severe that all pixels are
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incorrectly called sparse corn. A fourth field shows stubble recogni- Q
tion in areas of sparse vegetation cover adjacent to dark bare soil. 3
3 As the pixels;are averaged with che dark-bare-soil pixels, the points
are.not classified (at the coarser resolutionsj. . ’ ’ . .
, Woods recognition is primarily in two pasture areas, one where
there is substantial brush in one corner, and the other with one or

two trees. Woods recognition decreases in the pasture with one or two

trees as resolution element size increases. This occurs because of

;
3
]

the averaging of the tree pixels with the surrounding pasture pixels.

In the other pasture, the tree recognition stays about the same as 1

. . ) R .
1 —,‘—-x'MT".?','W'G‘J' -

pixel size is increased because the area of brush is relatively large. i ' i
The not-recognized category increases jin size as we move from 15 '
to 60 m resolution. This increase can be explained by the averaging

of dark soil pixels with normal pasture pixels at -the coarser resolu-

acisct:

tions. Resultant composite pixels are nct classified, thus increasing

-the size of the not. classified class..

iad Bt ol et e Bl

Dense Green
The major effect on dense green recognition when going from 15
to 60 m is a reduciion in the amount of woods misclassification. Trees

are generally scattered throughout some of the dense green fields just

“as they were through pastures. Since the woods are scattered,
averaging with valid dense green ‘points produces data which are called . -

dense green.

RS IRNTE?

Woods

The only significant effect of increasing the resoluticn element ~

S G o

size on woods recognition is a slight reduction in the corn misclassi-

fication. As previously noted, corn recognition occurs in small areas
<% of sparse woods. Again, the averaging of these small areas with more-
? homogenecous arcas of woods at the larger resolution elemenc sizes
’ ‘ " results in pixels élasses as woods.
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B.3 ANALYSIS OF PASTURE RECOGNITION

Because the .test set evaluation of paéture yielded very low
accuracy results at all spatial resolutions, and because our analysis
of test set data with CIR photography revealed that pastures are a

spectrally variable class, we decided to do a more thorough analysis

.of the recognition patterns in pasture areas.

The August data set registered pasture areas-at very nearly their
most variable stage. Some pastures had not been grazed and had
developed -lush dense green canopies. Other areas had been grazed and

showed a typically mottled pattern varying from gray or biue (bare soil)

‘to pink (dense vegetation) on the CIR film. The variation within

pasture areas was iu some cases as great as the variation between
bare soil and dense green vegetation. '
In a mission sense, a better time to collect data for pasture

recognition would be in spring, right after fields had been plowed, or

 possibly early spring when pastures are green kalong with winter

wheat), and cattle have not been allowed to graze on the forage. At
those times, pastures as a class would be spectrally more homogeneous,
and easier tuv separate from other scene materials. '

We performed two analyses on the pasture test set data, the first

a quantitative comparison involving the test set classification results

.where the results were compared to a trained, unbiased photointerpreter's

estimate of the composition of each test field. Results are discussed
in a section below. GSecond, for one pasture test set, we quantitatively -
estimated the percentage: .amposition by a dot-grid technique applied
to the photography. The édéhtitative estimate was then compared with
the recogrition estimate.

In deriving the photointerpreted results, the distinction between
deusity élasses of vegetation (represented by the-classifier classes
dense green, sparse corn, pasture, stubble, and bare soil, progggssing

from dense to sparse vegetation COyer) was subjectively estimated.
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Discrepancies of + one density class-are to be expected vetween
photointerpreted results and classifier results. For example, the
photointerpreter might have ‘called a particular area sparse corn while
the processor called the area pasture or perhaps dense green.
A total of elght pasture test sets were examined. These are
discussed individually in following paragraphs. Definitions are given
in Table B-5. o - . : ‘ : T

Field 61 (Table B-5)

Field 61 is a pasture in the southern end of the fllght line. Thé
photointerpretation and recognition resulic ar: summarized in Taule ‘
B-5. It is a fairl> typical pasture with sparse grass cover in the
middle and lush grass along the southeastern and vestern field

borders. Some dead grass’spots are noticeable in the center.

Field 62 (Table B-()

This pasture is a fairly lush pasture with some sparse areas
apparent in the center. Isolated small bare spots are also visible.
Table B-6 summarizes the accuracy of the classification and compares

the recognition output vith the photointerpreted results.

Field 63 (Table B- 7)

This relatively lush pasture is very similar in appearancz to -

Field 62. Vegetation percentage cover differences are apparent on

]
g
£
H

the photography, with areas in the north center of the field having

lower cover than other areas. Table B-7 compares recognition and

photointerpretation results.

Field 65 (Table B-8)

This field is a very lush pasture which has not been s-azed for

some time, although animal trails and bare spots where a watering
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TABLE B-5. FIELD 6] RECOGNITION AND PI DATA
‘ : 96-15m Pixels ix the Field Test Set

PERCENTAGE COMPOSITION

CLASS RECOGNITION  PHOTO-INTERPRETATION
Woods R 8.3 o 1
Pasture L 8.1 69
 Ripe Oats : AA.Z_ _ _ ‘20

Sparse Corn - T 7.4 ‘ ‘ .10

Weighting Factor* = .1111

Accuracy** = 72.46%

*Weighting factor is the fraction of the total test set size
present in this field.

2]112. where rec is computer
recognition and PI is

. photo-interpretation

*xDefined as: 100-[Z(Xrec - RPI)

" 'TABLE B~6. FIELD 62 RECOGNITION AND PI DATA
96-15m Pixels in the Field Test Set

N

R PERCENTAGE COMPOSITION
CLASS - o RECOGNITION PHOTO-INTERPRETATION

Dense Green & 67 50
Sperse Corn .33 40
- Woods . ) H 0 : ‘ 10
Weighting Factor = 0,1111 ~ Accuracy = 79.97%
: 295 . e
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TABLE B-7. FIELD 63 RECOGNITION AND PI DATA

Sparse Corn
Stubble
Pasture

Dense Green

Weighting Factor

Accuracy

16-15m Pixels in the Field Test Set

PERCENTAGE COMPOSITION

RECOGNITION ~'PHOTO—INTERPRBTAIION"-

18.8° - 30.0
a7 * . 50.0
0o 2000
31,5 h - 0
- 0.0185
= 55.73%2

TABLE B-8. ; FIELD 65 RECOGNITION AND PI DATA

CLASS =
Dense Green
Sparse Corn

Stubble

Weighting Factor _

Accuracy

#/128-15m Pixels in Field Test Set

' PERCENTAGE COMPOSITION

RECOGNITION PHOTO- INTERPRETATION o
0 . 20 :
86 | 80
14 : 0
= 0.1481
= 74,867 °
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trough or food bins have been are apparent. It was recognized -

‘primarily as sparse corn because of the relatively lush vegetation

growch.

Field 66 (Table B-9)
V This pasture, near the I-96 freeway, is very sparsely covered with .

grass and has considerable bare soil showing.- The field was 100 per-

cent recognized as stubble. " This is caused by the presence of some

apparently dead vegetation (yellow tones on the CIR film).

G

Field 67 (Table B-10)

This pasture, just north of. the 1-96 freeway, has lush vegetation-
spots, along with areas of dérk bare soil and considerable brush
gfowing in the southwest cornmer of the test set. The lush spots are
recognized as dense green, wnile the brush areas are recognized as
trees. Pasture and sparse corn split the remainder of the test set,

with areas of sparser grass cover being recognized as pasture.

Field 68 (Table B-11)

This pasture is quite variable, with lush vegetation apparent in
the northwest corner and in twc. north-south strips in the field center.
The remainder of the area is quite sparse grass cover with considerable

bare soil apparent. Some strictly bare soil spots are visible.

&
n'f

Table B-11 summarizes recognition and photointerprétation results.ég

Field 60 (Table B-12) _ i
This field has relatively dense vegetation cover, but is nnttled,

indicating some variation of cover over the field. Some areas bf dark
bare soil or»possiblylstubble are apparent in the south central part of
the field. .Table B-12 summarizes the recognition and photointerpreta-

tion results,
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"TABLE B-9.

" CLASS
Dense Green

Stubble

RECOGNITION

100.0

‘ ﬁeigh;ing‘Factor: = 0.0741

Accuracy

= 71.72%

b —e

{

FIELD 66 RECOGNITION AND PI DATA
64-15m Pixels in Fleld Test. Set

" PERCENTAGE COMPOSITION

PHOTO- INTERPRETATIO
20

80

T TABLE B-10. - FIELD 67»RECOGNITION-AND PI DATA
144-15m Pixels in Field Test Set

- CLASS
Woods
Sparse Corn

Dense Green

- Pasture

Weighting Factor

Accuracy

RECOGNITION -

5545
1.4

19.4

22.9

= 0.1667

= 58.13%

PERCENTAGE COMPOSITION
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PHOTO- INTERPRETATION

25.0
30.0
20,0

25.0



TABLE B-11. FIELD 68 RECOGNITION AND PT DATA
‘ 256-15m Pixels in Field Test Set

PERCENTAGE CQMPOSITION

| CLASS B RECOGNITION - ~ PHOTO-INTERPRETATION
 oseble 31.5 | ~ 48,0
:"Qi_» Sparse Corn . 1.0 L " 10.0
§ Bare Soil 0 -0 2.0 7
Tfasfure . - 63.7 - ”‘ ' ; 40.0
;{L Not Classified R 3.1 0

Weighting Factor = 0.2963
Acquracy : = 69.537

TABLE B-12. FIELD 60 RECOGNITION AND PI DATA
. 64-15m Pixels in Fieid Test Set

PERCENTAGE COMPOSITION

CLASS RECOGNITION PHOTO-INTERPRETATION .

Bare Soil 0 10.0
Stubble 329 25,0
Dense Green 51.6 . j 45.0
Sparse Green 0 . - 20.0
Dense Corn - 1.6 . ‘ 0
Not Classified | .14.0 _ ' 0

Weighting Factor = 0.0741
Accuracy = 73.45%
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DétailedrAnalysis of Field 67 (Table B-13)

To more quaqtitatiﬁely explore the correlation between the
photointerpfe;ed estimates of field content and recognition results,
: additional analjsis was perfdrmed on Field 67. Photointerpretation
? quantitatively estimated the percentage of each category within the
test set boundaries in Field 67 using a dot-grid technique. The -
results were then compared to the recognition results as. shown in
Table B-13. -
The average accuracy, using this éomparison mcihod was 36.1 per-
~cent compared with 58.1 percent for the accuracy using the qualitative
field composition analysis. Thé-major discrepancy in both the results
occurs in the recognition of the brush category. Recognition proces-
sing overestimates this category within this particular field, and
this accounts for the feduced field recognition accuracy. In general,"
it is not likely that brush of this density will occur in pastures,
- so the condition in this test set is somewha;'abnormal for pastures
in general. A
_ i
B.4 EFFECTS OF COSTfFACTOkS ON CLASSTFIER PERFORMANCE ON PASTURES
- In an effort co;improve the correct classificatibn of pastures
by feducing false al;rms from sparse corn, demnse green, and ripe
oats, cost factors were introduced in the decision rule to selectively
penalizé various misclassifications, e.g., pasture misclassified as
sparse éorn was penalized more heavily than sparse corn misclassified
as pasture. Originally, equal weights (costs) were used. |
Using cost factors as shown in Table B-14, the test set was.
reclassified using the same signatures and channels as the original
case. The 15 m data were used for this test.
Results of the classification, for pastures, are_shown in Table
B-15, aldng with the resﬁlts from the equal-cost case previously rum.

There was modest improvement in the pasture recognition accuracy
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_TABLE B-13. QUANTITATIVE RECOGNITION AND PI .
COMPARISON FOR FIELD 67
144-15m Pixels in Field Test Set

PERCENTAGE COMPOSITION

CLASS ﬁECOGNITIONvi ' PHOTO-INTERPRETATION
. Woods 55.5 SRR 9.6

Sparée Corn : 1.8 , | 35,8
" Dense Green L 19;8 — 1.3

Pasture - 22.9 o 35.4
Stubble 0 | 17.9

Average Accuracy = 36.1%

¢

301



TABLE 3-14, COST FACTORS FOR REVISED RECOGNITION OF PASTURES

Classifier Class

s D8 s sy st R B I6 ¥
' pare Soil X 9 11 1 1 1. 1 1 o
"Dense'Corn’.i X 1 1 1 -1 | 1 1-_1_
sPairse Corm1 1 % 1 1 1 @ 1' 1
Soybeans 1 1 2 X 1 ‘1‘ 1 2 1
Stubble 1 1 1 1 X 1 1 1 1
Ripe Oats 1 = 1 1 1 1 X 1T 1 1
. Pasture ’1, 1 (:) 1 - \2 s 27‘- | X 2 >‘ 1
Dense Green 1 1 2 1 1 | 1 1 X 2
Woods 1 1 1 1 1 1 11 x .

e.8.: The cost of calling pasture sparse corn is 2.

The cost of calling sparse corn pasture is 1.

N
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TABLE B-15. EFFECTS OF COST FACTORS ON RECOGNITION OF PASTURES % CLASSIFICATION

(FI_RST # SHOWS RESULTS WITH ORIGINAL DECISION RULES)

FIELD " BARE . DENSE  SPARSE ~ RIPE o DENSE

NUMBER = SOIL CORN CORN  SOY STUBBLE OATS PASTURE GREEN
60 | 1.6 32.8 . 51.6
(64> 1.6 29.7 . 53
68 1.2 R S 63.7 b
(256) ' 28.1 68.8
67 1.4 | | 7 22.9 19.4
(144) 1.4 Lo 25.0  19.4
66 S ~100.0
(64) ' 100.0 4 . Lo
65 "~ 85.9 14,1 %
(128) 83.6 16.4 |
63 o 18.8 3.8 T 315
(16) 18.8 e 31
62 32.3 o . 67.7
(%6) 25.0 o - 75.0
61 g 7.3 42 80.2
(96)

4.2 ' 5.2 82.3

PCT CORRECT CLASSIFICATION = 31.6 (ORIGINAL RULE
33.67 (WEIGHTED RULE)
*No. pixelg in field

NOT

WNOODS  CLAS.

14.1

3.1
3.1
55.6
. 53.5
‘8.3
. 8.3

*"**fT*“ff;;tiﬂei
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overall, but the classification of some pastures did not change
(e.g., 63 and 66). The change in the‘clggsification of other areas
was more modest. ’

The reasons why the classification did not change more dramati-

cally are probably because of the extreme spectral variability in: =

pastures and because the cost factors were not enough different from
unity to cause major charges in recognition boundaries. -
When photointerpreted results are taken to be the true composi-

- tion of the eight pastures, the computer recognition accuracy becomes
70 percent, compared with 31.6 percent if all pointsbin pasture were
actually pasture. -

The use of cost fa~tors to bias the recognition results to permit
morgvpésture recognition in pastures and fewer false alarms of sparse
corn, de@se green aﬁd oats improved recognition in pastures slightly
from 31.6 percent to 33.7 percent. Apparently, more drastic cost
factors than the 2:1 factors uéed are required to materially alter the

processing results on this data set.
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APPENDIX C

PROCESSING AND ANALYSIS OF S192 DATA
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PROCESSING AND ANALYSIS OF S192 DATA

C.1 INTRODUCTION . ,
At the outset of the study, it was feit that processed $192 data
would provide a valuable baseline on the performance of pattern '

recognition devices on multispectral, broad spectral coverage (0.4~

©12.5 um) spacecraft data. Accordingly, test sites were selected

where S192 data and supporting aircraft under-flight data were avail-
able. Previous sections of the report have dealt with the analysis
and processing of the aircraft scanner data. This section details
the processing and analysisAof the S192 data. v

Although S192 data were ordered from five test sites, data from
only four w:re processed and analyzed. The fifth data set, from North
Dakota was retained as a backup. Processing of White Sands and
Atchafalaya data were completed at ERIM and Baltimore data were
processed at aneywell-Minneapolis. Processing the Michigan data was
started at ERIﬁ:Wbut was not completed by the end of the contract
becauée of technical alfficulties. '

Because.th€‘8192 data were noisy when originaliy collacted (the
sensor was not operating in normal fashion), noise reduction techni-
ques were designed to preprocess the data before analysis could begin.
These noise reduction techniques, developed in February 1974 before
the production processing system was fully operational, were success-
ful in reducing the noise on the data, but noise was not entirely
eliminated.b The resultant data were thus noisy enough to represeunt
the upper limit of NEAp for most applications we examined. Accord-
ingly, the aircraft data simulated cases of higher radiometric »
fidelity than the S192 sensor. Because oi the radiometric quality of
the S192 data, the planned radiometric studies were not performed.
Studies were performed on the rank ordering of $192 spectral channels

for various applications and the classification accuracy obtainable
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with different numbers of bands. These study results are reported

in this'appendix._

C.2. APPROACH

As previously mentioned, noise reduction algorithms were designed
and implemented before the actual processing of the data commenced.
In this section, both the noise reduction and the processingﬁgpprqaches

will be discussed.

C.2.1 NOISE REDUCTION

The S192 data, as recorded on the spacecraft, were more noisy
than expected, as a result of non-ootimum sensor operation. Three
types of noise appeared at unexpecﬁed levels in the data — 1/f or low
frequency noise with a period of several scan lines, herringbone .
medium frequency noise caused by mechanical cooler piston action, and
high/frequency white noise. These types of noise had been recognized

- early in the analysis of data, and ERIM were already under contract to
_assist JSC personnel in defining the filtering schemes and filter
parameters to reduce noise to acceptable levels.

As a first stép in the pfocessing, power spectra analyses were
performed on the data from each of the five areas to determine the
dominant frequencies ofrthe ncise sources and the amplitude of each
source. Then filtering schemes and coefficients were designed.

The reduction of 1/f noise was handled d:ifferently from the
reduction of herringbone noise. Because the 1/f noise had a frequency
of only fractions of a cycle per scan, the dark level clamping algor-
ithm alrecady planned for use as part of the calibration system package
would be effective in reducing this noise level. The noise appeared

_as a "bounce” on the signal, and to a first approximation, each point

" 2.
i B

of a given scan line was offset from the corresponding point on the

previous line by a constant amount. The .amount of this offset varied
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from line to line. Becéuse an offset was involved, the clamping

system should have removed all of the variation. However, it was

 difficult to obtain'an_accurate estimate of the dark level (or fold
reference plate for the*thermal channel) because some of .the data
values exceeded the.dynamic range of the A/D convertér on board the
'spacecraft. Accordingly, a revised dark level was estimated by
fitting a Gaussian curve to the valid daté points, then estimating a
new mean value for the dark reference. This new mean value was usedi
as the dark referenée. Ciamping'all data values to.this revised dark
reference effectively reduced the 1/f noise because a new dark refer-
ence was palculéted'by each scan line. The noise varied for signal -

" level at rateé considerably less than the scan line rate. o

A different filtering approach was used Eo remove the herringbone

noise. Because the noise consisted of a set of well defined frequen-
cies in  the video bandwidth, shérp notch filters were designed to
‘remove the energy at the frequencies of the noise. Because. sharp
Anotch<filters transient response includes ringing, and the ringing is

~more severe for narrower - filter notches (for a given notch shépé), the
best filter for removingfthe herringbone noise while retaining as much
of the originail Qideo data unaltered was a compromise. The suitable

- filters were implemented as digital filgers, using a program developed
by the Jet Propulsion Laboratory (JPL).

" Both the clamping and the digital filtering of data were per- - ki.
formed by_NASA\at JSC. Data calibration and scan liﬁe straightening,
to produce standard product 5053, completed the preprocessing of the
5192 data. T

C.2.2 PROCESSING TECHNIQUES .
Processing techniques used for the S192 data were very similar
to those used for the aircraft data as discussed in Section 2.

However, the approach will be further discussed here.

308



Z - i . FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF mcmcgu

C.2.2.1 WHITE SANDS GEOLOGY DATA PROCESSING
The White Sands data for the Geology case were collected'

“on the SL-2 mission on 14 June»l973, and pertinent characteristics
of the data are summarized in. Table C-1.

‘The first step in processing was to copy the 9 track 800 bpi
data sets to the 7 track 800 bpi ERIM standard format‘for further
processing. This step was accomplished on an IBM 360 éomputer.
.Special software was developed for this task, with>supp6rt for the

. development coming partly from this contract and partly from other
'Skylab 1nvestigat10ns at ERIM. ‘

- The next processing step (see Figure C-l) was to. prepare a graymap
of the red band for location of training sets and verification of
data coverage and quality. Us1ng ground infcrmation gathered from
geologlc maps and past geologic studies, training sets for important
rock and soil types in the White Sands Area were located on the graymap.:

Before sipnatures were extréctedifor the geologic materials, a
set of promisingk:atio features were defined by analysis of Earth '

. Resources Spectral Information System (ERSIS) data of the materials.
likely to be found in the scene. ERSIS library spectra were then
'edited, using standard progréms,.to yield spectra of waterials
likely to be in the scene. A set of likely materials was then

. determined from analysis of ground truth information. Of 98 possible

~ ratios, twehty promising ratios were defiﬂed by calculatiné.reflect-
ance ratio data from ERSIS (band averaged over S192 spectral band-
widths), and selecting ratios which separated the scene materials.

When the twenty-four promising ratios were identified, signatures
from the training sets, previously located on the graymap, were
extract=d. A transformation routine was then used to calculate ratio
feature signatures directly. Before forming the ratio features for
signature calculation, the darkest object level was subtracred from

each signal value in the channels to be divided.
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? , | ABLE C-1. DATA CHARACTERISTICS L |
S ' White Sands _S'—i92 Data o : - | ) '
. / _.f;_ff%pxc'rm CHANNELS AVATLABLE - - - N -
| o 41 - 46 um S g8-.88 10.2-12.5
46 - 51 - .98 - 1.03 o
.52 - .56 o 1.09 - 119
l © .56 - .61 © . L20-130
| .62 - .67 | _ 1.55 - 1.75
| .68 = .76 . 2.10 - 2.35
o SPATIAL RESOLUTION CASES CONSIDERED
' 80 m
OTHER mmmm' DATA J
Date of Collection: 14 June 1973
Plight Altitude: 260 n. mi.
Sensor: §-192, S-190A SL-2 Mission
Time of Day: 1444:42.3 - 1445:00.0 GMT )
(juanti.ty of Data:: 40 x 100 n. mi. ‘ )
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Signatures extracted from the training sets were then analyzed

for consistency, and signatures of like materials combined to form

training set statistics more characteristic of the class to be

recognized. The optimum ratio features, and the spectral channels

comprising these ratios were pripritized by the feature selection

'program.

Data were then classified using the composite training set
statistics, the optimum 13, 7, or 4 channels and the darkest

object levels previously dete;mined in preprocessihg. Recognition

~ maps were dispiayed and analyzed to determine the correct and

incorrect classification of geologic materials.

C,2.2.2 BALTIMORE LAND USE DATA PROCESSING
7 _The S192 data for the Baitimore Land Use Test Site were
collected on the SL-3 mission on 5 August 1973, and pertinent éhar-
acteristics of this data set are shown in Table C-2. All processing
of the Baltimore S192 data was done at Honeywell-Minneapolis.

After format conversion, all bands:of the S192 data were converted
Vto imagery on the Optronics filmwriter. Also digital compdtgr graymaps
of the red band were made to allow selection of training sets and to

1ocate the area covered by the 8192 data (see Figure C-2)

‘:? Before continuing with the processing, Anderson Level 11 ground

{hEOtmation provided by R. Alexander of USGS was digitized and merged

S with the 5192 data to provide a base for selection of training sets

g

‘and for evaluating the ultimate map product. Then training sets for
Andegson Level 1I categories were extracted from three sub-areas of
the tbﬁal §192 data — Washington, D. C., Baltimore, and an area
halfway betwten Washington and Baltimore. |

’ Afte1 training sets had been selected, and the various samples of
each Level»}l land use class combined to create composite signatures, °

the Otdefing of spectral channels was performed using the mapping
error criterion.
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TABLE C-2. DATA CHARACTERLSTICS d
Baltimore S-=192 Data
' 'SPECTRAL CHANNELS AVAILABLE

41 - .46 ym | .78 - .88 10.2 = 12.5
.46 - .51 .98 -'1.03

.52 - .56 1.09 - 1.19

.56 - .61 ©1.20 - 1.30

.62 - .67 1.55 - 1.75

.68 - .76 2.10 - 2.35 K

SPATIAL RESOLUTION CASES CONSIDERED

80 m

OTHER PERTINENT DATA

Date of Collection:
Flight Altitude:
Sengor:

Time of Day:

Quantity of Data:

5 August 1973

235 n. mi.

S-192, S-190B, S-190A, SL-3 Mission
1503: 48.6 - 15043 01.3 GMT

40 x 61 n. mi.
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..;N 3 :
Classification was performed using the K-class classifier and

various approaches. The first approach was a conventional one-pass
classification approach using the best seven and all thirteen spectral
bands. In another approach, sequential classification was attempted,
using a few channels to distinguish broad land use classes, then using
other channels and the broad class assignment to pérform more detailed
recognition. Finally, an approach combining_the sequential classifi-
cation with a modification of the decision rule whiéh adjusted the
recognition of a pixel to conform to the identification of its neigh-
bors, was 1mp1emented. The details of this procedure are discussed ‘
in Sectlon C.3.2 of this appendix.

The classification results were evaluated using a test set of

points. A color coded recognition map of the data was also prepared.

C.2.2.3 ATCHAFALAYA WATER QUALITY DATA PROCESSING
The Atchafalaya data for the water quality study was

collected on the SL-3 mission on September 19, 1973, and pértinent

characteristics of this data set are summarized in Table C-3.

After format conversiou, both red and near,infrared (0.78-0.88 um)
bands were mapped to ‘provide a picture of the terrain. Both bands
‘were mapped to provide a picture of the_vegetation classes (portrayed
by the red band) and the vegetation — water iﬁterface (portrayed by
the near infrared band). |

Because of the priority'of the water quality study, relative to
the mapping of the agriculture classes (neérly all 6f the agriculture
was sugar cane) and the natural vegetation (a great deal of which was
cypress-tupelo forest), this investigation was pursued, as shown in
Figure C-3. ‘

Initially, the data were edited to cover the same general area
as the MSDS data previously discussed, but there was incomplete

overlap of the aircraft coverage and the S192 coverage. After editing,
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TABLE C~3. DATA CHARACTERISTICS
Atchafalaya S-192 Data

" SPECTRAL CHANNELS AVAILABLE

.41 - .46 1 - .78 - .88 10.2 - 12.5
.46 - .51 o 98 -1.03

.52 = .56 1.09 - 1.19

.56 - .61 | 1.20 - 1.30

62— .67 1.55 - 1.75

.68 - .76 2.10 - 2.35

SPATIAL RESOLUTION CASES CONSIDERED

80m

OTHER PERTINENT DATA -

Date of Collection: 19 September 1973

Flight Altitude: ‘ 260 n. mi.

Sensor: $-192, S-190B, S-190A
Time of Day: 1345:57.8 - 1346:16.8 GMT

Quantity of Data: 40 x 76 n. mi.
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- data are relatively small, with many fields less than 20 acres and
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water of varieus turbidity classes were ideantified on S190A and RC-8
photography and located on graymaps of the area. '

At the same time as signatures were being located and extracted,
an analysis of data quaiity was made to determine the level of noise,
and to obtain some estimate of the number of classes of water quality
which couid"be discriminated. u '

‘ Signatures for various water quality types were combined to yield
a set of composite signatures for water quality mapping and determina-
‘tion of optimum channels for mappihg?‘ Then the optimum chanunels
were determined. » .

A map of water quality was made using the $192 data. Prior to
mapping various water quality types, the water data was separated
_from the iend data by :slicing the 0.78-0.88 um .band. The map was .

later analyzed as reported in Section 3.3 of this report.

C.2.2.4 MICHIGAN AGRICULTURE‘DATA PROCESSING
Although the intent was to process the S192 data cellected

over the Michigan Agriculture test site on 5 August 1973, to obtain

a recognition map of crops, this effort was not completed by the end

of the contract. The major problem encountered with this data set

was the difficulty in locating training sets for the major crops. Two
- factors are felt to be responsible for this difficulty. First, the

data were collected on a very hazy day, and the contrast of the scene .

was reduced as a result. Second, the field patterns in the Michigan

nearly all fields less than 80 acres. Under these conditions with
ERTS data, training fields of 40 acres or less have proven difficult
to find.

Procedures were initiated to locate training sets by locating the
sets on a topographic map and photography, then translating the
location to the S192 data through the use of control points visible
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on both $192 and photography or map data. We were unable to complete
this work before the end of the contract, and it is being continued

;hnder our Skylab investigations.

 C.3 PROCESSING RESULTS
: " As a result of the processing procedures detailed 1n Section 2,
;vprocessed products were obtained for the Baltimore, White Sands, ‘
and Atchafalaya sites. In this section, the intermediate and fin#l

results of the processing are presented and discussed.

C.3.1 WHITE SANDS DATA RESULTS ,

After preparing a red band graymap, and consulting existing
geologic maps and other information, a nuﬁser of training sets were
selected from the data. After considerable analysis of the signatures,
the thirty signatures shown in Table C-4 were defined fot'classifying
‘the data. The signatures are divided into five main groups roughly
organized according to composition — ferric iron containing materials,
calcareous materials,. igneous rocks, clays, and other materials.

In parallel with the effort to locate training sets, we
jnstituted an investigation to define promising ratio features from
'S192 data using the spectral reflectarnce information from the ERSIS
Library. Analysis defined the twenty-four ratio features shown in
Table C-5 as ones which-well separated the thirty signatures. Next,
the ordering of the features was accomplished by a digital computer
program STEPL [26]. The results of the analysis are shown in Table .
C-6. Shown in Table C-6 along with the ratios, in order of selection,
is the average pairwise probability of misclassification for the
thirty training sets. '

319




!
!

—— e

TABLE C-4. 5-192 WHITE SANDS DATA
TRAINING SETS

Ferric Iron Containing Materials

Red soil and sediment . i .
Recently deposited red soils . o
Red soil

Red sandstone? (Sacramento Mountains)

Red sandstone? (Sacramento Mountains) - 2nd sample _ St

‘Brown soil

Red soil - 2nd sample

Red soil - 3rd sample

Iron stained sandstone - Yeso - San Andres Formation

Precambrian Igneous Materials

Precambrian crystalline granite and schist

Calcareous Materials

Dolomite and dolomitic sandstone

Calcareous shales and argillaceous limestones

Argillaceous limestones and calcareous dastics - Hueco formation
Dark colored limestone

Sediment - Jarilla Mountains

Clay Materials

Dark drainage deposits }
Dark colored sediment

Dark pediment
Valley sediment }  Bolson Sediment

Reminant rock . v : N

Dark Bolson Sediment

Other

Gypsum sands

Multicolored sediment

Light colored pediment

Gray soil

Crystalline rock - Jarilla Mountains
Pediment

Pediment - 2nd sample

Valley fill

Valley sediment
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- TABLE C-5. RATIOS SELECTED FROM ERSIS FOR S-192
White Sands Geology Data

- 2.10-2.34/1.03-1.19 - 0.93-1.05/0.77~0.89
| 2.10-2,34/0,77-0.89 - ~ 0.93-1.05/0.60-0.65
2.10~2,34/0.60-0.65 - 0.93-1.05/0.50-0.55
1.55-1.73/1.15-1.28 | 0.77-0.89/0.65-0.73

1.55-1.73/0.93-1.05 11 c 0.77-0.89/0.50-0.53
1.15-1.28/1.03-1.19 0.65-0.73/0.50-0. 53
1.15-1iis/o.93—1.05 I 0.65-0.73/0.45-0.50
1.15-1.28/0.65-0.73 0.60-0.65/0,50-0.53
1.15-1.28/0.50-0.55 - . 0.60-0.65/0.45-0,50
1.03-1.19/0.93-1.05 0.60-0.65/0.42-0.45
1.03-1.19/0.65-0.73 | 0.50-0.55/0.42-0,45

B 1.03-1.19/0.50-0.55 0.45-0.50/0.42-0.45 S
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. TABLE C-6. THIRTEEN OPTIMUM RATIOS, IN ORDER OF

PRIORITY, FOR S-192 WHITE SANDS DATA

Average Pairwise

Ratio Prob. of Misclass. .
© 2.10-2.34/0.77-0.89 :‘»"0.274 |
11.03-1.19/0.50-0.55 0.184
0.65-0.73/0,50-0. 55 - 0.151 )
0.45-0.50/0.42-0.45 0,132 |
o.es-o.zj/o.45—o.so © o.119
1.03-1.19/6. 53-1.05 .0.109
1.55-1.73/0.93-1.05 = 0.098
2.10-2.34/0.60-0.65 0.091
" 0.93-1.05/0.77-0.89 0.086
K“ .0.77-0.89/0.50-O.55 . 0.083
0.60-0.65/0.50-0. 55 0.081
1.15-1.28/0.50-0.55 0.080
2,10-2.34/1.03-1.19 0.7
\ 322 2
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C.3.1.1 CHANNEL ORDERING RESULTS | |
_ - There is physical significance to the band ratios eelected.'_ .
" The first ratio (2.10-2.34 um/0.77-0.89 um) is the ratio of two bands )
which separate the carbonates from those classes containing ferric - -
iron. In 0.77-0.89 um, the ferric iron containing materials have
- lower reflectance than at 2.1-2. 35 pm because of the absorption by:
_the ferric jon in 0.77-0.89 um. Conversely, the carbonates have

higher reflectance in 0.77-0.89 um than at 2. 1—2 35 um because of
'iabsorption of the catbonate ion at the longer wavelengths. Thus, the. - _.
ratio value for carbonates will be high anc¢ low for ferric iron o S
containing materials. ' ~ : ' . “ ";:' e

With the second ratio. (1 03-1.19 um/0.50-0.55 um), ferrous T

iron containing materials are separated from those containing o f;‘gi

. ferric iron.. In the 1.03-1.19 um region the reflectance of ferrous

iron compounds is low vecause of absorption by that ion. Ferric
; compounds,show 1ntermediate reflectivity. At 0.50-0.55 ym the
refie._tance of ferrous iron.compounds is relatively high "while the
reflectance of ferric iron compounds is low because of absorption by:
that ion. Consequently this second ratio will have low values for
‘ferrous iron and bigh values for ferric iron containing materials.

 The third ratio separates the ferric iron containing materials
from all others in the scene. Asva‘result of ferric iron absorption,
the reflectance of ferric iron containing materials is very low in
the green region (0.50-0.55 ym). In the far red region, there is no
absorption by this ion.: Consequently the red/green ratio
- 0.67-0.73 ym/0.50-0.55 um_has large values for ferric iron containing
materials and intermediate or low values for other materials.

The fourth ratio separates the hydroxyl ion containing materials

(primarily clays) and the ferrous iron containinrg materials fror the
carbonates and light felsitic igneous rocks. The reflectance of the

former materials drops in the region covered by the two bands, wiile
the ratio for the latter materials will be low. '
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Beyond these four ratios, there are few of obvious physical
eignificance. Ratio 11 (0.60-0.65 um/O 50-0.55 um) is a ratio similar
to ratio 3 (0. 65-0 73 um/0.50-0.55 um) with the red band placed
partially in the ferric iron absorption band. Band ratios having

the 2.1-2.35 um channel in the numerator probably are effective in
delineating carbonatesland clays from the other materials because of

hydroxyl and Carbonate ion absorption in that band.

c.3.1.2 RECOGNITION RESULTS )
’ Recognition maps of a portion of the White Sands Test Site
‘were prepared using the best three, four and eleven ratios, corres-
ponding to 5, 7, and 13 ehannels respectively. The area processed,
Figure C-4, was one with relatively good ground information and one
containing a majority of the training sets. The area shown is
47 km x 37 km in dimension, located near the gypsum dunes of the White
b_ Sands National Monument. The eleven ratio recognition map and
-associated color code are shown in Figure C-S.. Recognition accuracy
chekecs were carried out for training sets only since limited ground
..truth data and low altitude aerial photography precluded identifica-

tion of suitableftest sets.

_The data was analyzed two ways. First, the accuracy of deline~

ating four of the five basic compositioﬁal~bjpes.of materials in
the scene was assessed. Accuracy was then assessed for a six class
map where each compositional type had 1e -nT more subclasses.

Satisfactory classification accuracy w;z»gp{ obtained on all the- -

thirty signatures that we chose for the recognition, so the fecogeition'

of some of these signatures were c~mbined.

C.3.1.2.1 Three Ratio Results
Tables C-7, C-8, and C-9 show the classification accuracy

results for both four and six class cases with three, four, and
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COLOR
Light Blue
Medium Blue
Dark Blue
Green

Dark Green
Pink

Red

Dark Red
Gray

Black

CLASS

Gypsum sand

Bolson sediment
Terrain Shadow
Alluvium

Dark Bolson sediment
Red Alkali Soil

Red Alkali Deposits
Gypsiferous Soils
Soils

Precambrian rocks

FIGURE C-5A. COLOR CODE FOR S-192 RECOGNITION MAP (Fig. C-5)
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TABLE C-7. WHITE SANDS S-192 PROCESSING RESULTS
THREE RATIO CASE

4 classes
Classification Iron Mtls  Igneous Calcareous Clays Other
Gnd Info
Iron mtls 56.8 0.7 0.9 21.6 20.0 .
Igneous 2.0 2.0 14.0 40.0 42,0
Calcareous 23.9 2.4 11.6 34,7 27.4
Clays 46.8 0 0.3 30.8 22,1

Average Accuracy = 25,3%

6 classes

Red Red Precam- Calcare- Dark

Classification Alkali Sediment brian ous Bolson Bolsun Other
Gnd Info

Red Alkali 53.4 23.6 0 0 5.9 0.4 18.4
Red Sediment 2.8 27.8 i b 2.2 6.6 34.3 24.6
Precambrian 0 2.0 2.0 14.0 8.0 32.0 42.0
Calcareous 2.0 21.9 2.4 11.6 4.4 30.3 27.4
Bolson Sediment 10,5 23.1 0 0.7 41,3 1.4 23.0

» Dier Botsen 30.8  28.2 0 0 17.3 2.5  21.2

Averaze Accuracy = 23.1%
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TABLE C-8. WHITE SANDS S-192 PROCESSING RESULTS
FOUR RATIO CASE

4 classes

Classification Iron Mtls Igneous Calcareous Clays Other
- Iron Mtls 53.4 3.2 4.1 18.9 20.4
Igneous 6.0 16.0 22.0 26.0 30.0
Calcareous 24,9 7.8 16.7 27.9 22.7
Clays 47.3 0.3 8.0 30.8 13.6

Average Accuracy = 29,2

6 classes
Red Red Pre- Calcare- Dark
Classification Alkali Sediment cambrian ous Bolson Bolson Other
Red Alkali 5z2.5 18.6 0 2.6 7.7 1.3 17.3
Red Sediment 1.7 28.9 7.2 6.1 7.8 23.9 24,4
Precambrian 0 6.0 16.0 22.0 8,0 18.0 30.0
Calcareous 253 22.6 7.8 16.7 4.7 23.2 22.7
Bolson Sediment 11.9 21.0 (0] S 48.9 0,7 23.0
Sl 33.3 28.2 0.6 12.1  13.4 0 12.4
Sediment
Average Accuracy = 27,2
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TABLE C-9. WHITE SANDS S-192 PROCESSING RESULTS
ELEVEN RATIO CASE

4 classes

Classification Iron Mtls Igneous Calcareous Clays Other
Iron Mtls 61.4 1.9 2.4 16.0 18.2
Igneous 4.0 16.0 14.0 16.0 50.0
Calcareous 19.8 6.5 29.0 12.8 32.0
Clays 35.1 0.6 1.5 45.4 17.4

Average Accuracy = 38.0

h classes

Red led Pre- Calcare- Dark
Clascification Alkali Sediment cambriaa ous Bolson Bolson Other
Red Alkali 49.1 29,3 0.4 0.9 7.3 0.8 12.2
Red Sediment 0 39.4 3.9 4.5 10.5 15.5 26,2
Precambrian 0 4.0 16.0 14.0 8.0 8.0 50.0
Calcareous 1.7 18.1 6.5 29.0 4.8 7.9 32.0
Bolson Sediment 6.4 14.0 0 0 65.7 0 13.9
Rack hoteon 22,4 28.2 1.3 3.2 23.8 0 21.1

Sediment

Average Accuracy = 33,2
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eleven ratios respectively. Referring to Table C-7, the results of
these analyses are summarized. With three ratios, the average correct
classification is 25.3 percent for the four class and 23.1 percent

" for the six class cases. The numbers of the four class are quite
low, and dominated by the poor recognition accuracy of the igneous
Precambrian rocks (2 percent) and the calcareous rocks. Precambrian
rocks are confused with the calcareous rocks and the clays because
the four bands were used for the three ratio recognition, the
light felsitic igneous rocss appear similar to the clays and carbonates
(all have fairly flat spectra over the regions covered by the first
three ratios). Only when fourth ratio is added does the separation
of igneous from clays and calcareous rocks occur. The fourth ratio
was one which separated carbonates and clays from light felsitic
minerals because of absorption bands in the spectra of the first two
materials in the bands covered by the fourth ratio. There is con-
siderable confusion of the calcareous materials with the iron-
containing materials and clays. Once again this is caused by the
fact that the three ratios do not contain the bands in which one would
expect separation of these materials.

In the six class case the correct recognition percentage is a
bit lower, dominated again by the poor recognition accuracy of the
Precambrian igneous and calcareous rocks. There also is a fair

. amount of misclassification between the two red (iron containing)
materials and the two sediments. But the distinctions between these
are fine distinctions which cannot be reliably made with only three
ratios, and the three ratios used for this map, in particular.

In both cases, there is a great deal of misclassification of
igneous and calcareous rocks as other. The other class consists
mainly of sediments which are mixtures of clays and silica. Thus it
may be expected that eroded areas of the calcareous and igneous rock

units may be logically classified as the other class. Confirmation
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of this fact required either low altitude photography or ground

checking.

C.3.1.2.2 Four Ratio Results

As stated previously, the expected result of addiug the
fourth ratio would be to separate the hydroxyl and ferrous iron con-
ta.ning materials from the igneous and carbonate rocks. To some -
extent, this expectation is borne out by the empirical data. The
major effect of adding the fourth ratio is to slightly improve the
classification accuracy of all classes except tue red sediment (and
consequently red materials class in the four class results). Tne
major effect on misclassification is 1o reduce the misclassification
of calcareous material as clay and to reduce the misclassification of
calcareous materials as Bolson sediment in the six class results.
Misclassification between red alkali deposit and the red sediment and
yetween the red sediment and Bolson sediment are reduced. Bolson
sediment apparently contains substantial ferrous iron (from its
gray-green color description), thus it is logical that the frurth ratio
would separate this material from calcareous and ferric iron containing
materials. The overall classification accuracy increases from 25.3
to 29.2 perc. .t for the four class case and from 23.1 to 27.2 percent

for the six class case when going from three to four ratios.

C.3.1.2.3 Eleven Ratio Results

By comparison with the four ratio results, the classification
accuracy using thirteen ratios increases (or remains the same) for
all classes except the red alkali deposit for the six class case, where
increased confusion with the red sediments occurs. When comparing
the results at 13 ratios compared with four ratios, many of the mis-
classifications decrease. However, the misclassification of Precambrian,
Calicareous, and dark Bolson sediment as other, and the misclassification
of red sediments and dark Bolson sediments as Bolson sediment increase.
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The increase in misclassification for these classes is unexplained.

Ordinarily, misclassification would be expected to decrease as more
features are added to the classification process, but in cases where
the features are noisy, increases in misclassifications are sometimes

observed as the noisy features are added.

C.3.1.3 CONCLUSIONS

The results of the S$S192 processing and analysis show some
promise for the S192 as a lithologic mapping device, at least for the
red, ferric iron containing formations. There is evidence from ERTS
results that the mapping of these formations can be accomplished with
a single gre: i/red ratio band. The relatively mediocre performance
at separatin; this igneous Precambrian granite from the other materials
could be improved by the addition of a second thermal band (to exploit
the restsirahlen effects) at about 8.3-%7.3 um. Alternatively, a pass
later in the .ay when the rocks had heated appreciably (the data
processed were collected at about 0800 hrs MDT, and solar heating
had not progressed far) might uave produced thermal data which could
have separated many of the rock types on the basis of thermal inertia.
Thermal data of good radiometric fidelity would be required. These
data were collected early in the Skylab mission when the S192 instru-
ment was still being adjusted for optimum performance. As a result,
the data cannot be judged as representative of what other investiga-
tions may obtain with other data sets. In addition, no visits were
made to the site for ground checks of accuracy of classification.
Instead, geologic maps and literature were used for assessment of what
scene classes were to be mapped. Field work and/or examination of

photography could change analysis and results of these data.
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C.3.2 ATCHAFALAYA DATA PROCESSING RESULTS

At the outset of the processing, it was concluded that data
quality would be an important issue in this phase of the effort
because of the low reflectance targets and with small reflectance
differences in those low reflectance targets caused by water quality
differences. Accordingly, a data quality examination was begun.

Results of that investigation are shown in Table C-10. Two
conditions are apparent from Table C-10 that compromise the value of
this particular data set for water quality work. First, the dynamic
ranges of many of the channels which penetrate the water are severely
reduced, probably as a result of a conservative calibration and
scaling philosophy in the production software. This low dynamic range
is particularly apparent in SDO's 1, 3, 5, and 18. These SDO's are
in the spectral region of maximum water penetration and all have
dynamic ranges (for the whole data set, including land data) of less
than |7 percent of the ?55 1o+ ssibl. levels. This sca:'ng reduced

the Lity of "nese iata for the water quality investigation.

7.3.2.1 RESULTS OF TURL!DI!TY DELINEATION IN WATER
To obtain a qualitative estimate of the kinds of water
surbidity which could be mapped with these data, signatures were
xtracted for different water quality types identified on RC-8& and
S190A and B data. The means and standard deviations c¢f two water
quality types, clear (5 cases) and turbid (5 cases) are shown in
Table C-11.

The very large standard deviations observed in certain channels
(e.c., SDO 1, 3, and 7) of one signature, but not in the same channels
in adjacent signatures of the same turbidity class illustrate the
effects and magnitude of the random low-frequency noise problems in

the 5192 data.
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TABLE C-10.

S-192 DATA QUALITY

ATCHAFALAYA DATA

ERIM | 5 lD_YNAMIC RANGE T
FORMAT 1 "2 (0.256) % POINT CLIPPED
SDO T.C.* (um) | DATA VALUES % LOWER LIM UPPER LIM OTHER
] 1 .52-.56 | 42-55 5 ' 0 0
2 2 .52-.56 | 43-55 5 0 0
3 3 .56-.61 | 34-48 6 0 0
4 4 .56-.61 34-48 6 0 0
5 5 .62-.67 27-42 6 0 0
6 6 .62-.67 27-41 6 ! 0 0
7 7 .68-.76 44-76 13 0 0
8 8 .68-.76 44-77 13 0 0
9 9 .78-.88 39-61 12 0 0
10 10 .78-.88 39-61 12 0 0
1 11 1.55-1.75 | 42-58 7 0 0 218-233« 2nd Distri-
12 12 1.55-1.75 | 42-59 7 0 0 218-233« bution
13 13 2.10-2.35 0-7 3 0 61.6
14 14 2.10-2.35 0-5 2 0 61.6
17 15 1.20-1.30 | 34-74 16 0 0.2
18 16 0.46-0.51 | 70-91 9 0 0
19 |17 0.98-1.03 | 29-67 15 0 0
20 i 18 1.09-1.19 33-64 13 0 0
21 19 10.2-12.5 |119-146 11 0 0
22 20 0.41-0.46 | 55-86 13 0 0
<
1
*T.C. = Tape Channel



TABLE C-11.

5-192 ATCHAFALAYA WATER QUALITY SIGNATURES

SDO 22 18 1
A= 0.41-0.46 0.46-0.51 0.52-0.56
Clear 1 m 70.13 82.57 56.27
B (4.58) (3.18) (21.42)
2 m 70.76 83.00 48.70
L (5.11) (2.86) (1.59)
3m 72.57 84.57 54.62
L (5.41) (2.84) (39.93)
4 m 70.38 84.10 48,13
L (6.40) (3.84) (1.92)
S m 72,10 84.13 47.92
- i (5.20) (3.13) (1.96)
=3
Turbid 1 73.00 86.02 IS
(5.54) (3.00) (1.59)
2 72,60 86.79 51,92
(5.40) (2.8) (2.22)
3 73.97 86.10 51.356
(4.36) (3.17) (E197.65)
4 73.83 86.33 52.41
(4.76) (3.12) (1.58)
5 73.24 87.02 52.62
(5.30) (3.26) (LS 77)

3 5
0.56-0,61 0.62-0.67
41.67 83085
(13,25) (1.97)
39.94 33.16
(1.78) (2.02)
37.35 34.37
(4.80) (7.20)
39.46 33,71
(2.02) (5.59)
39.54 32,87
(L.86) (1.77)
44,03 37.78
(2.13) (1.84)
44,24 38,37
(1.99) (2.10)
43,73 38.21
(1.64) (2.18)
44,86 38.48
(1.53) (1.49)
43,87 37.98
(2.25) (2.34)

7 21
0.68-0.76 10.4-12,5
51.27 132.97
(2.49) (4.01)
50.27 134.43
(3.65) (4.49)
47.97 32573
(25.73) (4.15)
51.03 133,27
(15.94) (4,61)
49.38 133.78
(2.95) (4.61)
59.21 137.02
(2.54) (4.72)
61.08 128.13
(2.71) (3.75)
62,56 137,86
(3.38) (4.26)
59.98 137.79
(2.80) (4.27)
61.30 135.17
(3.24) (3.58)
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Composite signatures for both turbidity classes were generated

using clear water training sets 2 and 5 and turbid water training
sets 1-5. The composite signature statistics are presented in
Table C-12.

These composite signatures were then used as input to the STEPL
program (ref. 1) average pairwise probabilities of misclassification
(APPM), a measure of how likely it is that a pair of targets will be
confused; the resulting p.p.m.'s for each channel considered inde-
pendently and the best combination of ordered spe. :ral channels are
given in Table C-13.

Low frequency noise problems, resulting in a serious circular
striping pattern in the data apparent from the maps, and a limited
dynamic range allow the discrimination between only high and low water
turbidity levels in aquatic environments with these S192 data.

Unfortunately, no significance was found within the turbid water
classes the blue spectral bands (SDO's 18 and 22) both singly, or in
combination with the other visible wavelength bands. This means that
i there is no way in these data to separate inorganic and organic

1 turbidity, since this would require observing a negative correlation
in signal level bctween a blue band and one of the visible bands
& teyond 0.52 ym.

As a result, the only type of turbidity mapped with these S192
data was changes in the ccncentrztion of total suspended solids. The
optimum turbidity mayping technique for the 8192 data is then, simply,
a level-sliced map of the red band.

Figure C-6 shows a color photograph of the Atchafalava study area.
The photo is an enlarged segment of an S190A photograph. The color
coded turbidity map using a slicing technique on the red band 0.68-
0.73 um is shown in Figure C-7. The colors in the map denote turbidity
levels from blue (clear) to red (turbid). Green areas are areas of

intermediate turbidity. The water areas only are shown in Figure C-7.
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TABLE C-12. COMPOSITE CLEAR AND TURBID WATER SIGNATURES FOR 2-192 ATCHAFALAYA DATA

18 22 il 3 5 7 21
0.41-0,46 0,46-0.51 0.52-0,56 0.56-0.61 0.62~-0.67 C.68-0.73 10.4-12.5
§ Clear m 71.43 83.56 48.31 39.74 33.02 49,83 134,10
I (5.20) (3.05) (1.83) (1.83) (1.90) (3.35) (4.56)
Turbid m 73.33 86.45 52.04 44,15 38,16 60.83 137.19

- (5.12) (3.10) (1.80) (1.97) (20.26) (3.18) (4.27)
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TABLE C-13. CHANNEL ORDERING RESULTS FOR MAPPING TURBIDITY S$-192 ATCHAFALAYA DATA

Single Channel Results

A 0.41-0.46 0,46-0.51 0.52-0.56 0.56-0.61
PPM 427 +319 «152 123
Rank 7 5 0 3

Channel Ordering

# Channels SDO's
1 7
2 7hme)
3 Tl Il

4 Ly

0.62-0,67
. 095
2

APPM
.046
.018
.011

.009

0.68-0.76

.046
1

10,4~-12.5
»363
6

i
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Land areas were edited out by slicing the 0.98-1.03 m channel to
exclude the highly reflective areas. The pattern of turbidity
displayed by the map corresponds qualitatively to that observed in
the S190A and B photography. Quantitative checks were not made on
the accuracy of recognition because of time limitations and lack of

appropriate quantitative water suspended solids measurements.

C.3.2.2 CONCLUSIONS
Low frequency noise, hazy atmosphere, and the low dynamic

range of the data all combined to compromise data utility. The channel
ordering results show that the cleanest, widest dynamic range channel
(0.68-0.73 m) was first selected for delineating water suspended
solids differences even though this channel penetrates water only
marginally. Data qualiity seems to have been the dominant factor
influencing the choice of the best channel. Because of this and
other data quality factors previously mentioned, the results are
neither indicative of the channels to be used for water quality

measurements nor the expected performance from satellite sensors.

C.3.3 BALTIMORE LAND USFE CLASSIFICATION RESULTS

5192 data of the Baltimore-Washington area were processed at
Honeywell to rank order the S192 spectral bands for Land Use mapping
and to demonstrate the classification accuracy of Anderson Level 1I
Land Use classes obtainable with varying numbers of spectral bands.
The classes used in the recognition operation are listed in Table
C-14. The class numbers correspond to the Aanderson Level 11 numbering
system with the exception of classes 81 and 82, which are second
samples of classes 11 and 12.

The rank ordering of spectral features was performed using the
mapping error as a criterion. This parameter is analogous to the
probability of misclassification for maximum likelihood classifiers.

The results of the channel ordering are saown in Table C-15.
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TABLE C-14. RECOGNITION CLASSES FOR S-192 BALTIMORE DATA

Code Class Number Class
. 1 11 Residential
2 12 Commercial
3 13 Industrial
4 15 Transportation
5 16 Institutional
6 81 High Density Residential
‘:r: 7 82 High Density Commercial
i 8 19 Open and Others
9 21 Cropland
10 22 Orchards, Fruit Bush, Vineyard, etc.
1) 41 Heavy Crown Cover Forestland
12 42 Light Crown Cover Forestland
’ ' 13 31 Cloud Shadows
; 14 51 Streams and Waterway
15 52 Lake
16 53,54 Reservoirs and Bay
i 17 32 Cloud
(0
2 343
r;ﬁ',




TABLE C-15. S-192 PERFORMANCE ORDERING
BALTIMORE-WASHINGTON DATA

SDO NUMBER WAVELENGTH (1m)
21 10.2 - 12.5
9 0.78 - 0.88
22 0.41 - 0.46
13 2.10 - 2.35
7 0.68 - 0.76
18 0.46 - 0.51
1 0.52 - 0.56
5 0.62 -
17 1.2 - 1.3
19 0.98 - 1.03
11 1.55 = 1,75
20 1.09 - 1.19
3 0.56 - 0.61
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The results of the channel ordering show that the thermal band

is most useful at separating the Level 11 land use classes. This is
because of the urban and non-urban classes and the overlight time near
noon when the temperature differences between urban and non-urban

areas are large. The second selected band was 0.78-0.88 um a band in
which the vegetation has high reflectance and the water has low
reflectance. The third band chosen was the blue band 0.41-0.46 um
where the urban categories are more highly reflective than the
vegetation. The fourth channel selected was 2.1-2.35 um where urban
areas are bright, and water and vegetation dark. The close correlation
between the channel ordering results for the S192 data and the aircraft
scanner data should be noted. The only channel different in the top
four is the 2.1-2.35 um channel replacing the 0.62-0.70 um band of

the aircraft data. But as previously noted, the red band seemed
relatively noisy in other data sets, and probably is in the Baltimore
data set also. This may account for its relatively low order in the
channel selection. Table C-16 compares the ordering of channels of

S192 data with those of the aircraft data discvised in Section 3.

C.3.3.1 PRELIMINARY CLASSITICATION RFSULTS

Several types of classification were performed on the S192
data. First, training was done to recognize five classes of land use,
roughly corresponding to Anderson Level 1 land use. The k-class
classifier was used to recognize the classes using the best four,
seven, and all thirteen channels of S192 data. The results (see
Tables C-17 through C-19) show improvement in the classification
accuracy from 68.7 percent to 72.4 percent as the number of channels
is increased from 4 to 13. Probably as a result of spectral vari-
ability in the class, the agriculture recognition remains the lowest
of all of the five classes for all three channel sets. The urban

class is consistently the best recognized and if we discount mis-
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TABLE C-l6.

10

11

12

13

COMPARISON OF S-192 and AIRCRAFT DATA
CHANNEL ORDERING - BALTIMORE DATA

Aircraft Channel

S-192 Channel
10.2 - 12.5
0.78 - 0.88
0.41 - 0.46
2.10 - 2.35
0.68 - 0.76
0.46 - 0.51
0.52 - 0.56
0.62 - 0.67
1.2 -1.3
0.98 - 1.03
1.95 = 1.75
1.09 - 1.19
0.56 - 0.61

346

1.0-1.4
0.41-0.48
9.3-11.7
0.67-0.94
0.62-0.70
0.50-0.54
2.0-2.6
0.46-0.49
0.58-0.64
0.48-0.52
0.52-0.57

0.55-0.60



TABLE C-17. S-192 CONFUSION MATRIX RESULTS
FROM BALTIMORE-WASHINGTON DATA

CLASSES
1. Agriculture
2. Forest
3. Water
4. Urban
5. High Density Residential and Commercial
CLASSIFIER
1 2 3 4 5
1 51.42 14,69 11.84 1.05 20,99
2 6.30 64.57 27.56 0.79 0.79
% et
% 3 11.88 21,78 64,36 0.99 0.99
4 3.06 0.00 2.38 82.31 12.24
5 29.94 1,13 3.95 1.69 63.28
Average Classification Accuracy = 68,66

Features Used = Top 4 10.2-12,35, 0.78-0.88, 0.41-0,46, and 2,1-2,35
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TABLE C-18. S-192 CONFUSION MATRIX RESULTS
FROM BALTIMORE-WASHINGTON DATA

CLASSES
1. Agriculture
2. Forest
3. WVater
4. Urban
5. High Density Residential and Commercial
CLASSIFIER
]
1 2 T 3 4 5
1 51.12 16.19 8.85 2,25 21,59
2 11.81 63.78 23.62 0.79 0.00
[=
E
213 | 1139 | 20.30 65.35 2.48 0.50
4 0.68 0.00 ! 0.68 98.64 0.00
5 29.32 2.82 3.39 0.00 64,41

Average Classification Accuracy = 65.18

Features Used = Top 7, Top 4 plus 0,68-0.76, 0,46--0.51, ard 0.52-0,56
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TABLE C-19. S-192 CONFUSION MATRIX RESULTS
FROM BALTIMORF-WASHINGION DATA

CLASSES
1. Agriculture
2. Forest
3. Water
4. Urban
5. High Density Residential and Commercial
CLASS(FIER
1 2 3 4 5
1 56.67 12,59 12,44 0.15 18.14
2 3.94 70.87 22.83 0.70 1.57
2
5
213 9.90 18.32 71.29 0.50 0.00
[T
4 0.68 0.00 Q.34 97.62 1.36
5 31.64 1.69 1.13 0.00 05,64
Average Classification Accuracy = 72.39

Features Used = all 13
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classifications of urban as high density urban, this is even more s0 —
the recognition accuracy approaches 100 percent with 7 channels and
is always above 90 percent. The slight decreases in recognition

accuracy of agriculture and forest classes are probably not significant

"in view of the small sample used for assessing classification accuracy.

Even at the thirteen channel level, persistent misclassification
of Agriculture as Forest, Water, High Density Residerrcial vccur. Also
Water is misclassified as Forest, and High Density Urban is misclas-
sifi:d as Agriculture. Some of the misclassification invelving
Agriculture may be the result of bare soil areas in the Agriculture
areas being confused with High Density residential and vice versa.

The Agriculture-Forest misclassification may be understood since

dense green vegetation is involved in both cases. The misclassification
of water as forest cannot be explained, since the two have radically
difference rcflectance ir the near IR bands around 1 ym. Tn spite of
rhese difficuliies, the results show a high classification accuracy

overall i r the 13 channel case.

C.3...7 FURTHER CL/AISIFICATION KESULTS

{lassification was performed using the K-class classifier,
the seventeen training sets shown in Table C-14, and the thirteen
spectral channels. Results of the classification are shown in
Table C-20. Overall classification accuracy of 42.1 percent was
achieved. Then a sequential approach to classification was tested,
as diagrammed in Figure C-8. By separating scene materials into
bronad classes, then further subdividing those classes using other
chanuel se:s, an improvement to 53,14 percent accuracy was obtained.
Confusion mat:ix results are presented in Table C-21.

One final improvement was performed on the 13 channel sequential
classification experiment. The single point misclassifications were
filtered out by accepting the second most likely decision. The
filtering procedure was performed as follows.
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TGE

1/ 62.33
2/ 23.89
3/ b.uy
4/ “ 18
5/ 24.38
€/ 31.32
7/ 9.79
8/ 30.19
5/ 25.17
10/ 10.00
11/ 27 5%
12/ 24.84
13/ 6.87
14/  1.10
15/ .00
16/ 2.49
17/ 12.95

2/
3.82
22.12
10.23
18.42
6.57
12.88
4.90
3.08
.19
.00
.15
.00
.00
.00
4.76
.28
.00

TABLE C-20.

3/ 4/
.86 1.17
4.42 14,16
34.50 21.35
11.58 47.37
.73 B8.94
4,17 9.85
.00 19.58
.32 2.11
.00 .89
.00 .00
.00 .23
.00 .32
.00 1.53
.00 .00
.00 .00
.00 .00
.00 .00

CONFUS.1O! MATRIX FOR BALTIMORE S-192 PROCESSED DATA

5/

4.69
15.93
11.40
10.00
27.74
14.02

2.10

4,22

1.86

.00
.15
4.19
2.29
.00
.00
.00
.00

Classification Accuracy Mean = 42.131

6/

.09
2.65
7.02
2,11
1.09

12.50
5.99

.00

.08

.00

.00

.00

.76

.00

.00

.00

.00

7/

.00
.00

1.05
.55
3.03
55.94
.00
.00
.00
.08
.00
3.05
.00
.00
.68
.00

8/

4.19
3.54
.00
2.63
11.68
4.55
.00
31.82
13.69
3.33
.91
2.90
.20
.00
.CO
.00
.00

9/

7.03
5.31
.58
.53
6.75
2.27
.00
21.10
40.65
33.33
6.67
12,90
.00
.00
.00
.00
1.44

10/

.81
.88
.29
«53
91
.00
.70
1.62
2.17
53.33
.34
.65
.00
.00
.00
.00
.00

11/

6.80
1277
.00
.00
.36
.00
.00
1.45
6.83
.00
51.13
10.00
.76
.00
.00
.23
4,32

12/

6.26
4.42
.00
1.05
2.19
3.03
.00
1.14
7.84
.00
11.75
41,29
1.53
.00
.C0
45
.00

13/

72
.05
.58
1.05
.91
.38
.00
.00
.08
.00
.38
1.29
76.34
40.66
28.57
56.33
.00

14/

.05
.00
.00
.00
.55
.00
.00
.00

.00
.04
.00
.00
39.67
23.81
5.66
.00

15/
ol
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

2.20

4.76
.00
.00

16/

.27

.00
1,46
.00
.36
.00
.00
.32
.00
.00
.08

.76
16.48
28.10
33.48

.00

17/

.90
.88
7.60
.53
1,28
1.52
.00
2.60

81.29
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1/
2/
3/
4/
5/
6/
7/
8/
9/
10/
11/
12/
13/
14/
15/
16/
17/

Classification Accuracy Me

1/

53.54

17.70 -

4,39
8.42
23.36
32.95
3.50
16.07
4.03

2.01
8.39
1.82
5.49

.00
1.81

CONFUSION MATRIX RESULTS FOR BALTIMORE S-192 DATA

TABLE C-21.

2/ 3/ 4/ 5/
sl e .14 1.44 1.04
40.71 6.19 15.04 2.65
2.63 61.40 7.89 1.75
4.7 4,74 67.89 .53
3.28 1.09 7.85 41.97
3.70 3.41 7.20 4.55
1.40 .00 1.40 .00
2.76 .00 2.27 8.93
.08 .00 1.28 2.01
.20 .00 .00 .00
.00 .00 .38 .19
.00 .00 .65 1.61
.0C .91 2.73 .00
.00 .00 .00 .00
.00 4.76 .00 .00
.00 .00 .00 .00
.00 .00 .00° .00

an = 69,647

6/

3.06
5,31
19.88
13.16
4.56
40.91
2.80
.65

P
2.80
9.58

.91
14.29
9.52
9.28

7/

.00

1.75

.00

1.10
.00
2.26

8/

5.50
1.77
.00
.00

.00
.38
2.26
.00
.00
.00

.00

3.31

10/ 11/

2.25 10.68
.00 .88
.00 .00
.00 .00

.00 .18
.00 .00
.00 .00
.32 1.79

1.28 5.34
9¢.67 .00
.67 87.23
.00 2.58
.00 .00
.00 .00
.00 .00
.00 .23
.00 1.65

13/

.00
.00

14/

.00
.00
.00
.00
.55

.00

72.53
.00
3.62
.00

15/

.00
.0C
.00
.00
.00
.00

16/

.05
.00
029
.53
.00
.00
.00
.00
.00
.00
.00
.32
1,82
6.59
14,29
81.90

17/

.00
.00
.00
.00
.36

92,56
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When attempting to determine the class of point x, if the highest
decision number from K-class is the same as in a, b, ¢, or d, it is
used to point x. However, if the highest decision number, indicating
the most probable class, is not in a, b, ¢, or d, the next mcst likely
class or next highest numbeiv is checked. By cleaning up the thematic
map in this manner, the classification accuracy is increased to 69.64
percent, as shown in Table C-22. Note that with these advanced
procedu-es that the average recognition accuracy for the seventeen
class case, representing Anderson Level II classification, is nearly as
good as t"- Level I recognition using the K-class classifier in a one
pass —“ecogy tion operat.on.

[he are: processed is shown in Figure C-9, and a color coded map

of the recognition, with legend, is shown in Figure C-10.
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1/ 2/

1/ 48.76 1.44
2/ 31.36 12.39
3/ 3.80 2.92
4/ 8.95 9.47
5/ 35.58 5.84
6/ 39.77 9.85
7/ 6.29 2.10
8/ 16.88 1.70
3/ 3.59 .15
10/ ,00 .00
11/ 1.39 .04
12/ 7.74 32
13/ .75 .00
14/ 5.49 .00
15/ .00 .00
16/ 1.58 .00
17/ .00 .00
Classification

Accuracy

TABLE C-22.

4/

1.44
17.70
25.15
44.74
12.04

8.71

6.29

1.79

1.25

.34
.65
A77
.00
.00
.00

CONFUSION MATRIX FOR BALTIMORE S~192 DATA

5/

2.88
9.73
3.22
3.68
20.99
5.68
.00
10.71
2.72

Mean = <7.9407

6/

.00

7/

.00
.00
3.51
4.21
.73
7.20
79.72
.00
.00
.00
.23
.00
1.50
.00
.00
.45
.00

8/

5.36
2.65
.00
.00
6.20
.38

28.57
10.05
.00
.87
4.52
.00
.00
.00

5.04

9/

5.45
2,65
.00
.00
7.48
.76
.00
32.63
60.28
20.00
3.73
18.06
.00

.00
.00
4,32

10/

2.39
.00
.00
.00
.00
.00
.00

2,11
1.97
76.67
1.52
.00
3.01
.00
.00
.00
.00

11/

11.04
.88
.00
.00
.36
.00
.00

2,27
8.36
.00
69.03
6.13
.00
.00

.23
5,04

12/

17.17
7.96
.29
.00
3.47
2.65
.00
1.30
9.83
3.33
18.93
50.00
3.76
.00
.00
.90
4,32

13/

2.75

.88
3.8C
1.58
2.55
2,65

.63
.91
.00
2.45
7.42
3.76
1.10
.00

.00

14/

.09
.00
«58
+53
.36

.04
.00
3,01
9.89
52.38
8.82

26/

.36
.88
7.50
4,74
.36
1.14
.G0
.00
.00
.00
.34
2,58
69.92
25,27
38,10
77.15

17/

.00
.00

.36
.00

1.14
.91
.00
.04
.00
.00
.00

.00
81,29
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