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ON THE EFFICIENT COMPUTATION OF RECURRENCE RELATIONS

Recently much progress has been made in the formulation of parallel

algorithms which ccmpute the terms of a sequence (yi) defined by

Yy given,

(1)
yf = fi(yo. Y],.'c.yi-])| i = ],.0.."-

The germinal point of this work is the now well-known "log-sum” algorithm
which computes Xi:g a; in f]ogzN] parallel addition steps, given rN/Z]
processors, Here the underlying recurrence is

Yo = O

Y~| = .Vi_] + aiv 1=1,...,N;

yyis the desired result.
Two apparently distinct generalizations of the log-sum algorithm

have appeared, Kogge and Stone [1] have considered the case

(2) ‘YO = b0

.Y1 = f(bio g(ai- yi-]))’ i =1,,..,N,
where f is associative, g distributes over f, and there is a function h
such that g(x,g(y.z)) = g(h(x,y),z). Seemingly restricted to first order

th

recurrences, by a suitable mapping m~" order recurrences are alsc treated.

Heller [2] has studied the case
Yo = Mo
i

(3) 21 .
Yi 7 Ijmg 34g¥5 * hie 1= Lol

This problem is equivalent to the solution of a lower triangular linear
system of equations, In this note we give an improved parallel algorithm

for (3) and show a relationship between the two generalizations,

—
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Rewrite (3) as (I-L)y=h, where L is a strictly lower triangular
matrix, and I is the identity. y and h are (N + 1)-vectors. Since

(l-L)'l = (LeLetZee -0V
= (1) 2Ty (141
where 2m§N<2mﬂ. Thus we have the algorithm:
ixd-—fn LI=1}
for i=-0 step 1 until m-1 do
i =) xs
AL i

i
12 =22,

i
L =—(1a2 )t s
m
(y‘-(I*Lzm) X LI<—(‘I+L2 LI !
The algorithm is sequential in i, ond within the braces operations are
performed concurrently. When completed, we have the desired y, and
(I—L)'] is stored in Li. LI may now be used to compute y' given h'.
It is easily shown that, with 0(N3) processors, the calculation may

be done in m2

+ 3m + 1 parallel steps of addition and multiplication.
(We use the fact that matrix products may be computed in logarithmic
time with sufficiently many processors.) The previous result required

0(N4) precessors and m2 + 4m + 2 operation steps.
We now turn to the Kogge - Stone results. Rewrite (2) as

y,.=b

0 0
(2*)
yi = 51‘“ yi_] 0 bi’ i'-']"o"Nl

Here g is replaced by the binary operation @, and f by 8, Assume that
@ 1s associative, 8 distridbutes over 8, and there is a Q' such that
af(b@c)=(af' b)Bc, 'etcabe a symbol distinct from all others,

and definec® x = x 0 a=x, af x = x fa a for all x, Definean
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operator L on (N+1)-vectors by

(Lz)o = q

(Lz2)y = a; 02, 4, 1= 1,8,
Then y = Ly 8 b by (2'). It is observed that L is an additive operator
since @ distributes over & and by the definition of a. Moreover, LN¥]=u,

snce for any z, and i = 1,...,W1, (L'2) = a and for 1<i<i, (L'2); =

(L(Li°]z))j = aj ] (Li']z)j-] = aj @ a=a. Therefore,

y=ly@b=L{Lyeb) 8b=12 8 (L8 I
=oa (M g (N o LM e ocen)n
(WMNoe™Tg -0 )b

-1
(Lzm L I)(Lzm 6 I) --(L 6 I)b.

Since L3 = (LZ)L = L(Lz), @' behaves as an associative operation, and so

i .
(L2 ¥)j = o 0<j<2’
=a; 8 (aj_] R (...8 (aj~2i+] 8 yj_zi)"')
= (a, 8' a, , R'"""R a, iy By, o150
Similarly, J -1 j-241) T2 2 g
i+ .
(L2 ¥)g = o ocj<e’]
=[(aj nla..ﬂ|aj-2i +])
' (a, i 078 a. i+l )] By, it 2W T N
j-2 j=2'"' 4 Vit <IN,
Y
and the "coefficients" of L may be computed from the “coefficients"”

i
of L2 in one @' operation step. Thus an algorithm similar to the previous

one may be used to compute y. If the operator (LN *~@1) is not formed,
the computation time is 0(1ogZN) with O(N) processors. In fact, if
y' =Ly' 8b', it is less efficicnt to direct’y apply (LN € "6 1) than

to use the above method.




The general recurrence (1) may be written as y = L]y, where L] is
a strictly lower triangular operater in the sense that, for any z,
(L]z)1 is independent of 245 Z449s-++92y- By an induction argument

N+1

L] is a constant operator, and s¢ the solution may be found by

"1, for any z. The special cases (2) and (3) allow the simple

y=1,
computation of the powers of L] when L]z =1Lz®b, and L is linear.
Kung [3] has shown that for non-linear recurrences, it is not possible,
in general, to decrease the computation time by more than a constant

factor by the use of parallelism.
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