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ANALYSIS OF A MULTIPROCESSOR COMPUTER

by

Efrem G. Mallach

Submitted to the Department of Aeronautics and Astr6nautics on

May 5, 1969 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

ABSTRACT

This thesis is concerned with the design of the next generation of

spaceborne digital computers. It analyzes a possible multiprocessor

computer configuration.

Such a computer would be composed of a number of processors and

memory units connected by a central data bus. A "job stack" would store

information describing tasks to be performed, and would issue job requests

when they come due, Any processor may accept any task. It would obtain

needed data from memory, carry out the calculations, and return results

when done. A11 data and messages would be transmitted via the bus. Such

a system has advantages of expandability, suitability for sampled-data cal-

culations, and "graceful degradation" characteristics.

For the analysis, a set of representative space computing tasks was

abstracted from the Lunar Module Guidance Computer programs as executed

during the lunar landing, from the Apollo program. This computer performs

at this time about 24 concurrent functions, with iteration rates from 10

times per second to once every two seconds. These jobs were tabulated in

a machine-independent form, and statistics of the overall job set were ob-

tained.

A simulation of the multiprocessor was then developed. This siinula-
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ABSTRACT (CONT)

tion permits the running of the set of jobs mentioned on page iii (or any other

set) on the multiprocessor, and provides statistical and other information

as to multiprocessor performance during a run. The multiprocessor config-

uration, speed, etc., can be varied at will.

The multiprocessor was then analyzed using queuing theory. A simple

model was solved analytically. More complex models, modeling the system

with greater accuracy, were also developed and were solved numerically

with a Markov process approach. These models permit specification of a

multiprocessor and its job mix in terms of very few parameters, which

makes for simple evaluation of the multiprocessor under widely varying

conditions. The Markov model that was decided upon as providing minimum

acceptable accuracy has 191 states.

It was concluded, based on a comparison of simulation and Markov re-

sults, that the Markov process analysis is accurate in predicting overall

trends and in configuration comparisons, but does not provide useful detailed

information in specific situations. Using both types of analysis, it was de-

termined that the job scheduling function is a critical one for efficiency of

the multiprocessor. It is recommended that research into the area of auto-

matic job scheduling be performed.

Furthermore it was found that a multiprocessor with many slow pro-

cessors is more efficient than one with a few fast processors. To utilize

such a system, long jobs must be broken down into groups of short jobs. It

is recommended that research into means of performing such a breakdown

automatically be conducted.

It was finally concluded that the algorithm by which system compo-

nents are given access to the bus in case of simultaneous demands is of

little importance to system performance.

Thesis Supervisor: Wallace E. Vander Velde
Title: Professor of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

1. 1 The Aerospace Computing Task 

The use of digital computers in manned spacecraft has gained general

acceptance in recent years. The multitude of control, guidance and navigation

tasks that must be performed accurately and rapidly is beyond human capability,

and reliance on ground-based computers is often impractical.

For the first generations of manned spacecraft, computing requirements

have been moderate and missions have been short. The requirements could be

met by a computer of "traditional" design. Reliability, though a problem, could

be handled by ensuring adequate reliability of the components of which the computer

was built. No internal error-correcting or "graceful degradation" capabilities

were included in the computers used for Gemini or Apollo, though program tests

to detect errors and to attempt to restart the computation were used.

With the planning of post-Apollo missions, it becomes apparent that

computing requirements and mission durations will both increase. Missions being

proposed, such as a mission to Mars or a long-term earth orbital space station,

have durations of over a year. New uses are being suggested 143r:computers on

board, such as resource management, experimental data reduction, and others.

These changes mean that the spacecraft computer of the future must have both in-

creased computing capability and increased long-term reliability compared to

those in existence today.

The nature of the requirements for an advanced space guidance computer

have been analyzed by Vacca, Phipps and Burke (1), by the staff of the MIT

Instrumentation LaboratoryP, 3) and by Alonso and Randa 
(4)
. The unanimous

conclusion of these studies is that the spaceborne computer of the future will be of

the "multiprocessor" variety. That is, it will consist of a number of "processors"

connected to one or more i'memories"; computing tasks will be assigned to the

processors according to convenience at the time of execution. Advantages cited

for this concept are ease of expansion by the addition of components, high comput-

ing capacity compared to a single computer for a given state of the art, and,
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especially, graceful degradation in the event of failure of one or more components.

1. 2 Description of the Multiprocessor

One design for a multiprocessor has been studied at length by the MIT

Instrumentation Laboratory (2). A multiprocessor similar to the one proposed

there is the subject of this study.

The multiprocessor consists of four basic parts: the processors, the

memory units, the input-output controller and the data bus connecting them.

The processors perform the actual computations. When starting a com-

puting task, they obtain the required data from the memory units. Using a small

"scratchpad" memory associated with each processor, they perform the required

calculations. Having finished, they return the results to memory.

The memory units contain whatever data may be required by the programs

being executed. For reliability, such methods as triplication and error-correcting

codes would be used here. This study is not connected with this aspect of the
memory, however; for the remainder of the discussion, it will be assumed that

there is one completely reliable memory device in the system.

The input-output controller handles input-output in much the same way

(from the point of view of a processor) as the memory handles storage. Again, for

present purposes, it will simply be noted that this device exists and it will be
assumed that it is perfectly reliable.

The data bus connects the other units of the system. In any collaborative
system such as this, the ability of the various units to communicate is vital, and
the data bus provides this ability, Each unit in the system can have at some time
control" of the bus. It can then send messages out over the bus, and if the nature

of the messages is such that they require a reply (such as a request for data from
memory) they will receive this reply.

The rationale for electing to use a time-multiplexed bus, rather than one of
the other possibilities, for this purpose is discussed in detail in Ref 2. Here, this
will be taken as one aspect of the definition of the subject computer. Also, as in
the case of the memory units, we will assume an infinitely reliable data bus
without going into the question of how it is made reliable.

Computing tasks —"jobs"— are initiated in the system by a bus message. A
free processor, sensing this "job request" message, would prepare an acceptance
message for the job. It would transmit this message when given control of the bus
(unless some other free processor had already accepted the job). It would then
obtain such data as the job requires from memory ("phase 1 of bus use") and would
execute the job.

2



When it has finished the calculations, the processor would wait its turn for

the bus. It would then return data to memory ("phase 2 of bus use"). In addition, it

might specify that a certain job or jobs are to be executed at some future time: for

example, in a sampled-data control calculation executed twice per second, each

execution of the job would specify that the job is to be executed again one-half

second in the future. This is done in the multipressor by sending a message to a

"job stack" or "waitlist", where these requests are stored and sent out on the bus as

job requests when they come due. The job stack is implemented in the multiprocess-

or as hardware.

In addition, the system would contain program memory — the sequences of

instructions to be executed. This would be separate from data memory and would

be transmitted over different channels. There are many possible organizations

for this program memory: each processor might have its own copy of all programs,

a crossbar switch arrangement might be used, or a second bus. In any case,

requests for instructions are more predictable and more uniform over time than

requests for data, and thus the instruction-transmission device (if present) does

not present the problems that are presented by the data bus. It will be assumed in

this study that each processor has its own copy of all programs, or, equivalently,

the problem of instruction access will be ignored.

This has been by necessity a very brief description of the multiprocessor.

For a further discussion of the points touched on above, and for discussion of many

points not mentioned, see Ref 2.

Much of the performance of the multiprocessor depends on the algorithm by

which devices are granted access to the data bus. Presumably, the processors

are arranged in sequence along it, each one in turn having access to the bus if

desired and then enabling its neighbor. Beyond this, however, the question of bus

access method is open, particularly as regards the priority of the job stack. Four

possibilities are:

1. Job stack has priority between each pair of processors. If a

processor accepts a new job, it obtains use of the bus immediately, without

waiting for its turn.

2. Job stack has priority between each pair of processors, as in

scheme #1. If a processor accepts a new job, it waits its turn on the bus

to send its acceptance message and to begin obtaining data from memory.

3. Job stack has priority at one point in the ring of processors.

It is enabled by the processor proceeding it, and in turn enables the

processor following it. The processor accepting the new job obtains use of

the bus immediately.

3



4. Job stack is connected at one point in the ring, as in #3. The

processor accepting the new job waits its turn to use the bus, as in #2.

Intermediate systems are also possible: the job stack might be connected

at two points in the chain, for example, if it were desired to give it faster access

than one connected at only one point, but with perhaps less hardware than would be

necessary to connect it between every processor pair.

For this study, a multiprocessor will be considered as completely defined

if one can state the number of processors in it, the speed of these processors, the

speed of the bus, and which of the above four priority schemes it uses.

1. 3 The Problem

It is clear that a multiprocessor computer such as described above can be

built and can be made to operate. It is not clear just how efficient it will be when

faced with a program of the general nature of spacecraft control programs, though

one feels intuitively that its structure is well suited to their repetitive, sampled-

data nature. It is not clear to what extent processors will interfere with each other

in demanding the use of the bus, degrading performance to an unacceptable degree.

Finally, it is not clear just what sorts of jobs characterize "spacecraft control

programs'', which makes it difficult to answer the other questions.

This study attempts to answer these questions. Proceeding from the last

one, the question of characterizing "spacecraft control programs", a large example

of such a program has been analyzed and broken down into smaller units. This

provides the first definitive statement as to the composition of a typical "job mix"

for space computers, and is used as a set of programs against which to test the

multiprocessor performance. Chapter 2 is concerned with this analysis.

In a simple computer, in which various jobs are not competing for use of

limited resources at the same time, the availability of such a statement as to the

tasks to be performed by the computer would permit determining whether a certain

system meets the requirements, and would permit sizing the various components —

in terms of speed, capacity, etc. — for best performance. Where there is com-

petition between jobs, the simple procedure of adding up the individual job require-

ments will not work, because there is an additional factor of delays introduced by

waiting for a busy part of the system. More sophisticated methods of analysis

must be used.

Two tools for the analysis of the multiprocessor are developed in this study.

The first of these is a simulation, which accepts a definition of a multiprocessor

computer (in the sense of the previous section) and simulates the execution of a set

of jobs on it. This simulation is described in Chapter 3.

4



The second tool is the modeling of the multiprocessor as a Markov process
,

together with the development of computer programs for the analysis of su
ch a model.

These models are the subject of Chapter 4.

Chapter 5 discusses the results of the simulation and of the Markov process

analysis of the multiprocessor. Conclusions are summarized in Chapter 6, which

also gives recommendations for further research.

5



CHAPTER 2

THE JOB ANALYSIS

2. 1 The Reasons for the Job Analysis

In order to evaluate any computer design, for any purpose, it is necessary

to have an estimate of the type of tasks that the computer will perform. Thus, in

selecting a commercial computer, a prospective user will ordinarily define certain

"benchmark tasks" to be executed on all candidates for his selection, and base his

decision at least in part on the results.

The need for an accurate characterization of the tasks to be performed is

no less valid in the evaluation of a genuine computer design. This is particularly

true when the computer being evaluated represents a departure from standard

practice in a number of important respects, so that a user's "feel" for the importance

of various performance parameters can be quite misleading. Unfortunately, no

specification of the nature of the tasks performed by a space guidance computer —

in terms of running times, iteration rates, data requirements, etc. — is available.

It was therefore decided to create such a specification by analyzing a

suitable ensemble of spacecraft computer tasks. This analysis would have a

certain importance in its own right, since it could be used in the future whenever

such a specification is required for any purpose. More importantly for this study,

though, it would provide a set of jobs and job statistics, not dependent on any one

person's preconceptions and prejudices, for use by the simulation and Markov

process analyses in the following chapters.

The jobs analyzed were taken from the most ambitious aerospace computer

programing task available (and, to the author's knowledge, the most ambitious yet

undertaken): the Apollo lunar mission. The highest computational loads maintained

for more than a brief instant of time during this mission are imposed during the

lunar landing itself on the Lunar Module (LM) Guidance Computer (LGC). The

programs executed by this computer during this mission phase form the basis for

the "job models" which were assumed to be executed on the multiprocessor during the

simulation and theoretical analysis.

PRECEDING PAGE BLANK NOT FILMED
7



2.2 Lunar Landing: General Situation

The Apollo lunar mission has been described extensively elsewhere (for

example, Ref 5). While a detailed description of it would be voluminous and not

relevant to this study, a brief outline of it provides useful perspective for the

descriptions of the computing tasks analyzed. It consists of the following stages:

1. A Saturn V rocket carries the spacecraft and a crew of three

into earth orbit. The vehicles are the Command Module (CM), the Service

Module (SM) (the linked CM and SM are referred to jointly as the CSM),

and the Lunar Module (LM).

2. The three spacecraft leave earth orbit on a translunar trajectory.

3. They are inserted into a lunar orbit.

4. Two of the crew members transfer to the LM and separate from

the CSM. Using the LM's descent engine, they brake from orbit and land

on the moon.

5. Leaving the descent stage (engine, landing gear, etc. ) on the

moon, the two astronauts take off from the moon and enter a lunar orbit.

6. The LM and CSM rendezvous in lunar orbit, and the LM crew

return to the CSM.

7. The CSM enters a trajectory toward earth, leaving the LM

behind.

8. The CM separates from the SM, reenters the atmosphere, and

parachutes to the surface.

The current task analysis is concerned with the activities of the LM guidance

computer (LGC) during phase 4 of the above capsule description. This phase starts

with the LM and CSM orbiting the moon a short distance apart. The descent engine

of the LM injects it into an elliptical "descent orbie and shuts down. As this orbit

reaches its perilune, at an altitude of about 50,000 feet, the engine is re-ignited

for the "braking phase" and remains on until touchdown. The braking phase lasts

approximately eight minutes, at the end of which the LM is at an altitude of 8,600

feet and at a distance of about eight miles to the landing site. The LM then pitches

forward, so that the crew can see the landing site through windows in the spacecraft.

LGC displays inform the crew where the LM is to land, and the crew can modify

this predicted landing site by moving a control device. At the landing site, the

spacecraft rotates to a vertical position and lands more or less automatically

(according to a mode selected by the crew at that time).

The present job analysis and simnIstion hsgan ingt befnre the start of the

8



braking phase. At that time, the computer is performing a group of periodic

monitoring jobs, such as checking for gimbal lock in the inertial guidance system.

At a sufficiently early time to permit required actions to be completed before

ignition, the crew keys in the braking phase program, referred to in the flight

plans
(6) 

and below as "program 63" or "P63". A11 jobs executed during the remainder

of the landing follow in a spreading tree-like fashion from P63, except for the

monitoring jobs that continue running as before the braking phase and crew-initiated

landing site redesignations.

In the actual lunar landhig, the visibility phase terminates when the LM

reaches its landing site, about 75 to 135 seconds after it began. Determination of

this event requires simulation of the environment or a predetermined cutoff time.

In order to accumulate as many statistics as desired during the mission phase when

the computer is most heavily loaded, it was assumed for purposes of this study

that the landing site is never reached. The programed tests to determine this

event are never successful, and the computer reaches a "steady state" of job

execution in the visibility phase.

2.3 Development of the Job Model

The development of any "job model" must start from the definition of "job"

in the given context. Intuitively, a "job" can be described as the execution of a

series of computer instructions, initiated by a stimulus external to the job (such

as reaching a given time, an external interrupt, etc. ), and terminated at the end

of the series of instructions. A "job" will, in general, require certain inputs and

produce certain outputs; some of these outputs might be requests for the computer

to execute some other job at some future time.

Since the basic definition of a "job" is taken as the execution of a sequence

of instructions, a computer program such as that of the LGC cannot be divided into

jobs in the literal sense. It can, however, be divided into sequences of instructions

which, when executed, are jobs. These sequences can be identified, numbered,

modeled as desired and used as input to the simulation, and this is what is done in

the present study.

It would have been possible to start with a definition of a "job" as the sequence

of instructions itself; one would then refer to the "execution of a job" when referring

to what is called a "job" above. Either definition sacrifices convenience in some

contexts for convenience in others. The definition used here is perhaps more

meaningful from the viewpoint of the computer, which executes the jobs and is not

concerned with their representation.

In the remainder of this study, the word "job" will on occasion be used loosely

to refer to either the execution of a job or to the sequence of instructions being exe-

9



cuted. It should always be clear from context which is meant.

In the Apollo guidance computer systems, including the LGC, the identification

of job sequences is simplified by the presence of the "executive" and "waitlist" pro-

grams (7). These make it possible for the Apollo programer to code individual pro-

cedures without concerning himself with the mechanisms by which the computer will

begin them or with others that might be running at the same time. These programs

provide for two types of procedures:

"Tasks": short, high-priority functions that the programer specifies are to

be executed at a certain time in the future. These are entered into a "waitlist",

somewhat analogous to the multiprocessor job stack, and a timer is set to interrupt

the computer when a waitlist entry is to be executed. Tasks are limited to four

milliseconds duration, since they pre-empt the computer entirely until their termin-

ation. Only one task, therefore, may be active at a time.

"Jobs": longer, lower-priority procedures. Many jobs may be "active" at

one time, and the executive program selects one of them for execution between tasks

on the basis of assigned priorities. Jobs may be given to the executive only at the

time that they are to be executed (they cannot be specified for a future time, as a

task is. ) Thus, when it is necessary to specify a long procedure for execution at a

future time, the programer uses the artifice of entering a task into the waitlist for

the time in question, and provides a task which, when executed, initiates the job and

terminates itself.

It is, therefore, possible to define rules by which the LGC programs may be

broken down into independent program sequences. Such a sequence is:

1. An LGC task, when that task has functions other than the initia-

tion of an LGC job.

2. An LGC task and an LGC job together, when the task terminates

itself after initiating the job and performs no appreciable additional comput-

ation.

3. An LGC job not covered by item 2 above.

4. When an LGC job pauses to wait for a crew response, the pause

is treated as a separator between two job sequences. The response interrupts

the computer to start the second one.

5. Exception to item 1 above: In one case, where the LGC executes

a group of periodic monitoring functions, they are artificially combined into

one "task" in order to keep the number of separate functions within the limits

imposed by the LGC hardware and software. These functions are coded

separately, and the first nrder of business when the overall task starts is to

10



select the individual functions to be performed on that specific iteration.

In the breakdown of the program into job sequences, each of these functions

was treated as a separate sequence, with its iteration rate determined by

analysis of the LGC program. (These functions comprise job models 1

through 7 in the tables.)

The question of a general defintion of a "job sequence" is not nearly as

clear-cut. A few comments of general relevance may, however, be made.

It can be stated with good generality that aerospace computing tasks will be

characterized by a number of tasks that must be repeated at certain intervals. The

computer on which these tasks are performed will have one or more clocks used for

timing these intervals. Tasks performed at different intervals, such that the per-

formance of one does not necessarily imply the performance of the other, are clearly

separate jobs. Tasks that are related, so that the performance of one does imply

the performance of the other, would probably be considered different jobs if there were

an appreciable time lag between the two, but not necessarily if they are performed

immediately after each other.

In the case where the above definitions—and particularly the last—leaves a

number of jobs that are quite long and must be broken down further, it appears that

a productive line of attack would be via the results produced by each job. It should

be possible to take the calculations leading up to each item of data returned to storage

and call each a separate "job". Often, there would be considerable duplication be-

tween "jobs" thus defined; in that case, they could be combined into one.

This is far from the last word in defining methods of job breakdown. The

question is important, since the LGC program breakdown indicates a tendency on the

part of programers to lump related functions—navigation, for example—into one job

which becomes excessively long as a result. Efficient use of a multiprocessor re-

quires that no job predominate in the total set of jobs, or else individual processors

will have to be fast enough to handle that job with the required iteration rate and

there will be considerable unused capacity in the form of the other processors. It

appears that automatic job breakdown in a general situation would be a fruitful area

for further investigation.

The job models abstracted from the LGC programs do not describe the

sequences down to the functional level of addition, multiplication, etc. Rather, they

are concerned with the ways in which the jobs interact with other jobs and with what

would be, in a multiprocessor, such components as the bus, the job stack, etc. The

job model is, then, concerned with the following:

*The number of words of data that the job in question must obtain from

central memory, via the bus, before execution.
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*The execution time of the job.

*The amount of data it returns to central memory when done.

*The system input-output requirements it might have.

*Its interactions with other jobs, such as setting flags that affect their

execution.

*Its insertion of other jobs into the job stack.

*Its causing events that will cause future system interrupts (such as

activating a radar unit that will cause an interrupt when it has

completed its reading).

*Its periodic execution rate.

*Et cetera.

These job models and their parameters as listed just above were extracted

directly from the listing of the LGC computer programs (6) (W. Since this listing

is voluminous— some 1400 pages of single-spaced computer printout—an attempt was

made to devise an automatic analysis program that would perform the required work.

It soon became apparent, however, that the construction of a program that would

ferret out the ingenious programing tricks used by Apollo programers (under consid-

erable pressure to conserve memory space at the expense of clarity) would be a

more difficult task than performing the analysis by hand. Consequently, the analysis

was done manually, using references 7 and 9.

The procedure used was conceptually quite simple. It was known that, before

the braking phase, a group of monitoring jobs would be running. These were located

in the listing and analyzed; instructions were counted, data requirements tabulated, and

cyclic execution rates determined. The next job is P63, from which all further jobs

flow. P63 was thus analyzed, noting the same parameters plus the occasions on which

it submits other procedures to the waitlist or executive programs. The same process

is carried out for these, and in turn for their descendants until the ends of the branches

are reached or until a branch loops back on itself (as often happens, after an appro-

priate time delay, with periodic jobs.)

Where a program branched, an average execution time was taken if the branches

differed only in execution time and if it was impossible to determine valid statistics

for the branch without resorting to a simulation of the environment or of the detailed

internal calculations in the LGC. If they differed qualitatively—e.g., one branch

inserts a job into the job stack and the other does not—the program was analyzed in

depth to determine the logic controlling the branch point. Where possible, the job

models followed the actual program logic. Where this would require simulation of

12



the environment (for example, in calculating the number of pulses to be sent out

to a gyro-torquing device, where this number depends on spacecraft rotation since

the last group of pulses were sent out), simplifying assumptions were made; they

were selected to correspond to reasonable conditions that would impose a heavy

steady-state load on the computer. These assumptions are included in the job

model descriptions of Appendix A.

The execution time of each job sequence was obtained by counting the in-

structions executed in one pass through the sequence. Apollo computer instructions

can be written either in "basic" mode, in which the computer executes the instructions

directly, or in "interpretive" mode, in which case another program called the

"interpreter" interprets the instructions and carries them out. The advantage of

basic mode is speed; the advantage of interpretive mode is the availability of a large

repertoire of double-precision and vector arithmetic operations not built into the

hardware of the computer. Since improvements in a computer order code, such as

hardware floating-point capability, would speed up interpretive-type programs more

than basic-type programs, separate counts were kept for the two types of instructions.

The "basic" execution time of a sequence was taken as the number of in-

structions executed in it. All AGC machine instructions (except "divide") take from

1 to 3 memory cycle times, with an average figure of 2 MCT being quite close to the

true average. ("Divide", which takes 6 MCT, was treated as three instructions in

the count. ) Since one MCT is 12 microseconds in the AGC, one AGC basic instruc-

tion in the job sequence corresponds to approximately 25 microseconds of real time.

The "interpretive" execution time of a sequence was obtained by addition of

the times for each instruction. Instruction counting was not acceptable here, since

the times of different interpretive instructions vary quite widely (from 0.18 to 8.90

milliseconds). The count here is the number of milliseconds total time, as obtained

from instruction timing charts
(10) 

that the sequence takes for its execution. In the

AGC, this time unit corresponds, of course, to one millisecond, or 1000 micro-

seconds.

The total execution time, therefore, was specified as a pair of numbers:

the number of basic instructions in the sequence and the interpretive execution time

of the sequence in milliseconds. To obtain the total time, each of these numbers is

multiplied by the appropriate timing factor and the products are added.

Counts of data "used" (i. e. , obtained from central memory before the job can

start) were obtained during the same analysis. Such a data item is easily defined:

it is any word, except for constants, the contents of which are examined before being

altered by the procedure in question. (The addressing structure of the LGC, in which

references to a read-only rope memory containing instructions and constants are
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distinguishable from references to the alterable core memory, simplifies the identi-

fication of constants. )

Counts of data words returned to memory at completion were obtained ana-

logously. Any word, the contents of which are altered and not subsequently used

by the procedure, must fall into this category. In addition, words that are altered

and subsequently examined within a job may fall into it, if they are also used by

other jobs. This inspection was done on the basis of the "data used" lists described

in the previous paragraph.

Other factors in the job descriptions, not susceptible to numerical summar-

ization (such as a significant change in the execution time of a procedure based on

whether another procedure has or has not been executed, or the fact that a proced-

ure may initiate another one every fifth execution, or similar) were noted as appro-

priate and were incorporated into the job models used in the simulation.

The job models themselves were presented to the simulation in the form of

Fortran subroutines, which were either hand-coded or generated automatically by

another program which accepted a simplified description of the job. The sub-

routines incorporated, by necessity, a considerable amount of procedural bookkeep-

ing coding not related to the functioning of the mulitprocessor or to the nature of the

job, so their detailed description is of minor relevance here. A typical subroutine

is reproduced in Appendix B, together with descriptive comments. Their format

is also discussed more fully in the description of the simulation, in Chapter 3.

2.4 Descriptions of the Individual Jobs 

Within the programs executed during the braking phase, 43 independent se-

quences of instructions were identified and called "jobs". The present section des-

cribes these sequences, numbered 1 through 43 for ease of reference.

The identification of a section of LGC coding with a specific job model is not

always unambiguous. For example, consider a job that is called for by another, is

executed two times with an interval between them, and then terminated without call-

ing for another execution. (Such a function might be a radar reading, where a num-

ber of readings would be made and averaged into the final result.) In the actual

program, such a procedure would maintain an internal counter, which would be in-

cremented on each execution and used to determine the correct terminal action.

In modeling such a program, there are two alternative approaches. One is

to copy the logic of the program. In this case, the simulation subroutine represent-

ing the job would maintain an internal counter analogous to that in the actual program.

The second approach would consider the LGC program to be two jobs, and hence two

job models and two subroutines. The first of these, when executed, would call for

execution of the second; the second would terminate without initiating any other jobs.

Both would be identical in other characteristics such as execution time, data re-

quirements, etc.
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The difference between these two approaches is purely semantic. 
The per-

formance of the LGC, the multiprocessor and the simulation will 
not be affected by

the choice, since both would result in jobs of similar characterist
ics being executed

at similar times. The computer does not care if humans are
 consistent in referring

to its programs by one name at all times, or if they find it m
ore convenient to use

different names for the same coding according to the circums
tances under which

it is executed. It is the execution of a job that affects the computer, not
 the name

of the job.

For this reason, too much importance should not be attached to th
e existence

of precisely 43 jobs. The type of choice described above was
 made a number of

times, always arbitrarily according to what seemed con
venient in a particular situ-

ation, and thus not consistently one way or the other. The nu
mber of jobs could

have been easily reduced below 40 or increased to over 60. W
hat is of greater

importance is the number and nature of the job executions dur
ing a period of time

of interest. In the analysis of these executions, the job identification numb
ers play

no part.

The jobs executed by the LGC during the braking phase of the
 landing can be

divided into a number of categories. These are:

A. "Timeline" jobs (no. 10-13, 15-18, 29 and 30 in the tabulations).

The crew-initiated "P63" is the first in this sequence, and th
e others follow

in order, either after a wait for crew response or at a pre- de
termined time

relative to engine ignition. Most of the other jobs are started either directly

or indirectly, by one of these.

B. Monitoring jobs (no. 1-9). These are executed at varying, but

pre- determined intervals, ranging from 0.02 to 2 seconds dependi
ng on the

particular job. They monitor and control a variety of spacecraft f
unctions.

Jobs 1-7 would already be running when the crew keys in P63; jobs
 8 and 9

are started later on in the sequence.

C. Navigation loop jobs (no. 22-27, 31, 42 and 43). This set of jobs,

executed every two seconds, updates the vehicle state vector, 
processes

radar readings, and computes landing trajectories.

D. Autopilot jobs (no. 36 and 38-40). Executed every 0.1 second,

these jobs operate the control jets that control the attitude of the s
pacecraft,

and the gimbals that point the descent engine.

E. Initialization jobs (no. 19-21, 28, 32-35, and 41). These jobs

are each performed once. Jobs 19-21 are performed just before igniti
on,

and job 28 just before the visibility phase; they set certain variabl
es used
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by other programs. Jobs 32-35 and 41 reposition the landing radar so as to

point to the lunar surface. (The landing radar is used to update the LM

state vector during landing by making measurements of the spacecraft posi-

tion and velocity. )

F. Miscellaneous jobs (no. 14 and 37). Job 14 controls computer

displays during a short portion of the landing; it is executed every second

until the phase in question is over. Job 37 is executed whenever the crew

operates a controller to redesignate the landing site. It sets flags that are

tested by the navigation programs to control calculation of new trajectories.

When the "steady state" of the system is reached in the visibility phase of

the landing, these jobs are not all active. Many have been executed once and will

not be called out again. The active jobs are those of categories B, C and D above,

plus the landing site retargeting job of category F. Some of these jobs are self-

perpetuating: each time they are executed, their final action before termination is

to insert into the job stack the request for their next execution. The others are in-

itiated, for each execution, by jobs that are self-perperuating, so they too cycle at

fixed intervals. (The exception is the landing site retargeting job, which is executed

in response to a crew action. )

The jobs are described individually, and their numerical characteristics are

tabulated, in Appendix A.

During the steady state of the visibility phase, jobs are executed at a mean

rate of 67.35 per second. Twenty-three jobs are "active" at this time, with vary-

ing iteration rates.

2-1.

The jobs executed during a typical minute are listed in Table

Table 2-1

# JOB TIMES/ MIN COMMENTS

1 1 619 477 without changing displays, 142 with

2 2 500

3 3 125

4 4 125

5 5 250

6 6 125

7 7 125

8 8 120

9 9 30

10 22 30

11 23 30
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JOB TIMES/ MIN COMMENTS

12 24 30 18 short, 12 long (landing site retargeted)

13 25 30

14 26 30

15 27 120

16 31 30

17 36 600

18 37 12 using assumed crew activity statistics

19 38 600

20 39 30

21 40 300

22 42 150

23 43 30

Using these figures, weighted averages of job execution times, bus use re-

quirements, etc. , can be obtained from the tabulations of the numerical job para-

meters given in Appendix A. The figures thus obtained are presented in Table 2-2.

Table 2-2

mean job execution rate: 67.35 per second

mean instruction execution rate: 25400 per second

mean job duration—instructions: 377.13

mean bus demand—cycles—obtaining data: 31.48

mean bus demand—cycles—returning data: 23.02

mean external interrupt rate: 2.7 per second

The "job mix" of the computer during this phase is characterized by the exe-

cution of a large number of very short jobs and a small number of very much longer

ones. This result is obtained whether jobs are ordered by execution times (as seems

natural) or by bus use requirements (as is perhaps more relevant to the multipro-

cessor).

A plot of bus use by jobs, showing the fraction of bus usages that exceed a

given number of cycles in duration, is given as Fig. 2-1. This plot was obtained as

follows: A "bus use" was defined as that period after a processor obtains access to

the bus, having requested access, and before it enables another unit, having

finished with the bus for the moment. During this period of time, the processor can

send messages, send data and receive data. It was assumed that each message sent

(job acceptance, job insertion in the stack, and job termination) takes one bus cycle,

and each word of data sent or received takes two bus cycles—one to specify the word
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and one to transmit it. The number of cycles occupied in time by each bus use can

thus be determined. The frequency with which each of these numbers occurs is also

easily determined: it is the execution frequency of the job in question. The fre-

quency of bus usages of varying durations, expressed as varying numbers of bus

cycles, is therefore available. It is this frequency, plotted cumulatively, that is

shown in Fig. 2-1. The largest number of cycles in one bus usage was 253. The

tendency to a large number of short usages and a small number. of longer ones is

clearly seen.

This job breakdown reflects, presumably, the way in which people "like" to

write guidance computer programs in the absence of any constraints. It is possi-

ble that constraints, particularly in the area of bus use, will be necessary to ensure

efficient use of the multiprocessor. In such a case, it may well be advisable to

place the burden of fulfilling such constraints on a compiler or other such tool used

in the preparation of multiprocessor programs.

2.5 Conclusions from the Analysis

The figures of Table 2-1 in conjunction with the execution times for each job

as given in Appendix A can be used to find the fraction of the total computing load

accounted for by each job. Such calculations provide the information that job no. 24,

the main navigation loop job, accounts for 59. 14% of all the computations, and job

no. 36, the autopilot job, accounts for 22.05%.

These figures are significant for two reasons. The first is that they reflect

(presumably) some sort of "natural" breakdown of the total computing task, in the

sense that it is "natural" for programers to break the task down in this manner.

We thus have a number of very short jobs, and a few very long ones.

This information also has relevance to the multiprocessor. A five-processor

configuration, each of the processors of which is one-fifth as fast as the AGC, could

presumably (with an infinitely fast bus) execute the AGC computing load. With the

existing job breakdown, though, this is not the case by any means. The navigation

loop must be cycled every two seconds, and takes about 1.18 seconds of AGC com-

puting time. A multiprocessor in which the processors were one-half the speed of

the AGC, then, could not physically complete one cycle of the loop before it was time

for the next one—even though, in the overall system, there would be unused capacity

in the other processors. A system in which the individual processors were one-fifth

the speed of the AGC could not complete the autopilot job within one cycling period

for that job, either.

We may therefore conclude that, for efficient use of the multiprocessor, it

is necessary to structure the total computation so that no individual job accounts for

an overly large portion of it. If it is inconvenient or otherwise impractical for this

structuring to be done by the programer—and, in a "convenient" system, the pro-
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gramer should not have to Ido it—then it must be done automatically, by compiler

or other such programing aids.

A side effect of this distribution is that the simulation (described more fully

in the following chapter) cannot simulate a multiprocessor having processors less

than half as fast as an AGC as if it were executing this job set, for the simple rea-

son that such a multiprocessor could not execute this job set. Since it is desirable

to simulate a multiprocessor in a heavily loaded condition, and since the only way

of loading the system for a given job set is to slow it down, this posed a problem.

The expedient that was chosen to circumvent this difficulty was to create a

"modified" job set, identical to the one discussed above except for jobs no. 24 and

36. The autopilot job was reduced to one-half its former computational size, and

the navigation job was divided by a factor of 4.5. (Data requirements, bus use, etc.,

were not touched. ) The resulting job mix represents the lunar landing fairly well,

though not with complete accuracy, and could be thought of as representing it in a

computer with an instruction set especially suited to the execution of navigation-

type programs. In any case, this provided a means of obtaining a job set for simu-

lation that had a strong connection to reality and could also be used to simulate a

heavily loaded system. In discussion of simulation results, the modified job set

was generally used.
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CHAPTER 3

THE MULTIPROCESSOR SIMULATION

3.1 The Reasons for the Simulation

When a system of interdependent processes reaches a certain degree of

complexity, it becomes impossible for humans to appreciate fully the interactions

among parts of the system and to evaluate the effects of these interactions. It

becomes necessary to use a systematic method of studying the system, which can

provide some facts on which an evaluation of the system can be based. Two

different approaches to this analysis are in use: simulation
(11)

and queuing theory
(12)
.

The differences between these approaches have been discussed fully in

the 1 terature. Wallace and Rosenberg(
12)

describe them in justifying a queuing

theory analysis; Merikallio and Holland(13) do so in justifying a simulation study;

and Scherr
(14) 

contrasts them as part of a study using both approaches. It is

fair to state that each has its advantages.

Simulation has the advantage of describing exactly what is happening in

the system being analyzed, not an average of what might happen. A system

being simulated can be examined during the simulation at any time. There are

no restrictions on the analysis of simulation data, while the types of statistics

available from queuing theory studies are often limited. Finally, the validity

of the simulation as representing the system is usually obvious (though the statis-

tical validity of the results might not be—see, for example, Fishman and Kiviat(15)).

Disadvantages of simulation, as contrasted with queuing theory, include

lack of generality: the output describes the system behavior only for the given

initial conditions, which might not be typical. The effects of this can often be

overcome only at the expense of large amounts of computer time—another

disadvantage. Programing requirements are also large, since each part of

a complex system needs normally to be modeled separately (or at least each

unique part; advantage can often be taken of modularity). Thus, the two

approaches are complementary. Queuing theory can be used for comparisons

between systems and for overall evaluations, while simulation is invaluable for

examination of "worst case" conditions and for close examination of the system

21



3.2 The Job Models in the Simulation

The usual simulation of a computer system does not use specific tasks to be

executed by the computer being simulated(14,16). Instead, tasks are created as

required by the simulation from a stochastically defined "job mix'', Parameters

such as job length, input-output requirements, arrival intervals between jobs, etc. ,

are specified to some degree of statistical precision for the set of all jobs executed

by the computer, and these specifications are used in conjunction with a random-

number generator to create the jobs that are processed by the simulated system.

If the statistics used in the specification of this job mix are sufficiently

close to the true statistics of the systern being simulated, the results of such a

simulation can be quite accurate, as shown by Scherr
(14)
. For a system as yet

nonexistent, however, the estimation of accurate statistics is subject to serious

errors. A starting point for these statistics, having demonstrable validity

beyond the userts Thest guess'', is an absolute necessity if the simulation is to

produce useful results. No such statistical data describing space guidance com-

puter programs were available.

It would have been possible to take the weighted means of the running times,

iteration rates, etc., for the jobs analyzed in the previous chapter, and to use

them as defining the job mix. In doing so, however, some of the advantages of

simulation would be lost. The knowledge of how the system behaves for a real-

istic program would be replaced by the knowledge of how the system would behave

for programs that, on the average, resemble realistic programs. Also, the

usefulness of the simulation as a basis for evaluating the results of the theoretical

analysis would be sharply reduced, and in this case there is no other way to evalu-

ate those results for accuracy.

To circumvent these problems, the simulation used in this study did not

create its jobs from statistically-defined parameters. Instead, it used the actual

jobs of the previous chapter, each specified individually and each distinguishable

from all the others. Each of these jobs carries in the simulation a specification

of its execution time, input-output and data requirements, iteration rate, inter-

actions with other programs, etc. Thus, the simulation provides a look at a

multiprocessor as it would execute the lunar-landing Apollo computer programs.

The differ-ence between this simulation and the typical statistical simulation

of a digital computer accentuates the differences between the usefulness of simu-

lation and the usefulness of queuing theory as methods of analysis. This simu-

lation is far more deterministic, less stochastic, than most others. It therefore

acquires statistical validity in less time than most others, but this validity is

less general. This, on the one hand, makes the choice between simulation and

theoretical analysis more clear-cut on the basis of the results desired, and on the
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other hand reduces simulation running time to the point where it is roughly similar

to the running time of the analysis discussed in the following chapter.

3.3 Structure of the Simulation

The simulation programs were prepared in the Fortran IV language for

the IBM 360 computer. Examination of languages written expressly for the purpose

of simulation
(17,18)

1ed to confirmation of the conclusions expressed by Scherr
(14):

generally-available simulation languages are inefficient in their use of computer

time, not well suited to the modeling of computer systems, inflexible in input-

output, or difficult to learn, generally having more than one of these drawbacks.

Fortran, with its flexible subroutine calling capability, permits one to write a set

of subroutines that simulate the performance of the various multiprocessor

functions; once these subroutines are written, coding the simulation is at least

as simple as it would be in a special-purpose language, and the capabilities of

the Fortran language are available for use as needed.

Internally, the simulation represents the state of the system by a group

of tables. There is a table to represent the contents of the job stack, a table giving

the state of activity of the processors, etc. A simulated clock keeps track of the

Iltimen in the simulation; at the completion of one event it is advanced to the start

of the next event, so that time is not wasted simulating periods of time in which

the state of the system does not change. A final set of tables stores accumulated

statistics of the run.

Control of the simulation is exercised by a "central simulation loop". It

examines the job stack and the processors (in an order determined by the priority

scheme of the multiprocessor being simulated) to determine their requirements

for the bus. If a demand for bus use is "past due" when the unit demanding the

bus is scanned, it is given the bus. If no requests for the bus are pending, the

earliest request is satisfied.

An event can be of three types: an external interrupt, a job due to start, or

a running job needing the bus.

An external interrupt, when it occurs, enters into the job stack a request

for the execution of a job. The interrupt then becomes equivalent to any other job

waiting to start.

If a job is due to start, and a processor is available, the processor is

assigned to the job, and control of the simulation is passed to the subroutine

representing the job that is to be executed. A flag internal to the simulation is

set by the central control loop, to inform the subroutine that it is being called for

the purpose of initiating job execution.
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If a job that had been running needs the bus, control is again passed to the

subroutine representing the job. In this case, the control flag takes on a different

value, so that the subroutine can tell that it is being called to terminate the execu-

tion of the job.

After completion of the activity in question, which includes advancing the

system clock by the duration of the activity, the central simulation loop is again

given control. This cycle continues indefinitely, modified by control cards

supplied by the user.

General control over the simulation is exercised by a packet of control

cards. The configuration of the multiprocessor can be specified completely for

each run, as can the speeds of the individual processors (see Fig. 3-1). In

addition, various output options can be selected, and the user may specify if the

simulation run is to start from scratch (in which case the initial contents of the

job stack must be given) or to continue where a previous run terminated (in which

case a ''restart deck'', punched by that previous run, must be supplied). The

user may also obtain "snapshots" of system status at any desired time during a

run (see Fig. 3-2), change the output options during a run, cause external inter-

rupts to occur, and cause failure of a selected processor or of the processor

executing a selected job.

At the end of the run, a statistical summary of the run is printed. This

summary is useful both in studying the multiprocessor and in evaluating the

accuracy of the Markov models discussed in the following chapter. The numerical

portion of such a summary is reproduced as Fig. 3-3 and 3-4.

3.4 Description of Simulation Output

Four items of simulation output are reproduced as Fig. 3-1 through 3-4,

and were referred to briefly above. This section is designed to make them more

comprehensible to the reader.

In addition to the items reproduced, additional simulation output is avail-

able when selected by the user. This additional output consists largely of lists of

individual events and their descriptions. It is of interest only to a person following

the progress of a specific job or processor, or for debugging purposes.

Figure 3-1 is output from the beginning of a run, and is taken entirely from

user input cards. The configuration of the multiprocessor is specified by the

number of processors, the number of job models supplied to the simulation, the

number of positions available in the job stack and the priority scheme of the

multiprocessor. The speed of the system is given by three parameters: the time

it takes a simulated processor to execute one Apollo Guidance Computer instruction,

the time it takes to carry out the computation implied by one millisecond ot AGC
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START OF SIMULATION

IN LLLLL JCP ASSTONPENTst

JCB NC. 1 cnR T. 0.110000

21 JCR NC. ? FnR T. 0.011000

So JOB NC. 3 FOR T. 0.012000

41 JCR NC. 4 FnR T. 0.014000

SI JCR PK. FnP Y. 0.111000

6t JCR NC. e Fnp T. 0.012000

11 JCR NC. / FIR T. 0.119001

Os JCB NC. 10 FOR T. 0.900000
91 JCS NC. it FOR TA 20.000001

SIMULATION SFT TM 7FAVINATP AT T. T00.0000011 sue-MM.

RUN PARART1(11s

5 PROCFSSOPS
43 JORS
le JOB STACK PCSITIONS

211.0 PICRI1SEC PRP BASTC ACC INSTRUCTWN

1000.0 le ICRCSEC PER• ACC INTER1R1,1111E RSEC

14.0 PICROSFC CEP PUS MFSAACc

PRIORITY SCTEME

Fig. 3-1 Simulation output: system description and initial conditions.

ORIGINAL PAGE IS
OF POOR QUALITY
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TERMINAL SNAP'

mnsT RECENTLY LSFO EY pRocESsCR NO. 7

SUS WAS RELEASED Al T. 300.001670

CURRENTLY ACTIVE PAITCESSnAsA
IMAncESSnm Joe NEAT BUS RFnuEst

1 ?A 300.479151
2 3e 300.015795

[MEAT CONTENTS OF Joe STACK1
STACK POS Jle TIPE TC OF CALLED

I l 100.010000
2 2 100.011000
3 3 300.012000
4 4 300.014000
5 22 301.810861
6 5 s01.9,6791
7 • lo0.011000
8 s 300.956774
11 t 300.017000
12 7 300.019000
13 23 101.780861

m*AT purr SCNICuLEc FnR T. 302.702731

END OF SNAP

Fig. 3-2 Simulation output: "snapshot" of system status.
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OVERALL EFFICIENCY: 99.5TR
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INFORMATIQN TRANSFER EFFICIENCY 511.442

WASTECTIME IS 1.59T OF BUS USE TIME
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0 0
nEsors IN JCR ACCFFTAKICE - MUSETTE'S:

0 0.4 0 IS 10 125 TS0 400 I SFr. SEC

0 /4 
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0.499 0.59/ 1.955 3.999 7.999 14.99 20.99 59.99 124.9 249.9 1-99.9 999.9 1.999 OVER
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t-1 1924.8 11 13 3 0 0 C n 0 C 0 7 0
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cl $0
>

g

tmrt Fig. 3-3 Simulation output: statistical summary, sheet 1.



JOB EXECUTICN FREOUNCIESI,

Jan TIMES

1 1015
2 25CC
3 62!
4 625
5 125C
6 625
7 62!
8 449
9 11?
10 1
11 1
12 1
13 1
14 45
15
16 1
17 1
1S
IQ 1
20 1
21
22 14C
23 119
24 140
25 125
26 139
27 5IC
25 1
20 1
30
31 12!
32
33
34
35
36 290
37 6
3! 28C
39 14
40 14C
41
42 62!
43 119

Fig. 3-4 Simulation output: statistical summary, sheet 2.
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interpretive time, and the time it takes the system to send one message out via

the bus. The initial contents of the job stack are also specified, implying that

the run reproduced was a "fresh start" rather than a I'restart"; the particular

numbers used have no significance.

Figure 3-2 is a typical "snapshot" of the system, which can be requested

by the user for any simulated time and which is also provided automatically by

the system on termination (as was the one shown) or in case of errors. It is

self-explanatory.

Figure 3-3 contains the bulk of the statistical summary of the run. The

performance figures used in the analyses of Chapter V were obtained from

summaries such as this. The data on this page are obtained as follows:

The bus use time is obtained by summing all requests for bus use

over the period of the simulation. Each message sent takes a time of one

bus cycle, and messages are sent for job requests, job acceptances,

insertions into the job stack, and job terminations. Each request to

transmit a word of data, in either direction, takes two bus cycle times:

one to identify the word and one to transmit it.

Job acceptance delays are defined as the interval between the

time at which the job should have been executed—based on job stack

information—and the time at which the job acceptance message was

sent out by a processor, minus the time of the one bus cycle taken up

by the job request message itself. They are tabulated over the run to

obtain the data in the second line of the summary and in the table at the

bottom of the page.

The number of jobs l'initiated" is specified in the summary rather

than the number of jobs "executed", for the sake of precision. It is felt

that a certain ambiguity arises in the definition of a job being executed

if it is in progress when the simulated run starts or ends.

The number of job requests is not necessarily the same as the

number of jobs initiated, since a job can be unacceptable when a request

for it is issued. Should this be the case, the request will be issued

again, as soon as a presently-running job terminates.

The amount of time during which a processor is busy is taken

as starting at the beginning of its transmission of the job acceptance

message, and ending at the end of transmitting its termination message.

(The percentages in this table are not necessarily based on the

precise termination time specified in the run request, since the

simulation will run past this time until the next bus release.)
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The total processor-busy time is computed from the entries in

the "processors in use" table directly above it. The "equivalent single-

processor load" is the processor-busy time divided by the duration of the

run. The "actual computation time" is accumulated during the run from

the instruction execution specifications of the job models, and the "comp-

utational efficiency" is defined as the actual computation time divided

by the total processor-busy time. This efficiency is not a particularly

good measure of system performance, since some bus use is implied

in every job; therefore, not even a system with no delays could achieve

100% computational efficiency.

The i'total productive time" is obtained by adding the bus use

time (bus use percentage times run time in the summary, but actually

carried separately internally) to the computation time mentioned above.

From this sum, the time during which the bus was used for job-request

messages must be subtracted, since this time is not assignable to

processors and misleading results would be obtained if this correction

were not made (such as efficiencies of 102%). This correction is obtained

by multiplying the number of job requests issued by the bus message time.

True single-processor load is the time thus obtained divided by

the run time. This load is "truer" than the one above because a single

processor presumably would not interfere with itself in using the bus.

Overall efficiency is defined as total productive time divided by

total processor-busy time. This is a better measure of system utiliz-

ation than computational efficiency, but is biased upwards as system

computational speeds go down because computation is by definition 100%

efficient.

System load is the total processor-busy time divided by the total

available processor time: run time multiplied by the number of pro-

cessors. Alternatively, it is the "equivalent single-processor load"

divided by the number of processors in the system. The "true load at

100% efficiency" is the system load that would prevail in the absence of

interference in bus use; it is the system load multiplied by the overall

efficiency.

Information transfer efficiency is the best measure of the delays

caused by interference in use of the bus. It is defined as the time spent

by processors using the bus, divided by the time during which processors

were busy but not computing. Equivalently, it is the time processors

were using the bus, divided by the time in which they were either using
or waiting for it:
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Wasted time is information transfer efficiency expressed in a different

way; they are related by a simple expression obtained from Eq. (3. 1)
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The maximum number of simultaneous job stack entries is of

interest largely to a person preparing a set of job models, and who might

be interested in the overall system requirements of this set.

Figure 3-4 shows the number of times that each job model

in the shnulation was executed. Some of the execution times in this example are

zero; these correspond to jobs that would be executed during mission phases

other than the one simulated by this particular run.

3. 5 Presentation of Job Models to the Simulation 

Job models, corresponding to the 43 jobs discussed in the previous chapter

(or to any other job that the multiprocessor might execute), were presented to the

simulation in the form of short Fortran subroutines. These subroutines, in turn,

consist largely of calls to the multiprocessor-simulating subroutines—such as

GET, to obtain data from memory; INSERT, to insert a job into the job stack;

TERMIN, to terminate execution of a job; and others.

A still easier method of preparing job models for simulation is provided

by a special-purpose program generator written for use in conjunction with the

simulation. This program generator takes a bare-bones description of a job, in

terms of its numerical parameters and their stochastic variations, and creates

the required Fortran subroutine from this description. It is possible with this

program to create a complete set of job models without any knowledge of Fortran

or of the simulator. It is felt that this "program generator" approach combines

all the advantages of a special-purpose simulation language with the efficiency and

flexibility of Fortran—which remains available for the more sophisticated user

or for the user for whom the capabilities of the special-purpose language are not

adequate.

Of the 43 jobs in the lunar landing, about 35 could be written with the

"program generator" above. The other jobs generally involve inter-job commu-

nication (such as a navigation job that performs additional functions whenever the

crew landing-site redesignation job is performed, and must be able to determine
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whether or not to perform them). For these jobs, Fortran was used directly.

An annotated example of a job model, as expressed in the program-gen-

erator language and in Fortran, is given in Appendix B.

3. 6 Internal Functioning of the Simulation

This section goes into the internal operation of the simulation in a some-

what greater degree of detail than did Section 3. 3. It may be bypassed by those

with no interest in this topic with no loss of continuity.

The first requirement in any simulation is the definition, in precise terms,

of the system being simulated. This definition can be broken down into three parts:

specification of the limits of the system, specification of the parameters of the

system, and specification of the state of the system.

The limits of the system being simulated are, in this case, provided by

the ground rules stated in Chapter 1. A multiprocessor computer is being simu-

lated in the overall sense, with no attention being given to either the environment of

the computer or to the internal functioning of the components (e. g., processors)

of the computer. Only those components that must be simulated because of their

effect on system behavior—such as the job stack—will be.'

The parameters of the system were also given in broad terms in Chapter 1.

They are:

* the number of processors in the system

* the number of positions in the job stack

* the speed of the processors, expressed as a pair of numbers: the time
in which one processor could execute the equivalent of one AGC instruction,
and the time in which it could carry out the computations which the AGC
carries out in one millisecond of interpretive calculation

* the speed of the bus, expressed as time in microseconds to send one
message

* the priority scheme of the multiprocessor

* the number of job models in the simulation (not strictly a parameter of
the multiprocessor, but required by the simulation programs).

Given these parameters, and given the specification of each job, a person

could conceptually simulate the multiprocessor with pencil and paper. He would

write down the activity of each processor, would assign jobs to processors when

they come due, and perform all functions that would be performed in the multi-

processor itself. In doing so, he would find himself altering again and again a

group of quantities that describe what the system is doing at any moment—the

"state" of the system. In the present simulation, the state of the system is

represented by the following list of items:
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* the present time

* the time at which the bus will be released, if busy

* for each job stack entry: the name of the job and the time at which it is
to be executed

* for each processor: the job using it (if any) and the time at which the
job will next require use of the bus

* the number of the processor now using the bus

This set suffices to describe the state of activity of the multiprocessor

with an adequate degree of completeness for purposes of the current simulation.

To it, we may add two additional sets of information, which are convenient to

have in a computer simulation:

* bookkeeping information required for simulation "administration": the
time at which the run is to stop, the time of the next interrrupt, the out-
put option selected by the user, etc.

* statistical information accumulated during the run: bus use times, job-
starting delays, processor-busy times, job requests, and so on—limited
only by the time and imagination of the person creating the simulation.

When these sets are written down, attention may be transferred to another

area. It is possible to write down a list of the various functions that are performed

in the multiprocessor and which will have to be simulated. These functions are:

* determination of the next event

* sending of a job request by the job stack

* acceptance of a job by a processor

* obtaining data from central memory

* reading data from system input devices

* releasing the bus

* job execution

* returning data to central memory

* writing data on system output devices

* inserting jobs into the job stack

* job termination and processor freeing

* occurrence of system interrupts

When this list also has been written down—and it should be recognized

that such lists are rarely final, but change as understanding of the multiprocessor

and of the simulation grows—it is possible to determine the effect of each such

event on the state of the system. For each event in the system (all the functions

in the above list are events, except the first) a "subroutine" (Fortran terminology

for a semi-independent section of a program, which is executed only when called

for by some other program section) was written. The first function, determination

of the next event, is performed by the main program, which through this function
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exercises control over the other parts of the simulation.

In operation, the main program scans the state of the system and deter-

mines the next event. In this scan, it is concerned with three factors: the times

of the entries in the job stack, the times at which the busy processors will next

want the bus, and the time of the next interrupt. The scan is performed in a

sequence determined by the priority scheme of the multiprocessor being simulated.

If the next event is an interrupt, the job to be executed is inserted into the

job stack by the appropriate subroutine. It is then treated exactly as any other

job stack entry. Eventually the system must therefore reach a state in which

the next event is not an interrupt.

The system is then scanned, each processor and the job stack in its turn,

for events that should have already started but were not able to because other

events were in progress. The first such event found is executed. It will be

either a job trying to start or a job trying to get the bus so as to terminate.

If no such past due event is present in the system, the event that is next

due is executed. It must also be one of the above two types of events.

If the event thus selected is a new job to start, the processors are again

scanned, in an attempt to find a free one for the new job. If no such processor is

found, the job is flagged as unacceptable, and the scan is repeated. (This proce-

dure may appear strange at first because, if all processors are busy, it requires

each job to be flagged as unacceptable individually. It was selected because,

first, jobs can be flagged as unacceptable for reasons other than all processors

being busy; and, second, because it is likely to resemble the procedure that

would be adopted in a real multiprocessor because of its conceptual simplicity).

Eventually, the next event will become a running processor wanting the bus; this

event can be executed.

The next executable event will thus be defined as to type and as to the processor

on which it will take place. It is also defined as to the job model that describes

it more fully. Further activity is under control of the job model subroutine

(These are described more fully in Appendix B).

The job model subroutine controls the execution of most of the multiproc-

essor functions. It defines to the appropriate lower-level subroutine the

amount of data it takes and returns, the time it requires for calculations,

the jobs it insertS into the job stack, and any other relevant items of its

behavior. The lower-level subroutine in question takes these specifications

*
Such as memory conflict. This occurs when two or (Continued on next page)
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and translates them into changes in the appropriate state and statistical

tables. Control is then returned to the central simulation program, which

searches again for the next event; this procedure continues until the

end of the run.

more jobs alter the same item in memory. When one of these jobs is running,

the other must not be allowed to; the final result in memory if this rule is not

followed will be the result of only one of these jobs, the other one being ignored.

When this can occur, it is therefore necessary that a job, before starting, check

for the possibility that portions of memory that it requires might have been

"locked out" by another job.

The simulation provides facilities for specification of memory lockout

by job models and for testing for conflicts at the time of job acceptance. If a

job cannot be accepted due to memory conflict, it is flagged as unacceptable and

the simulation looks for the next event.

In the analysis of the lunar landing jobs, memory conflict was not a

factor because the activities that could alter each part of memory were collected

into the same job in every case. Memory conflict will not, therefore, be further

considered in this study. In another situation, however—in particular, in a

situation where long jobs were broken down into a number of shorter ones—this

problem might have to be dealt with.
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CHAPTER 4

THEORETICAL ANALYSIS

4.1 Concepts of Queuing Theory

This section is not intended as a text on queuing theory. It is, rather,

designed to provide the reader with enough background to understand the sections

that follow. For further reading on the subject, Morse
(19) provides a good intro-

duction; Markov processes are treated by Howard
(20)

; and the computational methods

used are based in large part on Wallace and Rosenberg(l2), whose paper also in-

cludes a description of Markov processes.

The general name of "queuing theory" refers to an approach to the analysis

of a collection of interdependent processes, totally unlike simulation. The approach

consists of defining a number of "states" of the system in question, and of deter-

mining the probable behavior of the system from analysis of the transitions among

the states.

The first step in the analysis is to define the variables that describe the

system; these are called "state variables". Consider, as an example, the Acme

Widget Company. Upon receipt of an order for widgets, its manufacturing depart-

ment makes them, one at a time. They are stacked for inspection and checked

individually before shipment (Acme guards its reputation for quality jealously).

We would have the following state variables to describe the state of the firm:

VARIABLE

number of unfilled orders

state of manufacturing department

number of widgets waiting for

inspection

state of inspection department

POSSIBLE VALUES

0 to infinity

0 or 1 (idle or busy)

0 to capacity of bin

0 or 1 (idle or busy)

Each combination of state variables is called a "state" of the system. In

the above example, the state (4, 1, 0, 0) might mean "four unfilled orders, manufac-

turing department working, none waiting for inspection, inspection department idle. "
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For convenience, numbers are usually assigned to the states; the above state might

be nstate 180".

It should be noted that the nstateu of a system defines only that part of a

system described by the state variables. There are often many alternatives in the

choice of these, and both the complexity and the usefulness of the analysis will

depend on the choice made. (In times of stress, Acme could perhaps have the

vice-president make widgets. This would increase the speed of manufacture, and

would introduce another state variable or another possible value for an existing

one. Furthermore, the above set of variables gives no information about the

adequacy of Acme's accounting methods, the quality of its customer relations, etc. )

Part of the job of the analyst is to select the minimum set of states consistent with

useful results.

A potentially bothersome characteristic of the above example is that it has

an infinite number of states. This is not a difficulty in many types of analysis, but

when the system becomes sufficiently complex to require a computer it is necessary

to limit the number of states. It is often possible to reason that very large values

of a potentially infinite variable are extremely unlikely and to impose a limit on

the value of this variable, thus turning the problem into a finite-state one. This

simplification can be justified in either of two ways: by noting that, in the analysis

of the finite-state problem, the states corresponding to the highest values retained

have sufficiently small probabilities; or by determining, through theoretical analysis

of a simpler but related problem, that the states discarded have sufficiently small

probabilities. This type of situation arises in the analysis of the multiprocessor,

where there is no fixed limit to the number of jobs that can be past due for starting

(or, equivalently, the limit is so large as to make the total number of possible

states intractable).

The second stage of the analysis is to determine the events that can cause

transitions from one state to another. Even in a system with a large number of

states, there are usually few such events. In the case of Acme Widgets, transitions

would be caused by the arrival of an order, the completion of the manufacture of a

widget, and the completion of the inspection of one.

The rates at which these events take place must then be determined. One

way of expressing this rate is by a function S0(0, the probability that the interval

between two successive occurrences of the event is greater than t. This interval

can be the time between order arrivals, etc.

It is now possible to compute the steady-state probability of the system
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being in any particular state. Assuming that within a sufficiently short period only

one such transition-causing event will occur, it is possible to write an equation

balancing transition rates into and out of each state. The equations expressing

this balance involve the probabilities of being in the various states (since the rate

of transition from state A to state B is related to the probability of being in state A

to begin with) and can be solved for these probabilities.

The form of these equations is particularly simple when the distribution of

intervals between events is exponential in time (that is, the number of events within

a given interval has a Poisson distribution). The probability of having an event in

a given interval is in this case independent of the time since the last such event.

The transition rate from one state to another is then simply proportional to the

probability of the initial state. The constant of proportionality is the reciprocal of

the mean arrival time, service time, etc., of the event in question. For a process

with mean time 1/µ, we have

Sp) = e-Pt . (4.1)

and the probability of a transition by this mechanism out of a state A within the

interval dt (where PA is the probability of being in state A) is given by

PP
A
dt (4. 2)

The equations of balance for the exponential case are sums of terms of this

sort, and are therefore linear in the P.. For a system with n states, there are n

such equations in the n unknown probabilities. They are dependent, and are

equivalent to n-1 independent equations. A final equation is added by the condition

that the state probabilities sum to 1; there are thus n equations in the n unknowns

and the system can, in principle, be solved.

It is often possible to relax the restriction to exponential processes by the

introduction of additional states, modeling a non-exponential process by a collection

of exponential ones. Morse
(19) 

gives a number- of examples of this; this procedure

will be used in subsequent sections of this chapter.

The traditional approach of queuing theory, as described by Morse(19) , is

to solve the equations of balance analytically. One obtains expressions for the

state probabilities Pi, and numerical values for the transition rates can be entered

into these expressions as desired. This type of solution is limited to the case where

there are very few states or very few state variables. Many complex problems

are quite intractable by this approach, attractive as the thought of an easily eval-

uated expression for the state probabilities might be.
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A second approach to the solution, which permits numerical solutions of

very large systems, is to treat the system as a "Markov process". A Markov

process can be defined mathematically as a system in which the state transition

rates are independent of system past history; thus, the next system state in such

a process is a stochastic function of the present state. A queuing-theory problem

with all exponential processes satisfies this definition. Markov processes introduce

a vector-matrix notation that simplifies the handling of large systems and is suitable

for implementation on a digital computer.

Lf the transition rates are independent of time, each state has a steady-state

probability. Rather than balancing the transitions into and out of each state to find

these probabilities, the analyst describing a Markov process writes down, for each

state, the transitions into it only. (Equivalently, he might choose to concentrate

on the transitions out. ) Each transition is thus noted one time, rather than twice

as in the equations of balance above. He then writes down a "transition intensity

matrix" Q, the elements of which are the rates of these transitions. The diagonal

elements of the matrix are chosen to make each column sum to zero. The state

probability vector z can then be shown to satisfy the differential equation

and, in the steady state,
Ft.

(4. 3)

Qrc = 0 (4.4)

where the ith element of 5? is the probability that the system is in state i.

Various methods of finding the steady-state value of SE exist. Two, described

by Howard
(20)

, require the calculation of functions (the inverse or the exponential)

of a matrix the size of Q. This is impractical, even on a large-scale digital com-

puter, for moderately large problems: the transition intensity matrix for a 500-

state problem has 250,000 entries!

An alternative method described in Wallace and Rosenberg
(12) 

eliminates

much of the storage requirement and makes possible the numerical solution of

Markov-process problems with large numbers of states. It employs an iterative

approach to the solution, using

(I+AQ)k-k+1 k
(4. 5)

where A is a scalar and I is the identity matrix. If A is chosen so that all the

diagonal elements in AQ are less than unity in magnitude (they are all negative,

because of the method by which they are calculated), then all the elements of I+AQ
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will be positive and less than 1, and each column will sum to 1. The new matrix

Il-AQ can be interpreted as taking the system state probabilities through a short

time step, the size of which varies with the size of A.

This iterative procedure will always converge. The speed of convergence

depends on the convergence criterion, on the size of A, and on the accuracy of the

initial estimate of the state probabilities.

With this method, it is not necessary to store the entire Q matrix (or any

other matrix). Only the non-zero elements of Q need be stored, and Q is generally

quite sparse (since any given state can generally go to very few other states.) For

a 500-state system wfth six independent transition mechanisms, there will be at

most 3500 non-zero elements in the 250, 000-element Q matrix. This is a very

reasonable number of elements to store in a digital computer and permits a

relatively "fast" program. (The high degree of repetition of equal values in

systematically related locations in Q, which is also characteristic of these matrices,

permits further storage savings at the expense of some running time, if desired.

Wallace and Rosenberg
(12) 

discuss this approach more fully. )

A program implementing this iterative scheme was written in Fortran IV

for the IBM 360 computer system. The non-zero Q-matrix elements and their

coordinates are stored individually, since further compression was not required.

On a System/360 model 75 computer, this program performs approximately 4, 000

iterations of a 200-state model per minute; producing a complete solution (to a

difference of 0.00001 between successive iterations, more accuracy than really

needed) in less than five seconds for most problems.

4. 2 An Elementary Multiprocessor Model

By assuming that the data bus load is sufficiently light for the bus to be

available virtually immediately when needed, it is possible to develop a

queuing-theory model for the multiprocessorithat can be solved directly without

recourse to numerical ltechniquesr. Although this model is not a very accurate

representation jof the multiprocessor, it is useful because

a. it is an indication of the trends to be expected;

b. its comparison with the more complex models is instructive;

c. with modifications to account for delays due to bus use, fts predictions

can be surprisingly close to those of the more complex models;

d. it shows the effects of varying the number of processors in the system

more easily than do the more complex models.
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This model assumes a multiprocessor with Q processors. The priority

scheme is not important here, for since the bus is always available the priority

scheme does not matter. (A major drawback of this model is, of course, that it

cannot indicate the relative performance of multiprocessors with different priority

schemes. ) Jobs arrive exponentially, with rate X, and terminate exponentially,

with rate p. The number of jobs that can be in the system at one time is limited

to N, which may be infinite. At any time, there will be jobs in the system;

they will a11 be running, and if n>Q,1 n-Q of them will be stacked up waiting

to start. The total number of states in the system, for finite N, is N+1: there can

be from 0 through N jobs in the system. The number of jobs in the system is

the only state variable. Thel states are numbered 0 through N.

The equations of balance have three or four forms. There is one equation

describing transitions into and out of state 0 (idle system), another form for re Q,

a form for n>Q and,if N is finite, a special form for n=N.

Writing prX hi for convenience, the equations are

(n=0)

(n5Q)

(n>Q)

P pP
0

PP
n-1 

+(n+1)P
ni_1

=(Ri-p )P
n

PPn-1+QPn+1 (Q*P )Pn

For n=N if N finite: PPn-1
QPN

(4.6)

(4.7)

(4.8)

(4. 9)

The first of these equations gives P1 in terms of Po. The equation for

transitions into and out of state 1 has the form of Eq (4. 7), and involves P0, P1 
and

P2' 
' either P1 or P0 can be eliminated with Eq (4. 

6), giving P
2 

in terms of the

other. This procedure can be continued, giving an expression for each Pn in terms

of P
n-1 

or P0' Writing the probabilities in terms of P0, these expressions are

P 
n 
- P P

0 
(n<Q) (4.10)

P niQ nl
Pn 

qc2(n-
Q)- 0 - - (I-) IP

Q: IT) 0
Q) (4.11)

In terms of physical meaning, p is the load on one processor, and should be

less than Q for the system to be able to handle its load. The total system load is
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given by p /Q as a fraction of system capacity.

The above equations indicate the following:

a. For n<p, the fraction of time that n processors are busy increases with

n. Thus, in a heavily loaded system, two processors are in use more often than

just one is.

b. For cpn>p, the fraction of time that n processors are busy decreases

with n. Thus, in a lightly loaded system with five processors, all five will be busy

less often than four will be busy.

c. For n>Q, the state probability decreases as

waiting to start less often than 1-11 jobs, and so on.

(13 IQ); there are n jobs

An expression for the actual values of the state probabilities, rather than

their relative values, can be obtained by imposing the condition that these prob-

abilities must sum to one. This condition gives the following expression for P0:

1

n=1Q1C"(ri-Q))

n \
~ I  

(4.12)

The last term in the denominator can be expressed in closed form; one then

obtains one of the following two expressions:

1

For infinite N: P =0 (Q+1)n 

n0 '

P + P 
Q'.(Q-P)

= 

1

For finite N: Po=
 Q Q+1

P: (;.(Q-P) 11-44)1"]
n=0

(4.13)

(4.14)

Many informative items can be obtained from these probabilities. For

example, the fraction of time during which there is a job unable to start because

there are no free processors is given (for infinite N) by

waiting

1+ 
Q

(Q-P)
(Q+1) I pni
P n=0 -•

(4.15)

The mean time that jobs have to wait is also easily obtained. The mean

waiting time must, for a steady state, be given by the mean number of jobs unable
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to start multiplied by the mean interval between job arrivals, X. If time is non-

dimensionalized dividing the mean delay by X, the non-dimensional mean delay is

given by

N-Q
PO P

Q 

(3/4)iD (n-Q)Pn =
n=Q+1 Ce i=1

(4. 16)

which holds as written for finite N; and, with the obvious change in the upper limit

of the summation, for infinite N.

Similar expressions can be obtained for the variance in the delay time, etc.

4. 3 The Multiprocessor as a Markov Process

For a more accurate model of the multiprocessor than the one developed

in the preceding section, the Markov process approach and formalism were used.

Four state variables were defined for the multiprocessor. They are

x
1
: the number of jobs being executed,

x2: the number of running jobs waiting to use the bus,

x3: the state of the bus,

x
4
: the number of jobs waiting to start.

The number of jobs being executed can take on any value from zero to the

number of processors in the system. A job is considered as "being executed' in

this sense if it occupies a processor in any way; it can be using the bus, performing

calculations, or waiting idly to use the bus to return data.

The number of currently-running jobs that are waiting to use the bus can

vary from zero up to one less than the number of jobs that are running. (The run-
ning jobs cannot all be waiting to use the bus, since if they all wanted to use it
one of them would in fact be using it. )

The state of the bus is, for a simple model of the system, 0 or 1, represent-
ing the bus being free or in use. More complex models, incorporating non-expo-
nential bus use distributions, can have additional possible values for this variable.
These distributions and models are discussed more fully in Section 4.5

The number of jobs waiting to start can vary from zero up to an arbitrary
maximum related to the numbdr of states with which the analyst and his computer
are prepared to cope. Equation (4.11) provides a guide to the maximum value
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required as a function of system load, and to the improvements in accuracy to be

gained by going to higher maximum values. Generally, an upper limit of 2 or 3

proves adequate for moderately loaded multiprocessors; beyond a value of 5, the

gains in accuracy do not justify (it is felt) the added model complexity.

4. 4 A Simple Multiprocessor Markov Model

The simplest Markov model of the multiprocessor assumes exponential job

arrivals, exponential job durations, and an exponential distribution of bus use

requirements. For a system with five processors, and a maximum of two jobs

waiting to start at one time, such a model has 53 possible states; for each additional

waiting job allowed, 16 states are added to this number. A representative part of

the transition matrix for this model is shown in Fig. 4-1, and the output from a

typical computer run is reproduced as Fig. 4-2.

The types of events that can cause transitions in this model are similar to

the events that can cause transitions in the more complex models. They are the

f ollowing;

1. a job comes due for execution,

2. a running job requires the bus,

3. a job using the bus releases it.

The nature of the transition that takes place on the occurrence of one of

these events depends both on the type of event and on the state of the system before

the event. For the first type of event (a job wants to start execution) the type

of transition depends on whether the bus is busy or not, and on whether there is a

free processor to accept the job or not. If both these conditions are met, the job

can start: x1 is incremented by one, to indicate that one more job is running,

and x3 
goes from 0 (bus free) to 1 (bus busy). Tf one of these conditions is not met,

x
4 
is incremented by one to indicate that an additional job is waiting to start as

soon as possible, and the other state variables are unchanged. If, in addition, x4

has already reached its maximum allowable value (2 in the simple model), the

job is ignored. If the model is to represent the system accurately, the frequency

with which this happens must be held to a small value.

An example of a transition in which a job comes due for execution and starts

immediately is the transition from state (2, 0, 0, 0) to state (3,0,1, 0). An example

of a transition in which the new job must wait because the bus is being used by

another job is from (3, 0,1, 0) to (3, 0,1,1). A transition in which the job must wait

because there are no free processors is from (5, 0, 0,1) to (5, 0, 0, 2).
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X1X2X3X4 1 2 4 6 19
1 0 1 0 I. * A A
2 0 1 0 2 * B A B A
3 0 1 0 3 * B A B A
4 0 1 0 4 * B A B A
5 0 1 0 5 * B B A
2 1 1 0 6 C * A
3 i lo 7 C * B A
4 1 1 0 8 C * B A
5 1 1 0 9 C * B
3 2 1 0 10 C * A
4 2 1 o 11 C * B A
5 2 1 0 12 C * B
4 3 1 0 13 C * A
5 3 1 0 14 C * B
5 4 1 o 15 C *
loll 16 D *
2 0 1 1 17 D *
3 0 1 1 18 D *
4 0 1 1 19 D *
5 0 1 1 20 D
2 1 1 1 21 D C
3 1 1 1 22 D C

State Variable
Values

Transition Matrix
(transitions are from state on left to state on top)

(complete matrix is 53x53)

Transition Types:

A: job terminates
B: job releases bus and starts calculations
C: job finishes calculations and needs bus
D: job comes due for execution
*: diagonal entry chosen to make column sum to one

Fig. 4-1 State transition matrix (incomplete) for 53-state model.
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2
3
4
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0.0546
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3
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VARIANCE: 0.044691

vAPTANCE: 0,016670

sTO OFTIFTION: 0.21IIPO

STO DEV,ATIOT” P.170I40

Fig. 4-2 Computer output from the Markov model run.
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The actual entry in the transition matrix is the rate at which this event

takes place while the system is in a state such that it can take place. (The event

"running job needs the bus" cannot take place if no jobs are running, or if the only

running job is already using the bus.) If an average of 100 jobs arrive per second,

the mean arrival rate is 100 sec
-1
, and so on. This value of 100 is the entry in

the transition intensity matrix Q, and would be further scaled as described in

Section 4.1. Similarly, if jobs use the bus with a mean use duration of 2 msec,

the transition intensity matrix entry for those transitions caused by bus release

would be 500 sec
-1
.

The second type of transition is caused by a running job requiring the use

of the bus, to return data to central memory (phase 2 of bus use.). If the bus is

free, the job obtains it immediately, such as in the transition from (3, 0, 0, 0) to

(3, 0,1, 0). If it is not free, the job requesting the bus must wait; this is indicated

as a state change by incrementing x2 by one. Such a transition is the one from

(4, 0, 1, 0) to (4,1,1, 0).

In the case of either of the above types of events, the state after the tran-

sition is defined completely by the state before the transition and the type of event

causing the transition in question. This is not true for the third type of transition,

in which the job using the bus releases it. The description of the state of the system

does not state whether the job using the bus is obtaining data from memory (phase 1

of bus use) and will therefore continue to occupy a processor after releasing the

bus, or is returning data to memory (phase 2 of bus use) and will free its processor

after releasing the bus. It is necessary to make an assumption about the relative

probabilities of each event occurring. Since every job must go through each phase

exactly once, it can be assumed that each event is of equal probability.

If there are no jobs waiting to start and no jobs waiting to use the bus, the

state of the bus (x
3
) will go to 0 when the bus is released. The number of busy

processors will either remain unchanged or be reduced by one, with equal probability

of either as discussed in the preceding paragraph.

If there are jobs waiting, however, the state of the bus will not go to zero—

since the bus will be "grabbed" immediately by one of the waiting jobs. In addition,

a job will be removed from one of the waiting lists. For example, if there is a

job waiting to start, x4 will be reduced by one. If the state of the system is (3, 0, 1, 1)
and the bus is released, the .sy stem/ will go with equal likelihood (as discussed
above) to state (4,0,1,0) (if the job freleasing.the bus does not terminate) or to
state (3, 0,1, 0) (if it does terminate). In either case, the size of the waiting list
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is reduced, and the bus remains busy. The procedure if there are running jobs

waiting to use the bus (x2, rather than x4, non-zero) is analogous.

If there are both jobs waiting to start and running jobs waiting to use the bus,

as in state (3, 1, 1, 1), the choice of the next state depends — as it does in a real

multiprocessor — on the priority scheme of the system being analyzed. If the job

stack has priority on the bus, the job waiting to start will always be chosen as the

next bus user, if there is a free processor; running jobs will wait. If the job

stack does not always have priority, as in priority scheme 4, it is impossible to

determine unambiguously from the state of the system which user will obtain the

use of the bus, and probabilities must be assigned, The probabilities can be assigned

accurately from knowledge of the multiprocessor structure and of the number of

jobs running. For example; if there is a job waiting to start, and one job waiting

to use the bus, and the job stack is connected at one point in the processor ring, it

is equally likely that the job stack will be polled before the one waiting processor or

that the processor will be polled before the job stack. The two transition prob-

abilities are, in this case therefore, equal to each other. Were there two running

jobs waiting to use the bus, there would be a two-thirds probability that a processor

would be polled before the job stack.

The simple model requires that the user specify, in order that the transition

rates may be calculated, three parameters; the mean rates of the three exponential

processes involved. These are expressed in units of inverse time (so many job

arrivals per second, etc).

It is possible to specify the system more compactly by using non-dimensional

parameters. The ratios between any two pairs of mean times are particularly simple

to use, and with these ratios only two numbers need be given. (The same result can be

obtained by selecting the unit of time such that one of the original parameters has

a value of unity, and then expressing the others in the same unit system. Only the

other two parameters need then be supplied.) This was not done in order to permit

expressing Markov input parameters in the same dimensional terms, having

intuitive meaningfulness, that characterize the input to and the output from the

simulation. This type of non-dtmensionalization is, however, of great usefulness

in the analysis of the results.

4. 5 Additional Multiprocessor Markov Models

Six major assumptions, or limitations, are inherent in the simple 53-state

model described in the previous section. They are

1. exponential job durations,
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2. exponential job arrivals,

3. exponential bus use demand distribution,

4. equal bus use distributions, phases 1 and 2,

5. limit of two past-due jobs waiting to start,

6. state ambiguity following bus release.

Each of these can be removed or relaxed, at the cost of complicating the

Markov model by the addition of more states.

More complex models were developed, and are the topic of this section.

The second model of the multiprocessor (the simple one discussed in the

previous section is the first) relaxes the third assumption above: that the bus use

distribution is exponential. The bus use distribution used is based on the data

from the lunar landing job analysis. This analysis shows that very long and very

short bus use demands occur more often than would be predicted by an exponential

model. To fit the data more closely, a utwo-term hyper- exponential" distribution,

as described by Morse
(19)

, was used. Such a model consists, conceptually, of two

parallel exponential processes, one of which is selected each time the bus is to be

used. One of these has a mean time larger than the mean time of the original

process, while one has a smaller mean time. (There is, of course, no implication

that there are physically two data busses in the multiprocessor. ) The "non-expo-

nentialness" of the process is described by a parameter a, which is the probability

with which the long-duration branch of the process is chosen. It takes on values

from O. 5 (exponential process) to 0 (highly non-exponential process, one branch

has infinite mean time). The probability that the interval between two successive

events, in a process so distributed, is greater than t, is given by

So(t) = ae 
-2ept 

+ (1.- a) e 2(1-a)rt
(4.17)

Figure 4-3 gives an example of such a distribution, with the "non-exponentialnessu

parameter a having a value of 0.1.

In such a model, the "bus use state variable' x
3 
can take on three values:

0, to indicate that the bus is free; 1, to indicate that it is in use and that the con-

ceptual nshort-duration branch!' is busy; and 2, to indicate that it is in use and that

the "long-duration branch" is busy. For a five-processor system with a limit of

two jobs waiting to start, such a model has 98 states. It is described by the

parameters that described the simple model, plus the new parameter a giving the

l'non-exponentialnese of the bus use distribution.
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Fig. 4-3 Inter-event distribution.
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This type of distribution was matched, using a least-mean-square fitting

procedure, to the lunar landing bus use data. The best fit was obtained for a a 0.1694.

Figure 4-4 shows such a curve superimposed on the actual data (the data curve has

been previously pictured by itself as Fig. 2-1).

The third Markov model of the multiprocessor eliminates the sixth limitation

of the simple model: the state change ambuiguity that occurs when the bus is

released. In this new model, the value of the bus use variable x3 
indicates ex-

plicitly whether the job using the bus is in phase 1 of bus use (in which case it will

not release a processor when it releases the bus) or in phase 2 (in which case it

will free a processor). The variable x3 can thus take on values of 0, 1 or 2; 0

indicates that the bus is free, and 1 and 2 distinguish between phases of bus use in

the system being modeled. Such a model, with a limit of two past-due jobs and five

processors, has 98 states, as did the previous model. To distinguish it from the

previous model, where confusion might arise, it will be referred to as the "98-

state two-phase moderr.

The development of a model such as this one is tantamount to a statement

that the assumption made with respect to system behavior on bus release in the

simple model is inaccurate. It was assumed there that bus releases are equally as

likely to result in processor release as not to. This is clearly globally true. It is

not necessarily, though, locally true for each individual state. It is possible to

reason that it should not be. The following argument will suffice to indicate that

this is so:

Consider the state (1, 0, 1, 0) where the variables have the meanings

associated with the simple model described in Section 4.4. This state represents

a system executing one job, which is using the bus. The bus use may be either

phase 1 or phase 2; the system state does not supply that information.

This state could have come about as the result of a transition from any of

four previous states:

a. State (0, 0, 0, 0) — system idle. A job arrives for execution and uses the

bus to obtain data. In this case, the current bus usage would be phase 1.

b. State (1, 0, 0, 0) — one job running. It terminates its calculations and uses

the bus to return data: phase 2.

c. State (2, 1, 1, 0) —two jobs running, one usthg the bus and the other waiting

to use it. The job using the bus releases it and terminates execution. The waiting

job obtains the bus: phase 2.
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d. State (1, 0,1,1) - one job running and using the bus, another waiting to start.

The job using the bus releases it and terminates execution. The new job obtains

the bus: phase 1.

Let us now call the mean job duration 1/T, the mean rate of job arrival A,

and the mean duration of a bus usage 1/R. (Reciprocals were used here for two

of the parameters because the state transition equations involve parameters

having units of inverse time. ) (Using just three parameters assumes

equal bus use durations for phases 1 and 2, but this does not affect the

validity of the argument. ) If the bus use mean duration is 1/R, then bus release

occurs (in those states in which the bus is busy) at mean rate R, and the rate at

which jobs release the bus and terminate must be 7R according to the "equal phase
probability" assumption of the simple model. Again, according to this assumption,

if the two phases are to be equally likely in the state (1, 0,1, 0) under consideration,

we must have equal transition rates into this state from the state transitions that

will bring about phase 1 bus use and those that will bring about phase 2 bus use.

This condition can be expressed as follows:

2
1
-Rp (2, 1, 1, 0) + Tp (), 0, 0, 0) = -

2
Rp (1, 0,1,1) + Ap (0, 0, 0, 0) (4.18)

where P(w, x, y, z) represents the probability, in the steady state, of the system being

in state (w,x, y, z). Rewriting for convenience,

1 
2
- R

r 
p(2,1,1, 0). -p (1, 0, 1, 1)] + Tp (1, 0, 0, 0) - Ap (0, 0, 0, 0) = 0 (4. 19)

Now let us consider the balance equation for this state. Equating transition rates

into and out of the state yields

2
1
-R[ p (2, 1,1, 0) + p (1, 0, 1,1)] + Tp (1, 0, 0, 0) + Ap (0, 0, 0, 0) = (A+ R)p (1, 0,1, 0)

(4.20)
We may non-dimensionalize the coefficients in these equations by setting

R' = R /A, T' = T /A; Eq (4.19) and (4.20) then become

1
-
2
R' [p (2, 1, 1, 0) p (1, 0,1,1)] + T'p (1, 0, 0, 0) - p (0, 0, 0, 0) = 0 (4.21)

ifts [p (2, 1,1, 0) p (1, 0, 1, 1)] + p (1, 0, 0, 0) +p (0, 0, 0, 0) = (1+ R (1, 0,1, 0)

(4.22)
It is now possible to eliminate T' from this pair of equations by subtracting

Eq (4.21) from Eq (4.22). This yields

R'p (1, 0, 1,1) + 2p (0, 0, 0, 0) = (1+119 p (1, 0,1,0) (4. 23)

which relates the probabilities of three states through an expression involving only

one of the two independent variables that define the system. A similar, but some-
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what more complex, equation could have been written after eliminating R' from

Eq (4. 21) and (4.22) rather than T'.

Such an equation in one parameter can be written for every state in the system

that uses the bus. These equations will, as does Eq (4.23), also involve the prob-

abilities of the states in which the bus is free. Thus, they provide a set of relation-

ships among the system state probabilities not involving T', the mean job duration.

It is clearly absurd to suggest that the system state probabilities should not

depend on the mean job duration. However, this conclusion is inescapable if one

assumes that bus releases are divided equally, in each state, between jobs that do

terminate execution and jobs that do not. This assumption must, therefore, be

discarded. The desirability of having a multiprocessor model that does not include

this assumption as part of its basic structure follows immediately.

This two-phase model is described by the same three parameters that

described the simple model: job arrival rate, mean job duration (reciprocal), and

mean bus use time (reciprocal). It would have been possible to use two mean bus

use times, one for each phase of bus use, without complicating the model or adding

additional states. This was not done because this model was developed, chrono-

logically, after the next one discussed below. Results from that model had already

indicated that no appreciable gain in accuracy was obtained by using two mean times,

since for actual programs (lunar landing data) the mean times for phase 1 and phase

2 of bus use are quite close. It was therefore decided to retain the external

simplicity of the simple model's input parameters.

The fourth model of the multiprocessor introduces a further refinement

into the assumed distribution of bus use by jobs. It combines the improvements of

the above two models: it incorporates two separate, and different, two-term hyper-

exponential distributions, one for each phase of bus use. It thus removes the fourth

restriction of the simple model, by permitting the user to specify different mean

times and degrees of non-exponentialness for the distributions characteristic of

phase 1 and phase 2 of bus use.

In this model, x3 can take on five values: 0 indicates that the bus is free,

1 and 2 correspond to the two branches of the hyper-exponential process represent-

ing phase 1 of bus use, and 3 and 4 are analogous for phase 2. The model, with up

to two jobs watting to start and five processors in the system, has 188 states. It

is described by six parameters: the job arrival rate, the job duration, and the two

parameters descriptive of each hyper-exponential distribution.
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These distributions were also matched with a least-mean-squares fitting

procedure to the lunar landing data. The best fit was obtained when: the mean bus

use duration for phase 1 was 1.155 times the mean duration of all bus uses; the

phase 1 distribution had a = 0.1906: the mean bus use duration for phase 2 was

0.845 times the overall mean duration; and the phase 2 distribution had a = 0.1472.

The fifth Markov model introduces non-exponential job durations. A two-

term hyper-exponential model similar to the ones used above for describing bus

usages was used. This model was created as a modification of the basic 53-state

model, independently of the other changes, both to isolate the effect of this change

and to simplify the creation of the transition matrix (which can be a tedious clerical

task, though capable of some automation). Such a model, with five processors and

a maximum of two past-due jobs waiting to start, has 243 states. It is described

by the basic parameters plus the additional one needed by the non-exponential job

duration distribution. The job durations are, in the lunar landing data, very highly

non-exponential; the best-fitting value of & was found to be 0.007. It is felt that use

of a higher-order non-exponential distribution (incorporating more states) would

provide better modeling of the distribution of execution times in this particular job

s et.

A sixth model was developed to study the effect of non-exponential job arrivals

on system behavior. It uses a job arrival distribution with reduced variance, to

determine the extent to which this improves system efficiency. The distribution

used, which was again taken from Morse 
(19 

), is known as "2-Erlang" (after an

engineer with the Copenhagen telephone company, who did pioneering work in

queuing theory shortly after the turn of the century). This distribution consists

conceptually of two exponential channels in series. Each has a mean rate of twice

the mean rate of the overall process, so that arrivals occur at the correct mean

rate after passing through both stages. The effect of the double timing channel is

to concentrate the inter-arrival intervals nearer the mean interval. (A uniform

interval may be approached as closely as desired by using a sufficiently large

number of exponential channels in series. ) The mathematical form of this distri-

bution is given by:

So(t) = (1+ 240e 2/At (4.24)

Such a curve is shown in Fig. 4-3.

This change also was made to the simple 53-state model; it was felt that

this would provide results sufficiently indicative of the trends to be expected, with-

out introducting the complication of large numbers of states. Such a model has

106 states, and is described by the same parameters as describe the basic 53-state

model.
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Finally, the restrictions on the number of jobs that can be waiting to start

were relaxed by modifying some of the above models so as to increase the allowable

queue length. The basic 53-state model, wMch permits two waiting jobs, was en,-

larged into a 69-state model with a maximum queue length of 3, and into an 85-state

model with a maximum queue length of 4. The 98-state two-phase model was en-

larged into otherwise identical models having 129, 160 and 191 states. This provides,

respectively, 3, 4 and 5 past-due jobs waiting to start.
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CHAPTER 5

RESULTS

5.1 Introduction

This chapter discusses the results obtained from the simulation and the

queuing-theory analyses of the multiprocessor. It is divided into four sections

(beyond the present one), each dealing with a different phase of the results.

The first section deals with the selection of a "minimum adequate" Markov

model of the multiprocessor. The models of Section 4. 5, which remove the limita-

tions of the basic model of Section 4.4, are compared with each other (and with

simulation results, where these aid in the selection process). One Markov model

is selected, and is used in subsequent sections where appropriate.

The second section discusses the effect of arrival scheduling on system

efficiency. Markov models incorporating exponential and 2- Erlang job arrivals

are compared with each other and with simulation results.

The next section uses the elementary multiprocessor model of Section 4.2

and the simulation to evaluate the effect of varying the number of processors in the

system.

The final section uses the Markov model selected in Section 5. 2 and sim-

ulation results to evaluate the effect of a change in system architecture. Priority

schemes 1 and 4, as defined in Section 1.2, are compared.

Conclusions from these results are presented with the results from which

they are derived, and are summarized in Chapter 6.

5. 2 Selection of a Markov Model

5.2.1 Selection of a bus use model.

Three statistical distributions of bus use demands are incorporated in the

Markov models discussed in Sections 4.4 and 4.5. They were the exponential

distribution, the two-term hyper-exponential distribution, and the two separate

two-term hyper-exponential distributions (one for each phase of bus use).
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To select one of these, a series of computer runs was made with each model,

and the results compared. Two system performance parameters were used in the

comparison: "information transfer efficiency" and "job acceptance delays".

Information transfer efficiency was discussed in Section 3.4 and defined in

Eq (3.1). The definition was as follows:

T
b

ITE - T
b 
+ T

w
(5. 1)

where T
b 

is the sum, over a run, of the time during which the data bus was in use,

and T
w 

is the sum, over a run, of the time during which processors were waiting

for the bus. (Since Tw 
is summed over all processors, it can exceed the total time

of the run.)

Job acceptance delay is the interval between the time at which a job should

start — based on its job stack entry — and the time at which a processor sends a

job acceptance message for it, corrected for the one bus cycle during which the

bus request message is being transmitted. (With this correction, a job accepted

on time will have zero delay; without it, such a job would have a delay equal to one

bus cycle time under the original definition of delay. ) This delay is a measure of

the amount of time a job might have to wait before starting, and is important

because the sampled-data nature of many aerospace calculations makes time a

critical factor. The delay is non-dimensionalized by dividing it by the mean inter-

val between job arrivals: if the mean delay is 1 msec, and jobs arrive at'a rate of

100 per second so that the mean inter-arrival interval is 10 msec, the non-dimen-

sionalized delay is 0.1.

In the series of computer runs used for the comparison, job duration and

bus use duration parameters were selected to maintain an average ratio of 9 units

of computing time to 1 unit of bus use time per job. The Markov model can then be

defined completely by one load-related parameter, which was used as the indepen-

dent variable. The percent of time that the bus is in use was chosen since it has a

clear physical meaning; any other could have been.

Figure 5-2 shows no significant differences among the mean job acceptance

delays as predicted by the three models. From the standpoint of calculating delays,

therefore, they may be regarded as equivalent.

Figure 5-1 does show a difference between, on the one hand, the results

obtained from the simple 53-state model, and the results obtained from the two

hyper-exponential models on the other hand. The two hyper-exponential models
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differ but little between themselves, as might be expected from the closeness of

the mean bus use times characteristic of each phase of bus use in the lunar landing

program data. The simple 53-state model, however, predicts appreciably higher

efficiencies than do the others.

Interestingly, the 53-state model predicts efficiencies that are quite close

to those actually measured in the simulation. The predictions of the more complex,

and presumably more accurate models, are not nearly so close to simulation results.

This phenomenon can be explained as follows: A hyper-exponential distri-

bution predicts more very long bus usages than does an exponential distribution.

This is, in fact, characteristic of the lunar landing program data. In a Markov

analysis, these long usages will interfere with each other, lowering efficiency below

what would be predicted by an exponential model. This, in fact, did happen. In the

simulation, though — and in the actual situation — these long usages are not found

at random, but are found on successive executions of the same job, or at the two

bus-use phases of the same long job. Thus, they cannot interfere with each other.

Here is a case where increased accuracy in the mathematical model actually reduces

the accuracy of the results, because of a counterbalancing' effect. in the real

situation that cannot be introduced into the Markov model. (It could be, but

only at the expense of a great many additional states.)

The basic, exponential model of bus use will therefore be used in modeling

the multiprocessor. It is felt that it predicts delay times as well as do the other

models, and for the reason discussed just above, predicts information transfer

efficiency better than do the other two models.

It is interesting to note the relationship between the information transfer

efficiencies predicted by the Markov models and those actually recorded in sim-

ulated multiprocessor activity. In contrast to the predicted smooth curve, the data

from the simulation give a very jagged graph.

This effect can be attributed to the interactions among the jobs being ex-

ecuted. When a specific set of jobs is performed at specified intervals, it is

inevitable that there should be interactions that are statistically quite unlikely but

that,in fact, occur with appreciable frequency. This can result in the odd phenomenon

of a slow system executing a given set of jobs with higher efficiency than a faster

one: one job might be slowed down just enough so that its request for bus use,

which in a faster system would have come when another job was using the bus, now

comes when the bus is free.

The validity of this explanation is substantiated in Fig. 5-3 and 5-4. Figure

5-3 shows the result of applying a random variation to the time at which jobs are
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executed. This variation -was applied in the following way: whenever a job inserted

another job into the job stack, the time specified for execution of the second job

was perturbed by a small amount. This perturbation was applied to the interval

between the time at which the insertion took place and the time at which the inserted

job was to be executed. It was taken from a random distribution uniform over a

range expressed as a percentage of this interval. Two sets of runs with this

modification were made: one with 5% perturbations (the new job would be executed

after an interval ranging from 95% to 105% of the originally specified interval) and

one with 20% perturbations (the interval until execution was from 80% to 120% of

that requested). The results of these modified simulation runs are shown in

Fig. 5-3, which plots information transfer efficiency against system load (expressed ,

again, as the fraction of time that the bus is in use).

With these random perturbations applied to the times at which jobs are ex-

ecuted, the chance of having statistically improbable interactions repeated a large

number of times goes down drastically. It would be expected that the peaks and

valleys of the original curve would be smoothed out, and this, in fact, does occur.

Figure 5-4 shows the effect of a different change to the simulation: the

processors were speeded up, while the speed of the bus was left unchanged. It

would be expected that the improbable interactions would still occur, but would be

different; the curve should still be jagged, but with different peaks and valleys.

The simulation runs were made with processors able to perform their calculations

in four times the data transfer time, at a 4:1 ratio of computing time to bus use

time, rather than the 9:1 ratio used in the other simulation runs. The expected

effect does take place.

In a real situation, random perturbations could not be applied, and the speed

of the processors would be fixed. Statistically unlikely interactions would be the

rule, not the exception. It is reasonable to assume that, in this case, operating

efficiency would fall somewhere in a band on each side of the mathematically

predicted curve. For efficient use of a multiprocessor, it would be desirable to

ensure that the actual system performance lay in the upper half of this band; that

is, jobs should be scheduled so as to interfere with each other as little as possible.

It is unreasonable to place the burden of such scheduling on the user, who should

be free to concentrate on the content of the jobs. This scheduling must therefore

be performed by a scheduling program at the time jobs are prepared for input into

the computer. (The loss of time involved with trying to do this dynamically, as the

programs are running, probably outweighs the loss of efficiency from not doing it

at all.) This scheduling program would have to be given some type of specification

as to the edlowable rangy uf atiou ratcs, insertion times, etc.. , relevant to the
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jobs in question. It would then prepare a schedule satisfying the constraints and

utilizing the system efficiently. Just how to do this remains an open question for

study. It does appear that a small amount of effort expended in this area could

result in appreciable gains in system efficiency.

5.2.2 Bus-use phase f idelity.

In the previous chapter it was mentioned that the basic 53-state model

incorporates an ambiguity in the state change that takes place when the bus is

released. It is impossible in this model to determine whether the release of the

bus means that a job has terminated, thus freeing a processor, or is through

obtaining data and ready to start calculations, thus not freeing a processor. This

is because the state description in this model does not carry enough information

to define the phase of the current bus use.

This information can, at the expense of including additional states in the

model, be retained. If it were so retained, the transition occurring at bus release

would no longer be ambiguous.

The two-phase bus use model discussed in Section 4.5 was developed to

determine whether the inclusion of this additional information results in improved

accuracy in the results. Performance predictions of this model are compared

with those of the simple 53-state model in Fig. 5-5 through 5-7.

Figure 5-5 shows the effect of improved bus-use phase fidelity in the model

on predictions of information transfer efficiency. This effect is clearly negligible.

Figure 5-6 is similar in intent to Fig.5-2, and shows the effect of the change

in the Markov model on predicted job starting delays. The difference between the

predictions of the two models, while noticeable, is small.

Figure 5-7 shows the fraction of time that the 2-entry job queue, a feature

of the simpler models, is full. The relevance of this parameter is as follows: if

job arrivals are exponential (as they are assumed to be in these models), so that

jobs are equally likely to arrive at any time, this represents the fraction of jobs

that are skipped over in the Markov analysis. This skipping over jobs represents

a major potential source of inaccuracy in the analysis, and should be kept as low

as possible. The more accurate bus use model (the two-phase model) has, for a

given system load, a full queue for an appreciably smaller fraction of the time.

Figure 5-8 is similar to Fig.5-7. It shows the percent of time that a four-

entry job queue is full, as obtained from computer runs using models able to

accommodate more past-due jobs, but otherwise identical to those used to obtain
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the preceding graphs. The difference is similar to that seen in Fig.5-7, but is

more marked.

Still another comparison between the two models is given by Table 5-1. It

shows, for models with a four-entry job queue, the fraction of time that various

numbers of jobs are past due. The phenomenon of having four past-due jobs a

greater fraction of the time than one, two or three past-due jobs is extremely

unrealistic. It conflicts both with one's intuitive notions about such problems and

with the mathematical expressions for past-due job number developed in Section

4. 2. It is a direct result of the inaccuracies in the assumption that bus releases

are equally distributed between terminal and non-terminal releases in all states

of the system.
Table 5-1

Distribution of numbers of jobs past due.

JOBS PAST DUE

0

PERCENT OF TIME

BASIC MODEL

(Bus use = 38. 7%)

54. 43

TWO-PHASE MODEL

(bus use = 37. 7%)

61.19

1 12.23 14.38

2 9.99 10.45

3 9.46 8.22

4 13.89 5.76

This very unrealistic effect of the simplest model on the distribution of the

number of jobs past due is perhaps the most compelling reason to discard it as an

adequate representation of the system.

The two-phase model will be used in future analyses where possible. It

is felt that the improvement in accurate modeling of the multiprocessor outweighs,

for most purposes, the disadvantages associated with the increased number of

system states.

It is, parenthetically, of some interest to note the relationship among the

last four numbers in the right column of Table 5-1. The simple queuing-theory

model of the multiprocessor predicts that the ratio between adjacent numbers

should be given by the system load, in this case 75.4%. Although the bus is

sufficiently busy in this example to invalidate the simple model and cause its pre-

dictions to be quite poor in the absolute sense, its prediction of this ratio is quite

close to the ratio as predicted by the more complex models.
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5. 2. 3 Job duration modeling.

The actual distribution of job times in the lunar landing job set is highly

non-exponential, as mentioned in Chapter 4: very short jobs and very long jobs

are more prevalent than the exponential distribution would predict, while jobs of

intermediate duration are comparatively rare.

To test the importance of modeling this feature accurately, the sixth model

of Section 4.5 was developed. This model uses a two-term hyper-exponential

distribution for job durations, and is otherwise identical to the 53-state basic

model. For simplicity, no other changes were made to the basic model concur-

rently; it was felt that this simplifies both the creation of the model and the exam-

ination of its results.

A series of computer runs under identical conditions, varying only the non-

exponentialness of the job duration distribution, was made. These runs used a

five-processor system, priority scheme 1, with a limit of two past-due jobs in the

queue. Jobs were assumed to arrive at intervals averaging five milliseconds,

use the bus for an average time of 1.406 milliseconds in each phase, and compute

for an average time of 10. 756 milliseconds. These figures result in an overall

system load (with no interference) of 54. 276% and a bus load of 56. 26%. They

were made for values of a of 0.5 (exponential case), 0.1 and 0.01 (which cor-

responds closely to the best fit to the lunar landing data). Their results, together

with simulation results for similar conditions, 'are shown below:

Table 5- 2 Effect of job duration distribution.

a = O. 5 a= 0.1 = O. 01 Simulation

Information transfer
efficiency 65. 78% 54. 54% 50. 34% 62, 33%

Mean Starting Delay . 2765 .3003 .3138 . 4244

Percent of time 5
processors busy 17. 57% 20. 01% 21. 21% 15. 27%

Three facts are worthy of note in this table. They are.

1. all performance parameters degrade as job durations become less

exponentially distributied;

2. simulated job starting delay is considerably higher than any of the

delays predicted by the mathematical models; and

3. other simulation results correspond most closely to the predictions of
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the model using exponential job distributions, even though this distribution is the

poorest match to the job set of the simulation.

Let us consider these observations in order. First, multiprocessor per-

formance degrades as the job duration distribution becomes less exponential.

This corresponds to results that can be obtained analytically for simpler problems

(see Morse
(19), Chapter 7) and appears reasonable. The mechanism is simple:

when one of the very long jobs characteristic of the more highly non-exponential

distributions is accepted by a processor, it retains control of that processor for

a very long time. The system is in effect executing virtually the same number of

jobs as before on a system with one less processor.

Second, the simulated mean job starting delay is considerably higher than

that predicted by any of the models. The "simulation" curve of Fig.5-9 (the other

curves are within the province of the next section) hints at the reason for this.

When the system load reaches a certain level, the simulated job set "goes critical"

and job acceptance delays become much worse over a very short range of loads.

The mechanism causing this effect appears to be the set of closely spaced demands

for execution tied to each cycle of the navigation loop. If the multiprocessor is

slowed down beyond a certain point, the earlier jobs in this set cannot complete

their execution before it is time to execute the later ones. Beyond this point,

therefore, job starting delays rise much faster than any mathematical analysis,

based on random job arrivals, could predict. The mean starting delay is therefore

not, in this case, a valid criterion for use in selecting a model.

Finally, the other two system performance parameters (information transfer

efficiency and the fraction of time that all five processors are busy) are best

predicted by the model using exponential job duration distributions, even though it

is the poorest match to the actual data. The reason for this is similar to the reason

for the similar effect noted in consideration of bus-use distributions. The long

jobs in the actual situation are largely the navigation loop executions, and since

they are phased relative to each other they cannot interfere with each other. In

the model, on the other hand, long jobs arrive at random and can interface with

each other, be executed simultaneously, and in general degrade system performance

to a greater degree.

There does not therefore seem to be a compelling reason to select the

hyper-exponential job duration model over the simpler model. In view of the vastly

greater complexity of the hyper-exponential model (243 states vs 53), the simpler

one will be chosen.
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5.2. 4 Maximum size of the job queue.

The final parameter to be selected for the "minimum adequate" Markov

model is the number of past-due jobs that the model will handle. It will be re-

called from Chapter 4 that the number of states in the model increases rapidly

with the maximum length of the job queue. For the type of model defined by the

discussion thus far a model with a limit of two waiting jobs has 98 states, and

each increment of one allowable waiting job adds 31 states.

The importance of the maximum queue length is simple. If a job arrives

for execution, and cannot be accepted immediately by a processor, it is placed

in this queue. If the queue is full, the job is skipped over completely; its exist-

ence cannot be recorded by the model. The fraction of time that the job queue is

full is therefore a measure of the fraction of jobs that are skipped over, and thus

a measure of one source of model inaccuracy. If arrivals are exponential, as they

are in this model, the fraction of time that the job queue is full is exactly the

fraction of jobs that are skipped over,

The elementary queuing-theory model of the multiprocessor that was the

subject of Section 4.2 provides some assistance in selecting the maximum queue

size to be allowed. Equations (4. 10) and (4.11) of that section can be rewritten to

yield:

Pw = (TOP PQ
(5. 2)

where

Pw = probability of there being w past- due jobs waiting to start;

PQ = probability of all Q processors being busy, but with no jobs waiting

to start;

(13/ Q)= total system load;

w = number of jobs waiting to start.

Although the existence of a bus having finite speed means that these pre-

dictions should not hold with absolute accuracy, they are a good indication of the

trends to be expected. In particular, Eq (5. 2) indicates that the fraction of time

that the job queue is full will fall off approximately as a power of the system load.

For heavily loaded systems, therefore, the addition of one more job queue

position will have only a small effect on the percentage of jobs skipped over. For

lightly loaded systems, a fairly short queue should suffice to reduce the fraction
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of skipped jobs to an acceptably small level. The problem is that of selecting the

compromise that preserves acceptable accuracy in the middle range without adding

an inordinate number of states to obtain marginal gains for heavily loaded systems.

A computer program able to prepare the transition matrices for this model

was written, so as to lessen the clerical work that would otherwise be required.

This program stepped through all states of the model, and for each state and each

possible transition mechanism determined whether the transition mechanism were

relevant to that state, and, if it were, to what state the transition would be. The

program accepted as input a specification of the job queue length desired for the

model, and produced the transition matrix in a form usable by the Markov process

analysis program referred to in Chapter 4.

Computer runs using this model with varying job queue sizes were made

under the conditions used for selecting bus use models: five processors, priority

scheme I, and a 9:1 ratio of average computing time per job to average bus use

time per job. Results of these runs are plotted in Fig.5- 9 through 5-11.

Figure 5-10 shows that the size of the allowable job queue has negligible

effect on predictions of information transfer efficiency.

Figures 5-9 and 5-11 show the effect of allowable job queue size on pre-

dictions of job acceptance delays and on the number of jobs passed over because

they would not fit in the queue. Delays increase as the queue size increases; this

is expected, since the jobs occupying the higher queue positions, and hence being

delayed the longest before execution, are passed over when the allowable queue

is short. The number of jobs passed over decreases with increases in the allow-

able queue size; this too is an expected result, since the longer queue can ac-

commodate more jobs.

It appears from Fig. 5-9 and 5-11 that there is an effect of "diminishing

returns'', whereby the addition of one more job queue position has less and less

effect on the results. (Quite possibly, constant percentage increases in job queue

length have constant effects on the results.) No such effect exists with respect to

the complexity of the model, however; each additional job queue position adds 31

states to the rnodel and adds an approximately constant increment of computer

time to the analysis.

The compromise chosen was a maximum queue size of five, jobs. This size

provides accuracy of better than 5% to a system load of approximately 80% with
reasonable computer time needs. Longer job queues, curves for which are not

shown, have small effect on the accuracy; computer time was not so restricted as
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to require use of a shorter queue. It would be reasonable to presume that, under

different circumstances, a different selection might be made.

The "minimum adequate" Markov model of the multi-processor thus has

the following characteristics: it assumes exponential distributions for job arrivals,

job durations and job bus usages; it retains information as to the phase of bus use;

and it can accommodate a queue of up to five past-due jobs. For a five-processor

system, this model has 191 states.

5. 3 Effect of Job Arrival Distribution

It would appear reasonable that, as the distribution of job arrivals becomes

more regular, the efficiency of the system would increase. There would no longer

be, to the same extent, periods of frenzied activity followed by periods of almost

no activity at all. The activity rate at any moment would be closer to the average

activity rate, and the delays, etc. , characteristic of peak activity periods would

be reduced.

To test this assumption, a simple Markov model of the multiprocessor was

developed which assumed a 2-Erlang job arrival distribution. This model was

discussed in Section 4.5. Although it is a modification of the basic 53-state model,

rather than of the more accurate 191-state two-phase model, comparisons between

it and the corresponding model with exponential arrivals should still lead to valid

concluEiions.

Figure 5-12 shows the effect of job arrival distribution on information

transfer efficiency. The difference is small but noticeable. Presumably, with

more regular arrivals, the efficiency would be still higher. Another reason

the difference is not larger is that the job durations are still exponential in the

2-Erlang arrival model, so that demands for bus use (which depend both on job

arrivals and on job terminations) are intermediate in regularity.

Figure 5-13 shows the effect of job arrival distribution on job starting

delays. Again, the distribution having more regular job arrivals shows slightly

better performance than the other.

It appears reasonable to conclude that multiprocessor computers are more

efficient when jobs are scheduled for execution at more regular intervals. The

development of a means of performing such scheduling automatically, probably at

program preparation time, would seem to be a fruitful area for further work.
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5. 4 Effects of Varying the Number of Processors

A nurnber of design tradeoffs exist in the design of a multiprocessor

computer. One of these is the tradeoff between the number of processors in the

system and the speed of the individual processors. For a given computational

capacity, a designer can choose to use a small number of fast processors or a

larger number of slower ones.

Reliability considerations might, under different sets of circumstances,

argue in favor of either approach. For a given state of the art, a slower processor

would use either fewer components or more conservatively operated components

than a faster processor would. In either case, the probability of failure of the

slower computer would be smaller. In addition, the failure of one out of many

slow processors would reduce system capacity less than would the failure of one

of a few fast ones. Offsetting these considerations is the fact that there would be

more slow processors able to fail.

Consider, for example, a system with eight processors, each of which is
90% reliable over a given mission. Assume that each pair of processors can be
replaced by one processor which is twice as fast as the original ones and exactly
as reliable as the original pair — or 81% reliable for the same mission. If success-
ful mission completion requires three-fourths of the system computing power, two
of the slower processors are permitted to fail, but only one of the faster ones.
Under these assumptions, the system having eight slow processors has a 96. 2%
probability of successful mission completion, while the system having four fast
ones has a 94. 8% probability of success. Naturally, the above reliability figures
are quite arbitrary, and the particular design considerations that influence pro-
cessor speed under a given set of circumstances would determine the reliability
loss associated with a speed increase. Under some circumstances, a system having
fewer, faster processors could be more reliable than a system having more, slower
ones.

When the philosophy of "more, slower processors" is to be followed, there
is a limit to the extent to which it can be applied in practice. This limit arises
because of the nature of aerospace programming jobs: there are, in any situation,
a number of tasks that must be executed periodically, at predetermined intervals.
It is ordinarily necessary that one execution of such a task have completed its work
and returned its results before the next can begin. Thus, the individual processors
must be snfficiently fast that each such periodic task can be completed within its
allotted time on one processor.
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An additional consideration might be the possibility of memory conflict

where various jobs modify the same portion of central memory. Such jobs must,

as mentioned earlier, be prevented from running concurrently. The importance

of this phenomenon, if applied to a particular set of jobs, is minimized when the

number of processors in the system is minimized.

Finally, considerations of weight, number of external connections, power

consumption, etc., might argue in favor of a small number of faster processors.

With these considerations, which will not be further discussed in this

section, in mind, we may proceed to an examination of the effect of varying the

number of processors in a system. Effects of this change were determined using

the elementary queuing-theory model of the multiprocessor, as developed in

Section 4.2, and the simulation. _Markov models were not used because of the need

to construct a separate transition matrix for each system.

The total system load was kept constant at approximately 60% of capacity.

Computing speeds of the individual processors were varied to maintain this load as

the number of processors changed. Because of the periodic nature of the tasks

being performed, as discussed earlier in this section, the simulated processors

could not be slowed down beyond a speed corresponding to a five-processor system.

Systems having more processors and a load of 60% were not, therefore, simulated.

The results of these runs are shown in Fig.5-14 through 5-17. There are

large discrepancies between the results of the elementary queuing-theory model

and those of the simulation, but the tendencies are in all instances in the same

direction. It is quite clear from these graphs that a system with more, slower

processors performs more efficiently than a system with fewer, faster ones.

Figures 5-14 and 5-15 show the fraction of time that no processors are busy

(5-14), and that all the processors in the system are busy (5-15). The probability

of each of these limiting cases is reduced as the number of processors increases

and their speed decreases. Since the system is less often completely busy, one

would expect the delays in job starting to be smaller with more processors; Fig.

5-16 bears out this assumption. Finally, Fig. 5-17 shows the fraction of time that

the queue of jobs past due for starting is empty, and thus the fraction of time that
the system is performing all its assigned tasks in a timely manner; this

fraction goes up as the system goes from two fast processors to twelve slow

ones. (There is no "simulation" curve On thisl graph since the information

could not be obtained from available simulation output. )

It can be concluded that, for a job set not having memory lockout problems,

and subject to the restrictions discussed earlier in this section, a multiprocessor
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having many slow processors is, for a given computational capacity, more efficient

in every way than one having few fast ones.

5. 5 Effect of Changing the Priority Scheme

The scheme used by the multiprocessor hardware to resolve simultaneous

demands for use of the bus should clearly have an effect on the performance of the

system. Four possible bus access priority schemes were mentioned in Chapter 1.

Two of these are compared in this section:

a. Priority scheme 1, where the job stack has priority in bus access

whenever it and a processor both want to use the bus. When the job

stack sends out a job request message, the processor accepting

the new job obtains the use of the bus immediately, irrespective

of its position in the processor chain. Conflicts among processors

wanting to use the bus at other job execution phases are resolved

by having each processor enable its "neighbor" on the bus.

b. Priority scheme 4, where all devices attached to the bus —

processors and the job stack — are treated equally. Each

device enables its "neighbor" to use the bus. Thus, the job

stack will be able to use the bus only once for each circuit

of all the processors made by the "enabling pulse". When

a processor accepts a new job, it too must wait its turn in

the ring to be able to use the bus to obtain the data it needs

to begin computations.

These two schemes differ in their orientation. Scheme 1 is oriented toward
quick acceptance of new jobs by a processor, whereas scheme 4 sacrifices this

objective and is oriented more toward timely completion of those jobs already in
progress in the various processors. One would therefore expect that, for given
processor speed, bus speed, and number of processors, a priority scheme 1 system
would exhibit smaller job starting delays, while a priority scheme 4 system would
exhibit higher information transfer (and other) efficiencies.

The validity of these expectations was tested by a series of computer runs
using the simulation and the'191-state two-phase Markov model selected earlier
in this chapter. A five-processor system was used. The ratio of computing time
to bus use time was held to an average of 9:1, varying the overall speeds of the
components so as to vary system load. The load can therefore be represented by
any single load parameter, such as the percent of time that the bus is in use.
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Results of these nms are plotted in Fig. 5-18 through 5-21. Figures 5-18

and 5-19 show, respectively, information transfer efficiency and job starting delays

as predicted by the Markov model. Figures 5-20 and 5-21 are similar, but display

simulation results.

The expected tendencies can in fact be seen, both in the Markov model

predictions and in the simulation results. (Reasons for discrepancies between the

numerical results of the two approaches, particularly in the area of job starting

delays, have already been discussed.) The differences in information transfer

efficiency are appreciable, but it must be remembered that overall efficiency, which

includes computation time, is higher than information transfer efficiency. Therefore,

the differences in overall efficiency would be small. The difference between the two

schemes in job starting delay is small, except for simulation results beyond the

"critical poine of the system.

In a real situation, the approach to be taken would depend both on hardware

implementation costs and on theoretical considerations. It appears clear that a

system implementing priority scheme 4 would be less difficult and less expensive

to construct than one implementing priority scheme 1. The difference in performance

between the two appears, for most conditions of interest, to be small. The simpler

approach of priority scheme 4 would therefore be more desirable under most

circumstances.
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CHAPTER 6

CONCLUSIONS

The present chapter summarizes various conclusions with respect to the

analysis of the multiprocessor. These have already largely been presented within

the previous portions of the text, primarily in Chapter 5. The purpose of the pre-

sent chapter is to localize them for ease of reference. The various points mentioned

are discussed more fully in the appropriate place in the preceding chapters.

Suggestions for further research are also made.

6.1 Lunar Landing Job Analysis

The computer programs representing computational tasks in the Lunar

Module Guidance Computer range from the very short to the very long. Short jobs

predominate numerically, but long jobs take up a majority of the computer's time:

in an average two-second period, during which about 135 jobs are executed,

over one-half the computing time is occupied with one job (the navigation loop). An

additional 22% of the computing time isused by the digital autopilot, executed 20 times

in a two-second interval. The other approximately 115 job executions (about 85%)

take up about one-fourth of the computer's time.

For efficient use of a multiprocessor, it is necessary to subdivide a very

long job such as the navigation loop into a set of shorter jobs. It would be desirable

to permit the programer to concentrate on the subject matter of his programs, and

not be concerned with the efficiency of the computer on which they will run. It

would therefore be desirable to develop a method capable of automation for perform-

ing this subdivision. This remains an area for further research.

6.2 Queuing-theory Analysis

It is possible to model the multiprocessor usefully as a Markov process or,

somewhat less usefully, as a simple queuing-theory problem. The simple queuing-

theory analysis permits predictions of the effects of overall system load, job

arrival rate and time distHbution, and number of processors. The Markov analysis

perinits, in addition, predictions of the effects of data bus load and bus access

priority scheme.

6.3 Minimum Adequate Markov Model

The job duration and bus use time distributions in the lunar landing data are

not well matched by an exponential distribution, the simplest one to use in a Markov
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or queuing-theory analysis. A two-term hyper-exponential distribution provides a

better match. However, the improvement in matching gained by using such a dis-

tribution does not result in a corresponding improvement in the accuracy of the pre-

dictions. In fact, for reasons discussed in the body of the text (Sections 5.2.1 and

5.2.3), this improved matching can result in less-accurate predictions. The use

of exponential distributions is therefore considered adequate to represent actual

aerospace programs.

It was determined that it is essential, for accurate predictions, that the

Markov model keep track of the purpose for which the bus is being used at any given

time, rather than simply noting the fact that the bus is being used.

In reaching a compromise between the number of states in the Markov model

(which should be small) and the number of jobs past-due for starting that the model

will accomodate (which should be large), a "job queue" limit of five jobs was felt to

be reasonable.

Such a Markov model of a multi-processor, for a system with P processors

and permitting a maximum of Q past-due jobs, has the following number of states:

Number of states = [P(P+1) + 1] (Q+ 1)+P (6.1)

6.4 Effects of Job Arrival Scheduling

The scheduling of job arrivals has an important effect on the efficiency of

the multiprocessor. This efficiency improves as the arrival of jobs becomes more

regular in time, as shown by Fig. 5-12 and 5-13, and as discussed in Section 5.3.

It is possible to schedule jobs so that the multiprocessor performs more

efficiently than it would with random scheduling. (It is probably possible to schedule

jobs so that it performs better than it would with perfectly regular scheduling. The

question of what the "optimum" in this area might be is open for further research. )

This scheduling cannot be done by the programer as he writes one program, and

could probably be done only with difficulty by a person analyzing the overall system

load. The development of a means for doing this scheduling automatically (before

the programs are run, since the time spent doing such scheduling as they are running

would probably exceed the time gained through the added performance) is an open area.

6.5 Effect of Number of Processors 

As the number of processors increases, for a given total system computing

capacity, the system efficiency increases. In other words, a system with many slow

processors is more efficient than a system with a few fast ones.

This conclusion does not necessarily apply to a system in which conflicts for

use of a specific memory location (to modify a certain item of data) are significant.

In fact, the entire question of the effect of memory conflict was not investigated in

the present study. Memory conflict would be an important question when one pro-
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gramer-written job is broken down into smaller ones, or when a number of programers

are working on independent programs that modify the same data base.

There is a limit to the degree to which one can replace a fast processor with

a number of slow ones: it must always be possible for each iterative task in the

system to complete its work and return its results within its permitted iteration time.

This provides a lower bound on the speed of the individual processors on which these

tasks must be executed. It is largely this consideration that argues for the breaking

down of large jobs into smaller ones; they could then be executed on slower processors.

6.6 Effect of Priority Scheme

Two priority schemes, through which it is determined which of many possi-

ble users obtains access to the data bus when more than one user requests it, were

studied. They were the following (the nurnbers "1" and "4" refer to a set of schemes

described in Section 1. 2):

Priority Scheme 1: The job stack obtains the use of the bus whenever

a new job wants to start. The new job, if it is accepted by a processor, can

use the bus immediately to obtain data.

Priority Scheme 4: The job stack waits its turn in a "ring" of bus

users when a job wants to start. The processor accepting a new job like-

wise waits its turn.

It was found that a system with Scheme 1 has shorter delays in getting jobs

started, but a systern with Scheme 4 completes jobs more efficiently. For the cases

studied, the differences were quite small. It was concluded that the priority scheme

may safely be designed on the basis of considerations of hardware simplicity and

reliability.

6. 7 Validity of Queuing Theory vs Simulation

In every instance, the Markov models of the multiprocessor predicted the

same trends that were predicted by the simulation. It can therefore safely be con-

cluded that the Markov analysis is valid for examining various system architectures.

This analysis is, however, limited to the prediction of overall trends. Many

details of system behavior, and the reaction of a system to a particular set of jobs,

cannot be obtained by this method. When detailed performance information for a

given situation is needed, simulation is the only workable method of analysis.

6.8 Additional Areas for Further Work

Many aspects of the design of the multiprocessor were intentionally not in-

vestigated here. The question of program storage, for example, remains open.

Hardware-software tradeoffs in the implementation of the job stack could be studied.
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The list is long, and includes virtually all details of the system architecture.

Other areas of investigation deal with the nature of the computer job mix.

Questions of job scheduling and job breakdown have already been discussed. An-

other potentially intriguing question is the following: should a job having very large

data transfer requirements voluntarily relinquish the bus before completing the

transfer? Such action would delay its own completion, but would speed the accept-

ance and completion of other jobs. The potential benefits and drawbacks of this

approach should be weighed.

Further study is also needed in the area of error detection. A fundamental

tenet of the multiprocessor approach is that hardware errors can be detected be-

fore erroneous data is emplaced in the system. Within this area, there are oppor-

tunities for studies of hardware design, hardware-software tradeoffs (error detection

by comparing two results, supposedly identical, arrived at in different ways) and

automatic (compile-time) generation of error-detection code. The question of sig-

naling a failure, once it is detected, to the system (so that the job can be restarted)

is also pertinent. Perhaps jobs should be restarted automatically if they do not

issue successful termination messages within a certain interval. What interval?

Measured from when? Fixed or variable ? If variable, how specified 9 What ad-

vantages and disadvantages do this and other approaches to job restarting have ?

How does the job stack know when a job is not accepted by a processor 9

What should it do about such situations ? This entire area is open to the specification

of possible schemes and the analysis of their advantages. It is not simply a question

of designing something that will work, since this can clearly be done; it is a question

of designing the approach that will work best.

There are many areas of research still open with respect to this multiprocessor

structhre, to say nothing of the many possible alternative multiprocessor structures.

To most of the questions, there are no pat "right" or Ilwrong" answers. There are,

rather, tradeoffs to be investigated and methods to be developed. The analyses and

methods will be of direct usefulness in the design of the next generation of space-

borne computers.
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APPENDIX A

DETAILED DESCRIPTIONS OF THE LUNAR
I

LANDING JOBS

This appendix lists the 43 jobs extracted from the lunar landing programs,

with brief functional descriptions. Starred jobs (such as JOB01 below) are those

which are active during the visibility phase steady-state. Table A-1 lists the nu-

merical characteristics of each job.

*JOB01 controls the relays that operate the crew displays. This job cycles

at a rate of 0.12 seconds, testing for program commands to change the display.

When such a command is found, it changes the display, two digits at a time, at a

rate of 0.02 seconds per cycle until the changes are completed. Assumed statistics

were: if a cycle is a l'non-display" cycle, the next cycle has an 0,15 probability of

being a "display" cycle; if a cycle is a "display" cycle, the next cycle has an 0.50

probability of being a "display" cycle. These assumptions result in 77% 'Inon-display"

cycles and 23% "display" cycles, corresponding to an average of 2.37 "display"

cycles per second or 4.74 changed display characters per second. This is felt to

be sufficiently realistic for the present purposes;

*JOB 02 monitors the PROCEED button on the computer keyboard. It is exe-

cuted every 0.12 seconds. The timing of the job model assumes that the button is

never pushed, which is true in the steady state and introduces negligible inac-

curacies during the previous phases.

*JOB 03 monitors the performance of the inertial measurement unit, testing

for conditions such as incipient gimbal lock. It is executed every 0.48 seconds. The

analysis assumed that gimbal lock never occurs.

*JOB 04 monitors the status of the rendezvous radar, cycling every 0.48

seconds. The analysis assumed that the radar continues to operate properly.

*JOB 05 computes coordinate transformation matrices used by the autopilot

programs. It is executed every 0.24 seconds.

*JOB 06 updates the analog meters that display landing data (such as altitude)

to the crew. It is executed every 0.48 seconds. The analysis assumed that the crew

has selected the display of the maximum available amount of data.
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*JOB07 monitors jet failure indicators in the spacecraft attitude control

system, with a period of 0.48 seconds. The analysis assumed a 10% chance of jet

failure on each cycle, which is sornewhat higher than would be expected. (It should

be pointed out that there are sixteen jets arranged in redundant groups on the LM,

so a failure is not catastrophic.)

*JOB08, executed every 0.50 seconds, monitors the ABORT and STAGE

ABORT buttons on the control panel. The analysis assumed that they are never

pushed.

*JOB 09, which is executed every two seconds, monitors the MODE and

THROTTLE controls. The analysis assumed that they are never moved, which is

normally true during the visibility phase.

*JOB 10 is the start of P63, the crew-initiated braking phase computer

program. Its final action is to examine the exact time, in order to synchronize

certain displays with the clock. The job computes the wait needed to achieve this

synchronization and enters JOB 11 into the job stack (the LGC waitlist) to start

after this delay. The analysis assumed a delay uniformly distributed over 0.02 to

1.01 seconds, which reflects the actual distribution.

JOB 11 continues the braking phase computations. It sets up a display with

which the crew are supposed to set their event timer. JOB 14 is entered into the

job stack to update this display.

JOB12 is initiated by the crew keying in PROCEED after having reset their

event timer as requested by JOB 11. It terminates by issuing a display and waiting

for crew response to it.

JOB 13 is initiated by crew response to the display initiated by JOB 12, and

continues the braking phase computations. At this point in the actual mission, the

crew goes through the lengthy and complex procedure of aligning the inertial mea-

surement unit, which incorporates many optical sightings, angle measurements,

crew displays and responses, together with lengthy computations. Since the jobs

executed during the following mission phases do not depend on the details of this

procedure, and since incorporating it in detail would extend the running time of the

simulation inordinately, the fine alignment programs were replaced by a completely

arbitrary and artificial job, which terminates in a request for crew response to a

display,

JOB14 cycles every second, to update the display started by JOB11, until

ignition.

JOB15 performs the final pre-descent state vector update. It is initiated

by crew response to a display created by JOB 13. It is, computationally, the longest
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job performed during the lunar landing, lasting about 2.2 seconds in the absence of

other computer tasks. It computes the time until ignition and sets up JOB 16 to

start 35 seconds before scheduled ignition of the descent engine. For purposes of

the simulation, a fixed interval of 2.5 seconds was assumed for the time until the

start of JOB 16, since the actual time of ignition depends on environrnental condi-

tions that were not simulated.

JOB 16 performs no computations. It is performed 35 seconds prior to igni-

tion (TIG-35) and its LGC function is to update a "phase table" used to determine

where to restart the computer in case of an error. It sets up JOB 17 to start in

5 seconds, at TIG-30.

JOB 17 is performed 30 seconds before ignition, and initializes the sub-

sequent computer programs. It also enters five jobs into the job stack (nos. 18-22,

which include the main navigation loop.)

JOB 18 is executed at TIG-5. It updates the phase table and enters JOB29

into the job stack to start when ignition is due.

JOB 19 is executed 7.5 seconds before ignition. It sets flags which, when

tested by the digital autopilot program, will cause that program to turn on the

"linage" for the main engine (a small amount of thrust, from the control jets of the

spacecraft, used to settle the engine propellant in the tanks during weightlessness).

JOB 20 performs final accelerometer measurements before thrusting begins.

It is entered into the stack for execution "as soon as possible" by JOB 17, and is

therefore executed shortly after TIG-30.

JOB 21 is also executed shortly after TIG-30. It performs certain initial-

ization functions for the accelerometers.

*JOB 22 is first started about two seconds after JOB 17, or at about 28 sec-

onds to ignition; thereafter, it cycles with a period of two seconds. Its main func-

tion is to read the accelerometers. It also paces the main navigation loop; on

completion, it enters two other jobs in this loop - JOB 23 and JOB 24 - into the job

stack.

*JOB 23 instructs the landing radar to make an altitude measurement for use

in updating the LM state vector. When the measurement is completed, in about 0.1

seconds (the analysis assumed exactly 0.1 seconds; in fact, there is a small varia-

tion about this figure), the radar will interrupt the computer and cause the execution

of JOB26.

JOB24 performs the major navigation computations. This is the longest job

that is active during the visibility phase; it can take up to 0.9 seconds to complete

in the LGC. It enters three jobs into the job stack; JOB 28, entered only once;
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JOB31, each time; JOB 43, each time. (In the actual program, JOB 43 is called only

when the rotation of the spacecraft requires that two or more gyro pulses be sent to

the inertial measurements unit. Here, it is assumed that this is true every time,

which is not seriously in error.)

*JOB25 reads gimbal angles as required.

*JOB26 records landing radar altitude readings.

*JOB 27 torques the gyros in the inertial measurement unit as commanded

by JOB43. It torques each of the three gyros in order, by sending out a string of

pulses to it. A skewed distribution of pulses with a peak at 300 pulses was assumed

for the output distribution.

JOB28 commands the landing radar to its descent position.

JOB 29 is performed at the scheduled descent engine ignition time. It veri-

fies that the crew has permitted ignition and turns the engine on. The job analysis

assumed that the crew has, in fact, permitted ignition; this would normally be the

case.

JOB 30 is performed 26 seconds past ignition. It calls for full engine thrust,

sets flags for use by other programs, and initiates the periodic monitoring jobs

JOB08 and JOB09.

*JOB31 takes landing radar velocity measurements. It is performed every

two seconds, as part of the navigation loop paced by JOB 22. This job starts JOB 25

directly, and the landing radar hardware interrupts the computer about 0.1 seconds

after this job to initiate JOB42. (An interval of exactly 0.1 seconds was assumed:

there is actually a slight variability in this interval.)

JOB 32 through JOB 35 actually represent the same section of the program by

different names. This section tests the position of the landing radar to determine if

it has reached its descent position yet (as commanded by JOB28). The test is re-

peated at one-second intervals, starting seven seconds after the command was issued.

In the actual program, the test is repeated fifteen times, and an alarm is issued if

it is not successful. In the modeling, it was assumed that the landing radar will have

reached its goal by the time of the fourth test (11 seconds after the command). (This

sequence of jobs could have been represented equally well by one job model with a

counter.)

*JOB36 is the digital autopilot (DAP) job. It repeats at 0. 1-second intervals.

It initiates JOB38, to start after an interval which is a function of spacecraft control

requirements (here assumed a random variable over 0 to 0.085 seconds); JOB30,

every 20th time (i.e., every 2 seconds) and JOB 40, every other time (i.e., every

O. 2 aflennric.)
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*JOB37 is performed each time the crew exercises its option to redesignate

the site at which the LM will land. It sets flags used by JOB 24 to determine if

computation of a new trajectory is necessary. The statistics of iteration rate were

chosen to model the crew as making major changes in the landing site, by moving

the controller many times, at the start of the visibility phase and then tapering off

to a lower, approximately constant rate until landing. The distribution used in the

simulation was triangular, with mean interval rising from 0.4 seconds to 5 seconds

by steps of 0.05 seconds each time the controller is used. The base of the triangle

starts at 0.3 seconds and the distribution is symmetric about its mean.

*JOB38 turns off the reaction control system (RCS) jets, which control

spacecraft attitude, as required by the autopilot.

*JOB39 calculates spacecraft acceleration from data about engine thrust

and spacecraft mass.

*JOB40 controls the gimbals that direct the thrust axis of the descent engine.

*JOB41 computes altitude and velocity landing radar beam direction vectors

after the LR has been moved to its descent position.

*JOB 42 reads landing radar velocity data. It is initiated by an interrupt, at

completion of the radar reading commanded by JOB31. It stores the radar data, and

commands another reading immediately, which in turn causes another interrupt after

an interval of 0.1 seconds. (This interval was assumed for the simulation; in the

actual mission the interval can vary by about 0.01 seconds from this figure.) After

five readings, the program performs calculations on the data and terminates.

*JOB43 computes required torques for the gyroscopes that measure space-

craft attitude, and initiates JOB 27 that will send these torque commands out.

Table A-1 summarizes the numerical characteristics of these jobs. For

each job, it lists the number of words obtained from central memory (GET) and
returned to it (PUT); the job duration in basic AGC instructions (INST) and inter-

pretive milliseconds (MSEC); and, when a job can vary in its numerical parameters,
a description of the variability.
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TABLE A-1

LUNAR LANDING PROGRAM STATISTICS

# GET PUT INST MSEC

1 16 5 30 0

23 0

21 0

2 1 0 6 0

3 6 0 36 0

4 6 0 57 0

5 2 7 130 0

6 13 9 49 0

66

7 2 1 26 0

5 5 72 0

8 2 0 84 0

9 3 0 85 0

10 4 11 162 0

11 5 3 22 0

12  0 1 7 0

13 25 15 100 0

14 5 3 23 0

15 67 26 499 2182.99

16 0 0 7 0

17 0 29 112 0

18 1 1 8 0

19 1 1 7 0

20 11 10 300 0

21 8 5 56 26.18

22 3 16 57 0

23 3 4 47 0

COMMENTS

when displaying

when not displaying

when finishing a display

half the time (random)

half the time (random)

nine-tenths of the time (random)

one-tenth of the time (random)

arbitrary assumptions (see text)
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TABLE A-1 (CONT)

LUNAR LANDING PROGRAM STATISTICS

# GET PUT INST MSEC

24 100 56 4839 323,86

100 56 4840 323.86

100 56 4839 323.86

100 57 4842 323.86

121 56 8529 429.32

125 63 10681 646.93

25 3 3 7 0

26 6 4 122 0

27 4 4 67 0

1 1 36 0

28 1 2 29 0

29 8 13 98 0

30 3 12 93 0

31 1 6 46 0

32 0 1 5 0

33 2 1 10 0

34 0 1 7 0

35 0 1 17 0

36 52 43 617 0

52 42 569 0

52 42 547 0

37 1 1 8 0

38 6 7 37 0

6 8 37 0

39 22 14 212 0

40 10 4 464 0

41 26 21 3499 32.61

42 10 6 67 0

11 4 100 0

43 8 8 165 0

COMMENTS

before LR move

during LR move

after LR move

after ignition

visibility phase, no retarget

visibility phase, with retarget

first 3 times (torquing gyros)

last time (cleaning up)

every 20th time

other even-numbered times

odd-numbered tirnes

one-third of the time, (random)

two-thirds of the time, (random)

first four times

fifth and last time of cycle
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APPENDIX B

JOB MODEL SUBROUTINES

The program generator input deck for a typical. job model subroutine (not

actually one from the lunar landing, but still representative of them) is shown in

Fig. B-1, which is reproduced from the output of the program generator. The

corresponding Fortran subroutine, as produced by the program generator, is

reproduced as Fig. B-2.

Line by line, the program generator input describes the following job:

1. The job is identified as Job 12. This identification is required by

the simulation system.

2. A descriptive comment, wh ch will be inserted in the Fortran

subroutine without change.

3. The job is to cycle (i. e. , to be executed repetitively) at intervals

of 0, 5 seconds (i. e., twice per second).

4. The job obtains ("gets") five words of data from central memory

before execution.

5. It reads five words of data from external devices.

6. It executes 35 instructions.

7. When done, it returns ("puts") 6 words of data back in central

memory.

8. It inserts Job 15 into the job stack, for execution one second after

the present job was called for execution (which may not, if delays

intervened, be precisely the time at which it actually executes).

9. It writes 7 words of data onto external devices. (This figure is

perhaps atypically high for the lunar landing. )

10. The input deck terminates.

The same job is described by the Fortran listing of Fig. B-2, but in a

format which is less clear. By groups of lines, this program does the following:

. Line 1 identifies the subroutine to the system.
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INPUT CARDS:

JOBNO 12
COMMENT THIS IS A TEST JOB
CYCLE 0.5
GET 5
READ 5
INST 35
PUT 6
INSERT 15 CALL 1
WRITE 7
END

Fig. B-1

Typical Job Model Subroutine: Program Generator Input
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JOB MODEL SUBROUTINE:

SUBROUTINE J0B121*.*.*)
C THIS IS A TEST JOB

REAL*8 TCALL
COMMON/ALL/I
GO TO 11142,10914,151a

10 RETURN
40 RETURN 2
11 CALL ACSAVE(G40.TCALLI

CALL GEM/
CALL REAM/
CALL RELBUS
CALL RUNJOBI35.0)
RETURN 1

12 CONTINUE
CALL PUT(6)
CALL WRITE(7)
CALL INSERTI12.TCALL+0.5D0/
CALL INSERTI15.TCALL+100)
CALL TERMIN
RETURN 3

31 FORMATII2•3216/
14 READ(5131) ITEST,TCALL

IF(ITEST.NE.12ICALL FOULUPI12.ITEST/
RETURN

15 ITEST=12
WRITEI7.31)ITEST.TCALL
RETURN
END

Fig. B-2

Typical Job Model Subroutine: Program Generator Output
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From there through the line labeled with the number "40", mis-

cellaneous bookkeeping functions required by the system are performed.

From the line labeled "11" to just before the line labeled "12",

the subroutine performs the functions associated with starting execution.

It saves the time for which it was called in a register referred to as

"TCALL". It then, by means of a mnemonically-named subroutine calls,

gets 5 words of data, reads 5 words, releases the bus, and informs the

simulation that it will run for 35 instructions. Finally, it returns control

to the central simulation loop.

From the line labeled "12" to just before the line labeled "31",

it performs the functions associated with terminating execution. It re-

turns 6 words to central memory, writes 7 words, inserts itself (JOB12)

into the job stack for execution one-half second from the time for which

it had been called, and inserts JOB15 into the job stack for execution one

second from that time. It then terminates and returns control to the

central simulation loop.

From the line labeled "31" through the end of the program, the

instructions perform functions associated with the creation of a "restart

deck" to permit restarting the simulation from the point where a previous

run terminated, and with performing such a restart.

Additional functions not included in this sample job include simulating an

external interrupt, stochastic variation of job parameters (such as a job which

might vary its execution time in a way that depends on the values of certain var-

iables, which cannot be determined from examination of the program listing) and

more. These, too, can be handled within the program generator language. For

the few cases in which this language is inadequate—such as complex statistical

functions, or communication with other subroutines—it can still be used to pro-

vide a "base" which incorporates the required bookkeeping instructions, and

onto which the additions may easily be grafted.
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