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FOREWORD

This Evaluation of Active Control Technology for Short-Haul Aircraft was conducted under
an extension to NASA Ames Research Center Contract NAS 2-6995. Work was initiated in
August, 1974, and continued to January, 1975, as a follow-on to earlier work which was
described in NASA CR 137525 and NASA CR 137526 and summarized in NASA CR 2502,

The study was under the direction of T. P. Higgins, Program Manager, and H. S. Sweet,
Deputy Manager. The principal investigators were: J. H. Renshaw, J. A. Bennett,

0. C. Harris, J. F. Honrath and R. W. Patterson,

The work was administered under the direction of T. L. Golloway, Technical Monitor,
Systems Studies Division, NASA Ames Research Center.

This report is also identified as LG75ER0029 for Lockheed internal control purposes.
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SUMMARY

From studies conducted for NASA Ames (Ref. 1) it was determined that turboprop and
turbofan powered mechanical flap airplanes were economically competitive with powered
lift concepts for 914 m (3000 ft.} field length. The turbofan powered, mechanical flap
airplane has higher fuel consumption than the most promising powered lift concept, but the
turboprop design provides lower fuel consumption and must therefore be considered a
major contender for short-haul operation. Both the turbofan and turboprop concepts
would have poor ride quality because of the low wing loadings required for this short-field
performance.

The primary objective of the program described in this report was to evaluate the gconomics
of short-hau! aircraft incorporating active control technology and low wing-loading. The
overall approach to the program was:

0 Determine the airplane characteristics with active controls.
0 Define active controls systems for the airplanes.
o) Determine the characteristics of airplanes incorporating active control systems,

Turboprop Characteristics and Evaluation of Active Controls — The turboprop-powered
concept chosen for the study utilized 2- and 4- engines. The power plant selected was a
rubberized Detroit Diesel Allison T-56 engine combined with a rubberized, low tip-speed
“quiet” propeller defined by Hamilton Standard for previous Lockheed work (Ref. 2).

A preliminary analysis resulted in the data shown in Figure S-1 which indicates that
minimum direct operating cost at twice pre-energy crisis fuel price (identified as DOC-2) for
a 278 km {150 nm) stage length is provided at -

o] Field lengths shorter than 914 m (3000 ft.} by a 4-engined configuration
utilizing the deflected slipstream effect and meeting FAR Part-XX regulations
(Ref. 3}, and cruising at 0.5M or less. :

] Field lengths of 914 m (3000 ft.) or greater by either a 2- or 4- engine design
cruising at 0.5 to 0.6 m. The 2-engine design cruising at 0.6 M and meeting

FAR Part 25 (Ref. 4) was selected for further study since it provided almost
miminum DQOC and retained the 2-engine configuration as a variable,
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100 PAX  T-56  BEST ALTITUDE, SPEED AND AR FOR 278 KM (150 N, MI.)

4.8l' : \
4.4} \\ R
N 2-ENGINES
DOC-2 R 0.6M
4.0F N 0.5
¢/ASSM
0.6M
3 0-55/\\ DESIGN POINT
O6 - 0 5 : B
' 4-ENGINES /
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A m '
0" 1.5 2 ) 2.5 | . 3 . 1000 FT
5 6 7 8 ) 10 100M
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Figure -1 DOC-2 (278 km; 150 n.mi.) vs. Field Length and Mach No. (No Active controls}
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Two 44 passenger baseline configurations, one with 2-engines and one with 4-engines, were
configured and are shown in Figures S-2 and S-3. Longitudinal ride quality analyses were
conducted for these airplanes utilizing a 3 degree-of-freedom digital computer program.
Figure S-4 indicates that these aircraft did not meet the r.m.s. vertical acceleration criteria
of Ref. b & 6 for the descent case.

Ride quality control (RQ) systems, utilizing aileron, trailing edge flap segments and
elevators were synthesized to improve the ride quality of the airplanes to equal or better
that of estimated Boeing 737 data as shown in Figure S-4. Duplicated electronics were
provided in these RQ systems to safeguard against run-away of the complete system but
possible failure of the system was accepted, since it would only resuit in a less comfortable
ride for the passengers.

By the addition of an extra electronics channel, larger hydraulic power supplies, dual piping
and electro-hydraulic valves to each surface actuator, and modified surface sizes and
electronic gains, gust load alleviation {GLA) system were synthesized for the two baseline
aircraft. These systems reduced the gust load factors such that the gust cases were no more
critical than the maneuver cases in designing the wing box structure. Gust load factors
resulting from a 15 m/sec (50 fps) gust at cruise speed and a 20 m/sec {66 fps) gust at
maximum critical gust speeds {Vg) for a series of airplanes, with gust load alleviation, were
calculated. The GLA system must lower these load factors to below 2.6g9. This reduction in
gust effects permit the aircraft to be reoptimized with higher aspect ratio wings for which
example equivalent wing box weight savings due to the GLA system are shown in Figure
S5,

The addition of a fourth channel in the pitch control electronics and additional
electro-hydraulic valves provides the necessary redundancy for the system to be modified to
also provide “‘relaxed static stability’’" capability which permits the size of the horizontal
stabilizer to be reduced, This systern is identified for briefness as the “artificial stability”
{AS) system although it also provides ride quality control and gust load alleviation. Figure
§-6 summarizes the capabilities of the three alternate active control systems just described.

Based on analyses of the two point designs, parametric computer methods were developed
to estimate such parameters as gust load factors and speeds, wing box weight change, gust
alleviation surface dimensions, and actuator, hydraulic system and electronic system weights
and costs. In order to determine the effects of relaxed static stability a horizontal stabilizer
sizing routine, accounting for the appropriate stability margins was developed and
incorporated into the airplane sizing program.
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PAYLOAD: 44 PASSENGERS

RGW: 22,251 KG (49,055 LB)

OWE: 16,005 KG (35,285 LB)

WING AREA: 103.3 SQ.M. (1,112 5Q. FT.)

WING LOADING: 215 KG/SQ.M. (44.0 LB/SQ. FT.)

ENG/PROP S.L.S.T.: 19.12 KN (4,300 LB)

926 KM (500 N, MIL.) CRUISE: 0.5M @ 7620 M (25,000 FT.)

278 KM (150 N. MI.) CRUISE: 463 KM/HR (250 KEAS) @ 4570 M (15,000 FT,)

Figure 82 610 m {2000 ft) Field Length Design Point Aircraft
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PAYLOAD: 44 PASSENGERS

RGW: 22,262 KG (49,080 LB)

OWE: 15,940 KG (35, 140 LB)

WING AREA: 77.3 SQ.M. (832 5Q. FT.)

WING LOADING: 287 KG/SQ.M. (58.8 LB/SQ.FT.)

ENG,/PROP 5.L.5.T.: 45.64 KN (10,261 LB)

500 N.MI. CRUISE: 0.6 M (@ 7620 M (25,000 FT.)

150 N.MI. CRUISE: 556 KM/HR (300 KEAS) @ 4570 M (15,000 FT.)

Figure S§-3 914 m (3000 ft} Field Length Design Point Aircraft
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610 M’ 215 KG/SQ. M.
2000 FT. FIELD LENGTH,  W/S =44 LB./5Q. FT.
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CRUISE DESCENT APPROACH

PASSENGER LOCATION

214 M 287 KG/SQ. M.
3000 FT. FIELD LENGTH, W/S 58.8 LB./SQ. FT.

> AIRPLANE WITHOUT RQ
;
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Figure $4 Ride Quality Analysis
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WING BOX WEIGHT CHANGE

© 1000 KG

L]

< 1000 LB

AR = 8 CONSTANT

0 2 3 4 1000 FT

'] A J
4 6 8 10 ) 12 100 M
FIELD LENGTH

Figure S5 Wing Box Weight Change due to GLA

-

Designation Capability Redundancy
Baseline No Active Controls Not Applicable
RQ Ride Quality Control only Multiple surfaces and hydraulic
(Ride Quality) systems with individual actuators.
Two electronic channels -
FAIL SAFE
GLA Ride Qiuality Control plus As for RQ plus third electronic
(Gust Load Alleviation) Gust Load Alleviation channel and duplicated hydraulic

supplies to each surface -

FAIL OPERATIVE

AS Ride Quality Control plus  As for GLA plus fourth electronic
(Artificial Stability) Gust Load Alleviation plus channe! and third hydraulic
Artificial Stability supply to pitch control -

FAIL OPERATIVE after two
identical failures.

Figure S-6 System Designation, Capability and Redundancy
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Airplanes were initially sized without active controls and then sized with each of the 3 levels
of active contro!l for field lengths of 457 m through 1067 m (1500 through 3500 ft) and for
44,000 and 148 passenger capacities. The resulting characteristics of these aircraft are
summarized as a function of design field length in Table S-1 and Figure S-7. As mentioned
earlier the 4-engine configurations utilize deflected slipstream effects and meet FAR Part
XX requirements while the 2-engine designs meet FAR-25 which accounts for the
differences in the wing loadings. The small changes in wing loading are due to the
reoptimization to the higher aspect ratios with gust load alleviation. It was found that all
the aircraft without gust load alleviation required aspect ratio 8, the minimum investigated,
when optimized on the basis of minimum DOC-2 for 278 km (150 n.m.) stage length and
926 km (500 n.m.) range.

The weight data show the expected increase in gross weight for the 2-engined configuration
relative to the 4-engine configuration, partly due to the higher cruise speed and partly due
to the additional installed thrust and lower wing loading required to meet the field
perfermance,

The provision of ride quality control incurs a weight penalty at all field lengths and for all
passenger sizes, while the adoption of gust load alleviation, with or without relaxed static
stability, offers weight saving benefits which are highest at the lowest wing loadings and
increase with increase in passenger size. At the highest wing loading, weight penalties can
actually be incurred due to the wing weight change at the higher aspect ratio and the
subsystem weight exceeding the saving in fuel weight. The effects of the various systems,
particularly the AS system, on horizontal stabilizer weight are shown separately in Figure
S-8. These data are for identical types of stabilizer systems with and without active controls
and therefore do not contain any reductions possible through the use of higher values of
stabilizer 1ift coefficient. '

As indicated in Figure S-7 large fuel savings are possible while still retaining minimum direct
operating cost for short stage lengths (278 km, 150 nm) by the adoption of higher aspect
ratio wings combined with a gust load alleviation system. The figure shows the savings for
the longest stage length (926 km, 500 nm). Smaller, but still worth while, savings are
achievable for shorter stage-lengths but only at the longer-field lengths and with the 4-engine
configuration. Note the relatively poor fuel consumption of the 2-engined configurations
which is caused by a combination of the following reasons. The selected 2-engine designs
cruise at a higher speed than the 4-engine configurations which results in increased fuel
consumption, However, even if the speeds were identical, the 2-engine design would still
have poorer fuel consumption because it requires a lower wing loading {larger wing area) and
higher thrust to weight ratio (larger engines) to meet the required field performance. The

XXiv



FIELD LENGTH - M 457 610 ?14 1067

(FT) (1500) (2000) (3000) (3500)
WING LOADING - KG/SQ.M (PSF)
4-ENGINE
BASELINE, RQ 156 (32) | 215 (44) | 347 (71) | 395 (81)
GLA, AS 156 (32) 215 (44) | 322 (66) 381 (78)
2-ENGINE
ALL SYSTEMS - ' - 287 (59) | 347 (71)
ASPECT RATIO
4-ENGINE
BASELINE, RQ 8 8 8 12
GLA, AS 8 8 12 14
2-ENGINE
BASELINE, RQ - - 8
GLA, AS - - 8 10
Table s- Effect of Active Controls on Wing Loading and Aspect Ratio
1000 LB
T pax _TIoITR
1000 KG ' 148 —_—— - —AS
2.0p .
4r \ S
)
1.5 100 \ 4-ENGINES 2-ENGINES
T 0. 0.
HORIZONTAL] 3} M N oM
STABILIZER
WEIGHT
1.0 oL s
N
~, ™~
0.5F L i """".-: 100
8
—aTI= M
b b L,
0V ) 2 3 3 3.5 1000 FT
L '] & l . )
4 6 8 10 9 11 100M

FIELD LENGTH

Figure S8 Effect of Active Controls on Herizontal Stabilizer Weight
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larger wing requires more thrust and hence more fuel, while the larger engines actually result
in the airplane cruising at a lower percent power setting than the 4-engined designs, despite
the difference in speed. The lower percent power setting makes the specific fuel
consumption poorer which of course increases the fuel consumption even further. Figure
S-9 presents, as a measure of fuel efficiency, seat statute miles per gallon for the aircraft
optimized with the RQ and AS systems, as a function of field length. Note again the poor
performance of the 2-engine design and the drastic effects of reducing field length to 457 m
(1500 ft). As expected the largest 4-engined aircraft incorporating the AS system has the
best fuel efficiency while also providing excellent ride quality.

The aircraft price estimates shown in Figure S-7 show a price increase due to the
introduction of active controls for all but the larger aircraft at the shorter field lengths. In
these cases, the reoptimization with GLA and AS retains the same aspect ratio as the basic
airplane and results in weight and cost savings sufficient to offset the weight and cost
introduced by the active control system. The introduction of the RQ system incurs a cost
increase for all field lengths and all passenger sizes.

The direct operating cost at 2 and 4 times 1972 fuel prices {DOC-2 and DOC-4) are shown
in Figure S-7 for the baseline airplanes for stage lengths of 278 and 926 km (150 and
500 n.m). Note the expected large reductions due to increase in passenger size and the rapid
increase as the shortest field length is approached.

[t is interesting to compare the 2- and 4-engine configurations at 914 m (3000 ft) field
length. The 2-engine designs are heavier, cost more and use more fuel, but in some cases the
higher speed results in a lower DOC than for the 4-engine designs. For 44 passengers,
2-engines provides minimum DOC for both fuel prices and both stage lengths. For the 100
passenger case, 2-engines are better at 926 km (500 n.m}); the two configurations are equal
at DOC-2 and 278 km {150 n.m}, while the 4-engine design is better for DOC-4 and 278 km
(150 n.m). For 148 passengers the 4-engine design is best except for 926 km (500 n.m).
and DOC-2.

The effects of the active control systems on DOC are presented in Figure S-7 as percent
change for the DOC-2 and DOC-4, 926 km (500 n.m} cases. The RQ system results in a
0.75 to 2.2 percent increase in DOC dependent on field length and passenger size. The GLA
and AS systems can provide reductions in DOC at the shortest field lengths while providing
excellent ride comfort. Between 610 and 914 m (2000 and 3000 ft) field length, these two
systems will provide the improved ride quality for the 100 and 148 passenger sizes while
holding DOC-2 within 0.5 percent of the basic airplane value; DOC-4 can be as much as 1.7
percent below the baseline airplane. For the 44 passenger size the increased weight and cost
of the GLA and AS systems offset any savings and result in a further increase in DOC above
the RQ system.
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Turbofan Powered MF Characteristics and Comparison of Concepts

In an earlier phase of the study {Ref. 1} it was determined that the mechanical flap (MF)
concept which is illustrated in Figure S-10 and which is powered by two 1.35 FPR engines,
provided optimum DQC-2 far 926 km (500 n.m.) at 0.70 M. This compares to the
OTW/IBF concept which is itlustrated in Figure S-11 and which optimized with four engines
at 0.75 M. The results of the present study cannot be directly compared to the data from
the previous phase for these airplanes because of different economic assumptions, updating
of the computer program and some differences in equipment standards. Table S-I| presents
the characteristics of OTW/IBF, turbofan MF and turboprop aircraft which are all sized on a
consistent basis and can be directly compared.

The wing loading of the OTW/IBF is high enough to obviate the need for a RQ system but
both the MF and turboprop concepts are shown with and without active control systems.
The turboprop configuration is shown to have the lowest fuel consumption, DOC-2 and
DOC-4 of the three concepts. It should be noted however that the turboprop engine
performance and cost are based on a rubberized Detroit Diesel Allison T-56. It is obviously
not possible to achieve these costs except at the actual T-56 size which would result in a 200
passenger aircraft rather than 148. Alternate sizes are possible for other speeds, field lengths
and configurations. For example, a 2-engined, 48 passenger vehicle can be sized for 1067 m
(3500 ft) field length and 0.6 M. Further alternates can be sized using other available
engines while approximating the rubberized T-56 data. |f a2 new advanced turboprop engine
is used the DOC-2 and DOC-4 are increased by 11 and 6.5 percent respectively and the
turboprop is then only competitive with the other concepts at and above DOC-4 fuel price.
It is concluded that any new turboprop aircraft must be sized to use an existing engine in
order to keep the engine price down, and the aircraft economically competitive,

The MF with a ride quality system and the OTW/IBF are almost identical based on DOC-2
but the OQTW/IBF has the advantage of a lower fuel consumption and a lower DOC-4. In
order to be competitive at DOC-4 the MF must use the AS system.

Conclusions and Recommendations

The ride quality of short-haul airplanes with low wing loading can be improved to the
standard of contempaorary high wing loading airplanes by the use of active control systems.
The direct operating cost penalty for improved ride quality is 2 percent or less for all cases;
incorporation of gust load alleviation and augmented stability overcomes this penalty and
gives better DOC than aircraft without active controls in all the very low wing loading
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A/C OPTIMIZED FOR DOC-2, 914M (3000 FT.) F.L., 926 KM (500 N.MI.)

CONCEPT ?Ta\;”;':; MF 1.35 FPR TURBOPROP D.S.
ACTIVE CONTROL | NONE [NONE] R@ | Gita | As | noNel ra | ola | as
NO. OF ENG. 4 2 2 2 2 4 4 4 4
MACH NO. 0.75f o.70} o0.70] o.70] o.70] o.5| o.5] 0.5 o.5
_ _ oy
OWE - KG 36,510 | 39,687 | 39,850| 39,189| 38,970 | 34,179 | 34,303| 35,135] 34,981
- (LB) 80,490 | 87,494 | 87,853| 86,396 | 85,913 | 75,351 75, 623| 77, 458| 77,119
RGW - KG 56,446 | 59,848 | 60,026 | 59,387 59,110 52,694 | 52,828| 53,278| 53,084
(LB) 124,440 131,940 132,332 130,924 [130, 314 |16, 168 |16, 464 117, 457|117, 028
RATED THRUST - KN | 55.33| 119.6| 119.9| m12.8| 107.8) 41.5| 41.59| 37.19] 37.05
(LB) | 12,440 | 26,890 | 26,948 | 25,365 | 24,231 | 9,330 | 9,350| 8,355| 8,332
MISSION FUEL - KG| 4,400 | 4,790 | 4,802| 4,749 | 4,708} 3,601 | 3,600| 3,335| 3,304
(L8)| 9,700 | 10,560 | 10,586 | 10,470 | 10,380 | 7,938 | 7,956 7,352| 7,285
W/s: o-KG/SQ.M 554 | 287 | 287\ 287 | 287| 347 | sar| 322 a2
wB/sQ.Fr)| 13.5| s8.8| ss.8| ss.8| se.8| 71.0| 71.0| 6.0] es.0
AR 12 8 8 10 10 gl 8 12 12
DOC-2 ¢/ASSM v.o1r| 1.897| 1.909] 1.884 | 1.876 | 1.7866| 1.799] 1.793| 1.788
DOC-4 ¢/ASSM 2.226 | 2.333| 2.347| 2.33¢| 2.304]| 2.117] 2.129) 2.097| 2.090
A/C PRICE $M 9.103 | 8.273¢ | 8.3984| 8.4015| 8.3778 | 5.5163 5.6248| 5.7253| 5.7143




airplanes {457 m, 1500 ft field length) and in the 100 and 148 passenger airpianes at 610 m
(2000 ft.} and 914 m (3000 ft.) field length. For small aircraft {44 passengers) a GLA or AS
system is recommended for \)ery short field lengths but for field lengths of 610 m (2000 ft.)
and longer the simpler RQ system results in a smaller DOC penalty. For larger airplanes
{100-148 passengers) the GLA and AS systems generally provide smaller DOC penalties than
the RQ system for field lengths of less than 914 m (3000 ft.). Above this ficld length the
RQ system appears to minimize DOC effects except at the longer ranges and higher fue!
prices where the increased aspect ratio of the GLA and AS systems results in improved fuel
consumption and an advantage in DOC. Fue! savings of 11% were obtained by use of active
controls in a 148 passenger airplane at 914 m (3000 ft.) field length and 347 kg/sg.m (71
Ib/sq. ft.) wing loading. '

Weight savings were obtained with the GLA and AS system at the lower wing loadings where
reoptimization did not increase wing aspect ratio. At longer field lengths and higher wing
loadings the best economics of aircraft with active controls were obtained at increased
aspect ratios. Fuel consumption was improved but small weight and cost penalties were
incurred compared to baseline aircraft. Generally, the active control systems increased the
initial cost of the airplane; the only exception being the largest aircraft at the shorter field
lengths.

Due to the favorable fuel consumption and competitive direct operating costs, the
turhoprop-powered configuration with active controls must be considered a major
contender for the short-haul low/medium density market, particularly for the shorter route
segments where the time increase due to low speed is negligible. It must be stressed however
that these turboprop aircraft, to be competitive, must be designed to match existing
turboprop engines. The increased cost of a new turboprop engine will nullify most of the
advantage of this configuration,

It may be that the low s.f.c. of a diesel engine might make consideration of this engine cycle
worthwhile. Similarly since the development of a new turboprop engine is questionable it
may be that a new, very high bypass ratio fan would be advantageous at these speeds and
field lengths. The incorporation of active controls in the turbofan MF airplane results in it
being equal to the OTW/IBF hybrid in terms of DOC and ride quality. However, the
OTW/IBF, because of its higher wing loading, retains its advantage of lower fuel
consumption.

This study has been limited to short-haul; it is likely that larger fuel savings are available by
the use of active control systems on long haul aircraft which stand to gain so much more
from higher aspect ratio wings, providing the wing weight increases can be minimized.
Active control systems combining features such as ride quality improvement, gust load
alleviation, flutter control and relaxed static stability could result in very efficient high
aspect ratio wings. It is recommended that such a program be considered with the final step
being the flight demonstration of the wing design.
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1.0 INTRODUCTION

Background — Under Contract NAS2-6995, Lockheed addressed the medium to high
density short haul areas with 926 km (500 n.m.) as a key design range; airplanes were sized
for 148 passengers and the studies were concentrated on low-noise fan-powered aircraft
(Ref. 1, B). It was shown that the “‘simple’” mechanical flap (MF) configuration has better
direct operating costs than both the externafly blown flap (EBF) and the augmentor wing
{AW) concepts at all field lengths longer than 914 m (3000 ft.} and is competitive with the
less-well-developed hybrid over-the-wing/internally blown flap {OTW/IBF) concept at field
lengths longer than 1067 m (3500 ft.)

Additionally, it was shown that turboprop powered aircraft operating at cruise speeds of
.BM and below, and field fengths of 914 m (3000 ft) and less, have the best fuel
consumption and direct operating costs of all the concepts studies. This indicated
superiority of the slower turboprop airplane is expected to be accentuated as shorter stage
lengths are considered. At design ranges longer than 826 km (500 n.m.), the economic value
of higher speed becomes overriding (as well as passenger preference).

Thus, it can be seen that turboprop powered deflected-slipstream airplanes must be
considered as major contenders for the short-haul market operating at field lengths of 914 m
{3000 ft) or less.

The turboprop must overcome the problem of passenger appeal, and since these concepts
have low wing loadings, they must overcome problems such as poor passenger ride comfort
and perhaps gust criticality of the structure,

With the recent development of active contro! technology, systems can be designed to
improve ride quality, alleviate gust loading and provide artificial stability in addition to
other possible applications. A system providing ride quality improvement only will not be
required to achieve "failoperative’” operation and would accept poor ride quality if failure
of the system occurs. While such a system would provide some gust load alleviation, the
structure cannot be designed to the reduced loading since failure of the system could result
in failure of the structure. However, the structural relief provided by the system will
provide an improved fatigue life or can be used to provide a weight saving due to the
reduced fatigue loading. The degree to which these benefits offset the system weight and
cost has not been established previously.



To provide gust load alleviation, which permits the structure to be designed to reduced
loads, requires a similar system but with redundancies incorporated to ensure continued
system operation after a failure. Such a system will provide ride quality control, structural
design load reduction and reduced fatigue loading. It must be established whether these
benefits will save sufficient structure weight to offset the system weight and cost.

Low wing-loading means a large {relatively) wing area and generzlly a large horizontal
stabilizer area. Active control technology can be used to reduce the size of the horizontal
stabilizer by providing artificial stability. Since failure of such a system would mean an
unstable airplane, sufficient redundancy must be provided to ensure continued operation
after one or more failures. Again the economic tradeoff of the benefits versus the system
weight and cost must be evaluated for short-haul aircraft. '

Objectives — The primary objective is to evaluate the economics of short-haul aircraft
designed with active controls technology and low wingloading to achieve short field
performance with good ride quality. To fulfill this objective the foliowing secondary
objectives are necessary:

o] Determine the unaugmented ride qualities of two typical short-haul aircraft
with low wing-loadings, suitable for 610 m (2000 ft} and 914 m (3000 ft) field
length performance.

o Determine the gust criticality of these aircraft.
o Define active control systems for these aircraft to provide:
o Ride quality equivalent to present short-haul aircraft such as the

B737 and DCO.

o The above plus gust load zlleviation and reduced structure weight,
0 The above plus artificiat stability and reduced horizontal stabilizer
area.
o Determine the weight and cost of these systems.
o Determine the effect of these systems on the weight, first cost and operating

costs of short-haul aircraft covering a range of field lengths and passenger sizes.



Approach — The general approach to the program was to divide it into three primary tasks,
namely:

0 The determination of airplane characteristics without active controls.
o] The definition of active control systems for these airplanes.
0 The determination of airplane characteristics with active controls.

To achieve the primary objective of this study, the choice of zirplane concept is not critical.
Data are required to compare the turbofan MF concept with the powered lift concepts at
914 m (3000 ft) field length but the major portion of the study has been conducted with
the turboprop concept since:

0 It provides lowest operating cost.

s] It provides lowest fuel consumption.

0 't is expected to rate even better at shorter ranges.

0 It is already operating from short runways at major hubs.
o Quiet turboprop engine/propeller combinations exist.

The first task required the parametric sizing of turboprop aircraft for short-haul operation.
Two- and four-engined configurations have been sized for Mach numbers of 0.5 to 0.6 and
field lengths of 457 m through 1070 m {1500 - 3500 ft} which resuits in wing loading
ranging from 161 kg/sq m through 415 kg/sq m {33-85 Ib/sq ft.). From this family of
aircraft two baselines were selected and their ride qualities determined and compared to
those of a present-day turbofan short-haul aircraft known to provide a satisfactory ride.
This work is described in Sections 2 and 3.

Active control systems were then defined for the baseline airplanes to provide:

o Ride quality improvement.
o} Gust load alleviation and ride gquality improvement.
0 Artificial stability, gust load alleviation and ride quality improvement.



The weight and cost of these systems were determined and then used to develop parametric
weight and cost relationships for different wing loadings and aircraft sizes. These data are
described in Section 4.

The third task involved the incorporation of these active control system data into the sizing
program and the resizing and reoptimization of the baseline and parametric family of
aircraft to determine the characteristics of the aircraft including active control systems as
described in Section 5.

Section 6 then compares the characteristics of the aircraft before and after the introduction
of active controls and determines the benefits and penalties associated with each system as a
function of field length (wing loading) and passenger size. Finally the aircraft with active
controls are compared to equivalent data for the powered lift aircraft developed under the
earlier NASA contracts (Ref. 1, B} and recommendations for further research and
development listed.



2.0 DESIGN REQUIREMENTS AND EVALUATION CRITERIA

2.1 Design Requirements

The general performance requirements for 926 km {500 n.mi.) range are as stated in Ref. 1.
The requirements and evaluation criteria used in the present study are summarized in
Table |.

Power Plant — The primary concept used throughout the study is the turboprop with both 2
and 4 engines. The primary power plant considered is a combination of the Detroit Diesel
Allison T-56 engine and the Hamilton Standard 4.9 m {16 ft) diameter quiet propeller, both
rubberized to provide the required thrust. The pricing for the engine and propeller is based
on the current price of the T-56 and a study price for the propeller. The airplane cost data
generated using this engine are therefore accurate only at the design points using the actual
engine size, This is considered the most desirable approach since a new turboprop engine is
unlikely to be initiated and therefore any new turboprop aircraft is most likely to use
existing or modified engines. The relative trends provided by rubberizing these engine data
are of course unaffected.

Passenger Capacity — The initial study to determine optimum parameters such as aspect
ratio, cruise Mach number and altitude used a 100 passenger capacity. Later studies, to
illustrate the effect of passenger capacity, used values of 44, 100 and 148. The baseline
airplanes used for the structural and ride quality studies accommodate 44 passengers since
this size is considered reasonable for introducing a new short-haul system operating from
short runways (914 m; 3000 ft) at major hubs, and is representative of the aircraft suitable
for short stage lengths in the low density market.

Range — As in the previous studies a range of 926 km (500 n.mi.} is required. Extended
range up to 2778 km {1500 n.mi.} is not included since the turboprop concept is not
considered suitable for such ranges.

Field Length — To provide an adequate range of wing loadings for the evaluation, field
lengths of 467,610, 914 and 1067 m (1500, 2000, 3000 and 3500 ft) were included.

Cruise Speed — Based on the turboprop data generated in Ref. 1, 926 km {500 n.mi.} cruise
Mach numbers of 0.5, 0.55 and 0.6 were considered and the optimums determined.
Comparison to results of previous studies involves comparison of aircraft with design speeds
up to M 0.8.



REQUIREMENTS _
o POWER PLANT: RUBBERIZED T-56 AND "QUIET" PROPELLER
o NUMBER OF ENGINES: 2 AND 4
o PASSENGER CAPACITY: 44, 100, AND 148
o RANGE: 500 N.MI,(926 KM)

o FIELD LENGTH: 1500, 2000, 3000 AND 3500 FT.
(457, 610, 914 AND 1067 M)

o SPEED: 0.5 - 0.6M AND 250 KEAS (463 KM/HR) MINIMUM

o ALTITUDE: UP TO 25,000 FT (7620 M)

o ASPECT RATIO: 8, 10 AND 12

o FAR 25 FOR TURBOFAN AND 2-ENGINED TURBOPROP DESIGNS
o FAR XX FOR 4-ENGINED TURBOPROP (DS) DESIGNS

SELECTION CRITERIA (PRIMARY)
o MINIMUM DOC AT FUEL PRICE OF 23¢/GALLON OF FUEL (DOC-2)
FOR 150 N.M. (278 KM) STAGE LENGTH AT BEST ALTITUDE AND SPEED

Table | Design Requirements and Selection Criteria
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For a stage length of 278 km (150 n.mi.) alternate speeds were considered as described in
Section 2.2,

Cruise Altitude — The aircraft were sized for 916 km {500 n.mi.) cruise at 7620 m (25,000
ft) altitude. For shorter stage lengths the altitude was optimized as described in Section 2.2

Aspect Ratio — Aspect ratios of 8, 10 and 12 were considered and the optimum selected for
each case.

Federal Aviation Requirements — The requirements of FAR Part 25 {Ref. 4} were applied
to the turbofan mechanical flap and 2-engined turboprop designs while the requirements of
FAR Part XX {Ref. 3) were applied to the 4-engined turboprop deflected slipstream and the
bybrid powered lift designs.

Costing Methods — Airframe and engine costing were on the same basis as used in Ref. 1
except for inflation of 12% (6%/year) from 1972 to 1974.

The 1967 DOC estimating methodology was used except for the following changes, by
agreement with NASA.

1. Block time minus flight = 10 min.

2. Block fuel as determined from the flight profile, using 8 minutes ground time and 4
minutes air maneuver time,

3. Reserve fuel for 370 km (200 n.mi.} at cruise altitude plus 15 minutes at 3050 m
(10,000 ft) altitude, maximum endurance speed.

4. Crewcost=2x[0.05 x WG + 863)
1000

5.  Hull insurance: 1% rather than ATA 2%.
6. Utilization: 2500 hr. per year.
7. Laborrate: $%7.45/hour.

8. Maintenance cost: 75% of 1967 ATA value.

9. Maintenance burden: Retain ATA factor of 1.8



10. Depreciation: 15 years, 15% residual, 25% engine spares.
11. Fuel costs: 11.5¢c/gallon
DOC applicable to 11.5¢/gallon is identified as DOC-1.
Note also the following:
DOC-2 - 23c/gallon
DOC-4 - 46¢/gallon

DOC-10 - $1.1b/gallon

2.2 Selection Criteria

Although the aircraft were sized for 926 km ({500 n.mi.) range cruising at 7620 m
(25,000 ft} altitude, the optimum aspect ratio and design cruise Mach number were selected
on the basis of Direct Operating Cost at 23c/gallon fuel cost (identified as DOC-2) for a
stage length of 278 km {150 n.mi.) which is considered more realistic for short-haul. At this
shorter stage length it is uniikely that the cruise altitude will reach 7620 m (25,000 ft); the
aircraft have therefore been flown by the computer at altitudes of 3050, 45672 and 6100 m
{10,000, 15,000 and 20,000 ft). Similarly the optimum cruise speed for this shorter stage
length may be different then the design cruise Mach number for 926 km (500 n.mi.} range.
Accordingly 3 cruise speeds have been flown at each altitude and the value determined for
minimum DOC-2. If DOC-2 did not provide a definite choice, DOC-4 and fuel consumption
were considered. '



3.0 AIRPLANE CHARACTERISTICS WITHOUT ACTIVE CONTROLS

In order to determine the effects of incorporating active controls into low wing loading
aircraft, it is first necessary to size low wing loading aircraft without active controls and
determine the characteristics of the parameters which may be affected by the incorporation
of active control systems. To identify the magnitude of the effects at various wing loadings
a family of aircraft with field performance varying from 457 m through 1070 m {1500 -
3500 ft) were sized. To identify the effects of size, passenger capacities of 44, 100 and 148
have been configured.

Before sizing this complete matrix of airplanes a parametric study of the 100 passenger
capacity aircraft was conducted to identify the optimum number of engines (2 or 4), and
the optimum aspect ratio, cruise altitude and speed to provide minimum DOC-2 for a
278 km (150 n.mi.) stage length, and for field lengths of 457, 610, 914 and 1066 m (1500,
2000, 3000 and 3500 ft). This work is described in Section 3.1.

The optimum parameters obtained from this study were then used to size and configurf. the
two baseline airplanes defined in Section 3.2, The ride qualities of these aircraft were then
determined and compared to a contemporary short/medium haul aircraft known to have
satisfactory ride qualities. These analyses are described in Section 3.3 and were used to
design the ride quality control systems described in Section 4.0,

The two baseline aircraft were also used to conduct a wing structural analysis with the
object of confirming or updating the sizing program weight routine. These analyses
identified the degree of gust criticality of the baseline wings for use in designing the gust
load alleviation systems of Section 4.0, and are described in Section 3.4,

Finally in Section 3.5 the matrix of airplanes without active controls are defined, reflecting
the optimization of the configuration parameters and the updating of the weight routines,

3.1 [Initial Parametric Sizing

As explained in Section 1.0 the turboprop was chosen as the primary concept for this
study. Both 2- and 4-engined configurations have been sized. The Z-engined designs were
treated as conventional propeller driven airplanes with lift margins meeting the requirements
of FAR Part 25, while the 4-engined designs make use of the slipstream-generated |ift which
qualifies as a powered lift concept under FAR Part XX performance ground rules. The
aircraft could be either low-wing or high-wing arrangements, each having some advantages
and disadvantages. The choice between them is too detailed to be determined in this study
and will have little, if any effect on the conclusions. It was therefore assumed that al! the
airplanes would have a conventional low-wing configuration similar to the Convair 530 and
Lockheed Electra.



3.1.1 Basic Aerodynamic Data. The aerodynamic performance for the deflected
slipstream concept is based on detailed C- 130 cruise and terminal operating data from which
slipstream effects have been derived. In determining thrust and wing area requirements for
takeoff and landing the power-on stall speeds, including one- -engine inoperative, were used as
permitted by FAR Part XX. Cy, Cy, Cy data for the all-engines operating and cne-engine
failed cases are provided in Tables Il and 1} for ranges of angle of attack and flap angle.

The 2-engine configurations do not consider the effects of deflected slipstream for the
engine-failed case and are therefore made compatible with the power-off stall speeds
dictated by FAR Part 25, The data of Table Il and |11 were used in sizing these airplanes
but for the engine-out cases only the Cy = 0 data of Table 111 were used.

3.1.2 Basic Propulsion Data. The T-56-A-15 engine, manufactured by the Detroit Diesel
Allison Division of GMC, was selected as the baseline turboprop engine for this study. While
this engine is not representative of the latest technology, data were immediately available
from the previous program {(Ref. 1). Additionally, Ref. 1 showed that a new advanced
turboprop of identical shaft horse power to the T-56 would result in an increase in DOC due
to the higher price of the new engine compared to the T-56. It is considered that any new
aircraft powered by turboprops will use existing or modified engines and the T-66 data are
therefore typical.

The propulsion data used for the turboprop concepts are’ based on the existing T-56-A-15
engine combined with a quiet propeller, for which data had been generated by Hamiiton
Standard for a previous Lockheed study {Ref. 2). This propeller is designed for 95 EPNdB
‘at 152 m (500 ft) sideline which was achieved by increasing the propeller diameter 10 49m
{16 ft), lowering the tip speed and lowering the disk loading. The propeller design takes
advantage of advanced technology spar and shell composite construction and results in only
a small weight penalty, which includes the penalty associated with a T- 6 gearbox change to
provide the lower shaft speeds required. Cost increases for this propeller, including the
distributed development costs of the propeller and the gearbox changes were found in a
previous study {Ref. 2) to be more than offset by an increase in thrust at takeoff and the
cost/thrust ratio at cruise only increased slightly.

The T-56 engine and propeller data generated for this program are essentially identical to

those described in Ref. 1; slight alterations have been incorporated to improve the accuracy

at the lower cruise altitudes. A discussion of the installation effects, bleed airflow

corrections and bookkeeping procedures used in the performance estimation is also
included in Section 7.5.3 of Ref. 1.
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Data for the T-56-A-15 baseline engine with the quiet propeller are shown in Table IV. All
appropriate scaling of the propulsion system is carried out in the airplane performance
computer programs. The installed engines are scaled to match the airplane thrust
requirements with the scaling of engine weight and cost based on the factors shown in
Figure 1.

3.1.3 Basic Weights Data — The weight estimation logic within the sizing program is
essentially the same as that used for earlier Short-Haul Aircraft Studies (Ref. 1).
Modifications were made to the wing, electrical, instruments, air conditioning, furnishings,
and operating equipment weight items to obtain a more general set of weight estimating
relationships.

In the wing weight logic, the wing box weight is determined by subtracting base weights for
the control surfaces and secondary structure from a base weight for the total wing as
determined from a statistically correlated wing weight equation; this procedure was
described in Ref. 1. In this earlier procedure, the base aileron weight was assessed at 6.58
psf for an aileron area equal to 5.3% of the wing area. This assessment was suitable for the
previous studies which involved relatively high wing loadings; for the present study,
however, this assessment resulted in high base aileron weights because of the low wing
loadings under consideration. Therefore, the base aileron weight assessment was changed to
use the following logic:

o (E AIL) B = Aileron chord per unit wing chord = 0.27

o ( A n AIL)B = Aileron span per unit wing span = 0.3

o ( 3 AIL}B = Aileron spanwise centroid per unit wing span = 0.85

0 (SAIL/SW)B = 2 (1- (1-TR} ( 7 AIL) BHEAIL)B (A nAILIB) = (1+TR)
o (W/S AIL=0.1445 (WG) = (SW (TfC)'?;_\g { 7 AL 5% |

o (WAIL)g = (W/Sia L (SAIL/SW)g (SW)

Where,
TR = Wing taper ratio
SW = Wing area (sq. ft.}

{T/C) p = Wing thickness-to-chord ratio at the aileron centroid (%)
A

WG = Airplane gross weight
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Overalll Pressure Ratio
Airflow (power Section - Kg/Sec. (Lb./Sec.)
ESHP
Thrust (Total, Prop. + Power Section) KN (Lb.)
Weight (Power Secﬁor; - Kg (Ib.)
(Propeller) - Kg (Ib.)
Diameter (Max., Power Section + Gearon -=m(n.)
(Propeller) = m (Ft.)
Length (Power Section) - m (In.)
Stages - Compressor
Turbine
LU S [
T/W=T1/0
Price/Lb. Thrust - T/O*
Speed Lapse (M - 0,2) **
At 9140 m (30,000 Ft., M - 0.6
Thrust (KN} Lb,
Lapse
SFCP

Uninstalled

9.5
14,67 (32.35)
4910
52.48 (11,798)
871 (1,920)
502 (1,107)
0.99  (39)
4.88 (16.0)
3.71  (146)
14
4
1970
3.89
20.70

* Uninstalled T/O Thrust/Engine + Prop. and Controls Weights

Installed

48.55 (10,915)

2.58
31,90
0.788

?.1 (2046)
1736
5744

** Engine + Prop. and Controls Price T/O Thrust Including Estimated Prop. Development

Cost,

Tabie |v T-56 Engine/Quiet Propeller Characteristics
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BASED ON T-56 AND QUIET PROPELLER

1000 LB
1000Kg 6
2.5p
2.0p
WT 4
1.5k
1.0} 9
‘5 -
b 1 ' A n—
0 4 8 12 16 20 1000 LB
1 L '] 1 3 -
0 20 - 40 60 80 KN
THRUST (S.L.S.)
200
we
G
150
COST
- $1000
100
50 A | | | —)
4 8 . 12 \ 16 20 1000 LB
L L —t
0 20 40 60 80 KN

THRUST (S.L.5.)

Figure 1 Engine and Propeller Weight and Cost
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The correlation of the total wing weight estimating relationship was presented in Figure 127
of Ref, 1, page 203, for a broad range of contemporary transport aircraft. In the initial
phase of the present study, further correlation of this estimating relationship was derived for
aircraft with low-to-medium wing loading and medium-to-high aspect ratio. This correlation
is presented by Figure 2 which illustrates that this relationship also adequately predicts the
wing weight for these aircraft. It should be recognized that the high aspect ratio wings on
these contemporary aircraft are relatively straight wings (i.e,, little or no sweep) and that
this correlation does not imply that high aspect ratio swept wings would be accurately
predicted by this technique. For the present study, however, this proof is sufficient since
the low-speed configurations being studied have essentially straight wings.

The effects of aspect ratio and gust loads on wing weight was also a primary concern in the
present siudy. To correlate the statistical weight ralaticnship used in ths sizing program, a
weight study was conducted using Lockheed-Georgia Company's analytical *‘Wing Weight
Analysis Program'. The two initial baseline aircraft were analyzed using this analytical
method and the wing statistical weight estimating relationship. The aspect ratios were then
varied over the range of 7 to 10 (the baseline aspect ratio was 8) to view the effects of
aspect ratio and the comparative weight quantities from the two methods. To isolate these
effects, only the baseline configurations are sized to perform the design mission with the
remaining configurations defined by changing the Aspect Ratio to 7, 9, and 10 from the
baseline of 8. The results of this analysis is shown by Table V which indicate close
correlation between the two methods. The analytical method uses estimated maneuver,
gust, and ground load conditions in conjunction with stiffness, strength, and geometric
constraints. For the above described study, all of the wing configurations were gust critical
indicating that the statistical method does produce satisfactory results for a slightly swept
wing, low wing loadings, medium to high aspect ratios which is the spedtru_m of interest for
this study.

The electrical, instruments, air conditioning, furnishings, and operating equipment weight
estimating relationships were modified to reflect the wide range of fuselage sizes caused by
passenger capacity variations from 44 to 148. These relationships were developed from
statistical correlation of passenger transport weight and design data. These relationships are
as follows: '

(1)  Electrical

W ELEC = 8.6 (NPASS) + 114 (WG/1000)0-5

where, NPASS = Number of Passengers
WG = Gross Weight (Ibs)
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HIGH ASPECT RATIO - LOW WING LOADING

30r

20¢

15

ACTUAL
WING WT

10F
UNITS

ESTIMATED WING WT - UNITS

Figure 2 Wing Weight Correlation

19



0c

A eige]

s3yBrapp Buips jeonsnels pue jesitAjeuy Jo vosiiedwon

44 PAX GUST CRITICAL

WING WEIGHT - KG (LB)

% DIFF,
AIRCRAFT AR STATISTICAL* ANALYTICAL** WEIGHT
o 4 ENGINES

M=0.5 7 2874 2817 +2.01
(6335) (6210)

W/S =215 KG/SQ. M. 8 3038 2983 +1.84
(44 PSF) (6698) ' (6577)

WG = 23,130 KG 9 3192 3136 +1.78
(51,000 LB) (7037) (6914)

SW = 107.3 SQ. M. 10 3337 3314 . 40.70

(1155 SQ1. FT.) 7357) (7306) f
o 2 ENGINES |

M=0.6 7 2313 2272 +1.82
(5099) - (5008)

W/S = 287 KG/SQ. M. 8 2449 2430 +0.77
(58.8 PSF) (5398) (5357)

WG = 23, 100 KG 9 2576 2593 - 0.31
(50, 900 LB) (5678) (5716)

SW = 80 SQ. M. 10 2695 2761 -2.38
(862 SQ. FT.) (5942) (6087)

*  DETERMINED BY EQUATIONS IN AIRPLANE SIZING PROGRAM

** DETERMINED BY ANALYSIS OF LOADS, STIFFNESS, STRENGTH AND MATERIAL

DISTRIBUTION.



{2)

{3)

(4)

Instruments

W INSTR = 9.21 (NCREW)-#51 X (CIN)(NENG) (FL + BW)®

. Where, NCREW = Number of Crew Members

CIN = 1.0 for Turbo-Fan Engines
CIN = .883 for Turbo-Prop Engines
NENG = Number of Engines

FL = Fuselage Length (ft.}

BW = Wing Span {ft.)

Air Conditioning
WAC = (6) (DELP +5.) (vP)0-35
Where, DELP = Design Pressure Differential {psi} = 8.0 for the present study.

VP = Pressurized Volume (cu. ft.}

Furnishings
WFUR = 13.6 (SF)-562 + 68 (DNAC)(LNAC){NENG)
+9.36 (KFUR){LCCY{WCC) + 70.5 {(KTP)}{FW)
Where, SF = Fuselage Wetted Arealsq. ft.}
DNAC = Nacelle Diameter (ft.)
LNAC = Nacelle Length {ft.)
KFUR = Type of Furnishings Factor
= 0.7 for short-haul austere furnishings
= 1.0 for normal domestic furnishings

= 1.3 for plush furnishings used with long-haul
aircraft {i.e., intercontinental}.

LCC = passenger compartment length (ft.) including
galleys and toilets.
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W.CC = passenger compartment wfdth (ft.)
KTP = turbo-prop sound insulation factor
= 1.0 for turbo-prop; 0. for turbo-fan,

FW = Fuselage width (ft.)

{5) Operating Equipment

WOE = WCREW + WATTND + WFOOD + ENQIL + UNFUEL

Where, -
WCREW = 190 (NCREW)
WATTND = 143 (NATTND}
NATTND = Number of Attendants
WFOOD = 3 (NPASS) + 10 (NCREW)
ENOIL = .003 (THR) (NENG)
THR = thrust per engine {Ibs.)
UNFUEL = .008 (FCAP)
FCAP = fuel capacity (lbs.)

The foregoing relationships yield comparable results for the 148 passenger, turbofan
powered aircraft with mechanical flaps as was reported in Ref. 1.

3.1.4 Initial Sizing Data. The aerodynamic, propulsion, and weight data discused in the
previous sections and the modified cost data of Section 2.1 were incorporated into the
computer sizing program with which aircraft were sized for the combinations of parameters
defined in the following table:

Field Length Cruise Aspect Cruise
m (ft) Mach No, Ratio Power Setting
457 (1500}
610 (2000) 0.5 8 0.6
0.55 10 through
914 (3000} 0.6 12 ' 1.0

1067 (3500}
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All the airplanes have a passenger capacity of 100, a range of 826 km (500 n.mi.) and a
cruise altitude of 7620 m (25,000 ft}. Two- and 4-engined configurations were sized, all
using rubberized T-56/quiet propeller data. The range of power settings was varied with the
particular aircraft field length and Mach number.

The cruise sizing portion of the program is used to calculate aircraft size, weight and thrust
characteristics for a range of wing loadings for each combination of Mach number, aspect
ratio and power setting. Figure 3 shows an example plot of thrust to weight ratio (in terms
of takeoff thrust and weight) required to cruise the airplanes plotted against wing loading
for the three aspect ratios and three engine power settings.

The takeoff and landing portion of the program is used to calculate the thrust to weight
ratio required for takeoff and landing as a function of wing loading for each field length and
each aspect ratio. For each case flap angle is optimized to meet field length and climbout
requirements. Figure 3 shows an example for the 4-engined data. Note that aspect ratio
change has little effect on the landing capability and a single line represents all aspect ratios
at each field length.

Airplanes just meeting cruise, takeoff and landing thrust to weight requirements are found
at the intersection of the cruise, takeoff and landing lines for each aspect ratio; an example
is identified by a square symbol for 910 m (3000 ft) field length. Airplanes can be selected
at the intersection of the cruise and landing lines which will just meet the cruise and landing
requirment while providing better than required takeoff performance; an example is
identified by the circle symbol in the figure. Although the thrust to weight ratio for such an
airplane is higher than that of the equally landing, takeoff and cruise critical airplane, it may
be the better choice since its wing loading is higher and its DOC may be lower.

In the previous studies covered by this contract {(Ref. 1, 5) the optimum designs were
selected on the basis of DOC for a stage length of 926 km (500 n.mi.} or in some cases on
the basis of minimum fuel consumption. In this study the criteria have been modified to
select the optimum designs on the basis of DOC-2 for a stage length of 278 km {150 n,mi.)
which is more typical of the average short-haul stage length. The 926 km (500 n.mi.) range
is still retained as the design requirement. It was therefore necessary to modify the airplane
sizing program to size for 926 km (500 n.mi.) but use 278 km (150 n.mi.) for selection of
the optimum. The process is further complicated by the fact that for 826 km (500 n.mi.)
the optimum cruise altitude is close to 7620 m (25000 ft) whereas for 278 km (150 n.mi.}
the optimum DOC will probably be achieved at a lower cruise altitude and possibly at a
different speed.
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THRUST/WEIGHT (T.0.)

4-ENGINES 100 PAX 0.5M  T-536 25,000' ALT 926 KM (500 N.MI.)

0.40
0.36
Q
(\
\y.
0.32
0.8 7
0.28
0.9
0.24
\ 1.0
0.20
| i L %
0 30 40 50 60 70 80, 50 LB/SQ.FT

% A A
150 200 250 300 350 400 KG/SQ.M.
WING LOADING (T,0.)

Figure 3 Example Thrust/Weight Ratio vs. Wing Loading (4-Engines)
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The program was therefore modified to fly the sized airplanes at 3048, 4572, and 6096 m
{10,000, 15,000 and 20,000 ft) cruise altitudes and at 3 cruise speeds at each altitude. The
cruise speeds used vary with the design cruise Mach number as follows:

Mach No. 278 km {150 n.mi.} Cruise Speeds EAS Vp

KM/HR {KEAS)  KM/HR (KEAS) KM/HR (KEAS) KM/HR (KEAS)

0.5 389 (210) 426 (230) 463 (250} 556 (300)
0.65 444 (240) 482 (260) 506 (273) 598 (323)
0.6 482 (260) 519 (280) 556 (300} 648 (350}

Below 10,000 ft the FAA limits speed to 250 KEAS or less. Figure 4 shows an example of
the computer print-out for this portion of the program and illustrates the data available for
each speed and altitude combination. Only one aspect ratio at one power setting is shown
in the figure. For each wing loading the minimum DOC-2 (identified as column CPM2 in
the figure) can be selected which then identifies the best altitude and speed. In the figure
for W/ST o = 150 kg/sq. m (30.8 Ib/sq ft) the minimum DOC-2 is 4.22 c/ASSM at 3048 m
{10,000 ft) aititude and 4863 km/hr (250 KEAS)}. This process was repeated for all
combinations of number of engines, Mach number, wing loading, aspect ratio, and power
setting. From these data, plots of DOC-2 vs. wing loading such as those shown in Figure 5
have been prepared. '

By transferring the wing loading value at which takeoff, landing and cruise requirements are
met or exceeded for each field length from Figure 3 to Figure 5 the DOC-2 for that field
length, aspect ratio, and power setting can be determined as shown by the short lines an
Figure 5. It can be seen that for all aspect ratios and all field lengths the minimum DOC-2
was achieved with the airplane sized for 0.8 cruise power setting. At 457 and 610 m (1500
and 2000 ft) field length a smaller power setting { n = 0.7) would have produced a slight
further reduction in DOC-2; at the longer field lengths the DOC-2 has minimized.

Figure 6 presents DOC- 2 versus aspect ratio for each field length for the 4-engine, 0.5 M
designs. It can be concluded that aspect ratio 8 is optimum for field lengths of 457 and
610 m (1500 and 2000 ft) while at 914 and 1066 m {3000 and 3500 ft) the aircraft
operating cost is very insensitive to aspect ratio variation.

Figure 7 shows an example of DOC-2 at 926 km (500 n.mi.) versus aspect ratio. The choice

of the higher aspect ratio is more apparent and occurs at a shorter field length than for the
278 km (150 n.mi.) case.
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4-ENGINES 100 PAX 0,5M  T-56 BEST ALTITUDE AND SPEED
278 KM (150 NL.M1,)

\‘*
4'6T \\\\
‘)
N
4.2F \ -——=12

\
W\
DOC-2 W\
¢/ASSM \\\\ '
3.8
4.6
3.4
4.2
3.0 5OC-2
¢/ASSM
3.8
4.6
~ 3.4
457 M g
1500 F. L.
4.2 —
DOC-2 . 3.0
¢/ASSM O
3.8 8 AR
610M
2000° F. L. 914M 106 7M
3.4 3500' F.L.
3.0
4 M
30 40 50 60 70, 80 90 LB/SQ. FT
150 200 750 300 350 200 KG/SQ.M.

WING LOADING (T.0.)

Figure 5 Example DOC-2 {150 n.mi.) vs. Wing Loading
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Thrust to weight ratio versus wing loading data for 2-engined configurations are presented in
Figure 8. Note the lower wing loadings, relative to the 4-engine deflected slipstream
configurations of Figure 3 to achieve the same field performance, Also note the higher
thrust to weight ratios required for a given field length which when intersected with the
cruise requirement results in lower percent cruise power settings than for the 4-engined
configurations.

From similar data for other Mach numbers, Figure 9 was prepared showing DOC-2 for
278 km (150 n.mi.) stage length versus field length for the 4-engine and 2-engine
configurations at the different design cruise Mach numbers. The 4-engined deflected
slipstream  airplanes have equivalent DOC-2 to the 2-engined configurations at
approximately 914 m (3000 ft) field length. As field length shortens DOC-2 increases but
the deflected slipstream configuration rapidly becomes increasingly superior to the
2-engined configuration, At longer field lengths than 914 m (3000 ft) the 2-engined design
should improve and be slightly superior to the 4-engined design due to its lower engine cost
per unit of thrust overcoming the effect of the lower wing loading and higher thrust to
weight effects on DOC.

Note that at this stage length the extra cost of meeting the higher cruise speeds results in
poorer DOC at all field lengths shorter than approximately 914 m (3000 ft}; this is due to
the large wing areas of these airplanes. From these data the 0.5 Mach, 610 m {2000 ft) field
length, 4-engine configuration and the 0.6 Mach, 814 m {3000 ft) field length, 2-engine
configuration, indicated as ‘‘design point’”’ on Figure 9, were selected as baseline design
points for a more detailed analysis.

3.2 Baseline Airplane Configurations

The parametric study conducted in Section 3.1 was based on the 100 passenger size.
However, it is considered that the airplane size required in the low/medium density market
for operation into auxiliary short fields at major hubs is more likely to be smaller than 100
passengers. It was therefore decided to size the baseline airplanes at the smal! end of the
passenger sizes being considered.

The sefected baseline design points determined in Section 3.1 have the characteristics shown
in Table VI. Baseline airplanes were sized with these characteristics for 44 passengers.
Configuration arrangements for these airplanes are presented in Figures 10 and 11 while
weight and economic data are presented in Table VI,

3.3 Ride Quality Analyses

This section describes the analyses conducted to determine the ride quality characteristics of
the two baseline airplanes, and for comparison purposes, an airplane similar to the B737.
The study was limited to the longitudinal axis for which the airplane derivatives are shown
in Table VIII.
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2-ENGINES T-56 QUIETPROP 0.5 M
926 KM (500 N.MI.); 7620 M (25,000
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Figure 8 Example Thrust/Weight Ratio vs. Wing Loading (2-Engines}
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100 PAX T-56  BEST ALTITUDE, SPEED AND AR FOR 278 KM (150 N. MI.)

4.4}

ial\ \

2-ENGINES

DOC-2

0.6M
4.0F - 0.5
ASSM
¢/ 0.6M
0.55
3.6 = 0‘5
4-ENGINES

3.2 DESIGN POINT

DESIGN POINT

FIELD LENGTH

10

1000 FT
100M

Figure 9 DOC-2 (278 km; 150 n.mi) vs. Field Length and Mach No. {No Active Controls)

FIELD LENGTH - m (FT) 610 (2000) ?14  (3000)

NQO. OF ENGINES 4 2

W/S 1.0 kg/sq. m. (LB/SQ. FT) 215 (44.0) 287  (58.8)

T/W 1.0. 323 .40

ASPECT RATIO 8 8

926 km (500 N.MI.) CRUISE ALT. m (FT) 7620  (25,000) 7620  (25,000)

926 km (500 N.MI.) CRUISE SPEED M 0.5 0.6

926 km (500 N, Ml1.) CRUISE POWER SETTING 0.8 0.78

278 km (150 N.MI,) CRUISE SPEED -‘km/hr (KEAS) 483  (250) 556  (300)

278 km (150 N, MI.) CRUISE ALT. m (FT) 4572  (15000) 4572 (15000)
Table VI _ Selected Baseline Design Points
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PAYLOAD: 44 PASSENGERS
RGW: 22,251 KG (49,055 LB)
OWE: 16,005 KG (35,285 LB)
WING AREA: 103.3 SQ.M. (1,112 5Q. FT.)
WING LOADING: 215 KG/SQ.M. (44.0 LB/SQ. FT.)
ENG/PROP $.L.S.T.: 19.12 KN (4,300 LB)
926 KM (500 N.MI.) CRUISE: 0.5M @ 7620 M (25,000 FT.)
- 278 KM (150 N. ML.) CRUISE: 463 KM/HR (250 KEAS) @ 4570 M (15,000 FT.)

Figure 10 610 m {2000 ft) Field Length Design Point Aircraft
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PAYLOAD: 44 PASSENGERS

RGW: 22,262 KG (49,080 LB)

OWE: 15,940 KG (35, 140 LB)

WING AREA: 77.35Q.M. (832 5Q. FT.)

WING LOADING: 287 KG/SQ.M. (58.8 LB/SQ.FT.)

ENG/PROP S.L.S5.T.: 45.64 KN (10,261 LB)

500 N.MI. CRUISE: 0.6 M @ 7620 M (25,000 FT.)

150 N.MI. CRUISE: 556 KM/HR (300 KEAS) @ 4570 M (15,000 FT.)

Figure 11 914 m (3000 ft) Field Length Design Point Aircraft
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No. of Engines

Field Length m (ft)

Cruise Mach No.

No. of Pax

W/S 1.0 kg/sq.m (Ib/sq ft)

Installed T/W

Percent Cruise Power

OWE kg (lb)

RGW kg (lb)

Rated Thrust kN (ib)

500 n.mi. Fuel kg (1b)

150 n.mi. Fuel kg (Ib)

Airframe I M
Total Aircraft Price

926 km

DOC-2 500 n.mi.

926 km

DOC-4 500 n.mi.

278 km

DOC-2 150 n.mi.

278 km

DOC-4 150 n.mi.

Table VI

M

¢/ASSM
¢/ASSM
¢/ASSM

¢/ASSM

610
0.5
44

215

.325
78.0
16,005
22,251
19.12
1,622
758
2.5158

3.4019

3.732

4,235

5.617

6.398

(2000)

(44.0)

(35, 285)
(49, 055)
(4,299)
(3, 575)

(1,671)

914
0.6
44
287
403
75.5
15,939

22,262

45.64

1,653
799
2.6713
3.2687
3.075
3.583

4.857

5.675

(3000)

(58.8)

(35, 139)
(49, 078)
(10,261)
(3, 645)

(1,762)

Design Point Aircraft Characteristics {(No Active Controls)

34



No. of Engines 4 2
W/S 215 kg/sq.m. (44 Ib/sq. ft.) 287 (58.8)
Flight :
Condition Cruise Descent  Approach Cruise Descent  Approach
CL /RAD 5.3 4.85 4.6 5.4 4,85 4.6
X
CM /RAD -1 62 -
X .
c./ ¢2 044 -
o G :
C,4 /RAD/SEC -20 . -
q
CM /RAD/SEC -8 o
C,y /RAD -3.44 >
e
CL f/I?(AD 1.60 1.49 2.1 1.08 1.00 1.66
CM /RAD -.332 ~.298 -.400 -.223 -.200 -.,322
f
Table VI Baseline Aircraft Derivatives
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The analyses were performed utilizing a linear 3 degrees-of-freedom digital computer
program. The airplane mathematical model did not include any structural flexibility
effects. Random atmospheric turbulence was modeled with a Lockheed developed power
spectral density function which is similar_to the Von Karman function. A vertical gust
velocity exceedance probability level of 103 was selected for this study. Corresponding rms
gust velocities for the selected cruise, descent and landing approach conditions are 1.74, 2.5
and 3.0 m/sec {5.7, 8.2 and 9.8 fps), respectively. These turbulence level values are based
on data reported in NACA TN 4332 and ASD-TR-61-235 and are identical to the levels used
in previous ride quality studies for NASA Ames and Langley.

The three flight conditions considered are shown in Table X for the two aircraft wing
loadings evaluated, and for the Boeing 737 type airplane.

CRUISE - DESCENT APPROACH

KM/HR M KMHR M KMMHR M
Airplane V(KTAS) ALT(Ft). V{KTAS) ALT(Ft) VI(KTAS) ALT(Ft)
215 ka/sq.m 556 7620 463 1524 143
W/S= (441b/sq ft) (300) (25,000) (250) (5000) (77) S.L.
287 kg/sq.m 667 7620 463 1524 181
W/S= (68.8Ib/sqft) {360) {25,000) {250) ~ (5000) (98) S.L.
819 9140 463 1524 222
737 Type (442} (30,000) (250) (6000) (120} S.L.

Table IX Flight Conditions

Figures 12 and 13 present the r.m.s. vertical acceleration and r.m.s. pitch rate evaluations
for the cruise, descent and approach cases for the two baseline airplanes. The figures also
show criteria levels for determining acceptability of ride qualities. These criteria are based
on a r.m.s. vertical linear acceleration at three passenger compartment locations of 0.11 g's.
This is an A criterion which is a similar to the H criterion developed by Rustenberg in
Ref. 7, except that A does not include the human discomfort function of frequency.

The particular level of A used is based on ride qualities studies conducted for NASA Langley
and is specified in the original work statement of this contract {(NAS2-6995), Ref 5. The
corresponding limit values on r.m.s. angular pitch rate are 0.5 deg/sec for cruise and descent
- and 1.0 deg/sec for landing approach. For this specific study however, the criterion used to
define acceptable ride comfort is that provided by contemporary short/medium haul aircraft
such as the B737, which have proven to be acceptable to a majority of passengers.
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It has not been possible to obtain directly comparable ride quality data for The B737; it was
therefore necessary to calculate ride qualities for a B737 type airplane using the same
methodology as used for the baseline airplanes. For comparison purposes the B737 type
data are shown on Figures 12 and 13 which illustrate that both baseline airplanes meet the
ride quality criteria in cruise and approach conditions but do not meet the vertical
acceleration criterion in the descent conditions; the B737 type airplane is better than the
criteria in all flight conditions., The baseline airplane ride qualities are acceptably close to
the B737 for the cruise and approach conditions but are unacceptably worse than the B737
in the descent case.

It was therefore necessary to define ride quality control systems which would improve the
baseline airplanes to the standard of the B737, particularly for the descent condition.

3.4 Structural Analyses

The two baseline configurations described in Section 3.2 were used to conduct wing
structural analyses to determine -

(1} the gust effects on the structure
(2}  the fatigue effects on the structure
(3} modifications to the weight estimation logic.

These analyses were conducted using Lockheed-Georgia’'s ““Wing Weight Analysis Program’’
which includes structural analysis procedures adapted for advanced design studies.

3.4.1 Gust Analyses — The wing gust loads were analyzed at gust velocities of + 15,24
meters per second (*+ 50 fps) at cruise speed (Vc) and £ 20.12 meters per second (t 66 fps)
at the airspeed (VB) corresponding to CL max (flaps up) in the presence of the gust. The
gust load factor envelope corresponding to these conditions along with the conditions at
dive speed (VD) is illustrated in Figure 14. Each of the baseline configurations was analyzed
to determine the gust load factor and loads for the VB, VC, and VD speeds at their
corresponding gust conditions. The gust load factors were computed in accordance with the
formulae contained in FAR Parts 25 and XX (Ref. 3 & 4}. The resulting gust load factors
for each baseline configuration are as follows:

A. 44 Passengers, 610 m (2000 ft} Field-Length, 4 Engine Turbo-Prop,
0.5 Cruise Mach Number Configuration:

o NG=1+ ANG |
o  @VB =296 km/hr (160 KEAS); A NG =t 1.92
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Figure 14  Typical Load Factor Envelopes
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o @ VC = 463 km/hr (250 KEAS); A NG=*252

B. 44 Passengers, 914 m (3000 ft) Field-Length, 2 engine turbo-prop.
0.6 Cruise Mach Number Configuration:
o NG=1+ ANG
o @® VB = 359 km/hr {194 KEAS); ANG = £2.00
) ® VC = 556 km/hr {300 KEAS); ANG= *2.52

These analyses indicated that, for these two configurations, the major designing load case
would be the gust encounter at VC.

3.4.2 Fatigue Analysis — The wing structural analysis for the two baseline aircraft
included consideration of their fatigue characteristics. ‘A method for advanced design
fatigue estimation was employed which related operationa! usage, design stress, and cyclic
allowables to the fatigue life. Based upon passengers carried versus range data for the 1972
U. S. Domestic Regional Carriers, the average stage length between 0 and 926 km {0 and
500 n.mi.) was calculated to be 417 km {225 n.mi.) with a 40% passenger load factor.
Considering a 30,000 hour fatigue life, average cruise speeds, and the foregoing average stage
length and passenger load factor, 241,325 kN/sq.m (35000 psi) fatigue allowable was
estimated.

This fatigue allowable is relatively insensitive to the parameter variations of the present
study and, thereby, was assumed to be constant. Further detail study, of course, would
undoubtedly show slight variations in this assessment and assumption since the Gust Load
Alleviation System, in particular, should lower the cyclic rate of maximum load encounter.
The benefits, however, would still be small for the low wing loading aircraft involved in this
study.

3.4.3 Effects on Aircraft Weight — The wing weight for the two baseline aircraft were
analyzed by the “Wing Weight Analysis Program’* and the results are given in Table V in
section 3.1.3. This program synthesizes the wing structure for a number of external loading
conditions (e.g., maneuver, gust, taxi, etc.) along with constraints imposed by geometry,
fatigue, stiffness and manufacturing requirements. As indicated in Section 3.1.3, the “Wing
Weight Analysis Program’ verified the results of the weight estimation logic, so that,
modifications were not required for the airplane without active controls. The program was
also manipulated to determine the degree of damping required from a gust load alleviation
system to achieve the maximum structural weight saving. The application and formulation
of the “Gust Load Alleviation System'’ weight estimation procedure is presented in
Section 4.2.
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3.5 Final Sizing of Airplanes Without Active Controls

The baseline airplane studies were used to confirm or update the parametric sizing routine
before proceeding with the sizing of the following array of airplanes:

Turboprop Dasign

4-Engines 2-Engines
0.5 MACH 0.6 MACH
Field Length Field Length
No, Of m (ft) . m{ft)
Passengers 457 (1500) 610{2000) 914 (3000} - 914 (3000) 1067 {3500)

44 (o) Lo e o) (o]

100 O o o . 0 (o]

148 e o) o O

Turbofan Mechanical Flap

148 passengers, 2-engined, 0.7 Mach, 910 m (300 ft) field length.

The scope of the program did not permit absolutely precise optimization of each of the
above airplanes; airplanes close to the optimum were obtained by varying the cruise power
setting until the design wing loading and thrust to weight ratios, optimized in Section 3.1.4,

were closely matched.

Table X presents the principal characteristics of the turboprop airplanes sized without active
controls. The turbofan data are presented in Section 6.2
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4.0 ACTIVE CONTROL SYSTEMS

The term "‘Active Control Technology’ is of recent origin but it is worth noting that Orville
Wright was awarded the Collier Trophy for his work in automatic stabilization in 1914. A
significant recent application of active controls was the Lockheed-Georgia Company's
incorporation of an Active Lift Distribution Control System into the C-5A in order 1o
reduce wing bending loads in the short period and first wing mode frequency range. Other
potential uses of active control technology include flutter control, envelope limiting, load
controi, relaxed static stability and ride guality control.

in this study, systems have been developed for the baseline airplanes to provide the
following alternate capabilities:

{a)  Passenger ride comfort equivalent to that of a B737 aircraft.
{b) The above ride comfort plus structural load alleviation due to gusts.

{c} The above ride quality and gust load alleviation capabilities, plus the use of a
reduced static margin.

Systems for each of the above capabilities are described, their weights and costs defined and
parametric weight and cost relationships determined for variations in wing loading,
passenger size and the other related parameters. Table X| summarizes the capability and
redundancy standarg of the three systems.

4.1 Ride Quality Control System

This section describes the ride quality control systems, together with the associated
parametric system weight and cost data.

4,1.1 Ride Quality Control System Synthesis. Longitudinal ride guality control systems
have been synthesized utilizing a linear 3-degree of freedom digital computer program to
improve the ride comfort of the two baseline airplanes to that estimated for a contemporary
jet transport such as the B737. The system finally developed is shown schematically in
Figure 15 together with values of the gains determined for the 215 and 287 kg/sq.m (44 and
58.8 Ib/sq. ft) wing loading baseline airplanes. The system consists of two feedback loops,
- the first being vertical acceleration at the center of gravity driving three aft-segment flap
panels pius the aileron on each wing semi-span, and the second being vertical acceleration at
the flight station driving the elevators. The acceleration feedback to the wing surfaces provides
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Designation

Baseline

RQ

(Ride Quality)

GLA

(Gust Load Alleviation)

AS

(Artificial Stability)

Capability

No Active Controls

Ride Quality Control only

Ride Quality Control plus
Gust Load Alleviation

Ride Quality Control plus
Gust Load Alleviation plus
Artificial Stability

Redundan cy

Not Applicable

Multiple surfaces and hydraulic
systems with individual octuators,
Two electronic channels -

FAIL SAFE

As for RQ plus third electronic
channel and duplicated hydraulic
supplies to each surface =

FAIL OPERATIVE

- As for GLA plus fourth electronic

channel and third hydraulic
supply to pitch control -
FAIL OPERATIVE after two
identical failures.

Table XI System Designation, Capability and Redundancy
Lo N g B
ZCcOCKPIT COMPARATO
ol K. |
AIRPLANE °
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o Kf
aNze 6. COMPARATOR
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1 ¢
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215 (44) DOWN | .10 -1.0 (K, & K; UNITS ARE RAD. /g)
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287 (58.8) pown | .07 1.0

Figure 15 Ride Quatity Control System

45



ride smoothing but greatly increases the r.m.s. pitch rate levels. The addition of the flight
station accelerometer permits the sensing of the vertical accelerations due to pitching
moments generated by the ride controi surfaces on the wing, This signal is then used to
drive the elevators to counter these pitching moments. The acceleration feedback to the
pitch control also reduces r.m.s. g's in the short period frequency range. The synthesis of
the ride quality system did not include a consideration of the system filtering necessary for
system/structural stability requirements. It was assumed that this consideration would not
have a significant effect on the cost or weight of the ride quality system.

To meet handling qualities requirements for good pilot control duriqg aircraft maneuvering
it would be necessary to cancel out the ride control commands to the wing surfaces and
elevator with a stick position function. The stick position function could be determined by
an analysis of stick force per g characteristics. Other feedback parameters were evaluated
such as angle of attack feedback to the flap/aileron lift control surfaces and pitch angular
rate feedback to the elevator. In both cases there was no significant improvement in r.m.s.
acceleration levels. However, for handling qualities requirements, which were not
considered within the scope of this study, it would more than likely be necessary to include
a pitch damping loop in the system.

For the cockpit acceleration feedback to the eievator, results indicated an optimum gain for
attenuating r.m.s. pitch rate. Above or below the optimum gain the amount of pitch rate
attenuation is reduced. In spite of the fact that the control flap effectiveness is significantly
increased with flaps extended, it was necessary to increase the ride control system gains for
the landing approach case in order to meet the Boeing 737 ride quality !ével_.

Wing loading had a significant effect on the control flap size required to match 737 ride
qualities. The wing loading of the 215 kg/sq. m {44 psf) airplane required the surfaces to
have a 16% wing chord size while the 387 kg/sq. m (58.8 psf) wing loading airplane required
full span 10% chord surfaces for wing lift control. Alternatively, 15% chord surfaces
covering only part of the landing flap span can be used for the higher wing loading case; this
is probably the more efficient method.

The ride quality system synthesis used an actuator bandpass of 6 rad/sec with a no load rate
limit of 60 deg/sec. This no load rate limit under loaded conditions would be around 40
deg/sec. The effects of control surface actuator bandpass and deflection rate limit have not
been evaluated but studies performed for NASA Langley {Ref 8)indicate that the bandpass
_ and rate limit used are adequate. Furthermore, preliminary data just released by NASA
Langley shows that even for higher speed jet aircraft most of the energy associated with
aircraft vertical motion is at frequencies below 6 rad/sec.
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Figures 16 and 17 present r.m.s. vertical acceleration and r.m.s. pitch rate for the two
baseline airplanes, with and without a ride quality system installed. Data are presented for
the cruise, descent and approach cases. For both baseline airplanes the ride quality systems
were designed to improve the ride in the descent case so that it was slightly better than the
estimated B737 r.m.s. vertical acceleration. In doing this the cruise and approach ride
qualities were generally better than required to equal the B737 estimate.

4.1.2 Ride Quality Control System Design. The lift changes required for ride controlare
provided by automatically controlling the angular position of the aileron and the aft
segment of the double slotted trailing edge flap as shown in Figure 18. The design shown
consists of a forward flap segment which travels aft on conventional flap tracks and an aft
flap segment which pivots about point ‘A’ to provide the landing flap position. For ride
quality control the aft flap segment pivots about point ‘B’ and is actuated by a hydraulic
actuator ‘C’ which is attached to the flap carriage '‘D’. The actuator piston-rod end is
connected to the flap ride control operating lever at ‘A’, this point being coincident, with no
ride control deflection, with the pivot point about which the aft segment rotates for normal
landing flap operation. The aft flap segment can be actuated for ride quality control in the
retracted or extended landing flap position through * 15 degrees in the design shown. The
pivot point, as arranged, provides the required chord {.15C) and allows the overhanging nose
of the surface to be used for mass balancing purposes.

The lowest wing loadings examined required this aft segment of the flap, used for ride
control, to extend the full span of the trailing edge flap. To avoid problems due to
structural deflection under ioad this flap segment on each wing is split into 3 equal span
sections, each operated by a single actuator and a single hydraulic supply. Each pair of flap
segments is supplied by a different hydraulic system so that failure of a single hydraulic
system still leaves the aileron and two flap sections on each wing available for ride quality
control. As the wing loading increases the span of the control flap and the number of
sections can be reduced until only the aileron is used. At high wing loadings, approaching
that of the B737, ride quality control is unnecessary 1o meet the standards set for this
study. On airplanes equipped with powered controls the elevator and aileron
servo-actuators are modified to include an electrical input signal to the valves in addition to
the manual pilot input.

In airplanes with manual controls, such as the smaller airplanes in the matrix being studied,

it is necessary to change to powered controls on introduction of a ride quality system. This
does not change the weight of the control systems but does increase the cost.
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Figure 18 Ride Quality and Gust Alleviation Control FIan
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The hydraulic power provided in the airplane is not increased, relative to the airplanes
without the ride quality system, since it is not considered an essential system in an
emergency condition; priority valves are included in the hydraulic system so that in an
emergency or under exceptionai demand conditions the ride quality system will
momentarily stop functioning until priority services have been satisfied.

While failure of a single actuator or hydraulic system is considered to be acceptable, a false
signal from the sensors to all actuators is considered not acceptable. To prevent such an
occurrence the sensing and electronics components are completely duplicated and arranged
so that their signals to the actuators are compared. If these signals do not agree with each
other the ride quality control system is shut down. In the event of a hard-over of a single
cantrol flap surface, position indicators in the cogkpit will alert the pilot to switch off
power to that surface and its twin on the opposite wing.

4,13 Ride Quality Control System Weight and Cost — The components and systems
affected by the incorporation of a Ride Quality (RQ) Control System include the control
surfaces, control servo actuators, control system, hydraulic system and the electronics
systems. The weights and costs of the two design point airplanes were estimated using the
system design descriptions from Section 4.1.2; Table X1l summarizes the data for one of
the airplanes. Parametric curves summarizing the weight and cost effects for a range of
airplanes are presented in Section 5.1. The following describes the logic utilized for each
major component to formulate and quantify these effects.

Control Surfaces - The aileron and the second segment of the trailing edge flap act as the
ride guality control surfaces. Since these surfaces are also used for maneuver (the ailerons)
and during landing and take-off, the surface weight and cost is not expected to change to
any appreciable degree.

Surface Controls — The surface controls effects include the addition of servo-actuators for
the RQ segment of the trailing edge flaps and the addition of aileron and elevator
servo-actuators with automatic electrical input capability in lieu of actuators without this
capability. On the smaller aircraft {set arbitrarily at below 70 passengers) without RQ, the
aileron and elevator will probably be operated by manual controls. Addition of RQ would
require installation of full power ailercn and elevator controls for these smaller aircraft. The
weight difference between manual and powered controls was assessed to be negligible for
this study; the cost difference, however, was evaluated and included in the cost estimation
logic. For the 44 passenger baseline airplane, the cost of powered versus manual primary
controls was estimated to be $42,000 before the inclusion of profit. For all sizes of
airplanes, addition of electro-hydraulic valves to the aileron and elevator servo actuators cost
an additional $18,500 per airplane.
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610 M (2000 FT) BASELINE
W/S - 215 KG/SQ. M. (44 PSF)

A WEIGHT

LB KG
SURFACE CONTROLS (77} {(35)
POWERED AILERON AND ELEVATOR - 0 0
AILERON AND ELEV. E-H VALVES 15 } 6.8
CONTROL FLAP ACTUATION 62 28.2
HYDRAULIC SYSTEM (36) {16.3)
ELECTRONICS (100) (45.3)
2 AILERON/FLAP CHANNELS 30 13.6
2 ELEVATOR CHANNELS 30 13.6
ACCELEROMETERS AND INDIC, 10 4,5
WIRING AND MISC. 30 13.6
TOTAL (213) (96.6)
MANUAL CONTROLS IN BASELINE

Table XII Weight and Cost - RQ System

b2

s COST - §

(96, 960)
47, 440
49,500

(2,200)

(67,800)

(166, 960)



The 44 passenger baseline airplane with 215 kg/sq.m (44 psf) wing loading requires the full
span of the trailing edge flap for ride quality control. Assuming the surface is divided into 3
sections per wing side, 6 actuators would be required and each was estimated to weigh
4.1kg {9 Ib) and cost $4000. The aileron and elevator electro-hydraulic servo actuator
weight increment for this baseline was estimated to be 1.8 kg {4 Ib) per actuator; 5.4 kg (12
ib) per airplane. The baseline airplane surface controls weight, therefore, was estimated to
be

(1)  flap servo-actuators and installation (6 x 9-x 1.15) = 62 Ibs. (28 kg)
(2)  aileron and elevator servo-actuator modification (3 x 4x 1.26) = 15 Ibs. (6.8 kg)

The above weight estimates total to 35 kg (77 |bs.) per airplane for the 215 kg/sq.m (44 psf)
wing loading, 44 passenger, baseline.

Parametric scaling of these weight and cost data was based upon evaluation of the degree of
ride quality control required. The basis for ride quality acceptability was based upon the
ride quality level of the B737 type airplane. That is, rough air damping requirements were
predicated upon the airplane wing loading relative to that for the B737; approximately 488
to 576 kg/sq.m (100 to 118 psf). The trim requirements for the aft flap segments,
therefore, are inversely proportional to the airplane wing loading relative to a 488 kg/sg.m,
{100 psf) wing loading assuming that the aileron alone will provide adéquate ride control at
488 kg/sq.m (100 psf). This trim requirement is expressed by the following
proportionality:

AC /CLee (S/W - .01} o€ No. of Actuators

This relationship was used to establish the required span, and hence the number of
actuators, using the 215 kg/sq.m (44 psf) baseline with six actuators and 488 kg/sq.m (100
psf) for zero actuators. The flap RQ actuator weight and cost was evaluated as being
proportional to the surface hinge moment which was in turn proportional to the product of
airplane gross weight and the wing average chord. The aileron and elevator surface controls
were assumed constant for wing loadings below 488 kg/sq.m {100 psf).

Electronics — The additional electronics required for RQ control is composed of surface
position indicators, two aileron and RQ flap channels of electronics for the surfaces and two
for the elevator RQ operation, and aircraft acceleration sensors. These items are considered
to be invariant with airplane size below a wing loading of 488 kg/sq.m {100 psf} and were
considered constant for airplanes employing RQ control. The weight and cost for
electronics was estimated to be as follows:

53



o Surface Position Indicators 1.8 kg (4 Ibs.) $ 2,400

o  Four Electronic Channels 27 kg (80 lbs.} $60,000
o  Accelerometers, Wiring, & Misc. 16 kg {36 Ibs.) -
TOTAL 45 kg (100 1bs,} $62,400*

* Profit not included.

Hydraulics — Additional hydraulic system weight for RQ control was assumed to consist of
flex-hoses running between the primary control main plumbing lines and the
second-segment flap actuators with flow being controlled by added priority valves. The
weights of these compone'nts were estimated for the baseline aircraft and related to the
number of actuators and wing geometric parameters. The cost of the additional hydraulics
was evaluated using the sizing program’s hydraulic cost estimating relationship.

4.2 Gust Load Alleviaticn System

This section describes the Gust Load Alleviation (GLA) System, together with the
associated parametric system weight and cost data.

4,2.1 Gust Load Alleviation System Synthesis. Systems were synthesized for the baseline
airplanes to reduce the gust loading conditions to be equivalent in criticality to the
maneuver cases. From the analyses described in Section 3.4, the following requirements
were obtained for the system synthesis.

w/s
15 mps {50 fps) Vertical Gust 215 kg/sq.m 287 kg/sq.m

(44 PSF) {59 PSF)

kg 21,002 20,965

G. Wt, (Lb.) (46,500) {46,220)
kN/sg.m 10.1 - 14.56

q (PSF) {211.1) (304.1)
m 4,572 4.672

Alt. (ft) {15,000} {15,000)
A g Required from System +1.6 +15



W)

S
20 mps {66 fps) Vertical Gust 215 ka/sq.m 287 kg/sq. m
{44 PSF) (59 PSF}
kg 21,092 20,965
Wt {Lb.} {46,500) {46,220)
kN/sq.m 414 6.02
q (PSF} A {86.5) (127.1)
0 0
Alt. (ft) {0) {0)
A g Required from System +.9 1.0
CL TRIM | 465 422

Results of the synthesis show that the ride quality control system described in Section 4.1.1
for the W/S = 215 kg/sq.m (44 psf) airplane will meet the gust load alleviation system
requirement if the wing control surface deflection capability is increased 3.0 degrees to a
maximum of 18.0 degrees. There is no increased hinge moment requirement along with the
increased surface deflection. For the W/S = 287 kg/sq m (58.8 psf) airplane however the
ride quality system will not meet the gust load needs and therefore had to be increased in
chordwise length of the gust flap to 15% chord or extended in span if 15% chord is used for
the ride quality system. For this case, the hinge moments are significantly larger than those
for the ride quality system. The maximum surface deflection had to be increased to 18.0
degrees. The flap/aileron and elevator gains are not changed from the values used in the ride
quality system for the W/S = 215 kg/sq.m (44 psf) airplane, For the W/S = 287 kg/sq.m
(58.8 psf) airplane however the ride quality requirements would not determine gain
magnitude because the gust load alleviation system places a higher requirement on the
feedback gains.

4.2.2 Gust Load Alleviation System Design. The system is basically similar to the ride
guality control system described in Section 4.1.2. However since the structural integrity of
the airplane is dependent on the operation of this system it is necessary to reconsider the
failure cases involved.

55



The general arrangement, splitting of the surfaces and the use of single actuators for the flap
sections are retained as for the ride quality system. Single actuators are acceptable, since in
the unlikely event of a surface or actuator failure in severe gust conditions, the flaps can be
extended to the approach condition and the airplane speed reduced. However it is
considered necessary to provide duplicated electro-hydraulic valves and duplicated hydraulic
supplies to each actuator since these components are more likely to fail than the actuators.

On failure of a hydraulic system, a shuttle valve, located at the actuator, senses the
differential pressure between the two systems and automatically closes off the ports from
the failed system. Only one of the two electro-hydraulic control valves is used during
normal operation of the gust load alleviation system. If this contro! valve fails it will be
detected by comparison of the surface position feedback signal and the input signal to the
valve, and/or comparison with signals from the other surfaces. A discrepancy will
automatically signal a solenoid-operated shuttle-valve to redirect the hydraulic supplies

through the standby control valve.

It was accepted in the previous section that the ride quality system would momentarily stop
functioning under exceptionally high hydraulic system demand by the priority systems.
This situation is not acceptable for the gust load alleviation system since it is itself a priority
system.

It is therefore necessary to increase the hydraulic power system and the distribution pipes
feeding the flight controls and flaps along the \_Ning rear spar.

An additional electronics channel and associated wiring have been incorporated, making a
total of 3 channels. On failure of one channel, comparison of the 3 channels automatically
identifies and disconnects the faulty channel,

Arguments can be advanced for over-designing the total system to avoid reducing speed after
failure of an actuator, and for further redundancy to cater for double failures {e.g., failure
of two electronic systems); it was decided to take an optimistic approach for the purposes
of this study. '

4,2,3 Gust Load Alleviation System Weight and Cost
“From the structural analyses in Section 3.4 and the system description given by Section

4.2.2, a computerized estimation technique was developed for determining the GLA system
parametric and weight relationships. The cost estimating relationships are similar to those
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employed for the RQ system and are evaluated on a weight basis for the added actuators,
surface controls system modifications, additional electronic components, increased
hydraulic system capacity, and decreased wing structural weight. Weight and cost data for
one of the design point airplanes are summarized in Table X1 while variations as a function
of airplane size parameters are given in Section 5.2,

The GLA computerized estimation technique developed for this study consists of a set of
logic in the sizing program which includes estimation of:

0 Gust load factors at Vg and Vo

o] Wing box weight increment due to gust loads |

o) Trim lift coefficients required from the GLA system

0 Determination of the required size of a gust flap for use with the aileron

0 System weight increments for the gust flap, aileron, and elevator actuators; for
the additional hydraulic capacity and components; and for the additional

electronic components.

The logic incorporated in the sizing prégram for the GLA system is based upon analysis of
the design basepoints and parametric correlation described in the paragraphs which follow.

Gust Load Factor Estimation
o NG = 1 +ANG

where Kg = 1.76 W/S / (5.3 w, C__ C + 2 W/S)

Gust Velocity (fps)

H

Upe

+50 atV,; £66atVp

Vg = Equivalent Airspeed (knots)

= VC or VB
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610 M (2000 FT) BASELINE

W/S - 215 KG/SQ. M. (44 PSF)

AWEIGHT
: : B KG A COST - §
A SURFACE CONTROLS (137)  (62.1) (122,910)
* POWERED AILERON AND ELEVATOR 0 0 . 47,460
AILERON AND ELEV, E-H VALVES 20 9.0
CONTROL FLAP ACTUATION 72 32.7 75,450
SHUTTLE VALVES AND MISC. 45 20,4
A HYDRAULIC SYSTEM 204)  (92.5) (12,240)
PUMPS 34 15.4
POWER TRANSFER UNITS 13 5.9
RESERVOIRS 27 12.2
PLUMBING 130 59.0
A ELECTRONICS (155)  (70.3) (90, 400)
3 AILERON/FLAP CHANNELS 45 20.4 -
3 ELEVATOR -CHANNELS 45 20.4
ACCELEROMETERS AND INDIC. 10 4.5
WIRING AND MISC, 55 25.0
A TOTAL (496)  (225.0) (225,550)
* MANUAL CONTROLS IN BASELINE
Table XIII Woeight and Cost - GLA System
23,134 KG
44 PAX AR = RWG = 51,000 LB
W/S - PSF (KG/SQ.M.) WITH GUST NO GUST | WING
WING WING WEIGHT
WEIGHT WEIGHT | CHANGE
MAX MIN NG LB (KG) L8 {KG) LB (KG)
44 40.25 3.52 6,577 6,080 - 497
(215) (197) (2983) (2758) (-225)
59 53.8 3.04 5,148 4,914 -234
(287) (263) (2335) (2229) (-106)
- 71 64.75 2.77 4,415 4,309 - 106
(347) (316) (2002) (1955) (-48)
100 91.2 2,35 3,454 3,451 - 3
(488) (445) (1567) (1565) (=1.36)
Table XIV Wing Weight Change due to Gust Loading
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Ve = Cruise Speed

Vg

Speed with max gustat C|_ maXx.
W/S = minimum wing loading {psf)

w, = air density at altitude (pcf) _
{15,000 ft. used in the logic where w, = 0.0481 pcf}

CLa= lift curve slope (per radian)
C = wi ng average chord (ft)

CLmax= 1.4 (Assumed for Vg definition)

Wing Box Weight Change

The ““Wing Weight Analysis Program’’ was used to analyze various wing parameters to arrive
at gust load factors and potential wing structural weight reduction with GLA, In preparing
this estimate, four aircraft were analyzed with wing loading variation from 215 to
488 kg/sq. m (44 to 100 psf) at the maximum gross weight condition. Wing loading
variation at constant aspect ratio was used since wing loading is the major influencing
parameter on the gust loads. The four configurations analyzed were assumed to have the
same gross weight with wing loading changes obtained by wing area and each was analyzed
with and without gust loads to determine the weight penalty due to gust. The results of the
“Wing Weight Analysis” for these cases are shown in Table XIV. Examination of these
analyses indicated that a 2g gust load factor ( A Ng = 1) produced equivalent loads to
those with a 2.5 g maneuver load factor; therefore, a criteria was selected based upon A Ng
being greater than 1.0 to indicate gust criticality. As was indicated in Section 3.1.3, the
parametric wing weight relationship predicts fairly accurate weights for a gust critical wing
at low wing loadings. A parametric relationship, therefore, was developed for the wing
weight change with GLA and applied as a weight reduction to the weighlt from the basic
wing weight equation.

Gust Flap Size Derivation

The gust flap was sized in the GLA computerized technique by determining the maximum
amount of A C_ trim required. This required trim was then compared with allowable trim
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available from the aileron to determine the trim required from the aft segment of the
trailing edge flaps. With the gust flap required trim identified, the inboard end of the gust
flaps was derived for a 15 percent chord gust flap deflected 18 degrees. With this
information, the gust flap hinge moment was determined for use in sizing the actuators and
other system components.

System Weight Estimates

For the baseline aircraft in Table X1V, the gust flap was determined to run the full span of
the trailing edge flaps. Systems analysis yielded the following for the baseline
configuration:

(a)  Surface Controls,+ 62 kg (+137 Ib.)

32.7 kg {72 Ib.)

o  Fiap Actuators & Installation {6) =

o Aileron & Elevator Actuator Mod. = 6.8kg(161b.)

o Shuttle Valves (9) _ = 12.2kg (27 Ib.)

o Miscellaneous = 10.4 kg (23 Ib.)
(b}  Electronics, + 70 kg (+155 |b.)

o Accelerometers and Surface

Position Indicators =  4,5kg (10 Ib.}

0 Three Electranic Channels ‘ = 40.8 kg (90 ib.}

o Wiring and Installation = 25 kg (55 lb,)
{c}  Hydraulics, + 92.5 kg (204 |b.)

0 Hydraulic Pump | ncrease = 15.4kg(341b.)

0 Power Transfer Units = b9kg(131b)

o Reservoirs = 12.2kg{27Ib.))

o Main Line Plumbing and Fluid =  23.1kg (51 1b.)

o] Gust Flap Plumbing and Fluid . = 104 kg {23 1b.)

0 Hoses and Valves at Actuators = 254 kg (56 Ib.)

The above baseline represented a gust flap hinge moment of 45,920 M-N {33,879 ft. - Ib) per
aircraft and added hydraulic flow rate amounting to 0.009 cu.m/min. (2.7 gpm) to each of
the six gust flap actuators. Since the gust flaps will be primary controls for GLA, added
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hydraulic capacity and redundancy is required. From this baseline analysis, parametric
relationships were derived for each system component and incorporated into the sizing
program.

Costs
The arrangement of the system and the costing of the actuators is similar to the RQ system,
however size and number of actuators may vary. Additional electro-hydraulic valves have

been incorporated at the control flap, aileron and elevator actuator installation which for
the baseline amounts to:

$16,500

6 E-H valves for control flaps @ $2750 =

2 E-H valves for aileron @ $4500 = 9,000

1 E-H valve for pitch control @ $5500 = 5,500
13% profit = 4,000
TOTAL $35,000

The additional electronic channel amounts to $20,000 for a total of $80,000 + 13% profit -
$90,400.

The increased hydraulic system and the installation of all systems is calculated within the
sizing program costing routine and cannot be separated readily into individual costs.

4.3 Artificial Stability System

This section describes the system which provides ride quality control, structural gust load
alleviation and permits the relaxation of the static stability margin, which results in smaller
horizontal stabilizers than required for the baseline airplanes.

In order to determine the effects on airplane size and cost of this reduced static margin it
was necessary to include in the parametric sizing program an automatic horizontal stabilizer
sizing routine which included static margin as a variable. Section 4.3.1 describes the routine
developed and used for all the airplanes in this report except the initial designs described in
Section 3.1,
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Section 4.3.2 describes the system design while Section 4.3.3 discusses the weights and costs
associated with the system.

4.3.1 Horizontal Stabilizer Sizing — The horizontal stabilizers were sized to perform three
major functions:

1. Provide trim capability throughout the operational envelope.

2. Provide sufficient longitudinal control capability during commanded {plus
inadvertent) speed and altitude excursions in smooth and turbulent air to meet
operaticnal requirements.

3. Provide sufficient longitudinal stability throughout the operational enveldpe
for pilot control of the aircraft during maneuvers and in steady flight,

The critical conditions for these functions for horizontal stabilizer sizing are:
1. -(a) Trim at the landing approach speed with most forward center of gravity.
{b)  Flare in Ground effect during the Ianding maneuver.
2. Sufficient pitch acceleration capability at the mos't forward center of gravity so
that all necessary maneuvers, including go-around, can be pqrformed during

landing.

3. Adequate static margin at the most aft center of gravity during landing or high
speed, low altitude cruise.

A trimmable incidence horizontal stabilizer was used in conjunction with a 30 percent chord
elevator to provide the required trim and control capabilities. Horizontal tail sizing to
provide these capabilities requires definition of the following parameters:

Cvo = 1ail off pitching moment coefficient

R = required center of gravity range

g—gﬁﬂ- = minimum allowable static margin

CLTMAX = max tail lift ' coefficient {a function of elevator deflection)
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CL = {ift coefficient at a given speed

CLaT= aj = tail lift curve stope

CL g 2 = wing lift curve slope

de = rate of change of downwash with incidence
da _

kw = radius of gyration in pitch

1] = gravitational constant

c = wing mean aerodynamic chord

AB = change in angular pitching

Figure 19 illustrates the primary parameters involved in sizing the horizontal stabilizer by
presenting tail volume coefficient (V) versus C.G. position. The solid sloping line

originating at hy (neutral point-tail off}) defines the tail size (Vy) required for neutral
stability as the C.G moves aft from “hy"'. The other solid line, originating at CMO/CL {trim
position - tail off) defines the tail size for the airplane to remain trimmed as the C.G is
moved forward., The point where the two solid lines intersect each other identifies the
tail-size and the C.G location for the airplane to be both trimmed and neutrally stable, This
is a point and therefore no C.G travel is available. To provide C.G travel the tail size must
be increased still further. The dashed line identified as “stability line” provides an
acceptable positive static margin ( BCM/ '] C\ ) relative to the neutral stability line, while
the dashed line identified as *“trim line’’ provides control power for maneuver (K d ) relative
to the basic trim requirement. Note that the point of intersection of the two dashed lines
increases the tail size required. To provide a range of C.G locations (R) which can be
trimmed and stable the tail size must be increased; the larger the required C.G range, the
larger the required tail size.

The slope of the “stability line” is a function of lift curve slopes of the wing and tail and the
wing downwash. Powered lift systems increase the slope which results in a larger tail being
required for a given C.G. range. The slope of the “trim line” is a function of the wing and
tail lift coefficients; the higher the lift coefficient available from the tail (flying-tail, inverted
camber, slotted leading edge, etc.) the lower the slope and hence the smaller the tail size
required for a given C.G range.
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Figure 19 Horizontal Tail Sizing
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Of primary importance to the present study is the *‘static margin’’ { SCM/ ] Cy ) which is
shown in the figure to have a positive value of 3% MAC and is provided by increasing the tail
size relative to the neutral stability requirement. By the use of active controls a negative
stability margin can be accepted, which places the stability line in the position identified as
“artificial stability.” This has the effect of reducing the tail size for a given C.G range which
results in a weight saving and possibly a cost saving due to active controls.

A computer routine which included the above parameters was developed and incorporated
into the main sizing program. Thus by the input of the correct value of SCM/ ) CL, the
static margin could be modified, the horizontal stabilizer resized and the effect of these
changes on the complete airplane automatically computed. A similar type of routine was

also developed for sizing the vertical stabilizer. '

The A& level required to cover all maneuvers, over and above trim, has been shown in Ref,
9 to be a function of the desired landing field length. The real parameter invoived is the
approach speed which can be shown to be a single value for a given field length and set of
landing criteria. The level of A § required from the control will also be a function of the
technique used for controlling the approach and flare to touchdown. Thus the actual value
of AG was chosen for each configuration and will depend upon the glide path control
characteristics and requirements for that configuration. The suggested levels recommended
in Refs. 10, 11, 12 and 13 were used as guides in selecting the A& level.

4.3.2 Artificial Stability System Design — The system is identified as an “‘Artificial
Stability” {AS) system for convenience. It is in fact 2 combined gust load alleviation system
and artificial stability system. The gust load alleviation system is identical to that described
in Section 4.2 and meets the same redundancy considerations. This system is modified to
provide artificial stability in the pitching plane by the addition of a third electro-hydraulic
valve, and a fourth electronic channel in the pitch system, and miscellaneous switching logic
and additional sensors. The artificial stability system utilizes these additional components
with the actuators, electro-hydraulic valves, electronics, sensors and wiring provided for the
gust load alleviation system.

The redundancy thus provided permits the failure of any two critical components while
providing a fully functioning artificial stability system. The reduction in hinge moment if
two actuators fail is probably acceptable as an emergency condition.

4.3.3. Artificial Stability System Weights and Costs — The additional cormponents for this
system do not vary with wing loading or aircraft size. These components weigh 13.6 kg
(30 Ib.) and add an additional $39,550 to the aircraft cost. The effects of the gust load
alleviation portion of the system on wing weight and system weight are similar to those
described in Section 4,2.3.
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5.0 TURBOPROP AIRPLANE CHARACTERISTICS WITH ACTIVE CONTROLS

The matrix of airplanes defined and sized without active controls in Section 3.5 were resized
with the effects of the three levels of active control systems included. This section describes
the characteristics of these airplanes while the following section, 6.0, compares the effects
of the various systems,

5.1 Characteristics of Airplanes Incorporating Ride Qualitv Systems

This system increases the weight and cost of the airplanes and slightly improves the fatigue
life. Large wing weight savings are not expected and it is unlikely that the optimum aspect
ratio would differ because of the introduction of this system. The airplanes sized with ride
quality systems therefore retain the aspect ratios, wing loadings and thrust to weight ratios
of the airplanes sized without active controls,

Table XV presents the primary size and economic characteristics of the matrix of airplanes.
Included for convenience in the lower portion of this table are weight and cost changes
relative to the airplanes without active controls, These data are discussed in Section 6.0.
Figure 20 illustrates the variation of the ride quality system weight with wing loading for
the 4-engined, 100 passenger size. Note that the weights' for the individual systems, e.g.,
surface controls, are the additional weights due to the ride quality svsiem. Figure 21
presents similar data to illustrate the variation of system weight with passenger size. The
example shown is for the 610 m (2000 ft.) field length; data for the other field lengths are
included in Table XV.

Figure 22 presents system cost variations with wing loading and passenger size. The steps in
the “surface controls” and “total RQ system’’ curves at 70 passengers are due to the
necessity of incorporating powered aileron & elevator controls into the basic airplane. The
weight and cost trends are as expected, increasing with reduction of wing loading and
increase of passenger size except for the electronics values which remain constant.

5.2 Characteristics of Airplanes Incorporating Gust Load Alleviation Systems
Since the gust load alleviation system will reduce the wing box weight, it can favor the use

of higher wing aspect ratios. The degree of change in aspect ratio will vary with field length
and it was therefore necessary with this system to reoptimize the aspect ratio for each of the
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2- and 4-engine turboprop configurations and for the turbo-fan design. This reoptimization
of aspect ratios was conducted for the 100 passenger size for each field length, From
consideration of the initial parametric data discussed in Section 3.1.4, it was determined
that the optimum altitude and speed would probably remain as 45670 m (16,000 ft.) and
maximum EAS for the 278 km (150 n.mi.) stage length. The reoptimized aspect ratios were
therefore selected for minimum DOC-2 at these conditions. Table XVI presents the size and
economic characteristics of the 100 passenger airplanes for each field length and the selected
ranges of aspect ratios. The best value of each fuel and economic characteristic from the
range of aspect ratios is underlined for each field length in the table and from these data the
optimum aspect ratios were selected. From the table it can be seen that in some cases it was
necessary to make compromises in selecting the overall optimum. The following aspect
ratios were selected for sizing the airplanes with the gust load alleviation system instatled,

4-engine configurations

Field length - m (Ft) 457 (1500) 610 (2000) . 914 (300) 1067 (3500)

Aspect ratio 8 8 12 14

2-engine configurations

Field length - m (F1) 914 (3000 1067 (3500)

Aspect ratio 8 10

The scope of the program did not permit the reoptimization of the aspect ratio for each of
the three passenger sizes; it was therefore assumed that the values obtained for the 100
passenger size would be close to optimum for the other two sizes.

The characteristics of the matrix of airplanes, incorporating gust load alleviation are
presented in Table XVil. For convenience, the lower partion of this table contains
comparison type data which are discussed in Section 6.0.

Figure 23 presents an example of the variation of gust load alleviation subsystem weights as
a function of wing loading and passenger size. Similar data in terms of initial A airframe
cost as a function of wing loading and passenger size are presented in Figure 24. Equivalent
- weight and cost data for the complete matrix of passenger sizes and field lengths are
provided in Table XVII. Note the sharp increase in weight for the hydraulic system relative
to that required for the RQ system. This is due to the provision of additional hydraulic
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capacity for the GLA system. The cost/kg {Ib) of hydraulic components is lower than that
of surface controls and electronics and this sharp increase in weight does not tharefore
reflect so strongly in the costs,

The variation of the “rough-airspeed” Vg with field length is shown in Figure 26 for
airplanes without GLA, This speed corresponds to C_ pax (flaps up) in the presence of a
20.12 m/sec {66 fps} gust. The shorter field length airplanes have a much lower Vg than the
longer field length airplanesdue to the difference in wing loading. In fact, at the longer
field lengths, Vg is approaching the cruise speed for 4570 m (15,000 ft) altitude. The effect
of this variation of Vg can be seen in Figure 26 which presents load factor as a function of
field length. The maneuver load factor is shown constant for all field lengths at 2.5. The
15.25 m/sec. (50 fps) gust at cruise speed is shown to produce greater load factors than the
20.12 m/sec (66 fps} gust at speed Vg at the shorter field lengths. This is due to V¢ being
much greater than Vg. As Vp approaches V¢, with increase in field length, so the effect of
the higher gust velocity increases the gust load factor at Vg relative to V. Although the
load factor is higher at Vi than at Vg for the shorter field lengths, it is the lower speed
which actually determines the A C_ required from the gust alleviation system and therefore
designs the size of the GLA surfaces.

The effect of the gust load alleviation system on wing weight is illustrated in Figure 27
which shows the wing-box weight saving due to the gust load alleviation system plotted
against field length. The weight saving is defined as the difference in weight between the
weight of the wing sized for airplanes with GLA incorporated and the weight of the wing
with the same geometry but without gust load alleviation, This non-alleviated wing does not
inciude the weight increase required by resizing to make the heavier airplane mest the
required performance and the weight savings presented are therefore conservative,

5.3 Characteristics of Airplanes Incorporating Artificial Stability Systems

The term “artificial stability system’ in this report includes the gust load alleviation
capabilities of the systems discussed in Section 5.2, When considering the resizing of the
matrix of airplanes with the artificial stability system included it was assumed that the
optimum wing aspect ratios would be determined by the gust |oad alleviation effects rather
than the resizing of the horizontal stabilizer. This means that the optimum aspect ratios
~determined in Section 5.2 are close to optimum for airplanes with artificial stability systems
and were therefore used when resizing.
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The effects of the relaxed stability on horizontal stabilizer size were achieved by modifying
the stability margin input to the sizing program as described in Section 4.3.1 and by
including the subsystem weight and cost changes described in Saction 4.3.3.

The characteristics of the matrix of airplanes, incorporating gust load alleviation and relaxed
static stability, are presented in Table XVIII.

The weight and cost changes of the subsystems associated with the artificial stability system

follow similar trends as those presented for the gust load alleviation system but include the
additional increment defined in Section 4.3.3.
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6.0 COMPARISON OF AIRPLANE CHARACTERISTICS
WITH AND WITHOUT ACTIVE CONTROLS

The characteristics of the turboprop powered airplanes contained in Sections 3.5, 5.1, 5.2
and 5.3 are first compared to illustrate the effects on such parameters as direct operating
cost, mission fuel, weights and initial price, due to incorporating the three types of active
control system. The effects of these systems on a turbofan powered MF configuration are
then illustrated and the effects of these systems on the competitiveness of the aircraft with a
powered lift concept are discussed.

6.1 Comparison of Turboprop Airplane Characteristics

6.1.1 Diract Operating Cost Comparisons — Direct operating cost at DOC-2 and DOC-4
fuel prices as a function of field length are presented in Figures 28, 29 and 30 for the 44,
100 and 148 passenger baseline airplanes respectively. The data are presented for the 2- and
4-engine configurations and for 278 and 926 km (150 and 500 n.mi,} stage lengths. The (
expected large reduction in DOC due to increase in passenger capacity is apparent by
comparing the figures. Note also the rapid increase in DOC as the shortest field length is
approached.

[t is interesting to compare the 2- and 4-engine configurations at 914 m (3000 ft) field
length. The 2-engine designs are heavier, cost more and use more fuel but in some cases the
higher speed results in a lower DOC than for the 4-engine designs. For 44 passengers,
2-engines provides minimum DOC for both fuel prices and both stage lengths. For the 100
passenger case, 2-engines are better at 926 km (500 n.mi.), the two configurations are equal
at DOC-2 and 278 km (150 n.mi.), while the 4-engine design is better for DOC-4 and
278 km {150 n.mi.). For 148 passengers, the 4-engine design is best except for 926 km
{500 n.mi.) and DOC-2.

The effects of incorporating the three active control systems on 278 km (150 n.mi.), DOC-2
are presented in Figures 31, 32, and 33 for the 44, 100 and 148 passenger capacity
configurations. It can be seen that the RQ system increases DOC at all field lengths and all
passenger sizes. The GLA and AS systems reduce DOC at the shorter field lengths but
increase DOC at the longer field lengths except in the case of the 148 passenger airplane.
These figures are adequate to show the general trends of the data but are difficult to use for
determining quantitative effects; a series of figures have therefore been prepared showing
percentage change in DOC due to introduction of the active controls as a function of field
length.
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Figure 34, for example, illustrates percentage change in DOC-2 for 278 km (150 n.mi.) stage
length. The RQ system can be seen to increase DOC by 0.65 to 2.0 percent dependent on
field length and passenger size, with the largest increase being for the shortest field length.
The effects of the GLA and AS systems in improving aircraft efficiency, particularly at the
shorter field lengths, can be seen for all but the 44 passenger aircraft at the longer field
lengths. For the 44 passenger airplane DOC can be reduced below that of the baseline at
field lengths below 578 m (1800 ft} but increases above that of the RQ design at field
iengths longer than 686 m (2250 ft). 1n other words, GLA or AS systems should not be
incorporated into the 44 passenger size vehicle at field lengths longer than 686 m (2250 ft}.
The 100 passenger size with a GLA or AS system can be provided with excellent ride quality
at the shortest field length while achieving a reduction in DOC of 3 to 4 percent. At
approximately 610 m (2900 ft.}, the RQ system is more desirable than the GLA or AS
systems for the 4-engine configurations. For the 2-engine configuration the RQ system is
most desirable for field lengths greater than about 1036 m (3400 ft). The 148 passenger
aircraft should be provided with the GLA or AS system in preference to the RQ system at
all field lengths below 991 m (3250 ft); lower DOC’s than the baseline are achieved at field
lengths below 701 to 792 m (2300 to 2600 ft).

Similar data are provided in Figures 35 through 37 for DOC-4, 278 km (180 n.mi.}; DOC-2,
926 km {500 n.mi.); and DOC-4, 926 km {500 n.mi.). Figures 38 and 39 present percent
change in DOC-2 and DOC-4 for the three active control systems as a function of passenger
size for the 4-engine configuration at 610 m (2000 ft.) field length. At all sizes benefits are
provided by the GLA and AS systems relative to the RQ system. Except at the smallest size
the AS system has a lower DOC than the GLA system. Figures 40 and 41 present similar
data for the 2-engine configuration at 914 m (3000 ft.) field tength and illustrate the
passenger sizes above which the GLA and AS systems are more desirable than the RQ
system and when the systems provide lower DOC than the baseline aircraft without active
controls.

6.1.2 Fuel Consumption Comparisons — The effects on 278 km (150 n.mi.) mission fuel
of the active control systems are shown in Figures 42 through 44 for the 44, 100 and 148
passenger airplanes respectively. As expected, the RQ system incurs a penalty while the
GLA and AS systems provide fuel savings. The savings at the shortest field length are
because of the reduction in airplane size through GLA, and at the longer field lengths
because of the increase in aspect ratio provided by the GLA system. An additional
increment of saving is provided by the AS system due to the reeuction in horizontal
stabilizer area and consequent reduction in airplane size. Note the large increase in mission
fuel required by the 2-engine configuration. This is partly due to the speed difference and
partly due to the lower wing loading and hence larger airplane required to meet the field
performance.
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Figures 45 through 47 present data for the 926 km (500 n.mi.) stage length. The trends are
similar to the shorter stage length but the savings provided by the GLA and AS systems are
of course much greater. As a measure of fuel efficiency, Figure 48 presents seat km/kg {seat
statute miles/gallon)} for the aircraft with the extremes of fuel consumption, i.e., those with
the RQ and AS systems. Note again the poor fuel efficiency of the 2-angine designs and the
drastic reduction in fuel efficiency associated with the shortest field lengths. As would be
expected, the largest passenger capacity, 4-engined airplanes incorporating the AS system
have the best fuel efficiency and at the same time provide excellent ride quality.

6.1.3 Weight Comparisons — Figures 49, 60 and 51 compare ramp gross weight as a
function of field length for the 44, 100 and 148 passenger sizes. As would be expected the
2-engined airplanes are heavier than the equivalent 4-engine design, partly because of the
higher cruise speed and partiv because of the engine-out performance requirements
demanding lower wing loading and higher thrust to weight ratio.

The provision of ride quality incurs a weight penalty at all field lengths and for all passenger
sizes while the adoption of gust load alleviation with or without the relaxed static stability
portion of the system does offer weight saving benefits which are highest at the lowest wing
loedings and increase with increase in passenger size as.will be seen by comparing the
figures. This weight saving benefit is not provided in all cases, as can be seen from Figure 49
where the gust load alleviation system actually penalizes the weight of the 4-engine airplane
at 914 m (3000 ft) and the 2-engine vehicle at 1067 m (3500 ft). This weight penalty is due
to the subsystem weight and the weight of the higher aspect ratio wing exceeding the saving
in fuel and other weights. Note similar trends with the larger passenger capacities but at
fonger field lengths. Figure 52 for the 610 m {2000 ft) field length, 4-engine and Figure 53
for the 914 m (3000 ft) field length, 2-engine configuration further illustrate the variations
of RGW and OWE with passenger capacity.

The percentage change in OWE due to the various active control systems is shown in Figure
54 as a function of field length for each passenger size. The ride quality system increases
OWE by 1.0 to 1.5 percent at the shortest field length compared to 0.4 to (.75 percent at
the longest field lengths. Of course, a much greater improvement in ride quality is provided
at the shortest field length than at the longest. Since much of the subsystem weight is not
greatly affected by passenger size, it follows that the greatest percentage savings would be
expected to be provided by the largest passenger size; this is confirmed in the figure. The
‘airplanes with the benefits of GLA or AS system break-even with the baseline aircraft in
terms of OWE at field lengths of around 701 m {2300 ft) for the 4-engine configuration and
960 m (3150 ft) for the 2-engine configuration. Below these field lengths OWE benefits are
provided, while above them OWE penalties will be encountered, ‘
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The iargest OWE benefits are generally provided by the AS system which can amount to 6.5
to 11 percent at the shortest field lengths. In addition to the effects of gust load alleviation
the relaxation of the static stability with the AS system results in a reduction of horizontal
stabilizer area and weight as shown in Figure 55 as a function of field length and passenger
size. It will be noted that the GLA weights are lower than the RQ weights at the shorter
field lengths due to the reduction in airplane size with GLA at the lower wing loadings. At
the longer field lengths the optimization at higher wing aspect ratios results in relatively
smaller wing chords and larger percent c.g. limits in terms of mean aerodynamic chord
which in turn increases the required size of horizontal stabilizer. The sizing program reacts
to these effects as shown in Figure 55 by the GLA weights actually being slightly higher
than the RQ systern weights.

The effect of relaxed static stability on stabilizer weight is shown clearly in Figure 55 by
reductions of up 386 kg (850 Ib). These effects are for the application of active controls
while retaining the same type of stabilizer, in this case, trimmable with elevators. It is
possible to obtain further reductions in horizontal stabilizer by the use of flying tails and
geared elevators combined with active control systems. This further reduction has not been
qguantified in this program.

6.1.4 Airplane Price — The incorporation of active controls in the airplanes introduces an
increase in subsystem cost for all passenger sizes and field lengths. However, in some cases,
due to weight saving and resizing to smaller, more efficient airplanes, the total airplane price
is actually reduced below that of the basic airplane. Figures 56 through 60 present initial
airframe and total aircraft price as a function of field length and passenger size for airplanes
with and without active controls. It can be seen that in almost all cases the initial price
increase due to the active control system is not offset by the weight saving and resizing of
the vehicle. It must be remembered however that when reoptimizing with the GLA and AS
systems, the wing aspect ratio increases with a resulting improvement in efficiency, but it is
also generally associated with increased weight and cost. Only at the lowest wing loadings
(i.e., shortest field lengths) does the weight saving due to GLA translate into a cost
reduction. This occurs because, in this case, the optimum aspect ratio is unchanged by the
introduction of GLA.

Figures 81 through 63 present percent change in airframe cost due to each of the three
active control systems as a function of field length for the 44, 100 and 148 passenger sizes
respectively. As already mentioned, only in special cases does the cost decrease below the
basic airframe cost. Note that at the shortest field lengths the GLA and AS systems cost less
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than the RQ system while at the longer field lengths the cost effects of these systems exceed
that of the RQ system. These increased costs may however be offset by the improved
efficiency and result in lower direct operating costs.

Figure 64 presents percentage airframe cost change as a function of passenger capacity for
the 4-engine configurations. In ali cases the percentage change relative to the baseline
airplane reduces with increase in passenger size. It is noteworthy that the percentage change
for the RQ system airplanes increases with reduction in field length, but it reduces with
reduction in field length for the GLA and AS systems.

6.2 Turbofan-Powered MF Airplane Characteristics and Comparison of Concepts

During the Ref. 1 study it was determined that the 914 m (3000 ft) field length mechanical
flap (MF) concept powered by two advanced 1.35 fan pressure ratio (FPR) turbofans
provided optimum DOC-2 for a 926 km (500 n.mi.) stage length at 0.7M. The wing loading
of this airplane, which is illustrated in Figure 65, was 287 kg/sq. m. (58.8 ib./sq, ft.) which
gives poor ride quality compared to B737 type aircraft. The methodologies discussed in the
previous sections for determining the effects of active control systems on the turboprop
concept have been applied to this turbofan-powered concept for the 148 passenger, 914 m
{3000 f1) field length configuration.

The previous study airplanes were configuréd and analyzed with 1872 costs as the basis; the
present study has been conducted with 1974 costs. Additionally, a very austere furnishing
standard and reduced crew costs have been used in the present study for the turboprop
designs with a view to obtaining the absolute minimum DOC for short-haul operation. In
order to present a true comparison of the concepts, both the turbofan-powered and
turboprop-powered aircraft' have been resized and analyzed using consistent ground rules.
The characteristics of the resulting airplanes are presented in Table XIX together with
equivalent data for the over-the-wing/internally blown flap (OTW/IBF) powered lift
concept. This concept, illustrated in Figure 66, was shown in Ref. 1 to have minimum
DOC-2 at 0.75M when powered by four 1.35 FPR turbofan engines. The data for this
airplane have been updated to 1974 costs but since its wing loading is sufficiently high to
provide excellent ride quality it has not been resized with active controls.

The turboprop configuration is shown in Table XIX to have the lowest fuel consumption,

DOC-2 and DOC-4 of the three concepts. It should be noted that the turboprop engine
performance and cost data are based on a rubberized Detroit Diesel Allison T-56 engine. [t
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XIX 81qeL

 s1dedu0g Jo uosiedwion)

A/C OPTIMIZED FOR DOC-2, 914M (3000 FT.) F.L., 926 KM (500 N.MI.)

OTW/IBF

CONCEPT 1.35 FPR | MF 1.35 FPR TURBOPROP D.S.
ACTIVE CONTROL | NONE [NONE| RQ | GLA As {NONE| RQ | GLA | As
NO. OF ENG. 4 2 2 2 2 4 4 4 4
MACH NO. 0.75] o0.70] o0.70| o.70] o0.70} 0.5/ o0.5] 0.5] 0.5
OWE - KG 36,510 | 39,687 | 39,850 39,189| 38,970| 34,179 | 34,303} 35,135 34,981
. (LB) 80,490 | 87,494 | 87,853| 86,396 | 85,913) 75,351 | 75,623| 77,458| 77,119
RGW - KG 56,446 1 59,848 | 60,026| 59,387 | 59,110 52,694 | 52,828 53,278| 53,084
(LB) 124,440 131,940 132,332 {130,924 |130,314 |16, 168 [116,464 |117, 457|117, 028
RATED THRUST - KN | 55.33 | 119.6| 119.9| n12.8] 107.8] 41.5| 41.59] 37.19| 37.05
(LB){ 12,440 } 26,890 | 26,948 | 25,365 | 24,231 | 9,330 | 9,350 8,355| 8,332
MISSION FUEL - KG| 4,400 | 4,790 | 4,802 4,749 | 4,708 | 3,601 | 3,609| 3,335| 3,304
)| 9,700 | 10,560 | 10,586 | 10,470 | 10,380 | 7,938 | 7,956 7,352| 7,285
W/S: o-KG/sQ.M 554 | 287 287| 287| 287 347 | 347 322 322
(LB/sQ.F)§ 113.5| 58.8| 58.8| 58.8| 58.8]| 71.0| 71.0| 66.0| 66.0
AR | BT 8 8 10 10 8} - 8 2l 12
DOC-2 ¢/ASSM 1.911 1._897r 1.909] 1.884 | 1.876 | 1.7866} 1.799} 1.793| 1.788
DOC-4 ¢/ASSM 2.326 | 2.333| 2.347] 2.336] 2.304] 2.117] 2.129| 2.097| 2.090
A/C PRICE $M 9.103 | 8.2736 | 8.3984| 8.4015] 8.3778] 5.5163{ 5.6248} 5.7253| 5.7143



148 PASSENGERS
0.75 MACH

OPTIMIZED FOR DOC-2

o)

A
/

Figure 66 OTWY/IBF Vehicle

119



is only possible to achieve these costs at the actual size of the T-56 which would result in a
200 passenger airplane with 4-engines at 914 m {3000 ft.} field length or a 48 passenger
design with 2-engines at 0.6 M and 1067 m (3500 ft} field length. Alternate sizes are
possible for other speeds and field lengths and by using other existing engines. It is
expected that the results would be similar to the data generated using the rubberized T-56.

If a new, advanced turboprop engine having a higher cost and lower fuel consumption (Ref.
1} is used the DOC-2 and DOC-4 values are increased by 11 and 6.6 percent respectively.
The turboprop is then not competitive with the other concepts at DOC-2 which suggests
that a new turboprop airplane should be designed to use an existing engine unless fuel costs

L mmmana #n PO A vialiian Ar alaua
1L CaIT LW AW~ T VaIuco U auuvic.

The turbofan powered MF with a ride quality system and the OTW/IBF are almost identical
in DOC-2 value but the OTW/IBF has the advantage of a 9'percent iower fuel consumption,
The incorporation of either the GLA or AS system improves the MF DQC-2, but it should
be noted that a slight improvement in OTW/IBF DOC-2 could also be achieved by
incorporating just the relaxed stability portion of the AS system. In order to match the
OTW/IBF on DOC-4, the MF must incorporate the AS system.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The ride quality of short-haul airplanes with low wing loading can be improved to the
standard of contemporary high wing loading airplanes by the use of active control systems.
The direct operating cost penalty for improved ride quality is 2 percent or less for all cases;
incbrporation of gust load alleviation and augmented stability overcomes this penalty and
gives better DOC than aircraft without active controls in all the very low wing loading
airplanes (457 m {1500 ft) field length) and in the 100 and 148 passenger airplanes at 610 m
(2000 ft) and 914 m {3000 ft) field length. For small aircraft (44 passengers) a GLA or AS
system is recommended for very short field lengths but for field lengths of 610 m (2000 ft)
and longer the simpler RQ system results in a smaller DOC penalty. For larger airplanes
{100-148 passengers) the GLA and AS systems generally provide smaller DOC penalties than
the RQ system for field lengths of less then 914 m (3000 ft). Above this field length the
RQ system appears to minimize DOC effects except at the longer ranges and higher fuel
prices where the increased aspect ratio of the GLA and AS systems results in improved fuel
consumption and an advantage in DOC. Fuel savings of 11% were obtained by use of active
controls in a 148 passenger airplane at 814 m (3000 ft) field length and 347 kg/sq. m (71
{b/sq ft) wing loading.

Weight savings were obtained with the GLA and AS system at the lower wing loadings where
reoptimization did not increase wing aspect ratio. At longer field lengths and higher wing
Ioadings the best economics of aircraft with active controls were obtained at increased
aspect ratios. Fuel consumption was improved but small weight and cost penalties were
incurred compared to baseline aircraft. Generally, the active control systems increased the
initial cost of the airplane; the only exception being the largest aircraft at the shorter field
lengths.

Due to the favorable fuel consumption and competitive direct operating costs, the
turboprop-powered configuration with active controls must be considered a major
contender for the short-haul low/medium density market, particularly for the shorter route
segments where the time increase due to low speed is negligible. It must be stressed however
that these turboprop aircraft, to be competitive, must be designed to match existing
turboprop engines. The increased cost of a new turboprop engine will nullify most of the
advantage of this configuration.

It may be that the low s.f.c. of a diesel engine might make consideration of this engine cycle

worthwhile, Similarly since the development of a new turboprop engine is questionable it
may be that a new very high bypass ratio fan would be advantageous at these speeds and
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field lengths., The incorporation of active controls in the turbofan MF airplane results in it
being equal to the OTW/IBF hybrid in terms of DOC and ride quality. However, the
OTW/IBF, because of its higher wing loading, retains its advantage of lower fuel
consumption,

This study has been limited to short-haul; it is likely that larger fuel savings are available by
the use of active control systems on long haul aircraft which stand to gain so much more
from higher aspect ratio wings providing the wing weight increases can be minimized.
Active control systems combining features such as ride quality improvement, gust load
alleviation, flutter control and relaxed static stability could result in very efficient high
aspect ratio wings, It is recommended that such a program be considered with the final step
being the flight demonstration of the wing design.
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