VIKING LANDER DESIGN AND SYSTEMS INTEGRATION
John Goodlette

Martin Marietta Corporation

MR. GOODLETTE: Good Afternoon. I want to address something
generally on the subject of integration today, but one which I be-
lieve that you, in your deliberations, will eventually face. That
is the subject of malfunction protection. There is a dilemma that
is there for us all: to return the maximum amount of scientific
data that we can, while choosing allocations of our resources to
guarantee to the best of our ability to be able to return what we

set out for.

Viking is pretty complicated. Many of you are participants
on Viking or have been at some point in its development. I will
try to address today the question of redundancy. I will describe
the principles that we have used for Viking; give you a few exam-
ples of some of the implementation; what is not protected and why;
and draw the conclusions relative to the effects of this on your

mission planning and even on your system test programs.

In your deliberations, as I have noticed today, you very
properly were paying attention to those things relative to the
science objectives and then the mission design. But when you de-
cide the system that will, in fact, get you there (and you have a
very difficult problem I believe, in choosing a common threat to
the system that is a multiple planet investigation), you will face
the question of how much redundancy should be planned, and how it
should be mechanized in order to maximize the chance of getting
the data back.

In other words, you want to give yourself a way out in the

presence of failure, particularly when you are flying a mission.

The things you work with are the same things that we have had to
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work with: our resources limit, the weight, the power, the money
and the data capacity. We chose to follow a principle which goes
back to the basic objective of Viking: to land on the planet and
acquire data from the surface. Therefore, the first principle in
our redundancy was to guarantee the ability to land so that we
could provide the data return from the post-landed scientific ex-
periments and, while entering, to acquire atmospheric entry data.
We also chose to require most of the decisions, if possible, to
be made by the man on the ground, and to have the spacecraft be as
simple as possible. This same principle led to the protection of
the downlink, which is, of course, the real method by which we
get the data back.

Today, I am going to show you a few examples of some sub-
systems and how we chose to mechanize them. We also used other
constraints which you have discussed. They are very real and very
important. We tried to limit ourselves to what was available in
current technology or, if it wasn't there, to apply our resources
to developing it before we mechanize it into a major space system.

Could I have the first slide, please? This is a pretty stand-
ard looking fully-redundant RCS reaction control. (Figure 4-12).

On Viking, we do the deorbit impulsive maneuver for the lander
system and the attitude control down to the point of deploying the
parachute with a single hot gas system. It uses hydrazine, is
mechanized with 16 eight-pound thrust engines (which you see at the
bottom of the chart there), and it is fully redundant with series
valves at each engine. It can tolerate single failures at any point.
I will note in passing that we did not try to protect against such
things as leakage or rupture of the propulsion plumbing.

The valves are mainly associated with the loading of the gases

and the propellants and the necessary unloading in the event we

have to recycle after terminal sterilization at the Cape.
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Figure 4-13 schematically presents the Thermal Control
System. We made an attempt to keep the thermal system as pas-
sive as possible, but it does have some active elements. There
are two active thermal switches mounted immediately under the two
RTG's which serve as the only power source the lander has after
it separates from its orbiter bus. We do use the orbiter power,
of course, with its 680 watt solar array, in the cruise mode and
the pre-separation checkout. But after transfer to lander internal
power, RTG's are all we have. We use the waste heat from the RTG
through the thermal contractors.

You will notice that it is mechanized with redundant bellows
to protect and guarantee no single failure will lose us the contact.

I might say that the chart seems to imply that we can toler-
ate the loss of one thermal switch. That isn't really true, unless
we were very lucky with respect to some of the atmospheric environ-

ments in the summer on Mars. We need both of those switches.

The bottom of the chart describes a pretty standard way of
mechanizing thermostats and heaters through series parallel thermo-
statis switches. We do not try to protect against shorts, generally,
in the system, but we do protect against failure open and failure
closed in the thermostats. Raw bus power is used for line and tank
heaters in the propulsion system, which is on the cold side of the
spacecraft on its transit outward from earth to Mars. The lander
is opposite side from the sun with respect to the orbiter and,
therefore, gets relatively cold.

The deorbit system is mounted on the aeroshell and the terminal
engine system is mounted on the lander. Both of them are dry be-
yond the isolation valve and, therefore, it is necessary to use heat
to protect some of the feed lines into the deorbit system, some of
the pyro valving, and to keep the propellant itself above the freez-
ing point of hydrazine, which is about 35 degrees Fahrenheit.
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As shown on Figure 4-14, pyrotechnicsg, is straightforward. We
use two independent energy sources off the bus through two pyro-
technic control assemblies, the LPCA's as noted in the chart. The
mechanization is fairly standard in that they are enabled, then they
are commanded, and then disabled, all by the computer functions
through the guidance computer.

We use a single bridge wire squib arrangement with two ini-
tiators per end item, but we do not protect against mechanical
single point failures down stream of the initiator. That is to say,
there is usually only,bhe set of nuts, one set of pin pullers, and

so forth.

The power subsystem on Figure 4-15 is, of course, extremely
important to the overall mission success. It is used both during
entry and after landing.

To the left of this line is the Viking orbiter, which is
based upon the Mariner technology, built by JPL and its suppliers,
and we very carefully tried not to require more of the orbiter than
is implicit in that Mariner technology. On the other hand, you will
find, if you examine the orbiter, that their mechanization prin-
ciples for redundancy are, to the best degree we are both able, iden-
tical. The orbiter supplies the power during cruise. There is a
system aboard the lander called the bioshield power assembly which
provides dual regulation and dual battery charging that is command-
able by uplink from the ground. And that machine stays with the
bioshield base, which is attached to the orbiter, and does not
enter and land. And, therefore, it is the only thing in the lander

system that does not have to be terminally sterilized.

The next assembly, the power subsystem outlined within this

line is our power control and distribution assembly.

As you see, we use two SNAP 19 derivative RTG's in series.
There is a single point failure in the cabling in between, you might
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notice. But, generally, we then go to dual converter chargers
and we have series parallel shunt regulators and we are able to
dissipate additional load over and above that immediately needed
through lander body-mounted load banks.

We have four eight ampere hour nickel cadmium betteries.
" Three are required to land and two are required to survive post-
land. Sterilizable batteries were a technology problem that was
quite important in the beginning. ‘

Our measured capacity after stand times of 25 months, which
is somewhat more than the expected lifetime of the mission, has
been just above ten ampere hours. Nickel cadmium batteriés are
sterilizable and one almost gets the impression that one way to
make good batteries is to make them tolerate heat sterilization.

You will also notice that there is a dual path for all
switching functions. There are two sets of power supplies and
two sets of digital interfaces with the guidance computer, which
also serves as the sequencer in the mission, both during entry and
after landing. |

There are two on-board decision points shown over here on
the right side. There is a redundant sentry timer, and an under
voltage sensor. Their function is required since the lander is
out of sight of Earth after }anding approximately half of the time,
and one really doesn't have real time control. Their function is
to place the lander in a safe condition, open the command receivers,

and wait for Earth to intervene by command.

Figure 4-16 presents the guidance and control. We have to
so0ft land, of course, on a windy planet, and that leads us to a 3-
axis stabilization system. We have to transfer the reference from

a celestial reference picked up from the orbiter, navigate inertially
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downward in the inverse of the ballistic missile problem, and
then we have to transfer the reference locally to the ground,
removing the lateral and the longitudinal velocities in order to
land. The equipmént required to do this is gryoscopes, at least
one accelerometer, a computer, a Doppler velocity measuring radar,
and a ranging radar, and the necessary functions to control the
engines, which we call valve drive amplifier functions. Finally,
there must be a way to shut things down, and we have terminal
engine shut down switches. These guidance elements are all re-
dundant.

An on-board decision is made to select between two sets of
electronics for the radar altimeter during entry. There are two
antennas, one looking through the aeroshell, and another used after
aeroshell is separated. There is a switching function between

these antennas.

The Doppler radar, called the TDLR, is a four-beam system
such that any three beams will solve the equations of motion, There
are four independent power supplies, and they are on all the time.

There are four sets of gyros shown in this column, an ortho-
gonal set, X, ¥ and Z, and one skewed such that one can choose in
pre-separation checkout which three to mechanize, and the equations
of motion and the software are designed to tolerate the use of any
of the three of four on the entry. To land, you really only need
one accelerometer longitudinally. However, for entry science
reasons, we have also lateral accelerometers; and, to provide the
redundancy, we have doubled up on that longitudinal accelercometer.
The one to use is chosen in pre-separation checkout. So there
really are two IRU's. It is beautiful little package, incidentally.
It weighs about 30 pounds with its eight inertial instruments and

its shock isolator.

Finally, the terminal engine shut down switches have two

series contacts per leg: as we fly into the ground, any closure
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of both switches on one leg will shut the engine down. And if
you bounce and hit another leg, you get another chance - as a
matter of fact, you get three chances at it.

The deorbit system valve drive amplifiers are redundant
through the electronics, but the terminal engine system and its
valve drive amplifiers are single string. We reached the weight
limit and were unable to provide redundancy here. There is a
mechanization for six engines that is well known, but we could not

pay the penalty of that weight.

Finally, the guidance computer is block redundant. It has
two 18,000K memories, two processors, two power supplies. One
of the systems is selectable before separation to enter with: but
if both are good, you then have the chance to use them after land-
ing, and the sentry timer in the pdﬁer subsystem is a device by
which, in the event of failure, the lander is shut down to wait for
a transfer to the other side by ground command.

Figure 4—17 presents the Telemetry Subsystem which is pretty
straight forward. The basic collection device is the data acqui-
sition and processor. .The data is analog, digital, high level, low
level, and bi-level data; all are converted by DAPU to six fixed
format digital channels. The scientific instruments and engineering
transducers are the basic source of the data.

The storage systems are functionally redundant. There is a
fast access data storage memory of about 200 K capacity, and a
slower access 40 million bit tape recorder: it has four tracks
and is able to read and wriﬁefinrefther direction. The data pro-
cesser accepts the data, formats the data, and modulates the car-
riers for the output to the radio systems. These include the UHF
system, which is the relay with the orbiter, and the S-band system
which is.a direct link to the Earth.

On Figure 4-18 is the communications subsystem, the radio

subsystem. There is a functional redundancy as I described earlier.

~ Iv-31



LT-y d4NOIA
£o1)04 0} SUOKdBIXF ON
¥Y(Od Wotj 7599 0}
s e
0} ¢ g epIS Ndva H)
— <— abessay
B “_J MM - 3edwo) 6
llllllll e || g [$sIeuueY)
u_ﬂ J TRTT T T JL 1eW 104
> paxi3 9
S4/4 | - Koway | ! 4
N0XBY) 3 e el | abeioys ed [PPIORY LR Lf 1o
asinig | 3HN eleq ade] X
3
— 8
llllllllll v llxunnlrﬁlllllluulll.iilf - n_. ¢—ejeq T
vigs ) X
_ } @
0} <~ Y 8IS NdV( % I B ML
e || " fe—eeqH
3 =
¥02d Wwol 2529 0}

W3L1SASENS AUBWIIIL ONIJI A

Iv-32




81-¢¥ JENOIA

i IA2Y pw

—>{ JAY pury

sjuauodwo)

SABMOIDIW

VIML

— | 101u0)
T voH

Viml

Ad1j0d 0} suojydaox3 oN

gioy
NWX HN fe— NdVQ Wou
eleq Wil
43A0Y2)IMS DS99
Asuabiawi o]
aNV
13p02a( 2S09 0}
j8q pw) pwy [P spuewwoy
_ _ .
13p023( 3529 9
19Q pw) pwo -l_v.mc:mEEoU
Nndva
X wol4
1Sjuauodwo) Ul Hed
. ¢— Wolq
/10)e[npoy eleq

WILSASENS SNOILYDIINNWWOD ONINIA

Iv-33



The system has several commandable data rates. The lander can
relay through the orbiter with a single string UHF system at a
maximum rate of 16,000 kilobits per second after tanding; and
normally that is the one we will choose. The orbiter, of course,
buffers that by a factor of four to get back down to, say, four
thousand or by a factor of eight to get to 2K. Lower rates,
hoWever, are used during entry. We normally transmit at 2,000
bits per second, but we double that toward the end as we inter-
leave one set of new data with 0ld data delayed about a minute in

order to avoid the blackout problem on entry.

The communications system does have the ability to do some
on-board switching between the exciters, the command control unit,

the microwave components, the two 20-watt TWTA's and the antennas.

There are two ways to get to the dual command receivers:

through the low gain antenna or the high gain antenna.

I would like to summarize by saying that the choice of mal-
function protection is pretty far-reaching. When you define the
spacecraft hardware and its interfaces very carefully and relate
it to the science mission, I think you will find that all of your
operational alternatives of support software and your system test
program will be very heavily influenced by how much redundancy you
choose to use. To give you one final number, what I have shown you
totals about 170 pounds of hardware in the Viking system for re-
dundancy reasons only. Approximately ten percent is devoted to

redundancy.
Thank you.

MR. CANNING: Are there any questions? I had one myself.
Would you put up the slide on the guidance and control? The issue
is, here, you say, that you have four of these radars, I guess they
are, and any three of them can work. Suppose one of them starts
working badly, then how do they decide amongst themselves which

one is working right?
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MR. GOODLETTE: In the pre-separation checkout, you can
inhibit the beam you observe to be bad. If one fails during
use, a "data good" software flag drops and the software ignores
that beam. What you get is a mixed solution.

MR. CANNING: This would be a place where redundancy might
in fact introduce, that is, if any one of them goes wrong, a
failure mode.

MR. GOODLETTE: Exactly
MR. CANNING: Rather than eliminating failure modes.

; MR. GOODLETTE: I think the time you spend on the front
end choosing redundancy is very, Very important because you can
certainly drive yourself into a corner if you have more redun-
dancy that you can use or you can test; it can cause you fail-
ures, unless you carefully choose and test the mechanization.

MR. CANNING: My own experience with failures, and I have
had a couple, has been that mostly the systems that failed were
highly redundant and, in some cases, the very existence of re-

K dundancy caused the trouble.
MR. GOODLETTE: That can happen.

UNIDENTIFIED SPEAKER: I didn't gquite understand that. Did
you way there is a majority voting system in here that would
o check it after you separate the lander, or does this have to be

done by command?

MR. GOODLETTE: No. you can disable one of the beams, but if
they are working at pre-separation checkout, there will be four
beams operating. The reason for that is that as you swing on
the parachute, for example, you can wipe one or more of the
beams off the limb of the planet and, therefore, the solution
of the equations of motion can lose input. To solve all of the
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quations all the time, you only need three.

UNIDENTIFIED SPEAKER: While it is doing that determination,
does the computer have the capability to switch off a beam and

switch another one in?

MR. GOODLETTE: Not that. What we really do is we iner-
tially navigate down all the time. If you do not get a data
signal good from at least three beams, then you continue the

inertial navigation. What you really have is about two second

'update time so that you are updating the inertial velocity ref-

erence with a two-second time constant. And if you miss it for
upwards of twenty or thirty seconds, that will really do noth-
ing more than delay the time that you update that system. You
eventually have to get only a few good seconds to land.

MR. SEIFF: Is the TDLR system involved in the pre-separa-

tion checkout?
MR. GOODLETTE: Yes, there will be measuremehts.

MR. SEIFF: In other words, you check it out just a few

hours prior to committing?

MR. GOODLETTE: Yes. Pre-separation checkout starts about
30 hours ahead of entry, and we are able to disable a failure by

command.
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