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Foreword

A need to investigate solutions to the inhomogeneous equation of heat conduc-
tion with time-dependent sources and the so-called linearized radiation (or
insulation) boundary condition arose directly from a study of the constraints on
lunar thermal history posed by systematic analysis of returned lunar samples and
geophysical data reported by Conel et al. in 1972 (see Ref. 1). A great deal of
numerical modelling was carried out to support and guide us to the principal
conclusions presented in that report; these specific model results will be published
elsewhere. The present document describes only the mathematical problem
involved and its numerical solution.

Studies of planetary thermal history have, with time, evolved mathematical
models of ever-increasing complexity. Added complications have involved inclu-
sion of radiative transfer with the (radiative) thermal conductivity as a prescribed
function of temperature, inclusion of latent heat associated with phase changes,
simulated convection in molten and solid zones, redistribution of heat sources
upon solidification according to specified laws, etc. Most of these refinements
render the mathematical problem nonlinear, and hence force numerical integra-
tion of the heat equation from the outset. Sophisticated models also require
specification of an increasing number of material parameters that are often poorly
determined. In my opinion, it is hard to justify an increase in model complexity
when the fundamental data to be used are not well known. An increase in the
degrees of freedom accompanying construction of elaborate model schemes also
allows an investigator to achieve his desired result by more and more diverse
means. To avoid some of these possible sources of difficulty, I have purposely
chosen to deal with comparatively simple analytic solutions to the equation of
heat conduction. My attitude is that until it is compellingly shown that elementary
procedures and simple assumptions fail to explain the observations, it is not
worthwhile abandoning such procedures and assumptions.

Ordinarily, there is no place for publication of the details of complex computer
codes in the scientific literature. I consider this an unfortunate necessity, since it
may mean that there is no way of checking the procedure or accuracy of a lengthy
numerical exercise, and thus no basis for judging its validity. I have prepared the
present report to compensate in part for any such deficiency in my own work. I
hope in addition that the documentation and code may prove useful to others
with their special problems.

Acknowledgment

I want to thank John B. Morton of the Jet Propulsion Laboratory for coding
this program.

iv JPL TECHNICAL MEMORANDUM 33-718



Contents

I. Introduction 1

II. Statement of Problem . . . . . . . . . . . . 2

III. Solution of the Differential Equation . . . . . 3

IV. Specification of Initial Temperature and Distribution
of Radioactivity . . . . . 4

V. Solution for Change in Boundary Insulation at Time t'. . . . . 8

VI. Input Data . . . . . . . .. . . . . . . . 10

References . . . . . 14

Appendix . . . . . 15

Table

1. Radionuclide heat generation and decay constants . . . . 8

Figures

1. Three-shell radioactive sphere . . . . . 5

2. Initial temperature and radionuclide distributions . 5

3. Listing of "input data" and first five roots of
transcendental equation tan (a - R) + a/h = 0 12

4. Listing of radius and temperature for accompanying
plots for t = 7.5 x 1016 sec and [U] = 30 ppb . . . . . 13

5. Temperature distribution in three-zone model
at time indicated for 30 ppb U . . . . . . 13

JPL TECHNICAL MEMORANDUM 33-718



Abstract

A computer program (Program SPHERE) solving the inhomogeneous equation
of heat conduction with radiation boundary condition on a thermally homoge-
neous sphere is described. The source terms are taken to be exponential functions
of the time. Thermal properties are independent of temperature. The solutions
are appropriate to studying certain classes of planetary thermal history. Special
application to the Moon is discussed.
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Solution of the Equation of Heat
Conduction with Time-Dependent
Sources: Programmed Application

to Planetary Thermal History

i. Introduction

This report is a concise documentation of a programmed solution to the inhomo-
geneous equation of heat conduction in spherical coordinates with time-dependent
sources (Program SPHERE). The application here is in the study of planetary
thermal history, and in particular the Moon (see Ref. 1). The sphere is homo-
geneous in density and thermal properties. The particular example given is
specialized from a general case for radial distribution of heat sources and initial
temperature given by Lowan (Ref. 2). The boundary condition at the outer surface
is the so-called linearized radiation boundary condition or "Fourier's problem of
the third kind"; in this particular instance the body is considered to radiate to a
medium at constant temperature. This condition also applies to problems where
a thin skin of insulating material exists on the exterior of the body (Ref. 3) such
that the heat capacity of the skin can be neglected. This is tantamount to saying
that if a change in temperature occurs on the inner insulating boundary, then
the exterior medium responds "instantaneously" to establish a linear temperature
gradient in the insulation itself. In this case the outer surface temperature of the
insulation is held fixed, which corresponds mathematically to the case previously
discussed where radiation is to a medium at constant temperature.

Two points should be emphasized in applying these results: (1) The surface
temperature solved for is the temperature of the medium just beneath the
insulating layer, and (2) Instead of dealing with the more complicated problem
of varying surface temperature (i.e., the temperature at the outer physical surface),
we have chosen the boundary temperature to be fixed, in most cases taking it to
be the average value of whatever the expected sinusoidal variation might be on
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an atmosphereless body rotating with given angular velocity about its own axis,
and around the Sun. The boundary temperature, of course, can be assigned
arbitrarily. Thus, the details of the fourth power nonlinearity in the usual bound-
ary conditions are not dealt with; at the same time, these details are completely
unimportant in understanding thermal problems of deep planetary interiors. (They
may, of course, become important in applications where near-surface regolith
conditions are of interest; in this case numerical techniques would be advisable
from the outset, although viable alternative procedures, still requiring computers
for hard answers, are useful (see Ref. 4 for details)).

The reason for utilizing this general approach in analyzing problems involving
insulation is that the full, more complicated problem of dealing with the thermal
properties of the outer layer is avoided by a simple mathematical trick. At the
same time, we have been forced to neglect any radioactively generated heat
contribution in the insulating blanket itself. This could normally be dealt with in
practice by an approximate separate calculation of equating sources to flow, since
the insulating layer is usually thin relative to the planetary radius.

An additional feature has been added to the original Lowan calculations. In
considering the physical problem of lunar thermal history, it became evident that
the boundary condition might necessarily be a function of time. The specific
problem treated is that of having the insulation vary in thickness as a step function
of time at some specified time t' > 0. In this instance, t = 0 corresponds to the
time of formation of the Moon, 4.6 X 109 years ago. In the lunar example,
t' 1 X 109 years (3.1536 X 1016 s), although in general the value of t' may be
anything, in many practical circumstances zero. When a nonzero t' is used in the
program, the new origin of time coordinates is such that t = 0 corresponds to t',
and the calculations are made in specified, time incremental steps At with the
first being t' + At. Thus, for example, if t' = 1 X 109 years, the time corresponding
to the present would be 3.6 X 109 years, and if 10 time-increments were needed,
At = 3.6 X 108 years. The first calculated value would correspond to an actual
time from the standpoint of radioactive source strength of 1.0 X 109 years plus
3.6 X 108 years or 1.36 X 109 years. Once t' and At have been assigned, a specific
portion of the time-history may be examined by redefining the origin of time,
and specifying N, the number of time steps, in a suitable fashion. Suppose, for
example, that the thermal regime at a single time 4.5 X 109 years is wanted. The
time origin (program statement 999) is simply redefined as TIME = 1.41912D17 -
At, and N is set equal to one.

II. Statement of Problem
The formal boundary value problem for temperature T as a function of r and t

which we solve, is as follows:

aT K 2 aT K a 2T
2 - (r,t) (1)at pc r ar pc ar-

lim T(r,t) = f(r) (2)
t- 0
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@T
S0, r = 0 (3)

aT

+ hT = hT,, r = R (0 < t < t') (4)

In Eqs. (1) through (4),

p = density in g/cm-3

c = specific heat in cal g-1 oK-1

K = thermal conductivity in cal cm- 1 sec- 1 'K- 1

The factor h = K'/Kd, where

K' = thermal conductivity of insulation

d = thickness of insulation in cm

At time t' the thickness of insulation is assumed to change to d', and Eq. (4)
becomes

aT + h'T = h'T,, t 2 t' (5)ar

The source function 0(r,t) pertains to heat production from exponential decay of
radioactive sources and is given by

4

4(r,t) = -i- pA,(T,r) Hi exp [xj(T - t)] (6)
j=1

where Aj(T,r) are abundances (in g/g) of radionuclide species j at time T = 4.6 X
109 years, i.e., the present. The H, are rates of heat generation in cal g- 1 sec- 1

and Xj are the decay constants. The radionuclides considered are 40K, 232Th, 235U,

and 238U (j = 1,2,8,4). The following relations between these have been assumed
or are to be specified:

[232Th] [235U] 1 [K][ 0OK] = 1.19 X 10-' [K]; 4= 77 ; [U] 3 (7)

The parameter P may be specified arbitrarily but has not in the present problem
been taken as a function of r. The final variable of the source function is [U], and
may be specified arbitrarily. In all of the above, [I] signifies concentration in g/g.

III. Solution of the Differential Equation

As a result of the boundary condition (Eq. 5), the solution for T(r,t) subsequent
to t' requires the solution of a new boundary-value problem with a new "initial"
temperature distribution f'(r) appropriate to whatever problem is embodied in the
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solutions to Eqs. (1) through (4) and Eq. (5). The formal solution to the system of
Eqs. (1) through (4) is given by Lowan (Ref. 2; see his Eq. 21') as

T(r,t) - T , = ' exp (-Xt) f(4) sin d
RX + h(Rh + 1))

n=1

+ f sinkedjf 0($,,) exp (-XaRt) dr} (8)

where

K' 1
h - (9)Kd R

and the ,1 are roots of

a cot aR + h= 0 (10)

The conductivity of the insulating layer is K'; R is the planetary radius. It is
ordinarily not known how many roots of this equation may be required to achieve
a given stability to the convergence of the series in Eq. (8), so it is possible to
specify the maximum number of solutions to Eq. (10) independently. These are
ordinarily computed first and stored. In a typical problem using double-precision
arithmetic, 75 to 100 terms may be summed for any given radial and time incre-
ment, so that at least this many X, are required. As a safety factor, the value
MAXIT, defined in the Appendix, is usually given a value like 500. The summation
over n is continued until ten consecutive values in the series give values differing
by less than 10- 3. This criterion naturally depends upon uniform convergence of
the series. The question of nonuniformity of convergence has not been formally
investigated. Thusfar, however, no numerical instability has been noted in any
calculation carried out to date.

IV. Specification of Initial Temperature and Distribution of
Radioactivity

In problems dealing with the Moon, we have considered spherical shell geome-
tries like that shown in Fig. 1.

For initial temperature, the Moon is divided into two radial, spherically sym-
metric zones:

f(s) = T(r,0) = To + [T,.(r1) - To] r, 0 < r < r, (11)
21

= T,,(R) + T'(R - r), r, < r < R (12)

Here, To is equal to the initial temperature of accreting material (on the inde-
pendent spherical accretion model) adjusted appropriately for any increase due
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Fig. 1. Three-shell radioactive sphere

[31

INITIAL
Z TEMPERATURE

z I
[ 1] I

D - ENRICHED

PRISTINE BLEACHED

r1  r2  R

Fig. 2. Initial temperature and radionuclide distributions

to adiabatic compression. At 1 AU at the present time, for example, uncompressed
material would have a temperature of about 4000 K while,for lunar mass,adiabatic
compression would account for about a 50 0 K increase. The central temperature
To for such problems is thus near 4500 K. In Eqs. (11) and (12), T,(ri) is the
melting point of postulated lunar material at radius ri, T,,(R) is the melting point
at the surface, and T. is the melting point gradient in oK/cm.

The graphical form of Eqs. (11) and (12) describing independent accretion and
surficial melting and differentiation is shown in Fig. 2. For numerical purposes,
these quantities, where required, have been taken from experimental values
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obtained from returned lunar samples. Thus, Ringwood and Essene (Ref. 5) would

give the following values for Apollo 11 basalt:

T,(R) = 1360 0 K

T,(r 1) = 1480 0K

T" = 4.8 X 10- OK/cm

Equations (11) and (12) may be modified to describe other models of planetary

origin. If a lunar-sized object is taken to be at the melting point throughout

initially, the starting temperature in the absence of phase changes will be quite
nearly a parabolic function of radius. To describe such a temperature profile, in

Eq. (11) we set r, equal to R, and T.(r7) equal to T.(R), the melting point at the

surface; in Eq. (12), Tm(R) = T" = 0. The quantity To is, then interpreted as the

melting point at r = 0.

The abundances of radioactive species on the accretion model are taken to be

constant values within each zone, not exponentially decreasing functions of depth

as assumed, for example, by Hanks and Anderson (Ref. 6). While there is field

evidence for decrease of radioactive sources with depth in the Earth according
to a law such as [U] = [U0 ] e-,u (z positive downward), this has been substan-

tiated only for crustal regions and most firmly in relatively localized batholithic

portions of the crust. At any rate, if the portions of the Moon involved in any

primordial melting are small, i.e., R - r7 << R, then the detailed distribution of

sources near the surface is of no consequence as far as the deeper temperature is

concerned.

The value of [U 1] is equal to the present "primordial" U abundance, [U2] is

equal to the present U abundance of the depleted zone, and [U3] is equal to the

present U abundance in the "crust," and determined as follows: [U] is the assumed

primordial value of "untouched" or undifferentiated lunar material; [U2] and

[U3] then follow by mass conservation arguments once it has been hypothesized

what fraction 'of [U1] has been removed from the bleached zone by a differen-

tiation process. If complete bleaching has occurred, then f = 1 for zone two and

the entire mass of U in the zone between r2 and r, has been concentrated into the

zone between r, and R.

With the concentration [U1] specified, together with the factor f, we get for a

homogeneous body

[U] = (1 - ) [U1] (13)

and

[U -- r + f(r. - r) [U 1] (14)
R 3 - rS

Note that Eqs. (13) and (14) allow treatment of a variety of two-zone models as

well. If the uranium abundance of postulated primordial material is [U1] and the

planet is conceived to differentiate into two portions with core of radius r2 and

(present) abundance [Uf], we set f equal to 1 - [U']/[U1 ], and r, equal to

zero. The factor f must be calculated by hand. It does not matter mathematically
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that [U1] is specified for a region of zero volume. To obtain the temperature
increase from radioactive sources alone, T, must be set equal to zero, and the
initial temperature distribution taken zero throughout as well.

Specification of the U abundance has been emphasized here and we have relied
upon connections between U, Th, and K cited earlier to specify abundances of
the other species involved, and their corresponding heat generations. It may well
-be that such systematic connections do not exist in all instances (except the
23 5 U/238U ratio). Thus fl, the [K]/[U] ratio from the orbital gamma ray data,
can be shown to vary laterally over the Moon's surface. There is also no guarantee
that it is constant throughout the lunar interior. A similar situation exists on
the Earth where xenoliths from the deep interior (Ref. 7) have lunar-like
rather than terrestrial-like [K]/[U] ratios. So the real distributions may be ones of
great complexity.

We have noted that there is room for considerable computational flexibility in
the distributions of initial temperature or radioactivity in spite of specific analytic
forms taken here. The user is cautioned, however, that calculations for decay of
initial temperature or temperature changes for radioactive heating must be done
sequentially unless boundaries of zones in the initial profiles coincide, as they
are shown to do in Figs. 1 and 2. The assumption of spherical symmetry is always
made.

Integration of Eq. (8) is routine for the conditions given in Eqs. (11) and (12)
and the constant radioactivity specified, i.e.,

[U] = [Uj], 0 < r < r,

= [U 2], ri < r < r2

= [U3], r, <r<R

The result is

2 ' (h2 + .) sin (r
T(r,t) - T,= [I(n) + 12(n)] exp (-Ka'nt) (15)

S Ra n+ h(Rh + 1)

where

1,(n) = I(n)+ Ij,(n)+ 1,,(n) (16)

To Tin(ri) - ToI,(n) = -- (sin ar, - a.nr cos ajr) + T(17)
11 (n) =(17)

[T,(R) + T',R]
I12(n) = (sin a,,R - sin arj - a.R cos a R + a rT cos anr )

T'
-- - [2a,(R sin aR - r, sin aCr,) - (anR2 - 2) cos anR

+ (a~r - 2) cos ar,)] (18)
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T
Is(n) = -- (sin aR - a~R cos anR) (19)

I,(n) = C(n,t) [S.21(,n) + S22(j,n) + S, 3(j,n)] (20)
j=1

with

1 - exp [--(X - Ka2)t]
Ci(n,t) = - )a2 (21)

S21(j,n)= slj(sin ar 1 - anrl COS anr) (22)

S22(j,n) = s 2j(sin ar 2 - sin anrT - anr 2 cos anr2 + crl1 cos anr1) (23)

S23(j,n) = s3i(sin anR - sin a,r2 - a.R cos asr + anr2 COS anr2) (24)

The an are consecutive positive roots of Eq. (10). The sil are given by

si, = pAij Hj exp (XIT), (j = 1,2,3,4) (25)

where the Aij are abundances of species i in the ith shell and T = 4.6 X 10 9 years
or an appropriate age for the object in question.

The heat generation and decay constants used are taken from Clark (Ref. 8)
and are listed in Table 1 in calories and in calories per gram units.

Table 1. Radionuclide heat generation and decay constants

j Nuclide Hj (cal sec-1 g-1) Xi (sec-1)

1 40K 6.658 x 10- 9  1.682 X 10-17

2 232Th 6.314 X 10-9 0.1582 X 10- 1 7

3 235U 1.363 x 10-7 3.082 X 10-17

4 238U 2.25 x 10-8 0.488 X 10-17

V. Solution for Change in Boundary Insulation at Time t'

If the insulationchanges at time t' > 0 to a value such that the constant h
changes from h to h, (corresponding to insulation thickness changes d to d,, all
other parameters remaining invariant), the solution for the subsequent tempera-
ture is T(r,t)(t > t'):

T(r,t) - T, = (n) sin ar (m)
n=1 M=1

x [I,(m) exp [-x(a.t' + a't)]
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+ R C(j,m,n;t,') Q(i,m) U(m,n)
j=1

+ C'(j,n;t) Q'(j,n) (26)
j=1

where

h! + .2S+ (m , (a roots of a cot aR + h = 0) (27)
Ra + h(Rh + 1)

T + a2 0)

#(n) = + , (a roots of a cot aR + hi = 0) (28)
Ra + hl(Rhl + 1)

I1(m) = 111(m) + 11 2(m) + ,1 3(m) (29)

where 1,,, 112, 113, are given by Eqs. (17), (18) and (19), changing m for n. Note
however that in Eq. (17), Tm(ri) refers to the melting temperature at rj; there is no
summation over m implied. Also in Eq. (26)

exp [-x(at' + a.t)] - exp [-(xjt' + Ka2t)]
n;t,, - ) a(80)

exp (- Kat) - exp (- Xjt)
'(t,n;t) = (1)

(X, - Ka2,) a2,

U(m,n) = sin (a. - a,)R sin (a, + a,)R (32)
(am - an) (a. + an)

Q(i,m) = S21(j,m) + S 2(j,m) + S2 (j,m) (33)

S21(j,m)= s1j(sin amri - ami cos am7) (34)

S22 (j,m) = sj(sin a 2 - sin amr - amr2 COS amsr + amrl COS arr) (35)

S 23(j,m) = s3 J(sin aR - sin amr2 - amR cos amR + a r,2 cos amr2 ) (36)

with the sij given by Eq. (25).

JPL TECHNICAL MEMORANDUM 33-718 9



The [A1l] (i = 1,2,3 for core, mantle, and crust; i = 1,2,3,4 for nuclide species) are

1.19 X 10-3 [U1 ] 1.19 X 10- 3[U 2] 1.19 X 10-i /[U 3 ]

3.7 [U1] 3.7 [U2] 3.7 [U3]

[U[] [U2] [Us]
[A] = 138.7 138.7 138.7

137.7 137.7 137.7
138.7 138.7 138.7

All A 21  A 31

A12 A 22  A 32

A13 A 2 3  A 3,

A1, A 24  A 34  (37)

and the relations between [U], [U2], [U 3] as given by Eqs. (13) and (14) are

Q'(j,n) = S'x(j,n;t) + S' 2(i,n;t') + S',(,n;t') (38)

S:'(j,n;t') = s'j(sin a,r1 - ar 1 cos ar?)

S' 2(,n;t') = s'j(sin aTr2 - Sinafr, - an72 COS ar 2 + anr1 COS ar 1) (39)

S'i(,n;t') = si3(sin !.R - sin a. 2 - aR cos at,R + 1r2 cos ar 2)

sji = pAijHj exp [Xj(T - t')] (40)

A "complete" discussion of a planetary thermal history thus involves a two-stage
calculation with the present program: 1) the interval 0 < t < t, and 2) the interval
t' < t < T (present).

Planetary density and [K]/[U] ratio are to be specified internally in the main
program.

VI. Input Data

The following input data are required to make a calculation, in the order and
format specified.

(1) First card: Maximum number of time steps, maximum number of radial
steps (1615).

(2) Second card: Time increment At (seconds); T,, To, T,(R), T' (5D15.5).

(3) Third card: r1, r,, R, c, K (5D15.5).

(4) Fourth card: Maximum value of ordinate for temperature in degrees Kelvin
in plots (example, 3500 0K) (5D15.5).
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(5) Fifth card: d, K', t', d' (5D15.5).

(6) Sixth card: [U 1], f(5D15.5).

The output consists of a printout of the input data (Fig. 3) and the temperature

at specific times given as a function of radius (Fig. 4), and plots (Fig. 5), which

each give initial temperature, as well as temperature at time t.

The maximum number of radial steps in a calculation as well as the maximum

number of iterations MAXIT in the main program (solutions to transcendental

equations), are specified only in the main program. All input data are in calories

and cgs units. Temperatures are printed in degrees Kelvin and times in seconds

and years. Radii are given in centimeters.

While we have dealt with homogeneous spheres, the solution given by Lowan

(Ref. 2) is general enough to allow K, the thermal conductivity, to vary with

radius. Whether the problem dealt with can be solved analytically depends upon

whether expressions given in the original paper can be integrated. There is also

no necessary restriction on forms for distribution of radioactivity; uniform distri-

butions have been used here lacking any reason to suppose otherwise in the Moon,

but exponential distributions could be handled as well. Problems involving thermal

properties varying with temperature must be treated numerically.

A listing of the main program and subroutines is given in the Appendix.
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N M
3 20

TIME INCREMENT SURFACE TEMPERATURE ;INITIAL' TEMPERATURE Or ACCRETING MATERIAL MELTING POINT AT ZERO PRESSURE*1500000+017 .2500000*G03 *9500000a003 #1360000Q004

MELTING POINT GRADIENT TMRI 'CORE' RADIUS *MANTLE; RADIUS PLANETARY RADIUS THERMAL DIFFUSIVITYC* .U800000-005 lad0000004 .1b800o+009 .171000 009 *17380000U09 *160000-001

THERMAL CONDUCTIVITY MAXIMUM ABSC'ISSA VALUF IN PLOTS
.1100000-001 *3400000004

THICKNESS OF INSULATING LAYER THERMAL CONOUCTIVITY OF INSULATING LAYER
S rIOUOUO*oOe 9o00000-00

S . *T-PRIME* NEJ THICKNESS OF INSULATING LAYER
S*3000000o17 00(on+Oo004

Ut F
*3000000-007 *1000000+00I

SOURCE TERMS
*17743-014 -29500-014q 820Q0-01 *s5085-019
*00000 .00000 *00000 .00000
*16174-013 .26890-013 .7q783-0O3 *I1097401 3

DECAY CONSTANTS
K40: *1682000-016
TH232: *1582000-017
U2

3
5: ,3082000-016

U238: ,4880000-317

ROOTS OF EQUATION: TANIALPH*R3) + (ALPH/H) m 0.
1 *107672323506-007
2 *278012319980-007

3 6q5610UO55S06-*07

q *63567Q580711-007
5 .1576bdZ6820-007

z

Fig. 3. Listing of "input data" and first five roots of transcendental equation tan (a * R) + a/h = 0

0

I

z



TIME (SEC) TIME (YEARS) NO. OF
.7500000+017 .2378234+010 TERMS IN SUMMATION

RADIUS T1+VS
.8690000+007 .2339513+04 62
.1738000+008 .2341481+04 47
.2607000+008 .2343264+04 41
.3476000+008 .2344303+04 38
.4345000+008 .2341946+04 36
.5214000+008 .2333929+04 28
.6083000+008 .2320373+04 26
.6952000+008 .2292757+04 26
.7821000+008 .2251677+04 25
.8690000+008 .2193342+04 25
.9559000+008 .2111307+04 24
.1042800+009 .2001994+04 24
.1129700+009 .1866203+04 23
.1216600+009 .1700109+04 25
.1303500+009 .1503824+04 24
.1390400+009 .1279133+04 27
.1477300+009 .1026541+04 27
.1564200+009 .7675109+03 35
.1651100+009 .5251613+03 41
.1738000+009 .2893931+03 75

Fig. 4. Listing of radius and temperature for accompanying plots for
t = 7.5 X 1016 sec and [U] = 30 ppb

3500

1. TI 2. INITIAL TEMPERATURE DISTRIBUTION

3000

2500
- 1

2000

1500

1000

500 --- 2

TIME (SEC) TIME (YEARS)
7.5000000+16 2.3782344+09

0I I I I I I 1
0.0 2.0M07 4.0407 6.0+07 8.0+07 1.0+08 1.2408 1.4+08 1.6+08 1.8+08

RADIAL DISTANCE, cm

Fig. 5. Temperature distribution in three-zone model at time indicated for 30 ppb U
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Appendix

Program SPHERE
'RUNt/R JEC33 J5N25ZSPHERE06.400/0..183/516 . CONEL
'SC4020 BLDG/183BOX/516.CAMERA/91N*FRAMES/9U
IFORIS MAINtMAIN
C
C PARAMETER' MAXR -- MAXIMUM NUMBER OF RADIAL STEPS.
C MAXIT -- MAXIMUM NUMBER OF ITERATIONS
C

PARAMETER MAXRs40
?'ARAMETER MAXIT=500
IMPLICIT DOUBLE PRECISION (A-H.O-Z)
DIMENSION A(3,4)PH(4)
COMMON /BLK1/ ALPHA(MAXIT).ALPHAM(MAXIT)S(3.4)*XLAMDA(4)

1 PSI(MAXIT).PSIBAR(MAXIT)XI1(MAXIT),
2 S21(MAXIT).S22(MAXIT)PS23(MAXIT).
3 SBAR1(MAXIT),SBAR2(MAXIT),SBAR3(MAXIT).
4 TPRTIMEtXKAPPAtXKOXK.R31SPR(394)

INTEGER JX(3) JY(3),NP(3).INTERP(3)
REAL XY(MAXR,4).ROW2(2)
REAL YMAX
INTEGER SYMBOL(3),TITLE2(14)*XNAME(14)iYNAME(10)IROW1(22)
DIMENSION ICONRG(4).SUMO(4).SUM1(4)*KOUNT(4).IFLAG(4)
DATA XLAMDA/1.682D-17.1582D-17.3.082D-17.*488D-17/
DATA PI/3.141592653589793U0/
DATA JX/1,1l1/JY/2v3,4/INTERP/1.l/
DATA SYMB0L/6HI1 6H2 .6M3 /

DATA TITLE2/6H .6H .6H .6H1. TI .6H 6H 9

1 6H2e INI96HTIAL Tv6HEMPERA*6HTURE D96HISTRIB.6HUTION 

Z 6H 96H /

DATA XNAME/6H v6H 96H .6H 6H 96H 9

1 6HRADIAL96H DISTA#6HNCE .6H 96H 96H 9

2 6H .6H /
DATA YNAME/6H .6H .6H .6H v6HTEMPER#6HATURE 9

1 6H 6H 6H 6H /
DATA IDIM/MAXR/
TAU=1.435D17
RHO=3.34DO
BETA=2.D3
H(1)-6.658D-9
H(2).6.341D-9
H(3)=1.363D-7
H(4)=2.250D-8
ROW1(11)-6HTIME (
ROW1I(21)6HSEC)
ROWI(1l2)06HTIME (
ROW1(292))6HYEARS)
EPSI1.D-3
NCOUNTu9

C
C INPUT' N - NUMBER OF TIME STEPS

C M - NUMBER OF RADIAL STEPS
C

10 READ(5.500END=400) N.M
WRITE(6.600) N.M
IF(M.LE.MAXR) GO TO 15
MTEMP=MAXR
WRITE(6s607) MTEMP
STOP

C
C INPUT' DELT - TIME INCREMENT
C VS -- SURFACE TEMPERATURE
C TO - 'INITIAL' TEMPERATURE OF ACCRETING MATERIAL

C TMO -- MELTING POINT AT ZERO PRESSURE
C TMPR -- MELTING POINT GRADIENT

C R1 -- CORE' RADIUS

C R2 -- 'MANTLE' RADIUS
C R3 - PLANETARY RADIUS
C XKAPPA -- THERMAL DIFFUSIVITY
C XK -- .THERMAL CONDUCTIVITY
C ABMAX -- MAXIMUM ORDINATE VALUE IN PLOTS (MINIMUM VALUE IS ASSUMED

C TO BE U)
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C
15 READ(5S501) DELTVSTU,TMUTMPHtR1R2R3.XKAPPAXK

READ(5501) A8MAX
TMR1sTMO+TMPR*(R3-R1)
WRITE(6,601) DELToVSITOTMOTM#PRTMR1,R1 R2.R3*XKAPPAXKPABMAX
YMAX=ABMAX

C
C INPUT* D -- THICKNESS OF INSULATING LAYER

C XKPR -- THERMAL CONDUCTIVITY OF INSULATING LAYER

C TPR -- IT-PRIME
C 01 -- NEW THICKNESS OF INSULATING LAYER

C
READ(59501) DPXKPRPTPRoD1
WRITE(6*608) DIXKPR
WRITE(6.610) TPR.D1

C
C INPUT' Ul
C F
C

READ(5.501) U1#F
WRITE(6,613) U1F
UZ2I(1DO-F)*U1
U3=Ul*(R3**3-R2**3+F*(RZ**3-R1**3))/(R3**3-R2**3)
FAC1=1.19D-4*BETA
FAC2=137.7D/138.700
FAC3=1.DO/138.7D00
A(lol)=FAC1*U1
A(2l)=FAC1*UZ
A(3.1)=FAC1*U3
A(1*2)=3.7*U1
A(292)=3.7*U2
A(32)=3.7*U3
A(l13)=FAC3*Ul
A(213)3FAC3*U2

A(393)-FAC3*U3
A(194)=FAC2*U1
A(24)=FAC2*U2
A(394)=FAC2*U3
DIF=TAU-TPR
DO 16 J=1,4
EX1=DEXP(XLAMDA(J)*TAU)
EX2=DEXP(XLAMDA(J)*DIF)
DO 16 I=1,3
S(IIJ)=RHO*A(IJ)*H(J)*EX1
SPR(IIJ)=RHO*A(IJ)*H(J)*EX2

16 CONTINUE
WRITE(6*602) ((S(IJ),Jm14)vI=.3)
WRITEI6,6U3) XLAMDA
DO 17 I=1.3
NP(I)=M

17 CONTINUE
XKOXK=XKAPPA/XK
R1R1=R1*R1
R3R3=R3*R3
SIGMA=XKPR/(XK*D)
HO=SIGMA-1e/R3
HHaHO*HO
TIME=U.DU

C STATEMENT 999 DEFINES NEW TIME ORIGIN PT-DELT
999 TIME=1.387584D17

DELTR=R3/M
C
C ObTAIN ROOTS OF' TANIX*R3)+(X/Hu)=U.
C

DO 19 I=loMAXIT
ALPHA(I)=ALPH(IltHOR3JFLAG)
IF(JFLAG.EQ.O) GO TO 18

WRITE(69609)
GO TO 10

18 AK=ALPHA(I)
AKAK=AK*AK
AKR1=AK*Rl
,KR2=AK*R2
AKR3=AK*R3
AAR1R1=AKAK*R1R1
SAKR1=DSIN(AKR1)
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CAKR1=DCOS( AKR1)
SAR2=DSIN(AKR2)
CAKR2ZDCOS(AKRZ,
SAKR3=DSIN(AKR3)
CAKR3=DCOS( AKR3)
P51(1 )=(H+AKAK)/(R3*AKAK+HU*(R3*HO+l.))
Xlll=(TO/AKAK)*(SAKRI-AKRI*CA(RI)
1 +C(TMR1-TU)/(AARlkl*AKAKfl*(3.*gAAR1R1-2.)*SAKR1-
2 AKR1*(AARlRI-6. 2*CAKR1)
XI 12=1 (TMO+TMPR*R3 /KK*SK3-Ak-K3CKR+KlCKI
1 -(Tt4PRI (AK*AKAK) )*(2.*AK*(R3*SAKR3-Rl*SA&R1)
2 -(AKAK*R3R3-2.)*CAK.R3+(AARIRI-2.)*CAKR1)
XI13=(-VS/AKA()*(SAKR3AKR3*CAKR3)
Xll( I)=Xlll+XI12+X113
S211 )-SAK.RI-AKRI*CAKRI
S22(1 )=SAKR2-SAKk1-AK.RZ*CAK.R2+AKR1*CAKR1
S2311) =SAIK~R3SA)(2-AR3*CAKR3+AIR2*CAKR2

19 CONTINUE
190 SIGMA1-XKPR,(XK*Dl)

H1SIG6MA1-1 ./R3
HlHI-H1*Hl

C
C OBTAIN ROOTS OF$ TAN(X*R3)+(X/HJJ=0.
C

)O 23U I11.MAXIT
ALPHAM( I)-ALPH( *I .1 R39JFLAG)
IFlJFLAGoEQ.0) GO TO 210
WRITE (6,609)
60 TO 10

210 AKmALPHAM(1)
AKAK-AK*AK
AKRI=AK*Rl
AKR2 UAK*R2
AKR3&AK*R3
SAKR1=DSIN(AKR1)
CAKR1=DCOS( AKR1)
SAKR2=DSIN(AKR2)
CAKR2-DCOS(A(R2)
SAKR3=DSIN(AKR3)
CAKR3=DCOS( AKR3)
PSIBAR(I)I(HIHI+AKAK)/(R3*AKAVK+Hl*(R3*H1+l.))
S6AR1(I )-SA(R1-AKR1*CAKR1
SBAR2 (lI)AKR2-SAKRI-AKR2*CAKR2+AKR1*CAKR1
S6AR3(1 =SAKR3-SAKR-AK.R3*CAK.R3+AKR2*CAK(2

230 CONTINUE
DO 28u I=1,N #LOOP OVER TIME
TIME=TIME+DELT
TIMEYR-TIME/3.1536D07
ROW2( 1)=TIME
ROW2(2)=TIMEYR
RcO*Dv
WRITE(69611) TIMEtT1MEYR
DO 270 J=1,M $LOOP OVER RADIAL DISTANCE
R=RfrDELTR

C
C INiTIALIZE CONiVERGENCE FLAGS AND SUMS
C

ICONRG( 1)10
KOUNT (1)a0
IFLAG(1)=O
SUMOC 1)=0.DO
SUMI (1) 0.0
DO 25U K=1,MAXIT
kK-ALPMAM(K)
AAKK=A(*A
AKR=AK*R
SAKR-DSIN(AKR)
XlsXEX(A.AKvAK9K)
SUMlI 1)=SUM1(1)+PSIdAR(K)*SAKR*Xl
IF(DABS((SUM1(1)-SUM0(1))/SuM1u1)).GT.EPS) GO TO 240
KtMl K-1

IF(IFLAG11) .EQ.K1 KUUNT(I)UKOUNT(1)+1
IFLAGI 1)wK

240 SUMO(1)=SUMl(1)
ICONRG1 )wK
IF(KOUNT(1)*GTONCOUNT) GO TO 26U
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250 CONTINUE
260 TIa2.*SUM1(1)/R

XY(JI1)=R
XY(J*2)=T1+VS
IF(R.GT.R1) GO TO 262
XY(JI3)uTO+(TMR1-TO)*R*R/R1R1
GO TO 264

262 XY(J3)=TMO+TMPR*(R3-R)
264 WRITE(6.612) RPXY(J2),ICONRG(l)

270 CONTINUE
CALL KCPL(XYIDIMOJX*JYNP, INTERPSYMBOL*TITLE2ZXNAMEYNAME

1 ROWlROW2.2)
CALL GRIDY(-.1YMAXO.0*UO6H
CALL KCPL1(292t1)

280 :ONTINUE
GO TO 10

400 STOP
500 FORMAT(16IS)
501 FORMAT(5D15.5)
502 FORMAT(4D15.5)
600 FORMAT(*O N M'/1H 9215)

601 FORMAT('OTIME INCREMENT SURFACE TEMPERATURE ''INITIAL'' TEMPER

1ATURE OF ACCRETING MATERIAL MELTING PUINT AT ZERO PRESSURE'/1H

2D147,8XD14.7 32XD14.7,19X,014.7/'OMELTING POINT GRADIENT

3 TMR1 'ICORE'' RADIUS '$MANTLE'# RADIUS PLANETARY RADIU

4S THERMAL DIFFUSITIVITYt/1H B8XD14.72X,014.73XD14.7,4XoD
1 4

.7

5s5X,D14.7~1.XDI4.7/vUTHERMAL CONDUCTIVITY MAXIMUM AbSISSA VALUE

6 IN PLOTS'/1H *6XDI14.7v19X9D14.7)

602 FORMATItOSOURCE TERMS'/IH 40D15.5/1H t4D15.5/1H .4015.5)

603 FORMAT(0 DECAY CONSTANTS'/I K4011,4X014.7/ TH232'*.2X
I

1 D14.7/' U235'',3XD14.7/' U238''*3X9D14.7)

604 FORMAT('O TIME'/1H 9D14.7/O RADIUS TI+VS

1 TR+VS V=TI+TR+VSI)
605 FORMAT(1H *4014.74110)
606 FORMAT(IO PARTIALITI) PARTIAL(TR) FLUX 1 FLUX 2

1 TOTAL FLUX'/1H t5D14.7)

607 FORMAT(IONUMBER OF RADIAL STEPS EXCEEDS MAXIMUM DIMENSION'/

1 I MAXIMUM DIMENSION' 1,4)

608 FORMAT(O0THICKNESS OF INSULATING LAYER THERMAL CONDUCTIVITY OF I

INSULATING LAYERI/1H *15XD14.729XDl4.7)

609 FORMAT(IUFAULTY ROOT OBTAINED FROM SOLUTION TO' TAN(X*R3)+(X/R3)0O

1. COMPUTATIONS TERMINATED.')
610 FORMAT('O '*T-PRIME'* NEW THICKNESS OF INSULATING LAYER*/

1 1H 9D14.7923XD014.7)
611 FORMAT(0 TIME (SEC) TIME (YEARS)'/1H 9D14.7.5XPD14.7/

1 1HO,8X*'RADIUS't9X,'Ti+VS')
612 FORMAT(1H D14*.7E14.7,28XIl0O)
613 FORMAT(O 01 F'/1H *2014.7)

END
'FOR*IS X1EXX1iEX

DOUBLE PRECISION FUNCTION X1EX(AKAKPAKPK)
PARAMETER MAXITm500
IMPLICIT DOUBLE PRECISION (A-H*O-Z)
COMMON /BLK1/ ALPHA(MAXIT),ALPHAM(MAXIT)PS(3,4).XLAMDA(

4
)9

1 PSI(MAXIT),PSIBAR(MAXIT),XIl(MAXIT).
2 S21(MAXIT)9522(MAXIT.) S23(MAXIT),

3 SBAR1(MAXIT)*SBAR2(MAXIT),SBAR3(MAXIT),
4 TPRTIMEXKAPPAXAOXKrR3,SPR(394)
DATA EPS/1.0-5/NCOUNT/9/
KOUNT=O
IFLAGaU
SUMO=u.DO
SUMiwUwDO
DO 20 I=1-MAXIT
AI-ALPHA()
AIAAI*AI
DIF-AI-AK
SUM=AI+AK
SDR3*DSIN(DIF*R3)
SSR3sDSIN(SUM*R3)
POWiiRli-X.APPA*AIAI TPR-XAAPPA*A(A*TIME
POwER2=-XKAPPA*(AIAI*TPR+AKAK*TIME)
EXuDEXP(POWER1)
EX2=DEXP(POWER2)
XI1EX=XI1(I)*EX
XIZEX=O.DO
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DO 8 J=194
POWER3=-(XLAMDA(J)*TPR+XKAPPA*AKAK*TIME)
CBAR=(EX2-DExP(POWER3))/((XLAMDA(J)-XKAPPA*AIAI)*AIAI)
Q=S(.ltJ)S21(I)+S(2,J)*S22(I)+S5(3J)*S23(I)
XI2EX=XI2EX+CBAR*O

8 :ONTINUE
XI2EX=XI2EX*XKOXK
SUM1=SUMI+PSI(I)*(XI1~X+XIZ2EX)*((SR3/DIF)-(6R3/SUM))
IF(DASS((SOM1-SUMO)/SUM1).GT.EPS) GO TO 10

IM=I-1
IF(IFLAG.NE*IM1) KOUNT=1
IF(I'FLAG.EQ.IM1) KOUNT=KOUNT+1
IFLAG=I
IF((OUNT.GT.NCOUNT) GO TO 40

10 SUMO=SUM1
20 CONTINUE

WRITE(6930)
30 FORMAT(CIFAILURE TO CONVERGE IN XI1AR1')
40 POwER2=-XKAPPA*AKAK*TIME

EX2=DEXP(POWER2)
DO 50 J=14
POWER3=-XLAMDA(J)*TIME
CBARPR=(EX2-DEXP(PUWER3))/((XLAMDA(J)-XKAPPA*AfAK)*AKAK)
QPR=SPR(1,J)*SBAR1(K)+SPR(2*J)*SBAR2(K)+SPR(3J)*SBAR3(K)
SUMl1SUM1+XKOXK*CBARPR*QPR

50 CONTINUE
X1EX=SUM1
RETURN
END

*FOR.IS ALPHALPH
DOUbLE PRECISION FUNCTION ALPH(K9H.R3JFLAG)
IMPLICIT OOUBLE PRECISION (A-HO-Z)

C
C FUNCTION ROUTINE WHICH CALCULATES SUCCESSIVE POSITIVE ROOTS OF THE
C FUNCTION$ TAN(ALPHA*R3) + (ALPHA/H) OU.

C
DATA PI/3.14159265358979324DO/
DATA NCOUNT/4/
KOUNT=1
ICHECKsO
IF(K.NE.1) GO TO 10
WRITE(695)

5 FORMAT(OROOTS OF EQUATION' TAN(ALPH*R3) + (ALPH/H) = 0.*)
JFLAG=0
STEP=PI/R3
STEPO2=STEP/2.
EPS=H/1000.
X=STEPOZ+EPS
ONEOH=1./H
GO TO 20

10 XaK*STEP-STEPO2+EPS
20 DO 30 I=120UO

IM1I1-1
THETA=X*R3
TEMP=1./DCOS(THETA)
F-DTAN(THETA)+X/H
FPR=R3*TEMP*TEMP+ONEOH
XNEW=X-F/FPR
IF(DA8S((XNEw-X)/XNEW).GT1.D-12) GO TO 25
IF(ICHECK.NE.IM1) KOUNT=1
IF(ICHECK.EQ.1M1) KOUNT=KOUNT+1
ICHECK=I
IF(KOUNT.GT.NCOUNT) GO TO-0SO

25 X=XNEW
30 CONTINUE

WRITE(6940) XvXNEW9F
40 FORMAT('ONEwTON METHOD FAILED TO SATISFY TERMINATING CRITERIA

I X XNEW F'/1H v52Xv3D16.8)
STOP

50 ALPH=XNEW
WRITE(6.55) KvXNEW

55 FORMAT(1H oI0lDZ2.12)
tMID=K*PI/R3
XLBND=XMID-STEPO2
UBOUND=XMID+STEPO2
IF(XLbNDoLT.X.AND.XLToUBOUND) RETURN
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WRITE(6.60).KIXL8ND*X9UBOUND
60 FORMAT('OSOLUTION NOT PROPERLY BOUNDED K LOWER BOUND

1 X UPPER dOUND'/1H 30XPI5s3016.8)
JFLAG=1
RETURN
END

IMAP9L
LIB LIB*PLOTS
'XQT

3 20
1.5D16 250. 450. 1360. 4.8D-6

1.488D08 1.714008 1.738008 1.640-2 1.10D-2
350u.
100lOO0. 00001 .3D+17 100U.

.3000D-07 1.
1.5016 130* 250. 1373 5*00-6

3 20
1.5016 250. 450. 1360o 4*80-6

1.488008 1.714008 1.738008 1.640-2 1.10D-2
3500.
100000. 00001 .3D+17 1000.

.4000D-07 1.
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