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Foreword

A need to investigate solutions to the inhomogeneous equation of heat conduec-
tion with time-dependent sources and the so-called linearized radiation (or
insulation) boundary condition arose directly from a stady of the constraints on
lunar thermal history posed by systematic analysis of returned lunar samples and
geophysical data reported by Conel et al. in 1972 (see Ref. 1). A great deal of
numerical modelling was carried out to support and guide us to the principal
conclusions presented in that report; these specific model results will be published
elsewhere. The present document describes only the mathematical problem
involved and its numerical solution.

Studies of planetary thermal history have, with time, evolved mathematical
models of ever-increasing complexity. Added complications have involved inclu-
sion of radiative transfer with the {radiative) thermal conductivity as a prescribed
function of temperature, inclusion of latent heat associated with phase changes,
simulated convection in molten and solid zones, redistribution of heat sources
upon solidification according to specified laws, etc. Most of these refinements
render the mathematical problem nonlinear, and hence force numerical integra-
tion of the heat equation from the outset. Sophisticated models also require
specification of an increasing number of material parameters that are often poorly
determined. In my opinion, it is hard to justify an increase in model complexity
when the fundamental data fo be used are not well known. An increase in the
degrees of freedom accompanying construction of elaborate model schemes also
allows an investigator to achieve his desired result by more and more diverse
means. To avoid some of these possible sources of difficulty, I have purposely
chosen to deal with comparatively simple analytic solutions to the equation of
heat conduction. My attitude is that until it is compellingly shown that elementary
procedures and simple assumptions fail to explain the observations, it is not
worthwhile abandoning such procedures and assumptions.

Ordinarily, there is no place for publication of the details of complex computer
codes in the scientific literature. 1 consider this an unfortunate necessity, since it
may mean that there is no way of checking the procedure or accuracy of a lengthy
numerical exercise, and thus no basis for judging its validity. I have prepared the
present report to compensate in part for any such deficiency in my own work, 1
hope in addition that the documentation and code may prove useful to others
with their special problems.

Acknowledgment

I want to thank John B. Morton of the Jet Propulsion Laboratory for coding
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Abstract

A computer program (Program SPHERE) solving the inhomogeneous equation
of heat conduction with radiation boundary condition on a thermally homoge-
neous sphere is described. The source terms are taken to be exponential functions
of the time. Thermal properties are independent of temperature. The solutions
are appropriate to studying certain classes of planetary thermal history. Special
application to the Moon is discussed.
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Solution of the Equation of Heat

Conduction with Time-Dependent

Sources: Programmed Application
to Planetary Thermal History

I. Introduction

This report is a concise documentation of a programmed solution to the inhomo-
geneous equation of heat conduction in spherical coordinates with time-dependent
sources (Program SPHERE). The application here is in the study of planetary
thermal. history, and in particular the Moon (see Ref. 1). The sphere is homo-
geneous in density and thermal properties. The particular example given is
specialized from a general case for radial distribution of heat sources and initial
temperature given by Lowan (Ref. 2). The boundary condition at the outer surface
is the so-called linearized radiation boundary condition or “Fourier’s problem of
the third kind”; in this particular instance the body is considered to radiate to a
medium at constant temperature. This condition also applies to problems where
a thin skin of insulating material exists on the exterior of the body (Ref. 8) such
that the heat capacity of the skin can be neglected. This is tantamount to saying
that if a change in temperature occurs on the inner insulating boundary, then
the exterior medium responds “instantaneously” to establish a linear temperature
gradient in the insulation itself. In this case the outer surface temperature of the
insulation is held fixed, which corresponds mathematically to the case previously
discussed where radiation is to a medium at constant temperature.

Two points should be emphasized in applying these results: (1) The surface
temperature solved for is the temperature of the medium just beneath the
insulating layer, and (2) Instead of dealing with the more complicated problem
of varying surface temperature (i.e., the temperature at the outer physical surface),
we have chosen the boundary temperature to be fixed, in most cases taking it to
be the average value of whatever the expected sinusoidal variation might be on
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an atmosphereless body rotating with given angular velocity about its own axis,
and around the Sun, The boundary temperature, of course, can be assigned
arbitrarily. Thus, the details of the fourth power nonlinearity in the usual bound-
ary conditions are not dealt with; at the same time, these details are completely
unimportant in understanding thermal problems of deep planetary interiors. (They
may, of course, become important in applications where near-surface regolith
conditions are of interest; in this case numerical techniques would be advisable
from the outset, although viable alternative procedures, still requiring computers
for hard answers, are useful (see Ref. 4 for details}).

The reason for utilizing this general approach in analyzing problems involving
insulation is that the full, more complicated problem of dealing with the thermal
properties of the outer layer is avoided by a simple mathematical trick. At the
same time, we have been forced to neglect any radioactively generated heat
contribution in the insulating blanket itself. This could normally be dealt with in
practice by an approximate separate calculation of equating sources to flow, since
the insulating layer is usually thin relative to the planetary radius.

An additional feature has been added to the original Lowan calculations. In
considering the physical problem of lunar thermal history, it became evident that
the boundary condition might necessarily be a function of time. The specific
problem treated is that of having the insulation vary in thickness as a step function
of time at some specified time # > 0. In this instance, £ = 0 corresponds to the
time of formation of the Moon, 4.8 X 10° years ago. In the lunar example,
# ~1 X 10° years (3.1536 X 108 s), although in general the value of # may be
anything, in many practical circumstances zero. When a nonzero # is used in the
program, the new origin of time coordinates is such that ¢ = 0 corresponds to ¥,
and the calculations are made in specified, time incremental steps at with the
first being ¢ + At. Thus, for example, if # = 1 < 10° years, the time corresponding
to the present would be 3.6 X 10° years, and if 10 time-increments were needed,
At = 3.6 X 10® years. The first calculated value would correspond to an actual
time from the standpoint of radioactive source strength of 1.0 X 10° years plus
3.8 X 10 years or 1.36 X 10° years. Once # and At have been assigned, a specific
portion of the time-history may be examined by redefining the origin of time,
and specifying N, the number of time steps, in a suitable fashion. Suppose, for
example, that the thermal regime at a single time 4.5 X 10° years is wanted, The
time origin (program statement 999) is simply redefined as TIME = 1.41912D17 —
At, and N is set equal to one.

I1. Statement of Problem

The formal boundary value problem for temperature T as a function of 7 and ¢
which we solve, is as follows;

oT K 28T K T
oo = () ®

lim T(rt) = f(r) 2)

t— 0
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Z =0 =0 @)

%+hT:hTh r=R (0<t<t) @)

In Egs. (1) through (4),

p = density in g/cm-?
¢ = specific heat in cal g °K?*

K = thermal conductivity in cal cm sec? K+
The factor h = K'/Kd, where

K’ = thermal conductivity of insulation

d = thickness of insulation in cm

At time # the thickness of insulation is assumed to change to d', and Eq. (4)
becomes

A iwr=wT, t2v (5)

The source function ¢(rt) pertains to heat production from exponential decay of
radioactive sources and is given by

o(r) = -;72 pA(Tor) Hy exp (T — 8)] (6)

where A,(T r) are abundances (in g/g) of radionuclide species f at time T = 4.6 X
10° years, ie., the present. The H; are rates of heat generation in cal g sec?
and }; are the decay constants, The radionuclides considered are K, 2#2Th, 25U,
and 258 (j = 1,2,3,4), The following relations between these have been assumed
or are to be specified:

232Th 2357J 1 K
[4OK] =119 X 10~ [K]’ [[U] ] =4, %zaaU} = 137.7 5 IIEU} =8 (7)

The parameter § may be specified arbitrarily but has not in the present problem
heen taken as a function of r. The final variable of the source function is [U], and
may be specified arbitrarily. In all of the above, [*] signifies concentration in g/g.

lll. Solution of the Differential Equation

As a result of the boundary condition (Eq. 5), the solution for T(r,f) subsequent
to # requires the solution of a new hboundary-value problem with a new “initial”
temperature distribution f/(r) appropriate to whatever problem is embodied in the
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solutions to Eqgs. (1) through (4) and Eq. (5). The formal solution to the system of
Eqgs. (1) through (4) is given by Lowan (Ref. 2; see his Eq. 21’) as

(h® + A?,) sin A7 { [3 _
-, =__ .y \d

+ f Essin Anddt f t #(£,7) exp (—xMit) df} (8)

and the A, are roots of
acotaR-I-E:O (10)

The conductivity of the insulating layer is K’; R is the planetary radius. It is
ordinarily not known how many roots of this equation may be required to achieve
a given stability to the convergence of the series in Eq. (8), so it is possible to
specify the maximum number of solutions to Eq. (10) independently. These are
ordinarily computed first and stored. In a typical problem using double-precision
arithmetic, 75 to 100 terms may be summed for any given radial and time incre-
ment, so that at least this many A, are required. As a safety factor, the value
MAXIT, defined in the Appendix, is usually given a value like 500. The summation
over n is contined untl ten consecutive values in the series give values differing
by less than 10-3. This criterion naturally depends upon uniform convergence of
the series. The question of nonuniformity of convergence has not been formally
investigated. Thusfar, however, no numerical instability has been noted in any
calculation carried out to date.

IV. Specification of Initial Temperature and Distribution of
Radioactivity

In problems dealing with the Moon, we have considered spherical shell geome-
tries like that shown in Fig. 1.

For initial temperature, the Moon is divided into two radial, spherically sym-
metric zones:

fO=T(r0)=To+ [Tnir) =Tl 5, 0<r<r (11)

1

= Tn(R) + TW(R — 1), rn<r<R (12)

Here, T, is equal to the initial temperature of accreting material (on the inde-
pendent spherical accretion model) adjusted appropriately for any increase due
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Fig. 1. Three-shell radicactive sphere
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Fig. 2. Initial temperature and radionuclide distributions

to adiabatic compression. At 1 AU at the present time, for example, uncompressed
material would have a temperature of about 400°K while, for lunar mass,adiabatic
compression would account for about a 50°K increase. The central temperature
T, for such problems is thus near 450°K. In Eqs. (11) and (12), Ty(r,) is the
melting point of postulated lunar material at radius r,, T,(R) is the melting point
at the surface, and T7, is the melting point gradient in °K/cm.

The graphical form of Egs. (11) and (12) describing independent accretion and

surficial melting and differentiation is shown in Fig. 2. For numerical purposes,
these quantities, where required, have been taken from experimental values
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obtained from returned lunar samples. Thus, Ringwood and Essene (Ref. 5) would
give the following values for Apollo 11 basalt:

Tn{R) = 1360°K
Ton(r)) = 1480°K

T., = 48 X 10-° °K/em

Equations (11) and (12) may be modified to describe other models of planetary
origin. If a lunar-sized object is taken to be at the melting point throughout
initially, the starting temperature in the absence of phase changes will be quite
nearly a parabolic function of radius. To describe such a temperature profile, in
Eq. (11) we set 7, equal to R, and T'x(r,) equal to T»(R), the melting point at the
surface; in Eq. (12), Tw(R) = Th = 0. The quantity T, is then interpreted as the
melting point atr = 0.

The abundances of radioactive species on the accretion model are taken to be
constant values within each zone, not exponentially decreasing functions of depth
as assumed, for example, by Hanks and Anderson (Ref. 6). While there is field
evidence for decrease of radioactive sources with depth in the Earth according
to a law such as [U] = [U,] e#* (z positive downward), this has been substan-
tiated only for crustal regions and most firmly in relatively localized batholithic
portions of the crust. At any rate, if the portions of the Moon involved in any
primordial melting are small, i.e, R — r; << R, then the detailed distribution of
sources near the surface is of no consequence as far as the deeper temperature is
concerned.

The value of [U,] is equal to the present “primordial” U abundance, [U.] is
equal to the present U abundance of the depleted zone, and [Us] is equal to the
present U abundance in the “crust,” and determined as follows: [U,] is the assumed
primordial value of “untouched” or undifferentiated lunar material; [U,] and
[U.] then follow by mass conservation arguments once it has been hypothesized
what fraction f of [U,] has been removed from the bleached zone by a differen-
tiation process. If complete bleaching has occurred, then f = 1 for zone two and
the entire mass of U in the zone between 7, and r, has been concentrated into the
zone between r; and R.

With the concentration [U,] specified, together with the factor f, we get for a
homogeneous body

(U.]=(1-5[Ui] (13)

and

R — 1+ flr} ~ 13)

[Us] = R — Tg

(U.] (14)

Note that Egs. (13) and (14) allow treatment of a variety of two-zone models as
well. If the uranium abundance of postulated primordial material is {U,] and the
planet is conceived to differentiate into two portions with core of radius r, and
(present) abundance [Ui], we set f equal to 1 — [U{1/[U;], and r, equal to
zero. The factor f must be calculated by hand. It does not matter mathematically
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that [U,] is specified for a region of zero volume. To obtain the temperature
increase from radioactive sources alone, T, must be set equal to zero, and the
initial temperature distribution taken zero throughout as well,

Specification of the U abundance has been emphasized here and we have relied
upon connections between U, Th, and K cited earlier to specify abundances of
the other species involved, and their corresponding heat generations. It may well

‘be that such systematic connections do not exist in all instances (except the

=6] /2381 ratio), Thus g, the [K]/[U] ratio from the orbital gamma ray data,
can be shown to vary laterally over the Moon’s surface. There is also no guarantee
that it is constant throughout the lunar interior. A similar situation exists on
the Earth where xenoliths from the deep interior (Ref. 7) have lunar-like
rather than terrestrial-like [K]/[U] ratios. So the real distributions may be ones of
great complexity.

We have noted that there is room for considerable computational flexibility in
the distributions of initial temperature or radioactivity in spite of specific analytic
forms taken here. The user is cautioned, however, that caleulations for decay of

_initial temperature or temperature changes for radioactive heating must be done

sequentially unless boundaries of zones in the initial profiles coincide, as they
are shown to do in Figs. 1 and 2. The assumption of spherical symmetry is always
made.

Integration of Eq. (8) is routine for the conditions given in Eqs. (11) and {12)
and the constant radioactivity specified, i.e.,
[U] = [U4], 0<r<n
= [U.], << 1y
= [U;], r<r<R

The result is
Tirs 25( I 1 ) + Lim)] exp (—oit)  (15)
— =— — Un Jn)| e — Kty
&4 Ra2 + h(RR + 1) P
where
L{n) = L,,(n) + I;(n) + L;(n) ' (16)
o . Tm 1/ 7 Lo
Iy{n) = -’5—2- {(Sin o,y — ,fy COS osTy) + [_(1%;}'_] (17
T T..R
Io(n) = —[-——QJ:);;—{_—-——] (sin o, R — sin ayry, — a,R c0s @ R + a,r; OS au1y)
T»’

— == [2an(R sin &, R — ry8in apry) — (e3R* — 2) c0s anR

nw

+ (eir? — 2) cosa,r,)] (18)
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Lg(n) = -——:—; (sin @R — a,R cos a,R) (19)

1~ , . .
L(n) = - Ci(n) [Suli) + Saalin) + S} (20)
i=1
with
_ 1 —exp [—(r; — xa2)t]
C.i(n:t} — (z\f — xaﬁ)aﬁ (21)
5::(n) = s.,;(Sin aury — anry COS anty) (22)
S22(7,n) = 825(5in gtz ~ SIM@aTs — @z COS aprz T cufy COS aaly) (23)
Sax{f,n) = 85(5in @uB — SiN anfs — @B €08 @af + an?s COS ants) (24)
The o, are consecutive positive roots of Eq. (10). The s,; are given by
siy=pAyHyexp(MT),  (=1234) (25)

where the A;; are abundances of species j in the ith shell and T = 4.8 X 1(° years
or an appropriate age for the object in question.

The heat generation and decay constants used are taken from Clark (Ref. 8)
and are listed in Table 1 in caleries and in calories per gram units,

Table 1. Radionuclide heat generation and decay constants

i Nuclide H; {cal sect g-1) A; (sect)

1 40K 6.658 X 10-° 1.882 X 10-17
2 232Th 6.314 X 10-9 0.1382 X 10-17
3 285(J 1.363 X 10-7 3.082 X 10-17
4 2387 285 X 10-8 0.488 X 1017

V. Solution for Change in Boundary Insulation at Time t’

If the insulation changes at time ¢ >0 to a value such that the constant k
changes from A to h, (corresponding to insulation thickness changes d to d,, all
other parameters remaining invariant), the solution for the subsequent tempera-
ture is T(r,b)(t > t'):

~ 2 2
T(rt) — T, = = E yin) sin a,r I E w(m)
X |:Il(m) oxp [—x(obt’ + o)
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+%Zﬂwmmm% (26)
where
W(m) R+ ah (a ToOLSs Of & cot oR + o = 0) (27)
— — p— ) o . =
Ret + WMBR+1)°
R+ a2 -
¢(n) = — ,  (anrootsof ecot eR + hy =0) (28)
Rat + hy(Bhy + 1)
Il(m) = In(m) + Ilz(m) + Ila(m) (29)

where Iy, Iz, 11, are given by Egs. (17), (18) and (19), changing m for n. Note
however that in Eq. (17), T(r,) refers to the melting temperature at r,; there is no
summation over m implied. Also in Eq. (26)

=0 exp [ —x(aft’ + aif)] — exp [ — (" + xaiif
Climmit ) = —2 e (‘j\j)_“asn;f:?n 0 F et

£ ik

- e —xait) —exp(— At
ity = DRt — 0 00 @

sin (a.m - a'.,.)R sin (n'.m + a,,)R

U(mn) = T — o) (am T ) {32)
Q(f:m) = S21(i3m) + Szz(i’m) + S23(f1m) (33)
S24(f,m) = 815(sin amfy =~ an1 COS apf:) (34}

Sao(f,m) = 525(SIN Pz — SN Py — @mf2COS @nlz + amfs COSamty)  (35)

S5, m) = S5;{sin gmR — SiD aml> — anR cOS @R + s COS GT2) (36)
with the s;; given by Eq. (25).
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The [A;;] (¢ = 1,2,3 for core, mantle, and crust; § = 1,2,3,4 for nuclide species) are

(119X 1048[U,]  LI9XI10-B[U,] 119X 10~4[U,] |
8.7 [U,] 3.7[U,] 3.7 [U]
[Ay] = 'i[gg—l], ‘1[‘3% 'I[U—a]
. . 38.7
LN U o (U]
[ A, An Ay |
A, A Az
| A Age Ay
| A As Ay | (87

and the relations between [U,], [U.], [U;] as given by Eqs. (13) and (14) are

Qi.n) = Su(imt’) + Suimt) + Silint) (38)
Sa(f,nst?) = 0 5{SIn ety — an?y COS ay?y) 2
So{fnst) = shy{sin apry — SiDagf; — @nfz COS @yt + anfy COS ayty) (39)
ha(f,n;E) = 35;(sin anR — sinear; — anR cOS @R + anfs COS @afs) g
&} = pAyHjexp [M(T — #)1 (40)

A “complete” discussion of a planetary thermal history thus involves a two-stage
calculation with the present program: 1) the interval 0 <¢ < #, and 2) the interval
¥ <t < T (present).

Planetary density and [K]/[U] ratio are to be specified internally in the main
program,

VI. Input Data

The following input data are required to make a calculation, in the order an
format specified. v

(1) First card: Maximum number of time steps, maximum number of radial
steps (1615).

(2) Second card: Time increment At (seconds); T, Ty, Tu(R), T (5D15.5).

(8) Third card: r,, 7,, R, «, K (5D15.5).

(4) Fourth card: Maximum value of ordinate for temperature in degrees Kelvin
in plots (example, 3500°K) (5D15.5).
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(5) Fifth card: d, K, ¢/, &’ (5D155).
(6) Sixth card: [U,], f (5D15.5).

The output consists of a printout of the input data (Fig. 3) and the temperature
at specific times given as a function of radius (Fig. 4), and plots (Fig. 5), which
each give initial temperature, as well as temperature at time &,

The maximum number of radial steps in a calculation as well as the maximum
number of iterations MAXIT in the main program (solutions to transcendental
equations), are specified only in the main program. All input data are in calories
and cgs units, Temperatures are printed in degrees Kelvin and times in seconds
and years. Radii are given in centimeters,

While we have dealt with homogeneous spheres, the solution given by Lowan
(Ref. 2) is general enough to allow K, the thermal conductivity, to vary with
radius. Whether the problem dealt with can be solved analytically depends upon
whether expressions given in the origial paper can be integrated. There is also
10 necessary restriction on forms for distribution of radioactivity; uniform distri-
butions have been used here lacking any reason to suppose otherwise in the Moon,
but exponential distributions could be handled as well. Problems involving thermal
properties varying with temperature must be treated numerically.

A listing of the main program and subroutines is given in the Appendix.
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Fig. 3. Listing of “input data” and first five roots of transcendental equationtan (¢« *R) + a/h = 0O




TIME (SEC)
. 7500000+017

RADIUS
.8690000+007
. 1738000+008
«2607000+008
.3476000+008
-4345000+008
. 5214000+008
.6083000+008
. 6952000+008
. 7821000+008
.8690000+008
.8559000+008
. 1042800+009
. 11297004009
. 12166004009
. 1303500+009
+1390400+009
. 1477300+009
. 1564200+009
. 16511004009
. 17380004009

TIME (YEARS)
.2378234+010

TI+VS
.2339513+04
2341481404
.2343264+04
.2344303+04
.2341946+04
.23335929+04
.2320373+04
.2292757+04
.2251677+04
.2193342+04
.2111307+04
. 2001994+04
. 1866203+04
. 1700109+04
. 1503824404
.1279133+04
. 1026541404
.7675109+03
.5251613+03
.2893931+03

NO. OF
TERMS IN SUMMATION

62
47
41
38
36
28
26
26
25
25
24
24
23
25
24
27
27
35
41

75

Fig. 4. Listing of radius and temperature for accompanying plots for
t = 7.5 X 102¢ sec and [U] — 30 ppb

3500 :
P I N I O O |
3 T ¥ T T | T T T T T
1. T 2, IMITIAL TEMPERATURE DISTRIBUTION
3000
2500
"'l-.__\
* \\
. 2000 P,
(19}
5 ~
S N
Py N
2 1500 -
p '-_*-12_""‘—‘
jfx\
L~ N
AN
1000 > \C
- N\
N j,
L1~ h
500 f—3 __-#__.-Fh— N
TIME (SEC TIME { YEARS)
7.5000000+16  2,3782344+09
1 1 i 1 | | |

0 ‘ - -
0.0 20407 40407 60407 B0H07 10408 12408 L4408 16408 1.6+08
RADIAL DISTANCE, cm

Fig. 5. Temperature distribution in three—zone model at time indicated for 30 ppb U
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Appendix
Program SPHERE

TRUNs /R JEC3 0 J5N25Z+SPHERE 3 06+400/099183/516 « COMEL
15C4020 BLDG/183,BOX/516+CAMERAZ/GINFRAMES/ U
IFORs IS5 MAINSMAIN
c
C PARAMETER' MAXR == MAXIMUM NUMBER OF RADIAL STEPS.
C MAXIT =— MAXIMUM NUMBER OF ITERATIONS
C
PARAMETER MAXR =40
PARAMETER MAXIT=500
IMPLICIT OOUBLE PRECISION (A=HsU~Z)
UIMENSION A(3s4)sH(4)
COMMON /BLK1/ ALPHA (MAXIT) sALPHAM{MAXIT) »5(3+4) s XLAMDA (4]
PSI(MAXIT) sPSIBARIMAXIT) s XI1(MAXIT)
S21{MAXIT) sS22{MAKITI»S2Z3{MAXIT)»
SBARLIMAXIT) »SBARZ({MAXIT) +SBARZ(MAXIT)»
TPR T IME + XKAPPA s XKOXK+R3»SPRL3+4)
INTEGER JX(3)5JY{3)sNP(3)+INTERP(3)
REAL XYUMAXR»4}sROW2(2)
REAL YMAX
INTEGER SYMBOL(3)sTITLEZ(14) +XNAME(14) s YNAME(10) »ROW1{2+2}
DIMENSIQN LCONRG{4) »SUMD{4) s SUMI(4)+KOUNT LG4} IFLAGL4)
DATA XLAMDA/1.6B2D-17+e15820=17+34082D=17»+4880-17/
DATA PI/341415926535689793D0/
DATA JX/Lslal/JYZ7223s4/INTERP/Ls1s1/
DATA SYMBUL/GHL »6H2 »6H3 /
DATA TITLEZ2/6H +6H »6H s6Hls Tl +6H »6H '
1 ‘ 6H2e INIs&SHTIAL Te6HEMPERAsOHTURE Ds6HISTRIBsSHUTION »
2 6H »5H /
DATA XNAME/6H v6H s 6H s 6H »&6H +6H ,
6HRADIAL s6H DISTAZO6HNCE  s8H »6H +6H N
6H 16H i
DATA YNAME/6H 16H s6H s6H s SHTEMPER y 6HATURE »
1 6H Y1, »6H »&H /
DATA IDIM/MAXR/
TAU= 14435017
RHO=3+34D0
BETA=2,.D3
H{l1=6,6580-9
H{2)=6.341D-9
H{31=1e363D=7
H{4122+2500-8
ROW1§1sL)=6HTIME (
ROWLIZ2s1)=6HSEC)
ROW1{1s2)=5HTIME (
ROW11{2+2)=6HYEARS)
EPS=1.D-3
NCOUNT=9

£ W R

N

INPUT! N —=— KUMBER OF TIME STEPS
M —— NUMBER OF RADIAL STEPS

[aNala¥al

10 READ(5,500,END=40Q) HNsM
WRITE{(6:600) NoM
IF(M.LE.MAXR) GO TO 15
MTEMPaMAXR
WRITE{(64607) MTEMP
STOP

INPUTY DELT = TIME INCREMENT
VS —-= SURFACE TEMPERATURE
To ~—— tINITIAL' TEMPERATURE OF ACCRETING MATERIAL
TMC =— MELTING POINT AT ZERU PRESSURE
TMPR =— MELTING POINT GRADIENT
Rl == 'CORE' RADIUS
RZ =~ 'YMANTLE' RADIUS
R3 =- PLANETARY RADIUS
XKAPPA =- THERMAL OIFFUSIVITY
XK == THERMAL CONDUCTIVITY
ABMAX —- MAXIMUM OROINATE VALUE IN PLOTS (MINIMUM VALUE 15 ASSUMED
TQO BE O)

[aEalalalaXalakalaNatakalal
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16

[aF aNalalaXnl

[aRaNaXal

C

C

15

READ(535501) DELTaVSaTUSTMU»TMPRIR]L sR2aR2 s XKAPPA S XK

REAUD(52501 ) ABMAX

TMR1=TMO+TMPR* (R3~R1)
WRITE(69601) DELT oVS»TOsTMGs TMPRsTMR1sR1sRZsRIs XKAPPA XK ABMAX

TMAX=ABMAX

INPUTY D =~ THICKNESS OF INSULATING LAYER
XKPR ~= THERMAL CONDUCTIVITY OF INSULATING LAYER
TPR == IT=PRIME"

D1 == NEW THICKNESS OF INSULATING LAYER

READ{5s501) DeXKPR»TPR2D1
WRITE(6+608) DsXKPR
WRITE(6+610) TPRWD1

INPUTY UL
E

16

17

992

READ(5+501) ULlsF
WRITE(G63613) ULsF

U2={1leD0O=F)*l

USSUL#(RIAXI=RZARILFR(RZUNI-RI¥¥3) |/ (RIHEI-R2H43T)

FACl=].19D-4%BETA

FAC2=137.7D0/138.700

FAC3=1.D0/138.7D0

Atl»l)=FACI®Ul
Al2s]1)=FACLW¥YZ
Al321)sFACL#Y3
Alls2)m3,78U]1
Al292)=3.7T%#U2
Al3e2)=3,7#U3
All»3)=FACI*UL
Al293)=FACI®YZ
A{3s3)=FACINM3
Allst)sFACZ2¥UL
Al2r4)=FACZRUZ
Al3+4)=FAC2HU3
DIF=TAU-TFR

DO 16 J=ls4

EX1=DEXP {XLAMDA{ JI*TAV)
EX2=DEXP (XLAMDA(J)*DIF)

00 16 I=1»3

Sl J)eRHOFA{L » JI#HHIJ) REX]
SPRULyJ)=RHO®A (1o J )} #HIJI#EX2

CONTINJE

WRITE(62602) ((S(Ied)sJulsd)sl=103)
WRITE{64+6031 XLAMDA

20 17 I=].3
NPCliaM
CONTINUE
XKOXK=XKAPPA/XK
RIR1=R1%*R1
R3R3=RI®RI

SIGMA=XKPR/ (XK¥*D)

HO=5]GMA~1+/R3
HH=HO*H(
TIME=O.DU

STATEMENT 999 DEFINES NEW TIME ORIGIN »T-DELT
TIME= 14387584017

OELTR=R3/M

C OBTAIN RDOTS OF' TANIX¥RI)+{X/HU) =0,

c

18

DO 18 I=1»MAXIT

ALPHALL ) =ALPH( 1 +HO» RI v JFLAG)
IF{JFLAG.EQs() GO TO 18

WRITE(6,0091}
GO TO 10
AK=ALPHA(I)
AKAK=AK®AF,
ARR1=AK*R]
AKRZ=AK¥R2
AKR3«<AK¥R3

AARLIR1=AKAK*RIR]1
SAKR1=DSIN{AKRL)
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CAKR1sDCOS(AKRL)
SAKR2=DS IN{AKR2)
CAKR2=DCOS(AKR2)
SAKR3=DSIN{AKR3)
CAKR3=DCOS(AKR3)
PS1{1)n{HH+AKAK ) / (RIWAKAK+HO* {R3EHO+10 ) )
XILI={TO/AKAK) * ( SAKR1-AKR1#CAKR] )
1 +U(THRI~TU) / CAARIRI*AKAK) )% {3 % | AARIR1~24 ) #SAKR ]~
2 AKRI*#(AARLIR1=6+ ) #CAKR1)
X[12=( ( TMO+TMPR®R3 ) /AKAK) ¥ (SARRI=SAKRL~AKR3*CAKRI+AKR1®CAKR])
1 —(TMPR/ (AKBAKAK ) ) % (2 . #AKM (R3#SAKR3=R 1 *SAKR] )
2 ~(AKAK®R3R3-20 ) #CAKR3+ [AARIR1 -2+ ) #CAKR1)
XI13=(~VS/AKAK ] * (SAKR3=AKRI*CAKR)
XILCI)=XI11+XI12+X113
52141 )=SAKR1=-AKR1#CAKR]
522 (11=5AKRZ-SAKR1-AKRZ#CAKR2+AKR1#CAKR ] -
$523(]1)=5AKRI=SAKR2-AKRI#CAKRI+AKR2 #CAKR 2 .
. 1% CONTINUE
190 SIGMAl=XKPR/(XK®D1)
Hl1=STIGMAl-1a/R3

HlIHl=H1#HI

C .

C OBTAIN ROOTS UF' TANLX®R3)+(X/H1)=Q,

C
0 230 [=l.MAXILT
ALPHAM{ ] ) mALPHI T sH1 sR3,JFLAG)
IFIJFLAGJEQeD) GO TO 210
WRITE(6+609)
GO TO 10

210  AKaALPHAMLU1}

AKAK=AK®AK
AKR1=AK#R1
AKRZEAK®R2
AKR3=AK®*R3
SAKR1=DSIN(AKR1}
CAKR1=DCOS(AKR])
SAKR28D5IN{AKRZ)
CAKR2=DCOSIAKRZ)

SAKR3=DSINIAKR3)
CAKR3aDCOS(AKKR3 )
PSIBAR( T }=(HLIH1+AKAK )/ (R3MAKAKHH]IW¥(RI*H1+14)}
SOAR1(1)=3AKR1-AKR1*#CAKRL
SBAR2 (] 1=5AKRZ~SAKR1-AKR2*CAKRZ+AKRL®CARKRL
SBARA(] 1 s5AKR3I-SAKRZ-AKRI*CAKRI+AKRZ®CAKRZ
230 CONTINUE
0O 28U 1al4N TLOOP OVER TIME
TIME=TIME+DELT
TIMEYR=TIME/31536007
ROW2(11=TIME
ROW2(2)aTIMEYR
ReQasDu
WRITEIG+611) TIME,TIMEYR
DO 270 J=l.M tLOOP OVER RADIAL DISTANCE
R=R+DELTR
C
C IN1TIALIZE COMNVERGENCE FLAGS AND SUMS
C
1CONRG(1}=0
KOUNT{1)=Q
IFLAGt1)=0D
SUMOLL1)=(.D0
SUM1(1)=0.D0
DO 25U K=lsMAXIT
WKeALPHAMIK)
AKAK=AK#*AK,
AKR=AK#R
SAKR=DSIN(AKR)
X1lsX1EX LAKAKsAK»K)
SUML(L)=SUML{1)+PSIBAR(K)#SAKR*X]
IF(DABSC{SUMII1)=-SUMOI11)/5UML{1}).GTLEPS) GO TO 240
KMl=K-1
IF{IFLAG(]1) eNEKM1) KOUNTI(1)=1
IFUIFLAGIL) eEQeKMLl) KOUNT(1)aKOUNT(1)+]
IFLAGLL) =K
240  SUMOL1)=SUMLiLl)
ICOARG(1 )=k
IF(ROUNT (1) oGTaMCOUNT) GO TO 26U

ORIGINAL PAGE IS
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250 CONTINUE

260 Tls2.%#3UML(11/R
XY{Jpl)=R
RY{Js2)=T1+VS
IF(R+GT4R1l} GO TO 262
XY{J23)=TO+(TMR1-TO I #R¥R/R]1R1
GO TO 264

262 XY{J»3)=TMO+TMPR* (R3-R)

264 MWRITE(6+612) RaXYUJ22)sICONRGLL)

270 CONTINUE

CALL KCPLIXY,IDIMyUsuXaJYshP s INTERP3SYMBOL s TITLEZ ¢ XNAME » YNAME »
1 ROW1»ROW2+2)
CALL GRIDY(=olsYMAX+GsQs0rGH
CALL KCPL1{242s1}
280 IONTINUE
GO TO 10

400 STOP

500 FORMAT(16i5)

501 FORMATISD15.5)

502 FORMAT(4D15.5)

600 FORMAT{(*Q N Mi/1H $215)

601 FORMAT{*OTIME INCREMENT SURFACE TEMPERATURE "PINITIAL'* TEMPER
1ATURE QF ACCRETING MATERIAL MELTING POINT AT ZERQ PRESSURE'/1H »
ZD14¢ 798X sD14.7232Xs014+7919Ks 0147/ VOMELTING POINT GRADIENT
3 TMR1 *1CORE' ! RADIUS PIMANTLESY RADIUS PLANETARY RADIU
45 THERMAL DIFFUSITIVITY'/1H »8XKeD10aTr2ZXslldeTo3XsD1lGeTr4Xel14e7
5»5XsDLkaTrllXsUl4a 7/ tUTHERMAL CONDUCTIVITY MAXIMUM ABSISSA VALUE
6 IN PLOTSY/L1H »6Xs014eT219X2D140 7} )

602 FORMAT{*OSOURCE TERMS'/1H »4D15e5/1H #4015e5/1H »401545)

603 FORMATLrO DECAY CONSTANTS /v KaQ 19 siXsDlée?/7 TH2329192Ry
1 D14.7/¢ U2350%33XeD1l4eT/% UZ3BV 1 23Xs01447)
604 FORMAT{'v TIME'/1H sD14.77°0 RADIUS TL+VS

TR+VS VaTI+TR+VS'}

605 FORMATILIH »4Dl4«794110}

606 FORMAT('0 PARTIALITI) PARTIAL(TR) FLUX 1 FLux 2
1 TOTAL FLUX'/1d »5014.7)

607 FORMAT('ONUMBER OF RADIAL STEPS EXCEEDS MAXIMUM DIMENSION®/
1 v OMAXIMUM DIMENSIONY' 4 14)

608 FORMATIVOTHICKNESS OF INSULATING LAYER THERMAL CONODUCTIVITY OF 1
INSULATING LAYER'/1H #+15XKeD147029X4D14e7)

609 FORMAT(*UFAULTY ROOT OBTAINED FROM SOLUTION TO!' TANIX®R3)+(X/R3)=0
1. COMPUTATIONS TERMINATED«*)

610 FORMAT{'Q VIT=PRIME Y NEW THICKNESS OF INSULATING LAYER'/
1 1M #D14+7323X90D14.7)

611 FORMAT(10 TIME (5ECQC) TIME (YEARS)'"/1H 20144 7s5XsD14a7/
1 1HO»BX e YRADILISY 99X 1TL4VSY)

612 FORMAT(1H +D14e73El4e7,28Xs110)

613 FORMATL'Q vl F'/1lH »2D1l4a7}
END

*FOR»1S X1EXsX1EX

DOUBLE PRECISION FUNCTION X1EX{AKAK»AK»K)

PARAMETER MAXLT=500

IMPLICIT DODUBLE PRECISION (A=H»0Q-2)

COMMON /BLEKL/ ALPHA (MAXIT)sALPHAM(MAXIT) »S(394)sXLAMDALS}»
PSIIMAXIT) +PSIBARIMAXITI»XI1(MAXIT) s
SZ1IMAXIT)I522(MAXIT) #3523 (MAXIT)
SBARL{MAXIT) »SBARZIMAXIT) +»SBARI(MAXIT )
TPR,yTIME y XKAPPA o XKOXK3R3 p5PR(324%)
DATA EPS/L1l.0=5/NCOUNT/9/

KOUNT=Q

IFLAG=(

SUMO=w. DO

SUMl=0.D0

DO 20 I=1+MAXIT

Al=ALPHALY)

AlAL=AI®AL

DIF=Al~AK

SUMEAL+AK

SDR3=DSINIDIF*R3I)

S55R3IsDSIN{SUM*R3}
POWER1==XFRAPPARALAI #TPR=XKAPPA®AKAK®TIME
POWERZ=~XKAPPA* (ATAI*TPR+AKAKETIME)
EX=sDEXP{PUWERL}

EX2=DEXP {POWERZ)

XLI1EX=XELlJ)#EX

XI2EX=20.D0

wn e
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i0
<0

30
40

50

DO B Julsk

POWER3=— { XLAMDA{ J) *TPR+XKAPPARAKAK*TIME)

CBAR= (EX2-DEXP (POWER3) )/ { {XLAMDA (J} =XKAPPA*ALAL J*ALAL)
Q=S (1sJ) 521 (1145129 JI#S2Z(1I 453201 %523 (1)
X12EX=X12EX+CBAR#Q

ONTINUE ‘

X12EX=XI2ZEX*XKUXK
SUML=S5UML+PSTLEI* (X 1EX+XI2EX ) *¥L(SDR3/DIFI=155R3/5UM)
IFLDABS( ( SUM1=5UMD ) /5UM1 1 +GT.EPS) GO TO 10

IM1=1~1

IFLIFLAGSNE . [M1) KOUNT=]

IF(LIFLAGEQe IM1) KOUNTKOUNT+1

1FLAG=]

IF(KOUNT +GT «NCOUNT) 60 TO 40

SUMD=SUM1

CONTINUE

WRITE (6530]

FORMAT(*GFAILURE TO CONVERGE IN XIBAR1')
POWER2==XKAPPARXAKAK®TIME

Ex2msDEXP {POWER2)

DO 50 J=ls4

POWER3Im=XLAMDA{J) *TiME

CBARPRs (EXZ-DEXP(PUWER3 1)/ L {XLAMDALJ) =XKAPPA®AKAR ] *AKAK )
QPRESPR{1sJ)¥SBARL (K)+SPR{Z,J 1#SBARZ(K) +SPR(3J )1 #SBAR3 (K)
SUM1aSUML+XKOXK*CBARPR*QPR

CONTINUE

X1EX=5UM1

RETURN

END

'FOR» IS5 ALPHsALPH

<

DOUBLE PRECISION FUNCTION ALPHIKsH#R3»JFLAG)
IMPLICIT vOUBLE PRECISION (A-He0Q-2)

C FUNCTION ROUTINE WHICH CALCULATES SUCCESSIVE POSITIVE ROOTS OF THE
C FUNCTION®' TAM{ALPHA#R3) + (ALPHAZH) = U.

C

10
20

25
30

40

50

55

DATA P1/3.1415926535897932400/

DATA NCOUNT/ 4/

KOUhTe]

ICHECK=Q

IF{KeNEs1l) GO TO 10

WRITE(6:5)

FORMAT (' OROOTS OF EQUATIONt TAN(ALPHER3Z) + (ALPH/H) = Q.V)

JFLAG=0 .

STEP=PI/R3

STEPO2sSTEP/ 2.

EFS=H/1000.

X=STEPOZ+EPS

ONEQH=] ¢ /H

GO TO 20

XakK*STEP=-STEPOZ+EPS

DO 30 I=1s200

IMl=]-1

THETA=X®R3

TEMP=1./DCOS{THETA)

FaDTANI{THETA)+X/H

FPReR3¥TEMP®TEMP+ONEOH

ANEW=X~F /FPR

IF{DABS{ LXNEW=X)/XNEW) «GTe1ub=12) GO TO 25

IFUICHECK+NELIME) KOUNT=]

IFUICHECK«EQ IMl) KOUNTSKOUNT+1

JICHECK= | -

IFCROUNT o GT o NCOUNT) GO TO-5

XaXNEW o

CONT INUE

WRITE{6s40) XsXNEWsF

FORMAT{YONEWTON METHOD FAILED TO SATISFY TERMIMATING CRITERILA
X XNEW Fr/71H ¢52X+3016+8)

STGP

ALPH=XNENW

WRITE(6»55) KsXNEW

FORMAT(1IH »110sD22.12)

MID=KRPL/R3

XLBND=XMID=-STEPO2

UBOQUNDa XMID+STERPOZ

IFLALEBNDoLT o Xe ANDo X o LT cUBOUND } RETURN
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WRITE(6+60) KsXLBND »X+UBOUND
60 FORMAT{'O50LUTION NOT PROPERLY BOUNDED [

1 X UPPER BOUND'/1lH »30Xe1543D16+8)
JFLAG=]
RETURN
END
TMAPs L
L1 LIB*PLOTS
tXQAT
3 20
145016 250+ 450 1360,
1.488008 1,714008 l. 738008
3500,
100000, «00001 «3D+17 100U
«3000D=-07 1.
la5016 1306 250, 1373
3 20
1a50D16 250 4504 136U,
1488008 1.7140D08 1. 738008
3500,
100000, «0000C1 «3D+17 1000.

«40000-07 1.

LOWER BOUNL

4+ BD=6
la&GD~2 1.10D=2
Se QD=6
4+ 8D~6
16402 1¢100-2
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