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SUPERSONIC FLUTTER OF PANELS LOADED 

WITH INPLANE SHEAR 

James Wayne Sawyer 
Langley Research Center 

SUMMARY 

A modal flutter analysis for biaxially loaded, orthotropic panels, using linear piston- 
theory aerodynamics, has  been extended in order  to include the effects of inplane shear  
loading. Flutter boundaries for  shear  loads up to buckling a re  calculated for simply sup- 
ported, isotropic panels of various length-width ratios and for a square, isotropic panel 
with elastic boundary conditions along the leading and trailing edges. Fo r  the simply sup- 

ported panels, the shear loading is shown to  have a large destabilizing effect when the 
buckling load i s  approached. For  such cases ,  the degradation in flutter resistance is 
comparable to that exhibited by panels near buckling caused by biaxial loading. The out- 
of -plane flexibility of the boundary supports (deflectional springs) a t  the leading and trai l -  

ing edges is shown to have a large destabilizing influence on the flutter of unstressed 
panels, but at  the point of buckling the springs may be either stabilizing o r  destabilizing. 
The flutter boundaries were used to define conservative design curves. The sample cal-  
culations made with these design curves indicate that practical panels, which have other- 
wise been adequately designed, could become flutter crit ical if the inplane shear  loads 
approach the buckling value. 

INTRODUCTION 

Although a large body of flutter data is reported in the li terature (see ref. I ) ,  most 
panel flutter studies have ignored the effects of inplane shear  loading. However, with the 

advent of present day high performance aircraf t  and reusable space vehicles, new surface 
structure designs have emerged which utilize shear-strength capability. For  example, 
the large cargo-bay door of the shuttle orbiter is designed to transmit loads through shear .  
Unfortunately, no experimental data exist on the flutter of panels loaded in inplane shear ,  
and the only analytical study available (see ref. 2) is limited to simply supported, isotropic 
panels with small length-width ratios. Therefore, an analytical study has  been undertaken 
in order  to provide a better understanding of the effects of inplane shear  on the flutter of 

panels. In the present investigation, a modal analysis for the flutter of biaxially loaded, 
orthotropic panels with flexible supports and using linear piston-theory aerodynamics is 



extended to include the effects of inplane shear. Calculations a r e  made for  simply sup- 

ported and spring-supported, isotropic panels with inplane shear loads up to the point of 
buckling in the presence of airflow. The resulting flutter boundaries a r e  used to define 

conservative, simple-to-use design curves. 

SYMBOLS 

Values a r e  given in both SI and U.S. Customary Units. The measurements were 

made in U.S. Customary Units. 

*mn Fourier ser ies  coefficients (see eq. (12)) 

a panel length (x-direction) 

b panel width (y-direction) 

c free-stream speed of sound 

Dx panel bending stiffness in x-direction 

D~ 
panel bending stiffness in y-direction 

D x ~  
panel twisting stiffness 

E modulus of elasticity of panel material 

ga aerodynamic damping coefficient (see eq. (13e)) 

gb bending structural damping coefficient 

g m membrane structural damping coefficient 

h panel skin thickness 



Kd,Kr,Kt deflectional, rotational, and torsional spring constants, respectively, 
per unit length 

, nondimensional deflectional, rotational, and torsional spring constants, 
respectively (see eqs. (10)) 

- 
K~Ybu 'value of -i? for inplane shear-buckling load in presence of airflow 

M Mach number 

m number of half -waves in x-direction 

Nx,Ny uniform inplane normal loads per  unit length in x -  and y-direction, 
respectively 

N x ~  uniform inplane shear  loads per  unit length 

n number of half -waves in y -direction 

P see equation (3) 

9 dynamic pressure of airs tream 

r ,S integers 

t time 

V potential energy 

w lateral deflection of panel 

wmn lateral  deflection of panel describing shape of natural mode of vibration 

X function describing shape of natural mode of vibration in x-direction 



X ,Y Cartesian coordinates of panel (see fig. 1) 

(Y complex frequency 

"inn' complex natural frequency 

0 compressibility factor, //M' - 1 

Y panel mass  per unit area 

1) nondimensional coordinate, y/b 

A cross-flow angle 

2qa3 
dynamic-pressure parameter, - 

PD1 

A, dynamic-pressure parameter at flutter for zero s t ress  

Px,Py Poisson's ratio in x- and y -direction, respectively 

5 nondimensional coordinate, x/a 

P free-stream a i r  density 

w frequency 

fundamental frequency of simply supported beam (radians per sec) ,  
a 

Subscripts: 

m .r number of half -waves in x-direction 

n,s number of half -waves in y -direction 

ANALYSIS 

Governing Equations 

A flutter analysis is presented which extends the analysis of reference 3 to include 

inplane shear loads. Because of the similarity of the two analyses, only equations o r  



solution procedures which differ from those presented in reference 3 a r e  discussed in 
detail. The panel and coordinate system shown in figure 1 is for a flat orthotropic panel 

with a supersonic flow at Mach number M at an arbitrary cross-flow angle over one 
surface. The panel edges a t  x = + a  a r e  supported by deflectional, rotational, and tor-  

2 
sional springs; the other two edges (y = 0, and b) a r e  simply supported. The panel is 
loaded by uniform inplane normal loads Nx and Ny (positive in compression) and by a 
uniform inplane shear load NXy. Aerodynamic loading is given by linear piston theory 
and includes aerodynamic damping. The governing equations can be developed using the 
virtual work of the system a s  given by the following equation written in te rms of nondi- 
mensional orthotropic panel properties. (This equation corresponds to the expression for  

the f i r s t  variation of the potential energy in ref. 4): 

In equation ( l ) ,  Kd, Kr, and Kt a r e  the respective deflectional, rotational, and 
torsional spring constants per unit length; 

D2 = D~ 
1 - PxPy 

and 



After integration by parts equation (1) becomes: 

According to the principle of virtual work 6V must vanish, and, since 6w, 6 - , and 

(3 (2) 
6 - a r e  independent and generally not zero, the coefficients of these terms must be 
zero independently. The coefficient in the double integral term set  equal to zero is recog- 
nized a s  the governing equation, and the coefficient in the single integral terms se t  equal 
to zero is recognized a s  the boundary conditions. 



Vibration Solution 

The flutter solution to equation (4) is based on a modal analysis which employs the 

natural modes and frequencies of the panel. These modes and frequencies can also be 
obtained directly from equation (4) after setting the aerodynamic pressure q equal to 
zero 2nd assuming the following form for w: 

where ffmn is the complex damped natural frequency and wmn is the natural mode 
shape. Substituting e k a t i o n  (5) into equation (4) gives the following governing equation 
and boundary conditions: 



In equation (6), the structural damping has been included in the same manner a s  in refer-  

ence 5 by multiplying each of the bending te rms by 1 + igb and each of the membrane 
te rms by 1 + ig,. The structural damping considered in this manner was shown in ref -  
erence 6 to give good agreement with the experimental data. The spring constants have 
been nondimensionalized a s  follows: 

The inclusion of Nxy in equations (6) and (8) overly complicates the solution for 
natural modes and frequencies; therefore, these t e rms  a r e  omitted fo r  simplicity. How- 
ever ,  for the flutter solution, both Nxy t e rms  (eqs. (6) and (8)) a re  included in the gov- 
erning equation. (See the section entitled "Flutter Solution.") Equations (6) and (9), with 

Nxy = 0, a r e  identical to those solved in reference 3 and the method of solution is dis- 

cussed in detail therein. 

Flutter Solution 

A Galerkin-type flutter solution can be obtained using the natural mode shapes and 
frequencies and the following governing equation obtained from equation (4): 



The single integral term in the above expression is a boundary te rm and does not usually 
appear in the governing equation. However, since the mode shapes employed in the flutter 
solution a r e  defined with NXy = 0 (see section entitled "Vibration Solution"), they do not 

satisfy the boundary conditions of equation (8). Therefore, this term must be included a s  

a part  of the governing equation. (See ref. 7 ,  p. 338.) 

The flutter (eq. (11)) can be solved by assuming a solution in the form 

where a is one of the complex frequencies. The flutter solution is obtained by substi- 
tuting equation (12) into equation ( l l ) ,  with wmn = Xmn sin nsq, multiplying through by 
Xrs sin snq, and integrating over the total area. Performing the integration and rea r -  

ranging the te rms result  in the following se t  of simultaneous equations: 

m m 

+ A cos A 1 A Qmms + 2Aa sin A [I - (-l)S+n] 
4 

r=l rn Pmrns 7r4b s=l Z .2. 

- m m 
2% a Ars ns[l - (-I)'+~] = 

+ f 6 1 m n s  - n x )  .2 - ,2 
m=l  n=l  Pmrns  

where 



and 

For a nontrivial solution to equation (13a), the determinant of the coefficients of 

A,, must equal zero. A standard eigenvalue routine for a square complex matrix is 

used to calculate the eigenvalues ff bf equation (13a); the values of ff render the deter- 

minant equal to zero. 

Flutter is considered to occur for the lowest value of the dynamic-pressure param- 
e ter  h for  which the imaginary part of one of the frequencies is greater than zero (no 

damping) o r  vanishes (damping). Certain combinations o r  values of inplane loads (either 
N,, Ny, and/or N,~) result  in the condition for  some value of h where both the real  
and the imaginary parts of the frequency vanish. This load condition is the buckling load 
in the presence of airflow fo r  the panel. 

RESULTS AND DISCUSSION 

Range of Parameters  

Solutions of the flutter determinant resulting from equation (13a) were obtained for 
isotropic panels ( Dl - - D = D12) with various length-width ratios subjected to inplane 
shear  loads. The length-width ratios were varied between 0.5 and 5.0 with combinations 
of inplane shear loads Nxy and inplane normal loads Nx between 0 and the buckling 

load. In order to keep the variables to a reasonable - number, the inplane normal loads Ny, - 
the rotational and torsional spring supports Kr and Kt, respectively, and the flow angle 
A were se t  equal to zero fo r  all  calculations. Aerodynamic damping ga and structural 
damping in bending gb were varied over a realistic range. Membrane structural damp- 
ing gm was set equal to zero. 

Convergence 

Previous studies have shown that, fo r  converged flutter solutions of unstressed pan- 
e ls ,  only one modal te rm is required in the cross-stream direction; the number of modal 

te rms required in the flow direction depends on the panel orthotropy and the length-width 
ratio. However, when inplane shear loads a r e  present,  several modal te rms a r e  required 
in each direction. This is evident in figure 2 where sample convergence results a r e  shown 
by plots of the dynamic-pressure parameter h against the panel frequencies for simply 



supported, isotropic panels with various inplane shear loads and for a /b  = 0.5 and 2.0 
(figs. 2(a) and 2(b), respectively). The peak of the frequency loop represents the critical 
value of A for which flutter instability occurs. The data show large reductions in flutter 
stability with inplane shear  loads; these reductions a r e  discussed in more detail in the 

next section. The curves shown were calculated using ten modal te rms in the streamwise 
direction and four modal te rms (10,4) in the cross-stream direction. Also shown in fig- 
ure  2 a r e  the flutter values calculated using (4,4) modes, represented by the circle sym- 
bols, compared with values published in reference 2 (using (4,4) modes), represented by 
the cross  symbols. The data indicate that, for  a/b = 0.5 (see fig. 2(a)), converged 
solutions are  obtained when using (4,4) modal terms; however, for a/b = 2.0 (see fig. 2(b)), 
(4,4) modal te rms a r e  not converged. Note in figure 2(b) that the flutter values calculated 
using (10,3) and (12,4) modal te rms,  represented by the square and diamond symbols, 
respectively, a r e  essentially the same as the (10,4) results and so verify the convergence 
of the (10,4) mode solution. Similar data obtained for plates with an a/b up to 5 indicate 
that (10,4) modal te rms in the analysis give converged solutions. 

Effect of Inplane Shear 

Flutter of simply supported panels.- The effect of inplane shear loads on the flutter 
of simply supported, isotropic panels may be seen in figure 3 where flutter boundaries a r e  
shown a s  a function of Kxy for  a / b  values of 0.5, 1.0, 2.0, 3.0, and 4.0. Calculations 
a r e  made for the values of aerodynamic damping, ga = 0 and g, = 0.1, and of structural 
damping, gb = 0 to gb = 0.05. The termination point of the flutter boundaries, shown - 
by the circular symbols, corresponds to the value of Kxy at which buckling occurs in the 
presence of airflow. The static buckling values of- Kxy a r e  also shown by the square 
symbols in figure 3, and a r e  in agreement with the values presented in reference 8. 

When the panel is loaded in inplane shear ,  the critical value of h is lowered signif- 
icantly below the value for  zero s t ress .  For  a/b = 3.0 and a /b= 4.0 (see figs. 3(d) and 
3(e)), certain values of gxy near buckling result in an anomalous condition of flutter for 

zero velocity. This condition occurs for ga = gb = 0 and is a result of a shift in the 
order  of the natural frequencies. The result is similar to the data shown in reference 5 
fo r  panels with inplane normal loads. IncIuding the aerodynamic and the structural damp- 
ing in the calculations removes the h = 0 flutter condition. Usually the lowest two f re -  
quencies coalesce to define the flutter boundary. However, for  certain values of Exy 
and zero damping, the frequencies associated with the higher modes coalesce and result 
in unstable conditions which, subsequently, disappear a s  ky is either increased o r  

decreased. Such higher mode flutter conditions were discussed in detail in reference 2 
and were not considered valid flutter points. In addition, these higher mode flutter condi- 
tions can be removed by even a small amount of structural damping; therefore, they have 
been ignored in presenting the results  contained herein. 



Flutter of panels on deflectional supports.- The influence of deflectional spring sup- 
ports on the flutter of square panels with inplane shear  loads and with ga = 0.1 and 
gb = 0.01 may be seen in  figure 4. In this figure, A is shown a s  a function of zxy 
for various values of Ed, the nondimensional spring constant f o r  uniform springs a t  the 
leading and trailing edges.  he - 0 represents f ree  edges) F o r  small values of - d L 
Kxy, decreasing the spring stiffness Kd results in a large reduction in A. Decreasing 

the krl also results in a reduction of the buckling load with airflow. However, a t  the - 
point of buckling, decreasing the Ed may result in either lower (destabilizing) o r  higher 
(stabilizing) values of A. 

Flutter of panels with inplane normal loads and shear loads.- The effects of inplane 
normal loads, in combination with shear ,  on the flutter of simply supported panels with 

a/b = 1.0 and a/b = 4.0 a r e  shown in figures 5(a) and 5(b), respectively, where values of 

h/Ao a r e  shown as a function of term A. is the value of A of the 

unstressed panel and 
xybu 

is the shear buckling value when Nx = 0 and with airflow. 

Curves a r e  presented for  ga = 0.1, gb = 0.01, and for  Nx/Nxy = 0, 0.7, 3.0, and 5.0. As 
can be seen, increasing the normal loads results in a more rapid reduction in A/ho as  

% /k 'Ybu is increased. However, the minimum values of A/ho, o r  the values of A/A0 

a t  the point of buckling, a r e  not changed significantly by inplane normal loads. This con- 
dition is in contrast to the flutter results obtained when Ny is added to panels loaded 
with N,. (See ref. 9.)  It should be noted that, for a/b = 4.0 (fig. 5(b)), the value of A 

for flutter is a small percentage of A, for values of Kxy above 70 percent of the buck- 
ling value. 

Flutter of Panels Loaded to Buckling 

Flutter design curves for shear.- In the design of panels for  flutter it  is desirable 
to have solutions which a r e  widely applicable and simple to use. Also, since the actual 
flight-load conditions may not be well known, the designer may prefer to design against 

the most critical flutter condition. For panels with inplane loads, the most severe flutter 
conditions have been shown in the preceding sections to occur a t  o r  near the point of 
buckling. 

The flutter boundaries for isotropic panels at the point of buckling in shear a r e  pre- 

sented in figure 6 by the solid curves where values of A a r e  shown a s  a function of a/b 
fo r  gb = 0.01 and gb = 0.04. The flutter boundaries do not vary monotonically with 

a/b for  small values of a/b and gb but do, o r  tend to do so, a s  a/b o r  gb is 

increased. Although the flutter boundaries given by the solid curves in figure 6 may be 
used as a conservative design criteria,  more simplified curves may be defined by the 
minimum points of the actual flutter boundaries such as shown by the dashed curves in 



figure 6. Although these curves a r e  more conservative than necessary fo r  certain values 

of a/b (near 1.25 and 2.75 for gb = 0.01), their simplicity should justify their use in 
most practical design applications. 

Design curves s imilar  to the dashed curves in figure 6 have been defined for  several 
values of g and a r e  presented in figure 7 by the solid curves, where X is shown a s  a b 
function of a,% on a logarithmic scale. The resulting shear-load design curves a r e  
nearly parallel and, for a/b 1 2.0 and gb 2 0.01, they a r e  a family of straight lines that 
may be approximated by the equation 

For  a/b 2 2.0, the above equation may be more conservative than necessary. For 
gb 5 0.01, the design curves defined as above a r e  so  restrictive that flutter boundaries 
similar to the solid curves in figure 6 will probably need to be used. 

The design curves obtained from reference 10 for simply supported, isotropic plates 

with inplane normal loads a r e  also shown in figure 7 by long dashed curves. The normal- 

load design curves (see ref. 10) were developed with a/b values up to 10.0, whereas the 
shear-load design curves were developed with values of a/b 5 5.0. Because of the large 
number of modal te rms required for converged flutter solutions when shear  loads a r e  

included, i t  is impractical to obtain flutter boundaries fo r  a/b values much above 5.0. 
However, because of the similarity of tile shear-load and normal-load design curves, i t  
seems reasonable to expect the shear design curves to be valid for  values of a/b to 10. 

Although the normal and shear-load design curves show almost identical variations 
with a/b, the panels subjected to normal buckling loads will flutter at a lower value of X 

than will the same panels subjected to shear  buckling loads. Also, the panels subjected to 
a combination of inplane shear  and normal loads up to the point of buckling were shown 

(see the section entitled "Flutter of panels with inplane normal loads and shear  loads") to 
experience flutter at approximately the same value of h a s  do the panels subjected to 
shear buckling loads only. Thus, the normal-load design curves can be conservatively 
used for applications involving either inplane shear  o r  normal loads o r  combinations of 

these loads. 

The flutter design curves for shear  loading and for gb = 0.01 a r e  presented in a 

different form in figure 8 where q/BE is shown as a function of h/b for  panels with 
various length-width ratios. The shear design curves a r e  extended to a/b = 10.0 by 
the approximate equation (14) and a re  shown by the dashed lines in figure 8. The result- 
ing curves show the effect that the panel dimensions have on the flutter speed. Increas- 
ing the panel thickness h/b and decreasing the length-width ratio a/b both result  in 
an increase in the flutter speed. For thin panels (h/b small), the panel length-width 



ratio a/b has  very little effect on the flutter speed. For thick panels (large h/b), 
increasing the panel length-width ratio resul ts  in a substantial reduction in the flutter 

speed. 

Application of shear design curves.- One of the early shuttle cargo-bay door designs 

consists of a thin aluminum skin reinforced with hat-section stiffeners, the details of which 
a r e  shown in figure 9. The stiffeners were spaced 13.2 cm (5.2 in.) apart parallel to the 
flow; they terminate a t  f rames spaced 58.4 cm (23 in.) apart transverse to the flow. The 
aluminum skin, which is 0.076 cm (0.030 in.) thick, is covered externally with an insula- 
tion material (not shown) for thermal protection during reentry. The most critical period 
of shuttle flight for panel flutter occurs during ascent when the door has high torque loads 
which, fo r  the early design, cause local shear buckling in the thin aluminum skin. For flut- 
t e r  calculations the effect of curvature should be small  and the possible beneficial effects 
of the external insulation a r e  neglected. Thus, consider the skin between stiffeners a s  an 
isotropic flat plate simply supported on all edges with a/b = 8.84 and h/b = 0.012. For 

these values, the curves in figure 8 give values of q/PE of approximately 12 X lo-' or a 
value of q/P for  aluminum of approximately 8.6 kPa (180 psf). Since the shuttle may 

experience values of q/P up to 48 kPa (1000 psf), local panel flutter could occur on a 
door surface with this design for inplane shear  loads up to the point of buckling. If h/b 
is doubled without changing the value of a h ,  q/p fo r  flutter would be increased by 
almost a factor of 8 ,  which would provide an ample flutter margin. 

CONCLUDING REMARKS 

A modal flutter analysis for  biaxially loaded, orthotropic panels using linear piston- 
theory aerodynamics has been extended in order to include the effects of inplane shear 
loading. Flutter boundaries for shear loads up to buckling a r e  calculated for simply sup- 
ported, isotropic panels of various length-width ratios and for a square, isotropic panel 
with elastic boundary conditions along the leading and trailing edges. 

Convergence studies for panels with inplane shear  showed that several modal terms 

a r e  required in the cross-stream direction a s  well a s  in the streamwise direction. Thus, 
a large total number of modal te rms a r e  required for convergence. For panels with 
aspect ratios above 5.0, the number becomes so large that flutter calculations by the 
normal-mode method a r e  impractical. 

For  simply supported, isqtropic plates, inplane shear  loads have large destabilizing 
effects and, when loaded to buckling, may reduce the flutter dynamic pressure by approxi- 
mately the same amount a s  inplane normal buckling loads. Deflectional springs on the 
leading and trailing edges have a large destabilizing influence on the flutter of unstressed 
panels, but at the point of buckling the springs may be either stabilizing o r  destabilizing. 



Flutter design curves were developed for panels loaded to buckling in shear.  These 

curves show the flutter dynamic pressure ,  fo r  panels with length-width ratios above 2.0, 
to be directly proportional to the structural damping and to  the panel length-width ratio to 

the 2.6 power. Flutter design curves for buckling in inplane shear  o r  combinations of 

inplane shear and normal loads were found to be conservatively predicted by the design 

curves for panels buckled under inplane load N, alone. Calculations made for an early 

proposed design of the shuttle cargo-bay door indicate that practical panels, which have 

otherwise been adequately designed, could become flutter crit ical if inplane shear  loads 

approach the buckling value. 

Langley Research Center,  

National Aeronautics and Space Administration, 

Hampton, Va., January 22 ,  1975. 



REFERENCES 

1. Anon.: Panel Flutter: NASA Space Vehicle Design Cri ter ia  (Structures). NASA 

SP-8004, 1964. (Revised 1972.) 

2. Eisley, J. G.; and Luessen, G.: The Flutter of Thin Plates  Under Combined Shear and 

Normal Edge Forces Including the Effects of Varying Sweepback. Paper  No. 62-90, 

Inst. Aerospace Sci., June 1962. 

3. Sawyer, James Wayne: Flutter of Elastically Supported Orthotropic Panels Including 
the Effects of Flow Angle. NASA TN D-7491, 1974. 

4 .  Libove, Charles; and Batdorf, S. B.: A General Small-Deflection Theory for  F la t  
Sandwich Plates.  NACA Rep. 899, 1948. (Supersedes NACA TN 1526.) 

5. Shore, Charles  P.: Effects of Structural Damping on Flutter of Stressed Panels.  
NASA TN D-4990, 1969. 

6. Heard, Walter L, ,  Jr.; and Bohon, Herman L.: Natural Vibration and Flut ter  of Elas -  
tically Supported Corrugation-Stiffened Panels - Experiment and Theory. NASA 
TN D-5986, 1970. 

7. Fung, Y. C.: Foundations of Solid Mechanics. Prentice-Hall, Inc., 1965, pp. 338-339. 

8. Stein, Manuel; and Neff, John: Buckling St resses  of Simply Supported Rectangular Flat 
Plates  in Shear.  NACA TN 1222, 1947. 

9. Bohon, Herman L.: Flut ter  of Flat  Rectangular Orthotropic Panels With Biaxial Load- 
ing and Arbitrary Flow Direction. NASA TN D-1949, 1963. 

10. Shore, Charles  P.: Flut ter  Design Charts for  Biaxially Loaded Isotropic Panels.  
J.  Aircraft ,  vol. 1, no. 4 ,  July-Aug. 1970, pp. 325-329. 



Figure 1.- Panel geometry and coordinate system. 
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(a) a / b = 0 . 5 .  

Figure 2 . -  Convergence at point of coalescence of modal analysis 
with inplane shear ga = gb = 0. 
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Figure 2.- Concluded. 
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Figure 3.- Flutter boundaries for  simply supported, isotropic panels with inplane shear. 
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Figure 3 . -  Continued. 
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Figure 3 . -  Continued. 
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Figure 3.- Continued. 
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Figure 3 . -  Concluded. 



Figure 4.- Effect of leading- and trailing-edge deflectional spring supports on flutter 
boundaries fo r  square panels with inplane shear gb = 0.01; ga = 0.1. 



(a) a/b = 1.0. 

Figure 5.- Flutter boundaries for simply supported, isotropic panels with inplane 

shear  and normal loads. Ny/Nxy = 0; ga = 6.1; and gb = 0.01. 
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Figure 5.  - Concluded. 
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Figure 6.- Influence of length-width ratio on flutter of simply supported, 

isotropic panels loaded to buckling in inplane shear. 
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Figure 7.- Flutter design curves fo r  simply supported, isotropic panels loaded to buckling. 
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Figure 8.- Flutter design curves for simply supported, isotropic panels loaded 
to buckling in shear a s  a function of panel geometry. gb = 0.01. 
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Figure 9.- Detail sketch of one of the early shuttle cargo-bay door designs. 


