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Abstract .-

Sodium chloride is widely used as an internal pressure standard

in high pressure research. This paper discusses possible corrections

needed in the calibration of this standard due to two independent ef-

fects, stress anisotropy and stress concentration, in pressure vessels.

The first is due to the lack of a truly hydrostatic state of stress in

solid state pressure vessels. The second is due to the difference in

the compressibilities between the pressure "transmitting substances (in

this paper sodium chloride) and a stiffer test specimen. These two

corrections are then combined and a total correction, as a function of

measured pressure, is discussed for two systems presently in use. 'The

predicted value of the combined effect is about 5-10% of the pressure
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INTRODUCTION

Jamieson first used sodium chloride as an internal pressure

standard in x-ray studies on phosphorousI . He based his pressure

scale on lattice parameter measurements in sodium chloride and the

P-V data of Bridgman. 2 Subsequently Decker 3 proposed an equation

of state for sodium chloride which was assumed to be good to about

30 GPa at which point a phase change occurs. By combining a measured

lattice parameter, a, with this theoretical equation of state (fitted

to a and the bulk modulus at zero pressure, B ), the pressure could

be determined. As higher accuracy in the equation of state is attain-

ed, it becomes desirable to re-examine some of the assumptions gener-

ally made.

In high pressure research it is generally assumed that a hydro-

static state of stress is attained in a small region between the

pistons of the vessel. Since the pressure transmitting materials

used have low shear strengths and thus flow plastically at low pres-

sures, this is thought to be a very good approximation particularly

at higher pressures. It will be shown here that the magnitude of the

correction for a material with a finite yield strength, though small,

becomes important as higher accuracies are desired.

Another assumption, which on casual examination seems rather in-

nocuous, is made when sodium chloride is used both as the pressure

medium and the pressure gauge: it is assumed that the pressure in the

sodium chloride standard (as seen by the x-rays) is the same as the

pressure on the test specimens.
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However, it has been previously noted experimentally by Jamieson

and Olinger 4 that stress concentrations exist around the test par-

ticles if these are elastically stiffer than the surrounding sodium

chloride matrix.

Corrections for these two effects, stress anisotropy and stress

concentration, can be calculated analytically if strain hardening in

the sodium chloride is ignored. In this analysis we assume that the

elastic constants and the yield strength depend linearly on the pres

sure. This seems sufficient for a first order correction for these

effects.5

STRESS ANISOTROPY

Here we consider a pellet of some polycrystalline material in

an ideal pressure vessel as illustrated in Figure 1. The stresses

of this configuration (in which there is no radial displacement)

were analyzed in a previous paper . It was shown that the compres-

sion normal to given crystallographic planes in the sample disc is

dependent on their orientation with respect to the axis of the pis-

tons.

Consider diffraction from a plane (hkl) as shown in Figure 1.

The entering x-ray beam is in the direction of piston motion. Meas-

urement of the diffraction angle for this plane leads to the lattice

parameter in a direction normal to the plane, i.e. the r' direction.

From this we can obtain the strain in the r' direction and, from a

known equation of state and assuming hydrostaticity, the apparent

pressure, Pr'' in the same direction.
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It has been shown 6 that the difference between the apparent

pressure in the r' direction and the mean normal pressure (negative

of the average of the three principal stresses) is given

by

P , P V+(P ) aPr Pnn (Pnn +cos2a + ioo; (1)
P 1 (P EInn nnnn

here Pr' is the apparent pressure in the r' direction, Pnn is the mean

normal pressure, v is Poisson's ratio (at pressure P nn), Eo is the zero

pressure Young's modulus and E its pressure derivative, aoo is the

zero pressure yield strength, and a = 900 - e (0 is the Bragg angle.)

It should be noted that Young's modulus has been assumed to

vary according to

, 5
E =.E + E P (2)0 o nn

In addition the pressure derivative of the yield strength has

been replaced by E . In the derivation of (1), Poisson's ratio
E
o

was left as a general function of pressure, v(P). However in cal-

culating an actual value for the apparent deviation from hydro-

staticity (Pr' - Pnn)/Pnn at agiven Pnn, it is necessary to know

v(Pnn) . It is of interest to note that a linear equation for v(P nn),

such as (2) does not suffice because according to available data, 8 this

predicts v> for most elastically compliant materials at pressures

above about 15 GPa (150 kbars). Poisson's ratio for an isotropic med-

ium must be less than one-half. We are therefore led to conclude that
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v(P) varies much less rapidly with P than predicted by a linear re-

lation. In the absence of any specific knowledge of how v varies with

pressure, it has been assumed to be constant with respect to pressure;

we have used two fixed values, one of these beingv = vo. The likely

effect of using v = v is to underestimate the deviation from hydro-

staticity.

From Equation (1) we can calculate the ratio Pnn/Pr, using the

Decker 3 equation of state for sodium chloride. Table 1 shows the

elastic constants of NaCl used in the calculations.

Table 1 - Elastic Constants of NaCl

OO =0.1 GPa, 0.2 GPa

E = 36.62 GPa

E = 5.22

= .242.

9

Eo, Eo, and v were calculated from single crystal values accord-

10
ing to the method of Hashin and Shtrikman. The value of aoo of

0.1 GPa is consistent with that found by Aladag. et.al.11 (for

strains of 30% which we estimate are attained in pressing NaCl

samples). Since this analysis ignores strain hardening, we have also

calculated Pnn/P r, versus Pr' for a = 0.2 GPa in order to provide a

possible upper limit for this effect. We have ignored creep and stres:

relaxation effects although such effects are well known in sodium chlo

ride near room temperature and at very modest pressures (0.2GPa).12

Our reason for ignoring these effects is that they are controlled by
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the diffusion rate of the slowest moving ion (chlorine in this case)

and this process is retarded by pressures as has been shown in the

case of LiBr 1 3 so that the rate will be slowed by several orders of

magnitude at pressures of 1OGPa or more.

14,15Present experimental techniques , which are approximated in

this analysis by an ideal pressure vessel configuration, use the first

few Bragg diffraction lines in determining the apparent pressure in

the sodium chloride (Pr,). It was found sufficient here to use just

the (200) reflections in calculating the anisotropy correction. (The

correction depends on the reflections used only through the term cos2a,

and the cosine function is close to minus one for all of the first

three reflections, i.e., 2a is close to 1800.) The results of the cal-

culations are shown in Figure 2.

It should be noted that the corrections for the stress anisotropy

calculated here were for a sample consisting only of sodium chloride.

For samples with other materials mixed in with the sodium chloride the

values for the elastic constants and the yield strength used in cal-

culations should be those of the composite material. Thus if the ad-

ded material is significantly stiffer than sodium chloride, the cor-

rections will be greater. This becomes an increasingly important

"second order" correction as the volume fraction of the stiffer mate-

rial becomes larger. Second order corrections have not been calcu-

lated here since the necessary data for composite materials is not

available. Finally, the substitution of v for v undoubtedly means

that v (and hence the ratio (l+v)/(1-2v) in Equation (1) has been

underestimated, perhaps by a factor as large as two or three. Until

our knowledge of v(P) is improved, there is little that we can do to

improve this approximation. Thus Figure 2 also shows the results of
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of calculations with the ratio [l+v)/(l-2v] increased by a factor

of two.

STRESS CONCENTRATION

Jamieson and Olinger 4 demonstrated the stress concentration

effect for elastically stiffer niobium particles imbedded in a

sodium chloride matrix. Their results were in qualitative agree-

ment with Bobrowsky'sl 6 treatment of elastically stressed spheres

of a compliant matrix concentric with stiff compliant spherical in-

clusions. Bobrowsky found that the stresses in the matrix increase,

i.e. are concentrated, towards the elastically stiffer inclusions.

With such ,soft matrices, however, plastic flow begins at pressures

which are very small in comparison with those of interest here. Thus

to obtain corrections at high pressures, quantitative expressions

were needed which would be applicable even after plastic flow in the

softer matrix commences.

To accomplish this, a simple concentric sphere model is used.

Consider the stiff material (assumed incompressible) to be in the
11 It

form of a small sphere of radius a concentric with a larger sphere
I! II

of the compliant material of radius b . It is then assumed that

such spheres fill all space in the sample disc. It is convenient
3

to define a radius ratio K = b/a. Thus 1/K is the volume fraction

of the stiff material in the sample to be pressurized.

-Each composite sphere is treated individually, and has a com-

mon applied pressure of P ext at the surface of the compliant spheres.
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The stress concentration factor, P int/Pext (Pint is the pressure

on the inclusion), is a constant until values for Pext are high

enough that the compliant matrix begins to flow plastically. It is

noted that this plastic flow occurs first at the interface between

the matrix and the inclusions, and this spherical plastic region

expands from r = a (partially plastic case) to r = b (completely

plastic case) as Pext increases. The value of Pext for which plastic

flow begins is of the same order as the yield strength of the matrix

(and not strongly dependent on K) while the value of Pext necessary

for the matrix to become completely plastic is highly dependent on

the radius ratio K. Once the matrix is completely plastic the appli-

cable equaLion for the stress concentration is 6

Pint/Pex K + (Kn -1) o (3)

E P
o ext

Here n is the dimensionless .quantity

2E o
n 2 o oo . (4)

E + 2 E 0
o - 0o Oo0

3

Derivations of the stress concentration for the completely elastic

case, the partially plastic case, and the completely plastic case

(Equation (3)) are described more fully elsewhere. 1 7 The solution

for the partially plastic case is not exact although it does give

the appropriate expressions at the limits for the onset of yield-

ing and for reaching the fully plastic state. Figure 3. shows the

stress concentration for all three cases where the compliant matrix
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is sodium chloride and K = 2.

In the above analysis strain hardening has been ignored as it

was for the stress anisotropy effect. Including strain hardening

effects would tend to increase the stress concentration factor.

Another assumption made was that the stiff material was incompres-

sible. This assumption is justified if its bulk modulus is many

times greater than that of the compliant matrix. This is in fact

the case for the iron inclusions to be discussed later. The iso-

thermal bulk moduli for sodium chloride and iron are 23.7 and 173

respectively.

The present analysis is based on the assumption that the in-

clusions are spheres. In the actual case to be considered next,

the inclusions are not spheres.

COMBINED EFFECT

We now wish to combine the above two effects. It would seem

that the stress concentration would cause a broadening of the dif-

fraction lines in the x-ray pressure determination because of the

pressure gradient across the matrix. This would not be observed

since most of the x-rays are diffracted from material in a region

near the surface of the spheres (where most of the material is

located); quantitative calculations by the .authors show this to be

true. We can relate Pnn to Pext by

P = (3Pext 2ooo . (5)
n 3E 2E 00

O O OO
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Thus we can find values for the ratio Pint/Pr'. Figure 4 shows this

combined effect for several values of K versus the measured pressure,

P r .

In the study by Mao, et al.18 on iron, a volume fraction for the

iron of about one-half was used.
19  This corresponds to a radius ratio

of K = 1.26. Figure 5 shows a plot of Pint /Pr' versus Pr' for two

values of the yield strength, %oo 0.1GPa and oo= 0.2GPa. In the

ruby fluorescence study of Piermarini, et. al.15 , a ruby volume frac-

tion of 1/10 (K = 2.15) was mixed in a 4:1 mixture of methanol and

ethanol. The mixture of methanol and ethanol freezes as a glass at

about 10GPa 20 , but there is no experimental data for the flow stress

of such a glass which we can use to estimate the magnitudes of either

effect.

CONCLUSIONS

It is of interest to note that the predicted combination of

the stress anisotropy and the stress concentration factors, while

not negligible, was not-extremely large either, being in the neigh-

borhood of only 5% at 30GPa for sodium chloride.

It should be noticed that the dependence of the two separate

effects on K are in the opposite direction, i.e. although decreas-

sing K decreases the stress concentration factor, it will increase

the composite yield strength and thus the stress anisotropy factor.

Thus some optimal K should be chosen to minimize the effects.
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Figure Legends

1. Abstract configuration of the pressure vessel, x-rays, and Bragg

planes.

2. Stress Anisotropy effect for molybdenum K, x-rays. a) aoo = 0.1 GPa

and v = v 0.242. b) a = 0.1 GPa and v = 0.359 or ao = 0.2 GPa

and v = vo. c) aoo = 0.2 GPa and v = 0.359.

3. Stress Concentration effect for K = 2, oo = 0.1 GPa, and v = v

a) Low external pressure. b) High external pressure. The onset

of yielding in the NaCI matrix is indicated by a single asterisk,

while the beginning of the fully plastic condition is indicated

by a dcuble asterisk.

4. Combined effect for K = 1.25, 1.5, 2.0, and 3.0; a = 0.1 GPa,

and 9 = v o .

5. Combined effect forK = 1.26. a) 0oo = 0.1 GPa and v =.vo.

b) 00 = 0.1 GPa and v =0.359. c) a00 = 0.2 GPa and v = v o

d) a = 0.2 GPa and v =0.359.
00
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