
012146-3-T

(NASA-GR-142602) - ON-LINE DIAGNOSIS OF, N75-2107
SEQUENTIAL SYSTEMS, 3 Final :Technical.
Report, 1 Jan. - -31 Dec.>.1974 : (Michigan
Univ.), 186 p HC $7.00-- CSCL.09B Unclas

G3/66 . 1.8071._

On-Line Diagnosis of
Sequential Systems - .Il

Final Technical Report covering the period
from January 1, 1974 through December 31, 1974

R. J. SUNDSTROM

under the direction of
Professor J. F. MEYER

' ,'9f January 1975

Prepared under
NASA Grant NGR 23-005-622

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SYSTEMS ENGINEERING LABORATORY
THE UNIVERSITY OF MICHIGAN, ANN ARBOR

THE UNIVERSITY OF MICHIGAN

SYSTEMS ENGINEERING LABORATORY

Department of Electrical and Computer Engineering
College of Engineering

SEL Technical Report No. 84

ON-LINE DIAGNOSIS OF SEQUENTIAL SYSTEMS - III

by

Robert J. Sundstrom

Under the direction of
Professor John F. Meyer

Final Technical Report Covering the Period from
January 1 1974 through December 31 1974

January 1975

Prepared under
NASA Grant

NGR 23-005 -005

ABSTRACT

ON-LINE DIAGNOSIS OF SEQUENTIAL SYSTEMS

by

Robert Joseph Sundstrom J

In many applications, especially those in which a computer is

being used to control some process in real-time (e. g., telephone

switchihg, flight control of an aircraft or spacecraft, etc.) it is

desirable to constantly monitor the performance of the system, as

it is being used, to determine whether the actual system is within

tolerance of the intended system. Informally, by "on-line diagnosis"

we mean a monitoring process of this type.

This study begins with the introduction of a formal model which

can serve as the basis for a theoretical investigation of on-line diag-

nosis. Within this model a fault of a system S is considered to be

a transformation of S into another system S' at some time .

The resulting faulty system is taken to be the system which looks

like S up to time T and like S' thereafter. Notions of fault toler-

ance and error are defined in terms of the resulting system being

able to mimic some desired behavior as specified by a system S.

A notion of on-line diagnosis is formulated which involves an external

detector and a maximum time delay within which every error caused

2

by a fault in'a prescribed set must be detected.

This study focuses on the diagnosis of two important sets of faults:

the set of "unrestricted faults" and the set of "unrestricted component

faults. " The set of unrestricted faults of a system is defined to be

simply the set of all possible faults of that system. It is shown that

if a system is on-line diagnosable for the unrestricted set of faults

then the detector is at least as complex, in terms of state set size,

as the specification. Moreover, this is true even if an arbitrarily

large delay is allowed in the diagnosis.

One means of diagnosing the set of unrestricted faults of a system

is by duplication and comparison. For systems which have (delayed)

inverses (i.e., systems which are information lossless) a

possible alternative is the use of a loop check. Here, it is estab-

lished that if an inverse system is information lossless then it can

always be used for unrestricted fault diagnosis. Although the loss-

less condition is sufficient, it is shown further that there exist sys-

tems for which a lossy inverse can also be used for unrestricted

fault diagnosis. Since not every system has an inverse, let alone

one which can be used for unrestricted fault diagnosis, it is not

always possible to apply this technique directly. However, it is

shown that every system has a realization to which this scheme can

be successfully applied.

3

The on-line diagnosis of systems which are structurally decom-

posed and represented as a network of smaller systems is also

investigated. The fault set considered here is the set of unrestricted

component faults; namely, the set of faults which only affect one

component of the network. A characterization of networks which

can be diagnosed using a combinational detector is obtained. It is

further shown that any network can be made diagnosable in the above

sense through the addition of one component. In addition, a lower

bound is obtained on the complexity of any component, the addition

of which is sufficient to make a particular network combinationally

diagnosable.

TABLE OF CONTENTS

Page

LIST OF SYMBOLS iv

INDEX OF TERMS vii

LIST OF ILLUSTRATIONS x

I. INTRODUCTION 1

1. 1 Outline of the Problem 1
1.2 Brief Survey of the Literature 8
1.3 Synopsis of the Report 10

II. A MODEL FOR THE STUDY OF ON-LINE DIAGNOSIS 14

2. 1 Resettable Discrete-Time Systems 15
2. 2 Resettable Systems with Faults 31
2. 3 Fault Tolerance and Errors 44
2. 4 On-line Diagnosis 57

III. GENERAL PROPERTIES OF DIAGNOSIS 62

IV. DIAGNOSIS OF UNRESTRICTED FAULTS 69

4. 1 Unrestricted Faults 71
4. 2 Diagnosis via Independent Computation and 73

Comparison
4. 3 Diagnosis with Zero Delay 78
4. 4 Diagnosis with Nonzero Delay 84

V. DIAGNOSIS USING INVERSE MACHINES 90

5. 1 Inverses of Machines 92
5. 2 Diagnosis Using Lossless Inverses 97
5. 3 Applicability of Inverses for Unrestricted Fault 105

Diagnosis

PRICD3CN PAfT ' TANK NOT FITMED

ii

Page
VI. DIAGNOSIS OF NETWORKS OF RESETTABLE 111

SYSTEMS

6. 1 Networks of Resettable Systems 113
6. 2 Unrestricted Component Faults 120
6. 3 Characterization of Combinationally Diagnosable 123

Networks
6. 4 Construction of Combinationally Diagnosable 133

Networks

VII. CONCLUSIONS AND OPEN PROBLEMS 145

APPENDIX 156

REFERENCES 168

iii

LIST OF SYMBOLS
(In order of first appearance)

Symbol Representation Page

T Time base 15

S System 15

(I, Q, Z,6, x) Discrete -time system 15

I Input alphabet 15

Q State set 15

Z Output alphabet 15

6 Transition function 15

X Output function 16

I* 16

A Null sequence 16

I+ 16

Pf Behavior 17

(I, Q, Z, 6, X, R, p) Resettable system 18

R Reset alphabet 18

p Reset function 18

(I, Q, 6, R, p) Resettable state system 19

M Resettable machine 20

5 (I, Z, R) 20

W (I, Z, R) 20

(I, Z, X) Memoryless machine 20

A
Extended behavior 25

iv

Symbol Representation Page

P Reachable part 25

Equivalence 26

(alu, 2 , V 3) Realization 26

e Identity function 29

PC Coordinate projection 30

F Fault set 32

f, (S', r, 0) Fault 33

Sf Result of fault 33

(S, F) System with faults 35

[] Equivalence class 42

M Specification 44

(r, x, y) Error 51

S 1 * S2 Cascade connection 57

[u,v] 58

D Detector 59

k Delay 59

Set of detectors 61

U Unrestricted faults 71

F o Permanent output faults 80

Mn Delay machine 92

M Inverse of M 92

N, (I, R, (S1,. , Sn) , (K1.. , K), Z, X) Network 113

V

Symbol Representation Page

K. System connection rule 113
1

SN System defined by N 116

MN Machine defined by N 117

(N', 7, 0) Fault of network 120

UC Unrestricted component fault 120

C 123

C. 123
1

TC 123

J I
123

C 124

(wl' L' 3' w3 4) Isomorphism 163

MR Reduction of M 164

vi

INDEX OF TERMS

behavior
of S for condition (r, t), p. 24
of S for initial reset r, p. 24
of S in state q, p. 17

cartesian product, p. 29
cascade connection, p. 57
cause, of error, p. 51
component system, p. 113
connection rules, system, p. 113
coordinate projection, p. 30
cover, p. 123

singleton, p. 123
cross product function, p. 30

defining a machine by a network, p. 116
diagnosis

(D, k)-diagnosable, p. 59
k-self-diagnosable, p. 61

equivalent
faults, p. 41
inputs, p. 167
resettable machines, pp. 26, 156
states, pp. 26, 156

error, p. 51
minimal, p. 51
occurrence of, p. 52

failure, p. 36
fault, p. 33

improper, p. 32
of network, p. 120
permanent, p. 33
permanent output, p. 80
proper, p. 32
result of, pp. 32,33
unrestricted, p. 71
unrestricted component, p. 120

fault-detection signal, p. 60
fault-secure, p. 62

vii

INDEX OF TERMS (Cont.)

independent of M's input, p. 60
isomorphism, p. 163

strong, p. 163

logic circuit level, p. 154

machine,
autonomous, p. 167
combinational, p. 20
delay, p. 92
information lossless, p. 94
inverse, p. 92
lossy, p. 94
memoryless, p. 20
reachable, pp. 25, 156
reduced, pp. 26, 157
resettable, p. 18
state-assigned, p. 149
transition distinct, p. 167

network
of resettable machines, p. 117
of resettable systems, p. 113
state, p. 118

reachable, p. 25,156
i-reachable, pp. 25,156
part, pp. 25, 156

realization
class, p. 31
combinational machine, p. 20
fault-free, p. 32
faulty, p. 32
network, p. 117
output-augmented, p. 105
resettable machine, p. 27;157
sequential machine, p. 26

reduced form, p. 164
reduction, p. 164
redundant, p. 124

totally, p. 124

viii

INDEX OF TERMS (Cont.)

representation scheme, p. 31
reset

alphabet, p. 18
function, p. 18

specification class, p. 31
synchronization, p. 67
synchronizing function, p. 68
system

discrete-time, p. 15
resettable, p. 18
resettable state, p. 19

time base, p. 15
tolerance

fault, p. 45
relation, p. 44

transition distinct, p. 167
translation, of systems, p. 41

ix

LIST OF ILLUSTRATIONS

Page

Fig. 2. 1. Schematic diagram for S = (I, Q, Z, 6, X, R,p) 19

Fig. 2.2. Circuit for M 1 21

Fig. 2.3. Transition table for M 1 21

Fig. 2.4. State graph for M 1 22

Fig. 2. 5. State graph for M 2 22

Fig. 2.6. A discrete-time system 23

Fig. 2.7. Resettable machine M' 23

Fig. 2.8. M realizes M under (ul, 2 , a 3) 27

Fig. 2. 9. Resettable machine M 3 28

Fig. 2. 10. Resettable machine M3 28

Fig. 2.11. A fault f = (S', 7, 8) of S 33

Fig. 2. 12. Resettable machine M' 35

Fig. 2. 13. Triple modular redundancy with voting and 47
disagreement detecting

Fig. 2. 14. Machine M 4 49

Fig. 2. 15. Circuit for M4 49

Fig. 2.16. Machine M' 50

Fig. 2. 17. Machine Me 53

Fig. 2. 18. The cascade connection of S 1 and S2 58

Fig. 2. 19. Diagnosis of (M, F) using the detector D 59

Fig. 4. 1. Diagnosis via duplication in the detector 73

x

Page

Fig. 4. 2. A generalization of duplication in the detector 74

Fig. 4. 3. The comparator used in the proof of Theorem 4. 2 76

Fig. 4.4. Machines M 1 , M 1 , an and and 3 : Z -> Z 82

Fig. 4. 5. Machines M 2 and D2 88

Fig. 5. 1. Machines M 1 and M1 93

Fig. 5. 2. Machine M in series with an inverse M of M 94

Fig. 5.3. On-line diagnosis using inverse machines 97

Fig. 5.4. A detector which uses a 0-delayed inverse 97

Fig. 5. 5. Machines M 2 and M2 99

Fig. 5.6. Machines M 3 and M3 100

Fig. 5. 7. Machine M 101

Fig. 5. 8. Machine M3 104

Fig. 5. 9. A lossless machine with a lossy inverse 107

Fig. 5. 10. An output-augmented realization of M' 107
of Fig. 5. 9

Fig. 5. 11. Machine M' 110

Fig. 6.1. Network N 1 115

Fig. 6.2. Diagram of network N 1 116

Fig. 6.3. Machine MN 1 118

Fig. 6.4. Machine M 1 118

Fig. 6. 5. Network N'1 130

Fig. 6.6. Network N 2 138

Fig. 6. 7. Machine M2 139

xi

Page

Fig. 6.8. c3 ' P2 2 Q 139

Fig. 6. 9. Network N3 142

Fig. 6. 10. Machine M3 143

Fig. 7. 1. State graph of M 151

Fig. 7. 2. 3 -dimensional view of M 152

Fig. 7. 3. State graph of M' 153

xii

CHAPTER I

Introduction

1. 1 Outline of the Problem

For many applications, especially those in which a computer

is controlling a real-time process (e. g. , telephone switching,

flight control of an aircraft or spacecraft, control of traffic in a

transportation system, etc.), reliability is a major factor-in the

design of the system. The need for high reliability arises because

of the serious consequences errors may have in terms of danger to

human lives, loss of costly equipment, or disruption of business or

manufacturing operations. For example, it is economically unsound

to shut down a steel mill for even a short time in order to repair

a comparatively inexpensive controlling computer. The seriousness

of the consequences, of course, depends upon the application and must

be weighed against the cost of improving the reliability.

A number of techniques exist for improving computer reliability.

One of the more obvious is the use of more reliable components.

While the use of reliable components is clearly very important, it

has been recognized that this technique alone is not sufficient to meet

the requirements for modern ultrareliable computing systems [35].

1

2

Another'general technique which is useful in some applications

is the use of masking redundancy such as Triple Modular Redundancy.

The reader is referred to Short [35] for a general survey of masking

techniques. One major drawback to masking redundancy is that if

failed components are not replaced and the mission time is long,

then the reliability of a system which uses masking redundancy can

actually be less than that of the corresponding simplex system [25].

A third means of increasing system reliability and availability

is through fault diagnosis and subsequent system reconfiguration or

repair. For example, a computer designed to control telephone

switching, the No. 1 Electronic Switching System (ESS) contains

duplicates of each module and fault diagnosis is achieved primarily

by dynamically comparing the outputs of both modules [11]. Once

a fault is detected, the faulty module is identified and removed from

service under program control. The faulty module is then repaired

manually with diagnostic help from the fault-free computer. Another

ultra-reliable computer, the Jet Propulsion Laboratory Self-Testing

and Repairing (STAR) computer, also makes use of modularity and

standby sparing [4].

One means of performing fault diagnosis is to continuously moni-

tor the performance of the system, as it is being used, to determine

whether its actual behavior is tolerably close to the intended behavior.

It is this sort of monitoring which we mean by the term "on-line diag-

3

nosis. " Others have used the term "error detection" to refer to

this sort of monitoring ([22], [23]).

Implementation of on-line diagnosis may be external to the

system, both internal and external, or completely internal. In the

last extreme, on-line diagnosis is sometimes referred to as "self-

diagnosis" or "self-checking" ([8], [9]).

The signals generated by a monitoring device can be used in many

ways. For example, the IBM System/360 utilizes checking circuits

to detect errors [6]. The signals generated by these circuits are

used in some models to freeze the computer so that the instruction

which was currently executing may be retried if possible, and to

assist in the checkout and repair of the computer if automatic retry

attempt fails. Ultra-reliable computers typically use the signals

generated by the monitoring device to provide the computer system

with the information it needs to automatically reconfigure itself so

as to avoid using any faulty circuits. One other use for such signals

is to simply inform the system user that the system is not operating

properly and that there may be errors in his data.

In general, on-line diagnosis is used to signal that the system

is operating properly or that it is in need of repair. In most computer

systems this task is also performed in some part by "off-line

diagnosis. " By off-line diagnosis we are referring to the process of

removing the system from its normal operation and applying a series

of prearranged tests to determine whether any faults are present in

4

the system. 'There are major differences between on-line and off-

line diagnosis and it is important to be aware of the capabilities and

the limitations of each.

One basic difference is that on-line diagnosis is a continuous

process whereas off-line diagnosis has a periodic nature. Transient

faults are difficult to diagnose with off-line diagnosis because if a

fault is transient in nature it may not be in the system when it is

tested. On the other hand, since on-line diagnosis is a continuous

monitoring process both permanent and transient faults can be diag-

nosed. It has been recognized by Ball and Hardie [5] and others that

intermittents do occur frequently, and that finding an orderly means

to diagnose them is an important unsolved problem. Thus the inability

of off-line diagnosis to deal satisfactorily with transients is a severe

limitation.

Another basic difference is that the delay between the occurrence

of a fault and its subsequent detection is generally greater for off-

line than on-line diagnosis. Recovery after a fault has been diagnosed

may sometimes be achieved by reconfiguration and restarting. How-

ever, in a real-time application irrepeatable or nonreversable events

may take place if an error occurs and is not immediately detected.

In any application, if there is a delay between the occurrence of an

error and the subsequent diagnosis of a fault, then contamination of

data bases may occur thus making restarting difficult. For these

5

reasons, the-inherent delay associated with off-line diagnosis can be

a serious limitation.

One further difference between on-line and off-line diagnosis is

that with off-line diagnosis the system must be removed from its

normal operation to apply the tests. This also may not be acceptable

in a real-time application.

The cost of either form of diagnosis depends on the nature of

the system to be diagnosed, the technology to be used in building the

system, and the degree of protection against faulty operation that

is required. With on-line diagnosis the cost is almost totally in

the design, construction, and maintenance of extra hardware. With

off-line diagnosis the cost is the initial generation of the tests and

in the subsequent storage and running of these tests.

In general, off-line diagnosis is useful for factory testing and

for applications where immediate knowledge of any faulty behavior

is not essential. Off-line diagnosis is also useful for locating the

source of trouble once such trouble is indicated by on-line diagnosis.

For example, as stated earlier Bell System's No. 1 ESS uses dupli-

cation and comparison as its primary error detection scheme. But

once an error has been detected, off-line diagnosis is used to deter-

mine which processer exhibited the erroneous behavior and to locate

the faulty module in that processer.

6

In the Design Techniques for Modular Architecture for Reliable

Computing Systems (MARCS) study a more integrated use of on-line

diagnosis is proposed whereby a number of checking circuits observe

the performance of various parts of the computer [8]. With a

scheme such as this, information about the location of a fault can

be obtained from knowledge of which checking circuit indicated the

trouble.

Both on-line and off-line diagnosis have been used to check the

operation of electronic computers from the first vacuum tube

machines until the present time. In particular, off-line diagnosis

procedures were developed for the ENIAC computer, the BINAC

system had duplicate processors, and the UNIVAC used a more

economical on-line diagnosis scheme involving 35 checking circuits

[12]. During the past decade, however, the development of theory

and techniques for fault diagnosis in digital systems and circuits

have focused mainly on problems of off-line diagnosis (see [9] and

[14] for example).

An alternative means of performing diagnosis has been investi-

gated by White [37]. His novel scheme is similar to on-line

diagnosis in that it involves redundant processing of information and

subsequent checking for consistency. However, with his szheme

the redundancy is in time rather than in space. After every opera-

tion is performed, a related operation is initiated which uses the

7

same circuitry but with different signals. The results of these two

operations are then checked for consistency.

This scheme is useful for checking machines which were not

designed with the additional circuitry required for on-line diagnosis.

However, this technique is likely to be very expensive, in terms of

both operating speed and microprogram memory requirements. In

an example implemented by White, a self-checking microprogram to

emulate the PDP-8/I on the Meta 4 ran an estimated 3. 9 times slower

than a non-checking version of this microprogram and used 5 times

as much microprogram memory.

One other approach to diagnosis is simply to have human users

or observers of the system watch for obvious misbehavior. Since

faults often give rise to behaviors which are clearly erroneous, many

faults can be detected in this manner. The effectiveness of this method

is highly dependent upon the individual system and program, and is

exceedingly difficult to evaluate. It seems reasonable to assume,

however, that this method is less effective than any of the methods

previously discussed. Certainly, this method is unacceptable for

many applications.

8

1. 2 Brief Su.rvey of the Literature

The work that has been done on on-line diagnosis has been

mainly concerned with the development of specific diagnosis techniques.

One early paper is Kautz's study [19] of fault detection techniques

for combinational circuits. In this paper he investigated a number

of techniques including the use of codes and the possibility of greater

economy if immediate detection of errors was not necessary. Some

of the more common on-line diagnosis techniques are discussed in a

book by Sellers, Hsiao, and Bearnson [34]. Much of what is in

this book and a large portion of the techniques that can be found

elsewhere in the literature are concerned with special circuits such

as adders and counters. For example, see the work of Avizienis

[3], Rao [33], Dorr [10], and Wadia [36].

Relatively little work can be found on the theory of on-line

diagnosis. As with the investigation of on-line diagnosis techniques,

much of the theory of on-line diagnosis focuses on arithmetic units.

In one of the earliest works of a theoretical nature, Peterson [30]

showed that an adder can be checked using a completely independent

circuit which adds the residue, modulo some base, of the operands.

He went on to show that any independent check of this type was a

residue class check. Further theoretical work concerning the diag-

nosis of arithmetic units using residue codes can be found in Massey

[24] and Peterson [3 2].

9

An early theoretical result of a more general nature was published

by Peterson and Rabin [31]. They showed that combinational circuits

can differ greatly in their inherent diagnosability and that in some

cases virtual duplication is necessary.

A later and very important paper is that of Carter and Schneider

[7]. They propose a model for on-line diagnosis which involves a

system and external checker. The input and ouput alphabets of

the system are encoded and the checker detects faults by indicating

the appearance of a non-code output. A system is self-checking

if for every fault in some prescribed set, (i) the system produces

a non-code output for at least one code space input, and (ii) the

system never produces incorrect code space outputs for code space

inputs. Thus, (i) insures that every fault can be detected during normal

usage, and (ii) insures that if no fault has been detected then the output

can be reliedupon to be correct. The checkers that they consider are

also self -checking. Using this modelthey prove that any system can be

designedtobe self -checkingfor the set of single faults.

Anderson [1] has named property (i) "self-testing" and property

(ii) "fault-secure, " and he has investigated these properties for

combinational networks. In Chapter III it is shown that the notion

of diagnosis considered in this study is a generalization of the fault-

secure property.

10

1. 3 Synopsis of the Report

This report describes a formal investigation of the theory and

techniques applicable to the on-line diagnosis of sequential systems.

The formal approach taken in this report leads to a fuller under-

standing of current on-line diagnosis practices and suggests general-

izations of known techniques. It also provides a framework for

evaluating the advantages and limitations of the various on-line

diagnosis schemes.

With decreasing cost of logic and the increasing use of computers

in real-time applications where erroneous operation can result in

the loss of human life and/or large sums of money the use of on-line

diagnosis can be expected to increase greatly in the near future. The

importance of this area along with the relative lack of theoretical

results is our motivation for initiating this study of on-line diagnosis.

Before entering into the actual synopsis it is appropriate to dis-

cuss the objectives of this investigation. Let S be a system which

serves as a specification of some desired behavior, let F be a set

of faults, let 2 be a set of possible external detectors, and let k

be a maximum time delay within which every error caused by a fault

in F must be detected. The basic on-line diagnosis problem can now

be stated as follows:

Given S, F, 9, and k find an (economical) realization S of S
and a detector D E g such that D can observe S and signal
within k time steps any error caused by a fault in F.

Towards the end of solving this basic problem the following

questions have been formulated. These questions serve as more

specific objections and their answers will help to solve the basic

on-line diagnosis problem.

I. What are good on-line diagnosis techniques? That is, what

good means are available for finding appropriate realizations and

detectors? When is each technique applicable?

II. Given S, S, F, t , and k, does a suitable detector exist in

J ? That is, when is a given realization diagnosable ? If such a

detector exists how can it be constructed? A solution to this problem

would certainly help to solve the previous one.

III. What time -space tradeoffs are possible between the added

complexity needed for diagnosis and the maximum allowable delay ?

We expect that there will be situations where if the detector is given

additional time in which to indicate an error then diagnosis may be

simplified.

IV. What relationships exist between faults and errors? Given

S and F, what errors are possible ? Given S and F, how can one find

a realization S of S such that the system with faults (S, F) gives rise

only to errors of a given type ? These are important questions

because given a diagnosis technique or a particular type of detector,

it will often be easy to determine just what types of errors are

detectable. The faults that are diagnosable will then have to be

inferred from this information. Conversely, we will want to find

12

realizations such that the faults we are concerned with will cause

errors that we can detect.

V. What properties of system structure and system behavior

are conducive to on-line diagnosability? Structural and behavioral

properties are important for it is expected that they will relate

directly to diagnosis techniques. Behavioral properties could be

used to measure the inherent diagnosability of a given behavior in

terms of the minimum added complexity which would be required to

obtain a given level of on-line diagnosis.

The first problem considered in this investigation was the formu-

lation of a formal model which could serve as a basis for a theoretical

study of on-line diagnosis. This model is developed fully in Chapter

II. first an appropriate class of system models is formulated

which can represent both the behavior and the structure of fault-free

and faulty systems. Then notions of realization, fault, fault-tolerance

and diagnosability are formalized which have meaningful interpreta-

tions in the context of on-line diagnosis. The following chapters are

all concerned with the properties of the notion of diagnosis which is

introduced in this chapter.

Chapter III contains some elementary properties of diagnosis

which are independent of the particular class of faults under considera-

tion. The result of this chapter help to give a basic understanding

of on-litLe diagnosis and are used in the later chapters.

13

Chapter 'IV is concerned with the diagnosis of the set of

unrestricted faults. This set of faults is simply the set of all possible

faults of the system under consideration. The major result of this

chapter gives a lower bound on the complexity of any detector

which can be used for unrestricted fault diagnosis of a given

system.

In Chapter V, the use of inverse systems for the diagnosis of

unrestricted faults is considered. Inverse systems are formally

introduced, and a partial characterization of those inverse systems

which can be used for unrestricted fault diagnosis is obtained. Since

not every system has an inverse system, let alone one which is

suitable for unrestricted fault diagnosis, it is not always possible

to apply this technique directly. However, it is shown that every

system has a realization upon which this technique can be success-

fully applied.

In Chapter VI, the diagnosis of systems which are structurally

decomposed and are represented as a network of smaller systems

is studied. The fault set considered here is the set of faults which

only affect one component system in the network. A ch.racterization

of those networks which can be diagnosed using a purely combinational

detector is achieved. A technique is given which can be used to realize

any network by a network which is diagnosable in the above sense.

Limits are found on the amount of redundancy involved in any such

technique.

CHAPTER II

A Model for the Study of On-Line Diagnosis

In this chapter a formal model is developed which is suitable

for a theoretical study of on-line diagnosis of sequential systems.

The development begins with the introduction of a class of

system models, called "resettable discrete-time systems, " which

will serve as the basis of this study. Within this model a fault of

a system S is considered to be a transformation of S into another

system S' at some time 7. The resulting faulty system is taken to

be the system which looks like S up to time 7 and like S' thereafter.

Next the companion notions of fault tolerance and error are defined

in terms of the resulting system being able to mimic some desired

behavior. Finally, a notion of on-line diagnosis is introduced.

This notion involves an external detector and a maximum time

delay within which every error caused by a fault in some prescribed

set must be detected.

14

15

2. 1 Resettable Discrete-Time Systems

On-line diagnosis is inherently a more complex process than off-

line diagnosis because of two complicating factors: i) it has to deal with

input over which it has no.control and ii) faults can occur as the system

is being diagnosed. We would like to build a theory of on-line diagnosis

using conventional models of time-invariant (stationary, fixed) systems

(e. g. , sequential machines, sequential networks, etc.). However,

due to the second factor mentioned above these conventional models

can no longer be used to represent the dynamics of the system as it is

being diagnosed. A system which is designed and built to behave in a

time-invariant manner becomes a time-varying system as faults occur

while it is in use. Therefore, a more general representation based

on time-varying systems is required. Based on this fundamental obser-

vation we have developed what we believe to be an appropriate model

for the study of on-line diagnosis.

Definition 2. 1: Relative to the time-base T ={...,-1,0,1...), a

discrete-time system (with finite input and output alphabets) is a system

S = (I,Q,Z, 6, X)

where I is a finite nonempty set, the input alphabet

Q is a nonempty set, the state set

Z is a finite nonempty set, the output alphabet

6: Q x I x T - Q, the transition function

16

: Q I x T -> Z, the output function.

The interpretation of a discrete-time system is a system which,

if at time t is in state q and receives input a, will at time t emit out-

put symbol X(q, a, t) and at time t + 1 be in state 6(q, a, t). In the special

case where the functions 6 and A are independent of time (i. e. , are

time-invariant), the definition reduces to that of a (Mealy) sequential

machine. In the discussion that follows it is assumed that S is

finite-state (i. e., IQI < c).

To describe the behavior of a system, we first extend the transi-

tion and output functions to input sequences in the following natural way.

If I* is the set of all finite -length sequences over I (including the null

sequence A) then:

6: QxI*xT-->Q

where, for all q E Q, a E I, t E T:

(q, A,t) = q

5(q,a,t) = (q,a,t)

T(q, ala2. . an , t) = 6((q, ala2 ... a n -1 t), a n ,t +n-1).

Similarly, if I+ = I*- {A}:

T: Qx I+ x T--> Z

17

where for all q 1 Q, a E I, t E T:

T(q,a,t) = X(q,a,t)

(q, ala2.. an, t) = 6-(q, ala2 . .. an_l, t), an,t + n - 1).

Henceforth 6 and " will be denoted simply as 6 and X.

Relative to these extended functions, the behavior of S in state q

is the function

gq: I'x T--> Z

where

q (x, t) = X(q,x, t)

Thus, if the state of the system is q and it receives input sequence x

starting at time t, then i (x, t) is the output emitted when the last

symbol in x is received, i. e., the output at time t + xj - 1 (jx =

length (x)).

Many investigations of on-line diagnosis and fault tolerance have

studied redundancy schemes such as duplication and triplication.

Typically they have not dealt with the problem of starting each copy of

a machine in the same state. In this study we will be examining these

schemes and others for which the same problem arises. Since many

existing systems have reset capabilities, and since this feature solves

the above synchronizing problem we will use a special type of system

for which the reset capabilities are explicitly specified. This explicit

18

specification of the reset capability is essential since it is an important

part of the total system and it may be subject to failure.

Definition 2. 2: A resettable discrete-time system (resettable system)

is a system

S = (I,Q,Z, 6,, R,p)

where (I, Q, Z, 5, X) is a discrete-time system

R is a finite nonempty set, the reset alphabet

p: R x T -> Q, the reset function.

A resettable system is resettable in the sense that if reset r is

applied at time t - 1 then p (r, t) is the state at time t. This method of

specifying reset capability is a matter of convenience. This feature

could just as well have been incorporated as a restriction on the transi-

tion function relative to a distinguished subset of input symbols called

the reset alphabet. Thus a resettable discrete-time system can indeed

be regarded as a special type of discrete-time system. If 6, X, and p

are all independent of time the definition reduces to that of a resettable

sequential machine. Thus a resettable machine can be yiewed as a

resettable system which is invariant under time-translations.

Given a resettable system we can view it as a system organized

as in Fig. 2. 1.

19

reR

aEI

Fig. 2. 1. Schematic Diagram for S = (I, Q, Z, 5, X, R,p)

In many discussions the output function of a system will not

be of direct concern; the focus of attention will be upon the state

transitions. This motivates the following definition.

Definition 2. 3: A resettable discrete-time system S = (I, Q, Z, 6, X, R, p)

is a resettable state system if Z = Q and X(q, a, t) = q for all q e Q,

a E I, and t E T.

Since the output alphabet and output function of a resettable state

system need not be explicitly specified, a resettable state system

S = (I, Q, Z, 5, X, R, p) will be denoted by the 5-tuple (I, Q, 6, R,p).

This formulation of resettable state systems as special types of

resettable systems allows us to directly apply the following theory of

on-line diagnosis to state machines.

20

Notation: Resettable systems will be denoted by S, S', S 1 , S2 , etc.,

and resettable machines will be denoted by M, M', M 1 , M2 , etc.

Unless otherwise specified, M will denote the resettable machine

(I, Q, Z, 6, X, R,p); M' will denote the resettable machine (I', Q', Z', 6',

X', R',p'); and so forth. -?(I, Z, R) will denote the set of systems with

input alphabet I, output alphabet Z, and reset alphabet R. That is,

,(I, Z, R) = S' IS' = (I, Q', Z, 6', A', R, p')}

%R(I, Z, R) will denote the corresponding set of resettable machines.

Definition 2. 4: A resettable sequential machine M = (I, Q, Z, 6, A, R,p)

is memoryless or combinational if IQj = 1.

The triple (I, Z, X) where A: I-> Z will be used to denote any

memoryless machine with input alphabet I, output alphabet Z, and

output function A. The memoryless machine M = (I, Z, A) is said to

realize the function A from I into Z.

We will represent sequential machines in the usual manner,

i. e., via transition tables or state graphs. Resettable machines are

represented by minor extensions of these two methods. The transition

table of a resettable machine is identical to that of a machine with

addition of one column on the right to accommodate the reset function.

If p(r) = q then r will appear in this additional column in the row

corresponding to state q. Similarly, the state graph of a resettable

machine is identical to that of a machine with the addition of one short

21

arrow for each r E R. This arrow will be labeled r and will point

to state p(r).

Example 2. 1: Let M 1 be the sequence generator with reset alphabet

{0} and input alphabet (1} which has been implemented by the circuit

in Fig. 2. 2.

2 dl

I,R 4

Fig. 2. 2. Circuit for M 1

The transition table and the state graph for M1 are shown in

Figs. 2. 3 and 2. 4.

I 1 R

00 01/0 0
01 11/1
10 00/1
11 10/1

Fig. 2. 3. Transition Table for M 1

22

0

00 1/0

10 1

Fig. 2. 4. State Graph for M 1

The circuit in Fig. 2. 2 is also an implementation of a similar machine

M2 with input alphabet {0, 1}. The stat.e graph for M2 is shown in

Fig. 2. 5.
0

0/0
1/0

00 - 0 01
0/1

1/1 0/1 1 1/1

1/1

Fig. 2. 5. State Graph for M2

Thus, in M2 the input symbol "0" can be interpreted as an input or as

a reset. In M2 the outputs for input 0 are explicitly specified whereas

in M1 they may be regarded as classical "don't cares. "

23

We can view a particular discrete -time system as a system which

looks like some machine Mi in one time interval, like Mi+ 1 in another

interval, and so on. This is also a good means of specifying a system.

M1+2 I I

1Mi+1

M.

Time--

Fig. 2.6. A Discrete-Time System

Example 2. 2: Suppose that M 1 was implemented as in Fig. 2.2 and

that this circuit operated correctly up to time 100 when gate 2 became

stuck-at-0. What actually existed was not a resettable machine but a

(time-varying) resettable system S which looks like M1 up to time 100

and like a different machine, say M' thereafter. The graph for Mj is

shown in Fig. 2. 7.
0

00 1/0 0

1/1

1/1

1i 2 11

Fig. 2. 7. Resettable Machine M'

24

We can represent S as follows:

M 1 for t < 100

M' for t > 100.1-

By this we mean that I = I' and likewise for Q, Z, and R, and that

6,a,t) /6 1(q, a) for t < 100

6 (q,a) for t > 100

and similarly for X and p.

For resettable systems we take the definitions of 6, X, and 0q

to be the same as those for systems. It is also convenient in the case

of resettable systems to specify behavior relative to a reset input r

that is released at time t, that is, the behavior of S for condition (r, t)

(r e R, t e T) is the function

r,t: -> Z

whe.re

r, t(x) = Pp(r, t)(xt)

If t = 0, Pr, 0 is referred to as the behavior of S for initial reset r

and is denoted simply as 1r

25

It is useful to extend the behavior function r, t in a natural

manner to represent the sequence to sequence behavior of S. For

r E R and t E T

A I+ Z+

r,t

where for all a ... aE I+

A

r, t(al... an) = r,t(al) ' r , t (a l a 2 .. an)

We will now introduce a few properties of resettable machines

which will be important to our developing model of on-line diagnosis.

A more complete treatment of the properties of resettable machines

can be found in the appendix.

These properties are defined for resettable machines rather

than for resettable systems because they will be applied to "fault-free"

systems, which in this study are always time-invariant.

We begin with some concepts of "reachability. " Let M be a

resettable machine. The reachable part of M, denoted by P, is the

set

P = (p(r),x)Jr E R, x E I*}

M is reachable if P = Q. M is ~ -reachable if

P = {6(p(r),x)lr e R, x E I* and Ixl < }

Note that a machine can be ~ -reachable but not reachable.

26

An elementary result of graph theory states that in a directed

graph with n points, if a point v can be reached from a point u then

there is a path of length n - 1 or less from u to v. An immediate con-

sequence of this is that any machine M is (IPI - 1)-reachable.

Let M, M' E 39(I, Z,R). M is equivalent to M' (written M= M')

if r = *r for all r E R. Two states q E Q and q' E Q' are equivalent

(q q') if = , . It is easily verified that these are both equivalence

relations, the first on V1(I, Z, R) and the second on the states of machines

in V (I, Z, R).

A resettable machine M is reduced if for all q, q' E P, q - q'

implies q = q'. A basic result of sequential machine theory states that

for every machine there is an equivalent reduced machine and that this

machine is unique up to isomorphism. The corresponding result for

resettable machines is given in the appendix.

A concept which is central to sequential machine theory is that of

a "realization. " The corresponding resettable machine concept will

be very important to our theory of on-line diagnosis. We will intro-

duce it by first stating Meyer and Zeigler's definition of realization for

sequential machines [27].

Definition 2. 5: If M and are sequential machines then M realizes

M if there is a triple of functions (al', 2 ' a3) where l1: (I) -> I+ is

a semigroup homomorphism such that 1(I) C I, u2 " Q Q,

a3 : Z' - Z where Z' C Z, such that for all q e Q

q 3 3 () o1

It has been shown by Leake [23] that this strictly behavioral

definition of realization is equivalent to the structurally oriented

definition of Hartmanis and Stearns [16].

If M and M are resettable machines then our definition of

realization is somewhat different. Inherent in this definition is our

presupposition that a resettable system will be reset before every use.

Definition 2. 6: If M and M are two resettable machines then M realizes

M if there is a triple of functions (1', a02 ' 3) where al: (I)+ -> I+ is

a semigroup homomorphism such that al(I) I, a : R - R, a3 :

Z' C Z, such that for all r R,

r 3 a2)

This concept can be viewed pictorally as in Fig. 2. 8.

R

I Z

"

II
R

3

II

Fig. 2.8. M Realizes M under (a 1' a2 ' 03)

28

Example 2. 3: Let M 3 and M3 be the resettable machines shown in

Fig. 2. 9 and Fig. 2. 10.

0/1 r 0/0

q0 1/01

1/1 1/0

q2

F0/0

Fig. 2. 9. Resettable Machine M3

0/1 r 1 0/0

1/11/0 1/0

s3 1/0 S2

0/0 0/0

Fig. 2. 10. Resettable Machine M3

29

Then M3 realizes M3 under the triple (al' O2' U3) where ao1 : (3)+ -

is the identity, u2. R3 - R3 is defined by c2(r) = r 1 , and

a3: Z 4 Z 3 is the identity. To verify this claim we need only

observe that (x) = 3 (x) for allx e (I3).
1

Notice that the definition of realization for resettable machines

is less restrictive than that for sequential machines in the sense that

for resettable machines we only require the realizing system to

mimic the behavior of the reset states of the realized machine; while

in the sequential machine case the realizing system must mimic the be -

havior of every state of the realized system. On the other hand, the

definition in the resettable case is more restrictive in the sense that

for each reset state in the realized machine not only does there exist

a state in the realizing machine which mimics its behavior, but we also

know how to get to that state.

Before proceeding with our model of on-line diagnosis we must

introduce a few notational conventions. The identity function on a

set A will be denoted by eA. When it is clearly understood which

set is being mapped the subscript will be deleted.

If A 1 ,... A is a sequence of n sets, its cartesian product isn

the set A . . . = (.. A .. ,x) x E A.,i = 1,...,n.

The cartesian product of an empty sequence of sets is taken to be any

singleton set.

30

n
Given a cartesian product A = iX 1 A i , a coordinate projection of A

is a function P. : A - A. defined by Pi (x 1,... ,x) = x..

If fl: A-> B1 ,...' n: A --> B is a sequence of functions, the
n n

cross-product function . f.: A--> Bi is defined by
n

x1 fi(a) = (f (a),..., f(a)). The cross-product function can be used

to extend coordinate projections to project on to any subset of coordin-

ates: if C c(,..., n} then PC: A -4 x Ai is defined by
PC = iC In particular is a constantC

P C i In particular P is a constant function with domain A.

31

2. 2 Resettable Systems with Faults

Our model of a "resettable system with faults" is a specialization

of Meyer's general model of a "system with faults" [29].

Informally, a "system with faults" is a system, along with
a set of potential faults of the system and description of what
happens to the original system as the result of each fault.
The original system and the systems resulting from faults
are members of one of two prescribed classes of (formal)
systems, a "specification" class for the original system and
a "realization" class for the resulting systems. More pre-
cisely, we say that a triple (8 , (6 ,p) is a (system) representa-
tion scheme if

i) 6' is a class of systems, the specification class,
ii) 6I is a class of systems, the realization class,

iifi) p: 6 -> 6 where, if R E 6, R realizes p(R).

By a class of systems, in this context, we mean a class of
formal systems, i. e. , a set of formally specified structures
of the same type, each having an associated behavior that is
determined by the structure [29].

In this study we are concerned with the reliable use of a system.

That is, we are concerned with degradations in structure which Meyer

calls "life defects. " This is contrasted with reliable design in which

case we would be concerned with "birth defects. " Thus, in our case,

a specification is a realization and we choose a representation scheme

(R = (61, R, p) where p is the identity function on 61.

Assuming that a faulty resettable system has the same input,

output, and reset alphabets as the fault-free system S, the following

class of resettable systems will suffice as a realization class:

6(I, Z, R) = (S' IS' = (I, Q',Z ,6', X', R, p')}

32

In summary, the representation scheme that we are choosing for

our study of on-line diagnosis is the scheme (R, 1, p) where

6 = tS(I, Z, R) and p is the identity function on (R.

In such a scheme the seemingly difficult problem of describing

faults and their results becomes relatively straightforward. Before

we state our particular notion of a fault and its results we will repeat

here Meyer's general notion of a "system with faults" [29].

A system with faults in a representation scheme
(, ,p) is a structure (S, F,) where

i) S E
ii) F is a set, the faults of S

iii) ¢: F--> - such that, for some f E F,
p ((f)) = S.

Iff E F, the system Sf = (f) is the result of f. If p(S) = S
then f is improper (by iii), F contains at least one improper
fault); otherwise it is proper. A realization Sf is fault-free
if f is improper; otherwise Sf is faulty [29].

In applying this notion to our study we must first define what we

mean by a fault of a resettable system. Given a resettable system

S E J(I, Z, R), a fault f of S can be regarded as a transformation of

S into another system S' E cY(I, Z, R) at some time 7. Accordingly,

the resulting faulty system looks like S up to time 7 and like S'

thereafter. Since S may be in operation at time T we must also be

concerned with the question of what happens to the state of S as this

transformation takes place. We handle this with a function 0 from

the state set of S to that of S'. The interpretation of 0 is that if S is

in state q immediately before time 7 then S' is in state 0(q) at time

7. More precisely,

33

Definition 2. 7; If S E S(I, Z, R), a fault of S is a triple

f =. (S', 7, 9)

where S' E S(I, Z, R), 7 E T, and 9: Q -> Q'.

A fault f = (S', 7, 0) of S is a permanent fault if S' is time invariant.

We view the occurrence of a fault f = (S', 7, 9) of a system S as

shown in Fig. 2. 11.

S'

S --- *
I

*• - I I *

Time --

Fig. 2. 11. A Fault f = (S', , 8) of S

Given this formal representation of a fault of S, the resulting

faulty system is defined as follows.

Definition 2. 8: The result of f = (S', T, 0) is the system

Sf = (I, Qf, Z, 5f , f , R,p)

where Qf =Q UQ'

(6(q, a, t) if q E Q and t < - 1

6 (q, a, t) = (6(q, a, t)) if q Q and t = - 1

6'(q, a,t) if q e Q' and t > 7

34

SXA(q, a, t) if q e Q and t < 7-

lA'(q, a, t) if q E Q' and t > 7

p(r, t) if t < T

p(r,t) = (p(r, t)) if t = 7

p'(r, t) ift > 7

(Arguments not specified in the above definitions may be assigned arbi-

trary values.)

In justifying this representation of the resulting faulty system one

should regard a fault f = (S', T7,) as actually occurring between time

7 - 1 and 7. Note that, for any fault f of S, Sf c(I, Z, R).

Example 2. 4: Recall that in Example 2. 2 M 1 was transformed into

M' at time 100. We would say now that f = (M', 100, e) is a permanent

fault of M 1 and that S is the result of f (i. e., S = Mf).

Example 2.5: Again consider M 1 as implemented by the circuit in

Fig. 2. 2 and let g be the fault which is caused by d 1 becoming stuck-at-1

at time 50. Then g = (M1, 50, 8) is a permanent fault of M 1 where M'1

is the machine shown in Fig. 2. 12 and 0: Q1 - Q is defined by the

table

35

q 0(q)

00 10
01 11
10 10
11 11

0

1/1 101/1

Fig. 2.12. Resettable Machine M';

Mg will behave as M1 up to time 50 and thereafter it will produce a

constant sequence of l's.

To complete the model, a resettable system with faults, in this

representation scheme, is a structure

(S, F, 4)

where S E ~Y(I, Z, R), F is a set of faults of S including at least one

improper fault (e. g., f = (S, 0, e)), and 0: F -> t(I, Z, R) where 0(f) =

S f , for all f E F. Given this definition, we can drop the explicit refer-

ence to t in denoting a resettable system with faults, i. e., (S, F) will

mean (S, F, ¢) where p is as defined above.

36

In the reinainder of this study we will be dealing exclusively with

resettable systems. Thus we will refer to resettable systems simply

as systems and to resettable machines as machines.

A word is in order about our definition of faults. The interpreta-

tion here is one of effect, not cause, e. g., we don't talk of stuck-at-1

OR gates but rather of the system which is created due to some presumed

physical cause. We will refer to these physical causes as component

failures or simply as failures. A fault, by our definition, consists of

precisely that information which is needed to define the system which

results from the fault. This allows us to treat faults in the abstract;

independent of specific network realizations of the system and without

reference to the technology employed in this realization and the types

of failures which are possible with this technology. We are assured,

however, that for each fault we have enough information to assess the

structural and behavioral effects of the fault; in particular as these

effects relate to fault diagnosis and tolerance.

There are limits, however, to how much can be done with a purely

effect oriented concept of faults. When a system is sufficiently structured

to allow a reasonable notion of what may cause a fault we certainly will

want to make use of this notion. When this is the case we may, through

an abuse in language, refer to a specific failure at time 7 as a fault.

What we will mean is that we have stated a cause of fault and that there

is a unique fault which is the result of this failure at time 7.

37

It is interesting to see what the scope of our definition of fault is

in terms of the types of failures which will result in faults. Recall that

a fault f of a system S is a triple, f = (S', 7, 0), where S' e S(I, Z, R).

Thus S' is a (resettable) system with the same input, output, and reset

alphabets as S. The previous sentence contains, implicitly, every

restriction that we have put on faults. First of all, S' is a (resettable)

system. Thus it remains within our universe of discourse. In parti-

cular, its reset inputs still act like reset inputs. That is, they cause

S' to go into a particular state regardless of the state it was in when the

reset input was applied. The restrictions on the input, output, and re-

set alphabets are reasonable since after-a fault occurs the system

presumably will have the same input and output terminals as it had be-

fore the fault occurred.

Let f = (S', 7, 0) be a fault. Because S' may vary with time we have

considerable latitude in the types of failures which we may consider.

In particular, we may consider simultaneous permanent failures in one

or more components, simultaneous intermittent failures in one or more

components, or any combination of the above occurring at the same or

varying times. For example, a fault f may be caused by an AND gate

becoming stuck-at-1 at time T1, followed by an OR gate becoming stuck-

at-0 at time 72'

Let us now compute the behavior of S in state q. Let x = a 1... a n

E I+. Then

38

(x,t) = Xf(q,x,t)

= (6 f(q, a.. .an- t), an, t + n -).

There are three cases which must be considered.

Case i) q E Qandt +n-1 <7. Then

q3(x, t) = X(6(q, al... an, t), an, t+ n - 1)

= 3(x, t).

Case ii) q e Q, t +n- -1 > , andt < 7. Say t +n-m = . Then

(x, t) = X'(6'(0(6(q, al... an-m t)), an m+l... an1'

t+n-m),an, t+n-1)

8 (6%(q, al... anm, t))(an-m+l.* an, t+n-m)

- ((6(q,y, t))(zT) where y = al...an-m

andz = an .. a.

Case iii) q E Q' and t >T. Then

(x, t) = X'(6'(q, al... an l, t), an, t+n-1)

= q(x, t).

Thus we have proved:

39

Theorem 2. 1: Let S be a system and f = (S', T,) a fault of S. Then for

each t E T and x I+

q (x, t) if q E Q and t + Ixl < 7

3(5 (q,y,t))(z, T) if q E Q, t + Ixj > 7, and

(x,
t) =

qt) =t < where x = yz and Jy =7 - t

3(x, t) if q E Q' and t > 7.

(As in the definitions of 6f and f arguments not specified may be

assigned arbitrary values.)

Corollary 2. 1. 1: Let S be a system and f = (S', 7, 0) a fault of S. Then

for each r E R, t E T, and x E I+

Srt(x) if t + x < T

) (rt), , 7) if t + Ix I > T and

Stt < 7 where x = yz and

ly I=7-t

,' t(x) if t > 7.

Proof: By its definition

(x) = (x, t).p (r,t)

Again we have three cases to consider.

40

Case i) t + Ix < 7T. Then t < 7 andp f(r,t) =p(r,t) e Q.

Therefore by Theorem 2. 1

ff (x,t) = 3 (xt)
p(r,t) p(r, t) (x ,

S ,(r, t)t)

Clase ii) t+ xL > 7 andt< 7. If t < 7 thenpf(r,t) =p(r,t) E Q

and Case ii) of Theorem 2. 1 applies with p(r, t) in place of q. If

t = T then p (r, t) = 0(p(r, t)) e Q' and case iii) of the theorem

applies giving us

p (x,t) ' (xt)
f (r, t) = O(p(r, t))(x t

- (6 (p (r, t), A, t))(x, t)

Case iii) t > 7. In this case p f(rt) =p'(r,t) e Q'. Therefore

ff (x, t) = ,'(r,t)(xt)
p (r, t)

O ' (x).
r,t

We have noted that we will often be interested in the physical cause

of a fault. For example, in a network realization of a machine we may

be interested in faults which are caused by a specific NAND gate be-

coming stuck-at-1. Since this gate failure results in different faults

41

as we consider it occurring at different times it seems natural to give

.a name to this family of faults. More generally, we will define an equi-

valence relation on a set of faults such that a family of faults such as

we have just mentioned will be an equivalence class.

First we must define an equivalence relation on S(I, Z, R) such

that two systems S, S' E c(I, Z, R) are equivalent if they are identical

except for a shift in time.

Definition 2. 9: Let S, S' E e(I, Z, R). S' is a n-translation of S if

Q = Q' and for all q E Q, a E I, r e R, and t E T

i) 6(q, a, t) = 5'(q, a, t+n)

ii) X (q, a, t) = X'(q, a, t+n)

iii) p(r, t) = p'(r, t+ n)

If S' is an -translation of S then it can be shown that for all q E Q,

r E R, x E I+ , and t E T

3 (x,t)= 3 (x, t+n)

and

/ (x)= W' (x)r, t r, t+n

Definition 2. 10: Let (S,F) be a system with faults and let fl = (S1, r 1,' 1)

andf 2 = (S2 72' 2) be in F. Then fl is equivalent to f2 (f1 f2) if S1

is a (n1 - n 2)-translation of S2 and 1 = 2.

42

Theorem 2. 2: -The above relations are equivalence relations.

Proof: The relation of "n-translation" is an equivalence relation on

S(I, Z, R) because "=" is an equivalence relation. The relation " " on

a set of faults of a system is an equivalence relation because "n-trans-

lation" and "=" are both equivalence relations.

Notation: We denote then equivalence class of F which contains the

fault f = (S, 7, 0) by [f] F When the class of faults is clear we will drop

the F. Generally if F is not mentioned we take it to be the set of all

possible faults of a system S. We let fi = (Si, i, 0) denote the fault in
f.

[f] which occurs at time i. When dealing with behaviors f will denote
f,

the behavior of S i, and i will denote the behavior of S..

Let f. = (Si, i, 0) and f. = (S ,j, 8) be equivalent faults of a machine

M. Since M is a (i-j)-translation of itself, it can be verified directly

from Definition 2. 8 that M is a (i-j)-translation of M f . Hence,

Theorem 2. 3: Let f be a fault of M and let f.i', fj [f]. Then for all

q E Q, Xe I+ , r E R andt e T

f. f.
1 (x,t+i) = 01(x,t+j)

and
f. f.
i t+i(x) = r,0j (x)r, tir, t+j "

43

In this section we have defined and studied the notion of a fault

of a system. In the remainder of this study we shall limit our investi-

gations to the case in which the fault-free system is time-invariant.

That is, we shall be studying faults of machines. This is not a serious

restriction since the behavior of (fault-free) computers and related

digital equipment does not vary with time. Nevertheless, the concepts

developed in this and the preceding section are necessary since faulty

machines (except in the case of improper faults) are time-varying.

Given a fault f = (S', r, 0) of a machine M, S' will not be restricted

to being time-invariant. This allows us to consider intermittant faults.

44

2. 3 Fault Tolerance and Errors

Given a system with faults. (S, F) and a proper fault f E F, an

immediate question is whether the faulty system Sf is usable in the

sense that its behavior resembles, within acceptable limits, that of the

fault-free system S. We will use the general notion of a "tolerance

relation" [2 9] to make more precise what is meant by "acceptable

limits. " A tolerance relation for a representation scheme (S,R, p) is

a relation y between (and ~(y c 6R x S) such that, for all R e 61,

(R,p(R)) E y (i. e., p c y). In this section we will develop the particu-

lar notions of "acceptable limits" that we will be using in this study of

on-line diagnosis.

Given a machine M it will be understood that M realizes a specific

reduced and reachable machine M under the triple (ral, a2' 3). Under

the intended interpretation, M serves as the specification of some

desired behavior and M serves as the fault-free realization of this

behavior. This relationship between M and M will underlie our basic

notions of fault tolerance, error and on-line diagnosis.

In this study we will only be concerned with the behavior of M

under those resets and inputs which correspond via 01 and a2 to resets

and inputs of MI. No requirements will ever be put on 08 (x) or Ct(x),

where f is a fault of M, if r ' or2 (R) or x oIl(I+) because these are

considered to be "non-code space resets" and "non-code space inputs. "

For this reason we will always assume that 01 and 02 are onto. In

actually dealing with machines for which al or 02 is not onto, occurrences

45

of "non-code space resets" and "non-code space inputs" could be

ignored or they could be treated as errors which must be detected.

These two options correspond to Carter and Schneider's [7] Don't

Care Assignments 1 and 2.

We will be using two basic notions of fault tolerance. The first,

and weaker, corresponds to the preservation of the behavior of M

only insofar as its mimicing of M is concerned.

Definition 2. 11: Let f be a fault of a machine M. Then f is 1-tolerated

by M for resets at time t if for all r E R

r 3 0 o t .or

Alternatively, since a1 and a2 are onto and since ~ =

o3 0o3 () 0 Ul f is 1-tolerated by M for resets at time t if for

all r E R

f
03 0 r =3 r, t

In the special case where f is 1-tolerated by M for resets at time

0, we will simply say that f is 1-tolerated by M.

The second, and stronger, notion of tolerance does not allow for

the tolerance of any change in behavior.

Definition 2. 12: Let f be a fault of a machine M. Then f is 2-tolerated

by M for resets at time t if for allr e R, r = .r rt'

46

Again, f is 2-tolerated by M if it is 2-tolerated by M for resets

at time 0.

Our definition of 1-tolerated induces a relationr 1 on R where

Mf Y1 M if and only if f is 1-tolerated by M. If fis improper then M =

M and thus f is 1-tolerated by M. Hence M Y1 M, and therefore Y1 is

a tolerance relation. Likewise 2-tolerated induces a tolerance relation

Y 2 . If f is 2-tolerated by M then we can see that f is 1-tolerated by M.

Hence, as sets, y 2 0 *1 . Finally, note that if a 3 is 1-1.and f is

1-tolerated by M then f is 2-tolerated by M.

Example 2.6: Let M be the realization of M which consists of 3 copies

of M, a voter, and a disagreement detector as shown in Fig. 2. 13. Then

any fault f which affects only one copy of M is 1-tolerated but may not

be 2-tolerated, and its presence may be detected by the disagreement

detector.

47

I I
M

R MA

I d
M

Machine M

Fig. 2. 13. Triple Modular Redundancy with Voting
and Disagreement Detecting

Our definitions of 1 and 2-tolerated by M for resets at time t

are refined notions of fault tolerance. Coarser notions, and ones more

in keeping with the literature, would be behavioral equivalence for

resets at any time. We prefer our finer definitions for with them the

effects of time can be more naturally analyzed. One question which

we will study later is: For resets at how many (and which) times must

a fault be tolerated for it to be tolerated for resets at any time ?

When a discussion or theorem applies equally well to 1-tolerated

and to 2-tolerated we will just use the general term "tolerated. " We

also do this latter in this section when we discuss "errors. "

48

It wouldbe convenient if, without loss of generality, it was

possible to consider the behavior of systems only for resets released

at time 0. The following result shows that this can be done by a simple

change in the fault set under consideration.

Theorem 2. 4: Let f = (S',7, 0) be a fault of machine M. Then f is toler-

ated by M for resets at time t if and only if fT-t is tolerated by M.

f f f f
Proof: By Theorem 2. 3, = 0Hence, o T-t

7 f-t
and c 3 o Pr =03 r, t if and only if c 3 or = cr 0 r, . This

establishes the result.

Thus a fault f is tolerated by M for resets at any time if and

only if the class [f] of faults equivalent to f is tolerated by M. Due

to this we will always consider resets to be released at time 0 when

dealing with fault tolerance of machines and no generality will be lost.

Clearly, due to Theorem 2. 3, this same sort of time translation can be

applied to any other behavioral attribute.

Example 2. 7: Let M4 be the sequence generator shown in Fig. 2. 14.

This machine could be implemented by the circuit shown in Fig. 2. 15.

49

0

00 1/001

1/0

11 1 1 01

Fig. 2. 14. Machine M4

d
I, R 1 .C

d2

Fig. 2. 15. C ir cuit for M4

50

-Let f be a fault of M4 which is caused by d 1 becoming stuclr -t-1 at

time 7. Then f = (M', T, 0) where M' is the machine represented by

the graph in Fig. 2. 16 and 8 is as indicated below.

q (q)

00 10
01 11
10 10
11 11

1/1

1/0

Fig. 2. 16. Machine M',

-1
Consider f 1, i. e., the fault (M', -1, 0), and note that P0 (11) = 1

whereas 00(11) = 0. Thus f-1 is not 2-tolerated by M4 . On the other

-1
hand both M4 and M41 will produce the sequence 00010101... when

reset at -10. Thus f-1 is 2-tolerated by M4 for resets at -10. By

applying Theorem 2. 4 we can learn , for example, that fi is not 2-toler-

ated by M 4 for resets at time i+ 1 and that f9 is 2-tolerated by M4.

Corresponding to our two types of fault tolerance we can define

two types of errors.

51

Definition 2. 13: Let M be a machine, r e R, x E I+, andy e Z+ where

IxI = y 1. The triple (r,x,y) is called a 1-error (2-c:z'or) of M if

a3 (r(x)) U 3(y) r(x) Y).

If (r,x, y) is an error of M and f is a fault of M for which

r (x) = y then we say that the fault f causes the error (r, x, y). Note

that any given error could be caused by many different faults.

The relation between fault to!erane and errors is very simple.

A fault f is 1-tolerated (2-tolerated) if and only if it causes no 1-errors

(2-errors). The relation between 1-errors and 2-errors is also

straightforward. Namely, every 1-error is a 2-error, and if a3 is

1-1 then every 2-error is a 1-error. Errors are very important in

any study of fault diagnosis because a fault can never be detected until

it causes an error. The general goal of on-line diagnoses is protection

against undesirable behavioral manifestations of faults, i. e , pro-

tection against errors.

Since an error can represent erroneous behavior of any dura-

tion, and since we will wish to detect erroneous behavior when it

first begins to appear, we introduce the concept of a "minimal error.'

Informally, an error (r, x, y) is a minimal error if only the last

symbol of the output sequence y is out of tolerance. More formally,

an error (r, ua, vb) where a E I and b E Z is a minimal error if

(r, u, v) is not an error. If (r, x, y) is a minimal 1-error then it is

a 2-error but not necessarily a minimal 2-error. A minimal error

52

(r, x, y) is said to occur at time Ix j - 1. This is the time at which
the last symbol in y is emitted.

Often we will be in a situation where we are concerned with a

machine M tolerating a set of faults which are all caused by the same

phenomenon but which may occur at any time. More specifically, let

f be a fault of M. We would like results which assured us that if some
finite subset of [f] was tolerated by M then all of if] was tolerated by

M. Later we will be interested in the same problem with regard to

diagnosis.

Our first result of this nature hinges on the fact that any reachable

state of an f-reachable machine is reachable by time f.

Theorem 2. 5 Let f be a fault of an e-reachable machine M and suppose

fi is tolerated by M for 0 < i < . Then fi is tolerated by M for all

i > 0.

Proof: Assume, to the contrary, that fi is not tolerated by M for some

i > k. Then there exists an error (r,x, y) which is caused by f..
fi 1

Hence 1 (x) =y. Let x =XX2 andy =yly2 where IX1i = IY i
By Corollary 2. 1. 1 we know that

ri(x) = r(Xl1 0(5(p(r), x 1))(x2, i) =ylY2

Let q = 6(p(r),x l). Since M is I-reachable, there exists s e R and

u I+ such that jul =j < and 6 (p(s),u) =q. By Theorem 2. 3

53

(q)X2 i)= (q)(X2 j). Therefore if (u) v then (ux2

s(u)v0(6 (p (s), u)) (x2 ,j) v(q)(X2 ') = vy 2 . Clearly, (s,ux2 , vy 2)

is an error and it is caused by f.. Therefore f. is not tolerated.

Contradiction. This establishes the result.

The following general example shows that Theorem 2. 5 is the

strongest result possible, in the sense that if the hypothesis is at all

weakened then there exists a fault f and a machine M for which the

conclusion is invalid.

Example 2. 8: Consider the k -reachable autonomous machine Me shown

in Fig. 2. 17. Let m be an integer between 0 and f inclusive, and let

r

0/0
0/0

0/0

Fig. 2.17. Machine Mk

f = (M,7r, e) be a fault of M, where

q j if j m

) if(q j
J (q., 0) if j =m

54

Consider M to be realizing itself. That is, take M = M .

The occurrence of f = (M, T, 0) has an effect on the behavior of

M if and only if M could be in state qm at time T. Therefore, fi =

(Me, i, 8) is tolerated by Mt if and only if i m (mod k + 1). Hence

fi is tolerated by MI for i = 0,...,m-l, m+1,..., P does not imply fi

is tolerated by Mk for all i > 0. Since both m and k were arbitrarily

chosen, this general example shows that the hypothesis of Theorem 2. 5

cannot be weakened.

Let us now look at faults which occur before time 0. In the

previous result we have not mentioned this case because if f. and f.

are equivalent faults and i or j is less than 0 then there is, in general,
fi f

no relation between the behaviors of Mi and M for resets released at

time 0. However, in the important special case where f = (M', 7, 8)

is a permanent fault, any fi E [f] with i < 0 will, with respect to resets

released at time 0, cause identical behavior.

Lemma 2. 1: Let f = (M', 7, 0) be a permanent fault of M. Then
f. f"
r = for allr R and i, j < 0.r r

Proof: Let i, j < 0. Because f is permanent, fi = (M',i, 8) and

f =(M', j,). By Corollary 2 . 1. 1, 0r = ' and 3 = r for all r R.
This establishes rthe result.

This establishes the result.

55

Theorem 2.6:. Let f be a permanent fault of an k-reachable machine M.

If fi is tolerated by M for -1 < i < f then f. is tolerated by M for all

i e T.

f. f
Proof: By Lemma 2. 1, Or = ~r for all i < 0. Hence, f is tolerated

by M implies that f. is tolerated by M for all i < 0. By Theorem 2. 5,

f. is tolerated by M for all i > 0. This establishes the result.
1

Before leaving this line of development we will make some final

observations. Note that a machine M is 0-reachable if and only if

p(R) = P. In particular, every memoryless machine is 0-reachable. By

Theorem 2. 5, if M is 0-reachable and f is tolerated by M then f. is
O 1

tolerated by M for all i > 0.

If f = (M', 7, 9) is a fault of M we think of f as affecting the reset

mechanism of M if p'(r) A (p(r)) for some r E R. If this is not the case

then a further result, similar to Lemma 2.1 can be obtained.

Lemma 2. 2: Let f = (M',7, 9) be a permanent fault of M and suppose
f. f.

that p'(r) = (p(r)) for all r E R. Then '= for all rER and i, j < 0.

f
Proof: Since p'(r) = 9(p(r)), by Corollary 2. 1. 1, r 0 = 0' for all r E R.r r

The result now follows just as in the proof of Lemma 2. 1.

Putting the above observations together yields:

Theorem 2.7 : Let f = (M', T, 8) be a permanent fault of M. Suppose

that p'(r) = 0(p(r)) for all r E R and that p(R) = P. If fi is tolerated by

M for any i< 0 then f. is tolerated by M for all i E T.
- 1

56

Proof: By Lemma 2.2 fi is tolerated by M for all i < 0. Since p(R) =

P, M is 0-reachable. Therefore, by Theorem 2. 5 fi is t-:Arated by M

for all i > 0. This establishes the result.

57.

2.4 On-line Diagnosis

Our notion of on-line diagnosis of a system involves an external

detector (assumed to be fault-free) which observes the input and the

output of the system and makes a decision as to whether the behavior

of the system is within "acceptable limits" as set forth by our notions

of fault tolerance. Initial synchronization. of the system with its

detector is achieved by using the same reset to initialize both systems.

The formal relation between a system and its detector is that of

a "cascade connection. "

Definition 2. 14: The cascade connection of two systems S 1 and S2 for

which R 1 = R2 and 12 = Z 1 x 11 is the system

S 1 * S2 = (I1 , Q, Z 2 , 5,, R1' P)

where

Q = Q1 x Q2

6((q1 , q2), a, t) = (51 (q1 , a, t), 62 (q2 , (Xl(q 1 , a, t), a), t))

X((ql, q2), a, t) = X2 (q2 , (1 (q1, a, t), a), t)

p(r,t) = (pl(r,t),P2(r,t)).

58

Schematically,' S1 * S2 can be pictured as in Fig. 2. 18.

1

Z1 "
I1 S S2

Fig. 2. 18. The Cascade Connection of S1 and S2

Notation: If u = z z2 ... zn E Z+ and v = a l a2 ... a E I+ then the pair

[u, v] will denote the sequence (z 1, al)(z 2 , a 2)... (zn , an) E (Z X I)+ .

Let S1 * S2 be the cascade connection of S1 with S2. Let 0 1, 2p

and 0* denote the behavior functions of S1, S2, and S1 * S2 respectively.

It can be shown directly from the definition of a cascade connection that

for all X I, q1 E Q ' q2 E r E R1 , and t e T,

Sq 2)(x, t) = p 2 (l (x, t), x] , t)
91' 2q 2 q 1

and

* t(x) = 2 1 t(x),x]) .rt rt rt

59

We can now formally define our notion of on-line diagnosis.

Definition 2. 15: Let (M, F) be a machine with faults, let D be a machine

for which M * D is defined, and let k be a nonnegative integer. (M, F) is

(D, k)-1-diagnosable (2-diagnosable) if

i) 0* =0 for allr E R, and
r

ii) if (r,x,y) is a minimal 1-error (2-error) caused by some f e F

then

([(xw),xw]) 0 x for all w I* with Iw = k.

Thus, the detector D observes the operation of M f and must make

a decision based on this observation as to whether an error has occurred.

Note that the fault-free realization M and the detector are both time-

invariant (i. e., machines), and that the detector takes no part in the

computation of M's output.

R

I M D

Fig. 2. 19. Diagnosis of (M, F) using the Detector D

60

The two conditions of Definition 2. 15 can be paraphrased as:

i) D responds negatively if no fault occurs; i. e.,) ives no

false alarms, and

ii) for all f E F, D responds positively within k time steps of the

occurrence of the first error caused by f.

Condition i) implies 0 e ZD, the output alphabet of D. Each

z E ZD other than 0 is called a fault-detection signal. The choice of the

symbol "0" to indicate that the machine M is operating properly is

purely for notational convenience. In general we could let any subset

of ZD indicate proper operation and let the complement of this set in

ZD be the set of fault-detection signals. In a practical application this

choice would depend on the design constraints on the detector.

As we have done with fault tolerance and with errors, if a theorem

or remark applies to both "l-diagnosable" and "2-diagnosable" we will

just state it once using the general term "diagnosable. "

Let D be a detector for M. Then ID = Z x I. There will be times

when the observation of M's input by D will be unnecessary or undesired.

If for all z E Z and a,b e I (z, a) and (z,b) are equivalent inputs of D

then we will say that D is independent of M's input. In this case the

behavior of D does not depend on the second coordinate of D's input and

we will take ID to be simply Z.

Recall that with this concept of diagnosis that we are only con-

sidering faults of M. Faults of D must be analyzed separately. In

61

finding a realization M of M and a detector D there is some leeway in

how much of the added complexity required for diagnosis should go

into the detector and how much should go into the realization. If it

all goes into the realization then D will serve only to select out certain

coordinates of M's output to be used as the output of D. That is, D

will be memoryless and realize a projection. In this case we will say

that (M, F) is k-self-diagnosable. In general, it is desirable for the

detector to be self-diagnosable for some suitable set of faults.

The basic on-line diagnosis problem can now be restated as

follows:

Given a machine M, a, class of faults F, a class of
detectors ! and a delay k find an (economical) realization M
of M and a detector De ! such that (M, F) is (D, k) -diagnosable.

In this chapter we have developed a model for the study of on-

line diagnosis of resettable machines, and we have restated the basic

on-line diagnosis problem. In the following chapters results are

developed which will help to solve this basic problem.

CHAPTER III

General Properties of Diagnosis

In this short chapter we will present a few results on diagnosis

per se. That is, they are general results which tell us some things

about diagnosis, independent of the particular fault set being diagnosed

or of any particular diagnosis technique. In the following chapters

we look at the diagnosis of specific sets of faults and investigate

the capabilities and limitations of on-line diagnosis techniques.

It is interesting to see how our concept of on-line diagnosis

compares with a similar concept introduced by Carter and Schnetder

[7] and called "fault-secure" by Anderson [1]. As stated by

Anderson, "A circuit is fault-secure if, for every fault in a pre-

scribed set, the circuit never produces incorrect code space outputs

for code space inputs. "

Before making a formal comparison this notion must be trans-

lated into our framework. In doing so we will strive to be faithful

to Anderson's intent.

Definition 3. 1: A machine with faults, (M, F), is fault-secure if

(r,x,ya), where a E Z, is a minimal 2-error caused by some f E F

implies a / {Pr (x) Ir E R, x E I }.

62

63

Thus if (M, F) is fault-secure then a combinational detector which

only observes the output of M can detect all minimal 2-errors. More

formally,

Theorem 3. 1: (M, F) is-fault-secure if and only if (M, F) is (D, 0)-2-

diagnosable where D is memoryless and independent of M's input.

Proof: (Necessity) Assume that M is fault-secure. Define

xD: Z -{0, 1} by

D(0 if z E ({r(x)r E R, x E I }

1 otherwise

Let D be the memoryless detector which realizes XD. Then D is

independent of M's input and it can easily be verified that (M, F) is

(D, 0)-2-diagnosable.

(Sufficiency) Assume that (M, F) is (D, 0)-2-diagnosable where D is

memoryless and independent of M's input. Let XD: Z -- {0, 1}

denote the function realized by D and let Z' = { (x)r E R, x E I+}.

Then XD(z) = 0 for all z E Z' for otherwise a false alarm could occur.

Let (r,x,ya) where a E Z be a minimal 2-error. If a E Z' then

XD(a) = 0 and f is not detected without delay. Therefore a / Z'.

Hence (M, F) is fault-secure.

Thus the concept of (D, k)-diagnosable is a generalization of the

concept of fault-secure. In particular, (D, k)-diagnosis allows for

(i) different tolerance relations, (ii) nonzero delay in diagnosis,

64

(iii) detectors 'with memory, and (iv) explicit observation by the

detector of the input to the system being monitored.

Our next result shows that "2-diagnosable" is indeed a stronger

property than '1-diagnosable. " This result is a consequence of the

fact that every 1-error is a 2-error but not conversely.

Theorem 3. 2: If (M, F) is (D, k)-2-diagnosable then (M, F) is (D, k)-1-

diagnosable, but not conversely.

Proof: Let (M, F) be (D, k)-2-diagnosable. Then no false alarms will

occur and every minimal 2-error will be detected within k time steps

of its occurrence. Let (r,x,y) be a mitimal 1-error. Then o3 r))

a,(y) and hence W(x) y. £hus (r, x1, y 1) is a minimal 2-error for

some x 1 and yl such that x = x1 x 2 and y = y 1y 2 . Since this minimal

2-error is detected within k time steps of its occurrence the minimal

1-error (r, x, y) must also be detected within k time steps of its

occurrence. Hence (M, F) is (D, k)-1-diagnosable.

The counterexample which shows that the converse does not

hold is given in the next chapter in the proof of Theorem 4. 4.

Although the converse of Theorem 3. 2 does not hold in general,

the following partial converse can be obtained.

65

Theorem 3. 3: If (M, F) is (D, k)-1-diagnosable and a 3 is 1-1 then

(M, F) is (D, k)-2-diagnosable.

Proof: We observed in Section 2. 3 that if a 3 is 1-1 then every

2-error is a 1-error. The result is an immediate consequence of

this fact.

The next result will help us to see the relationship between

fault diagnosis and fault tolerance.

Theorem 3. 4: Let (M, F) be a machine with faults. If F is tolerated

by M then (M, F) is (Do , 0)-diagnosable where Do is a trivial memory-

less machine which realizes the constant 0 function.

Proof: Condition i) is clearly satisfied, and condition ii) is satis-

fied because if F is tolerated by M then no f E F will cause any errors.

The decision in this case can be trivially made since no errors

are ever produced. The situation for tolerated faults is not so simple

as this result may seem to indicate for it must be remembered that

1-tolerated does not imply 2-tolerated and thus a 1-tolerated fault

could be detected through a 2-error (see Example 2. 6).

We will now develop some results concerning diagnosis which are

analogous to Theorems 2. 5, 2. 7 and 2. 9. Recall that these theorems

allowed us to infer the tolerance of an infinite set of equivalent faults

from knowledge that a specific finite subset of them is tolerated.

66

Theorem 3.5': Let M be a machine and let D be a detector for M.

Suppose that the cascade connection M * D is I-reachable, and that

f is a fault of M. If (M, (fi.) is (D, k)-diagnosable for 0 < i < I then
(M, {fi)) is (D, k)-diagnosable for all i > 0.

Proof: Assume that (M, {fi.) is (D, k)-diagnosable for 0 < i < C.

Then condition i) of Definition 2. 15 is immediately satisfied. Let

(r, x, w) be a minimal error caused by fi where i > f, and let u E I+

with ju I = k. To show that (M, {fi}) is (D, k)-diagnosable for 0 < i

we need only show that D ([r (xu), xu]) f /xu I

Let x = x 1z where jx1 I = i, and let 6*(p*(r), x l) = (q, q'). Since

M * D is I-reachable there exists s E R and y I+ with 0 < ly <
such that 5*(p*(s),y) = (q,q'). Say jy = j. Since (M.{f.}) is

Aff. y(D, k)-diagnosable, sD ([i (yzu), yzu]) 0 yzu , and since the fault

detection signal must occur after the fault occurs,

N q([i fJq) (zu, j),zu]) 0 0zu j
f f

Now by Theorem 2.3, (q)(zu, i) = e(q)(zu, j) and hence

i9q[Oe%(q) (zu, i), zu]) 0 /zu 1. Therefore

rD ((XlZU), x1ZU) = rD(ri (x),xl]) ([e; (zu, i), zu])

So0 xul

Hence (M, {fi}) is (D, k)-diagnosable for all i > 0.

67

Example 2. 8, which shows that the hypothesis of Theorem 2. 5

cannot be weakened, works likewise for Theorem 3. 4. This example

works for both fault tolerance and fault diagnosis because, as was

pointed out by Theorem 2. 3, tolerated faults are trivially diagnos-

able.

Theorem 3. 6: Let M be a machine and let D be a detector for M

such that M * D is k-reachable. If f is a permanent fault of M and

(M, {f}) is (D, k)-diagnosable for -1 <i < I then (M, {fi}) is

(D, k)-diagnosable for all i E T.

Proof: Assume that f is a permanent-fault and that (M, {fi}) is

(D,k)-diagnosable for -1< i < k. By Theorem 3.4, (M,{fi}) is

f" f-I
(D, k)-diagnosable for all i > 0. By Lemma 2. 6, 'r =

for all r E R and i < 0. Hence every f. with i < 0 will cause

exactly the same errors. Since (M, {f 1_}) is (D, k)-diagnosable it

follows that (M, {fi}) is (D, k)-diagnosable for all i < 0. This

establishes the result.

Let D be a detector for a machine M. It will often be the case

that the second coordinate of the state of M * D can be uniquely

determined from the first coordinate. In particular, this is always

the case when IQDI = 1. More formally, the cascade connection of

M 1 with M2 is synchronized if there exists a function h: Q1 -Q2

68

such that for.each (ql', q2) in the reachable part of M 1 * M2,

h(ql) = q 2 . Such a function is called the synchronizing function of

M 1 * M 2 and it must satisfy h(pl(r)) =p 2 (r) for each r E R.

If M * D is synchronized and M is £-reachable then M * D is

also k-reachable. We have observed in Chapter II that M is

0-reachable if and only if p(R) = P, and that, in particular, every

memoryless machine is 0-reachable. Hence if p(R) = P and M * D

is synchronized then M * D is O-reachable. In this case we know

that if fo is diagnosable then fi is diagnosable for 0 <i.

We terminate this line of development by stating the strongest

result of this nature.

Theorem 3. 7: Let M be a machine for which p (R) = P. Let D be

a detector for M such that M * D is synchronized. Let f = (M', 7, 0)

be a permanent fault for which p'(r) = 8(p(r)) for all r E R. If

(M,{fi}) is (D,k)-diagnosable for any i < 0 then (M, {fi}) is (D, k)-

diagnosable for all i E T.

Proof: Assume that (M, {f }) is (D, k)-diagnosable where k < 0.
fi fBy Lemma 2. 8, 3r = r for all i, j < 0. Therefore (M, {fi}) is

(D, k)-diagnosable for all i < 0. Since p(R) = P and M * D is syn-

chronized, M * D is O-reachable. Thus by Theorem 2. 4, (M, {fi})

is (D, k)-diagnosable for all i > 0. This establishes the result.

CHAPTER IV

Diagnosis of Unrestricted Faults

The investigation of this chapter is concerned with the general

case in which the set of potential faults is "unrestricted. " This set

of faults is precisely the set of all faults of the machine being

diagnosed, and hence it is truely unrestricted.

Aside from representing a "worst-case" fault environment,

there are certain practical reasons for considering unrestricted

faults, at least at the outset. In particular, as the scale of integrated

circuit technology becomes larger, it becomes more difficult to

postulate a suitably restricted class of faults such as the class of

all "stucK-at" faults. Moreover, although other failure models such

as bridging failures have been proposed and studied (see [15] and [26]

for example), little is known about the. diagnosis of such failures.

In addition, intermittent and multiple failures are also possible and

are even more difficult to model. Finally, for a given failure it may

be impossible to determine the 8 function of the fault caused by this

failure. Thus fault sets which do not restrict the fault mapping 0 are

advantageous.

Unrestricted faults are typically diagnosed using the technique

of duplication. One of the aims of this chapter is to take a deeper

look at duplication and at a generalization of this scheme. An

69

70

alternative to using duplication for the diagnosis of unrestricted

faults is investigated in Chapter V.

The main result in this chapter states that to achieve 1-diagnosis

of the unrestricted faults of a machine M, the detector must have as

many states as M, the behavioral specification for M. Furthermore,

to achieve 2-diagnosis, the detector must have as many states as

MR , the reduction of M. These bounds on the state set size of the

detector are independent of the delay allowed for the diagnosis.

71

4. 1 Unrestricted Faults

As stated above, the set of unrestricted faults of a machine

is simply the set of all faults of that machine. More formally,

Definition 4. 1: The set of unrestricted faults of machine M, denoted

by UM, is the set UM ={f If is a fault of M}. That is,

UM = {(S.',) 1 S' 6 S(I, Z,R), r- T, and 0: Q -- Q'}

When it is clear what machine is under consideration, the

identifying subscript will be dropped.

One important property of the set of unrestricted faults is the

relation between this fault set and the set of errors that may be

caused by faults in this set. Given any r E R, x E I+ andy E Z+ with

x I = y 1, there is a fault f eU such that A (x) = y. Therefore

faults in U can cause any possible erroneous behavior, and for

(M, U) to be (D, k)-diagnosable all of these possible erroneous

behaviors will have to be detected by D.

Due to the above observation it,is clear that the output of M

(the system actually being observed by the detector) can give no

information about what the correct output should be. Therefore,

for the diagnosis of unrestricted faults, the ability of D to observe

M's input directly is crucial. This observation is made explicit

in the following result.

72

Theorem 4.1: If (M, U) is (D, k)-1-diagnosable, D is independent of

M's input, and M is transition distinct then M is autonomous.

Proof: Suppose that (M, U) is (D, k)-1-diagnosable, D is independent

of M's input, and Mi is transition distinct. Assume, to the contrary,

that M is not autonomous. Then there exists r E R and x, y e I+

such that Ixl = lyI and a3 r(X)) # a3 (r(y)). Let v e I* with lvl= k.

For no false alarms to occur we must have (r (xv)) = 0 xv and

r(r(yv)) = 0 l y v Let f E U be a fault for which 3 (xv) = jr(yv).

Since (r, x, W(x)) is a 1-error it must be detected within k time

steps of its occurrence. But D (f (xv)) = D((YV))= 0 l v .
r r r r

Contradiction. Hence M must be autonomous.

73

4. 2 Diagnosis Via Independent Computation and Comparison

It is a well-known and obvious fact that if a syt.r m is dupli-

cated and both copies are run in parallel withthe same inputs then by

dynamically comparing the outputs of the two copies any error

which does not appear simultaneously in both copies will be immed-

iately detected.

Our view of duplication is shown in Fig. 4. 1. In this figure

I M Z XOR E

R T

I I

D

Fig. 4. 1. Diagnosis via Duplication in the Detector

the detector D consists of a copy of M along with a generalized

Exclusive-OR gate whose output is 0 if and only if its inputs are

identical. Given such a detector D, it is immediately clear that

(M, U) is (D, 0)-2 -diagnosable.

Duplication is an expensive technique, involving somewhat

more than twice the circuitry required for the unchecked system

alone, but it has a number of positive attributes. In addition to

being capable of diagnosing the unrestricted set of faults,

74

synthesis is-easy and self-testing and self-diagnosable comparators

are known to exist [1].

The basic configuration shown in Fig. 4. 1 can be generalized

to the configuration shown in Fig. 4. 2. In this figure the detector

F----- .1
I Z

M'

D

Fig. 4. 2. A Generalization of Duplication in the Detector

consists of a machine M' which runs in parallel with M and a

combinational comparator C which dynamically compares the out-

puts of M and M'. Note that for the cascade connection M * D to be

defined we must have I' = I and R' = R.

With this scheme M' may be much less complex than M. How-

ever, we will show that there is a relationship between the size of

the state set of M' and the level of diagnosis which may be possible

using M'.

75

In the following result we give a necessary and sufficient

condition for (M, U) to be (D, 0)-diagnosable where D is structured

as in Fig. 4. 2. The basic intuition for this result is that (M, U)

is (D, 0)-1-diagnosable if and only if it is possible to perfectly pre-

dict the behavior of M from that of M'.

Theorem 4.2: Let M realize M under (al, a2a3). Let [M', C] de-

note a detector for M constructed from M' and C as shown in Fig.

4. 2. There exists a' such that M' realizes M under (al , a2, a)

if and only if there exists C such that (M, U) is ([M', C], 0)-1-

diagnosable. Similarly there exists a 3 such that M' realizes M

under (e, e,a) if and only if there exists a C such that (M, U) is

([M', C], 0)-2 -diagnosable.

Proof: (Necessity) Assume that M' realizes M under (al, 2 , c).

Thena' o ' ~ °a = O for all E E R. Since M realizes M
3 a 2 (r) 1 r.

under (a , a2 , 3) , 3 o o a2a) O 1
= Pl for all r R. Hence

at o '() o 0 1 = a a) oa . Recall that a and a are3 u 2 (r) 1 3 2 1 2

assumed to be onto. Because of this assumption, it follows that

a3 o 3 = a3 O for all r E R. Let C be the comparator shown in Fig. 4. 3.

76

SXOR

Z' /

C

Fig. 4. 3. The Comparator Used in the Proof of Theorem 4. 2

Since a3 o pr =0 3 o pr the detector [M', C] will give no false

alarms. Let (r, x, y) be a minimal 1-error caused by f e U. Then

3 (Br()X)) W3 (f (x)). Hence, a3(r(x)) / o3(a (x)), and this will

cause the Exclusive-OR gate to emit a 1. Therefore the minimal

1-error (r,x,y) is detected with no delay. Hence (M, U) is

([M', C] , 0) -- diagnosable.

Similarly, if M' realizes M under (e,e,o ') then pr = o p'

and a comparator as shown in Fig. 4. 3, but without the a3 function,

can be used to achieve ([M', C], 0)-2-diagnosis of (M, U).

(Sufficiency) Assume that (M, U) is ([M', C], 0)-l-diagnosable. To

prove that there exists a a3 such that M' realizes M under (al', o' 2,')

we must exhibit a function a' and show that o3 ir = o 0'. This

is sufficient because M realizes M under (a', o2' 3)

77

and a 1 and a.2 are assumed to be onto.

Since no false alarms may occur we know that C(P r (x), ,3(x)) = 0

for all r E R and x l I. Define u3 as follows: a'(,B' (x)) = 3(0 r()).

Since a~ has the desired property we must simply verify that it is

indeed a function.

It is clear that every z e { '()x)I E R, x E I} has an image

under r3 . To see that this image is unique suppose that Jr(x) =

P (y). We must show that a3(r(x)) = a 3(0s(y)). Let 13j(x) = a,

a3(3r(x)) = b, and u3(0s(y)) = c. Then C(b, a) = C(c, a) = 0. Assume

to the contrary that b # c. Let f e U be a fault which causes the

output of M to be c at time Ix I - 1 and which has no other affect.

Let x = uv where v E I. Then (r,x, r(u)c) is a minimal 1-error

and since C(c, a) = 0, it is not detected when it occurs. This contra-

dicts the assumption that (M, U) is ([M', C] , 0)-l-diagnosable. Hence

U3 is a function and M' realizes M under (al 1 2' a).

The proof that (M, U) is ([M', C], 0)-2-diagnosable implies that

there exists a function a' such that M' realizes M under (e,e, U)

is essentially the same as the above proof.

From Theorem 4. 2 we know that if M realizes M' and M' is

reduced and reachable then IQI > JQ' I. Hence Theorem 4. 2 tells

us that if we use the scheme shown in Fig. 4. 2 for the diagnosis of

unrestricted faults then we must have IQ' I> Q I in order to achieve

1-diagnosis, and I Q'I >]QR I in order to achieve 2-diagnosis,

where MR is the reduction of M.

78

4. 3 Diagnosis with Zero Delay

The question answered next is whether it is possible to

achieve (D, 0)-l-diagnosis of (M, U) with a detector which is less

complex, in terms of state set size, than the reduced and reachable

specification M. One reason to believe that this may be possible

is the observation that if M has an inverse then this inverse may

have fewer states than M, and yet a detector constructed using this

inverse may be capable of diagnosing all of U. Examples of such

inverses are given in the following chapter.

Theorem 4. 3: If (M, U) is (D, 0)-1-diagnosable then IQDi _ IQ I.DI

Proof: Let (M, U) be (D, 0)-1-diagnosable, and assume, to the

contrary, that IQDi < 1Qi. Without loss of generality, assume

that M is reachable.

Claim: There exists q, q' E Q and s E QD such that (q, s), (q', s)

E P*, the reachable part of M * D, and u3 o Pq A a 3 o Pq'.

Let g: Q - (Q D)- k (where (QD) = {XIX C QD) be

defined by g(q) = {s (q, s) E P*}. Assume that the claim is not

true. Then a 3 o Pq f a3 o Pq, implies g(q) n g(qc) = €. We know

from the proof of Theorem A 2 that for each 4 F Q there is a state

f(q) for which -q = cr3 o f) o and that f is necessarily 1-1.

Since M is reduced and reachable there must exist IQI = f unique

states {ql,... , q}j C Q such that i A j implies g(qi) n g(q) = .

79

andtherefore IQDI _ Q I. Contradiction. This establishes the

claim.

Let q, q' E Q and s E QD such that (q, s), (q', s) e P* and

a3 o 0q 0 3 o,. Then there exists a sequence ua where u e I*

and a E I such that 3(q(ua)) 3(Pq ' (ua)) and if uAAthenaA (u) =

aq q, (u)). Since (q, s) E P*, there exists r E R andy I* such that

6*(p*(r) , y) = (q, s).

Recallthat given any r E R, E I+ andy EZ+with Ix = lyl, there is a

fault f U suchthat r(x) = y. Let f E U be a fault for which (yua)

r (Y)oq,(ua). Since it is known that u3 (q(u)) = 3 q,(u)), it follows

that (r, yua, O (yua)) is a minimal 1-error. Now (M, U) is (D, 0)-1-

diagnosable implies ID([f (yua), yua]) 0 y u a . Since no falser r

AD Af AD A A

alarms may occur, r([r(y),y]) = 0 . Also, since (q',s) E P*,

^D[f (yua), yua]) = D r(Y)q ^,(ua), yua])

= (Ir D ((,(a), ua])

= 0lYoual

= 0 lyua

This contradicts the assumption that (M, U) is (D, O)-1-diagnos-

able. Therefore IQDI _> IQI.

80

Corollary 4..3. 1: If (M, U) is (D, 0)-2-diagnosable then 1QD1 > 1QRI,

where MR is the reduction of M.

Proof: Assume that (M, U) is (D, 0)-2-diagnosable, and consider

M to be realizing MR. By Theorem 3. 2, (M, U) is (D, 0)-1-diagnos-

able, and hence, by Theorem 4. 3, IQDI IQRI.

Let us now consider the set of faults of M which are caused by

the output of M becoming stuck-at-v, where v e Z, at some time T.

More formally, the set of permanent output faults of M is the set

F = {f = (M', 7, e) IM' = (I,Q, Z, 5, ', R,p) where

X'(q, a) = '(s, b) for all q,s E Q and a, b e I

Because the set of permanent faults causes the same minimal

2-errors as the set of unrestricted faults,if (M, F o) is (D, 0)-2-diag-

nosable then (M, U) is (D, 0)-2-diagnosable. However, U and F do

not cause the same minimal 1-errors, and in fact, (M, F) is

(D, 0)-1-diagnosable does not imply that (M, U) is (D, 0)-l-diagnos-

able. These statements are proved in the following result.

Theorem 4.4: (M, Fo) is (D, 0)-2-diagnosable if and only if (M, U)

is (D, 0)-2-diagnosable. However, (M, F) is (D, 0)-1-diagnosable

does not imply that (M, U) is (D, 0)-1-diagnosable.

81

Proof: Let.(M, F o) be (D, 0)-2-diagnosable. Let (r,ya, wX where a

a E I, be a minimal 2-error which is caused by f e U. To show that

(M, U) is (D, 0)-2-diagnosable it suffices to show that D([(ya), ya])V

0. Since (r,ya, w) is a minimal error, frA(y) = (y) and r (ya)

r(ya). Say ifr(ya) = b, and consider the fault f' E F which is cause'd

by the output of M becoming stuck-at-b at time ly [. Then fr(ya) =

fr ya), and f' also causes the minimal 2-error (r, ya, w). Since

(M, F) is (D, 0)-2-diagnosable we know that 1rD([Or(ya), ya]) 0.

Hence i1 ([f(ya),ya]) 0 and (M, U) is (D, 0)-2-diagnosable.

Now assume that (M, U) is (D, 0)-diagnosable. Since F c:U,O-

it follows immediately that (M, F) is (D, 0)-diagnosable.

We prove that (M, F) is (D, 0)-1-diagnosable does not imply

(M, U) is (D, 0)-l-diagnosable by supplying a counter-example. Let

M 1 , M1 , DI, and a3 : Z --> Z be specified by the tables in Fig. 4. 4.

Then M is reduced and reachable, and M1 realizes l 1 under

(e, e, o 3).

82

1 I
M : 0 1 R : 1 R

1 1 Q0

a b/2 c/3 r a b/2 c/3 r

b d/0 d/O b d/O d/0

c e/0 e/0 c e/l e/1

d d/2 a/3 d d/2 a/3

e e/3 1 a/2 e - /3 a/2

\D1 0,0 0,1 1,0 1,1 2,0 2,1 3,0 3,1 R
QD

1

P q/1 q/1 q/1 q/1 q/0 q/1 q/1 q/0 r

q s/0 s/0 t/0 t/0 tl/I t/i t/i t/1

s S/1 s/1 s/1 s/1 s/0 s/1 s/1 p/0

t t/l t/l t/l t/l t/l P/0 t/0 t/l

z a 3 (z)

0 0

1 0

2 2

3 3

Fig. 4.4. Machines M1 , M1, and D1 and ac3 Z - Z

e-N

83

Since IQD1I < I 11 we know from Theorem 4. 3 that (M1, U) is not

(D1 , 0)-1-diagnosable. To see that (M1, Fo) is (D, 0)-1-diagnosable

takes a bit of analysis. Briefly, states p, s, and t duplicate states

a, d and e and any error which occurs when M1 is in one of these

states is immediately detected. If M1 is in b or c then D1 will be

in q and if the output becomes stuck-at 2 or 3 at this time it will

be immediately detected. If M1 is in b or c and a stuck-at-0 or

stuck-at-1 fault occurs then it will be tolerated for one time step

and detected the next. This establishes the result.

In the above counter-example it is clear that (M1, F) is not

(D1 , 0)-2-diagnosable because a stuck-at-1 fault which occurs when

M 1 is in b causes a 2-error which is not immediately detected.

Therefore this example also proves that, in general, (M, F) is

(D, k)-1-diagnosable does not imply that. (M, F) is (D, k)-2-diagnos-

able. Also, if (M, Fo) was (D, 0)-2-diagnosable for some D then by

Theorem 4.4 (M, U) would be (D, 0)-2 -diagnosable and from Theorem

4. 3 it would follow that QDI> I I. Hence this is also an example

of how 1-diagnosis may be achieved with a detector which is less

complex than the least complex detector which is sufficient for

2 -diagnosis.

84

4. 4 Diagnosis with Nonzero Delay

Suppose now that we allow some arbitrary, but fixed, k > 0

in the detection process. Can this additional time be traded off for

less detector complexity? Unfortunately, for the unrestricted case,

the answer is no. In fact, if (M, U) is (D', k)-1-diagnosable then we

can construct a detector D, essentially by eliminating unnecessary

states of D', such that (M, U) is (D, 0)-1-diagnosable.

Before stating:this result formally, we will establish an import-

ant lemma.

Lemma 4.1 : If (M, U) is (D', k)-1-diagnosable then there exists a

detector D such that IQDI < IQD' , (M, U) is (D, k)-l-diagnosable,

and for each q e QD' D(q, (z, a)) = 0 for some (z, a) Z x I.

Proof: Assume that (M, U) is (D', k)-1-diagnosable and construct

D from D' as follows:

1) Delete from the state table of D' any row corresponding to

a state q for which

0 {xD'(q, (z, a)) I (z, a) E Z I} .

2) In the resulting table, replace every reference to the

deleted state with a reference to an arbitrary remaining state, and set

the corresponding output to 1.

3) Repeat steps 1) and 2) until no further deletions are possible.

85

Since IQD ' I < oo the above algorithm will terminate in a finite

number of iterations.

From the nature of the above construction it is clear that

QD IQ ,D' I and for each q E QD' XD(q, (z, a)) = 0 for some (z, a)

eZ x I. It only remains to be shown that (M, U) is (D, k)-1-diagnosable.

If the detector D' is in a state q for which 0 ~' {D,(q, (z, a))

(z, a) E Z x I}, then an error must have occurred because if D' is in q

then an error detection signal will be emitted regardless of the input

to D'. Hence this error could be signaled whenever a transition to

q is indicated, and there would be no loss in diagnosis and no possi-

bility for a false alarm. Since all minimal errors which q signaled

would then be signaled before D' got to state q , q could be eliminated.

This is the essence of what is accomplished in steps 1) and 2).

This elimination process is necessarily iterative because step 2)

may introduce new states to be deleted.

Since this construction is diagnosis preserving, (M, U) is

(D, k) -1 -diagnosable.

Theorem 4.5: If (M, U) is (D', k)-1-diagnosable then there exists

a detector D with 1QD IS IQD' I such that (M, U) is (D, 0)-1-diagnos-

able.

Proof: Assume that (M, U) is (D', k)-1-diagnosable. From Lemma

4.1 there exists a detector D such that 1QDI _ IQD' I' (M,U) is

(D, k)-1-diagnosable, and for each q e QD, D (q, (z, a)) = 0 for some

86

(z, a) Z x I:

Claim: (M, U) is (D, 0)-1-diagnosable.

Assume, to the contrary, that (M,U) is not (D, 0)-1-diagnosable.

Using induction on the delay of the diagnosis, we will deduce that

(M, U) is not (D,m)-1-diagnosable for all m > 0. This will establish

the result for it contradicts the hypothesis that (M, U) is (D, k)-1-

diagnosable.

Having assumed that the basis step for our induction is true,

we assume that (M, U) is not (D, m)-l1-diagnosable for some m> 0, and

we must show that this implies (M, U) is not (D, m+l)-1-diagnosable.

Since (M, U) is not. (D, m)-1-diagnosable, there exists a minimal

1-error (r,x, y) caused by f EU and a sequence v E I+ with jvl =m

such that ([r (xv),xv]) = 0 x . Let 6 D D(r), [(xv),xv]) =s.

Let (z, a) E Z X I such that XD(s, (z, a)) = 0. By Lemma 4. 1 we know

that such a (z, a) exists. Let f' be a fault for which r (xva) =r

r(xv)z. Then (r,x, (x)) is a minimal 1-error but

r QO (xva), xva]) = 0 1x v a . Hence (M,U) is not (D,m+l)-1-diag-

nosable. Therefore, (M, U) is not (D, 0)-1-diagnosable implies (M, U)

is not (D, m)-l-diagnosable for all m > 0.

But we know that (M, U) is (D, k)-1-diagnosable. Hence (M, U)

is (D, 0)-1-diagnosable. This establishes the result.

87

Corollary 4.5. 1: If (M,U) is (D,k)-1-diagnosable then IQDI 2 IQI.

Proof: This is an immediate *consequence of Theo_ e in 4. 5 and

Theorem 4. 3.

Corollary 4. 5.2: If (M,U) is (D,k)-2-diagnosable then IQDI > QRI

where MR is the reduction of M.

Proof: Assume that (M, U) is (D, k)-2-diagnosable, and consider M

to be realizing MR. From Theorem 3. 2, it follows that (M, U) is

(D, k)-1-diagnosable. The result now follows immediately from

Corollary 4. 5. 1.

Although Corollaries 4. 5. 1 and 4. 5. 2 are results of a negative

nature, i. e., they tell what is not possible, in conjunction with what

we know is possible with duplication they tell us much about the

diagnosis of unrestricted faults. They say that regardless of the

specific machine under consideration, the diagnosis scheme used,

and the delay allowed, any detector which can diagnose the unrestricted

faults of a given machine must be essentially as complex as that

machine. In particular, with regard to state set size as our measure

of complexity, it is impossible to improve upon duplication. This

provides an answer to Question II, page 11. These results also

answer Question III; namely, for unrestricted faults no space-time

tradeoff is possible, i. e., greater allowable delays in diagnosis

cannot be traded off for lessened detector complexity.

88

We know from Theorem 4. 4 and Corollary 4. 3. 1 that (M, Fo)

is (D, 0)-2-diagnosable implies JQD _> 1QR ' . Can this result be

generalized as was done for unrestricted faults by the previous

corollary ? The following example shows that the answer is no.

This example serves as a good example of when a space-time trade-

off is possible.

Example 4. 1: Consider machines M2 and D2 of Fig. 4. 5. Since

M2 is reduced and reachable, IQ2 1 IQ2 I, where M2 is theR R
reduction of M2 .

M2 Q20 1 D2: 2 0 1 2 R

a b/0 c/0 r P/1 s/0 t /0

b a/2 d/2 s p/0 s/l t/O r

c d/2 a/2 t p/0 s/0 t /1

d e/0 c/0

e d/1 a/1

Fig. 4. 5. Machines M2 and D2

89

Note that no output symbol can appear next to itself in any output

sequence produced by M2 . Since D2 will produce an error detection

signal precisely when two consecutive inputs to it are identical, it

can detect all permanent output faults of M2 with a delay of at most one.

Therefore (M2 , F o) is (D2 , l)-2-diagnosable, yet 1Q2 > IQD.

CHAPTER V

Diagnosis Using Inverse Machines

It is well known that many circuits can be diagnosed by what is

commonly called a "loop check. " This involves regenerating the

input to the circuit from the output and then comparing the regner-

ated input with the actual input. Often the "inverse" circuit is easier

to implement than the original circuit, thus providing a savings over

duplication. For example, division can be checked using multiplica-

tion. It is also possible to have greater confidence in a loop check

than in duplication, especially if the checking circuit is less complex

than the original circuit.

In this chapter we will investigate the use of "inverse machines"

for diagnosis using a loop check. Informally, machine M is an

inverse of machine M if M can reconstruct the input to M from its

output with at most a finite delay.

Machines which have inverses can be characterized as being

those machines which are "information lossless. " Information loss-

less machines are machines whose behavior functions satisfy a

condition which is similar to, but weaker than, the condition which

a 1-1 function must satisfy.

Information lossless machines and inverse machines were first

introduced by Huffman [18]. Huffman devised a test for information

losslessness and for the existence of inverses. It should be pointed

90

91

out that our definitions of these notions are slightly less general

than Huffman's. The definitions in this paper are directed towards

the use of inverse machines for diagnosis. Even [13] later devised

a better means of determining information losslessness, and he

presented two means for obtaining inverse machines.

Information lossless machines and inverse machines are also

discussed in textbooks by Kohavi [21] and Hennie [17]. Kohavi

provides a fuller description of Even's techniques for obtaining

inverse machines, and Hennie describes a different means of obtain-

ing inverse machines.

The questions about the use of inverse machines for diagnosis

which we seek to answer in this chapter are: When can an inverse

be used for the diagnosis of unrestricted faults ? Given a machine

M and an inverse M of M, what will be the delay in diagnosis if M

is used to diagnose M using a loop check? How can an arbitrary

machine be realized so that unrestricted fault diagnosis is possible

using a loop check?

We concentrate on unrestricted fault diagnosis in this chapter

because this is the most natural and important fault class which can

be diagnosed using a loop check. Inverse machines can be used for

the diagnosis of more restricted sets of faults but synthesis and

analysis for more general levels of diagnosis seem to be very

difficult.

92

5. 1 Inverses of Machines

Before the inverse of a machine can be formally defined, one

preliminary notion must be introduced.

Definition 5. 1: An (I, n)-delay machine (delay machine) is a machine

Mn = (I , I, , , R ,p) such that if a E I, 1< i < n + 1, then

((a l, . ,n),an+i) = (a 2 , . ,a n+1)

and

X((a, ... ,an), an+) = a 1 .

An (I, n)-delay machine simply delays its input for n time steps.

Stated more precisely, if M n is an (I, n)-delay machine then

pn (an+.. . an+m) = a
(a, , a .) n+1 n+m m

Definition 5. 2: Let M and M be two machines such that R = R and

Z = I. M is an (n-delayed) inverse of M if there exists an (I, n)-

delay machine Mn with reset alphabet R such that for all r E R and

xEI+

(P (x)) = On (x)

Note that if M is an inverse of M then I . Z . However, it is

not necessary to have I = Z. Symbols which are in Z but not in I

can be useful for diagnosis. Since they will never appear while M

is receiving its input from M, the appearance of one immediately

93

signifies that an error has occurred.

M might more properly have been dubbed a "right inverse" of

M for if M is an inverse of M it is not necessarily true that M is an

inverse of M. This is illustrated in Example 5. 1. This example

is a counter-example to the claims of Kohavi [21] and Even [13]

that if M is an inverse of M then M is an inverse of M.

Example 5. 1: Consider machines M 1 and M1 of Fig. 5. 1. M' is

a 0-delayed inverse of M 1 but M 1 is not an inverse of M

I I
S0 1 R 0 1 2 3 R

Q1 1

a b/O d/3 p q/0 q/1 q/0 q/1 r

b c/1 a/O q p/1 p/0 p/1 p/0

c d/2 b/1

d a/3 c/2

Fig. 5. 1. Machines M 1 and MI

In fact, there is no machine which is an inverse of M1 . This is

because the input symbols 0 and 2 are equivalent and so there is no

way in which they can be distinguished once they have been applied.

Intuitively, machines which have inverses lose no information

as they transform sequences from I into sequences from Z+. This

intuitive notion is captured in the following definition.

94

Definition 5. 3: A machine M is information lossless of delay n if

for allr R and ala 2 ... a m , bb 2 . . .b m e I + (ai', b I, 1 < i < m)

r(ala 2 . . am) = Ir(blb2...bm)

irplies a. = b. for 1 < i < m-n.
1 1 --

M is said to be lossless if it is information lossless of delay

n for some nonnegative integer n. M is lossy if it is not lossless.

Example 5. 2: Machine M 1 of Fig. 5. 1 is information lossless of

delay 0 and machine MI of Fig. 5. 1 is lossy.

R

M M"

Fig. 5. 2. Machine M in Series with an Inverse M of M

Referring to Fig. 5. 2, if M is lossless and M is an inverse of

M then intuitively no information is lost as sequences from I+ are

transformed into sequences from Z+ by M. The same is true for

the entire process which consists of transforming sequences from I+

into sequences from Z+ and then back again. Therefore it is somewhat

surprising to see, as we have in Example 5. 2, that Ivi may be lossy.

This may occur because while M must lose no information in trans-

forming the sequences it observes at the output of M, M may not be

capable of producing all possible output sequences. Thus while M

must be lossless with respect to a subset of Z+ it may be lossy with

respect to all of Z+ .

Even [13] gives an algorithm for determining if a given machine

is lossless, and if so, of what delay. It is particularly easy to

determine whether a given machine is lossless of delay 0. This is

because aimachine M is lossless of delay 0 if and only if the output

symbols in every row which corresponds to a reachable state are all

distinct.

Machines for which inverse machines exist can be characterized

as being precisely those machines which are lossless. More pre-

cisely,

Theorem 5. 1: M has a n-delayed inverse if and only if.M is

information lossless of delay n.

Proof: (Necessity) Assume that M is a n-delayed inverse of M.

Let r e R and a... a, b . .b m I+ e (a, b. I, 1 < i < m) such
.m 1 m -

tA A
that or (al...a M) = r(b 1 . .. b m). We must show that a i = b i f o r

alli, 1 < i < m-n.

96

Since M is a n-delayed inverse of M there exists an (I, n)-delay

machine M such that r o r. In particular, Tr r (al . .. a))
n -A

"r (aI.a) = a-n and r(0r(b1,...,b 2)) = n(bl . .. b) = b-n
for all 2, n < m.

Now r(a...am) = r(bl... bm) implies (Or(al...a)) =

PiPrDOl.. bpj for all , i < P m. Therefore a n b for

all k, n < k < m. That is, a = b.i for alli, 1 i <m-n. Hence,

M is lossless of delay n.

(Sufficiency) Given a machine M which is lossless of delay n, we

can show that M has a n-delayed inverse by constructing one. Tech-

niques for constructing inverses of lossless sequential machines can

be found in Hennie [17] and Kohavi [21]. With minor modifications

to insure the existence of suitable starting states, these techniques

can be used to construct inverses of lossless resettable machines.

97

5. 2 Diagnosis Using Lossless Inverses

If M is an n-delayed inverse of M then, by definition, there

exists an (I, n)-delay machine Mn such that 0r o Sr = or". Diagnosis

using inverses can be performed by implementing M, M, and M n and

dynamically checking to see if the above relationship holds. The

basic configuration for diagnosis using inverses is shovn in Fig. 5. 3.

zl I
II

Mn I

D

Fig. 5.3. On-line Diagnosis Using Inverse Machines

Since an (I, 0)-delay machine is simply a combinational machine

which realizes the identity function on I, a detector which uses a

0-delayed inverse will have the form shown in Fig. 5.4.

R r

I I
I I

D
Fig. 5. 4. A Detector which Uses a 0-delayed Inverse

98

We now -state the basic result relating the use of lossless

inverses with the diagnosis of unrestricted faults.

Theorem 5. 2: Let M be a lossless machine and let M be an n-delayed

inverse of M. Let D be constructed from M, the (I, n)-delay machine

which demonstrates that M is an n-delayed inverse of M, and an

Exclusive-OR gate as shown in Fig. 5.3. If M is lossless of delay

d then (M, U) is (D, d)-2-diagnosable.

Proof: Since Tr (0 (x)) = 1 r(x), there will be no false alarms.

Let (r, x, w) be a minimal 2-error caused by a fault f E U.

Then 4(x) Pr(x). Lett y E I* with Jy = d. Since M is lossless
A Af A

of delay d, Fr (r(xy)) , r(xy)). The Exclusive-OR gate will

detect this inequality, and hence the minimal 2-error will be detected

within d time steps of its occurrence. Therefore (M, U) is (D, d)-2-

diagnosable.

This result gives an answer to Question V, page '12 ; namely, the

behavioral property of "havinga lossless inverse" is conducive to on-line

diagnosis since the unrestricted faults of machines with this property

can be diagnosed using a loop check.

It is worth noting that the delay in diagnosis is not the delay of

losslessness of M but rather of its inverse M. Thus an n-delayed

inverse can be used to achieve diagnosis without delay if it is loss-

lss of delay 0.

99

Example 5. 3: Consider machines M2 and M2 of Fig. 5. 5. M 2 is

lossless of delay 2 and M2 is a 2-delayed inverseofM 2. Since M2 is

is lossless of delay 0 it can be used to form a detector D2 such that

(M2 , U) is (D2 , 0)-2 -diagnosable.

1 2
M: 0 1 R : 0 1 R

M 2 2

a a/0 b/O r p p/0 q/1 r

b c/O d/O q t /1 s/0

c d/l c/l s t/0 s/1

d b/1 a/1 t p/1 q/0

Fig. 5. 5. Machines M 2 and M 2

Example 5. 6, which appears later in this chapter, shows that

the converse of Theorem 5. 2 does not hold. Namely, it is possible

to diagnose the unrestricted fault set of a machine using an inverse

which is not lossless. However, not all inverses can be used for

the diagnosis of unrestricted faults. Example 5. 5 shows how a lossy

inverse can be useless for diagnosis. The complete characteriza-

tion of inverses which can be used for unrestricted fault diagnosis

is still an open problem.

Given Theorem 5. 2 and the observation that an inverse machine

may be lossy, an important question is whether every lossless

machine has a lossless inverse. This question is presently unan-

100

swered. However, it can be shown that if M is lossless of delay

0 then there exists a lossless inverse of M.

The following example shows that it is possible to diagnose the

unrestricted fault set of a machine using a lossless inverse which

has fewer states than the reduction of the machine being diagnosed.

Example 5.4: Consider machines M 3 and M3 of Fig. 5. 6. M3 is

a 2-delayed inverse of M3 , and N3 is itself lossless of delay 2.

I I
M 3 : 0 1 R M3 0 1 R

3 _3

a e/0 f/0 p s/0 t/1 r

b a/1 b/1 q t /0 s/1

c a/0 b/0 s p./0 q/0

d e/1 f/1 t s/1 t /1

e a/0 c/1

f d/1 b/0

Fig. 5.6. Machines M 3 and M 3

Therefore a detector D3 can be constructed from M3 and the

(I, 2)-delay machine M23 of Fig. 5. 7 such that (M3, U) will be (D3 ,2)-

2-diagnosable. Notice that M3 is reduced and reachable and that

IQ3 3> 1Q 3 . However, because M 3 is also in the detector IQD =
2 3

1Q3 IQj = 16. Therefore Q3 D3 i. This is in keeping with

what we know from Corollary 4..5. 2.

101

0 1 R

00 00/0 01/0 r

01 10/0 11/0

10 00/1 01/1

11 10/1 11/1

2
Fig. 5. 7. Machine M3

It is interesting to note that results established in this and

the preceding chapter have something to say about lossless machines,

per se. The following result gives a lower bound on the state set

size of any lossless inverse of a lossless machine M. This bound

is stated in terms of the input alphabet size of M, the delay of loss-

lessness of M, and the state set size of MR. This result, which

deals only with lossless and inverse machines,is proved using

Corollary 4. 5. 1 and Theorem 5. 2, which are results dealing with

the diagnosis of unrestricted faults.

Theorem 5. 3 : Let M be lossless of delay n, let M R be the reduction

of M, and let M be a lossless n-delayed inverse of M. Then

IQRI
_> n

Proof: Consider M to be realizing its reduction MI, and consider M andM

in the configuration usedfor diagnosis shown in Fig. 5. 3. Since M is

lossless,by Theorem 5. 2 (M, U) is (D, d)-2 -diagnosable where d is

the delay of losslessness of M. Now by Corollary 4. 5. 1 >QDI >

102

IQR'. SinceQD = x n IQ DI = j I Ij n . Thus IQI I n > QR',

or

IQII1 > QR
111n

If one has a lossless machine M of unknown delay and an inverse

M of M then a lower bound on the delay n of M can be found using the

following ineq uality:

logQR I - log IQI

log IIl

This inequality was obtained directly from the one in Theorem 5. 3.

Given a machine M = (I, Q, Z, 5, X, R, p) let Z' denote the subset

of Z which may actually appear in an output sequence of M. That is,

let Z' = {3r(x)Ir e R, x e I+}.

The following result gives avery simple necessary condition

which all lossless machines must satisfy.

Theorem 5. 4: If M is lossless then I I < I Z' .

Proof: Assume that M is lossless of order n. Let f : I+ Z x Q
r

be defined by fr(x) = (r(x),6(p(r), x)).

Claim: f is 1-1.r

Let x,y e I+ where x y. If Ixl I lyI then I r(x)I~ r (y) and

hence f r(x)f (y). Thus it suffices to show that f restricted to

inputs of the same length is 1-1. Let IxI = ly I and assume, to the

103

contrary, that f(X) =f(y). Then r (x) =r(y) anda(p(r), x)=6(p(r),y) This

A A
implies that r(xz) =r(yz) for all z e I*, and, in particular, for some

z of length n. Since M is lossless of delay n this implies that x =y.

Contradiction. Hence if Ix I = [y I and x y then fr(x) fr (y). This

establishes the claim.

Since f :r I Z+ x Q is 1-1 and IxI = r x) l it follows that

11 m < IZ' ImlQI for all m > 0. Hence IIIm/ zI mIQ I< 1 for

all m > 0. Since Q I is a fixed positive integer, this implies that

I/IZ' < 1, or II < jZ'f.

This result has some immediate corollaries concerning inverses

of lossless machines.

Corollary 5. 4. 1: Let M be a lossless machine with I, < Z' .

Then any inverse M of M with Z- = I is lossy.

Proof: Let M be an inverse of M with Z' = I. Since Mi is an inverse

of M, Z' c T, and we know that fI < IZ' . Hence I' = fIf <

IZ' I < 1I-. By Theorem 5. 4, M must be lossy.

This corollary says that if M is lossless and JI < Z' I then

for an inverse M of M to be lossless M must have output symbols

which would never appear while M is receiving its input from M.

However, if a fault occurs to M and causes an error then M could

emit one of these symbols. The appearance of one of these symbols

in is output would immediately cause an error detection signal

104

because this same symbol cannot appear in the output of an (I, n)-

delay machine.

Corollary 5.4. 2: Let M be a lossless machine with a lossless

inverse M. If Z' = Ithen 1II = Z' .

Proof: This follows immediately from Corollary 5. 4. 1.

Given the above result, an immediate question is whether M is

lossless and jII = jZ' I implies that any inverse M of M is lossless.

As Example 5. 5 shows, the answer is no.

Example 5. 5: Consider machine M' of Fig. 5. 8. M' is an inverse

3
of machine M3 of Fig. 5. 6 and 13 = Z3 , but M is not lossless.

3 O 1 R

P q/0 q/0 r

q s/0 t/0

s u/0 v/1

t v/O u/l

u s/o t /0

v u/1 v/1

Fig. 5. 8. Machine M'
3

105

5. 3 Applicability of Inverses for Unrestricted Fault Diagnosis

The use of inverses as a technique for performing diagnosis

applies directly only to those machines which have i.itable inverses.

In the following development it is shown that given an arbitrary

machine M', one can always construct a realization M of M' such

that M has an inverse which can be used for diagnosis. These loss-

less realizations are obtained simply by augmenting the output of

the original machine. Thus it is shown that diagnosis using inverses

is a universally applicable technique, and a part of Question I,

page 11 is answered.

Definition 5. 4: M is an output-augmented realization of M' if M =

(I',Q', Z'xA,6', , R', p') and X = X' x XA for some XA: Q' x I'--> A.

If M is an output-augmented realization of M' then M realizes

M' under (e, e, PZ,) where PZ, is the projection of Z' x A onto Z'.

Kohavi and Lavallie [20J have given a construction which

proves the following results.

Theorem 5. 5: Given any machine M', there exists an output-

augmented realization M of M' which is lossless of delay n for

some n, and in particular, for n = 0.

Theorem 5. 6: If M' is lossless of delay n, then for every m,

0 < m < n, there exists an output-augmented realization M of M'

which is lossless of delay m.

106

The method that Kohavi and Lavallee use to achieve the above

results employs a "testing graph" which is used to determine if the

given machine M' is lossless, and if so of what delay. Output aug-

mentation which will yield the desired property is determined by a

method of cutting branches in this graph. Minimal augmentation

for losslessness of a desired delay is not guaranteed.

A lower bound on the amount of output-augmentation necessary

to make a particular machine lossless is given by Theorem 5. 4.

This result tells us that for the output-augmented realization to be

lossless, then the size of its output alphabet must be at least as

great as the size of its input alphabet.

Any machine can be made lossless of delay 0 simply by aug-

menting its output with a copy of the input. This gives an upper

bound on the amount of output augmentation which is necessary to

make a given machine lossless of delay 0.

It is tempting to use the Kohavi and Lavallee technique to aug-

ment an inverse of a machine in the hope of achieving a lossless

inverse. However, this is impossible because an output-augmented

realization of an inverse M of M is not necessarily an inverse of M.

Example 5. 6: Consider the configuration shown in Fig. 5. 9. Here

M' is any machine, and M is the output-augmented realization of M

107

which was formed simply by augmenting the output of M' with a

copy of its input. The inverse M' of M shown in this figure is

R I I
I I II

M'

I I IMI I

L J I

Fig. 5. 9. A Lossless Machine with a Lossy Inverse

simply the combinational machine which realizes the projection of

Z x I onto I. This inverse is lossy and is clearly useless for

diagnosis.

Now augment the output of M' to form the machine M shown

in Fig. 5. 10. This machine is lossless but it is not an inverse of

I I

I I II

Fig. 5. 10. An Output-augmented Realization of M' of Fig. 5. 9

108

M and it too'is useless for diagnosis.

Although Kohavi and Lavallee's technique cannot be used to

construct lossless inverses, it is an important technique because

it can be used to construct lossless of delay 0 realizations of any

given machine. The following result shows that given a machine

which is lossless of delay 0, an inverse of that machine can be

constructed which can be used for the diagnosis of unrestricted

faults.

Theorem 5. 7: Let M be lossless of delay 0. Then there exists

an inverse M of M such that (M, U) is'(D, 0)-2-diagnosable where

D is formed from M and an Exclusive -OR gate as shown in Fig. 5.4.

Proof: Let M = (Z, P, I U {e},, , R,p) where e I and for all

q E P and a E Z

, a) (q, b) if b E Iand X(q, b) = a
T(qa)

arbitrary if a hX(q, I)

S b if b E Iand X(q, b) = a
e if a X(q, I)

Thus M is basically the same as M but with the roles of the

input and output interchanged.

109

The functions 6 and 7 are well-defined for if M is lossless

of delay 0 and q e P then X(q, a) = X(q, b) implies a = b.

If jII < Z I then every symbol in Z cannot appear in every

row of the state table of M. This is what gives rise to the transi-

tions of M which may be arbitrarily specified.

Consider M and M to be operating in series as shown in Fig.

5. 2. Since M and M have the same reset function, they will initially

be in the same state. Now if M and M are both in some state q E P

and the input symbol b E I is applied to M then M will emit X(q, b)

and go to state 6(q, b). i will emit X(q, A(q, b)) = b and will go to

state C(q, X(q, b)) = 6(q, b). Thus M and M will make the same

state transitions and the present output of M will always be the

present input to M. Hence M is a 0-delayed inverse of M.

It remains to be shown that (M, U) is (D, 0)-2-diagnosable. This

must be shown directly because M is not necessarily lossless.

Since M is a 0-delayed inverse of M there will be no false alarms

Let (r, xa, wb) where a E I and b e Z be a minimal 2-error. Since.

any input sequence applied to M will cause M and M to experience

the same state trajectories, 6(p(r),x) = (p(r),w). Say 6(p(r), x) =

q. Since (r,xa, wb) is a minimal 2-error, 0Pr(xa) # b. Now

'(q, pr(xa)) = a and therefore !(q, b) # a. This inequality will be

detected by the Exclusive-OR gate which will emit a fault detection

signal. Hence (M, U) is (D, 0)-2-diagnosable.

110

It should be noted that the inverse constructed in the proof of

the above theorem is not necessarily lossless. By using IZj - JIJ

new symbols, instead of just one, M could have been constructed to

be lossless of delay 0.

Example 5.7: Consider machine M1 of Fig. 5. 11. This machine

is an inverse of machine M1 of Fig. 5. 1. It was constructed as

described in the proof of Theorem 5. 7. The transitions of Ml which

1 0 1 2 3 R

a b/O -/e -/e d/1 r

b a/1 c/O -/e -/e

c -/e b/1 d/0 -/e

d -/e -/e c/i a/0

Fig. 5. 11. Machine M'

may be arbitrarily chosen are indicated by a "-". This inverse of

M 1 is not lossless, but it can be used for the diagnosis of unrestricted

faults of M 1.

A lossless inverse M? of M 1 can be obtained from M 1 simply

by changing one of the "e" outputs in each row of the state table of

21 to e'. r so constructed would be lossless of delay 0 because

the output symbols would be distinct in every row of the state table

of M".1*

CHAPTER VI

Diagnosis of Networks of Resettable Syste..i..

This chapter considers the problem of diagnosing a

machine which has been structurally decomposed and is represented

as a network of resettable state machines. The networks con-

sidered here are very general and they allow for work within

a wide range of structural detail.

The fault set is applied to these networks is the

set of "unrestricted component faults. " Informally, an unrestricted

component fault is a fault which only affects one component machine

but which may affect that component in an unrestricted manner.

This fault set is a natural restriction of the set of unrestricted

faults. We will show that it is possible to diagnose the set of unres-

tricted component faults of a network with relatively little redund-

ancy.

This chapter focuses on the diagnosis of "state networks. "

A state network is simply a network in which the external output is

the state of the network, i. e. , a vector consisting of the state of each

component machine in the network. Since the state of a state network

is directly observable at its output, state networks are easier to

diagnose than arbitrary networks.

111

112

The results in this chapter characterize state networks which are

diagnosable using combinational detectors. A general construction

is given which can be used to augment a given state network such

that the resulting state network is diagnosable in the above sense.

Upper and lower bounds on the amount of redundancy required by

such an augmentation are derived.

113

6. 1 Networks of Resettable Systems

The field of study known as "algebraic structure theory of

sequential machines" is concerned with the synthesis and decompo-

sition of sequential machines into networks of smaller component

machines. Good discussions of this theory can be found in [2], [16]

and [39]. The networks considered in this chapter are very similar

to the "abstract networks" introduced by Hartmanis and Stearns [16].

The major differences are in our use of resettable state systems for

the components and in our system connection rules which force all

computation to be done in the component systems or in the external

output function. Hartmanis and Stearns use sequential state machines

for their components and they allow for a combinational function f.

from (x Qi) X I into Ii to proceed each component.

Definition 6. 1: A network of resettable sydtems is a 6-tuple

N = (I, R, (S1 ,..., Sn), (K1,..., Kn), Z,X) where

I is a finite nonempty set, the external input alphabet

R .is a finite nonempty set, the external reset alphabet

Si = (Ii, Qi' 6i' R, pi) for each i, 1 < i < n, is a' resettable

state system, a component system

K i for eachi, 1<i<n, isasubset of {Q ... 'Qn'I}

a system connection rule

114

Z is a finite nonempty set, the external output alphabet

: (Q Xi) x IxT -> Z, the external output f1r, .tion
i=l

such that for each i, 1 < i < n, if

K i =(A1 ... ,Ai then Ii = A..
j= 1

Under the intended interpretation, the system connection rule

K i specifies from which parts of the network component i receives

its input. By the convention introduced in Section 2. 1, if K i = 0 then

Ii is any singleton set. Therefore if Mi has no connections then

it is an autonomous machine.

Example 6. 1: The 6-tuple described in Fig. 6. 1 specifies network

N 1 . This network has two component machines M 1 and M2 with

state sets pl, P 2 } and {ql,q 2 } respectively. M 1 is connected to

the external input and the output (state) of M2 and M 2 is connected

to the external input and the output (state) of M 1. Network N 1 can

be viewed pictorally as shown in Fig. 6. 2.

115

N1 = (I,R,(M ,M2), (KI K 2 2 Z ,

I = Z {o,1}, R = {r

(Kl, K2) = (Q 2 ,I},{QIi})

Mi: (q1 ,0) (ql,l) (q2 ,0) (q2 ,1) R

Pl 1 1 1 P2 r

P2 P2 P1 P2 P2

M2: (Pl ,0) (Pl,1) (P2,0) (P2,1) R

q1 q1 q2 q1 q1 r

q2 q2 q2 q2 q1

(p,q,a) X(p,q,a)

P, q1 0 1

P1 q1 0

Pl q2 0 0

Pl q2 1 0

P2 q1 0 0

P2 q 1 1

P2 q2 0 0

P2 q2 1 0

Fig. 6. 1. Network N 1

116

I R

M
* -

I-
-

Q1

M2'

Fig. 6. 2. Diagram of Network N1

Since any machine may be viewed as a one component network

a network may convey little or no structural information.

On the other hand the structural description given by the network

may be very detailed. For example, each component may be a two-

state state machine which represents only one flip-flop and one

coordinate of the global transition function.

Definition 6. 2: A network N = (I, R, (Sl,..., Sn), (K1 ,... Kn), Z, X)

defines the system SN = (I,Q, Z, 6, X,R,p) where

n
Q= x Qi

i=l 1

117

6(q, a, t) = 6((q, .. , n), a, t)

6 i[q i' PK. (q1' ''' q n a), t]

i=1 1

n

p(r,t) = x Pi(r, t)
i=1

A network of resettable machines is a network in which the

component systems and the external output function are all time-

invariant. For example, network N 1 of Fig. 6. 1 is a network of

machines. The system defined by a network of machines N is also

time -invariant, and it will be denoted by M N . A network of machines

N realizes a machine M if MN realizes M. Likewise the defini-

tions of reduced machines, reachable machines, and so forth can

be extended to apply to networks of machines.

Example 6. 2: Consider network N 1 of Fig. 6. 1. This network

defines machine MN1 of Fig. 6. 3 and it realizes M, of Fig. 6. 4

because MN realizes M1 ,

118

MN 1 0 1 R

(pl, q1) (P1 , q 1)/1 (pl, q2)/0 r

(p!, q2) (1', q2)/0 (p2 , q 2)/0

(p2 , q1) (P2 ' ql)/ 0 (p' ql1)/ 0

(p, q2) (P 2,' q2)/0 (P2, q1)/1

Fig. 6. 3. Machine MN1

1 0 1 R

a a/1 b/O r

b b/O c/O

c c/O d/O

d d/O a/1

Fig. 6.4. Machine M 1

A network N = (I, R, (S1 ,... ,Sn), (K1 ,..., Kn), X, Z) is a state
n n

network if Z = x Qi and X(q,a) =q for allq E x Qi and
i=1 i=l 1

a E I. If N is a state network then SN is a state system. For state

networks it is unnecessary to explicitly specify the external output

alphabet and the external output function.

Since the fault set considered in this chapter does not allow

for faults which affect the external output function, we will focus on

119

the diagnosis of state networks which realize state machines. The

diagnosis of the output function will be taken care of separately,

possibly by duplication.

Performing diagnosis on state networks is easier, in general,

than for arbitrary networks because with state networks the output

function does not mask the internal operation of the network.

Decomposing a network into a state network and an output function

and then diagnosing each separately has the effect of applying a

tighter tolerance relation: to the diagnosis of the original network.

This is also due to the lack of any masking of the state by the out-

put function.

120

6. 2 Unrestricted Component Faults

Suppose that N and N' are networks. Then f = (N', 7, 0) is a

fault oF N f ' (SN,, , U) s a fault of SN . Thus a fault of N can be

considered to be a transformation of N into another network N' at

some time T. The notions of fault tolerance, error, and diagnosis

are extended in a similar manner to apply to networks.

Given a network N, a natural set of faults to consider are those

which are caused by failures in one component of N. If f = (N', 7, 8)

is caused by failures which are restricted to one component of N then

N' will differ from N only in that one component. Likewise the function

8 from x Q i into x Q i will act as the ideftity on each coordinate except

possibly the one affected by f. These faults are described formally in the

following definition.

Definition 6. 3: Let N = (I,R,(M 1 , ... , Mn), (K 1 , ... ,K), Z, X) be

a network of machines. A fault f = (N', 7, 0) of N is an unrestricted

component fault if for some j, 1 < j <n

i) N' = (I, R, (M 1 ,. . . S' .., M), (K1,... K), Z, X) where

S S(I., Q., R) and
n

ii) for all (ql1,'''q) E x Qi' O(q1'...""' (q""'
i=1

implies q = q' for all i A j.

The set of all unrestricted component faults of a network will

be denoted by UC .

121

Note that since N' is a network, S' is required to be a state

system. Because the output alphabets of M. and S' o r identical

and they are both state systems their state sets must also be identi-

cal. Thus, unrestricted component faults do not permit state blowup

or collapse.

The fault set U C is sufficiently restricted to make possible its

diagnosis with relatively little redundancy. On the other hand, UC

is not unduly restricted for it allows for any number and type of

physical failures to occur to any one component; subject, of course,

to the general restrictions on faults outlined in Section 2. 3. Thus

using U C as the fault class greatly reduces the amount of failure

analysis which is necessary within the components.

The relationship between the set of unrestricted component

faults of a network and the set of errors that these faults can cause

is not as simple as the corresponding relationship for unrestricted

faults. It is clear that since an unrestricted component fault can

affect at most one component directly, if (r, ua, vb) is a minimal

2-error caused by f E UC then b will be out of tolerance in only one

coordinate. However, because the failed component may be connected

to any other component, minimal 1-errors do not have this

property. Nevertheless, a useful property of minimal

1-errors is brought out later in the proof of Theorem 6. 1; namely,

if (r,x,y) is a minimal 1-error of a "totally redundant" network

N caused by an unrestricted component fault then under

122

reset r and input sequence x the faulty network will, at some time,

enter an unreachable state of N.

A natural extension of UC, the set of unrestricted component

faults, would be the set of all faults caused by failures in up to m

components, where m is some positive integer. Since it is very likely

that any single failure which occurs will be detected before a second

failure in a different component occurs, the set of unrestricted comp-

onent faults is the most important special case of the more general

set of faults. It is also, notationally, the easiest to discuss. For

these reasons the following development is restricted to this case.

However, the characterization of combinationally diagnosable networks

given in the following section generalizes easily to multiple component

faults. This generalization is discussed at the end of that section.

The general approach to the construction of combinationally

diagnosable networks used in Section 6..4 also generalizes to the

multiple component fault case, although this approach is not felt to

be a good approach to the more general problem.

123

6. 3 Characterization of Combinationally Diagnosable Networks

How can state networks for which a combinational detector

can diagnose the set of unrestricted component faults be character-

ized? In this section it is shown that this can be done in

terms of the amount of redundancy in the network.

Given a state network of machines N it will be assumed that

N realizes some reachable state machine M under the triple

(l'a 2 , a 3). (Since all state machines are reduced, M is

automatically reduced.) It will be assumed, as before, that

a 1 and a 2 are onto. The reachable part of N will be denoted

by P.

Notation: Given a state network N let C f{ 1,..., n} denote a subset of

the set of components. Let Ci denote the particular subset (1,...,

i-1,i+1,...,n}. Let q = (q,...' q n) and s =(s l,...,s) be states

of N.

Each C induces a partition 7C on Q = x Qi where q = s(rC) if

and only if qi = s. for all i E C.

A cover of a set L is a set of subsets of L whose union is L.

Thus every partition of L is also a cover of L. A cover J of L is

a singleton cover if B e L implies IBI < 1. If J is a cover let

#IJJI denote the cardinality of the largest element in J.

The definition of a cover introduced here is more general than

the usual notion of a cover (or "set system") as introduced by

124

Hartmanis and Stearns [16]. They employed set systems to obtain

series-parallel decompositions. The notion introduced here is not

used to obtain decompositions but rather to analyze any given decom-

position.

Let Cc {l,...,n} and let C = {B,..., B} . C induces

the cover

C = ({3 (B1 n P),...,3 (B n P)} of Q

where if B C P then as (B) = { a3 (q) Iq e B}. In particular,

a3 (¢) = ¢.

Each set of states which the components in C can take on

corresponds directly to a block of the partition 7C. Thus rC
represents the information about the current state of N which is

given by the current states of components in C. C represents the

corresponding information as to the state of M which N is currently

mimicing. If C is a singleton cover then the current state of each
component in C completely determines the corresponding state of M.
Note that {1,... , n} is always a singleton cover.

Definition 6. 4: Component M i of a network N is redundant if C.

is a singleton cover. N is totally redundant if every component of

N is redundant.

"Redundant components" are essentially the same as "dependent

coordinates" as discussed by Zeigler [39]. The basic difference

125

is that the cbncept of a "redundant component" is defined in terms

of covers rather than partitions (as is the case with "dependent co-

ordinates "), and hence is a more general concept which allows for

state splitting.

If N is totally redundant then knowledge of the state of any n-1

components is sufficient to determine the corresponding state of M

although it may not be sufficient to determine the state of the remain-

ing component.

Example 6. 3: Consider network N1 of Example 6. 1. Let N' be

the associated state network which is obtained from N1 by changing

the external output function and alphabet. Let M' be the state

machine corresponding to machine M1 of Fig. 6. 4. Then N' realizes

M' under (e,e, 3) where a 3 P1 Q' is given by the following

tab le:

p q 3 (P, q)

pl q1 a

pl q2 b

P2 q1 d

P2 q2 c

126

Now rC 1= 9I{ 2 } = (P1 q1), (P2 ' q); (Pr q2)' (P2' q2)} and so

u {3 1 1 ,'2' 1, 1 2 '2' 2

= {{a, d}, {b, c}} .

Therefore C1 is not a singleton cover, M1 is not a redundant com-

ponent, and N, is not totally redundant.

Lemma 6. 1: Let N be a totally redundant state network of machines,

and let q = (q1, ... '" , ' .,q) and q ' = (ql1, ,' ,) be states

of N. If q, q'? P then u3 (q) = a3 (q')

Proof: Let q, q' E p. Since q and q' differ only in their ith coor-
dinate they are in the same block of irC. Say that 7rC = {B1' ... ,Bj
and that q, q'E B.. Since q, q' E p, q, q' E B. n p. Since N is
totally redundant, Ci is a singleton cover, and thus we must have
a3(q= a3 (q').

Suppose that an unrestricted component fault f occurs to a totally
redundant network of machines N and causes a minimal 2 -error

(r, x, y). Say that Pr (x) = q = (ql""' qn) . Due tothe nature off, namely

that it affects only one component, Af(x)=q'= (ql ,.,q). If
q' eP then Lemma 61 tells us that this 2 -error is not a 1-error because
a3 (q) =a3(q'). If q P then this 2-errorcouldbe detectedby a combinational
detector which flags the unreachable states of N. By usingthe above lemma
and Theorem A. 2 the following characterization of combinationally

diagnosable detectors can be obtained.

127

Theorem 6. 1: Let N be a state network of machines which

realizes a state machine M under (al' a2,). Thern N UC)

is (D, 0)-1-diagnosable for some combinational detector D if and

only if N is totally redundant.

Proof: (Necessity) Suppose that (N, UC) is (D, 0)-1-diagnosable

where D is combinational, and let D realize the function XD. Assume,

to the contrary, that N is not totally redundant. Then for some i,

Ci is not a singleton cover. Hence there exists q = (ql', " ', qi' '"q

and q = (qi " " i ") such that q, q' E P and c 3 (q) # a 3(q').

Since q, q' E P, AD(q) = (q') = 0 for otherwise a false alarm could

occur. Let f e UC be a fault caused by the output of M i becoming

stuck-at-q' at a time when M could be in q. This fault can cause

a 1-error which is not (D, 0)-l-diagnosable. Contradiction. There-

fore if (N, UC) is (D, 0)-1-diagnosable where D is combinational then

N must be totally redundant.

(Sufficiency) Assume that N is totally redundant. Let D be the

detector which realizes the function XD: Q - > {0, 1} where

{0 if q E P

1 if q P

Clearly, D will give no false alarms.

Let (r, x, y) be a minimal 1-error caused by f e UC . Let x = uab

where a, b e I.

128

Then a(r (ua)) = a(ua)) and a3(Pr(uab)), q(7 ((uab)). Say

r(ua)= q. Then I (uab) = 6(q, a,t) Wheret= lul. Because f E UC

f can affect at most one component of N. Therefore 6(q, a) will

differ in at most one coordinate from 6 f(q, a, t). Let 6(q,a) = s =

(S,'...S j,...s n) and let 6f(q, a, t) = s

Since au(a) = 3 0ua)) and , (u" = .((r),u), by Theorem A..- " "r-'--I" - , by Theorem.,

a 3 (6(q,a)) = o3 (6(p(r),ua)) = u 3 (r (uab)). Thus

a3(s) = P3(r (uab))

/ t3 (3 (uab))

= 3 (')

If qe P then s = 6(q, a) E P and applying Lemma 6. 1 we deduce

that s', P. Therefore XD(s') = 1 and the 1-error (r, x, y) is

detected without delay.

Alternatively, if q / P then X D(q) = 1 and the 1-error (r, x, y)

is detected one time step before it occurs. Since in either case the

error is detected by the time of its occurrence it follows that

(N, UC) is (D, 0)-1-diagnosable.

This characterization of combinationally diagnosable networks

provides an answer to Questions II and V, page 11; namely, totally

redundant realizations are diagnosable with a combinational detector

129

and with zero delay, and the structural property of "total redundancy"

is conducive to on-line diagnosability.

GivenCC (1,...,n}, let rC ={B,.' .. , B . ThenC induces

a partition TC on P where C =(B 1 n P,..., B n P} - ¢.

If a partition rT of a set L is a singleton cover then we will denote

this by writing nT = 0. This notation is derived from the observation

that this partition is the least element of the lattice of all partitions

of L.

Corollary 6. 1. 1: Let N be a state network of machines. Then

(N, UC) is (D, 0)-2-diagnosable for softie combinational detector D

if and only if 7TC. =Ofor alli, 1 < i < n.
1

Proof: Consider N to be realizing the reduction of MN . Then

a 3 is 1-1. By Theorems 3. 2 and 3. 3 (N, U C) is (D, 0)-2-diagnos-

able for some combinational D if and only if (N, UC) is (D, 0)-1-

diagnosable for some combinational D.

Now since a 3 is 1-1, Ci is a singleton

cover if and only if iTC. = 0. Hence N is totally redundant if and
1

only if rC. =0for all i, 1 < i < n.

The result now follows immediately from Theorem 6. 1.

Example 6. 4: Consider state network N' of Example 6. 3. Since

N' is not totally redundant, from Theorem 6. 1 we know

130

that (N1, UC) is not (D, 0)-1-diagnosable for any combinational

detect or D.

Now construct a new network N" from N' by adding a new

component M3 as shown in Fig. 6. 5.

N' = (I, R, (M 1 , M2 , M3), (K1 , K2 , K3))

I, R, MI, M 2 , K 1 and K 2 are identical to those

of network N 1 of Fig. 6. 2.

K 3K3 = {I}

M 3: 0 1 R

s1 s1 s2 r

s2 s2 s1

Fig. 6. 5. Network N;

Network N1 realizes machine M' of this example under

(e, e, a) where 3' P - Q is given by the following table:(e e 1t whr1y~ ~

131

p q s a(p, q, s)

p1 q1 s1 a

p1 q1 s2 d

P2 q 2 $1 c

P2 q2 s2 b

For network N"

C, =fz{2, 31= (pl, ql, Sl),(p2, q1, Sl); (pl, q, 2l, , (p Z q l , s 2) ;

(Pl,2, 3 1),' (P2 , s 1); (pl 1 , 2' S 2), (P2 2' 1 s 2)

and C 1 = { {a},{dl, d}, {c},{b} } . Thus C1 is a singleton cover and

component M 1 is redundant. Similarly one can show that M2 and

M3 are redundant. Hence N1 is totally redundant, and (N', UC) is

(D, 0)-1-diagnosable for some combination of detector D.

It is enlightening to consider Corollary 6. 1. 1 from the point of

view of error detecting codes. Let N be a state network realiza-

tion of a reachable state machine M. Then each of the reachable

states of N can be viewed as a code word of an encoding of Q.

Two such code words are said to be adjacent if they differ in only

one coordinate. Clearly, an encoding can be used to detect all

errors in single coordinates if and only if no two code words are

adjacent. In addition, it is clear that two code words are adjacent

132

if and only if Ci / 0 for some i. Thus Corollary 6. 1. 1 tells us

that single error detecting state assignments are necessary and suf-

ficient to insure combinational and delayless 2-diagnosis of unre-

stricted component faults.

The generalization of the characterization given by Theorem 6. 1

and Corollary 6. 1. 1 to faults caused by multiple failures is straight-

forward. For example, if failures in two components are being con-

sidered then a totally redundant network would be one in which the

corresponding state of M could be deduced from the states of any

n-2 components of N. With this altered definition the statement of

Theorem 6. 1 could then remain unchanged. By considering the two

failed components as one larger component the proof could also

remain virtually unchanged.

133

6.4 Construction of Combinationally Diagnosable Networks

The basic problem approached in this section is a constrained

decomposition problem; namely, given a state machine Mi, find a

totally redundant network realization N of 1M. From Theorem

6. 1 we know that such a network would be combinationally diagnos-

able, and thus a solution to this problem would be an answer to

Question I, page 11.

The approach to this problem taken here is to find a network

realization by conventional decomposition techniques and then make

this network totally redundant through the addition of one component.

Example 6. 4 showed that a totally redundant network could

be constructed from network N1 through the addition of one compon-

ent machine. In this section it is shown that this can be done for

any network. In addition, upper and lower bounds are derived on the

minimum number of states that such an additional component must

have.

Theorem 6.2: Let N be a state network of machines. Let m i = Q

and let m = max m. . A network N' where N' realizes N and
1_5i n

(N', UC) is (D, 0)-2-diagnosable for some combinational detector D

can be constructed from N by the addition of an m state component.

Proof: Without loss of generality take Qi = (,..., -1. Let

N = (I, R, (M1 ,... , Mn), (K1 ,. .. K)) and let N' = (I, R, (M1,...,M

134

M+), (K1, .Kn, Kn+)) where Kn+ = {1'Q' 'Qn ' I} and wheren+n n+1

Mn+ 1 is constructed such that for all q = (q1, ' qn+1) e P', the
n+l

reachable part of N', Z qi 0 (mod m). A machine M withi=1 n+1

m states which satisfies the above property is described below:

Mn+l = (In+l'Qn+l' n+l'R,n+1)

where

n
I = x Q.xin+1 i=1 1

Qn+l = {0, ... , m-1}

Pn+(r) - Pi(r) (mod m) for all r E R
i=1

n+1(n+1 (q 1 ,. q' , a)) - q (mod m) for all
i=1

qi . Qi' ,1< i<n + i, and alla E Iwhere

(9q ,... q'n) = 6((ql,' , qn), a).

It is clear that N' realizes N. Therefore, it remains only to

be shown that (N', UC): is (D, 0)-2-diagnosable for some combinational

D.

Let D be the combinational machine which realizes the function
n+l

AD i= --> 0, 1} whereDi=1

135

n 1
0 if qi 0 (mod m)

D (q l , . . q n + 1) = i = 1

1 otherwise

n+1
Since (ql1,'. n+) E P' implies 1 qi = 0 (mod m) no false alarms

will occur.

Let (r, x, y) be a minimal 2-error caused by f E UC . Since

(r, x, y) is a minimal error and f only affects one component of N',

r(x) and r(x) will differ in exactly one coordinate. Say j3(x) = (ql'

... ,n+l) and (x) =(ql''' ... "' n+q!,,1) Now (ql,.'''. n+
n+l

e P implies Z qi 0 (mod m). Since qi q! and JQi <m,
i=1 1

qi q (mod m). Therefore ql+ ... + q + ... n+ 1 0 (mod m).

Hence, the error (r, x, y) is detected without delay, and (N',UC) is

(D, 0)-2-diagnosable.

In the proof of Theorem 6. 2 a construction is given which

can be used to form a totally redundant network from any network

of machines. This construction simply involves the addition of one

component to N. This theorem also gives an upper bound on the

amount of additional redundancy required to make a given network

totally redundant. This upper bound is stated in terms of the size of

the state set of the additional component.

The detector used in the proof of Theorem 6.2 simply checked

to see if the states of the components always summed to 0 (mod m).

136

By using a different and possibly more complex detector, namely one

which can determine if the present state is in the reachable part, the

number of states which the additional component must have can be reduced.

Let m! be the number of states that Mi , 1 < i < n, can actually

enter while M. is a component of network N, and let m' = max m!.
l<i<n I

That is, let m' = max IPi(P) I, where P.(P) is the projection onto
l<i<n 1-

coordinate i of the reachable part of N. Then m' < m because P.(P)

C Qi' 1 < i < n, and Theorem 6.2 holds with m replaced by m'.

This claim is established in the following theorem.

Theorem 6.3 : Let N be a state network of machines. Let

m! = jP.(P) j, and let m' =max m. AnetworkN' can be con-1 1 1<i<n i

structed from N by the addition of an m' state component such that

N' realizes N and (N', UC) is (D, 0)-2-diagnosable.

Proof: Without loss of generality take P1(P) = (0,...,m!-1} and

Qi = {O, . , mi- 1. Construct N' by adding component Mn+1 where

N' and Mn+ 1 are exactly as in the proof of Theorem 6.2 except for

m being replaced by m'.

We will show that (N', UC) is (D, 0)-2-diagnosable by showing

that 7rC. = 0 for all i, 1 < i < n, and then appealing to Corollary

6.1.1.

137

Assume, to the contrary, that 7TC 0 for some i, say for i = 1.
1

Let 7C =B1 ,...,B }. Then for some j, 1<j <t, IB. n PI >1.

This implies the existence of two states q = (q1 , q 2'''"' qn) and

q' = (q1 2'" 'n) such that q, q' e P' and q1
/ q . Now q, q' E P'

implies q 1
+ q2 +... + qn 0 (mod m') and q + 2 + . + q 0

(mod m'). Hence, q1 q'1 (mod m') and since 0 < q1 ' q1 < m',

ql = q'. Contradiction. Therefore 7C. = 0 for all i, 1 < i <n,
1

and the result follows immediately from Corollary 6. 1. 1.

A technique similar to the one used in the proof of Theorem 6.2

could be used for the diagnosis of n Mealy machines which operate

in parallel with the same inputs and resets. In this case one

additional Mealy machine would be required which had as many out-

put symbols as the machine with the largest output alphabet. There

is no guarantee, however, that this technique will result in a savings

over duplication because the additional machine may need as many states

as the product of the number of states of the original n machines.

We have shown that given a network N, a totally redundant

:.etwork N' can be constructed thru the addition of a component with

no more than m' states where m' = max IPi(P) . This amount of

additional redundancy is not always necessary for N may already

be totally redundant. The following example shows that this amount

of additional redundancy is not necessary even if no component of

the network is redundant.

138

Example 6. 5: Consider state network N2 of Fig. 6. 6.

N2 = (I, R, (M1 , M2), (K1, K2))

I = {0, 1, 2, 3,4}, R={r}

(K1 , K2) (1,)

M1 0 1 2 3 4 R

Pl P2 P1 P3 P3 P2 r

P2 P1 P2 P4 P4 P1

P3 P3 P4 P2 P1 P4

P4 P4 P3 P1 P2 P3

M 2 0 1 2 3 4 R
2 Q2

q2 q2 q2 q3 q3 q2

q3 q3 q3 q2 q2 q4

q4 q4 q4 q2 q q 3

Fig. 6. 6. Network N2

N2 realizes state machine M2 of Fig. 6. 7 under (e, e, a3) where

3P :P2 - Q2 is given by the table in Fig. 6. 8.

139

0 1 2 3 4 R

a b a e h c r

b a b f g d

c d c f f a

d c d e e b

e e f c d g

f f e d c h

g g h d b e

h h g c a f

Fig. 6. 7. Machine M2

P q 3 (p, q)

Pl q1 a

P1 q2 d

P2 q1 b

P2 q2 c

P3 q3 e

P3 q4 h

P4 q3 f

P4 q4 g

Fig, 6. 8. 3' P 2 ---- Q2

140

Since 1Q2 -8 and IQ1 x Q2 I = 16 it should be clear that whileN 2

is not totally redundant there is some redundancy in this network

realization of M 2 . Thus if we were to add a component M 3 to N 2

in an attempt to form a totally redundant network N' we should not

be too surprised if we succeeded with a component M3 with fewer

than m' states, where for network N2 m' = 4. In fact, if the 2-state

machine M 3 = (Q 1 x Q 2 x I, {s1' s 2 , 63) were added to N 2 where

63 is such that M 3 is in s 1 whenever M 1 and M 2 are in (pl, q1)'

(P2 92)' (P3
' q 3) or (p4' q4) and in s2 whenever M 1 and M 2 are in

(Pl' q2) ' (p2 q 1) (P3 ' q4) or (P4 ' q3) then the network N' so formed

would be totally redundant.

An intuitively satisfying means to verify this claim is as follows.

Component Mi computes the information C{i} about the correspond-

ing state of M. In this case the Ci} are the following partitions of

Q2'

C(1} = a,d;b, c; e, h; f, g}

C{ 2} = a, b; c, d; e, f; g, h}

C{3 } = a, c, e, g; b, d, f, h

Since C{1 C{2) = C{2} C{3} = C({1 C{3} =0 any two

components taken together provide total information as to the corres-

ponding state of Q2. Hence the remaining one will always be

redundant.

141

The following result gives a lower bound on the number of states

that an additional component must have in order for the resulting

augmented network to be totally redundant. If the network under

consideration is already totally redundant then the lower bound given

by this result is one. Since the behavior of a state machine with one

state is always a constant function, the actual addition of such a com-

ponent is unnecessary.

Theorem 6. 4: Let N be an n component state network and let N'

be the state network formed from N by the addition of a component

with I states. If N' is totally redundant then k > max #1 J.
1<i<n

Proof: Without loss of generality take # 1 1 = max #IC.., and
l<i<n

let d =# Ci. Then for some Be 7TC and q=(q,...,q) B, B (BnP) I

= d. That is, if it is known that M 2 is in q2 , that M 3 is in q3 , and

so forth up to Mn being in qn then there is still a d state uncertainty

as to which state of M the state of M currently corresponds. It is

necessary for Mn+ 1 to have at least d states to resolve this

uncertainty.

The above result provides a good lower bound on the amount

of additional redundancy required to form a totally redundant network,

and it does so by taking into account the redundancy which already

exists in the network. This level of redundancy, however, is not

142

always sufficient because it may be impossible to find a component

with d states which will simultaneously resolve the uncertainties

represented by C 1, C2 , ... , and Cn. The following describes just

such a situation.

Example 6. 6: Consider the state network N3 of Fig. 6.9.

N3 = (I,R,(M 1 ,M2 ,M3), (K1 ,K2 ,K3))

I = {0,1,2}, R = {r}

(K1,K2 ,K3) = ({ I},{I},{Q1 ,Q2 ,})

M1: 0 1 2 R M2 : 0 1 2 R

1 1 r q q2 q1 q 2 r

P2 P2 P3 P 2 q2 2 q1 q

P3 l2 P1 P2

3
Q R

s1 s1 s2 s2 s1 s2 s1 s1 s1 s2 s1 s1 s2 s1 s1 s1 s1 s 1 s 1 r

s2 s1 22 s2 s 2 2 1 s1 1 2 2 2 2 2 2 2 2 s 2s 2

Fig. 6. 9. Network N3

143

This network realizes machine M3 of Fig. 6. 10.

M3: 0 1 2 R

a e b f r

b g c h

c g c g

d h d h

e e b a

f f b a

g g c b

h h d b

Fig. 6.10. Machine M3

For N3 realizing M 3 we have

l = { a, c},{b, d},{e, g},{f,h}

C2 = { a, e, {b, h, {c}, {d},{f},{g }

C3 = { {a}, {b}, {c, dj, {e, f}, {g, h} }

Therefore m = max 1Qi = 3 and d =max #1C = 2.
1< i<3 1<i<3

Suppose that it is desired to add a component M4 to N3 in order

to form a totally redundant network. Theorem 6.4 tells us that M4

must have at least 2 states, and Theorem 6.2 tells us that there is

a 3-state component which will work. We will show that in this case

it is not sufficient for M4 to have 2 states.

144

Let M 4 be a 2-state component which when added to N3 forms

N . Let C{ 4 } = {B, B2 }. Since C(4 } is a cover of Q3, B 1 U B2

Q3" If Bl j> 5 or B 2 1 > 5 then C1 would not be a singleton cover

because M 2 and M 3 have only 2 states each and together they could

not resolve a 5-state uncertainty. Therefore if N 2 is to be

totally redundant we must have IB1 , IB21 < 4 and thus C{ 4} will

be a partition of Q3.

For N' to be totally redundant M 4 must resolve the following

pairs of states: {a, e}, {b, d}, {e, g),{f, h),{,h}, {c, d},{e,f), and

{g, h}. It can resolve a pair only if the pair is split between B1

and B2. But it is easy to verify that these eight pairs cannot all

be simultaneously split by any two-block partition. Therefore

there is no 2-state component which when added to N3 will form

a totally redundant network.

CHAPTER VII

Conclusions and Open Problems

In this report a fresh look at on-line diagnosis was taken from

a system theoretic point of view. The approach used in this inves-

tigation was system theoretic in the sense that resettable discrete-

time systems were used as a basis for a well-developed formal

model of on-line diagnosis, and formal methods were used to inves-

tigate this model. As evidenced by the results in Chapters III

through VI this approach has proved to be very fruitful. One advan-

tage of this approach is that the results developed in this report

are independent of any particular technology and may be applied to

any system which can be modeled as a resettable machine.

In Chapter I, a number of fundamental questions concerning on-

line diagnosis were stated, and in Chapter II a complete model for

the study of on-line diagnosis was developed. Subsequent chapters

provided some answers to these questions for the unrestricted fault

case and the unrestricted component fault case. At this point it is

appropriate to review these questions to see just what has been ac-

complished and what remains to be done. These five questions are

paraphrased below, and each question is followed immediately by

a discussion of it.

145

146

L What good on-line diagnosis techniques are available and when

is each applicable ?

For unrestricted faults the techniques investigated have been

duplication and loop checking. Duplication is very easy to implement,

and it was shown in Corollaries 4. 5. 1 and 4. 5. 2 that, in terms of

the state set size of the detector, it is impossible to do any better

than duplication. Thus duplication is a very good technique. How-

ever, with other measures of complexity it may be possible to beat

duplication. In addition, duplication suffers from the observation

that both copies could have the same failures or built in weaknesses

from birth. For these reasons the use of inverses for unrestricted

fault diagnosis was also studied, and this technique was shown to be

applicable regardless of the specified behavior.

For unrestricted component faults the basic technique studied

was the construction of totally redundant networks from arbitrary

networks through the addition of one component. This technique

was also shown to apply to any specified machine.

Certainly, other techniques for the diagnosis of these sets of

faults exist and their investigation is an open problem. One fruitful

direction might be to pursue a more general approach to the con-

strained decomposition problem discussed in Section 6. 4.

147

II. When is a given realization diagnosable ?

Answers to this question depend, of course, on what constraints

on allowable detectors and delays are given by a particular meaning

of the word "diagnosable. " If no restrictions are placed on the set of

possible detectors then every realization is diagnosable for any set

of faults since the realization could be duplicated in the detector.

For unrestricted faults, if detectors are only allowed to perform

a loop check then Theorem 5. 2 tells us that realizations with loss-

less inverses are diagnosable. However, the characterization of all

realizations which are diagnosable in this sense is still an open

problem.

For unrestricted component faults, we know from Theorem 6. 1

that a realization is diagnosable if and only if it is totally redundant.

III. What time-space tradeoffs are possible between the added com-

plexity needed for diagnosis and the maximum allowable delay?

By Corollaries 4. 5. 1 and 4. 5. 2 we know that no time-space

tradeoff is possible for unrestricted faults. However, Example

4. 1 shows that a tradeoff is possible for permanent output faults.

For unrestricted component faults the question remains unanswered.

While no generally useful time -space tradeoffs have been found,

specific tradeoffs are possible for suitably restricted sets of faults

and certain specific behaviors. In addition to Example 4. 1, this is

evidenced by Example 7. 1 which appears later in this chapter.

148

IV. What is the relationship between a given fault set and the set of

errors which can be caused by faults in that set?

This relationship was discussed in Section 4. 1 for unrestricted

faults, Section 4. 3 for permanent output faults, and Section 6. 2 for

unrestricted component faults. Briefly, unrestricted faults can

cause any possible erroneous behavior; permanent output faults

cause the same minimal 2-errors as unrestricted faults but not the

same minimal 1-errors because the output becomes constant once

a permanent output fault occurs; unrestricted component faults cause

minimal 2-errors which are out of tolerance in only one coordinate,

and if the network under consideration is totally redundant then

minimal 1-errors caused by unrestricted component faults always

result in an unreachable state of N being entered. As expected,

this relationship is very important and was used in results concern-

ing each of these sets of faults.

V. What properties of system structure and behavior are conducive

to on-line diagnosis?

For unrestricted component faults the structural property of

total redundancy was seen to be quite important. The behavioral

property of "having a lossless inverse" was also seen to be useful

since the unrestricted faults of such systems could be diagnosed via

a loop check.

149

A potentially fruitful area for further work would be to look at

special subclasses of machines (e. g., definite machines, linear

machines, etc.) to see what diagnosis qualities they possess which

are not possessed by machines in general.

Since this study focused on the diagnosis of unrestricted faults

and unrestricted component faults, one large open area for further

research is to answer these questions for other important sets of

faults. A possible direction for such research is outlined below.

In this report, abstract (i. e., totally unstructured) systems

have been considered with the exception of some of the examples and

the networks considered in Chapter VI. Such an approach is good

for developing formally the concepts involved in our theory and for

stlidying the diagnosis of unrestricted faults, but some of the questions

raised can best be studied in a more structured environment. One

reason for this is that with a structured system we can consider the

causes of faults. For example, given an abstract system it makes

no sense to speak of the set of faults caused by component failures

of a certain type or by bridging failures. However, given a structured

representation of a system (e. g., a circuit diagram) we can discuss

these and other types of failures and determine the corresponding

faults.

There are many different structural levels that could prove

useful to a further investigation into the theory of on-line diagnosis.

Two levels which we believe will be important are: the binary

150

state -assigned level and the logical circuit level. These levels

and the basis for their potential usefulness are explained below.

A machine M is said to be binary state-assigned if Q = {0, 1} n

for some positive integer n. Given such a machine, various types

of memory failures such as stuck-at-0, stuck-at-1, and more

general types can be considered. The faults corresponding to these

failures can be enumerated and comparisons can be made between

various schemes for diagnosing these faults. Memory faults have

been studied before in the context of fault tolerance and off-line

diagnosis by Meyer [28] and Yeh [38] respectively, and they are

an important class of faults for a number of reasons. For example,

only a limited amount of structure is needed to discuss them. Thus

memory faults can be analyzed before the circuit design of the

machine is complete. Also, it is memory which distinguishes truly

sequential systems from purely combinational (one-state) systems.

Combinational systems are inherently easier than sequential systems

to analyze and a number of techniques for the on-line diagnosis of

such systems are known (see [19] and [34] for example).

Time-space tradeoffs are also possible in the diagnosis of memory

faults. Let F m denote the set of single memory stuck-at faults, that

is, the set of faults caused by a stuck-at failure in one memory

element. It can easily be verified that if (M, Fm) is (D, 0)-2-diag-

nosable where D is combinational then the reachable states of M

must be encoded into a single error detecting code. However, as

151

the following example shows, this is not necessarily true if nonzero

delay is allowed.

Example 7. 1:

Consider the binary state-assigned state machine M whose

state graph is shown in Fig. 7. 1. Since M is an autonomous state

machine the labels on the transitions convey no information and

hence are not shown.

010 011 Oo

001 100 101 1101

Fig. 7. 1. State Graph of M

Claim: (M, Fm) is (D, 2)- 2 -diagnosable for some combinational D.

Let D be the combinational detector which realizes the function
specified by the following table:

152

z AD (z)

000 1

001 0

010 0

011 0

100 0

101 0

110 0

111 1

Thus a fault is indicated if and only if the detector observes

that the system it is monitoring has entered one of the two unreach-

able states 000 and 111.

It is instructive to view the action of M in 3-dimensions as

shown in Fig. 7. 2. In this figure the action of the unreachable (or

"error indicating") states have been omitted for clarity.

110 111

100
101

010

00 001

Fig. 7.2. 3-Dimensional View of M

153

Note that any single memory stuck-at-0 fault will cause the

resulting faulty system to enter state 000 within 2 time steps of its

occurrence. Similarly, the state 111 will be entered within 2 time

steps of the occurrence of a stuck-at-1 fault. Hence (M, Fm) is

(D, 2)-2-diagnosable. This homing action after a fault occurs is il-

lustrated below in Fig. 7. 3. This figure shows the state graph of

M' where f = (M', 7, 0) is a fault of M caused by the memory

element corresponding to the second coordinate of the state-assign-

ment becoming stuck-at-0.

100 101

r

001
000

Fig. 7. 3. State Graph of M'

The essence of the technique used in this example is to find a

state-assigned realization with the property that any single memory

stuck-at-fault will cause the resulting faulty machine to enter into

a normally unreachable state. This is a generalization of the basic

mechanism for diagnosis used by any scheme which involves encoding

154

the reachable part of the state set into a single error detecting code.

Having looked at the binary state -assigned level of structural

detail, let us now turn briefly to the logic circuit level. A system

possesses structure at the logical circuit level if a representation

of the system is given in terms of a logical circuit composed of

primitive logical elements. These may be of the AND-OR variety,

threshold elements, or any similar elements of a "building block"

nature depending upon the technology being considered. This level

is useful for investigating failures in the primitive components.

The circuit in Fig. 2. 2 is an example of a structural representation

at this level and the failure of this circuit discussed in Example 2. 2

is a simple example of the analysis that can be conducted at this

leve 1.

Further work could also be performed at the network level of

structural detail which was introduced in Chapter VI. At this level

one could study the problem of implementing on-line diagnosis on a

whole computer whereas with the other levels the emphasis would

be on diagnosing one module. Note that in our definition of diagnosis

the detector is not constrained to give simply a yes-no response.

It could also provide extra information for use in automatic fault

location. Thus, at this level, the problem of which subsystems must

be explicitly observed by the detector to achieve some desired fault

location property could be studied.

155

One problem that requires extension of our present model (at

any structural level) is the problem of automatic reconfiguration

of the system under the control of the detector. To study this

problem, the model used would have to allow for feedback from

the detector to the system it is observing. The question of how such

an extension should be made is an interesting one and, if answered

satisfactorily, could serve as a basis for a systematic investigation

of reconfiguration techniques.

APPENDIX

Resettable Machine Theory

The goal of this appendix is not to study the theory of resettable

machines per se but rather to cover that part of it which is used in

this study of on-line diagnosis. The theory of resettable machines

follows closely the theory of sequential machines. The main

differences in the definitions stem from the presupposition that a

resettable machine is reset before every use. One consequence of

this is that the "unreachable" states of a resettable machine are

always ignored.

We begin by repeating here the basic machine notions introduced

in Chapter II.

Let M be a resettable machine. The reachable part of M,

denoted by P, is the set

P = {6(p(r),x) r e R, x e I*}

M is reachable if P = Q. M is f-reachable if

P = (6(p(r),x) r e R, x e I* and Ijx < k

Let M, M' e 3W(I, Z, R). M is equivalent to M' (written M M')

if P)r =3' for allr e R. Two states q Q and q' E Q' are

equivalent (q q') if fq = q,. It is easily verified that these are

both equivalence relations, the first on m.(I, Z, R) and the second on

156

157

the states of.machines in 1,(I, Z, R). M is reduced if for all

q, q' e P, q q' implies q = q'.

If M and M' are two resettable machines then M realizes M' if

there is a triple of functions (ala 2 ,a 3) where a: (I')+ -> I is a

semigroup homomorphism such that a1(I') C I, a2: R' - R,

a3: Z" --- Z' where Z" C Z, such that for all r' E R' r =

a3 o a 2 (r') 0 o1.

The following result is analogous to the result due to Leake [23]

which was cited in Section 2. 2. It supplies an alternative,

and structurally oriented, definition of realization.

Theorem A. 1: Let M and M' be two resettable machines with reach-

able parts P and P'. M realizes M' if and only if there exists a

4 -tuple of functions (r1 2' 773' 774) where

772: R' ->R

Y73• Z--Z'

174: ' ->9(p) - (9(P) = xjx C P})

such that

i) 5(t 4 (p!), 1(a)) C 74 (6 '(p', a)) for all p' e P' and a E I'

ii) r 3 (X(p, 1(a))) = X'(p',a) for all p' e P', a e I', and p e 4(p')
iii) p(n2 (r')) e r74(p'(r')) for all r' e R'.

158

Proof: (Necessity) Assume that M realizes M'. Then there exists

an appropriate triple of functions (al', a2'a 3) such that 3',(x) =

a3(2(r)(a(X))). Therefore

1p(r,)(uv) = a33 p(u2(r'))(a 1(UV)))

for each r' E R', u E (I')* and v E (I')+. Hence,

',(p'(r'),)(V) = 3g 6(P ((2(r)), al(U)) 1 ()))

Thus foi each p' E P' there is a p E P such that

P ,(v) = 3(3p(a1(v)))

Consider 74: P' -- Y(P) - p defined by

14 (P') = {P Plp, =p 3 o p ° 1 }

and consider rl: I - I defined by

nl(a) = a 1 (a).

Claim: The 4-tuple (v71 , 2 , J3' 41) where a 3 is an arbitrary extension

of 03 to Z satisfies i), ii), and iii).

i) Let p E rn4 (p'). We must show 6(p,n 1 (a)) E n4 (6'(p', a)).

159

b(p', a)(X) = p (xa)

= 3 (p(al(xa)))

= 3 (/36(p, al(a)) (a (X)))

= 3 (0 (p, l(a)) (9 1(X)))

Hence, 6(p, nl(a)) E r4(6'(p' , a)) .

ii) Let p 74(p'). We must show

a 3 (X(p,)l(a))) = X'(p',a).

X'(p',a) = /3p,(a)

= a3 (p(1 (a)))

= a 3 (x(p, 7l(a))).

iii) Let r' E R'. We must show p(a2 (r')) E ri4o'(r'))

p~,(x) = a 3 (2(r') (a)((X)))

implies

p(a 2(r')) e t4 (P'(r')) .

160

(Sufficiency)* Suppose there exists functions (n71 r72 , 773' "4) as in the

statement of the theorem. Let al: (I)+ I+ be the natural exten-

sion of r1 to sequences. I'hat is, O1 (al . .. an) = 1 (al) .. l(an

Claim: M realizes M' under (al, r72' 73). Consider T : P' . P

where

(p') = some p E n4 (p') such that

p(r72(r')) = 5 (p'(r')) for all r' E R'.

Let x =ya where aE I. Then

3 2(r')(l(x))) = 3 (p(2(r)a 1(X)))

= 3(~ (p'(r'))(al()))

= 3(X(6((p'(r')),al(y)), al(a)))

= n 3 (X(p,al(a))) where p r4(6'(p'(r), y))

= X'(6'(p'(r'), y), a)

of (ya)p(r')(ya)

This completes the proof of Theorem A. (x)

This completes the proof of Theorem A. 1.

161

The next theorem states that if two reachable states of a state

machine M mimic the same state of another state machine M', then

for any given input the states that they go to under the transition

function 6 also mimic the same state of M'.

Theorem A. 2: Let M be a state machine which realizes a state

machine M' under (al' a2', 3) where al is onto. Then for all ql'

q2 E P and a 6 I, a 3 (ql) = a 3 (q 2) implies u3 (6(q 1 , a)) = a 3 (6(q 2 , a)).

Proof: Let ql' q2 E P and assume that u3 (q1) = u3(q2). Say that ql

6 (p (rl),ul) and q2 = 6(p(r 2)' u2). Since M realizes M', for all

r' e R', a3 Oa (r') o a = ',. Since M and M' are state machines,

for all r' E R' and x' e (I')*,

o3 (6(o(a 2 (r')),a 1 (x'))) = 6'(p'(r'),x')

Let a E I and denote al(x') by x and a2(r') by r. Then

a3(6(q 1, a)) = a3 (6(p(rl), ula))

= 6' (p'(r 1), u'a')

- 6'(6' '(r'), u'), a')

= '(a3 (6 (p (r 1), Ul)), a')

= 6' (3 (q1), a')

Likewise, a3 (6(q 2 , a) = 6'(a 3 (q 2), a'). Since u3 (q1) = u 3 (q 2) it now

follows immediately that a3 (6 (q , a)) = 3 ((q2, a)).

162

Theorem A. 3: If M realizes M' and M' is reduced and reachable then

IQI > IQ' I.

Proof: Assume that M realizes M' under (al, a2,0 3) and that M'

is reduced and reachable. Then ' = a3 a 2 (r) 0 for all r R'.

Let q' E Q'. Then there exists r E R' and x e (I')* such that

q' = 6' (p'(r),x). Now

Iq ,(Y) =P (p,(r),x))

Spr(xy)

= 3 (/3()(c1 (x)))

= 3 (l(p(o2(r)), al(x))(a l(y)))

Hence there exists a function f from Q' into Q suchthat for eachq' E Q,

q= a3 ° Of(q') 0 1.

To prove that IQI > IQ' i, it suffices to show that f is 1-1. Let

1, q2 E Q' and assume that f(ql) =f(q2). Then 'la = 0 U1ql 3° 0f(ql) ° 1
03 0 0f(q2

) ° 7 = f 2. Since M' is reduced and reachable this implies

that ql = q2 . Hence f is 1-1. This establishes the result.

Theorem A. 4 : The relation "realizes" is transitive. That is, M realizes M'

and M' realizes M" implies M realizes M".

163

Proof: (Sketch) Assume that M realizes M' under (al, a2, 03) and

that M' realizes M" under (a' a,7). 'hen 1', = 3 o (r) * '1 fl. 3r 3 2 folow
for all r' E R' and "',, = a~ °a 12(r") " for all r" E R". It follows

that I"',, = a a 3 o o'.2(2(r")) ° .l ° " That is, M realizes

M" under (al o al, a2 o a , o 03)

If M and M' are resettable machines then M is isomorphic to M'

if there exist four 1-1 and onto functions

w2 : R- R'

W3: Z -- Z'

"4: P- P'

such that for all r c R, a E I, and q E P

i) w4 (5(q,a)) = 6'(w4(q),wl(a))

ii) w3 (X(q, a)) = '(w 4 (q), w 1(a))

iii) w4 (p(r)) = p'(w2 (r))

The 4 -tuple (W1, C2, w 3 , w4) is called an isomorphism of M onto M'.

If M, M' E W.(I, Z, R) and (e, e, e, w4) is an isomorphism of M onto M',

then M is strongly isomorphic to M'. A basic result of sequential

machine theory states that for every machine there is an equivalent

reduced machine and that this machine is unique up to strong

164

isomorphism. The corresponding result for resettable machines is

given by Theorem A. 5 and Corollary A. 6. 1.

Theorem A.5 : For every resett able machine M there is a reduced

and reachable machine MR equivalent to M.

Proof: Let M = (I,Q, Z, , X,R,p) and let MR = (I, QR, Z, 5R, , R, p R)

where

QR = {[q] q E P ([q] = q ' q' q})

6R([q],a) = [6(q,a)]

XR([q],a) = X(q,a)

pR (r) = [p(r)]

To prove this result we must verify (1) that &R and hR are well-

defined, (2) that MR is reduced and reachable, and (3) that M MR.

The details of this proof are very similar to the details of the

corresponding result in sequential machine theory. They may be

found in many textbooks which cover this theory (e. g., see Arbib

[2]).

MR as defined above is called the reduction of M. M' is a

reduced form of M if M' is reduced and M - M ' .

Lemma A. 1: M M' implies 6 r)x) = 'p'r)x) for all r E R

and x E I*.

165

Proof: Let a I, x,y E I* andr E R. Then

M M' p r(xya) = pr(ya)

X (6(p(r),xy),a) = X'(6'(p'(r),xy),a)

= X(6(p o(r), x), y),a) = ('(5'(p'(r),x),y),a)

6 6 (p (r).,x)(ya) = I '(p'(r),x)(Ya).

Theorem A.6 : If M and M' are both reduced and M M' then M

is strongly isomorphic to M'.

Proof: Assume that M and M' are reduced and that M M'. We

know that each q E P is representable in the form 6(p(r),x). Define

4 : P -> P' by

w4 (6(p(r),x)) = 6'(p'(r),x).

Claim: M is strongly isomorphic to M' under (e, e, e, w4). We must

show that w4 is well-defined, 1-1 and onto and that for all r E R,

a E Iand q E P

i) w4 (6(q,a)) = 6'(w4 (q),a)

ii) X(q,a) = X'(w 4 (q),a)

iii) w4 (P(r)) = p'(r).

166

In the following w 4 (q) is denoted by q'.

Well-defined: Let p = 6(p(r),x) and q = 6(p(s),y), and suppose that

p = q. Then ((r)x)= 6(s),y) and thus by Lemma A.1, (p'(r),)-

t6(p'(s),y). That is, 3p, = 0q,. Since M' is reduced and p', q' e P' it

follows that p' = q'. Hence c 4 is well-defined.

1-1: Again let p = 6(p(r),x) and q = 6(p(s),y) but now suppose that

p A q. Then by reapplying the above arguement p' # q'. Hence,

.04 is 1-1.

Onto: Since every q' E P' is representable in the form 6'(p'(r),x)

04 is onto.

That i), ii), and iii) are satisfied is straightforward to verify.

Corollary A. 6. 1: The reduced form of M is unique up to strong

isomorphism. That is, if M' and M" are reduced forms of M then

M' is strongly isomorphic to M".

Proof: If M' and M" are reduced forms of M then M M' and

M M". Hence M' M". Since M' and M" are both reduced, by

Theorem A. 6, M' is strongly isomorphic to M".

Theorem A. 7: If M M' then M realizes M'.

Proof: M M' implies r = 3' for all r e R. Hence M realizes M'runder (er

under (e, e, e).

167

A resettable miachine M is autoilomous If I - 1.

Given a resettable machine M, two input symbols a,b e I are

equivalent (a b) if X(q, a) = X(q, b) and 5(q, a) - 6(q, b) for all q e P.

M is transition distinct if no two of its input symbols are equivalent.

Any machine which has equivalent inputs is redundant in the sense

that the inputs in an equivalence class can be represented by any one

of its members without affecting the capabilities of the machine. The

following result gives an alternative characterization of equivalent

inputs.

Theorem A. 8: Let M be a resettable machine, and let a,b E I. Then

a b if and only if for all x, y e I* and r E R, r (xay) = 1r (xby).

Proof: (Necessity) Suppose a - b and assume, to the contrary,

that Pr (xay) r I3(xby) for some r E R and x,y i I*. Let q = 5(p(r),x).

Now, r (xay) # Pr(xby) implies 3q (ay) O (by). If y = A then

X(q, a) X(q,b). If y E I* then 13 (q, a) 6 3 (q, b)(y) and hence

5(q, a) - 6(q, b). Therefore a ' b. Contradiction. Hence a b

implies 3r (xay) = Pr (xby) for all x,y e I* and r E R.

(Sufficiency) Assume that a X b. Then for some q e P, X(q, a) f

X(q, b) or 6(q, a) ~ 5(q, b). Let q = 6(p(r),x). Then (6 (p (r),x), a) /

X(6 (p (r), x), b) or 6 (p(r),xa) - 6(p(r),xb). Hence Pr (xa) # pr (xb) or

for some y E I , 3Or(xay) # p3r(xby). Therefore if Pr(xay) = Pr (xby)

for all r E R, and x, y I* then a b.

REFERENCES

[1] Anderson, D. A., "Design of Self-checking Digital Networks
Using Coding Techniques, " Coordinated Science Lab, University
of Illinois, Urbana, Report R-527, Sept. 1971.

[2] Arbib, M. A., Theories of Abstract Automata, Prentice-Hall,
Englewood Cliffs, New Jersey, 1969.

[3] Avizienis, A., "Concurrent Diagnosis of Arithmetic Pro -
cessors, " Digest of the First Annual IEEE Computer Conference
Chicago, Illinois, Sept. 1967, pp. 34-37.

[4] Avizienis, A., G. C. Gilley, F. P. Mathur, D. A. Rennels,
J. A. Rohr, and D. K. Rubin, "The STAR (Self-Testing and
Repairing) Computer: An Investigation of the Theory and
Practice of Fault-Tolerant Computer Design, " IEEE Trans.
on Computers, Vol. C-20, Nov. 1971, pp. 1312-1321.

[5] Ball, M. and F. Hardie, "Effects and Detection of Intermittent
Faults in Digital Systems, " in 1969 Fall Joint Comput. Conf.,
AFIPS Conf. Proc., Vol. 35, Montvale, New Jersey, AFIPS
Press, 1969, pp. 329-336.

[6] Carter, W. C., H. C. Montgomery, R. J. Preiss, and H. J.
Reinheimer, "Design of Serviceability Features for the IBM
System/360, " IBM Journal, Vol. 8, April 1964, pp. 115-126.

[7] Carter, W. C. , and P. R. Schneider, "Design of Dynamically
Checked Computers, " Proc. of the IFIPS, Edinburgh, Scotland,
August 1968, pp. 878-883.

[8] Carter, W. C., D. C. Jessep, W. G. Bouricius, A. B. Wadia,
C. E. McCarthy, and F. G. Milligan, "Design Techniques for
Modular Architecture for Reliable Computer Systems, " IBM
Res. Report RA 12, Yorktown Heights, New York, March 1970.

[9] Chang, H. Y., E. G. Manning, and G. Metze, Fault Diagnosis
of Digital Systems, John Wiley and Sons, Inc., New York, 1970.

[10] Dorr, R. C., "Self-Checking Combinational Logic Binary
Counters, " IEEE Trans. on Computers, Vol. C-21, Dec. 1972,
pp. 1426-1430.

168

169

[11] Downing, R. W., J. S. Nowak, and L. S. Tuomenoksa,
"No. 1 ESS Maintenance Plan, " Bell System Technical Journal,
Vol. 43, Sept. 1964, pp. 1961-2019.

[12] Eckert, J. P., "Checking Circuits and Diagnostic Routines, "
Instruments and Automation, Vol. 30, Aug. 1957, pp. 1491-
1493.

[13] Even, S., "On Information Lossless Automata of Finite Order,"
IEEE Trans. on Computers, Vol. EC-14, Aug. 1965, pp.
561-569.

[14] Friedman, A. D., and P. R. Menon, Fault Detection in Digital
Circuits, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

[15] Friedman, A. D., "Diagnosis of Short Faults in Combinational
Circuits," Dig. 1973 Int. Symp. Fault-Tolerant Computing,
June 1973, pp. 95-99.

[16] Hartmanis, J. and R. E. Stearns, Algebraic Structure Theory
of Sequential Machines, Prentice-Hall, Englewood Cliffs,
New Jersey, 1966.

[17] Hennie, F. C., Finite-State Models for Logical Machines,
John Wiley and Sons, Inc., New York, 1968.

[18] Huffman, D. A., "Canonical Forms for Information-Lossless
Finite-State Logical Machines, " IRE Trans. on Circuit Theory,
Vol. CT-6, Special Supplement, May 1959, pp. 41-59.

[19] Kautz, W. H., "Automatic Fault Detection in Combinational
Switching Networks, " Stanford Research Institute Project No.
3196, Technical Report No. 1, Menlo Park, California,
April 1961.

[20] Kohavi, Z. and P. Lavallee, "Design of Sequential Machines
with Fault-Detection Capabilities, " IEEE Trans. on Computers,
Vol. EC-16, Aug. 1967, pp. 473-484.

[21] Kohavi, Z., Switching and Finite Automata Theory, McGraw-
Hill, New York, 1970.

[22] Langdon, G. G. and C. K. Tang, "Concurrent Error Detection
for Group Look-Ahead Binary Adders, " IBM Journal, Vol. 14,
Sept. 1970, pp. 563-573.

170

[23] Leake, R. J., "Realization of Sequential Machines, " IEEE
Trans. on Computers (correspondence), Vol. C-17, Dec.
1968, p. 1177.

[24] Massey, J. L., "Survey of Residue Coding for Arithmetic
Errors," ICC Bulletin, Vol. 3, Rome, Italy, Oct. 1964,
pp. 195-209.

[25] Mathur, F. P., "On Reliability Modeling and Analysis of
Ultrareliable Fault-Tolerant Digital Systems, " IEEE Trans.
on Computers, Vol. C-20, Nov. 1971, pp. 1376-1382.

[26] Mei, K. C. Y., "Bridging and Stuck-at Faults," Dig. 1973
Int. Symp. Fault-Tolerant Computing, June 1973, pp. 91-94.

[27] Meyer, J. F., and B. P. Zeigler, "On the Limits of Linearity,"
Theory of Machines and Computations (Edited by Z. Kohavi
and A. Paz), Academic Press, New York, 1971, pp. 229-242.

[28] Meyer, J. F., "Fault Tolerant Sequential Machines, " IEEE
Trans. on Computers, Vol. C-20, October 1971, pp. 1167-
1177.

[29] Meyer, J. F., "A General Model for the Study of Fault
Tolerance and Diagnosis, " Proc. of the 6th Hawaii Interna-
tional Conference on System Sciences, Jan. 1973, pp. 163-
165.

[30] Peterson, W. W., "On Checking an Adder, " IBM Journal,
Vol. 2, April 1958, pp. 166-168.

[31] Peterson, W. W. and M. O. Rabin, "On Codes for Checking
Logical Operations, " IBM Journal, Vol. 3, April 1959,
pp. 163-168.

[32] Peterson, W. W., Error-Correcting Codes, MIT Press,
Cambridge, Mass., 1961.

[33] Rao, T. R. N., "Error-Checking Logic for Arithmetic-Type
Operations of a Processor, " IEEE Trans. on Computers,
Vol. C-17, Sept. 1968, pp. 845-849.

[34] Sellers, F. F., M. Hsiao, and L. W. Bearnson, Error
Detection Logic for Digital Computers, McGraw-Hill, 1968.

171

[35] Short, R. A., "The Attainment of Reliable Digital Systems
through the Use of Redundancy--A Survey, " Computer Group
News, Vol. 2, March 1968, pp. 2-17.

[36] Wadia, A. B., "Investigation into the Design of Dynamically
Checked Arithmetic Units, " IBM Res. Report RC 2787,
Yorktown Heights, New York, Feb. 1970.

[37] White, J. C. C., "Programmed Concurrent Error-Detection
in an Unchecked Computer, " Ph. D. dissertation, Electrical
Engineering and Computer Science, University of California,
Berkeley, 1973.

[38] Yeh, K., "A Theoretic Study of Fault Detection Problems in
Sequential Systems, " Systems Engineering Laboratory
Technical Report No. 64, The University of Michigan, Ann
Arbor, 1972.

[39] Zeigler, B. P., "Toward a Formal Theory of Modeling and
Simulation: Structure Preserving Morphisms, " J. ACM,
Vol. 19, Oct. 1972, pp. 742-764.

