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ABSTRACT
ON-LINE DIAGNOSIS GF SEQUENTIAL SYSTEMS
| N

Robert Joseph Sundstrom -

In many applications, especially those in which a computer is
being used to control some process in real-time {e.g.,telephone
switchihg, flight control of an aircraft or spacecraft, etc) it is
desirable to constantly monitor the peFformance of the system, as
it is being used, to determine whether the actual system is within
tolerance of the intended system. Informally, by "on-line diagnosis"
we mean a monitoring process of this type.

This study begins with the introduction of a forlmal model which
can serve as the basis for a theoretical investigation of on-1line diag-
nosis. Within this model a fault of a system S is considered to be
a transformation of S into another system S' at some time 7. |
The. resulting faulty system is taken to be the system which looks
like S uptotime T and like S' thereafter. Notions of fault toler-
ance and error are defined in terms of the resulting system being
able to mimic some desired behavior as specified by a system §.

A notion of on-line diagnosis is formulated which involves an external

detector and 2 maximum time delay within which every error caused



by a fault in'a prescribed set must be detected.

This study focuses on the diagnosis of two important sets of faults:
the set of "unrestricted faults™ and the set of "unrestricted component
faults. " The set of unrestricted faults of a system is defined to be
simply the set of all possible faults of that system. 1t is shown that
if a system is on-line diégnosable for the unrestricted set of faults
then the detector is at least as complex, in terms of state set size,
as the specificati'on. Moreover, this is true even if an arbitrarily
large delay is allowed in the diagnosis.

One lmeans of diagnosing the set of unrestricted faults of a system
is by duplication and comparison. For systems which have (delayed)
inverses (i.e., systems which are information lossless) a
possible alternative is the use of a lbop check. Here, it is estab-
lished that if an inverse system is information lossless then it can
always be used for unrestricted fault diagnosis. Although the loss-
less condition is sufficiént, it is shown further that there exist Sys-
tems for which a lossy inverse can also be used for unrestricted
fault diagnosis. Since not every system has an inverse, let alone
one which can be used for unrestricted fault diagnosis, it is not
always possible to apply this technique directly. However, it is
shown that every system has a realization to which this scheme can

be successfully applied.



The on-line diagnosis of systems which are structurally decom -
posed and represented as a network of smaller systems is also
investigated. The fault set considered here is the set of unrestricted
component faults; namely, the set of faults which only affect one
component of the network. A characterization of networks which
can be diagnosed using a.combinational detector is obtained. It is
further shown that any network can be made diagnosable in the above
sense through the addition of one component. In addition, a lower
bound is obtained on the complexity of any component, the addition
of which is sufficient to make a particular network combinationally

diagnosable.
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CHAPTER I

Introduction

1.1 Outline of the Problem

For many applications, especially those in which a computer
is controlling a real-time process (e. g., telephone switching,
flight control of an aircraft or spacecraft, control of traffic ina
transportation system, etc.), reliability is a major factor-in the
design of the system. The need for high reliability arises because
of the serious consequences errors may have in terfns of danger to
human lives, loss of costly equipmeant, or disruption of business or
manufacturing operations. For example, it is eéonomically unsound
to shut down a steel mill for even a short time in order to repair
a comparatively inexpensive controlling computer. The seriousness
of the consequences,of course depends upon the application and must
be weighed against the cost of improving the reliability.

A number of techniques exist tor improving computer reliability.
One of the more obvious is the use of more reliable components.
While the use of reliable components is clearly very important, it
has been recognized that this technique alone is not sufficient to meet

the requirements for modern ultrareliable computing systems [35].



lAnother'genera'.l technique which is useful in some applications
is the use of masking redundancy such as Triple Modular ﬁedundancy.
The reader is referred to Short [35] for é. general sur\}ey of masking
techniques. One major drawback to masking redundancy is that if
failed components are not replaced and the mission time is long,
then the reliability of a system which uses masking redundaﬁcy can
actually be less than that of the corresponding simplex system [ 25].

A third means of increasing system reliability and availability
is through fault diagnosis and subsequent system reconfiguration or
repair. For example, a computer designed to control telephone
switching, the No. 1 Electronic Switching System (ESS) contains
duplicates of each module and fault diagnosis is achieved primarily
by dynamically comparing the outputs of both modules [11]. Once
a fault is detected, the faulty module is identified and removed from
service under program control. The faulty module is then repaired
manually with diagnostic help from the fault-free computer. Another
ultra-reliable computer, the Jet Propulsion Laboratory Self -Testing
and Repairing (STAR) computer, also makeé; use of modularity and
standby sparing [4].

One means of performing fault diagnosis is to continuously moni-
tor the performance of the system, as it is being used, to determine
whether its actual behavior is tolerably close to the inténded behavior.

It is this sort of monitoring which we mean by the term "on-line diag-



nosisA. " Oi:hers have used the term "error detection' to refer to
this sort of monitoring ([ 22],[23]).

Implementation of on-line diagnosis may be external to the
system, both internal and éxternal, or completely internal. In the
last extreme, on-line diagnosis is sometimes referred to as "self -
diagnosis" or "self-checking" {[8], [9]).

The signals generated by a monitoring device can be used in many
ways. For example, the IBM System/360 utilizes checking circuits
to detect errors [ 6]. The signals generated by these circuits are
used in some models to freeze the computer so that the instruction
which was currently executing may be retried if possible, and to
assist in the checkout and repair of the computer-if automatic retry
attempt fails. Ultra-reliable computers typically ﬁse the sigunals
generated by the monitoring device to provide the computer system
with the information it needs to automatically reconfigure itseld so
as to avoid using any faulty circuits. One other use for such signals
is to sirriply infc;rm the system user that the system is not operating
properly and that there may be errors in his data.

In general, on-line diagnosis is used to signal that the system
is operating properly or that it is in need of repair. In most computer
systems this task is also performed in some part by "off-line
diagnosis. " By off-line diagnosis we are referring to the process of
removing the system from its normal operation and applying a series

of prearranged tests to determine whether any faults are preseat in



the system. "There are major differences between on-line and off-
line diagnosis and it is important to be aware of the capabilities and
the limitations of each.

One basic difference is that on-line diagnosis is a continuous
process whereas off-line diagnosis has a periodic nature. Transient
faults are difficult to diagnose with off-line diagnosis because if a
fault is transient in nature it may not be in the system when it is
tested. On the other hand, since on-line diagnosis is a continuous
monitoring process both permanent and transient faults can be diag-
nosed. It has been recognized by Ball and Hardie [ 5] and others that
intermittents do occur frequently, and that finding an orderly means -
to diagnose them is an important unsolved problem. Thus the inability
of off-line diagnosis to deal satisfactorily with transients is a severe
limitation.

Another basic‘ difference is that the delay between the occurrence
of a fault and its subsequent detection is generally greater for off-
line than on-line diagnosis. Recovery after a fault has been diagnosed
may sometimes be achieved by reconfiguration and restarting. How-
ever, in a real-time application irrepeatable or nonreversable events
may take place if an error occurs and is not immedi#tely detected.

In any application, if there is a delay between the occurrence of an
error and the subsequent diagnosis of a fault, then contamination of

data bases may occur thus making restarting difficult. For these



reasons, the-inherent delay associated wifh off -line diagnosis can be
a serious limitation.

One further difference between on “line a_nd off-line diagnosis is
that with off‘wline diagnosis the system must be removed from its
normal operation to apply the tests. This also may not be acceptable
in a real-time application.

The cost of either form of diagnosis depends on.the nature of
the sys-tem to be diagnosed, the technoldgy to be used in building the
system, and the degree of protection against faulty operation that
is requ{red. “With on-line diagnosis the cost is almost totally in
the design, construction, and maintenance of extra har'dware. Witl_l
off-line diagnosis the cost is the initial generation of the tests and
in the subsequent storage and running of these tests.:

In general, off-line diagnosis is useful for factory testing and
for applications where immediate knowledge of any faulty behavior
is not essential. Off-line diagnosis is also useful for locating the
source of trouble once such trouble is indicated by on-line diagnosis.
For example, as stated earlier Bell System's No. 1 ESS uses dupli-
| cation and comparison as its primary error detectioﬁ scheme. But
once an error has been detected, fo-line diagnosis is used to déter-
mine which processer exhibited‘ the erroneous behavior and to locate

the faulty module in that processer.



In the Design Téchniques for Modular Architecture for Reliable
Computing Systems (MARCS) study a; more integrated use of on-line
diagnosis is proposed whereby a number of checking circuits observe
the performance of various parts of the computer [8]. Witha
scheme such as this, information about the location of a fault can }
be obtained from knowledge of which checking circuit indicated the
trouble.

Both on-line and off-line diagnosis have been used to check the
operatmn of electronic computers from the f1rst vacuum tube
machines until the present time. In particular, off-line diagnosis
procedures were developed for the ENIAC computer, the BINAC
system had duplicate processors, and the UNIVAC used a more
economical on-line diagnosis scheme involving 35 c'hecking circuits
[12]. During the past decade, however, the development of theory
and techniques for fault diagnosis in digital systems and circuits
have focused mainly on problems of off-line diagnosis (see [ 9] and
[14] for example).

An alternative means of performing diagnosis has been investi-
gated by White [37]. His novel scheme is similar to on-line
diagnosis iﬁ that it involves redundant processing of information and
subsequent checking for consistency. However, with his scheme
the redundancy is in time rather than in space. After every opera-

tion is performed, a related operation is initiated which uses the



same circuitry but with different signals. The results of these two
operations are then checked for consistency.

This scheme is useful for checking machines which were not
designed with the additionél circuitry required for on-line diagnosis.
However, this technique is likely to be very expeunsive, in terms of
both operating speed and microprogram memory requirements. In
an example implemented by White, a self-checking microprogram to
emulaté the PDP-8/I on the Meta 4 ran an estimated 3. 9 times slower
than a non-checking version of this microprogram and used 5 times
as mucﬁ microprogram memory.

One other approach to diagnosis is simply to haw;re human users
or observers of the system watch for obvious misbehavior. Since
faults often give rise to behaviors which are clearly erroneous, many
faults can be detected in this manner. The effectiveness of this method
is highly dependent upon the individual system and program, and is
exceedingly difficult to evaluate. It seems reasonable to assume,
however, that this method is less effective than any of the methods
previously discussed. Certainly, this method is unacceptable for

many applications.



1.2 Brief Survey of the Literature

The work that has been done on on-line diagnosis has b‘een
mainly concerned with the development of specific diagnosis techniques.
One early paper is Kautz's study [ 19] of fault detection techniques
for combinational circuits. In this paper he investigated a number
of techniques including the use of codes and the possibility of greater
economy if immediate detection of errors was not necessary. Some
of the more common on-line diagnosis techniques are discussed in a
book by Sellers, Hsiao, and Bearnson [34]. Much of what is in
this book and a large portion of the techniques that can be found
elsewhere in the literature are concerned with special circuits such
as adders and counters. For example, see the xx/;ork of Avizienis
[3], Rao [33], Dorr [16], and Wadia [36].

Relatively little work can be found on the theory of on-line
diagnosis. As with the investigation of on-line diagnosis techniques,
much of the theory of on-line diagnosis focuses on arithmetic units.
In one of the earliest works of a theoretical nature, Peterson [30]
showed that an adder can be checked using a completely independent
circuit which adds the residue, modulo some base, of the operands.
He went on to show that any independent check of this type was a
residue class check. Further theoretical work concerning the diag-
nosis of arithmetic units using residue codes can be found in Massey

[24] and Peterson [32].



An ear_ly theoretical result of a more general nature was published
by Peterson and Rabin [31]. They showed that combinatioﬁal circuits
can differ greatly in their. inherent d'iagnosability and that in some
cases virtual duplication is necessary.

A later and very important paper is that of Carter and Schneider
[7]. They propose a model for on-line diagnosis which involves a
system and external checker. The input and ouput alphabets of
the system are encoded and the checker detects faults by indicating
the appearance of a non-code output. A system is self-checking
if for every fault in some prescribed set, (i) the system produces
a non-code Qutput for at least one code space input, and (ii) the
system never produces incorrect code space outputs for code space
inputs. Thué, (i) insures that every fault can be detected during normal
usage, and (il) insures that if nofault hasbeen detected then thé output
canbe relie'dupon tobe correct. The checkers that they consider are
alsoself-checking. Using this modelthey prove that any system canbe
designedtobe self -checking for the set of single faults.

Anderson [ 1 ] has named property (i) "self-testing" and property
(ii) "fault-seéure, " and he has investigatea these properties for
combinational networks. In Chapter III it is shown that the notion
of diagnosis considered in this study is a generalization of the fault-

secure property.
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1.3 Synopsis of the Report

This report describes a formal investigation of the the;)ry and
techniques applicable to the on-line diagnosis of sequential systems.
The formal approach taken in this report leads to a fuller under-
standing of current on-line diagnosis practices and suggests general-
izations of known techniques. It also provides a framework for
evaluating the advantages and limitations of the various on-line
diagnosis schemes.

With decreasing cost of logic and the increasing use of computers
in real-time applications where erroneous operation can result in
the loss of human life and/or large sums of money the use of on-line
diagnosis can be expected to increase greatly in the near future. The
importance of this area along with the relative lack of theoretical
results is our motivation for initiating this study of on-line diagnosis.

Before entering into the actual synopsis it is appropriate to dis-
cuss the objectives_of this investigation. Let ébe a system which
serves as a specification of some desired behavior, let F be a set .
of faults, let & be a set of possible external detectors, and let k
be a maximum time delay within which every error caused by a fault
in F must be detected. The basic on-line diagnosis problem can now
be stated as follows:

Given 5, F, @, and k find an (economical) realization S of §

and a detector D € &/ such that D can observe S and signal
within k time steps any error caused by a fault in F.
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Towards the end of solving this basic problem the following
questions have been formulated. These questions serve as. more
specific objections and their answers will help to solve the basic
on-line diagnosis problem.

1. What are good on-line diagnosis techniques? That is, what
good means are available for finding appropriate realizations and
detectors? When is each technique applicable ?

1I. Gi\.ren S, s, ¥, @, and k, does a suitable detector exist in
&) ? That is, when is a given realization diagnosable? If sucha
detector exists how can it be constructed? A solution to this problem
would certainly help to solve the previous one.

III. What time -space tradeoffs ére possible between the added
| complexity needed for diagnosis and the maximum allowable delay ?
Wé expect that there will be situations where if the detector is given
additional time in which to indicate an error then diagnosis may be
simplified.

IV. What relationships exist between faults and errors? Given
S and F, what errors are possible? Giveng and ¥, how can one find
a realization S of S such that the system with faults (S, F) gives rise
only to errors of a given type? These are important questions
because given a diagnosis technique or a particular type of detector,
it will often be easy to determine just what types of errors are
detectable. The faults that are diagnosable will then have to be

inferred from this information. Conversely, we will want to find
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realizations such thﬁt the faults we are concerned with will cause
errors that we can detect. |

V. What properties of system structure and system behavior
are conducive to on-line diagnosability? Structural and behavioral
properties are important for it is expected that they will relate
directly to diagnosis techniques. Behavioral properties could be
used to measure the inherent diagnosability of a given behavior in
terms of the minimum added complexity which would be required to
obtain a given level of on-line diagnosis. |

The first problem considered in this investigation was the formu-
lation of a formal model which could serve as a basis for a theoretical
study of on-line diagnosis. This model is developed fully in Chapter'
II. First an appropriate class of system models is formulated
which can represent both the behavior and the structure of fault-free
and faulty systems. Then notions of realization, fault, fault-tolerance
and diagnosability are formalized which have meaningful interpreta-
tions in the context of on-line diagnosis. The following chapters are
all concerned with the properties of the notion of diagnosis which is
introduced in this chapter.

Chapter III contains some elementary properties of diagnosis
which are independent of the particular class of faults under considera-
tion. The result of this chapter help to give a basic understanding

of on-liue diagnosis and are used in the later chapters.
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Chaptef TV is concerned with the diagr{osis of the set of
unrestricted faults. This set of faults is simply the set of all possible
faults of the system under consideration. The major result of this
chapter gives a lower bound on the complexity of any detector
which can be used for unrestricted fault diagﬁosis of a given
system.

In Chapter V, the use of inverse systems for the diagnosis of
unrestricted faults is considered. Inverse systems are formally
introduced, and a partial characterization of those inverse systems
which can be used for unrestricted fault diagnosis is obtained. Since
not eve'ry system has an inverse system, let alone one which is
suitable for unrestricted fault diagnosi;;, it is not always possible
to apply this technique directly. However, it is shown that every
system has a realization upon which this technique can be success-
fully applied.

In Chapter VI, the diagnosis of systems which are structurally
decomposed_and are represented as a network of smaller systems .
is studied. The fault set considered here is the set of faults which
only affect one component system in the network. A characterization
of those networks which can be diagnosed using a purely combinational
detector is achieved. A technique is given which can be used to realize
any network by a network which is diagnosable in the above sense. |
Limits are found on the amount ‘of redundancy involved in any such

technique.



CHAPTER 1I

A Model for the Study of On-Line Diagnosis

In this chapter a formal model is developed which is suitable
for a theoretical study of on-line diagnosis of sequential systems.
The development begins with the introduction of a class of
system models, called "resettable discrete-time systems, " which
will serve as the basis of this study, Within this model a fault of
a system S is considered to be a transformation of S into another
system S' at some time 7. The resulting faulty system is taken to
be the system which looks like S up to time 7 and like S' thereafter.
Next the companion notions of fault tolerance and error are defined
in terms of the resulting system being able to mimic some desired
behavior. Finally, a notion of on-line diagnosis is introduced.
This notion involves an external detector and a maximum time
delay within which every error caused by a fault in some prescribed

set must be detected.

14
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2.1 Resettable Discrete-Time Systems

On-line diagnosis is inherently a mdre complex process than off-
line diagnosis because of two complicating factors: i) it has to deal with
input over which it has no.control and ii) faults can occur as the system
is being diagnosed. We would like to build a theory of on-line diagnosis
using conventional models of time -invariant (stationary, fixed) systems ‘
(e. g., sequential machines, sequential networks, etc. ). However,
due to the second factor mentioned above these conventional models
can no longer be used to represent the dynamics of the system as it is
being diagnosed. A system which is designed and built to behave in a
time-invariant manner becomes a time-varying system as faults occur
whilé it is in use. Therefore, a more general representation based
on time-varying systems is required. Based on this fundamental obser -
vation we have developed what we believe to.be an apprb'priate model

for the study of on-line diagnosis.

Definition 2. 1: Relative to the time-base T = { ...=1,0,1,., .}, a

discrete-time system (with finite input and output alphabets) is a system
S = (IrQr Z, '5’ A-)

where I is a finite nonempty set, the input alphabet

Q is a nonempty set, the state set

Z is a finite nonempty set, the ocutput alphabet

6: QX IXT — Q, the transition function
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A QXIXT — Z, the output function.

The interpretation of a discrete-time system is a system which,
if at time t is in state q and receives input a, will at time t emit out-
put symbol ?L(q,_a, t) and at time t + 1 be in state 6(g, a, t).. In the special
case where the functions 6 and A are independent of time (i.e., are
time -invariant), the definition reduces to that of a (Mealy) sequential
machine. In the discussion that follows it is assumed that S is
finite -state (i.e., |Q| < ).

To describe the behavior of a system, we first extend the transi-
tion and output functions to input sequences in the following natural way. |
If I* is the set of all finite-length seque;mes over I (including the null

sequence A) then:

5 QXI*XT —=Q

where, forallqe Q, ac€ i, teT:

I

5(q,A,t) = g

8(q,a,t) = 6(q,a,t)
8, aja,. .. an,t) = 6('6_(q,a1a2. .. an_l,t), a,t+n- 1).

Similarly, if I' = I*- {A}:

QXTI XT > 2
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where for allqge Q, ae I, t e T:
Ag,a,t) = Xxq,a,t)
A(q,alaz...an,t) = A(0(q, aa,. . .a.n_l,t),an,t +n-1).

Henceforth § and X will be denoted simply as & and A.

Relative to these extended functions, the behavior of S in state g

is the function
Bq: I'xT—>2Z

where

B8 = Ma,x, ).

Thus, if the state of the system is q and it receives input sequence x
starting at time t, then ﬁq(x,t) is the output emitted when the last
symbol in x is received, i.e., the output at time t + |x| -1 (|x] =
length (x)) .

Many investigations of on-line diagnosis and fault tolerance havé
studied redundancy schemes such as duplication and triplication.
Typically they have not dealt with the problem of starting each copy of
a machine in the same state. In this study we will be examining these
schemes and others for which the same problem arises. Since many
existing systems have reset capabilities, and since this feature solves
the above synchronizing problem we will use a special type of system

for which the reset capabilities are explicitly specified. This explicit
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specification of the reset capability is essential since it is an important

part of the total system and it may be subject to failure.

Definition 2. 2: A resettable discrete-time system (resettable system)

is a system
S = (I!Q! Z! 6! A!I{!.p)

where = (I[,Q, Z, §, }) is a discrete-time system

R is a finite nonempty set, the reset alphabet

~p: RXT —Q, the reset function.

A resettable system is resettable in the sense that if reset r is
applied at time t - 1 then p(r,t) is the state at time t. This method of
specifying reset capability is a matter of convenience. This feature
could just as well have been incorporated as a restrictibn oun the transi-
tion function relative to a distinguished subset of input symbols called
the reset alphabet. Thus a resettable discrete-time system can indeed
be regarded as a special type of discrete-time system. If §, A, andp
are all independent of time the definition reduces to that' of a resetta.ble

sequential machine. Thus a resettable machine can be yiewed as a

resettable system which is invariant under time-translations.

Given a resettable system we can view it as a system organized

as in Fig. 2.1,
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reR —m07 o 5

ael ————y——————

— y A A

Fig. 2. 1. Schematic Diagram for 8§ = (I,Q, Z, 5, A, R,p)
In many discussions the output function of a system will not

be of direct concern; the focus of atteuntion will be upon the state

transitions. This motivates the following definition.

Definition 2.3: A resettable discrete-time system S = (,Q, Z, 5, A, R, p)

is a resettable state system if Z =Q and X(g,a,t) =q for all q € Q,

a€l andteT.

Since the dutput alphabet and output function of a resettable state
system need not be explicitly specified, a resettable state system
S =(,Q,Z, 05, R,p) will be denoted by the 5-tuple (I,Q, 5, R, p).

This formulation of resettable state systems as special types of
resettable systems allows us to directly apply the following theory of '

on-line diagnosis to state machines.
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Notation: Résettable systems will be denoted by 8, S, Sl’ .52, etc.,
and resettable machines will be denoted by M, M', Ml’ MZ’ etc.
Unless otherwise specified, M will denote the resettable machine
(1,Q,Z,6,2R,p); M' will denote the resettable machine (I',Q', Z', &',
A, R', p'); and so forth. (I, Z, R) will denote the set of systems with

input alphabet I, output alphabet Z, and reset alphabet R. That is,
S$(,Z,R) = {8'|8' =(1,Q", Z,6", X", R,p")} .
(I, Z, R) will denote the corresponding set of resettable machines.

Definition 2. 4: A resettable sequential machine M = (1,Q, Z, 5, A, R, p)

is memoryless or combinational if JQ] =1,

The triple (I, Z, 2) where A: I—> Z will be used to denote any
memoryless machine with input alphabet I, output alphabet Z, and
output function A. The memoryleés machine M = (I, Z, A) is said to
realize the function A from I into Z.

We will represent sequential machines in the usual manner,
i.e., via transition tables or state graphs. Resettable machines are
represented by minor extensions of these two methods. .The transition
table of a reseﬁtable machine is identical to that of a machine with
addition of one column on the right to accommodate the reset function.
If p(r) = q then r will appear in this additional column in the row

corresponding to state q. Similarly, the state graph of a resettable

machine is identical to that of a machine with the addition of one short
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arrow for each r € R. This arrow will be labeled r and will point

to state p(r).

Example 2. 1: Let M1 be the sequence generator with reset alphabet

{0} and input alphabet {1} which has been implemented by the circuit

in Fig. 2.2.

D

1

Fig. 2.2. Circuit for M

LR

1

The transition table and the state graph for M1 are shown in

Figs. 2.3 and 2. 4.

I
1 1 R
Q 1
00 01/0 0
01 11/1
10 00/1
11 10/1 )

Fig. 2.3. Transition Table for M1
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Fig. 2. 4. State Graph for M1

The circﬁit in Fig. 2.2 is also an implementation of a similar machine
M, with input alphabet {0, 1}. The state graph for M, is shown in

Fig, 2, 5.

Fig. 2.5. State Graph for M2

Thus, in M2 the input symbol "0" can be interpreted as an input or as
areset. In M2 the outputs for input 0 are explicitly specified whereas

in M1 they may be regarded as classical "don't cares. "
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We can view a particular discrete-time system as a system which
looks like some machine Mi in one time interval, like Mi+1 in another

interval, and so on. This is also a good means of specifying a system.

2 1 { jl
§ i
. . . r—————‘ L1 s
M1+1 |
‘ |
M., Loeee ——
i
Time cm——=iam

~ Fig. 2.6. A Discrete-Time System

Example 2. 2: Suppose that M1 was implemented as in Fig. 2.2 and

that this circuit operated correctly up to time 100 when gate 2 becamse
stuck-at-0. What actually existed was not a resettable machine but a
{time -varying) resettable system S which looks like M1 up to time 100
and like a different machine, say M'1 tﬁereafter. The graph for Ml' is

shown in Fig. 2.7.

Fig. 2.7. Resettable Machine M'1
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We can represent S as follows:

M1 for t < 100

M'1 for t 2 100,

By this we mean that I = I1 = I’1 and likewise for Q, Z, and R, and that

61(q,a) for t < 100

6(g,a,t) =

5'1(q,a) for t > 100

and similarly for A and p.

For resettable systems we take the definitions of 8, X, and ﬁq
to be the same as those for systems. It is also convenient in the case
of resettable systems to specify behavior relative to a reset input r

that is released at time t, that is, the behavior of S for condition (r,t)

(r e R, t € T)is the function

Br,t: I —Z

where

B t(X) =

r,

p(r,t)(x’t) '

Ift =0, p‘r 0 is referred to as the behavior of § for initial reset r
1

and is denoted simply as ‘Br'
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It is useful to extend the behavior function Br ¢ in a natural
? .
manner to represent the sequence to sequence behavior of S. For

reRandteT

i I

— Z
r,t

W

+
where for all aq- - .an 3 |

FaN
Br,t(al' ..a_) =

0 r,t(al)"‘ Bf,t(alaZ"'an) .

We will now introduce a few properties of resettable machines
which will be important to our developing model of on-line diagnosis.
A more complete treatment of the properties of resettable machines

can be found in the appendix.-

These properties are defined for resettable machines rather
than for resettable systems because they will be applied to "fault-free”
systems, which in this study are always time-invariant.

We begin with some concepts of ''reachability.” Let M be a

resettable machine. The reachable part of M, denoted by P, is the

set

P = {6(p(r),x)[r €eR, xeI* .

M is reachable if P = Q. M is f-reachable if

P = {6(p(r),x)|r € R, x € I* and ]xlg 2},

Note that a machine can be £ -reachable but not reachable.
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An elementary result of graph theory states that in a directed
graph with n points, if a point v can be reached from a poinf u then
there is a path of length n -1 or less from u to v. An immediate con-
sequence of this is that any machine M is (]P] - 1)-reachable.

Let M, M' ¢ M(I, Z,R). M is equivalent to M' (written M= M")
if Br = /3'1_ for allr ¢ R. Two statesq e Q andq' € Q' are. equivalent

t T =

{g y - It is easily verilied that these are both equivalence

q') if By = By ;
relations, the first on M(I, Z, R) and the second on the states of machines
in M, Z, R).

A ;esettable machine M is reduced if for all q, q'-e P,g=4q'
implies q = q'. A basic result of sequential machine theory states that
for every machiﬁe there is an equivalent reduced machine and that this
machine is unique up to isomorphism. The corresponding result for
resettable machines is given in the appendix.

A concept which is central to sequential machine theory is that of
a "'realization. " The corresponding resettable machine concept will
be very important to our theory of on-line diagnosis. We will intro-

duce it by first stating Meyer and Zeigler's definition of realization for

sequential machines [27].

Definition 2. 5: If M and M are sequential machines then M realizes

M if there is a triple of functions (crl, e 03) where 0y ('Iv )+ 1" is
a semigroup homomorphism such that 0‘1(-f) C 1, Ty é — Q,

Oy AR where Z' C Z, such that for all a € é
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Ba:: 30302@)00'1

It has lbeen shown by Leake [23] that this strictly Behavioral
definition of realization is equivalent to the structurally oriented
definition of Hartmanis and Stearns [16].

If M and lVI are resettable machines then our definition of
realization is somewhat different. Inherent in this definition is our

presupposition that a resettable system will be reset before every use,

Definition 2. 6: If M and ifI are two resettable machines then M realizes

M if there is a triple of functions (orl, Ty 03) where oy (f)+ >1'is

a semigroup homomorphism such that 0'1(?) <, o

2:R—;R, oy

3
Z2' C Z, such that for all re f{,

Bp = 0g° 302({-) ° 0

This concept can be viewed pictorally as in Fig. 2.8.

R
A y

I ! zh
‘ | L M I

__Ull C’2'_ |

R ) | }
] l 03:

ki | y 2
l P 1\71 o

Fig. 2.8. M Realizes M under (0'1, g 03)
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Examﬁle 2.3: - Let 1\7[3 and M3 be the resettable machines shown in

Fig. 2.9 and Fig. 2. 10,

Fig. 2. 10, Resettable Machine M3
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Then M3 realizes ﬁB under the triple (01, Tgs 03) where S (13)+ — I;

is the identity, Ty ﬁ3 — R3 is defined by oz(r) =T and
03: Z3 — i 3 is the identity. To verify this claim we need only

observe that 53 (x) = 33 x) for allx e (I,)".
T ry 3

Notice that the definition of realization for resettable machines
is less festricﬁve fhan that for sequential machines in the sense that
for resettable machines we only require the realizing system to
mimic the behavior of the reset states of the realized machine; while |
in the sequential machine case the realizing system must mimic the be -
havior of every state of the realized system. On the other hand, the
definition in the resettable case is more restrictive in the sense that
for each reset state in the realized machine not only does there exist
a state in the realizing machine which mimics its behavior, but we also
know how to get to that state.

Before proceeding with our model of on-line ‘diagnosis we must
introduce a few notational conventions. The identity function on a

set A will be denoted by e When it is clearly understcod which

Al
set is being mapped the subscript will be deleted.

If Al, ves ’An is a sequence of n sets, its cartesian product is
n
the set A1>< ><An = X4 A.1 = {(Xl"" ,xn)]xi € Ai’ i=1,...,n}.
The cartesian product of an empty sequence of sets is taken to be any

singleton set.
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- n
Given a cartesian product A = ‘1>=<1 Ai’ a coordinate projection of A

is a function P, : A = Ai defined by P, (xl, - ,xn) =X

If f1: A Bl’ ceny fn: A— Bn is a sequence of functions, the
n

n
cross-product function i=><1 fi: A—> <1 Bi is defined by

n
__>:<1 fi(a) = (fl(a), Ceey fn(a)). The cross-product function can be used
to extend coordinate projections to project on to any subset of coordin-

s: ifcci, ..., n} i : X AL i '
ates: if C _{ , , iy then PC A-— &C A1 is defined by

P =

% . . . . .
CcTicC Pi' In particular Pq) is a constant function with domain A.
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2.2 Resettable Systems with Faults

Our model of a "resettable system with faults' is a specialization

of Meyer's general model of a "system with faults” [29].

Informally, a "system with faults" is a system, along with
a set of potential faults of the system and description of what
happens to the original system as the result of each fault.
The original system and the systems resulting from faults
are members of one of two prescribed classes of (formal)
systems, a "specification' class for the original sy stem and
a "realization' class for the resulting systems. More pre-
cisely, we say that a triple (<&, ®,p) is a {system) representa-
tion scheme if

i) & is a class of systems, the specification class,
ii} ® is a class of systems, the realization class,
iif) p: ® —= & where, if R ¢ ®, R realizes o{R).

By a class of systems, in this context, we mean a class of

formal systems, i.e., a set of formally specified structures

of the same type, each having an associated behavior thai is

determined by the structure | 25].

In this study we are concerned with the reliable use of a system.
‘That is, we are concerned with degradations in structure which Meyer
calls "life defects. " This is contrasted with reliable design in which
case we would be concerned with '"birth defects. " Thus, in our case,
a specification is a realization and we choose a representation scheme
® = (®, ®, p) where p is the identity function on ®.

Assuming that a faulty resettable system has the same input,

output, and reset alphabets as the fault-free system S, the following

class of resettable systems will suffice as a realization class:

ST, Z,R) = {8'[S'= (1,Q", Z,6,\",R,p")} .
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In summary, the representation scheme that we are choosing for
our study of on-line diagnosis is the scheme ( ®, ®, p) where‘ ‘
® = (I, Z,R) and p is the identity function on ®.

In such a scheme the seemingly difficult problem of describing
faults and their results becomes relatively straightforward. Before
we state our particular notion of a fault and its results we will repeat
here Meyer's general notion of a "system with faults” [29].

A system with faults in a representation scheme
(5, R, p) is a structure (3, F,¢) where

i) Se
ii) F is a set, the faults of S
iii) ¢: F — ® such that, for some f ¢ F,

p(f)) = s.

If f e F, the system Sf = ¢(f) is the result of f. If p(Sf) =S

then f is improper {by iii), F contains at least one improper

fault); otherwise it is proper. A realization Sf is fault-free

it f is improper; otherwise Sf is faulty [20]. =

In applying this notion to our study we must first define what we
mean by a fault 6f a resett‘able system. Given a resettable system
S € &(I, Z,R), afault f of S can be regarded as a transformation of
S into another system 8" ¢ §(I, Z, R) at some time T. Accordingly,
the resulting faulty system looks like S up to time 7 and like S'
thereafter. Since S may be in operation at time 7T we must also be
concerned with the question of what happens to the state of S as this
transformation takes place. We handle this with a function ¢ from
the state set of Sto that of 8'. The interpretation of 6 is that if S is

in state q immediately before time 7 then S' is in state 6(q) at time

7. More precisely,



33

Definition 2.7: If S € &(I, Z, R), a fault of S is a triple

f = (S': T, 6)
where ' € S{I, Z,R), Te¢ T, and 9: Q@ — Q.

A fault f = (8", 1,0) of S is a permanent fault if S' is time invariant.

We view the occurrence of a fault f = (', 7, 8) of a system S as

shown in Fig. 2.11,

et e den e —

-
)

-

T.
Time ———

Fig, 2. 11, A Faultf=(8',7,08) of S
Given this formal representation of a fault of S, the resulting

faulty system is defined as follows.

Definition 2. 8: The result of f = (8", 7, #) is the system

f . f

st = 1,4z, 6, AL, R, o)

where Qf =Q UQ'
6(q,a,t)ifqge Qandt <7~ 1

g(6(q,a,t) )ifge Qandt=7-1

1t

s, 2, 1)
5'(q,a,t)ifqe Q andt > 7
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f )*(Q:a»t)ifQEQandt<T

A'(q:a,t) = ’ 7
A'(q,a,t)ifqe Q' and t >
pir,t)ift <+

f

pr,t) = ( 6(p(r,t) )ift=1

pr, t)ift > 1.

(Arguments not specified in the above definitions may be assigned arbi-

trary values. )

In justifying this representation of the resulting faulty system one
should regard a fault f = (S',7,8) as actually occurring between time

T -land 7. Note that, for any fault f of S, S ¢ (1, Z,R).

Example 2.4: Recall that in Example 2. 2 M1 was transformed into

M} at time 100, We would say now that f = (M(, 100, e) is a permanent

fault of M1 and that S is the result of f (i.e., S = Mfl).

i

Example 2.5: Again consider Ml as implemented by the circuit in

Fig. 2.2 and let g be the fault which is caused by d1 becoming stuck-at-1
at time 50. Then g = (M'l', 50, 8) is a permanent fault of M1 where M’l'
is the machine shown in Fig, 2.12 and 6: Q1 — Q’l' is defined by the

table
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q 6(q)
00 | 10
01 11
10 10
11 i1

Neo==o

Fig. 2.12. Resettable Machine M’l'

M% will behave as M, up to time 50 and thereafter it will produce a

constant sequence of 1's.

To complete the model, a resettable system with faults, in this

representation scheme, is a structure

(8, F, ¢)

where S ¢ (I, Z,R), F is a set of faults of S including at least one
improper fault (e.g., £ =(S,0,e)), and ¢: F = S(I, Z, R) where o(f) =
Sf, for all f ¢ F. Given this definition, we can drop the explicit refer-
ence to ¢ in denoting a resettable system with faults, i.e., (S, F) will

mean (S, F, ¢) where ¢ is as defined above.



36

In the remainder of this study we will be dealing exclusively with
resettable systems. Thus we will refer to resettable system‘s simply
as systems and to resettable machinesl as machines.

A word is in order about our definition of faults. The interpreta-
tion here is one of effect, not cause, e.g., we don't talk of stuck-at-1
OR gates but rather of the system which is created due to some presumed
physical cause. We will refer to these phys_icar"l causes as component
failures or simply as failures. A fault, by oﬁr definition, consists of
precisely that information which is needed to define the system which
. results from the fault. This allows us to treat faults in the abstract;
independent of specific network realizations of the system and without
reference to the technology employed in this realization and the types
of failures which are possible with this technology. We are assured,
however, that for each fault we have enough information to assess the
structural and behavioral effects of the fé.ult; in particular as these
effects relate to fault diagnosis and tolerance. |

There are limits, however, to how much can be done with a purely
effect oriented concept of faults. When a system is sufficiently structured
to allow a reasonable notion of what may cause a fault we certainly will
want to make use of this notion. When this is the case we may, through
an abuse in lan'guage, refer to a specific failure at time 7 as a fault.
What we will mean is that we have stated a cause of fault and that there

is a unique fault which is the result of this failure at time T.
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It is interesting to see what the scope of our definition of faﬁlt is
in terms of the types of failures which will result in faults. 'ﬁecall that
a fault f of a system S is a triple, f = (8", 7,6), where 8' € &(I, Z, R).
Thus S'is a (i‘esettable) system with the same input, output, and reset
alphabets as S. The previous sentence contains, implicilly, every
restriction thaf we have put on faults. First of all, S'is a (resettable)
system. ‘Thus it remains within our universe of discourse. In parti-
cular, its resét inputs still act like reset i;lputs. That is, they cause
8' to go into a particular state regardless of the state it was in when the
reset input w:is applied. The restrictions on the input, output, and re-
set alphabets are reasonable since after-a fault occurs the system
presumably will have the same input and output terrﬁinals as it had be-
fore the fault occurred.

Let f = (8',7,8) be a fault. Because S' may vary with time we have
considerable latitude in the types of failures which we may consider.

I particular, we may consider simultaneous permanent failures in one
or more components, simultaneous intermittent failures in one or more
components, 'or any combination of the above occurring at the same or
varying times. For\ example, a fault f may be caused by an AND gaté
becoming stuck-at-1 at time Ty followed by an OR gate becoming stuck-
at-0 at time To:

Let us now computé the behavior of S)f in state q. Letx = Ay a

n
€ I+. Then
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(q,al. - an_l,t),an,t +n-1).

There are three cases which must be considered.

Case i) qe Qandt+n-1 <7. Then
g6 = A6@ay...a_.tha,tin-1)

= 86, t)

Case ii) Q€Q, t+n-1>7 andt<7, Sayt+n-m=7. Then

Bé(x,t) = A(6'(9( 5(q, ay...,a _.t)a

n-m+l -2

n-1’

t+n-m),an,t+n-1)

—_ ") )
- ﬁe(ﬁ(q, age..a s t))(an*m+1' ~ed,t+n m)

= Bb(ﬁ(q,y,t))(z’r) wherey = y...2

andz = g

Case iii) g e Q' and ¢ >7. Then

B;(x,t) = X(0'@,ap...a 0,8 tan-1)

= B

Thus we have proved:
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Theorem 2. 1:' Let S be a system and f = (S',7,0) a faﬁlt of S. Then for

,eachte Tandx e I+

( Bq(x,t) ifgeQandt+ x| <7

‘Bb(ﬁ(q,y,t))(z’f) ifqe @, t+ Ix] > 71, and

B;(x,t) = 4

t <7 wherex =yzand |y| =7 -t

Bc'l(x’t) ifge Qand t > 7.

-

(As in the definitions of éf and Al arguments not specified may be

assigned arbitrary values.)

Corollary 2.1.1: Let S be a system and f = (S", 7, 8) a fault of S. Then

for eachre R, t ¢ T, andxe1+
r
Br,t(x) ift+ |x|< 7

Bb(é(p(r,t),y,t))(z’ TV ift + [x| > T and

t <7 where x =yz and

yl=7-t

L B;.’t(x) ift>T1.

Proof: By its definition

g ow =4 &,
T, t" pf(r,t)x

Again we have three cases to consider.
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Case i) . £+ [x[ < 7. Thent<rT andpf(r,t) =p(r,t) € Q.

Therefore by Theorem 2.1

a;f(r,t)(x,t) = By ot)
- r,t(x)'

2 *

Case ii) t + j'x[ ~»7Tandt <T. Ift<7then pf(r,t) =plr,t) e Q
and Case ii) of Theorem 2.1 applies with p(r,t) in place of q. If
t =7 then pf(r; t} = 6(p(r,t)) € Q" and case iii) of the theorem
applies giving us

& x,t) = 8 x,t)
pf(r,t) 9(.0(1',‘:))

I )
= B so(r, 0),4,0)% 8 -
Case iii) t > 7. In this case pf(r-,t) =p'(r,t) € Q. Therefore

Bff (X,t) -

)(xr t)
p(r,t)

E)'(r,t
- i-,t(x)'

We have noted that we will often be interested in the physical cause
of a fault. For example, in a network realization of a machine we may
be interested in faults which are caused by a specific NAND gate be -

coming stuck-at-1. Since this gate failure results in different faults
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as we consider it occurring at ciifferent times it seems natural to give
.a name to this family of faults. More generally, we will define an equi-
valence relation on a set of faults such that a family of faults such as
we havé just mentioned will be an equivalence class.

First we must define an equivalence relation on ES‘(I, Z,R) such
that two systems S, S' € (I, Z,R) are equivalent if they are identical~

except for a shift in time.

Definition 2. 9: Let S, §' ¢ (I, Z,R). S'is a n-translation of S if

Q=Q anc'lforra'llq €Q,ael, reR,andteT
i) 6(q,a,t) = 8'(q, a,t+n)
ii) A(g,a,t) = A'(g,a,t+1)

iii) pir,t) = p'{r, t+0) .

If 8' is a n-translation of S then it can be shown that for all q ¢ Q,

reR,er+, andt e T

Bq(xy t) = B('l(x, t+ﬂ)
and

Br,t(X) = B, (x) .

, L+

Definition 2. 10: Let (S,F) be a system with faults and let £, = (Sl,‘rl, 81)
and f, = (82,72,82) be in F. Then f; is equivalent to f, (fl = fz) if Sy |

isa (n1 - nz)—translation of S2 and 8, = 82. .
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Theorem 2. 2: * The above relations are equivalence relations,

Proof: The relation of ""n-translation” is an equivalence relation on

"~ &(1, Z,R) because "'="" is an equivalence relation. The relation "= on
a set of faults of a system is an equivalence relation because "f-trans-

lation'' and "=" are both equivalence relations.

Notation: We denote then equivalence class of F which contains the
fault f = (S, 7, 8) by [{] p- When the class of faults is clear we will drop
the F. Generally if F is not mentioned we take it to be the set of all
possible faults of a system S. We let fi = (Si, i, 8) denote the fault in.

£,
[f] which occurs at time i. When dealing with behaviors 8 will denote

f

the behavior of § i

, and [31 will denote the behavior of Si'
Let fi = (Si, i, 8) and f]. = (Sj,j, 8) be equivalent faults of a machine
M. Since M is a (i-j)-translation of itself, it can be verified directly

from Definition 2. 8 that M ' is a (i-j)-translation of M . Hence,

Theorem 2.3: Let f be a fault of M and let £ f]. € [f]. Then for all

qu,er+,reR andt e T

f. f.
i A | .
By G t+) = B G, t)
and
fl f
' &) =) ..
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In this section we have defined and studied the notion of a fault
of a system. Inthe remainder of this study we shali limit our investi-
gations to the case in which the fault-free system is time-invariant.
That is, we shall be studying faults of machines. This is not a serious
restriction since the behavior of (fault -free) computers and related
digital equipment does not vary with time. Nevertheless, the concepts
developed in this and the preceding section are necessary since faulty
machines (except in the case of improper faults) are time-varying.
Given a fault f = (S', 1, 8) of a machine M, S' will not be restricted

to being time -invariant. This allows us to consider intermittant faults.
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2.3 Fault Tolerance and Errors

Given a system with faults (S, F) and a proper fault f ¢ F, an
immediate quesfion is whether the faulty system Sf is usable in the
sense that its behavior resembles, within acceptable limits, that of the
fault-free system S. We will use the general notion of a "tolerance

relation' [ 29) to make more precise what is meant by "acceptable

limits. " A tolerance relation for a representation scheme (8,®,p) is
a relation y between ® and eS‘(}’E ® X&) such th;';).t, for all R € &,
(R,p(R)) ey (i.e., pC v). Inthis section we will develop the particu-
lar notions of "acceptable limits" that we will be using in this study of
on-line diagnosis.

Given a machine M it will be understood that M realizes a specific

reduced and reachable machine M under the triple (crl, Tos 03). Under
the intended interpretation, ifl serves as the specification of some
desired behavior and M serves as the fault-free realization of this
behavior. This relationship between M and M will underlie our basic
notions of fault tolerance, error and on-line diagnosis.

In this study we will only be concerned with the behavior of M
under those resets and inputs which correspond via oy and 9q to resets
and inputs of M. No requirements will ever be put on ﬁr(x) or Bi,t(x),
where f is a fault of M, if r ¢ cz(ﬁ) or x ¢ 01(f+) because these are

considered to be "non-code space resets” and "non-code space inputs. "

2

For this reason we will always assume that 94 and 0, are onto. In

actually dealing with machines for Which'o1 or g, is not onto, occurrences
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of ""non-code _s.pace résets" and "non-code space inputs’ could be
ignored or they could be treated as efrors which must be detected.
These two options correspond to Carter and Schneider's [ 7 ] Don't
Care Assignments 1 and 2.

We will be using two basic notions of fault tolerance. The first,
and weaker, cofresponds to the preservation of the behavior of M

only insofar as its mimicing of M is concerned.

Definition 2, 11: Let f be a fault of a machine M. Then f is 1-tolerated

by M for resets at time t if for allt e R

r =9 P @), "0
Alternatively, since 01 and 02 are onto and since E,f:

Tq °802(?) °0y; f is 1-tolerated by M for resets at time t if for

allr e R
r

93°F = 93°F

In the special case where f is 1-tolerated by M for resets at time

0, we will simply say that f is 1-tolerated by M.

The second, and stronger, notion of tolerance does not allow for

the tolerance of any change in behavior.

Definition 2 12: Let f be a fault of a machine M. Then f is 2-tolerated

f
r,t

by M for resets at time t if for alir ¢ R, Br =



46

Again, f is 2-tolerated by M if it is 2-tolerated by M for resets

at time 0.

OQOur definition of 1-tolerated induces a relationy ; on ® where
Mf Yy M if and only if f is 1-tolerated by M. If f is improper then Mf =
M and thus f is 1-tolerated by M. Hence M Y1 M, and therefore ‘Yl is
a tolerance relation. Likewise 2-tolerated induces a tole.rance relation
?’2. If f is 2-tolerated by M then we can see that f is 1-tolerated by M.

Hence, as sets, Yo C Yy Finally, note that if 04 is 1-1.and f is

1-tolerated by M then f is 2-tolerated by M.

Example 2.6: Let M be the realization of M which consists of 3 copies

of I:&, a voter, and a disagreement detector as shown in Fig. Z.13. Then
any fault f which affects only one copy of M is 1-tolerated but may not
be 2-tolerated, and its presence may be detected by the disagreement

detector.
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Machine M

Fig. 2.13. Triple Modular Redundancy with Voting
and Disagreement Detecting

Our definitions of 1 and 2-tolerated by M for resets at time t
are refined notions of fault tolerance. Coarser notions, and ones more
in keeping with the literature, would be behavioral equivalence for
resets at any time, We prefer our finer definitions for with tﬁem the
effects of time can be more naturally analyzed. One quéstion which.
we will study later is: For resets at how many (and whiqh) times must
a fault be tolerated for it to be tolerated for resets at any time?

When a disbussion or theorem applies equally well to 1-tolerated
and to 2-tolerated we will just use the general term "tolerated.” We

also do this latter in this section when we discuss "errors. "
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It would be convenient if, without loss of generality, it was
possible to consider the behavior of systems only for resets released
at time 0. The following result shows that this can be done by a simple

change in the fault set under consideration.

Theorem 2.4: Let f = (8,7, 68) be a fault of machine M. Then f is toler-

ated by M for resets at time t if and only if f'r-t is tolerated by M.

. f f
, . T _ a7t . LTt
Proof: By Theorer? 2.3, ﬁr,t =f r, 0" Hence, Og ir,t =04 Br, 0
_ onT . . _ o pT-t .
and Og © _Br =0, Br,t if and only if g © Br =0q Br, 0 This
establishes the result.
Thus a fault f is tolerated by M for resets at any time if and

only if the class [f] of faults equivalent to f is tolerated by M. Due

to this we will always consider resets to be released at time 0 when

dealing with fault tolerance of machines and no generality will be lost.
Clearly, due to Theorem 2. 3, this same sort of time translation can be

applied to any other behavioral attribute.

o

Example 2.7: Let M4 be the sequence generator shown in Fig. 2. 1-4.

This machine could be implemented by the circuit shown in Fig. 2. 15,
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2.14., Machine M

4

:D_ﬁ}’ %

=l So—»

Dt

Fig. 2.15. Circuit for M,
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-Let f be a fault of M4 which is caused by dl becoming stuct t-1 at

time 7. Then f = (M}, 7, 8} where M& is the machine represented by

the graph in Fig. 2, 16 and 6 is as indicated below.

q 6(qa)
00 10
01 11
10 10
11 11

Fig. 2.16. Machine M/

f

Consider f-l’ i.e., the fault (Ma, -1,8), and note that 30"1 (11) =1

whereas Bo(ll) =0. Thusf_; is not 2-tolerated by M,. On the other

hand both M, and M;l will produce the sequence 00010101... when

4

reset at -10. Thus f__1 is Z-tolerated by M4 for resets at -10. By

applying Theorem 2.4 we can learn, for example, that f, is not 2-toler-

ated by .'M4 for resets at time i+1 and that f9 is 2-tolerated by M4.

Corresponding to our two types of fault tolerance we can define

two types of errors.
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Definition 2. 13: Let M be a machine, r ¢ R, x ¢ I, andy € Z* where

|x| = ly|. The triple {r,x,y) is called a 1-error (2-« -vor) of M if
o B ) £ogly) B Ay).

If {r,x,y) is an error of M and f is a fault of M for which
fii(x) = y then we say that the fault f causes the error (r,x, y). Note

that any given error could be caused by many different faults,

The relation between fault toleranre and errors is veryv simple.
A fault f is 1-tolerated (2-tolerated) if and only if it causes no l-errors
(2-errors). The relation between l-errors and 2-errors is also
straightforward. Namely, every ‘1 -error is a 2-error, and if‘c3 is
1-1 then every 2-error is a l-error. Errors are very .important in
any study of fault diagnosis-because a fault can never be detected until
it causes an er_r;or. The general goal of on-line diagnoses is protection
against undesirable behavioral manifest'ations of faults, i.e , pro-
tection against errors.

Since an error can represent erroneous behavior of any dura-
tion, and since we will wish to detect ei‘roneous behavior when it
first begins to appear, we introduce the concept of a "minimal error. "
Informally, an error (r,x,y)} is a minimal error if only the last
symbol of the output sequence y is out of tolerance. More formally,

an error (r,ua,vb}) wherea € Iand b ¢ Z is a minimal error if

(r,u,v) is not an error. 1If (r,x,y) is a minimal 1-error then it is

a 2-error but not necessarily a minimal 2-error. A minimal error
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(r,x,y) is said to occur at time |x| - 1. This is the time at which
the last symbol in y is emitted. |

Often we will be in a situation Where we are concerned with a
machine M tolerating a set of faults which are all caused oy the éame
phenomenon but which may occur at any time. More specifically, let
f be a fault of M. We would like results which assured us that if some
finite subset of [f] was tolerated by M then all of [f] was tolerated by
M. Later we will be interested in the same problem with regard to
diagnosis,

Our first result of this nature hinges on the fact thaf any reachable.

state of an {-reachable machine is reachable oy time £.

Theorem 2. 5: Let f be a fault of an ¢-reachable machine M and suppose

fi is tolerated by M for 0 <1< L. Then fi is tolerated by M for all

i>0.

Proof: Assume, to the contrary, that fi is not tolerated by M for some
i > 4. Then there exists an error (r,x,y) which is caused oy fi.
f.
!

Hence B, x) =y. Letx = XyX, and y'=y1y2 where fxll = lyll = 1.

By Corollary 2. 1. 1 we know that
i, i o
Rt = Btx)) 06(p(r), x )%V =YYy -

Letq = 5(D(r),x1). Since M is £-reachable, there exists s € R and

u € I' such that [u| = SZand 6(p(s),u) =q. By Theorem 2.3
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M 1) =B 6,,i). Therefore if } (u) = mon M (@)=
8(q)x2,1 = Pogq) 2,17 erefore if £ {u —vtean ux,) = .
%S(u)%]s(aw(s)’ U)) (Xzyj) = V/BB(CI)(Xz’]) = VYZ' Clearly’ (S’ uxz, Wz)

is an error and it is caused by f].. Therefore fj is not tolerated.

Contradiction. This establishes the result.

The following general example shows that Theorem 2. 5 is the
strongest result pdssible, in the sense that if the hypothesis is at all
weakened then there exists a fault f and a machine M for which the

conclusion is invalid.

Example 2. 8: Consider the {-reachable autonomous machine Mﬂ shown

in Fig. 2.17. Let m be an integer between 0 and ¢ inclusive, and let

Fig. 2.17. Machine M

]
‘f = (Mﬂ,‘r, ) be a fault of Mﬂ where

qj if j #m
9(qj) =

ﬁ(qj,o) ifj=m
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Consider Mﬂ to be realizing itself. That is, take M = Mg-
The occurrence of { = (Mﬂ, T, 6) has an effect on the behavior of

M, if and only if Mﬂ could be in state 9 at time 7. Therefore, ’ii =

[
(M,, i, §) is tolerated by M, if and only if 1¥ m (mod £ + 1). Hence
4 £

; is tolerated by M, for i = 0,...,m-1,m+1,..., £ does not imply f,

is tolerated by M, for alli > 0. Since both m and £ were arbitrarily

L
chosen, this general example shows that the hypothesis of Theorem 2.5
cannot be weakened.

Let us now look at faults which occur befofe time 0. In the
previous resqlt we have not mentioned this case because if ’fi and fj
are equivalent faults and i or j is less than 0 then there is, in general,
no relation between the behaviors of Mfi and ij for resets released at
time 0. However, in the important special case where { = (M', 7, 6)

is a permanent fault, any fi ¢ [f]} with i < 0 will, with respect to resets

released at time 0, cause identical behavior,

Lemma 2.1: Let f = (M', 7,8) be a permanent fault of M. Then

f.
8. =

£,
r Br] for.allr € R and 1,j < 0.
Proof: Leti,j <O0. Because fis permanent, fi = (M', i, 8) and
£, 5.
f = (M",j,0). By Corollary 2. 1.1, ;31_‘ = 8, and 31]_ = g for allr € R.

This establishes the result,
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Theorem 2.6 : . Let f be a permanent fault of an £-reachable machine M.

If fi is tolerated by M for -1 < i <4 then fi is tolerated by M for all
ieT.

f. f
Proof: By Lemma 2. 1, Br1= ’51-1 for all i < 0. Hence, f-l is tolerated

by M implies that f, is tolerated by M for all i <0. By Theorem 2.5,

fi is tolerated by M for all i > 0. This establishes the result.

Before leaving this line of development we willlmake some final
observations. Note that a machine M is O-reachable if and only if
p(R) =P. In ﬁarticular, every memoryless machine is O-reachable. By
Theorem 2, 5, if M is O-reachable and fo is tblerated by M then fi is
tolerated by M for alli > 0. |

I £ = (M, 7, 6) is a fault of M we think of { as affecting the reset
mechanism of M if p'(r) # 8(p(r)) for some r ¢ R. If this is not the case

then a further result, similar to Lemma 2.1 can be obtained.

Lemma 2.2: Let{ =(M',T,6) be a permanent fault of M and suppose'
f. f.

that p'(r) = 8(p(r)) for all T € R. Then Br1= ,br] for allr € R and 1,j < 0.

~ f
Proof: Since p'(r) = 6(o(r)), by Corollary 2. 1.1, ﬁr" =3 forallr ¢ R.

The result now follows just as in the proof of Lemma 2. 1.

Putting the above observations together yields:

Theorem 2.7: Letf = (M'", 7,0) be a permanent fault of M. Suppose

that p'(r) = 8{(p(r)) for all r € R and that p(R) =P. If fi is tolerated by

M for any i< 0 then fi is tolerated by Mfor all i € T.
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Proof: By Lemma 2,2 f; 1s tolerated by M for all i < 0. Since p(R) =

P, M is O-reachable. Therefore, by Theorem 2.5 fi is trlnrated by M

for all i 2 0. T}his establishes the result.
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- 2.4 On-line Diagnosis

Qur notion of on-line diagnosis of a system involves an external |
detector (assumed to be fault-free) which observes the input and the
output of the system and makes a decision as to whether the behavior
of the system is within "acceptable limits' as set forth by our notions
of fault t—oleraﬁce. Initial synchronization of the system with its
detector is achieved by using the sﬁme reset to initialize both systems.

The forrﬁal relation between a system and its detector is that of

a "cascade connection. '

Definition 2. 14: The cascade connection of two systems S1 and 52 for
which R1 = R2 and I2 = Z1 X I1 ig the system
* =
Sl Sz (II’Q,VZ2,6’k’ Rllp)
where

Q= QxQ,
6(apay),2,t) = (0,(ay,2,t),8,(q,, (A {qy,a,t),a),t))

R((ql’qz)’ayt) = A-z(q2: (?tl(ql;a;t),a);t)

plr,t) = (p,(r,t),py(r, t)).
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Schematically,’ S1 * S2 can be pictured as in Fig. 2. 18,

1 I
Z i,
I ——L——-—f‘—, Zn
1 . S]_ Sz Fd »
. P

gy

A
poa
o =]

Fig. The Cascade Connection of S1 and 82
- _ ' + _ + .
Notation: If u = Z1Zg- -2 € Z and v = a42g-..2 € [ then the pair
. ¢ +
[u, v] will denote the sequence (zl, al)(ZZ’ az). .. (zn, an) e (Zx1)".

1 * 82 be the cascade connection of S1 with SZ' Let Bl, ,dz,

and 3* denote the behavior functions of Sl’ 82, and SI * S2 respectively.

Let S

It can be shown directly from the definition of a cascade connection that
+
for all x ¢ Il’ qq € Q, qq € QZ’ re Rl’ andt e T,

g

L2 oAl
apap®t = fy (B G 0xl b

and

s = i (B x)).
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We can now formally define our notion of on-line diagnosis.

Definition 2. 15: Let (M, F)} be a machine with faults, let D be a machine

for which M-* D is defined, and let k be a nonnegative integer. (M, F) is

(D, k)-1-diagnosable (2-diagnosable) if

i) B =0forallr ¢ R, and
ii) if (r,x,v) is a minimal 1-error (2-error) caused by some f ¢ F

then

%?([%f,(xw),xw]) # Nad for all we I* with |w| =k .

Thus, t‘r;e detector D observes the operation of IVIf and must make
a decision based on this observation as to whether an. error has occurred.
Note that the fault-free realization M and the detector are both iime-
invariant (i.e., machines), and that the detector takes no part in the |

computation of M's output.

Z .
f > E
[ ——T—> M | D ————

Fig. 2,19. Diagnosis of (M, F) using the Detector D
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The two (;onditions of Definition 2. 15 can be paraphrased as:
i) D responds negatively if no fault occurs; i.e., Moives no
false alarms, and
ii) for all f ¢ F, D responds positively within k time steps of the
occurrence of the first error caused by f.
Condition i) implies 0 ¢ 2,y the output alphabet of D. Each
z € Z. other than 0 is called a fault-detection signal. The choice of the

D

symbol 0" to indicate that the machine M is operating properly is

purely for notational convenience. In general we could let any subset

of Z.. indicate proper operation and let the complement of this set in

D

ZD be the set of fault-detection signals. In a practical application this
choice would depend on the design constraints on the detector.

As we have done with fault tolerance and with errors, if a theorem
or remark applies to both ”l-diagnosable_” and ""2-diagnosable” we will
just state it once using the general term "diagnosable.”

Let D be a detector for M. Then ID = Z X I, There will be times
when the observation of M's input by D will be unnecessary or undesired.

If forallze Z and a,b ¢ I (z,a) and (z,b) are equivalent inputs of D

then we will say that D is independent of M's input. In this case the

behavior of D does not depend on the second coordinate of D's input and
we will take ID to be simply Z.
Recall that with this concept of diagnosis that we are only con-

sidering faults of M. Faults of D must be analyzed separately. In
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findiﬂg a realization M of ﬂ[ and a detector D there is some leeway in
how much of the added complexity required for diagnosis shéuld g0
into the detector and how much should go into the realization. If it

all goes into thé realization then D will serve ounly tb select out certain
coordinates of M's output to be used as the output of D. That is, D
will be memoryless and realize a proj‘ection. In this case we will say

that (M, F) is k-self-diagnosable. In general, it is desirable for the

detector to be self-diagnosable for some suitable set of faults.
The basic on-line diagnosis problem can now be restated as
follows:

Given a machine fd, a class of faults ¥, a class of
detectors €7} and a delay k find an (economical} realization M

of M and a detector D ¢ ¢ such that (M, F) is (D, k)-diagnosable.

In this chapter we have developed a model for the study of on-
line diagnosis of resettable machines, and we hav.e réstated the basic
on-line diagnosis problem. In the following chapters _resu}ts are

developed which will hélp to solve this basic problem.



CHAPTER III

General Properties of Diagnosis

In this short chapter we will present a few results on diagnosis
per se. That is, they are general results which tell us some things
about diagnosis, independent of the particular fault set being diagnosed
or of any particular diagnosis technique. In the following chapters
we look at the diagnosis of specific sets of faults and investigate
the capabilities and limitations of on-line diagﬁosis techniques.

It is interesting to see how our concept of on-line diagnosis
compares with a similar concept introduced by Carter énd §ch‘ﬁe’tder
[ 7] and called "fault-secure'’' by Anderson [ 1]. As 'st:.a.-ted: by |

Anderson, "A circuit is fault-secure if, for every fault in a pre-

scribed set, the circuit never produces incorrect code space outputs
for code space inputs. "

Before making a formal comparison this notion must be trans-
lated into our framework. In doing so we will strive to be faithful

to Auderson's intent.

Definition 3. 1: A machine with faults, (M, F), is fault-secure if

(r,x,ya), where a € Z, is a minimal 2-error caused by some f ¢ F

implies a ¢ {Br(x)]r eR, xe T},

62
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Thus if (M, F) is fault-secure then a combinational detector which
only observes' the output of M can detect all minimal 2-errors. More

formally,

Theorem 3.1: (M, F) is"fault-secure if and only if (M, F) is (D, 0)-2-

diagnosable where D is memoryless and independent of M's input.

Proof: (Necessity) Assume that M is fault-secure. Define

Api Z - {0,1} by

Oifze {3 (x)]reR, er+}

Apl2) = i
1 otherwise

Let D be the memoryless detector which realizes Ap- Then D is

independent.of M's input and it can easily be verified that (M, F) is

(D, 0)-2-diagnosable. |

(Sufficiency) Assume that (M, F) is (D, 0)-2-diagnosable where D is

memoryless and independeunt of M's input. Let AD: Z =10, 1}

denote the function realized by D and let Z' = {,Sr(x)]r eR, x eI},

Then AD(z) = 0 for all z ¢ Z' for otherwise a false alarm could occur.

Let (r,x,y_a) ‘where ae Zbe aminimal 2-error. Ifae Z'then

AD(a) = 0 and f is not detected without delay. Therefore a ¢ Z'.

Hence (M, F) is fault-secure.

Thus the concept of (D, k)-diagnosable is a generalizatiod of the
concept of fault-secure. In particular, (D,k)-diagnosis allows for

(i) different tolerance relations, (ii) nonzero delay in diagnosis,
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(iii) detectors with memory, and (iv) explicit observation by the
_ detector of the input to the system being monitored.

Qur next result shows that "2 -diagnosable' is indeed a stronger
property than "1-diagnosable." This result is a consequence of the

fact that every l-error is a 2-error but not conversely.

Theorem 3. 2: If (M, F) is (D, k)-2-diagnosable then (M, F) is (D, k)-1-

diagnosable, but not conversely.

Proof: Let (M, F) be (D, k)-2-diagnosable. Then no false alarms will .
occur and every minimal 2-error will be detected within k time steps_-'- '
of its occurrence. Let (r,x,y) be a miaimal 1-error. Then ca@r(x)ﬂ
GE(y) and hence gr(x) Zy. fThus (r,xl,yl) is a minimal 2-error for
some X, and ¥4 such that x = X1Xq andy = ¥1Yo Since this minimal
2-error is detected within k time steps of its occurrence the minimal
l-error (r,x,y) must also be detected within k time steps of its
occurrence. Hence (M, F) is (D, k)-1-diagnosable.

The counterexample which shows that the converse does not
hold is given in the next chapter in the proof of Theorem 4. 4.

Although the converse of Theorem 3. 2 does not hold in general,

the following partial converse can be obtained.
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Theorem 3.3: If (M, F) is (D, k)-1-diagnosable and 0g is 1-1 then

(M, F) is (D, k)-2-diagnosable.

Proof: We observed in Section 2.3 that if Oq is 1-1 then every

2.error is a'l-error. The result is an immediate consequence of

this fact.

The next result will help us to see the relationship between

fault diagnosis and fault tolerance.

Theorem 3.4: Let (M, F) be a machine with faults. If F is tolerated

by M then (M, F) is (Do’ 0)-diagnosable where D, is a trivial memory-

less machine which realizes the constant 0 function.

Proof: Condition i) is clearly satisfied, and condition ii) is satis-

fied because if F is tolerated by M then no { € F will cause any errors.

The decision in this case can be trivially made since no errors
are ever produced. The situation for tolerated faults is not so simple
as this result may seem to indicate for it must be remembered tha.t
1-tolerated does not imply 2-tolerated and thus a l-tolqrated fault .
could be detected through a 2-error (see Example 2. 6).

We will now develop some results concerning diagnosis which are
analogous to Theorems 2.5, 2.7 and 2. 9. Recall that these theorems
allowed us to infer the tolerance of an infinite set of equivalent faults

from knowledge that a specific finite subset of them is tdlerated.
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Theorem 3.5: Let M be a machine and let D be a detector for M.
Suppose that the cascade connection M * D ig £ -reachable, and that
t1s a fault of M. If (M, {f.}) is (D, k)-diagnosable for 0 <i< 2 then

(M, {fi}) is (D, k)-diagnosable for all i> 0

Proof: Assume that (M, ‘{fi}) is (D, k)-diagnosable fér 0<i< e,
Then condition i) of Definition 2. 15 is immediately satisfied. Let
(r,x, w) be a minimal error caused by f where i >0, and letue I
with [u| =k. To show that (M {f }) is (D, k)-diagnosable for 0 <i
we need only show that ;3 ([ B (xu) Xu]) # leu,

Letx = X,2 where [xll =1, and let 6*(p*(r),x1) '= (q,9"). Since
M * D is f-reachable there exists s € R andy € I" with 0 < Iy[ <4
such that 6*(p*(s),v) = (g, q"). Sayu ly| =j. Since (IvI,{fj}) is

4D

Af, '
(D, k)-diagnosable, Eh ([ psl (yzu),yzu]) # ijzuf’ and since the fault

detection signal must occur after the fault occurs,

' f
BB ) @), 2] £ ol=l

f f
Now by Theorem 2. 3, pg( )(zu i) = BQ( )(zu,j) and hence

;3 ([ ;39( )(zu i), zu]) # Olzu]. Therefore

, .
3D([ﬁfi (xlzu),xlzu]) = &D([ﬁrl ])@D ,@ (zu, 1) zu])
r~'r f(q)

o oixuf

Hence (M, {t}) is (D, k)-diagnosable for all i >0.
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Example 2. 8, which shows that the hypothesis of Theorem 2.5
cannot be weakened, works likewise for Theorem 3.4, This example
works for both fault tolerance and fault diagnosis because, as was
pointed out by Theorem 2.3, tolerated faults are trivially diagnos-

able.

Theorem 3.6: Let M be a machine and let D be a detector for M

such that M * D is £ -reachable. If f is a permanent fault of M and
™M, {fi}) is (D, k)-diagnosable for -1 <1i < ¢ then (M,{fi}) is

(D, k)-diagnosable for allie T.

Proof: Assume that { is a permanent-fault and that (M, {fi}) is

(D, k)-diagnosable for -1 <i < 2. By Theorem 3. 4, (M"{fi}) is
(D, k)-diagnosable for alli > 0. By Lemma 2. 6, ;3? = ﬁfr“l

for allr € R and i < 0. Hence every fi with i < U will cause
exactly the same errors. Since '(M,{f_l}) is (D, k)-diagnosable it
follows that (M, {fi}) is (D, k)-diagnosable for all i < 0. This

establishes the result.

Let D be a' detector for a machine M. It will often be the case
that the second coordinate of the state of M * D can be uniquely
determined from the first coordinate. In particular, this is always
the case when ]QD] = 1. More formally, the cascade connection of .

M

1 with M2 is synchronized if there exists a function h: Ql — Q2
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such that for.each (ql,qz) in the reachable part of M, * MZ’

h(ql) = qz. Such a function is called the synchronizing function of

M1 * M2 and it must satisfy h(pl(r)) =p2(r) for each r € R.

If M * D is synchronized and M is £ -reachable then M *Dis
also {-reachable. We have observed in Chapter II that M is
O-reachable if and only if p(R) = P, and that, in particular, every
memoryless machine is O-reachable. Hence if pR)=PandM*D
is synchronized then M * D is O-reachable. In this case we know
that if fo is diagnosable then fi is diagnosable for 0 <i.

We terminate this line of development by stating the strongest

result of this rature.

Theorem 3. 7: Let M be a machine for which p(R) = P. Let D be

a detector for M such that M * D is synchronized. Let f = (M’, 7, 6)
be a permanent fault for which p'(r) = 8(p(r)) for allr ¢ R. If
(M,{fi}) is (D, k)-diagnosable for any i < 0 then (M, {fi}) is (D, k)-

diagnosable for alli e T.

Proof: Assume that (M, {fﬁ}) is (D, k)-diagnosable where £ < 0.
By Lemma 2. 8, ;3? = Bf.j for all i, j < 0. Therefore (M, {fi}) is
(D, k) -diagnosable for all i< 0. Since p(R) =P and M * D is syn-
chronized, M * D is O-reachable. Thus by Theorem 2.4, (M, {fi})

is (D, k)-diagnosable for all i > 0. This establishes the result.



CHAPTER IV

Diagnosis of Unrestricted Faults

The investigation _of this chapter is concerned with the general
case in which the set of potential faults is "unrestricted. " This set
of faults is precisely the set of all faults of the machine being
diagnosed, aund hence it is truely unrestricted.

Aside from representing a "'worst-case' fault environment,
there are certain practical reasons for counsidering unrestricted
faults, at least at the outset. In particular, as the scale of integrated
circuit technology becomes larger, it becomes more difficult to
postulate a suitably restricted class of faults su(;h as the class of
all "stuck-at" faults. Moreover, although other failure models such
as bridging failures have been proposed and studied (see [ 15] and [ 26]
for example}, little is known about the diagnosis of such failures.

In addition, intermittent and multiple failures are also possible and
are even more difficult to model. Finally, for a given failure it may
be impossible to determine the 6 function of the fault caused by this
failure. Thus fault sets which do not restrict the fault mapping 6 are
advantageous. |

Unrestricted faults are typically diagnosed using the technique
of duplication. One of the aims of this chz_tptér is to take a deeper

look at duplication and at a generalization of this scheme. An
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alternative to using duplication for the diagnosis of unrestricted
faults is investigated in Chapter V.

The main result in this chapter states that to achieve 1-diagnosis
of the unrestricted faults of a machine M, the detector must have as
many states as I-\hi,‘ the behavioral specification for M. Furthermore,
to achieve 2-diagnosis, the detector must have as many states as
MR’ the reduction of M. T.hese b;:}unds on the state set size of the

detector are independent of the delay allowed for the diagnosis.
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4,1 Unrestricted Faults

As stated above, the set of unrestricted faults of a machine

is simply the set of all faults of that machine. More formally,

Definition 4.;1: The set of unrestricted faults of machine M, denoted

by Uy 1s the set Uy, = {t|f is a fault of M}, That is,

U

M= {(s',7,6)| ' € SUI,Z,R), T€T, and §: Q> Q'} .

When it Vis clear what machine is under consideration, the
identifying subscript will be dropped.

One important property of the set of unrestricted faults is the -
relation between this fault set and the set of errors that may be
caused by fault_s in this set. Givenany r ¢ R, x¢ I andy € z" with
]x] = |y|, there is a fault f ¢ U such that f,\i(x) =y. Therefore
faults in U can cause any possible erroneous behavior, and for
(M, U) to be (D, k)-diagnosable all of these possible erroneous
behaviors will have to be detected by D.

Due télthe above observation it ,is clear that the output of Mf
(the system.a_ctually being observed by the detector) can give no
information about what the correct output should be. Therefore,
for the diagnosis of unrestricted faults, the ability of D to observe
M's input directly is crucial. This observation is méde explicit

in the following result.
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Theorem 4.1: If (M, U) is (D, k)-1-diagnosable, D is independent of

M's input, and M is transition distinct then M is autonomous.

Proof: Suppose that (M, U) is (D, k)-1-diagnosable, D is independent
of M's input, and M is transition distinct. Assume, to the contrary,
that M is not autonomous. Then there exists r ¢ R and x,y ¢ T

such that fx]w—[y[andc (B )%0 (%(y Let v € I* with [v| =k,
For no false alarms to occur we must have /BD(ZS\ (xv)) = levf and

B (3 (yv)) = 013"’l Let f ¢ U be a fault for which B (xv) (yv)
Since (r,x, Br(x)) is a l-error it must be detected within k time

steps of its occurrence. But @?(@i(xv)) = @E(@r(yv)) = OIYVJ.

Countradiction. Hence M must be autonomous.
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4.2 Diagnosis Via Independent Computation and Comparison

It is a well-known and obvious fact that if a systcm is dupli-
cated and both copies are run in parallel withthe same inputs then by
dynamically comparing the outputs of the two copies any error
which does not appear simultaneously in both copies will be immed-
iately detectéd.

Our view of duplication is shown in Fig. 4. 1. In this figure

I Jou Lz XOR I{ E -
r | ,
R | |
| ¥ |
| M I
l I
e - - — — 1

Fig. 4.1. Diagnosis via Duplication in the Detector

the detector D cousists of a copy of M along with a generalized
Exclusive -OR gate whose output is 0 if and only if its inputs are
identical. Given such a detector D, it is immediately clear that
(M, U) is (D, 0)-2-diagnosable.

Duplication is an expensive technique, involving somewhat
more than twice the circuitry required for the unchecked system
alone, but it has a number of positive attributes. In addition to

being capable of diagnosing the unrestricted set of faults,



74

synthesis is-easy and self-testing and self-diagnosable comparators

are known to exist [ 1 ].

The basic configuration shown in Fig. 4.1 can be generalized

to the configuration shown in Fig. 4.2. In this figure the detector

- - - - 1
= -1 }
- o M '6; c ot —E o
R ) l :

1 L :

' M |

| |

- —

D

Fig. 4.2. A Generalization of Duplication in the Detector

consists of a machine M' which runs in parallel with M and a
combinational comparator C which dynamically compares the out-
puts of M and M'. Note that for the cascade connection M * D to be
defined we must have I' =TI and R' = R,

With this scheme M' may be much less complex than M. How-
ever, we will show that there is a relationship between the size of
the state set of M' and the level of diagnosis which may be possible

using M',
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In the followmg result we give a necessary and sufficient
condition for (M, U) to be (D, 0) -diagnosable where D is structured
as in Fig. 4.2. The basic intuition for this result is that (M, U)
is (D, 0)-1.-'diagnosa‘ble if and only if it is possible to perfectly pre-

dict the behavior of i!I from that of M'.'

Theorem 4.2: Let M realize M under (01,02,03). Let [M', C] de-

note a detector for M constructed from M' and C as shown in Fig.
4,2, There exists aé such that M' realizes M under (01,02,0;3)
if and only if there exists C such that (M, U) is ((M',C], 0)-1-
diagnosable. -Similarly there exists cré such that M' realizes M
under (e,e,cé) if and only if there exi.sts a C such that (M, U) is

((M',C],0)-2 -diagnosable.

Proof: {Necessity) Assume that M' realizes M under '(01-,0'2, Gé).
Then cr o B ;) 00y = -Z?'.f-for allT € R. Since M realizes M
under (01,02,03), T © Boz(,f) ° 0y =E,f for allre ﬁ Hence

o 3' (r) = 0g° 802(;) ° 0. Recall that g, and g, are

assumed to be onto. Because of this assumption, it follows that

oé-o ; =0, '=Br for all re R. Let C be the comparator shown in Fig. 4. 3.
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Fig. 4.3. The Comparator Used in the Proof of Theorem 4. 2

Since 0:'3 ° B;_ =d3 ° Br the detector [M.',C] will give no false
alarms. Let (r,x,y) be a minimal 1-error caused by f € U. Then
US(Br(x)) P2 0'3(B£(X)). Hence, Ué(B;(x)) # 03(B£_(x)), and this will
cause the Exclusive -OR gate to emit a 1. Therefore the minimal
l-error (r,x,y) is detected with no delay. Hence (M, U) is

((M', C], 0)-1-diagnosable.

Similarly, if M' realizes M under (e,e,oé) then ﬁr =0;3 ° ﬁ'r
and a comparator as shown in Fig. 4. 3, but without the Oq function,
can be used to achieve ([ M', C], 0)-2-diagnosis of (M, U).
(Sufficiency) Assume that (M, U) is {{M', C], 0)-1-diagnosable. To
prove that thére exists a 0:'3 such that M' realizes M under (01,02,0'3)

we must exhibit a function Ué and show that g Br = 0:'3 o B;. This

is sufficient because M realizes M under (cl, 0o 03)



77

and oy and 09 are assumed to be onto. -

Since no false alarms may occur we know that C(Br (x);_ (3;,(X)) =0
for allr € Randx e I'. Define 0.:3 as follows: Ué(ﬁ; x)) = 03(Br(x)).
Since aé has the desired property we must simply verify that it is
indeed a function.

It is ciear that every z € {B;'(x)]r €R, x¢ I'} has an image
under o}. To see that this image is unique suppose that B;(x) =
B'Sﬁr). We must show that 03(3r(x)) = 03(68(3')). Let B;_(x) = a,
03(Br(x)) = b, and US(BS(y)) =c. Then C{b,a) =Cl(c,a) =0, Assume
to the contrarly that b # c. Let f e U be a fault which causes the
output of M to be c at time |x| -~ 1 and which has no other affect.

Let x = uv where ve I. Then (r,Xx, Qr(u)c) is a minimal 1l-error

and since _C(é, a) = 0, it is not detected when it occurs., This contra-
dicts the assumption that (M, U) is ([M',C],0)-1-diagnosable. Hence
G'Es is a function and M' realizes M under (01, 02,05).

The proof that (M, U) is ([M', C], 0)-2-diagnosable implies that
there exists a function cnr:'3 such that M' realizes M under (e,e,aé)
is essentially the same as the above proof.

From Theorem 4. 2 we know that if M realizes M' and M’ is
redﬁced and reachable then |Q| > |Q'|. Hence Theorem 4.2 tells
us that if we use the scheme shown in Fig. 4.2 for the diagnosis of
unrestricted faults then we must have Q'] > ]6{ in order to achieve
1-diagnosis, and | Q'] > JQRI in order to achieve 2-diagnosis,

where M

R is the reduction of M.
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4.3 Diagnosis with Zero Delay

The question answered next is whether it is possiblé to
achieve (D, 0)-1-diagnosis of (M, U) with a detector which is less
complex, in terms of state set size, than the reduced and reachable
specification M. One reason to believe that this may bé possible
is the observation that if M has an inverse then this inverse may
inversé may be capable of diagnosing ali of U. Examples of such

inverses are given in the following chapter.

Theorem 4.3: If (M, U} is (D, 0)-1-diagnosable then [QD[ > fé |.

Proof: Let (M, U) be (D, 0)-1-diagnosable, and assume, to the

contrary, .that ]QDi < !éf Without loss of generality, assume
that M is reachable.

Claim: There exists q, q' € Q and s ¢ QD such that {(q, s), (¢, )
€ P*, the reachable part of M * D, and gg ° Bq # Gg© Eq..

Let g Q@ > PQp) - ¢ (where Q) = {X|X < Qpb) be
defined by glq) = {s](q, s) € P*}. Assume that the claim is not
true, Then gg° Bq # gg 0 ;3q, implies g(g) N g{q) = ¢ We know
from the proof of Theorem A. 2 that for each d € Q there is a state
£(q) for which Iéa = 03 ° Byq) ° 9y and that f is necessarily 1-1.
Since M is reduced and reachable there must exist ]EQ] = { unique

states {ql, - ,qﬂ} C Q such that i # j implies g(qi) n g(q]-) = ¢,
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and therefore [QD] > [é |. Contradiction. This establishes the
claim. |

Letq,q' e Qand s € QD such that {(q, s), (q', s) ¢ P* and
03 o Bq £ 03 ° Bq,. Then there exists a sequence ua where u € I*
and a ¢ I such that 03(Bq(ua)) £ GS(Bq, (ua)) andifu %Athencs(@q(u)) =
cs(é\q,(u)). Since (q,s) e P* thereexists r e Randy € I*suchthat
s*p*r) ,y) = (g, ).

Recallthat givenanyre R, xe€ I andye Z with Ix { = ]y} , there is a
fault f e Usuchthat é\i(x) =y. Letf e' U be a fault for which?{(yua) =
é\r@)é\é,(ua). Since it is known that c~3(B\q(u)) = Gs(é\q,(u)), it follows
that (r,yua, é\rf.(yua)) is 2 minimal 1-error. Now (M, U) is (D, 0)-1-
diagnosable implies fi\?([@i(yua), yua]) # Olyual. Since no false
alarms may occur, 9?([ B\r(y),y}) = Olyl. Also, since (q', s) € P*,

AP (h, tua),val) =012, s

f%\r-D_([ fi\i(yua),yua] )

B ([8,6)8 ,(ua), yua])

D, A AD A
@r ( B.(7), v])E, ( Bq,(ua),ua])

0]3’]0,“3-'

= Olyua,

This contradicts the assumption that (M, U) is (D, 0)-1-diagnos- "
able. Therefore ‘QD[ > ]EQ[
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Corollary 4.3.1: If (M, U) is (D, 0)-2-diagnosable then IQD] > [QR l,

where MR is the reduction of M.

Proof: Assume that (M, U) is (D, 0)-2-diagnosable, and consider
M to be realizing MR' By Theorem 3.2, (M, U) is (D, 0)-1-diagnos-

able, and hence; by Theorem 4.3, IQD] > [QRI.

Let us now consider the set of faults of M which are caused by
the output of M becoming stuck-at-v, where v ¢ Z, at some time 7.

More formally, the set of permanent output faults of M is the set

F, = {t =(M',7,e)|M' = (1,Q, Z, 5, A", R, p) where

}L'(q,a)-= A'(s,b) for allg,s e Qand a,be I}

Because the set of permanent faults causes the same minimal
2-errors as the set of unrestricted faults if (M, FO) is (D, 0)-2-diag-
nosable then (M, U} is (D, 0)-2-diagnosable. However, U and F_do
not cause the same minimal 1-errors, and in fact, (M, Fo) is
(D, 0)-1-diagnosable does not imply that (M, U) is (D, 0)-1-diagnos-

able. These statements are proved in the following result.

Theorem 4. 4: (M, FD) is (D, 0)-2-diagnosable if and only if (M, U)
is (D, 0)-2-diagnosable. - However, (M, Fo) is (D, 0)~1-diagnosable

does not imply that (M, U) is (D, 0)-1-diagnosable.
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Prd_of: | Let. (M, Fo') be (D, 0)-2-diagnosable. Let (r,ya,w) where a
a € I, be a minimal 2-error which is caused by f € U. To éhow that
(M, U) is (D, 0)-2-diagnosable it suffices to show that BII?([ ﬁi_(ya), ya]) #
0. Since (r,ya,w) is a minimal error, f.%\r(y) = @i(y) and ﬁr(ya) #
ﬁ{(ya). Say Bi(ya) = b, and consider the fauit f' ¢ F_ which is. caused
by the output of M becoming stuck-at-b at time ]y 1 Then fi’\i(ya) =
ﬁlf.'(ya), and f' also causes the minimal 2-error (r,ya,w). Since
(M, FO) is (D, 0)-2-diagnosable we know that BII?([ ﬁ:'(ya),ya]) £ 0.
Hence ;511?([ ﬁi(ya),ya]) £ 0 and (M, U) is (D, 0)-2-diagnosable.

Now assume that (M, U) is (D, 0)-diagnosable. Since F0 cu,
it follows immediately that (M, FO) is (D, 0)-diagnosable.

We pro’ye that (M, Fo) is (D, 0)-1-diagnosai;le does not imply
(M, U} is (D, 0)-1-diagnosable by supplying a counter-example. Let
M;, M;, D, and 0,: Z —>Z be specified by the tables in Fig. 4.4.

Then 1;:/11 is reduced and reachable, and M, realizes f/ll under

1

(e,e,os).'



=

82

Fig. 4.4.

Machines 1\7I M

1’

1 R M : Q Il 1
1
b/2 c/3 r b/2 c/3
d/o | d/o a/0 a/0
e/l e/0 e/l e/l
d/2 a/3 d/2 a/3
e/3 /2 e e/3 a/2
0,0l 0,1{ 1,0 1,1} 2,0 2,1] 3,0} 3,1
qf1 | a/r | a/r | a/1 | g/0| q/1| /1| q/0
sio| sso| tso| cro| s e ennlen
sf1| s/1 | s/r ]| s/1 ) s/0| s/1| s/l | p/O
t/aal /el e e/ p/of /0] t/
94(2)
0
0
2
3

1 and D1 and 03: Z — i
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Since IQDII < [é 1[ we know from Theorem 4. 3 that (Ml’ U) is not
(Dl’ 0)-1-diagnosable. To see that (Ml’ FO) is (D, 0)-1-diagﬁosable
takes a bit of analysis. Briefly, statés p, s, and t duplicate states
a, d and e and any error which occurs when Ml is in one of these
states is immediately detected, If M1 is in b or c then D1 will be

in @ and if the output becomes stuck-at 2 or 3 at this time it will
be immediately detected. If M1 is in b or ¢ and a stuck-at-0 or
stuck-at-1 fault occurs then it will be tolerated for one time step

and detected the next. This establishes the result.

In the above counter-example it is clear that (Ml’ Fo) is not
(Dl’ 0)-2-diagnosable because a stuck-at-1 fault which occurs when
Ml is in b causes a 2-error which is not immediately detected.
Therefore this example also proves that, in general, (M, F) is
(D, k)-l-diagnosable does unot imply that (M, F) is (D, k)-2-diagnos-
able. Also, if (M, Fo) was (D, 0)-2-diagnosable for some D then by
Theorem 4 4 (M, U) would be (D, 0)-2-diagnosable and from Theorem |
4, 3 it would ffo‘llow that ]QD[ > ]é |. Hence this is also an example
of how 1-diagnosis may be achieved with a detector which is less
complex than the least complex detector which is sufficient for

2 -diagnosis.
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4.4 Diagnos.is with Nonzero Delay

Suppose now. that we allow some arbitrary, but fixed, ¥ >0
in the detection process. Can this additional time be traded off for
less detector complexity? Unfortunately, for the unrestricted case,
the answer is no, In fact, if (M, U)is (D', k)-1-diagnosable then we
can construct a detector D, essentially by eliminating unnecessary
states of D', such that (M, U) is (D, 0)-1-diagnosable.

Before stating:this result formally, we will establish an import-

ant lemma.

Lemma 4.1: If (M, U) is (D', k)-1-diagnosable then there exists a

detector D such that IQD] < |Q M, U) is (D, k)-1-diagnosable,

Drl.- (

and for each g ¢ QD’ A (g, (z,2)) =0 for some {z,a} e Z XL

D

Proof: Assume that (M, U) is (D', k)-1-diagnosable and construct
D from D' as follows: |
1) Delete from the state table of D' any row corresponding to

a state q for which

0¢ {kDf(q, (z,a))|(z,2) € Z X1} .

2) In the resulting table, replace every reference to the
deleted state with a reference to an arbitrary remaining state, and set
the corresponding output to 1,

3) Repeat steps 1) and 2) until no further deletions are possible.
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‘Since ]QD,’ < w the above algorithm will termiﬁate in a finite
number of iterations.
From the nature of the above construction it is clear that
,,QD ]_<_ [QD,[ and for eachq ¢ QD, J\D(q, (z,a)) =0 for‘some (z,a)
€ Zx 1 It only remains to be shown that (M, U) is (D, k)-1-diagnosable.
If the detector D' is in a state q for which 0 ¢ {)LD,(q, (z,a)) |

(z,a) € Z x I}, then an error must have occurred beéause if D'isingq

then an error detection signal will be emitted regardless of the input
to D', Hénce this error could be signaled whénever a transition to -

q is indicated, and there would be no loss in diagnosis and no possi-

. bility for a false alarm. Since all minimal errors whlch g signaled
would then be signaled before D' got to state q , q could be eliminated.
This is the essence of what is accomplished in steps 1) and 2).

This eliminél_tion process is necéséarily iterative because step 2)

may introduce new states to be deleted.

Since this construction is diagnosis preserving, (M, U) is

(D, k}-1-diagnosable.

Theorem 4.5 : If (M, U) is (D', k)-1-diagnosable then there exists

a detector D with ]QD] < IQD,] such that (M, U} is (D, 0)-1-diagnos-

able.

Proof: Assume that (M, U) is (D', k)-1-diagnosable. From Lemma -

4.1 there exists a detector D such that IQD] < [QD, [, M,U) is

(D, k)-1-diagnosable, and for each q ¢ QD’ AD(q,_ (z,a)) = 0 for some
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(z,a)e ZxXL
Claim: (M, U) is (D, 0)-1 -diagnosabie.
Assume, to the contrary, that (M, U) is not (D, 0)-i-diagnosab1e.
Using induction on the delay of the diagnosis, we will deduce that
(M, U) is not (D,m)-1-diagnosable for all m > 0, This will establish
the result for it contradicts the hypothesis that (M, U) is (D, k}-1-
diagnosable. |
Having assumed that the basis step for our induction istrue,
we assume that (M, U) is not (D,m)-l-diagnoszib'le for some m > 0, and
we must show that this implies (M, U) is not (D, m+1)-1-diagnosable.
Since (M, U) is not. (D, m)-1-diagnosable, there exists a minimal
1-error (r,x,y) caused by f € U and a sequence v € I" with [vl =m

such that ,@D ( S\: xv),xv]) = lev]. Let GD({JD(r), [ :3\: (xv),xv]) =s.

r
Let (z,a) ¢ Z X I such that AD(S, {(z,a)) = 0. By Lemma 4.1 we know
that such a (z,a) exists. Let f' be a fault for which f%f (xva) =
ﬁj (xv)z. Then tr,x, @If_'(x)) is a minimal 1-error but
ﬁf([ @S(xva),xva]) = OIXW". Hence (M, U) is not (D, m+1)-1-diag-
nosable. Therefore, (M, U) is not (D, 0)-1-diagnosable implies (M, U)
is not (D, m)-1-diagnosable for all m > 0,

But we know that (M, U) is (D, k)-1-diagnosable. Hence (M, U)

is (D, 0)-1-diagnosable. This establishes the result.
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Corollary 4.5.1: 1f (M, U) is (D, k)-1-diagnosable then |Qp | > [R.

Proof: This is an immediate consequence of Thev-em 4.5 and

Theorem 4. 3.

Corollary 4.5.2: I (M, U) is (D, k)-2-diagnosable then [Qp| > |Qg],

where MR is the reduction of M.

Proof: Assume that (M, U) is (D, k)-2-diagnosable, and consider M
to be realizing Mp. From Theorem 3.2, it follows that (M, U) is
(D,k)-1-diagnosable. The result now follows immediately from

Corollary 4.5. 1. |

AlthOughl Corollaries 4. 5.1 and 4. 5. 2 are results of a negative
nature, i.e., they tell what is not possible, in conjunction with what
we know is possible with duplication they tell us much about the
diagnosis of unrestricted faults. They say that regardless of the
specific machine under cbnsiderétion, the diagnosis scheme used,
and the delay allowed, any detector which can diagnose the unrestricted
faults of a given machine must be essentially as complex as that
machine. In particular, with regard to state set size as our measure
of complexity, it is impossible to improve upon duplica:tion. This
provides an answer to Question II, page 11. These results also
answer Question III; namely, for unrestricted faults no space -time

tradeoff is possible, i.e., greater allowable delays in diagnosis

cannot be traded off for lessened detector complexity.
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We know from Theorem 4. 4 and Corollary 4. 3. 1 that (M, Fo)

is (D, 0)-2-diagnosable implies ]QDI > ]QR]. Can this result be

generalized as was done for unrestricted faults by the previous

corollary?

The following example shows that the answer is no,

This example serves as a good example of when a space-time trade-

off is possible.

Example 4. 1: Consider machines M2 and D2 of Fig. 4.5. Since

M, is reduced and reachable, {sz = [Qz [, where M2
| R

reduction of Mz.

R

is the

M,: 2 0 1 R
2 1q

2

a b/0 | e/0{l

b a/2 d/2

¢ d/2 a/2

d e/0 c/0

e d/1 a/1

I "
: 0 1 2 R
QD
H—
o p/1{s/0[t/0
|
t p/0 | s/0ft/1

Fig. 4.5. Machines M2 and Dz
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Note that no outpuf symbo} ban appear next to itself in é.ny output
sequence ﬁroduced by M2' Since D2 will produce an error detection
signal precisely when two consecutive inputs to it are identical, it
can detect all permanent output faults of M2 with a delay of at most one.

Therefore (_MZ’FO) is (DZ’ 1)-2-diagnosable, yet JQzRI > IQDzl'



CHAPTER V

Diagnosis Using Inverse Machines

It is well known that many circuits can be diagnosed by what is
commonly called a ""loop check. ' This involves regenerating the
input to the circuit from fhe output and then comparing the regner-
ated input with the actual input. Often the "inverse' circuit is easier
to implement than the original circuit, thus providing a savings over
duplication. For example, division can be checked using multiplica-
tion. It is also pogsible to have greater confidence in a loop check
than in duplication, especially if the checking circuit is less complex
than the original circuit.

In this chapter we will investigate the use of "inverse machines”
for diagnosis using a loop check. Informally, machine M is an
inverse of machine M if M can reconstfuct the input to M from its
output with at most a {inite delay.

Machines which have inverses can be characterized as being
those machines which are "information lossiess. ' Information loss-
less machines are machines whose behavior functions satisfy a
condition which is similar to, but weaker than, the condition which
a 1-1 function must satisfy.

Information lossless machines and inverse machines were first
introduced by Huffman [18]. Huffman devised a test for information

losslessness and for the existence of inverses. It should be pointed

90
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out fﬁat our definitions of these notions are slightly \less general
than Huffman's. The definitions in this paper are directed fowards
the use of inverse machines for diagnosis. Even [ 13] later devised
a better means of determining information losslessness, and he
presented two means for obtaining inverse machines.

: Information. lossless machines and inverse machines are also
discussed in textbooks by Kohavi [21] and Hennie [ 17]. Kohavi
provides a fuller description of Even’s techniques for obtaining
inverse mz_xchines, and Hennie describes a different means of obtain-
ing inverse machines.

The questions about the use of inverse machines for diagnosis
which we seek to answer in this chapter are: Wﬁen can an inverse
be used for the diagnosis of unrestricted faults? Given a machine
M and an inverse M of M, what will be the delay in diagnosis if M
is used to diagnose M using a loop check? How can an arbitrary
machine be realized so that unrestricted fault diagnosis is possible
using a loop check?

We coiicentrate on unrestricted fault diagnosis in this chapter
because this is the most natural and important fault class which can
be diagnosed using a loop check. Inverse machines can be used for
the diagnosis éf more restricted sets of faults but synthesis and
analysis for more general levels of diagnosis seem to be very

difficult.
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5.1 Inverses ‘of Machines

Before the inverse of a machine can be formally defined, one

preliminary notion must be introduced.

Definition 5. 1: An (I, n)-delay machine (delay machine) is a machine

M® = (,1",1,8, 1, R,p) such that if a, e [, 1< i< n+1, then

G(f.al;:--;a.n);aml) = fagy.echa )
and

A((al, cees an), a

el = 2

Au (I, n)-delay machine simply delays its input for n time steps.

Stated more precisely, if M" is an (I, n) -delay machine then

i -

Agrenes an)(an+1' Cqim ‘m

Definition 5. 2: Let M and M be two machines such that R = R and

7 =T. M is an (n-delayed) inverse of M if there exists an (I,n)-

delay machine M" with reset alphabet R such that for allr € R and

+
Xx€el

-, n
BB x) = 8w

Note that if M is an inverse of M then [ - Z . However, it is
not necessary to have I = Z. Symbols which are in Z but not in I
can be useful for diagnosis. Since they will never appear while M

is receiving its input from M, the appearance of one immediately
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signifies that an error has occurred.

M might more properly have been dubbed a "right inverse" of

M for if M is an inverse of M it is not necessarily true that M is an

inverse of M. This is illustrated in Example 5. 1. This example

is a counter-example to the ¢laims of Kohavi {21] and Even [13]

that if M is an inverse of M then M is an inverse of M .

Example 5. 1: Consider machines M; and M; of Fig. 5. 1. M.

Mlz

1 is
a 0-delayed inverse of M, but M, is not an inverse of Ml .
| o1 ":-T1012'3
9 Ry
/0| d4/3 | e | wolast|a0jasn
c/1 | a/0 a | p/1]p/0|p/1jp/0
d/2 | b/1
a/3 | c/2
Fig. 5. 1. Machines M, and El

In fact,

there is no machine which is an inverse of ﬁl This is

because the input syimbols 0 and 2 are equivalent and so there is no

way in which they can be distinguished once they have been applied.

Intuitively, machines which have inverses lose no information

as they transform sequences from I" into sequences from z*. This ,

intuitive notion is captured in the following definition.
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Definition 5.3: A machine M is information lossless of delay n if

forallreRandaja,...a ., bjby...b_T' (a,b €1, 1<i<m)
% A
r(alaZ‘ cea ) = Br(blbz. -.b )

implies a2, =b, for 1
¥ i i

A

i<m-n,

M is said to be lossless if it is information lossless of delay

n for some nonnegative integer n. M is lossy if it is not lossless.

Example 5. 2: Machine M1 of Fig. 5.1 is information lossless of

delay 0 and machine ﬁl of Fig. 5.1 is lossy.

IS

Z
— M +—————w M ——

Fig. 5.2. Machine M in Series with an Inverse M of M

Referring to Fig. 5.2, if M is lossless and M is an inverse of
M then intuitively no information is lost as sequences from I are

transformed into sequences from z* by M. The same is true for
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‘the entire 'preeess which consists of traﬁsforming sequence-e f-fom-l'i'

into sequences from Z* and then back again. Therefore it is somewhat
surprising to see, as we have in Example 5. 2, that M may be lossy.
This may occur because while M must lose no inforfnation in trans -~
forming thel sequences it observes at the output of M, M may not be
capable of producing all possible output sequences. Thus while M
must be lossless with respect to a subset of zZ* it may be lossy with
respect to all of z*.

Even [13] gives an algorithm for determining if a given machine
is lossless, and if so, of What delay. It is particularly easy to
determine whether a given machine is lossless of delay 0. This is
because a machine M is lossless of delay 0 if and only if the output
symbols in every row which corresponds to a reachable state 'are all
distinct. | |

Machines for which inverse machines exist can be characterized
as being precisely those machines which are lossless. More pre-

cisely,

Theorem 5.1: M has a n-delayed inverse if and only if M is

information lossless of delay n.

Proof: (Necessity) Assume that M is a n-delayed inverse of M.

Let r ¢e R and al.

W b1. . 'bm eI’ (al.i,bi €, 1< i< m)such
A A
that 3 r(al' .. am) = Br(bl. . .bm). We must show that a, = bi for

alli, 1< i < m-n.
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Since M is a n-delayed inverse of M there exists an (I, n)-delay
. n 7 .4 _.an . - A
machine M such that Br ’3r = Br' In particular, ,Br(Br(al. . 'ag))'_’
_ = (A _ .n
B';(al- cag)=a, and B (B (by,...,b,)) = Albg.. byl =b,

for all ¢, n< ¢ < m.

A ) L = A N

Now ﬁr(al. ..a_) =2 (bl' . .bm) implies pr(Br(al. aﬂ)) =
BB (by...b,)) for all 4, 1<2% m. Therefo =b, f
BB, 01_'”01” forali g, 1<£<m. .e rea; . =b, for
all £, n < £ <m. That is, a, = bi for alli, 1 < i <m-n. Hence,
M is lossless of delay n.
(Sufficiency) Given a machine M which is lossless of delay n, we
can show that M has a n-delayed inverse by constructing one. Tech-
niques for constructing inverses of lossless sequential machines can
be found in Hennie [17] and Kohavi [21]. With minor modifications

to insure the existence of suitable starting states, these techniques

can be used to construct inverses of lossless resettable machines,
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5. 2 Diagnosis Using Lossless Inverses

If M is an n-delayed inverse of M then, by definition, t‘here
exists an (I, n)-delay machine M" such that Er o ﬁr = Bg. Diagnosis
using inverses can be performed by implementing M, M, and M" and
dynamically checking to see if the above relationship holds. The

basic configuration for diagnosis using inverses is shavn in Fig. 5. 3.

! —| M —z—=—— M
® S —
| k
iﬂ Ne

e e e - — — -

Fig. 5.3. On-line Diagnosis Using Inver"se Machines

Since an (I, 0)-delay machine is simply a combinational machine
which realizes the identity function on I, a detector which uses a

0-delayed inverse will have the form shown in Fig. 5.4.

R r— - - 1
| Y I
Z 1 _ | E
" |
1 | I
—_
D

Fig. 5.4. A Detector which Uses a 0-delayed Inverse
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'We now state the basic result relating the use of lossless

inverses with the diagnosis of unrestricted faults.

Theorem 5. 2: Let M be a lossless machine and let M be an n-delayed

inverse of M. Let D be constructed from M, the (I, n)-delay machine
which demonstrates that M is an n-delayed inverse of M, and an
Exclusive-OR gate as shown in Fig. 5.3. If M is lossless of delay

d then (M, U) is (D, d}-2-diagnosable.

Proof: Since Er(‘é\r x)) = ﬁ:(x),.there will be no false alarms.

Let (r,x, w) be a minimal 2-error caused by a fault f € U.
Then Bi(x) # Br(x). Let y € I* with [y] = d. Sincewﬁ is lossless
of deliay d, %r(é\:(xy)) £ %r(/?r(xy)). The Exclusi\;e -OR gate will
detect this inequality, and hence the minimal 2-error will be detected
within d time steps of its occurrence. Therefore (M, U) is (D, d)-2-

diagnosable.

Thisresult gives ananswer toQuestion V, page-12;namely, the
behavioral property of "havinga lossless inverse' is conducive to on-line
diagnosis since the unrestricted faults of machines with this property

can be diagnosed using a loop check.

It is worth noting that the delay in diagnosis is not the delay of
losslessness of M but rather of its inverse M. Thus an n-delayed

inverse can be used to achieve diagnosis without delay if it is loss-

Ess of delay 0,
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Example 5.3: Consider machines M, and 1\7?2 of Fig. 5.5. IM2 is

lossless of delay 2 and ﬁz is a 2-delayed inverse osz.' Since 1‘712 is

is lossless of delay 0 it can be used to form a detector D2 such that

(MZ’ U) is (D2, 0)-2 -diagnosable.

. T
M: 0 1 R 1 R
Q
a a/0 b/0 r q/1 r
b c/0 d/0 ' q t/1 | s/0
c - d/1 c/1 s t/0 ] s/1.
d b/l a/l t p/l q,/o

~ Fig. 5.5. Machines M, and 'IVI_2

Example 5.6, which appears later in this chapter, shows that
the converse of Theorem 5.2 does not hold. Namely, it is possible
to diagnose the unrestricted fault set of a machine using an inverse

which is not lossless. However, not all inverses can be used for

the diagnosis of unrestricted faults. Example 5. 5 shows how a lossy
inverse can be useless for diagnosis. The complete characteriza-
tion of inverses which can be used for unrestricted fault diagnosis
is still an .o'pen problem.

Given Theorem 5. 2 and the observation that an inverse machine
may be lossy, an important question is whether every lossless

machine has a lossless inverse. This question is presently unan-
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swered. However, it can be shown that if M is lossless of .deila‘ty
0 then there exists a lossless inverse of M.

The followlng example shows that it {8 possible to diagnose the
unrestricted fault set of a machine using a lossless inverse which

has fewer states than the reduction of the machine being diagnosed.

Example 5.4: Consider machines My and I\_II3 of Fig. 5. 8. H3 is

a 2-delayed inverse of M,, and Ms is itself lossless of delay 2.

I3 — T3
M, : 0 1 R M, : 0 1 R
o 3 |a
3 3
a e/0 £/0 p s/01t/1 r
b a/1 b/1 q .| t/0¢1s/1
c a/0 b/0 s p/0| a9/0
d e/1 £/1 | t s/1]t/1
e a/0 c/1
f d/1 b/0

Fig. 5. 6. Machines Mg and 1\7[3
Therefore a detector D3 can be constructed from 1713 and the

(I; 2)-delay machine M%

2-diagnosable. Notice that M3 is reduced and reachable and that

of Fig. 5.7 such that (M3,U) will be (D, 2)-

IQ3J > 153 |. However, because Mg is also in the detector ]QD ] =
3
IQ3] }QSI = 16. Therefore ]Q3I < IQD [. This is in keeping with

what we know from Corollary 4. .5. 2.
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K 0 1 R
00 00/0 | 01/0 r
01 10/0 | 11/0
10 00/1 | 01/1
11 10/1 | 11/1

Fig 5.7. Machine M

It is interesting to note that results established in this and
the preceding chapter have something to say about lossless machines,
per se. The following result gives a lower bound on the state set
size of any lossless inverse of a lossless machine M. This bound
is stated in terms of the input alphabet size of M, the delay of loss-
lessness of M. and the state set size of MR' Tﬁis result, which
deals only -with lossless and inverse machines,is prroved using

Corollary 4.5. 1 and Theorem 5. 2, which are results dealing with

the diagnosis of unrestricted faults.

Theorem 5.3 : Let M be lossless of delay n, let MR be the reduction
of M, and let M be a lossless n-delayed inverse of M. Then

Qg |
1"

1

Proof: Consider Mtobe realizing its reduction MR’ andconsider Mand M
inthe configurationusedfor diagnosis shown in Fig. 5. 3. Since M is
lossless by Theorem 5.2 (M, U) is (D, d}-2-diagnosable where d is

the delay of losslessness of M. Now by Corollary 4. 5. 1 'QDI >
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IQR, Since QD =Q X In! ,QD, = IQ] llln- Thus ]QHI]nE IQR]"

or

Qg |
R
Rl > —+
1]
If one has a lossless machine M of unknown delay and an inverse

M of M then a lower bound on the delay n of M can be found using the

log]QRI - log [Q]

log [1|

This inequality wﬁs obtained directly f.rom the one in Theorem 5. 3.
Given a machine M = (1,Q, Z, 5, A, R, p) let Z' denote the subset
of Z which may actually appear in an output sequence of M. That is,
let Z2' = {ﬁr(x)lr eR, x¢ I+}.
The following result gives a very simple necessary condition

which all lossless machines must satisfy.

Theorem 5.4: If M is lossless then |I] < lz'].

Proof: Assume that M is lossless of order n. Let fr:l ' > 7" x Q
be defined by f_(x) = ('B\r(x),ﬁ(o(r), x)).
Claim: fr is 1-1,

Let x,y € I" where x £y. If [x] # |y} then I@r(x)[# [@r(y)[ and -
hence fr(x);-éfr (y). Thus it suffices to show that f. restricted to

inputs of the same length is 1-1. Let lx] = ]y] and assume, to the
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' ' : . A A ]
contrary, that fr(x) =fr(y). Then Br(x) =Br(v) ando (p(r), x)=6((r),y} This
, A A . :
implies that Br(xz) =ﬁr(yz) for all z € I*, and, in particular, for some
z of length n. Since M is lossless of delay u this implies that x =y.
Contradiction. Hence if |x| = [y| and x #y then fr(x) #f.(y). This
establishes the claim.

Since £ ' > Z* x Qs 1-1 and |x] = |B_x)] it follows that

I1|™ < |2'[™|Q] for all m > 0. Hence [1[™/[2

Q[ <1 for
allm > 0. ‘Since ]Q[ is a fixed positive integer, this implies that
1l/]z' <1, or 1] < [2'].

This result has some immediate corollaries concerning inverses
of lossless machines.

Corollary 5.4.1: Let M be a lossless machine with 1] < |z ]

Then any inverse M of M with Z' = I is lossy.

Proof: Let M be an inverse of M with Z' = 1. Since M is an inverse

of M, Z' C T, and we know that |I| < |Z'|. Hence |Z'| = [I] <

|z'| < |T] . By Theorem 5.4, M must be lossy.

This cordllary says that if M is lossless and [1] < |2'] then
for an inverse M of M to be lossless M must have output symbols
which would never appear while M 1is receiving its input from M.
However, if a fault occurs to M and causes an error then M could
emit one of these symbols. The appearance of one of these symbols

in M's output would immediately cause an error detection signal
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because this same symbol cannot appear in the output of an (I, n)-

delay machine.

Corollary 5.4.2: Let M be a lossless machine with a lossless

inverse M. If Z' =Ithen [I| = |2'].

Proof: This follows immediately from Corollary 5. 4. 1,

Given the above result, an immediate question is whether M is
lossless and |I| = |2 { implies that any inverse M of M is lossless.

As Example 5. 5 shows, the answer is no.

Example 5. 5: Cousider machine Mé of Fig. 5. 8. —1\711'3 is an inverse

of machine M, of Fig. 5.6 and I; = 2, but Mé is not lossless.

3, 1 o | 1 | g
p | a/0 | q/0 | r
q s/0 t/0
S u/0 v/1
t v/0 | u/1
u s/0 | t /0 |
v u/1 | v/1

Fig. 5.8. Machine m'3
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5.3 Applicability of Inverses for Unrestricted Fault Diagnosis

The use of inverses as a technique for performing diagnosis
applies directly only to those machines which have “vitable inverses.
In the following development it is shown that givén an arbitrary
machine M', one can always construct a realization M of M' such
that M has én inverse which can be used for diagnosis. These loss-
less realizations are obtained simply by augmenting the output of
the original fnachine. Thus it is shown that diagnosis using inverses
is a universally applicable techniqﬁe, and a part éf Question 1,

page 11 is answered._

Definition 5.4: M is an output -augmented realization of M' if M =

I, Q,Z™A,8", , R,p") and A = A' x N for some L% Q' X I'—= A,

If Mis an outpﬁt-—augmented realization of M' then M realizes
M' under (e,e,Pz.) where PZ’ is the projection of Z' X A onto Z'.
Kohavi and Lavallde [ 20] have given a coastruction which

proves the following results.

Theorem 5.5: Given any machine M', there exists an output-

augmented realization M of M' which is lossless of delay n for

some n, and in particular, forn = 0,

Theorem 5.6: If M'is lossless of delay n, then for every m,

0 < m < n, there exists an output -augmented realization M of M'

which is lossless of delay m.
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The met’hod that Kohavi and Lavallee use to achieve the above
results employs a "testing graph" which is usgq to determine if the
given machine M’ is lossless, and ifrso of wlllatlc.ielay. Qutput aug-
mentation which ﬁrill yield the desired property is determined by a
method of cutting brauches in this graph. Minimal augmentation
for losslessness of a des.ired delay is not guaranteed. |

A lower bound on the amount of output-augmentation necessary
to make a particular machine lossless is given by Theorem 5. 4.
This result tells us that for the output-augmented realization to be
lossless, then the size of its output alphabet must be at least as
great as the size of its input alphabet.

Any machiné can be made lossless of delay 0 simply by aug-
menting its output with a copy of the input. This gives an upper
bound on the amount of output augmentation which is necessary to
make a given machine lossless of delaﬁr 0.

It is tem.pting to use the Kohavi and Lavallee technique to aug-
ment an. inverse of a machine in the hope of achieving a lossless
inverse. However, this is impossible because an output -augmented

realization of an inverse M of M is not necessarily an inverse of M.

Example 5.6: Consider the configuration shown in Fig. 5.9. Here

M' is any machine, and M is the cutput -augmented realization of M



107

which was formed simply by augmenting the output of M' with a

copy of its input. The inverse M' of M shown in this figure is

| | = ="
| | B
| l ' l 1
r L I z | : I
_I | | |.
l | T | .-
| L.
M vy

Fig. 5.9. A Lossless Machine with a Lossy Inverse |

simply the combinational machine which reali;es the projection of -
Z X T onto I.l_ ,.This inverse is lossy and is clearly_ useless for
diagnosis. |

Now augmént the output of M’ to form the machine M shown

in Fig. 5.10. This machine is lossless but it is not an inverse of

7 —— — 77 y/
| | |
I | - | I

e - — -~ -4
M

Fig. 5.10. An Output-augmented Realization of M' of Fig. 5.9
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M and it too is useless for diagnosis.,

Although Kohavi and Lavallee's technique cannot be used to
construct lossless inverses, it is an important technique because
it can be used to construct lossless of delay 0 realizations of any
given machine. The following result shows that given a machine
which is lossless 6f delay 0, an inverse of that machine can be
constructed which can be used for the diagnosis of unrestricted

faults.

Theorem 5.7: Let M be lossless of delay 0. Then there exists

an inverse M of M such that (M, U) is*(D, 0)-2-diagnosable where

D is formed from M and an Exclusive-OR gate as shown in Fig. 5.4.

Proof: LetM =(Z,P,1U{e}, 5, X,R,p) where e £ I and for all

gePandae Z

6(q,b) if b ¢ T and A(g,b) = a

5(g,a) = {
arbitrary if a £ Aqg, 1)

b ifbelandxg,b)=2a

X(q,a):{
e if af Aq,I)

Thus M is basically the same as M but with the roles of the

input and output interchanged.
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The functions § and X are well-defined for if M is lossless
of delay 0 and q € P then A(q,a) = (g, b) implies a = b.

If ]II < IZ] then every symbol in Z cannot appear in every
row of the state table of M. This is what gives rise to the transi-
tions of M which may be arbitrarily specified.

Consider M‘ and M to be operating in series as shown in Fig.

5. 2. ‘ Since.M and M have the same reset function, they will initially
be in the san‘{erstate. Now if M and M are both in some state qeP
and the input symbol b € I is applied to M then M will emit A(g,b)

and go to state 6(q,b). M will emit A(g, (g, b)) = b and will go to
state 5(g, Alq,b)) = 6{g,b). Thus M and M will make the same

state transitid_ns and the present output of M will always be the
présent input to M. Hence M is a 0-delayed inverse of M.

It remains to be éhown that (M, U) is (D, 0)-2-di_agnosab1e. This
must be shown directly because M is not necessarily lossless.

Since M is a O-delayed inverse of M there will be no false alarms,
Let_(r,xa, wb_) where a € Iandb € Z be a minimal 2-error., Since.
any input sequence applied to M will causé M and M to experience
the same state trajectories, 8(p(r),x) =& (p(r),w). Say 6{p(r),x) =
q. Since (r,xa, wb) is a minimal 2-error, ﬁr(xa) #b. Now
a, Br(xa)) = a and therefore Alg,b) # a. This inequality will be
detected by the Exclusive -OR gate which will emit a fault detection

signal. Hence (M, U) is (D, 0)-2-diagnosable.
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It should be noted that the inverse constructed in the proof of
the above theorem is not necessarily lossless. By using [Z] - 1]
new symbols, instead of just one, M could have been constructed to

be lossless of delay 0.

Example 5.7: Consider machine Iﬁ’l of Fig. 5.11. This machine

is an inverse of machine M1 of Fig. 5.1. It was counstructed as

described in the proof of Theorem 5. 7. The transitions of M’l which

Q)

Fig. 5.11. Machine M

may be arbitrarily chosen are indicated by a '"-"". This inverse of
M1 is not lossless, but it can be used for the diagnosis of unrestricted
faults of Ml'

A lossless inverse M

Tt

1 of Ml can be obtained from Wl'l simply
by changing one of the 'e' outputs in each-row of the state table of
-1\71'1 toe’'. '1\71"1' so constructed would be lossless of delay 0 because
the output symbols would be distinct in every rbw of the state table

of l\_fl'i.



CHAPTER VI

Diagnosis of Networks of Resettable Sysie..i

This éhapter considers the problem of diagnosing a
machine which has been structurally decompoéed and is represented
as a nétwork of resettable state machines. The networks con-
sidergd here are very general and they allow for work within
a wide range of structural detail.

The fault set is applied to these networks is the
set of "unrestricted component faults. ' Informally, an unrestricted
component fault is a fault which only affects one component machine
but which may affect that component in an unrestricted manner.
This fault set is a natural restriction of the set of unrestricted
faults. We will show that it is possible to diagnose the set of unres-
tricted component faults of a network with relatively little redund-
ancy.

This chapter focuses on the diagnosis of ""state networks. "
A state network is simply a network in which the external output is
the state of the network, i.e., a vector consisting of the staté of each
component machine in the network. Since the state of a state networkr
is directly observable at its output, state networks are easier to

diagnose than arbitrary networks.

111
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.The results in this chapter characterize state networks which are
diagnosable using combinational detectors. A general conétruction
is given which can be used to augment a given state network such
that the resulting state network is diagnosable in the above sense.
Upper aud lower bounds on the amount of redundancy required by

such an augmentation are derived.
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6.1 Networks of Resettable Systems

The field of study known as "algebraic structure theory‘of
sequential machines" is concefned with the synthesis and decompo-
sition of sequential machines into networks of smaller component
machines. iGood discussions of this theory can be found in [2], [16]
and [39]. The networks considered in this chapter are very similar
to the "abstract networks" introduced by Hartmanis and Stearns [16].
The mafor differences are in our use of I:esettablel state systerﬁs for
the components and in our system connection rules which force all
computa'tion tclJ_be done in the component systems or in the external
output functilon. rHartmanis and Stearns use sequential state machiﬁes
for their components and they allow for a combinational function fi

from ( ¥ Qi) x 1into I, to proceed each component.

Definition 6. 1: A network of resettable systems is a 6 -tuple

N={(,R, (Sl, cee, Sn)’ (K , Kn)’ Z,A) where

17

I is a finite nonempty set, the external input alphabet

R .is a finite nonempty set, the external reset alphabet

S, = (Ii, Q 5i,R,pi) for each i, 1 <1i<n, is a'resettable

state system, a component system

Ki for each i, 1 <i<n, is a subset of _{Ql" .. ’Qn’ I},

a system connection rule
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Z 1is a finite nonempty set, the external output alphabet

Al (9< , Qi) X IX T — Z, the external output fr. .tion
i=1

such that for each i, 1 <i< n, if

A

Ki={A1,...,A£} then I, = A

j

n X

Under the intended interpretation, the system connection rule
Ki specifies from which parts of the network component i receives
its input. By the convention introduced in Section Z. 1, if K; = ¢ then
Ii is any singleton set. Therefore if Mi has no connections then

it is an autonomous machine.

Example 6.1: The 6-tuple described in Fig. 6.1 specifies network

Nl. This network has two component machines M1 and M2 with

state sets {pl,pz} and {ql,qz} respectively. M1 is connected to
the external input and the output (state) of M2 and M2 is connected
to the external input and the output (state) of Ml' Network N1 can
be viewed pictorally as shown in Fig. 6. 2.



N = (I,R9 (M M )s(KlaKZ)zsA)
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1 1°2
1 = z = {0,1}, R = {r}
L
M, : Q, (q,,0) (ql,l) (qz,O) (qz,l)
Py Py Py Py Py
P2 P2 Py P2 P2
I, :
1, 9, 93 1, 94
(p.q,a) A(p,q,a)
Py 9y 0 1
Py 9, 1 0
Py 9, 0 0
P, 9, 1 0
P, 4, O 0
Py 9 1 1
Py 95 0 0
Fig. 6. 1. Network N

1
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Fig. 6.2. Diagram of Network N1

Since any machine may be viewed as 2 one component network
a network may convey little or no structural information.
On the other hand the structural description given by the network
may be very detailed. For example, each component may be a two-
state state machine which represents only one fllp-flOp and one

coordinate of the global transition function.

Definition 6.2: A network N = 1, R, (31’ . e ,sn), (Kl, cee, Kn), Z,A)

defines the system SN =(1,Q, Z, 5, \,R,p) where

n

Q = X Q.

i=1 !
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5(q,a,t) = 8(lay, - -rq ) t)
n
= >f’ 51[(11, PK.(qla---sqn’a-)!t]
i=1 i
n
p(r,t) = x p,r,t)
i=1

A network of resettable machines is a net_work in which the

compounent _sy.stems and the external dutput function are all time-
invariant. For_‘ example, network N1 of Fig. 6.1 is a network of
machines. Tﬁe system defined by a network of machines N is also
time -invariant, and it will be denoted by MN’ A network .of machines
N realizes a machine M if M. realizes M. Likewise the defini-
tions of reduced machines, reachable machines, a;nd so forth can

be extended to apply to networks of machines.

Example 6. 2: Counsider network N1 of Fig. 6.1. This network

defines machine MN1 of Fig. 6.3 and it realizes Eﬂl of Fig., 6.4

because MN realizes f&l.
b |
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MN : Q 0 1 | R

(brpa) | Gpa)/t | a0l r

(byraq) (py,a,)/0 Py, a,)/0
(p21 qz) (pzr qz)/o (pzs ql)/l

Fig. 6.3. Machine M

Ny
Mg I 0 1 R
a a/1 b/0 r
b b/0 - c/0
c c/0 d/0
d d/0 a/1

Fig; 6.4. Machiné M 1

A network N = (I, R, (Sl’ .. .‘,Sn), (Kl’ e Kn)’ A, Z) is a state -
network if Z = ->_I<11 Q and Alg,a) =q for allg Eingi and
ael. IfNisa st:te network then SN is a state sys tem. For state
networks it is unnecessary to explicitly specify the external output
alphabet and the external output function.

Since the fault set considered in this chapter does not allow

for faults which affect the external output function, we will focus on
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the diagnosis of state networks which realize state machines. The
diagnosis of the output functic;n will be taken care of separz;.tely,
possibly by duplication.

Perfo.rming diagnosis on state networks is easier, in general,
than for arbitrary networks because with state networks the output
function doés not mask the internal operation of the network.

Decomposing a network into a state network and an output function
and then diagnosing each separately has the effect of applying a
tighter tolerance relation to the diagnosis of the original network.
This is also due to the lack of any masking of the state by the out-

put function.
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6.2 Unrestricted Component Faults

Suppose that N and N' are networks. Thenf = (N',7,0) is a

faull of N UL [' = (SN,, T, 1) 18 a fault of SN. Thus a fault of N can be

considered to be a transformation of N into another network N' at
some time 7. The notions of fault tolerance, error, and diagnosis
are extended in a similar manner to apply to networks.

Given a network N, a natural set of faults to consider are those
which are caused by failures in one component of N. Iff = (N, 7,8)
is causgd by failures which are restricted to one component of N then
N' will differ from N only in that one component. Likewise the function
8 from X Qi into X Q{ will act as the ideatity oneachcoordinate except
possibly the one affected by f. These faults are described formally inthe

following definition.

Definition 6.3: Let N = _(I,R, (Ml, R Mn), (Ki’ cer sy Kn)’ Z, ) be

a network of machines. A fault f = (N', T, 8) of N is an unrestricted

component fault if for some j, 1 S i S n

i) N'= (IR, (Ml,...,S]f,...,Mn), K,,...,K), 2, ) where
SJ? € J(Ij,Q].,R) and
n
. — 1 1
ii) for all @ ,qn) € ;1 Q> S(ql, ceenq ) =), ,qn)

implies q, = q; for all i #j.

The set of all unrestricted component faults of a network will

be denoted by UC‘A
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Note that since N' is a network, SJT is required to be a state
system. Because the output alphabets of Mj and SJ' =2 identical
and they are both state systems their state sets must also be identi-
cal. Thus, unrestricted component faults do not permit state blowup

or collapse.

The féult set U . is sufficiently restricted to make possible its

C
diagnosis with relatively little redundancy. On the other hand, UC
is not unduly restricted for it allows for any number and type of
physical failures to occur to any one component; subject, of course,
to the general restrictions on faults outlined in Section 2.3. Thus .
using UC as the fault class greatly reduces the amouant of failure
analysis wﬁ_ich is necessary within the cdmponenfs.

The relationship between the set of unrestricted component
faults of a network and the set of errors that these faults can cause
is not as simple as the correspohding relationship for unrestricted
faults. It is clear that since an unrestricted component fault can
affect at most one component directly, if (r,ua, vb) is a minimal
2-error caused by f € UC then b will be out of tolerance in only one
coordinate. However, because the failed component Iﬁay be connected
to any other component, minimal 1-errors do not have this
property. Nevertheless, a useful property of minimal
l-errors is brought out later in the proof of Theorem 6. 1; namely,
if (r,x,y) is 2 minimal l-error of a "tptally redundant” network

N caused by an unrestricted component fault then under
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reset r and input sequence x the faulty network will, at some time,
enter an unreachable state of N, |

A natural extension of UC’ the set of unrestricted component
faults, would be the set of all faults caused by failures in up to m
components, where m is some positive integer. Since it is very likely

that any single failure which occurs will be detected before a second

onent faults is the most important special case of the more general

set of faults. It is also, notationally, the easiest to discuss. For
these reasons the following development is restricted to this case.
However, the characterization of combinationally diagnosable networks
given in the following section generalizes easily fo multiple component
faults. This generalization is discussed at the end of that section.

The general approach to the construction of combinationally
diagnosable networks used in Section 6.4 also generalizes to the
multiple component fault case, although this approach is not felt to

be a good approach to the more general problem.
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6.3 Characterization of Combinationally Diagnosable Networks

How can state networks for wﬁich a combinational detector
can diagnose t-he set of unrestricted component faults be character-
ized? In this section it is shown that this can be done in
terms of the amount of redundancy &in the network.

Given a state .network of machines N it will be assumed that
N realizes some reachable state machine M under the triple
(01,02,03). -‘(Since all state machines are reduced, M is
automaticallﬁ reduced.) It will be assumed,. as before, that
oy and g, are onto. The reachable part of N will be denoted
by P.

Notation: Given a state network Nlet C<{1,..., n} denote a subset of
the set of components. Let C, denote the particular subset {1, ce
i-1,i+l,...,n}. Letq = (ql, ...»q ) and s = PR sn) be states
of N.

Each C induces a partition T on Q=X Qi where q = S(TI’C) if
and only if q; =5, forallie C.

A cover of a set L is a set of subsets of L whose union is L.
Thus every partition of L is also a cover of L. A cover J of L ig

a singleton cover if B € L implies ]B[ <1 HJisa cover let

#|J | denote the cardinality of the largest element in J.
The definition of a cover introduced here is more general than

the usual notion of a cover (or "set system) as introduced by
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Hartmanis and Stearns [16]. They employed set systems to obtain
series-parallel decompositions. The notion introduced hefe is not
used to obtain decompositions but rather to analyze any given decom-
position.

Let C C {1, ...,n} and let 7, = {Bl’ ...,Bp_} . C induces

C
the cover

C = {03 (By NP),...,05 (B, N P)} of Q

where if BC P then USL(B) = { 03“ (@|q e B}. I particular,
0g () = o.

Each set of states which the componeats in C can take on
corresponds directly to a block of the partition WC' Thus o
represents the.inforrnation about the current state of N which is
given by the current states of components in C. C represents the

_ corresponding information as to the state of M which N is curevently

mimicing. If C is a singleton cover then the current state of each

component in C completely determines the corresponding state of M.,

Note that {1,...,n} is always a singleton cover.

Definition 6.4: Component Mi of a network N is redundant if 61

is a singleton cover. N is totally redundant if every component of

N is redundant.
"Redundant components' are essentially the same as "dependent

coordinates" as discussed by Zeigler [39]. The basic difference
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is tﬁat the concept of a "redundant component’’ is defined in terms
of covers rather than partitions (as -is the case with ""dependent co-
ordinates "}, and hence is a more general concept Which allows for
state splitting.

If N is totally redundant then knowledge of the state of any n-1
components is sufficient to determine the corresponding state of M
althougﬁ it majr not be sufficient to determine the state of the reinain—

ing component,

Example 6.3: Consider network Ny of Example 6. 1. Let N'1 be

the associated state network which is obtained from N1 by changing
the external output function and alphabet. Let 1\71'1 be the state
machine corresponding to machine I'\T/I1 of Fig. 6.4. Then 1\4’1 realizes

1\71'1 under (e,e,03) where g P'1 — El'l is given by the following

table:
p q oa(p,q)
P 9 a
Py g b
Py 4y d
Py d, c
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Now e, = {2} - 1%, 0y 9 By 4,) By qp)! and so

61 = {0'3 {(pr ql)’ (Dz: ql)}’ 0'3 _{(pl’ q2): (p2: Q2)}}
= {{a’ d}! {b,C}} *
Therefore "51 is not a singleton cover, Ml is not a redundant com-

- ponent, and N, is not totally redundant.
&

Lemma 6,.1: Let N be a totally redundant state network of machines,
and let q = (ql, ERTY: IRPP qn) andq' = (ql’ . ..,q'i, ceey qn) be statgs
of N. If q, q'¢ P then os(q) = oa(q').

Proof: Let q, q' ¢ P. Since q and q' differ only in their ith ¢gor-

dinate they are in the same block of g, Saythatm, = {Bl, coesBy}

and that q, q'e Bj' Since q, q'¢ P, ql, q'e Bj np. l Since N is
totally redundant, 61 is a singleton cover, and thus we must have
o3@) = o5’

Suppose that an unrestricted component fauit f occurs to a totally
redundant network of machines N and causes a minimal 2-error
(r,x,y). Say that B.&)=q= @preee qn). Due tothe nature off, namely
that it affects only one component, B:(x) =q’ =(q1,...,q{,...,qn). If
q'€e Pthen Lemma 61 tells usthat this 2-efror isnotal ferrof becaﬁée -
os(q) =03(q'). If q £ Pthenthis 2-error could be detected by a combinational
detector whichflags the unreachable states of N. By usingthe above lemma

and Theorem A.2the f ollowing characterization of combinationally

diagnosable detectors can be obtained.,
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Theorem 6.1: Let N be a state network of machines which

realizes a state machine Munder (01,702,0.,). Then ™ UC)

is (D, 0)-1~diagnosable for some combinational detector D if and

only if N is totally redundant.

Proof: (Necessity) Suppose that (N, UC) is (D, 0)-1-diagnosable

where D is combinational, and let D realize the function AD' A.ssume,.
to the contrary, that N is not totally redundant. Then for some i,

"é.l is not a sipgleton cover. Hence there exists q = (ql, EREL T -.._.,qn)
andq = (q;,...,q;---,q,) suchthat q, q' ¢ P and 04(q) }4 03(q')-.

Since q, q'€¢ P, AD(q) = J\D(q') = 0 for otherwise a false alarm could

occur. Let fe Ug be a fault caused by the output of Mi becoming
stuck-at-qi at a time when M could be in q. This fault can cause

a l-error which is not (D, 0)-1-diagnosable. Contradiction. There-
fore if (N, UC) is (D, 0)-1-diagnosable where D is combinational then
N must be totally redundant.

(Sufficiency) Assume that N is totally redundant. Let D be the

detector which realizes the function A,: Q- {0, 1} where

0 if qeP

Apla) =

\ 1 if g P
Clearly, D will give no false alarms.

let x = ugb

Let {r,x,y) be a minimal 1-error caused by f € UC'

where a,b e 1.
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f ’ :

Then 04(8, (wa)) = 048 (wa))and o,(8, (uah), # o (sf(uan)). Say
b;.f(ua) =q. Then Brf(uab) = éf(q,a.,t) wheret = [u|. Because f e Ues
f can affect at most one componeﬂt of N. Therefore &6(g,a) will
differ in at most one coordinate from Gf(q,a,t). Let 6(g,a) = s =
(Sl"" ,sj,...,sn) and let Gf(q,a.,t) = g'= (sl,...,sf,...,s ).

Since os(q) =‘0'3(_8r(ua,)) and 8 (ua) = 8(p(r),u), by Theorem A. 2

05(6(g,a)) = g4(6(o(r),ua)) = 04(8.(uab)). Thus

0'3 ( Br {uab))

0,(5)

7 ayf, (b))

g (s")

If qe¢ P then s = 6(g,a)e P and applying Lemma 6.1 we deduce
that s'£ P. Theréfore R.D(s') = 1 and the l-error (r,x,y) is
~ detected without delay,
Alternatively, if q £ P then }LD(q) = 1 and the l-error (r,x,y)
is detected one time step before it occurs. Since in either case the
error is detected by the time of its occurrence it follows that

(N, UC) is (D, 0)-1-diagnosable.

This characterization of combinationally diagnosable networks
provides an answer to Questions IIand V, page 11; namely, totally

redundant realizations are diagnosable with a combinational detector



129

and with zero delay, and the structural property of "total redundancy"

18 conducive to on-line diagnosability.

Given C - {1, ce ,n}, let #C = _{Bl’ ceny Bﬂ}. Then C induces
a partition ?C on P where FC = _{Bl NP,...,B, N P} - ¢.

If a partition 7 of a set L is a singleton cover then we will denote
this by writing 7 = 0. This notation is derived from the observation
that this partition is the least element of the lattic.é of all partitions

of L.

Corollary 6.1.1: Let N be a state network of machines. Then

(N, Uc) is (D, 0)-2-diagnosable for sorne combinational detector D

C

if and only if 7, = 0 for all i, 1<i<n,
. i

Proof: Consider N to be realizing the reduction of MN' Then

045 is 1-1. By Theorems 3.2 and 3.3 (N, Uc) is (D, 0)-2-diagnos-

able for some combinational D if and only if (N, U,.) is (D, 0)-1-

o
diagnosable for some combinational D.

Now since Oq is 1-1, Ei is a singleton

cover if and only if ?':C = 0. Hence N is totally redundant if and
, i ‘

only if 7, =0foralli, 1 <i<n.
i

The result now follows immediately from Theorem 6. 1.

Example 6.4: Consider state network N'l of Example 6.3. Since

N'1 is not totally redundant, from Theorem 6.1 we know
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that (N, UC)' is not (D, 0)-1-diagnosable for any combinational
detector D.
th)

Now construct a new network Ny from N'1 by adding a new

component M3 as shown in Fig. 6. 5
r )
N]. - (I, R’ (Mls Mzr M3)r (K].’ Kzs Ks))

LR, Ml’ MZ’ K1 and K2 are identical to those
of network Nl of Fig. 6. 2.

K3 = {I}
) i
Mg+ 3 0 1 R
&
3
S]. 51 Sz r
S9 So $1

Fig. 6. 5. Network N'I'

Network N’l' realizes machine ﬁl'l of this example under

(8,9,05) where 0'3: P‘l' — é'l is given by the following table:
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p q 5 0'3(13, q,S)

Py 49 '8 a

Py 9 Sy d

For network N’l’

7"01 = 7"{2’I 3} = {(pl’ql’ 51)¢ (pz:qu Sl); (plyql: 52), (pquss.z);

and ?31 = { {a},{d}, {c},{v} } . Thus 51 is a singleton cover and
component M1 is redundant. Similarly one can show that M2 and
M3 are redundant. Hence N'l' is totally redundant, and (N",UC) is
(D, 0}-1-diagnosable for some combination of detector D.

It is eniightening to consider Corollary 6. 1. 1 from the point of
view of error detecting codes. Let N be a state network realiza-
tion of a reachable state machine M. Then each of the reachable
states of N can be viewed as a code word of an encoding of 5 .
Two such code words are said to be adjacent if they differ in only
one coordinate. Clearly, an encoding can be used to detect all

errors in single coordinates if and only if no two code words are

adjacent. In addition, it is clear that two code words are adjacent
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if and only if "ﬁci # 0 for some i. Thus Corollary 6. 1.1 tells us
that single error detecting state assignments are necessary and sui-
ficient to insure combinationai and delayless 2-diagnosis of unre-
stricted component faults.

The generalization of the characterization given by Theorem 6, 1
and Corollary 6. 1. 1 to faults caused by multiple failures is straight-
forward. For example, if failures in two components are being con-
sidered then a totally redundant network would be one in which the
corresponding state of M could be deduced from the states of any
n-2 corhponents of N . With this altered definition the statement of
Theorem 6. 1 could then remain unchanged. By considering the two

failed components as one larger component the proof could also

remain virtually unchanged.



133

6.4 Construction of Combinationally Diagnosable Networks

The basic problem a;ﬁproached'in this .section is a constrained
decomposition probler;l; namely, given a state maéh‘me M, finda
totally redundant network realization N of M. From Theorem
6.1 we know that such a network would be combinationélly diagnos-
able, and:thus a solution ‘_to this problem would be an answer to
Question I:,-lpage 11,

The approach to this problem taken here is to find a network
realization by conventional decomposition techniques and then make

this network totally redundant through the addition of one component.

Example 6. 4 showed that a totally redundant network could
be construﬁ:te’d from network N'1 thrdugh the addition of one compon-
ent machine, | In this section it is shown that this can be done for
any network. In addition, upper and lower bounds are derived on the

minimum number of states that such an additional component must

have,

Theorem 6.2: Let N be a state network of machines. Let m, = ]Qi],
and let m =max m,. A network N' where N' realizes N and

1=i=n
N, UC) is (D, 0)-2-diagnosable for some combinational detector D

can be constructed from N by the addition of an m state component,

Proof: Without loss of generality take Q = {o,..., m.-1} . Let

N = (LR, (Ml’ cos ’Mn)’ (Kl’ cvey Kn)) and let N' = (I, R, (Ml,.;.,Mn,
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), (K )) where K = {Ql’ vens Qn’ I} and where

1’ """ ’Kn’ Kn+1

M is constructed such that for all q = (ql, ceesq
n+1 .

n+l

n+1) € P', the
n+l . )
reachable part of N', i=El q = 0 {mod m). A machine Mn+1 with

m states which satisfies the above property is described below:

M = (I

n+1 n+1’ Qn+1’ 5n+1’ R’pn+1)

where

= X
In+1 12-(1 Q I

Q . =10,... m1

(r) = - E pi(r) (mod m) for allit € R
i=1

5n+1 (qn+1’ (ql’ cees Qs a)) = -igl q{ (mod m) for all

qiEQi’ 1Si$n+1, and all a € T where

(q'l, vy qr'l) = 5((q]_: seey qn)1 a).

It is clear tha__t N' realizes N. Therefore, it remains only to

be shown that (N', UC): is (D, 0)-2-diagnosable for some combinational

D.

Let D be the combinational machine which realizes the functxon

!1+
AD' ) — {0, 1} where
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1
Oifni q, = 0 (mod m)
i=1 '

AD(ql,...,q ) =

n+1
1 otherwise
] ) - - n+l .
Since (ql, --+»q_¢) € P’ implies i§1 q; = (mod m) no false alarms
will occur.

Let (r,x,y) be a minimal 2-error caused by f ¢ U Since

c
(r,x,y) is a minimal error and f only affects one component of N',
3r(x) and Bi(ic) will differ in exactly one coordinate. Say ﬁr(x) = (ql,

) f, — ' -
"':qn+1) and 31.\}() - (ql’---sqi:---:qn_'_l)- NOW (ql,...,q )

n+l
n+
¢ P implies _El q; = 0 (mod m). Since qi# q{ and ]Qi[ < m,
i= , ) -
' ' : 1 '
q, }‘qi (mod m). Therefore Qp+ oot Qi+ .aodq g # 0 (mod m).
Hence, the error (r,x,y) is detected without delay, and {N’,UC) is

(D, 0)-2-diagnosable.

In the proof of Theorem 6.2 a construction is given which
can be used to form a totally redundant network from any network
of machines. This construction simply involves the addition of one
component to N. This theorem also gives an upper bound on the
amount of additional redundancy required to make a given network
totally redundant. This upper bound is stated in terms of the size of
the state set of the additional component.

The detector used in the proof of Theorem 6.2 simply checked

to see if the states of the components always summed to 0 (mod m).
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By using a different and possibly more complex detector, namely one

which can deterhline ifthe present state is inthe reachable part, the

number of states which the additional component must have can be reduced.
Let mi be the number of states that Mi’ 1 <1i<n, can actually

euter while Mi is a component of network N, and let m' =max m'.
1<i<n

That is, let m' =max [P‘.(P) f, where P,(P) is the projection onto
I<i<n ! !

coordinate i of the reachable part of N. Then m' S_ m because Pi(P)
- Qi’ 1<i<n, and Theorem 6.2 holds with m replaced by m'.

This claim is established in the following theorem.

Theorem 6.3 : Let N be a state network of machines. Let

m! = |P (P)], and let m' =max m!. A network N' can be con-
i i ;
1<i<n

structed from N by the addition of an m' state component such that

N' realizes N and (N', Uy) is (D, 0)-2-diagnosable.

Proof: Without loss of generality take P, (P) = {0,.. ., m;-1} and
Qi ={o,..., m, - 1}. Construct N' by adding componenf Mn+1 where

N' and Mn+1 are exactly as in the proof of Theorem 6.2? except for
m being replaced by m'.

We will show that (N', Uc) is (D, 0)-2-~diagnosable by showing
that F'C =0foralli, 1<i<n, and then appealing to Corollary

i
6.1, 1.
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Assdme,. to the contrary, that T # 0 for some i, say for i =1.

C
1 ‘
Let 7. =1{B.,...,B,}. Thenfor somej, 1<j<¢, |B.nP|>1.
C1 1 4 A -7 = i
This implies the existence of two states q = (ql,qz, e ,qn) and
q' = (q'l,qz, ... ,qn) such that q, q' € P’ and aQy #q'l. Now q,q' ¢ P'

implies q; + Qg +...+q = 0 (mod m’) andqi + Qg+ +Q = 0
(mod m'). Hence, a, = q'1 (mod m') and since 0 < qq q'1 < m’,

q, = q'l. Contradiction. Therefore To = Oforalli, 1<i<n,
' i
and the result follows immediately from Corollary 6. 1. 1.
A techniqﬁe similar to the one used in the proof of Theorem 6.2

could be used for the diagnosis of n Mealy machines which operate

in parallel with the same inputs and resets. In this case one

additional Mealy machine would be required which had as many out-
put symbols as the machine with the largest output alphabet. There
is no guarantee, however, that thistechnique willresultina savings
over duplication because the additional machine may needas many states
as the product of the number of states of the original n machines.
We have shown that given a network N, a totally redundant

aetwork N' can be constructed thru the addition of a component with
no more than m' states where m' = max IPi(P) |. This amount of
additional redundancy is not always necessary for N may already

be totally redundan.t. The following example shows that this amount
of additional redundancy is nof necessary even if no component of

the network is redundant.
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Exa‘mple 6. 5: Consider state network Nz of Fig. 6. 6,

N, = (I’ R, (Mls Mz): (Kl, Kz))

2

) I = {0’1!2’3’4}!R={r}

(KI’ Kz) = ({I};{I})

L
M, Q 0 1 2 3 4 R
Py P | Pg P3 P3 Py r
Py Py Dy Dy Py Py
Ps | P3 Py Py Py Py
Py Py P3 Py Py P3
M,: 0 1 2 3 4 R

Fig. 6.6. Network N2

N, realizes state machine 1&2 of Fig. 6.7 under (e, e, 03) where

03 Py~ Q, is given by the table in Fig. 6. 8.
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0 1 2 3
b a e h
a b f g
d C f f
c d e e
e f c d
H e d c
g h d b
h g c a

Fig. 6.7. Machine I?Iz

p q 74(p,q)
P 0 1 2
Py Qg d
Pp 9 b
Py 93 ¢
Pg q5 e
P a4 h
Py 4 f
Py a4 g
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Since 162‘ = 8 and ]Ql X Qzl = 16 it should be clear that while N,

is not totally redundant there is some redundancy in this network
realization of ﬁIz. Thus if we were .to add a component M3 to N2
in an attempt toh form a totally redundant network N'2 we should not
be too surpriéed if we 'suéce'eded with a component M3 with fewer
than m' states, where fof network N‘.2 m' = 4. Infact, if the 2-state
machine M, = (Q1 X Qq X1, {Sl, 52}’ 53) were added to N, where
63 is such that M3 is in 8y whenever M1 and M2 are in (pl,ql),
(pz,qz), (p3, q3) or (p4, q4) and in s, whenever M, and M_2 are in
®yr9y)s oy ay); (pg,q4) Or (py,q4) then the network Nj so formed
would be totally redundant.

An intuitively satisfying means to verify this claim is as follows.

Component Mi computes the information 6{1} about the correspond-

ing state of M. In this case the EI{ i} are the following partitions of

o~

Q-

6{1} ={3,&b,c;e,m 1,8}
Ciayp = {ab;c,d;e1; g,n )
6{3} = {a,c,e,g; brd!f:h}

Since C e = C e = C « Cyq =0 t
{7 M2 = Mg} C{ap 7 Cup Cfap =0 any two
components taken together provide total information as to the corres-

pouding state of éz. Hence the remaining one will always be

redundant,
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The following result gives a lower bound on the number of states
that an additional component must have in order for the resﬁlting '
| augmented network to be totally redundant. If the ﬁetwork under
consideration is already totally redundant then the lower bound given
by this result is one. Since the behavior of a state machine with one
state is always a constant function, the actual addition of such a com-

ponent is unnecessary.

Theorem 6 4:  Let N be an n component state network and let N'

be the state network formed from N by the addition of a component

with £ states. If N' is totally redundant then £ > max #]Ei{.

~ 1I<i<n
Proof: Without loss of generality take #{é'lf =max #‘6 [, and
| I<i<m '
letd = #[51 ] Then for some Be o and g = (ql,...,qn) € B, ]03(BHP)l

1
= d. That is, if it is known that M2 is in qg, that M3 is in dg; and

so forth up to Mn being in qQ, then there is still a d state uncertainty
as to which state of M the state of M currently corresponds. 1t is
necessary for Mm_1 to have at least d states to resolve this

uncertainty.

The above result provides a good lower bound on the amount
of additional redundancy required to form a totally redundant network,
and it does so by taking into Account the redundancy which already

exists in the network. This level of redundancy, however, is not
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alwﬁys sufficient because it may be impossible to find a component
with d states which will simultaneously resolve the uncertainties

represented by 61, 62, ... and 611' The following describes just

such a situation.

Example 6, 6: Consider the state network N3 of Fig. 6.9.

NB = (I,R’(MI,MZ,MB)’(K].’KZ’KB))
1 = {o0,1,2}, R = {r}

kR = 1), {ih{e;,e,,1h

1 I
M 1 2
IR (N 0 1 2 R Mo, 0 1 2 R
P P P; P r
1 1 2 1 ql Cl2 ql Qz T
P P P P
2 2 3 2 q, a | 94 | 5
Pj Py Py Py
M.,: o o o NN R Rl o e e o o
3 I PO R R e T N N N NN N W W W W W W
3] 2 5 5 A n n 2 A A A A h AR n R & %
Qq T T L T L ol B
SSBSSBD}—'MD!—'MDHNDL‘M
Sl Sl 82 52 Sl 52 Sl Sl Sl 82 Sl Sl 52 Sl Sl Sl Sl Sl Sl
32 Sl 5252 S2 5231 Sl Sl 82 SZ 52 52 52 52 S'2 52 82 82

Fig. 6.9. Network N



143

This network realizes machine f&s of Fig. 6.10.

M,: & 0 1 2 R
a e b f r
b g c h
c g c g
d h d h
e e b a
£ | f b a
g g c b
h fh d b

Fig. 6.10. Machine 1&3

realizing IT.;I3 we have

; = tlach {b,d},{e, g}, {t,0} }
o = 1{a,e}, {v,n}, {c}, {a}, {t},{e} }
3 = 1 {ah{o} {c,at, {e, &}, {gn} }

For N3

0
I i

ok
I

Therefore m =max lQi] =Jandd =max #[Eil = 2.
1< i3 1<i<3
Suppose that it is desired to add a component M4 to N3 in order
to form a totally redundant network. Theorem 6.4 tells us that M,
must have at least 2 states, and Theorem 6.2 tells us that there is

a 3 state component which will work. We will show that in this case

it is not sufficient for M, to have 2 states.
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Let M4 be a 2-state component which when added to N3 forms
! C = . Si C i Q .U =

N3. Let C{4} {Bl’ Bz} Since C{4} is a cover of Q3, B1 B2
63. If lBll >5bor [Bz] > 5 then C1 would not be a singleton cover
because M2 and M3 have only 2 states each and together they could
not resolve a 5-state uncertainty. Therefore if N’2 is tobe
totally redundant we must have IBl ], {le < 4 and thus 6{4} will
be a partition of éq.

For N;

3
pairs of states: {a,e},{b,d},{e,g},{t, u},{b, 1}, {c,d},{e,{}, and

to be totally redundant M4 must resolve the following

{g, h}. It can resolve a pair only if the pair is split between B1
and B2‘ But it is e.a'sy‘-;o verify that these eight pairs cannot all
be simultaneously split by any two .—block partitioh. Therefore

there is no 2-state component which when added to N, will form

3

a totally redundant network.



CHAPTER VII

Conclusions and Open Problems

In this repbrt a fresh look at on-line diagnosis was taken from
a system theoretic point of view. The approach used in this inves-
tication was system theoretic in the sense that resettable discrete- |
time systems were used as a basis for a well-developed formal
model'of on-line diagnosis, - and formal ;nethods were used to inves-
tigate this model. As evidenced by the results in Chapters III
througﬁ VI this approach has proved to.be very fruitful. One advan-
tage of this approach is that the results developed in this report
are independent of any particular technology and may be applied to
any system which can be modeled as a resettable machine.

In Chapter I,a number of fundamental questions concerning on-
line diagnosis were stated, and in Chapter II a complete model for
the study of on-line diagnosis was developed. Subsequent chapters
provided some answers to these questions for the unrestricted fault
case and the unrestricted component fault case. At this point it is
appropriate to review these questions to see jﬁst what has been ac-
complished and what remainstobe done. These five questions are
paraphrased below, and each question is followed immediately by

a discussion of it,
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I. What good on- line diagnosis techniques are available and when

is each applicable ?

For unresﬁriqted faults the techniques investigated-have been
duplication and lloop c-:-hecking. 'Dﬁﬁiication is very easy to lim-pleﬁle:x;t,
and it was shown in Corollaries 4. 5.1 and 4. 5. 2 that, in terms of
the state set size of the detector, it is impossible to do any better
than duplication. Thus duplication is a very good technique. How-
ever, with other measures of complexity it may be possible fo beat
duplication. in addition, duplication suffers from the ohservation
that both copies could have the same failures or built in weaknesses
from birth. For these reasons the use of inverses for unrestricted
fault diagnosis was also studied, and this technigue was shown to be
applicable regardless of the specified behavior.

For unrestricted component faults the basic technique studied
was the construction of totally redundz;nt networks from érbitrary
networks through the addition of one component. This technigue
was also shown to apply to any specified machine.

Certainly, other techniques for the diagnosis of these sets of
faults exist and their investigation is an open problem. One fruitful
direction might be to pursue a more general approach to the con-

strained decomposition problem discussed in Section 6. 4.
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II. When is a given realization diagnosable ?

Answers to this question depend, of cou-r'isé‘, on what constraints
on allowable detectOrs and delays are given by a particular meaning
of the word "diagnosable. " If no restrictions are plaééd on the set of
possible detectors then every realization is diagnosable for any set
of faults since the realization could be duplicated in the detector.

For uhx_‘estricteci fla.ults,. if detectors are only allowed to perform
a loop check then Theorem 5. 2 tells us that realizations with loss-
less inverseé ére diagnosable. However, the characterization of all
realizations which are diagnosable in this sénse is still an open
problem.

For uﬁrestricted component faults, we know from Theorem 6.1

that a realization is diagnosable if and only if it is totally redundant.

III. What time-space tradeoffs are possible between the added com-

plexity needed for diagnosis and the maximum allowable delay?

By Corollaries 4. 5.1 and 4. 5. 2 we know that no time-space
tradeoff is possible for unrestricted faults. However, Example
4.1 shows that a tradeoff is possible for permanent output faults.
For unrestricted component faults the question remains unanswered.
While no generally useful time -space tradeoffs have been found,
specific trédeoffs are possible for suitably restricted sets of fauts
and certain specific behaviors. In addition to Example 4. 1, this is-

evidenced by Example 7. 1 which appears later in this chapter.
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IV. What is the relationship between a given fault set and the set of

errors which can be caused by faults in that set?

This relationship was discussed in Section 4. 1 for unrestricted
faults, Sect:ion 4.3 for permanent output faults, and Section 6. 2 for
unrestricted component faults. Briefly, unrestricted faults can
cause any possible erroneous behavior; permanent output faults
cause the same minimal 2-errors as uanrestricted faults but not the
same minimal 1-errors because the output becomes constant once
a permanent output fault occurs; unrestricted component .faults cause
minimal 2-erfors which are out of tolerance in only one coordinate,
and if the network under consideration is totally redundant then
minimal l-errors caused by unrestricted component faults always
result in an unreachable state of N being entered. As expected,
this relationship is very important and was used in results coﬁcern-

ing each of these sets of faults.

V. What properties of system structure and behavior are conducive

to on-line diagnosis?

For unrestricted component faults the structural p'roperty of
total redundancy was seen to be quite important. The behavioral
property of "having a lossless inverse" was also seen to be useful
since the unrestricted faults of such systems could be diagnosed via

a loop check.
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A potentiaily fruitful area for further work would be to look at
special subclasses of machines (e. g., definite machines, linear
machines, etc.) to see what diagnosis qualities they possess which
are not possessed by machines in general.

Since this study focused on the diagnosis of unrestricted faults
and unrestricted component faults, one large open area for further
research is to answer these questions for other important sets of
faults. A possible direction for such research is outlined below.

In this report, abstract (i.e., totally unstructured) systems
have beén éonsidered with the exception of some of the examples and
the networks considered in Chapter VI. Such an approach is good
for developing formally the concepts involved in our theory and for
studying the diagnosis of unreétricted faults, but some of the questions
raised can best be studied in a more structured environment. One
reason for this is that with a structured system we can consider the
causés of faults. For example, given an abstract system it makes
no sense to speak of the set of faults caused by corﬁponent failures
of a certain type or by bridging failures. However, given a structured
representation of a system {e. g., a circuit diagram) we can discuss
these and o.ther types of failures and determine the corresponding
fauits.

There are many different structural levels that could prove
useful to a further investigation into the theory of on-line diagnosis.

Two levels which we believe will be important are: the binary
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state -agsigned level and the logical circuit level. These levels
and the basis for their potential usefulness are explained beiow,

A machine M is said to be binary state-assigned if Q = {0, 1}"

for some positivé integer n. Given such a machine, various types
of memory failures such as‘stuck—at—O, stuck-at-1, and more
general types can be considered. The faults corresponding to these
failures can be enumerated and comparisons can be made between
various schemes for diagnosing these faults. Memory faults have
been studied before in the context of fault tolerance and off -line
diagnosis by Meyer [ 28] and Yeh [ 38] respectively, and they are
an important class of faults for a number of reasons. For example,
ouly a limited amount of structure is needed to discuss them. Thus
memory faults can be analyzed before the circuit design of the
machine is complete. Also, it is memory which distinguishes truly
sequential systems from purely combinational (one-state) systems.
Combinational systems are inherently easier than sequential systems
to analyze and a number of techniques for the on-line diagnosis of
such systems are known (see [19] and [34] for example).
Time-space tradeoffs are also possible in the diagnosis of memory
faults. Let Fm denote the set of single memory stuck-at faults, that
is, the set of faults caused by a stuck-ét failure in one memory
element. It can easily be verified that if (M, Fm) is (D, 0)-2-diag-
nosable where D is combinational then the reachable states of M

must be encoded into a single error detecting code. However, as
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the following example shows, this is not necessarily true if nonzero

delay is allowed.

Example 7. 1:

Consider the binary state-assigned state machine M whose

state graph is shown in Fig. 7.1. Since M is an autonomous state

machine the labels on the transitions convey no information and

hence are not shown.

1 Ty
010 011 OOOO
Olll
001 100 101 110

Fig, 7.1. State Graph of M

Claim: (M, Fm) is (D, 2)-2-diagnosable for some combinational D,

Let D be the combinational detector which realizes the function

specified by the following table:



&

z

S
w)
N

000
001
010
011
100
101
110
111

= O O O O O O =

Thus a faiﬁlt is indicated if and only if the detector observes
that the system it is monitoring has entered one of the two unreach-
able states 000 and 111.

It is instructive to view the action of M in 3-dimensions as
shown in Fig. 7.2. 1In this figure the action of the unreachable (or

"error indicating’') states have been omitted for clarity.

n111

® 011

Fig. 7.2. 3-Dimensional View of M
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Note that any single memory stuck-at-0 fault will cause the
resulting faulty system to enter state 000 within 2 time stei)s of its
occurrence. Similarly, the state ]..1.1 will be entered within 2 time
steps of the occurrence of a stuck-at-1 fault. Hence (M, Fm) is
(D, 2)-25diagnosab1e. This homing action after a fault occurs is il-
lustrated below in Fig. 7 3. This figure shows the state graph of
M' where f= (M', 7, §) isa fault of M caused by the memory
element cor.responding to the second coordinate of the state-assign-

ment becoming stuck-at-0,

100

000

Fig. 7.3. State Graph of M'

The essence of the technique used in this example is to find a
state-assigned realization with the property that any single memory
stuck—at-fau1£ will cause the resulting faulty machine to enter into
a normally unreachable state. This is a generalization of the basic

mechanism for diagnosis used by any scheme which involves encoding
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the i'eachable part of the state set into a single error detecting code.

Having looked at the binary state -assigned level of structural
detail, let us now turn briefly to the logic circuit level. A system

possesses structure at the logical circuit level if a representation

of the system is given in terms of a logical circuit composed of
primitive logical elements. These may be of the AND-OR variety,
threshold elements, or any similar elements of a "building block"
nature depending upon the technology being considered. This level
is useful for investigating failures in the primitive components.

The circuit in' Fig. 2.2 is an example of a structural representation
at this level and the failure of this circuit discussed in Example 2. 2
is a simple example of the analysis that can be conducted at this
level.

Further work could also be performed at the network level of
structural detail which was introduceci in Chapter VI. At this level
one could study the problem of implementing on-line diagnosis on a
whole computer whereas with the other levels the emphasis would
be on diagnosing one module. Note that in our definition of diagnosis
the detector is not constrained to give simply a yes-no response.

It could also provide extra information for use in automatic fault
location. Thus, at this level, the problem of which subsystems must
be explicitly observed by the detector to achieve some desired fault

location property could be studied.
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.One problem that requires extension of our present model (at
any structural level) is the problem'of a,utomatic reconfigufation
of the system under the control of the detector. To stﬁdy this
problem, the model used would have to allow for feedback from
the detector to the system it is observing. The question of how such
an extension should be made is an interesting one and, if answered
satisfactofily, could serve as a basis for a systematic investigation

of reconfiguration techniques.



APPENDIX

Resettable Machine Theory

The goalof this appendix is not to study the theory of resettable
machines per se but rather to cover that part of it which is used in
this study of on-line diagnosis. The theory of resettable machines
follows closely the theory of sequential machines. The main
differences in the definitions stem from the presupposition that a
resettable machinel is reset before every use. One consequence of
this is that the "unreachable' states of a resettable machine are
always ignored.

We begin by repeating here the bé.sic machine notions introduced
in Chapter IL

Let M be a résettable machine. The reachable part of M,

denoted by P, is the set
P = {5(p(r),x)]r € R, x € I*} .

M is reachable if P =Q. M is f-reachable if

P = _{6(p(r),x)]r €eR, xeT*and x| < 2} .

Let M, M' ¢ M(I, Z,R). M is equivalent to M' (written M = M')
if Br = B;. for all r ¢ R, Two states qgeQandq' e Q' are
equivalent (g = q") if Bq = Bc'l,. It is easily verified that these are

both equivalence 'relations, the first on (I, Z, R) and the second on

156
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the states of .machines in M, Z,R). M is reduced if for all
4,9' ¢ P, q = q' implies q =q". .

If M and M' are two resettable machines then M realizes M' if
there is a triple of functions (01,02,03) where o, (I')Jr —1isa

semigroup homomorphism such that 0. (I"') € 1, 0,: R' =R,
1z

2
Og: Z"' —> Z' where Z" € Z, such that for all r' ¢ R’ B;_, =
O3 ° Baz(r’)'é 91 .
The following result is analogous to the result due to Leake [23]
which was cited in Section 2. 2. It supplies an alternative,

and structurally oriented, definition of realization.

Theorem A.1: Let M and M' be two resettable machines with reach-

able parts P and P'. M realizes M' if and only if there exists a

4 -tuple of functions (nl, Ny, N3 n4) where

. 1

ny I'—1
. t

n2. R'—R
- t

n3. Z—=7

g P'>PP) - ¢ (PP = {x|x P}
such that
i) 6(n4'(p1),n1(a)) C n,(6'(p",a)) for allp' ¢ P'anda e T’
ii) né(h(p,nl'(a))) = M(p',a)forallp' e P, aeI', andpe n,®')

iii)p(nz(r')) € n4(p'(r')) for all r' ¢ R',
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Proof: (Necessity) Assume that M realizes M'. Then there exists
an appropriate triple of functions (01,02,0‘3) such that BL,(X) =

03(60 )(ol(x))). Therefore

o’
B[;:(rr)(u‘f) = 03(6;}(0'2 (r'))(cl(uv)))
)+

for eachr' e R', ue ([')* and v € (1" Hence,

o i .

Bﬁ'(p'(r'),u)(v) 03(65&)(0'2(1")),0'1@))(01 v)) .
Thus for each p' € P' there is a p € P such that

Bylv) = a3(B (@) .
Consider n,: P' — FP(P) - ¢ defined by
né(p') = {p € Plﬁi)v = 03 e Bp °01}
and consider ny: I = 1 defined by
nl(a) = ol(a).

Claim: The 4-tuple (nl,cz,oé, n4) where o*é is an arbitrary extension
of 04 to Z satisfies i), ii), and iii).

i) Letpe ny(p'). We must show &(p, ny(a)) € n, (8" (p', a)).
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ﬁ’ar(pv,a)(x)' = Pbt(xa)

03(Bp(01(xa)))

= 0308505 ¢ (@)@ 16N

p,04()

= Us(ﬁa(p, nl(a))(cl(x))) .

Hence, 6(p,n;(a)) € n,(6'(p", a)).

ii) Letp € n,(p'). We must show
a3(p,n @) = Alp',a).
A(p',a) = Bi),(a)
= 04(8,(n @)
= oy, 7, @) .
i) Letr' < R'. We must show play") € ny o' (x").

B;.f(x) = 03(6

oz(r')(cl(x)))

implies

PO €y 0" ) .
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(Sufficiency) Suppose there exists functions (nl, Mgs Mg, n4) as in the
statement of the theorem. Let 01: ﬁ)+ - I+ be the natural exten-

sion of n, to sequences. t'hat is, cl(al. .. an) = nl(al). .. nl(an).

Claim: M realizes M' under (01’n2’ n3). Consider ¢(: P'— P
where
t(p') = somepe ny(p') such that

plny(r')) = ¢ ('(x")) for all r' € R'.
Let x =ya where a € I. Then
n3(3n2(r,)(01(x))) = n3(Bp(n2(r,))(cl(x)))

= 3B (51 (pry) @1 &)
= Ny (€ (o'(r"),0,()),0,(a)))
= n3(h(p,01(5))) where p € n,(6'("r), y))
= A3 e'(r"), y),a)

BL.(r.)(ya)

= Bk

This completes the proof of Theorem A. 1.
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The next theorem states that if two reachable states of a state
machine M mimic the same state of another state machine M', then
for any given i'nput the states that they go to under the transition

function 6 also mimic the same state of M'.

Theorem A.2: Let M be a state machine which realizes a state

machine M' under (01,02,0‘3) where 0 is onto. Then for all a;

qg¢ Pandacel, 03(q1) =0q (qz) implies 03(6(q1, a)) = 03(5((12, a)).

Proof: Letq;, g, ¢ P and assume that qs(ql) = 0'3(q2). Say that q; =
b(p(rl),ul) and qq = G(p(rz), ug)' Since M realizes M', for all

f t o i3 o — . 1 .
r' e R, 0q porz(r') oy ,ur'. Since M and M' are state machines,
forallr' e R'and x" € (I')*,

Ga(é(o(oz(r’)),crl(x')))_ = 8'p'"),x") .
Let a € I and denote cl(x’) by x and cz(r') by r. Then
03(5((11:3-)) = 03(60)(1‘1)’1113-))

1 L] 1 1 1
6'(p'(r}),uja’)
5'(6'(0'(r}), u}), )

] ]
5'(0a(6p(ry)suy)),a’)

i

6'lvglay),a’)
Likewise, 04(5(a,, ) = 6'(04(q,),a'). Since og () =04 (qz) it now

follows immediately that 03(6 (ql,a)) = 03(6 (q2’ a)).
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Thebrem A.3: If Mrealizes M' and M' is reduced and reachable then

Q] > Q.

Proof: Assume that M realizes M' under (crl, 02,03) and that M’

: r ° t
is reduced and reachable. Then ‘Br = Oq o Boz(r) oy for allr € R',
Let q' € Q'. Then there exists r € R'and x € {I')* such that

q' =8"p'(r).x). Now

B(‘l'(_y) = p:‘i'(p'(r),x)(y}

B (xy)
= 03 (Bo.z (r) (UI(XY)))

= 73800, ), 0, ) O1 OV

Hence there exists a function { from Q' into Qsuchthat for eachqg'e Q,

' = =] | [=]
Bql = 0'3 Bf(qf) Ul-
To prove that |Q] > |Q'|, it suffices to show that f is 1-1. Let

44,95 € Q' and assume that f(ql) = f(qz). Then B('ll =0g o Bf(ql)ml =

c - Since M' is reduced and reachable this implies

o o J =3
3° Fiay) " T17 R,
that 4y =dy. Hence f is 1-1. This establishes the result. .

Theorem A.4: The relation "realizes" istransitive. That is, Mrealizes M

and M' realizes M" implies M realizes M".
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Proof: (Sketch) Assume that M realizes M' under (01,02,03) and
that M' realizes M under (0 2, é). Lhen ﬁ' 1 = Og o 3A (r') °oQ
for all r'’ € R' and B",, = o a ( ,,) for all r'' € R", | It follows
that B;',, = 0'3 °0g o B ( ( ,,)) '1 That is, M realizes

M'" under (01 0 1, P 2, é o 03).

If M and M’ are resettable machines then M is isomorphic to M'

if there exist four 1-1 and onto functions

w,: I-=>1
wz: R —R'
wg! Z—= 7
- 1
Wy * P—P

such that for allr € R, a€l, andge P

1) w,(6(q,a)) = 6'(wy (@), w (a))
ii) ws(A(g,a)) = 2w,y (@), wy (a))
i) w, ) = p'lwy(r)) .

The 4-tuple (wl, Wo, W, w4) is called an isomorphism of M onto M'.

H M, M'e (I, Z,R) and (e,e,e,w4) is an isomorphism of M onto M’,

then M is strongly isomorphic to M'. A basic result of sequential

machine theory states that for every machine there is an equivalent

reduced machine and that this machine is unique up to strong
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isomorphism. The corresponding result for resettable machines is

given by Theorem A.5 and Corolléry A 6.1,

Theorem A.5: For every resett able machine M there is a reduced

and reachable machine MR equivalent to M.

Proof: Let M = (,Q,Z 8,1, R,p) and let My = (L, Qg, Z, 5, Ag, RiPg)

where

Qg = {lallae P} (al={a'la’ = a})

]

sgp(ala) = [6lg,a)]

Mg, a)

rg{ala)
prlc) = [plr)]

To prove this result we must verify (1) that 6., and An are well-

R

defined, (2) that MR is reduced and reachable, and (3) that M = MR'
The details of this proof are very similar to the details of the
corresponding result in sequential machine theory. They may be

found in many textbooks which cover this theory (e. g., see Arbib

[2].

MR as defined above is called the reduction of M. M'is a

reduced form of M if M' is reduced and M = M".

Lemma A.1: M

M' implies Bé(p(r),x) = B:S'(p'(r), %) forallr e R

and x € I*,
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Proof: Letael, x,y¢I*andreR. Then
M = M = § (xya) = f (xya)
= A6((r),xy),a) = A'(&'('(r),xy),a)
=> A6(6{p(r),x),y),a) = A'(E'(6'(p'(r),x),y),a)

= Boo), 0 T Fpr(e), ) -

Theorem A.6: If M and M' are both reduced and M = M’ then M

is strongly isomorphic to M'.

Proof: Assume that M and M' are reduced and that M = M'. We

know that each q € P is representable in the form 6((r),x). Define
wy: P— P! by
w4(6(p(r),x)) = &' (), x). . .

Claim: M is strongly isomorphic to M' under (e, e, e,w4). We must
show that Wy is well -defined, 1-1 and onto and that for allr ¢ R,
aclandge P

i) w4(6(q,a)) = 6'(w4(q),a)
ii) A-(q! a-) = }L,(w‘i(Q): a-)

i) w o) = o).
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In the following w4(q) is denoted by q".

Well-defined: Let p =08(o(r),x) and q = 6(o(s),y), and suppose that

p =q. Then Bo(p(r),x) = Bé(p(s),y) and thus by Lemma A.1, B:S'(p'(r),x) =
H:S'(p'(s),y)' That is, Bi), = B(':!,. Since M' is reduced and p', q' ¢ P' it
follows that p' = q'. Hence Wy is well-defined.

1-1: Againletp = 5(p(r),x) and q = 6(p(s),y) but now suppose that
p # q- Then by reapplying the above arguement p' #q'. Hence,
Wy is 1-1.

Onto: Since every q' € P' is representable in the form 5''(r), x)

w, is onto.
4

That i), ii), and iii) are satisfied is straightforward to verify.

Corollary A. 6.1: The reduced form of M is unique up to strong

isomorphism. That is, if M' and M"" are reduced forms of M then

M' is strongly isomorphic to M.

Proof: If M' and M'" are reduced forms of M then M = M' and
M = M". Hence M'= M". Since M' and M'' are both reduced, by

Theorem A. 6, M' is stroungly isomorphic to M",

Theorem A.T7: If M = M' then M realizes M'.

Proof: M = M' implies Br = B; for allr € R. Heuce M realizes M'

under (e,e, e).
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A reseltible machine M Is autonomous it [1] = 1,
Given a resettable machine M, two input symbols a,b ¢ I are
equivalent (a = b) if A(q,2) = A(g,b) and &(q,a) = G(q,b) for all q € P.

M is transition distinct if no two of its input symbols are equivalent.

Any machine which has equivalent inputs is redundant in the sense
that the inputs in an equivalence class can be represented by any one
of its members without affecting the capabilities of the machine. Tﬁe
following result gives an alternative characterization of equivalent

inputs.

Theorem A. 8: Let M be a resettable machine, and let a,b € I. Then

a = b if and only if for all x,y € [*andr ¢ R,Br(xaj() = Br(xby).

| EEO_Of: (Necessity) Suppose a = b and assume, to the contrary,

that Br(xay) # Br(xby) for some r € Rand x,y € I*. Letq = 6(p(r), x).
Now, Br(xay) £ Br(xby) iinplies Bq(ay) %Bq(by). Hy = A then

xg,a) # AMq,b). Iy e I* then Bﬁ(q,a)(y) # Bﬁ(q,b)("') and hence
é{g,a) 7 5(q,b)_. Therefore a Z b. Contradiction. Hence a = b
implies Br(xay) = Br(xby) for allx,y e I*andr € R.

(Sufficiency) A:ssume that a #b. Then for some q € P, Alg,a) #
A(g,b) or &(q,a) ¥ 6(g,b). Letq =8({p(r),x). Then A(6{p(r),x),a) #
A{5(p(r),x),b) or d(p(r),xa) 7 6(p(r),xb). Hence Br(xa) £ Br(xb) or
for some y € I, Br(xay) # Br(xby). Therefore if Br (xay) = Br(xby)

forallr e R, andx,y € I* then a = b.
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