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FOREWORD

The work described in this report was performed at the Grumman Aerospace

Corporation, Bethpage, New York, and administered by the Vibration Section of the

Structures and Dynamics Division, NASA Langley Research Center, Hampton,

Virginia.

The work performed under NASA Contract NAS1-10635-13 included the con-

struction and delivery of the 1/8-Scale Shuttle Model External Tank and the genera-

tion and delivery of a NASTRAN hydroelastic model of this tank. Prior to the manu-

facture of the model, the Space Division of Rockwell International funded a design

effort to modify the forward attachments of the External Tank (ET) to the Solid

Rocket Booster (SRB) so that they more closely represented the prototype attach-

ments.

After it became apparent that modifications in NASTRAN hydroelastic formula-

tion were advisable, additional funding was provided by the Space Division of Rock-

well International to partially support the developments described in Section 4. Al-

though not part of the task under NAS1-10635-13, Section 4 is included as informa-

tion for potential NASTRAN users.

Many persons at Grumman and NASA Langley have contributed to the various

phases of this program. The technical assistance and direction of Dr. L. P.

Pinson and Mr. U. J. Blanchard of the NASA Langley Research Center is grate-

fully acknowledged. The following persons contributed significantly to this effort

at Grumman:

• Master Agreement Program Management: E. F. Baird

• Task Order Management: M. Bernstein

• Design and Manufacturing Liason: A. P. La Valle

• Stress Analysis: W. P. Bierds

• Manufacture of Model: R. A. Wagensell
• Model Final Assembly: M. Gack, G. .Stevens
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• NASTRAN Dynamic Analysis: M. Bernstein, J. Zalesak, P. W. Mason,
D. Gregory

• Modification of Hydroelastic Formulation: R. Coppollno

• NASTRAN Modification: R. Coppolino and A. Levy

• Shell Analysis: V. Svalbonas

This report consists of two volumes as follows:

• Volume I - Technical Report

• Volume II - Supporting Data
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ABSTRACT

This report describes a NASTRAN analysis of the external tank (ET) substructure
of the 1/8-scale space shuttle structural dynamics model.

The NASTRAN hydroelastic procedures were used to form a model of the liquid
oxygen portion of the ET. Large computer storage requirements and running times
were required unless these procedures were modified. Several possibilities were
demonstrated including the substitution of the real for the complex eigenvalve routine
and the use of the OMIT capability to reduce the number of fluid coordinates.

A NASTRAN model of the complete ET was then formed and reduced to 252
degrees of freedom using these procedures. A review of the eigenvector extracted,
using the unsymmetrical inverse power method, indicated that the structural OMIT's
resulted in unsatisfactory modal deflections. More basic modifications to the
NASTRAN hydroelastic capability appeared necessary to generate a successful ET
model.

An approach is described which, by assuming incompressibility, reduces the
fluid representation to a symmetric mass matrix which can be added to the structural
mass. The problem can then be solved using faster and more efficient eigenvalue
routines. Using this approach the ET NASTRAN model was analyzed for three
separate weight conditions. Computational efficiency was good, averaging less than
1 CPU minute for each mode;



NOTE

This report is one of a series describing analytical work at

Grumman on the 1/8-Scale Structural Dynamics Model.
The other reports are:

• Analytical and Experimental Investigation of a 1/8-Scale

Dynamic Model of the Shuttle Orbiter;

Volume I, "Introduction" - NASA CR 132488

May 1974

Volume II, "Technical Report" - NASA CR 132489

July 1974

Volume HIA, "Supporting Data" - NASA CR

132490 May 1974

Volume HIB, "Supporting Data" - NASA CR

132491 May 1974

• Development of Technology For Modeling of a 1/8-Scale

Dynamic Model of the Shuttle Solid Rocket Booster (SRB)

- NASA CR 132492 July 1974
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ABBREVIATIONS

ALARM | computer programs to solve eigen-value problems

FEER ] of very large size

ALTER modification of NASTRAN rigid formats

DOF degrees of freedom

ET External Tank

LH liquid hydrogen
£

LO liquid oxygen
^

MFC multiple point constraint - NASTRAN

NASTRAN NASA Structural Analysis System

SPC single point constraint - NASTRAN

SRB Solid Rocket Booster
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DEVELOPMENT OF TECHNOLOGY
FOR FLUID-STRUCTURE INTERACTION
MODELING OF A 1/8-SCALE DYNAMIC

MODEL OF THE SHUTTLE
EXTERNAL TANK (ET)

By M. Bernstein, R. Coppolino, J. Zalesak, and P.W. Mason

GRUMMAN AEROSPACE CORPORATION
Bethpage, New York 11714

1 - INTRODUCTION AND SUMMARY

This report discusses work performed by Grumman under Task Order 13 of

Master Agreement Contract NAS1-10635 with the Structural Mechanics Branch,
Structures and Dynamics Division, NASA/Langley Research Center, Hampton,
Virginia.

The objectives of this task were:

• Formulation of an analytical NASTRAN representation of the significant

dynamic characteristics of the 1/8-scale model of the shuttle external
tank as specified by drawings and design details developed under

NAS1-10636-11

• Construction of the external tank model

• Participation in a comparison of experimentally determined structural

dynamic characteristics with results of the analysis, and proposing
modifications in analysis technology as required.

The NASTRAN hydroelastic analysis capability was utilized to formulate a mod-
el of the liquid oxygen tank and a separate model of the remainder of the external tank.
Early experience with this liquid oxygen tank model demonstrated the long computer
running times and large core required for a moderately complete representation.

Methods for reducing computation costs were evaluated in a small hemispherical tank

model. It was determined that both the use of the OMIT capability to reduce the num-
ber of fluid coordinates, and modifications to avoid the use of the complex eigenvalue
routine were helpful. The liquid oxygen tank lower dome representation was
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improved by a series of modifications evaluated using static pressure loading in
Rigid Format 1. The significant liquid oxygen tank modes for the zeroth and first
harmonic were calculated for symmetric boundary conditions.

The intertank skirts and liquid hydrogen tank structure was modeled initially
in Rigid Format 3. When weight representing the liquid hydrogen was added as non-
structural mass, unusual shell deformations resulted and the model was not con-
sidered satisfactory. Therefore, a hydroelastic representation of the liquid hydrogen
was added and the problem formulated in Rigid Format 7. Difficulties with the
NASTRAN System are described on page 183 of Reference 5-1.

The complete model consisting of the two tanks and the intermediate structure
was submitted for modal analysis in Rigid Format 7 at Langley. However, the prob-
lem was too large to run successfully. Simultaneously, a reduced version of the
model obtained by using the OMIT feature of NASTRAN to decrease the number of
structural coordinates and to omit all the interior fluid coordinates was submitted for
computation at Grumman. Only the zeroth fluid harmonic was permitted. One mode
at 46.5 Hz was obtained, characterized primarily by longitudinal motion. A review of
the modal deformation pattern indicated anomalous behavior associated with the use
of OMIT's of fluid loaded structure.

Development work on the external tank model was suspended at this point to
devote all available effort toward reconciling the discrepancy between measured and
calculated orbiter modes (Task 12 of NAS1-10635). It was apparent that additional
modifications in NASTRAN were required to alleviate the large computation time
requirements for the external tank.

Although not funded under this task, an approach to modifying the NASTRAN
hydroelastic analysis was developed by R. Coppolino and is noted herein. On the
basis of assumed fluid incompressibility, the fluid representation can be reduced to
a symmetric mass matrix which is added directly to the structural mass matrix. The
assembled hydroelastic problem can then be solved in Rigid Format 3 using the faster
eigenvalue routines. In addition, a harmonic reduction scheme which expresses finite
element structural deformation in terms of circumferential harmonics has been intro-
duced for tanks of revolution. This technique has been demonstrated to be more
accurate and efficient than conventional Guyan reduction for structures of revolution.
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Harmonic reduction is ideal for the NASTRAN hydroelastic analysis. Circum-
ferential displacement harmonics automatically enforces strict compatability with
the fluid which is developed in terms of the pressure harmonics. These develop-
ments, described in Appendix B, are expected to materially enhance the use of the
NASTRAN hydroelastic analysis for large problems.
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DESCRIPTION OF THE 1/8-SCALE SHUTTLE EXTERNAL TANK MODEL
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2 - DESCRIPTION OF THE 1/8-SCALE SHUTTLE MODEL EXTERNAL TANK

The 1/8-scale shuttle dynamic model is based on Grumman's parallel-burn
Space Shuttle Design 619 shown schematically in Fig. 2-1. A mockup of the 1/8-
scale Shuttle model basic configuration is shown in Fig. 2-2. Fig. 2-3 shows a
detailed structural arrangement of the prototype External Tank (ET). In simplifying
the design, a major objective was to keep the model fabrication cost within target
while retaining as many of the significant structural dynamic characteristics as pos-
sible. For the allotted funds it was impossible and also technically unnecessary to consider
an exact or "replica" model at the small scale necessary for testing in the existing
NASA/Langley facilities. Therefore, only the general characteristics of the major
external tank elements were simulated without attempting to model local details.

The external tank consists of four elements which can be physically separated
as schematically shown in Fig. 2-4. The 1/8-scale external tank is partially as-
sembled in Fig. 2-5 between supporting SRB components. The forward element of the
external tank is the liquid oxygen tank which is assembled into the intertank skirt
in Fig. 2-6. The intertank skirt provides the two support points for the model
suspension system, and the forward ET/SRB interstage connections. A short aft
skirt furnishing the aft supports for attaching the solid rocket boosters forms the last
element. The structure is described in NASA CR 112205 (Ref. 5-2), and previously
in Ref. 5-1. However, a relatively complete description is included within for
ready reference.

The scaling relationships that must exist between the model and the prototype
are indicated in Table 2-1. These follow directly from a dimensional analysis of the
various parameters that influence the dynamic behavior of the structure, and from
the choice of the model material. Extrapolating prototype behavior from model

test data is accomplished by using these scaling relationships directly. It should be
noted that because of design expediency, some of the scaling rules have been com-
promised. For example, the local skin stiffness on the model is less than the re-
quired scaled value of the prototype for preventing buckling. Some liberty was also
taken in modeling the stiffness characteristics since some lumping was necessary
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in order to avoid the large expense of exact scaling of very small dimensions. Thus,
stiffeners have been lumped to some extent but not eliminated completely. If they

were completely eliminated, since the local stiffness of me skins was not duplicated,
premature buckling would occur.

While accurate modeling of the prototype was desirable for extrapolating basic
Shuttle dynamic characteristics, another prime object of the study was the NASTRAN

dynamic analysis and its correlation with model test data. A complete static and

dynamic analysis was made using NASTRAN with the structure modeled to a degree

of refinement considered sufficient for preliminary design purposes. Thus the

need for direct scaling of the prototype design to obtain an exact model in every de-

tail was not considered crucial. It should also be pointed out that the Shuttle design

was still in a state of flux at the beginning of this study, hence any attempt to model
the then current vehicle exactly would not be overly beneficial to the Shuttle Project.
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Table 2-1 Pertinent Scaling Relationships for the 1/8-Scale Model

Physical Quantity

Length and displacements

Poisson's ratio, v

Mass density

Modulus of elasticity, E

Area

Area moment of inertia, 1

Mass moment of inertia, 1'

TT-1

Magnitude (a)

^m=J_

"m = "p

V "

EP 1

em = ep

Am /1V 1
Ap \8/ 64

'm /1\« 1
lp ~ \ 8 / " 4096

'm _ / i y i
lp \8/ = 32,768

Physical Quantity

Stress (a = Ee)

Force (F = oA)

Longitudinal stiffness, EA

Bending stiffness, E1

Torsional stiffness, GJ

Weight (W = pV)

Acceleration (F = ma)

Natural Frequency, w

Magnitude'8'

0~ = om p

Fm /1V 1
Fp \8/ = 64

<EA)m pY

(EA)p W l'C4

(E\ )^ =V8"/ = 1/4096

<GJ'm /^4
(GJ)p Uj =1/4096

Wm _ / i y 1
Wp \8/ 512

am _ 8

m _ 8

T13-KTI
aSubscript "m" refers to the model; subscript "p" refers to prototype.

2.1 LIQUID OXYGEN TANK

The 1/8-scale model liquid oxygen tank (Fig. 2-7 and Drawing AD 383-505

listed in Table 2-2) is a monocoque welded structure (2219 aluminum) consisting of:

• A quasi-elliptical aft dome

• A cylindrical portion

• A conical portion

• A removable spherical cap.
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The dome which extends from X Station 83.78 is formed from two tangential spheri-

cal segments in order to approximate an ellipse. The central 77 is formed to a

23.6 in. radius. The outer portion, to the full tank diameter of 39.75 in. is formed
from a 18.35 in. radius centered 2.2 in. away from the tank axis. The central 12
of the dome is 0. 040 in. thick to allow for installation of a pressure transducer and for
a drain/fill fitting. The remainder of the dome is 0.016 in. thick. The dome is

welded to the lower side of a machined ring and the cylindrical portion of the tank is
welded to the upper side. The central portion of the ring is a flange drilled to accept

the bolts which fasten to the intertank skirt. Above the ring the tank is cylindrical to
X Station 56.28 and then is conical to X Station 31.93 where the radius has been re-
duced from 19. 5 in. to 14 in. A sharper conical taper to X Station 23 reduces this to
an open top of 9 in. radius. The sidewalls of the tank are of constant thickness,
0.020 in. A spherical segment . 025 in. thick covers the top of the tank. The cover
segment has a cutout, and a removable cap for access to the interior of the tank.

2.2 INTERTANK SKIRT

The intertank skirt (2024 Aluminum) extends from X Station 83.78 to 113. 70.
The intertank skirt is designed with two SRB/ET interstage connections that are

representative of the proposed Rockwell International Shuttle configuration of Novem-

ber 6, 1972. This was a modification to the original Grumman design for the 1/8-
scale shuttle model. The intertank structure is designed to provide attachment points

for the model suspension system used during simulated free-body testing. The shell
is milled to three thickness (t) as illustrated in Figure 2-8 (also referto Fig. 2-6). The

heaviest regions are close to the solid rocket booster interstage attachments and the
model suspension lugs where the thickness is 0.1 in. A partial longeron which trans-
mits load from the skin to the model suspension lug and interstage connection pin re-

enforces this region. The shell thickness reduces to 0.055 in. and then to 0.025 in.

away from this region as indicated on the figure. Three ring frames are riveted to

the shell. The heaviest frame consisting of back-to-back channels is located at the
SRB/ET interstage (X Station 99.98). This ring frame also has a lateral strut ex-

tending between the interstage points to distribute the forward SRB loads. The other

two are single rings and are located at approximately the quarter points along the

length. These were added to minimize buckling. Riveted construction is used through-
out. The intertank skirt is shown attached to the liquid hydrogen tank in Fig. 2-9.
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Table 2-2 Drawing Descriptions of 1/8-Scale Model

Drawing Number

AD383-502 A

•505 N/C

•506 N/C

•507 A

508 N/C

-514 N/C

-515 A

516A

-b17N/C

•518 N/C

-541 N/C

•542 N/C

•543 N/C

•544 N/C

•545 N/C

•546

-568

Description

External Tank Assembly

L02 Tank Assembly (2 sheetsi

Intertank Skirt Assembly

LH2 Tank Assembly (2 sheets)

Aft Skirt Assembly

LH2 Tank Fitting Installation

Rings for External Tank

Intertank Skirt Frame Assembly

LH2 Tank Frame Assembly

External Tank Aft Skirt Frame Assembly

Intertank Skirt Assembly (NAR Configuration)

Frame Installation Intertank Skirt (NAR Configuration)

SRM Forward Skirt Assembly (NAR Configuration)

Thrust Fitting-lntertank Skirt (NAR Configuration)

Thrust Pin (NAR Configuration)

Comparison NAR Shuttle Configuration and 1/8-Scale
Dynamic Model

ET and SRB Measurements

NOTE:
1. Copies of each of the above drawings have been submitted separately to NASA/Langley

and to Rockwell International.

2. These drawings are available from the Vibration Section, Structures and Dynamics
Division. NASA/Langley Research Center, Hampton, Virginia 23365.

T14-1ITI
T13-2IT)

-60° -40* -20° 0° 20° 40° 60°

A = 0.003 in.1

J

I = 0.056 in.4

A = 0.404

l_J

r—i
I - 0.346

A = 0.202
f—i

I = 0.173

X STA 83.78

MODEL SUSPENSION LUG

X STA 99.98

T13-8

SRB INTERSTAGE
CONNECTION PIN

Fig. 2-8 1/8-Scale Model Intertank Skirt - Developed View of One Side

XSTA 113.70
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2.3 LIQUID HYDROGEN TANK

The liquid hydrogen tank is a ring frame stiffened cylinder (2024 Aluminum)
of riveted construction extending from X Station 113. 7 to X Station 258.125, shown
schematically in Fig. 2-4. Figure 2-9 is a photograph of the partially fabricated

tank showing the internal members. Three major ring frames provide support

for the orbiter attachment while six others are inserted to minimize buckling.
The cylindrical portion of the skin is milled to be 0.025 in. on the side
adjacent to the orbiter and 0. 016 in. at other locations. The front and back domes are
0.020 in. and are the same dimensions as that on the liquid oxygen tank. The
lower dome is attached with removable fasteners for access to the interior. There

are three major ring frames formed from back-to-back channels while the others

are single angles. The aft major frames of X Station 229.156 and 245.536 are re-
enforced by internal struts in a triangular pattern to distribute the orbiter load.

These struts are also formed from channel sections fastened together. Fittings for
attaching to the orbiter including a drag support and two struts in the Z direction are
included as part of the tank (Fig. 2-10).

2.4 AFT EXTERNAL TANK SKIRT

The aft skirt is a simple riveted cylindrical extension (2024 Aluminum) of the liquid

hydrogen tank. There is an interior stiffener frame (single angle) and an aft frame
(back-to-back channels) which contains two lateral struts for distributing the aft
SRB loads. The aft skirt attached to the liquid hydrogen tank is shown in Fig. 2-11.

2.5 DIMENSIONS

Numerical dimensions of all parts of the external tank may be determined from

the drawings listed in Table 2-2. During the manufacture of the model, dimensions

of various parts were measured. These are listed on a three sheet drawing, "ET and
SRM Measurements". All drawings have been submitted to the NASA Langley Research
Center along with the NASTRAN model.
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T13-10

Fig. 2-10 View of Partially Assembled Liquid Hydrogen Tank
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T13-11

Fig. 2-11 View of Assembled 1/8-Scale Model Aft Skirt Attached to Liquid Hydrogen Tank
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3 - NASTRAN MODEL AND RESULTS

3.1 INVESTIGATIONS OF HYDROELASTIC ANALYSIS IN NASTRAN USING A

SMALL HEMISPHERICAL TANK MODEL

In developing and conducting the hydroelastic analyses of the 1/8-scale model

tanks, a series of exploratory calculations were made using NASTRAN models of

small hemispherical tanks. One of those analyzed had a 10 in. radius and walls of
0. 022 in. aluminum for the upper 45 degrees, and 0. 028 in. aluminum for the lower

90 degree segment including the apex. Boundary conditions in the analysis consisted

of fixing five of the coordinates at the equator and permitting the shell to rotate about

the tangential direction. These tank dimensions were selected to approximate one

of a series tested at SWRI and reported by D. D. Kana and A. Nagey in May 1971

under contract NAS8-30167. The NASTRAN model (Fig. 3-1), consisted of 19 fluid

rings and 22 grid points to represent a 45 DOF segment of the tank. QUAD2 bend-

ing and membrane quadrilateral elements were used for the shell and TRIA2 bending

and membrane triangular elements for the apex. The Analyses Displacement Set

consisted of 114 DOF including 38 for the fluid (half for the Oth and half for the 4th

cosine harmonic). The Oth harmonic was selected to agree with the test data and

technique. Testing was limited to vibration of the entire tank parallel to the axis

through the apex of the hemisphere. The fourth harmonic was added because it was

the next highest compatible with the symmetric boundary.conditions, and it was advis-

able to include at least two harmonics in this check problem. Only symmetric

boundary conditions were run. Some of the calculated mode shapes for this model

are shown in Fig. 3-2 through 3-6. The deflected shapes for the Oth harmonic show

reasonable agreement with reported experimental data but the frequencies are 10 to

25% higher as shown in the table on the following page.
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Comparison of Nastran Model and Experiment

No. of
Nodal
Circles

2 (Near Boundary)

2

3

4

SWRI
Measured
Frequency

Hz

750

1310

1510

1760

NASTRAN
Calculated
Frequency

Hz

940

1335

1714

2074

I ncrease

1.25

1.10

1.13

1.18

T13-KT)

The disagreement could be due to the assumptions concerning the thickness of the

tank or the boundary conditions at the support. The major purpose of this small

model was to investigate the readiness of NASTRAN hydroelastic analyses as re-

quired to support the 1/8-scale model. The small size and low computation costs

were a decided advantage. The agreement between calculated and measured mode

shapes and the approximate agreement in frequencies was sufficient to proceed in

evaluating various computational possibilities as discussed in the following para-

graphs.

The basic difficulty in assembling a suitable model was the high core and long

computation time required in the direct application of the NASTRAN hydroelastic

analyses to the 1/8-scale liquid oxygen tank. It was also obvious that the combined

liquid oxygen and hydrogen tanks model would be too large, therefore, reductions in

both the computer core requirements and running time were mandatory. Mr. R. E.

Gillian of NSMO at NASA Langley suggested reducing the required core size by set-

ting up the eigenvalue problem as an unsymmetric real matrix using the READ module

from Rigid Format 3 in place of the CEAD module required in Rigid Format 7. This

step could halve the core requirement for the eigenvalue portion of the analysis. Dr.

R. Coppolino of Grumman suggested considering the fluid incompressible (Appendix B)
and employment of structural harmonics as well as fluid harmonics.
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NOTE: (1) 45° SEGMENT USED (SEE SKETCH ON TABLE 3-2).
(2) UNDERLINED NUMBERS ARE FLUID RINGS, REMAINDER ARE STRUCTURAL GRID POINTS.

T13-12

Fig. 3-1 NASTRAN Model of Small Hemispherical Tank
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COMPLEX EIGENVALUE ANALYSIS - INV POWER
939.6 HZ

41

PRESSURE PLOTTED ON SPHERICAL RADIUS
(1 IN. = 1.0,OTH HARMONIC)

DEFLECTION
(1 IN. = 10"")

750 Hz

EXPERIMENTAL DATA

T13-13 Fig. 3-2 First Mode of Small Hemispherical Tank
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COMPLEX EIGENVALUE ANALYSIS - INV POWER
1335.4 HZ

15

22

16

\
23

29

10

17

24

\

PRESSURE PLOTTED ON SPHERICAL RADIUS
(1 IN. = 1.0, OTH HARMONIC) DEFLECTION

(1 IN. = 10"*)

EXPERIMENTAL DATA

T13-14
Fig. 3-3 Second Mode of Small Hemispherical Tank
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COMPLEX EIGENVALUE ANALYSIS - INV POWER
1713.7 HZ

41

PRESSURE PLOTTED ON SPHERICAL RADIUS

(1 IN. = 1.0, OTH HARMONIC)
DEFLECTION

(1 IN. = 10"")

EXPERIMENTAL DATA

T13-15 Fig. 3-4 Third Mode of Small Hemispherical Tank
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COMPLEX EIGENVALUE ANALYSIS- INV POWER
1853.2 HZ

22

28

37
33

16

23

29

10

17

24

11

PRESSURE PLOTTED ON SPHERICAL RADIUS

(1 IN. = 1.0, 4TH HARMONIC)

16 17 18
(1 IN. = 10'4)

23— —

30

21

T13-16
Fig. 3-5 Fourth Mode of Small Hemispherical Tank
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COMPLEX EIGENVAUUE ANALYSIS - INV POWER
2074.1 HZ

15

22

28

16

23

29

10

17

\
24

PRESSURE PLOTTED ON SPHERICAL RADIUS

(1 IN. = 1.0, OTH HARMONIC)

\
4138 -• ^ X

DEFLECTION

(1 IN. = 10"*)

EXPERIMENTAL DATA

T13-17 Fig. 3-6 Fifth Mode of Small Hemispherical Tank
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An immediate method for implementing me latter suggestion is to OMIT all
interior fluid coordinates. This is equivalent to assuming an incompressible fluid as
may be noted from Equations 4 and 5 of Appendix Bl, A more conventional method

for reducing the problem size is to OMIT structural coordinates, although this is a
questionable procedure for a uniformly loaded shell. All three procedures were

evaluated in the hemispherical tank model by modifying it into various sets as follows:

(refer to Fig. 3-1).

• Set 1 - The READ (real eigenvalue) module was substituted for the CEAD

(complex) module in Rigid Format 7

• Set 2 - The interior fluid elements (RINGFL 8, 9, 15, 16, 22) were set up

for Guyan reduction using OMIT 1 cards

• Set 3 - A moderate number of structural coordinates (13, 26, 35) along the

tank shell between boundaries were set up for Guyan reduction

• Set 4 - A larger number of structural coordinates including all those along
the tank shell between boundaries (13, 20, 26, 31, 35, 39) were setup for

Guyan reduction

• Set 5 - Finally, portions of Steps 2 and 4 were combined to reduce the size of

the model.

A comparison of the eigenvalues obtained for these various models is listed in
Table 3-1. There is agreement among all models for those modes which involve

motion in the 4th fluid pressure harmonic because this induces a pressure node along

the meridian line where the structural points are omitted. This occurs in the 4th,

6th, 8th and 9th eigenvalues. Review of the mode shapes indicates a node line through

the location of the omitted structural coordinates. These modes therefore, do not

evaluate the effect of omitting coordinates. Comparison of the other modes indicates
that omitting interior fluid coordinates (at grid points 8, 9, 15, 16, 22) did not change

the eigenvalues as may be seen by comparing Sets 1 and 2 and Sets 4 and 5. In other
work, when omitting both interior and boundary fluid coordinates it was found that the
eigenvalues changed by small amounts in the lowest modes and significant amounts at
higher frequencies.
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Table 3-1 Comparison of Eigenvalues for Various Modifications

Base

CEAD

1 939.6

2 1335.4

3 1713.7

4 1853.2

5 2074.1

6 2229.8

7 2356.7

8

9
10

11

Aset-114

Time (minutes)

Sys 26.2

Cpu 5.3

Set1

No
Omits

939.7

1335.5

1713.9

1853.2

2074.2

2229.8

2356.3

2571.2

2873.4

-

3695.0

93

Set 2

5 Fluid
Omits

939.7

1335.5

1713.9

1853.2

2074.2

2229.8

2356.3

2571.2

2873.4

—

3659.0

83

Set 3

3 Struct
Omits

997.9

1486.0

1848.1

1853.2

2348.9

2229.8

-

2571.2

2873.5

3058.6

3754.5

78

Set 4

6 Struct
Omits

1059.5

1756.7

-

1853.2

—

2229!8

—

2571.2

2873.5

3203.8

3768.4

63

SetS

6 Struct +
5 Fluid Omits

1058.9

1753.4

—

1853.2

—

2229.8

—

2571.2

2873.5

3199.7

3764.9

74

12.4

2.6
11.0

2.3

12.3

2.6

7.4

1.7
14.9

2.7

Note: The Inverse Power Method in Release 15.5 was Used for All Calculations.

T13-3IT)

Table 3-1 also permits comparison of eigenvalues obtained by omitting only
structural coordinates. Set 1 differs from the Base set by having all rotations about
coordinate 5 (tangential motion) omitted. This produced no calculable change in
eigenvalues or vectors as was anticipated. In Set 3, three grid points located as

sketched in Table 3-2 (13, 26, 35) had the remaining 5 coordinates omitted so that

they were unconstrained by any applied forces. Set 4 was run with all structural

points on the same meridian omitted (13, 20, 26, 35, 39). This magnitude of reduc-
tion would be necessary to reduce the current external tank model to about 200 DOF.

There is a noticeable shift in the lower frequency eigenvalues and a change in the
eigenvectors. Table 3-2 also compares the relative responses in the first mode. The

radial and axial deflections change at locations where the coordinates are omitted.
Tank fluid pressures at the boundary do not change much at the higher modal pressure

locations.
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Calculations indicate the READ module could be substituted for CEAD at a con-

siderable savings of computer time nor did omitting all interior fluid coordinates
change the computed eigenvalues or eigenvectors. The inaccuracies inherent in
omitting tank coordinates with significant fluid loading is also apparent.

Table 3-2 Comparison of Shapes of First Hydroelastic Mode for Various Model Modifications

Axial Deflection

Coord

12

13

14

19

20

21

25

26

27

30

31

32

34

35

36

38

39

40

41

Set1

0.36

0.36

0.36
1.51

1.51

1.51

4.04

4.04
4.04
6.50

6.50

6.50

8.56

8.56

8.56
9.19

9.19

9.19
9.14

Set3

0.30

0.32

0.30
1.33

1.33

1.33

3.73

2.32
3.73

6.60
6.60

6.60

8.80
6.59

8.80
9.58

9.58

9.58

9.53

Set 4

0.26

0.26

0.26

1.19

0.85

1.19

3.49

2.02
3.49

6.11

3.72

6.11

8.89

6.88

8.89

9.83

9.81

9.83

9.78

Set 2

0.36

0.36
0.36

1.51

1.51

1.51

4.04

4.04
4.04

6.50
6.50

6.50

8.86

8.56

8.56

9.19

9.19

9.19
9.14

Tank Wall Fluid Pressure
11

18

24

29

33

37

16

182

471

761

959

1000

8

127

387
741

950

1000

22

92

346

656

944

1000

16

182

471

761

959

1000

Radial Deflection

Setl

2.31

2.31

2.31

1.96

1.96

1.96

2.12
2.12

2.12

-.70

-.70

-.70

-.70

-.70

-.70

-.10

-.10

-.10

—

SetS

2.35

2.26
2.35

2.19

2.19

2.19

0.59

2.00
0.59

-.63

-.63

-.63

-.66

-.66

-.66

-.10

-.10

-.10
-

Set 4

2.28
1.83

2.28

2.31

2.22

2.31

0.66
0.18

0.66
-.40

1.02

-.40

-.66

0.02

-.66

-.10

-.01

-.10
-

Set 2
2.31

2.31

2.31

1.96

1.96

1.96

2.12
2.12

2.12

-.70

-.70

-.70

-.70

-.70

-7.0

-.10

-.10

-.10

-

* Schematic Loca-
" — yP îk--' '3 I4 tion of Grid Points

I *4#p&''
1 S:$&-r» -

• Fluid Points are
32 circled.
15

T13-41T)

3-11



3. 2 LIQUID OXYGEN TANK MODEL

The liquid oxygen tank shell structure is represented by QUAD2 and TRIA2 bend-
ing and membrane quadilateral and triangular elements. The size of the elements
used was a compromise between a reasonable representation of the simpler shell
modes and the necessity to reduce the number of DOF's for the model. Therefore,
a 22-1/2 degree arc length was selected for the span of each shell element giving 8
grid points about a semi-circle. Figure 3-7 represents the current model. The
number of diametrical circles necessarily corresponds to the number of exterior
fluid rings used. Two were selected for the cylindrical portion to maintain panel
aspect ratios close to one for most locations. The dome representation was con-
sidered most important and 6 fluid rings were used in the original model, therefore
6 diametrical circles were used and the apex point was connected by MFC's. This
original dome representation is depicted in Fig. 3-8. Previous work on a small
hemispherical dome with uniformly spaced fluid rings resulted in an irregular defor-
mation pattern close to the apex point, therefore, the lowest fluid rings were placed
as shown. The dome representation was later modified as discussed below. Four fluid
rings were used for the top conical section of the tank which was considered less sig-
nificant than the dome; three interior fluid rings were used throughout most of the tank.
Close to the bottom of the dome, where the pressures were most important, the fluid
elements were made smaller (Fig. 3-7).

This model, which consisted of about 740 DOF's in the analysis set (50 fluid
elements and 136 structural elements), was assembled into a NASTRAN model and
submitted for computer analysis after a small hemispherical tank problem similar
to that described in Subsection 3.1 had been successfully run. Difficulties encountered
with this large problem were:

1. Hydroelastic problems would not run in Level 15.5. A system 0C-1 error
occurred while executing module GKAD. This error was listed as SPR 1020.
In order to avoid this problem, Level 15.1 was used for most analyses. The
error was later fixed in Level 15.6.5 and should be correctable according
to the NASTRAN System Monitoring Office.

3-12-



76.28
\ n n •?/«(

IECE.AUZ.ATION ( Rt

OtflfatlML 2/2*Ai

T13-18

Fig. 3-7 NASTRAN Model of Liquid Oxygen Tank
for 1/8-Scale Shuttle Model
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2. Often, only a single eigenvalue was extracted using the Inverse Power
Method although more were present. This error was listed as SPR 998.

It is probably a function of the completion codes. It occurred for both Level 15.1
and 15.5. In order to avoid this problem the Determinent Method was used, which

is somewhat slower.

3. Fluid ring element numbers must be entered in ascending order and they
cannot be numbered higher than 33000. Violating the first rule results in a
fatal message that the SEQGP card references an undefined grid point.
Violating the second rule causes an 0C-5 system error in Module TAl.
These errors were listed as SPR 1017 and 1016. They were identified after
several exploratory computer runs and avoided by renumbering the fluid
elements.

Several other errors were encountered and overcome by modifying the data or
the analysis options. The problem was submitted for analvsis with only one pressure
harmonic (the zeroth) and a limited frequency sweep range requested, to reduce the

computer running time. Computer submittals for the model after it had been devel-
oped are summarized in Table 3-3. There was no reduction in coordinates attempted
in these runs. The only coordinates initially included in the OMIT set were those re-
quired to avoid singularities. Boundary conditions for this analysis consisted of re-
straints against motion in the X direction (parallel to the tank axis) at all coordinates
atX Station 83.78. A total of five elastic modes was obtained for the 'zeroth harmonic
and four for the first harmonic as indicated in Table 3-3.

The mode shapes obtained are shown plotted in Fig. 3-9 through 3-17. The
predominant characteristic is the number of nodal pressure surfaces through the
fluid, which varies from none for the lowest frequency to three for the highest.
Structural deflections are also shown. They generally tend to follow the pressure
variations. The pressures and deflections are only shown along one meridional line
since they are essentially axisymmetric for the zeroth harmonic and antisymmetric
for the first harmonic. The deflections differ from the pressure patterns at the
higher frequencies at 110 and 134 Hz for the first harmonic. At these modal patterns,
the grid point spacing is too coarse to be adequate.
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An anomalous behavior notable in the deflections is the small magnitude on the

dome at the third set of grid points from the apex. This "lank" in the deflections
along the diametrical ring through the center of the dome is obvious in the lower zeroth
harmonic modes. The pressure pattern in the first mode is quite regular and the
jlome thickness is a uniform 0. 016 in. through the adjacent grid points. A change to
0. 040 in. does occur closer to the dome center but this does not explain the deforma-

tion pattern.

Tfie near uniform pressure on the tank dome in the first mode facilitated an

analytical determination of the dome deformation under uniform pressure at reduced

computation cost. The deformation pattern obtained for the original 6 rows of ele-

ments is shown in Fig. 3-18 and the dome deformation similar to that in Fig. 3-9.

Replacing the central elements and multipoint constraints (MFC) at the apex with
triangular elements as shown in Fig. 3-19 and using CQDMEM2 quadulateral mem-

brane elements in place of QUAD2 plates, still resulted in an unsatisfactory deforma-
tion pattern illustrated in Fig. 3-20. Adding additional rows of elements for a total of
9 and modifying the geometry resulted in an improved deformation pattern (Fig. 3-21).
However, in veiw of the necessity to keep down the number of DOF's, a compromise
configuration of 7 rows of elements was attempted. The results are seen in Fig.
3-22 and 3-23. The apex deformation appear irregular and more flexible than the
adjacent dome regions, however, the remainder of the dome appears satisfactory.
This apex anomaly is not considered significant since it is expected to have little

effect on the local pressures.

The revised apex was then incorporated into the liquid oxygen tank model and

the first mode recalculated. The frequency shifted slightly from 22.9 Hz to to 23.1

Hz. The mode shape in Fig. 3-24 is an improvement over the original in the dome

region.
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Table 3-3 Summary of Computer Runs in Rigid Format 7 To Calculate
Liquid Oxygen Tank Hydroelastic Modes

Fluid
Harmonic

Specified

0

0

0

0

0

0

0

1

1

1

1

Frequency
Range

Scanned
(Hz)

8 to 24

8 to 24

16 to 40

40 to 53

40 to 72

72 to 95

95 to 135

95 to 135

72 to 95

40 to 72

72 to 13

Frequencies
(Hz)

5.2 (Slosh)

11.1 (Slosh)

22.9

None

None

75.2,91.5

115.2, 124.3

100, 134.3

None

60.5

19.2,27.3
(Slosh)

Reason
for

Termination

Out of Time

Out of Time

Out of Time

None in Range

Out of Time

No More In
Range

»
it

„

"

"

Computer (1)
System Minutes

Required

92 (Inverse Power)

63 (Determinant)

65

41

100

85

88

123.5

48

65

118

(1) Nominal Budgetary Value is $7 per System Minute (on the IBM 370/165).

T13-5(T)
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3.3 REMAINDER OF EXTERNAL TANK

The intertank skirt, liquid hydrogen tank, and aft skirt were modeled using:

• CQUAD2 bending and membrane elements for the shell

• CBAR beam elements with offsets for the frames

• CONROD rod elements for the internal struts

• CONM concentrated masses to simulate fittings and non-structural weights.

MFC was used to restrain attachment locations intended for later use when
coupling with the other parts of the NASTRAN model. Figures 3-25 and 3-26 show the

model frames and shell.

The weight of this portion of the structure was calculated independently for
comparison with the NASTRAN model. The weight calculated for half the structure
was 67.8 Ib compared to 66.2 Ib for the NASTRAN model. The location of the center-
of-gravity was calculated as 75.14 in. aft of the forward dome compared to 75.3 in.
from4he NASTRAN model. Free modes for the symmetric case were calculated for
the structure without fluid loading. The first mode (Fig. 3-27) was predominantly
bending while the second (Fig. 3-28) was a breathing mode with the central thinner

portion of the liquid hydrogen tank deforming the most. The higher modes consisted
primarily of local shell deformations of the central region. After the modes for the

rempty shell had been calculated, the weight of the hydrogen was distributed as
non-structural mass. The resulting modes contained considerable panel motion and
this procedure did not yield a satisfactory model^ Therefore, it was decided to in-

corporate the hydrogen as a fluid using the hydroelastic capability.

Another separate study of the central portion of the liquid hydrogen tank was
conducted using the STARS-2 shell vibration program. It was necessary to assume

that the skin was of uniform 0. 016 in. thickness in the region to use this program.

Several analyses were made to determine whether local vibratory motion could be

anticipated, and to estimate the effects of fluid pressure upon the shell frequencies.
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These calculations, wnich are briefly summarized in Appendix A, consisted of deter-
mining modes and frequencies for:

• Effects of Pressure on Frequencies

- Zero pressure
- Fluid pressure
- Ten times fluid pressure

• Effects of Edge Restraints

- Fixed ends
- Pinned ends
- Free axially, pinned laterally

Results of the pressure variation are listed in Table A-l of Appendix A. The effect of
fluid pressure is less than 2%. Even an increase to ten times this pressure only
raised the frequencies for the lowest mode (n = 2) by about 3% and the n = 5 mode by
about 18%.

Results of the effects of edge restraints were interesting in that the mode shape
for the pinned end conditions were characterized by deflections adjacent to the bound-
aries. These calculations summarized in Appendix A also demonstrated the suscep-
tibility of this region of the tank to local vibration modes. The NASTRAN model of
this region is probably too coarse for an adequate representation. This effect how-
ever is not considered significant in the overall modes of the combined shuttle and
therefore could be neglected initially, particularly since the number of elements in

the model were already too high.
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Fig. 3-25 NASf RAN Model of External Tank Frames for
1/8-Scale Shuttle Model
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3.4 COMPLETE MODEL OF EXTERNAL TANK

The data decks for both the hydrogen and oxygen tanks were joined together to
form a single structure. The NASTRAN model is shown in Fig. 3-29. An attempt
was made to run the hydroelastic analyses in Rigid Format 7 but NASTRAN time esti-
mates indicated a cpu time in excess Of 2 hours. A Rigid Format 3 run was made
which effectively ignored the fluid and determined the modes for the empty structure.
Five elastic modes were obtained which were primarily characterized as follows:

Frequency, Hz Major Deformation

104.1 1st Bending

137.7 Breathing of LH0 Tank
£>

147.8 Local Shell Motion in LH2 Tank

152.6 Local Shell Motion in LHg Tank

200.7 2nd Bending

The full model had also been submitted to Langley Research Center for com-
putation on the CDC 6600 where it was determined that the problem was too large to be

run.

In order to reduce the problem size, Guyan reduction was utilized and the

problem was reduced to 412 DOF's and analyzed in Rigid Format 7. This version too

ran out of time before extracting a root. The core requirements would have to be
drastically reduced to avoid spillage and reduce time. Therefore, the READ module

was substituted for the CEAD and a larger number of structural coordinates (1675
out of 2145 in the G set) were placed in the OMIT set leaving 198 DOF's in the A set.
Only the zeroth fluid pressure harmonic was requested.

One eigenvalue was obtained at 45.2 Hz. A review of the mode indicated that
in the cylindrical portions of the !/)„ and LHg tanks, radial motion occurred in

higher order bending modes (i.e., 3 full waves about the circumference). Previous

analyses of a small hemispherical tank, indicated that this radial pattern might be
due to the coordinate reduction process and the problem was reformulated to retain

more fluid loaded structural points. This was accomplished by including all interior
fluid coordinates in OMIT set. In order to assure reasonable computer time the A
set was kept at 252 DOF's which still required omitting many fluid loaded structural
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grid points. The reformulated model was used to compute one low frequency mode,

which now became 45.6 Hz. NASTRAN input data for this model is listed in Appen-

dix C. Computer running times are listed in Table 3-4. The calculated modes for

both models is similar, characterized primarily by longitudinal motion with the LCL

tank and LH0 tank moving in opposite directions. There is also some vertical bend-
Lt

ing as in the first mode of a free-free beam. The radial motion for both models, in
the LH0 tank light frame area is compared in Fig. 3-30. The motion on the refor-

£t

mulated model at one location where no structural elements were omitted, as shown on

the bottom of the figure, is characterized as n = 1 circumferential motion as con-
trasted with the n = 3 motion for the original model shown in the upper part of the
figure. Even with all interior fluid points in the OMIT set, the 224 remaining struc-
tural coordinates were not sufficient to avoid apparent anomalies in the tank sidewall
motion. The mode shape for one location in the LO2 .tank in Fig. 3-31 presents two
sets of adjacent grid points, 6 in. apart. At one station, motion in alternate points

were in the OMIT set. The primary motion is similar along the Z-axis at both sta-

tions. The radial motion differs considerably, with the deflection at Station 71.78 in
an N = 0 mode as anticipated, while that at Station 65.78 shows three full bending
waves around the semi-circle. This variation in a mode where the pressure does

not vary circumferentially (Oth harmonic) is not convincing.

A more significant difference between the two models appears in the modal
pressure coefficients. Table 3-5 presents a comparison at several locations in the
LO_ and LH2 tanks. With only structural points omitted, the largest pressure occurs

at the LOp tank bottom. When interior fluid points were omitted, the LO2 tank bot-

tom pressure was 7% less, LH0 tank bottom pressure was 27% higher, and a pressure
£t

node surface occurs toward the top of the LO2 tank. In addition to the LO2 tank bot-
tom pressure being lower, the generalized mass for the mode with interior fluid
points in the OMIT set is twice as high (24.72 compared to 11.22). The tank bottom
pressure response to an oscillating force at the SRB or Orbiter axial attachment
points would be considerably lower (about 60%) for the mode calculated with omitted
interior fluid points. This appears to be a significant difference between the models.
Including fluid loaded structural coordinates in the OMIT set does not appear to give

satisfactory model.
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Table 3-4 Comparison of Computer Times for NASTRAN External Tank Hydroelastlc Analysis

Size of Analysis Sets g

m

n

s

f

0

a(=d)

Time to SMP 1 Module - CPU (sec)

Elapsed (sec)

% Full for Stiffness Matrix Kff(%)

Guyan Reduction GO (%)

Kaa (%)

Time to Reduce Stiffness (In SMP 1 )

CPU (sec)

Elapsed (sec)

% Full for Mass Matrices

Mff (%)

Maa (%)

Time to Reduce Mass Matrix (In SMP 2)

CPU (sec)

Elapsed (sec)

Time from SMP 2 to GKAD

CPU (sec)

Elapsed (sec)

% Full for Dynamic Matrices

Kdd (%)

Mdd (%)
Time in GKAD

CPU (sec)

Elapsed (sec)

Time to do Eigenvalue Analysis

Complexd) (CEAD)CPU (sec)

Elapsed (sec)

Real (READ) CPU (sec)

Elapsed (sec)

Rigid
Format 7

CEAD.
OMIT

Structure

2145
11

2134

'262

1872

1460

412

232

1135
2.4

79

63

982

2577

0.1

63

982

2577

202

647

73.2

63.7

1126

4609

2354

23720

READ@) for
CEAD. OMIT

Structure

Only

2145

11

2134

262

1872

1674

198

197

1153

2.4

56.1

32.6

307

1248

0.1

32.9

188

698

4

1253

40.5

40.9

310.

1253

650

2327

READ<3)for
CEAD. OMIT

Interior
Fluid and
Structure

2145
11

2134

262

1872

1620

252

212

1566

2.4

85.9

79.6

458

1006

0.1

79.6

458

1006

4

31

89.5

89.5

627

1418

285

1706
T13-6(7) (1)
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Table 3-4 Comparison of Computer Times for NASTRAN External Tank Hydroelastic Analysis (Cont)

>)

Total Time for Problem^5)

CPU Time (min)

Channel Time (min)

Core Occupancy (Kbyte-hr)

Rigid
Format 7
OMIT

Structure

40

279

2390

READ (3) for
CEAD. OMIT

Structure

Only

28.1

11.8

298.5

RE AD (3) for
CEAD. OMIT

Interior
Fluid and
Structure

33.2

33.4

499.3

(1) Ran out of time; No eigenvalues found; Large spillage.

(2) All computer runs used 450 Kbytes of core.

(3) See Subsection 3.1 for demonstration problem showing substitution of READ module
for CEAD, and eigenvalues and eigenvectors unchanged when omitting interior fluid points.

(4) Elapsed time indicates both input-output operations and delays due to other users occupying
computer.

(5) All runs started from the same checkpoint tape 020951 .

T13-6(T)(2)

Summary of Total NASTRAN Computing Time for External Tank

Item

I

II

in

Description

LOX TANK SYM. HYDRO-ELASTIC ANALYSIS Using DET.
method good runs gave 1 or 2 modes for 800 DOF (no omits)

LHz TANK(LH zmass distributed to shell) H.F.3
1. Symmetric Case (Phase 1) - INV gave 15 modes for 216 DOF
2. Anti-symmetric Case (Phase 1) — INV gave 15 modes for 194 •

DOF

COMBINED LOX AND |_HZ- SYM CASE
1. No fluid- INV gave 10 modes for 130 DOF
2. Fluid in LOX Only - DET gave 1 slosh mode
3. Fluid in Both - 1 mode after changing to INV for 412 DOF

(Not feasible to couple whole shuttle by this method)
TOTAL TIME

Debugging

CPU
Min

96

140 .

20
160

106
99

205

Sys
Min

250

654

93
747

1555
1514
3069

No. of
Runs

12

7

1
8

7
3

10

Good Runs

CPU
Min

150

20

29
49

L*- 209

36
30
52

118
>• 323

Sys
Min

904
1154

101

110
211
958

141
250
279
670

3739

No. of
Runs

10
22

1

2
'3
11

3
1
1
5

15

TT-192
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• MODEL WITH NO FLUID OMITS
• ALL STRUCTURAL POINTS MARKED O ARE OMITTED

• 45.2 HZ.

• MODEL WITH ALL INTERIOR FLUID PTS OMITTED \
• NO STRUCTURE OMITS IN THIS RING

• 46.5 HZ. I

T13-41

Fig. 3-30 1/8-Scale Model External Tank - Comparison of Deflections of Light LH2 Tank
Ring at Station X 188.75
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Table 3-5 Comparison of Tank Modal Pressures

Location

8439

8419

8420

8399

8400

8401

8379

8380

8381

5178
5179

5165

5166

5152

5153
5154

5139
5140

5141

5142

5022

5023

5024

5025

Tank

LH2

L02

Distance

Axial From
Bottom
(inches)

0

3.5

3.5

8.5

8.5

8.5

10.3

11.3

11.3

0

0.6

1.3

1.3

3.4

3.4

3.4

6.7

6.7

6.7

6.7

66.0

66.0

66.0

66.0

Radial From
Center Line

(inches)

6.4

6.4

12.6

6.4

12.6

17.9

6.4

12.6

19.8

1.8

5.3

5.0

9.3

5.0

9.0

12.3

5.0

10.0

13.6

16.3

5.0

7.8

10.8

14.2

Modal Pressure

Interior Fluid
Omits

(45.6 Hz)

1.00

0.99

0.99

0.97

0.97

0.97

0.96

0.96

0.96

-.93

-.93

-.88

-.88

-.85
-.84

-.83

-.77

-.76

-.74

-.73

0.29

0.32

0.37

0.47

No Fluid Omits

(45.2 Hz)

0.73

0.72

0.72

0.72

0.71

0.71

0.71

0.71

0.71

-1.00

- .99
- .97

- .96

- .95
- .94

- .93

- .90

- .89

- .88
- .87

- .15

- .15

- .15

- .16

T13-7(T)
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4 - NASTRAN MODIFICATIONS

4.1 DEVELOPMENT OF THE MODIFIED NASTRAN HYDROELASTIC ANALYSIS

A re-formulation of the NASTRAN hydroelastic analysis technique was developed
on the basis of assumed fluid incompressibility for application in the study of liquid
filled tank dynamics. The incompressible fluid formulation results in a set of alge-
braic equations relating the fluid bounding surface pressures to outward normal sur-
face accelerations. Internal fluid pressures are dependent on surface pressures and
(in the special case of negligible free surface gravitational potential) free surface
displacements are dependent on structural interface displacements„ The final repre-
sentation of the fluid is in terms of a mass matrix which is symmetric, positive-
definite, and directly related to the fluid kinetic energy. Expressed in terms of fluid/
structure interface motion, this matrix is added to the structural mass matrix in a
typical hydroelastic analysis problem. The form of the dynamic equations is the same
as for an empty structure with the dynamic state completely determined by structural

motion. Data such as surface pressure, internal pressure and free surface
displacement are recoverable through algebraic relationships. Details of the
basic theoretical development are presented in Appendix Bl.

The re-formulated hydroelastic analysis utilizes the fluid finite elements in
NASTRAN which describe relationships between circumferential harmonic pressure
distributions and discrete displacements for polygons of revolution. These relation-
ships have the potential of describing the fluid dynamics in an over-or-under deter-
mined sense; a consistent and more concise description is realized by constraining
rings of grid points to displace in the harmonic shapes specified by the pressure DOF's.
Since the displacements are vector quantities (3 displacements, 3 rotations per grid
point) each component must be expressed in terms of harmonics as described in
Appendix B2. The procedure described in Appendix B2 serves as an
efficient general reduction scheme for structures of axisymmetric geometry (harmonic
reduction). Implementation of harmonic reduction in NASTRAN is accomplished by
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use of MFC's which relate physical grid displacements to harmonic grid displacements
(the Fourier coefficients) defined by extra GRID or GRIDB cards. Due to the volumi-
nous number of MFC statements required to define the harmonic reduction, an

automatic transformation data generation program (HARM) has been written; a
FORTRAN listing of HARM is presented in Appendix C. Harmonic reduction was
initially demonstrated on a 60 degree spherical cap model for whichnatural frequencies
resulting from Guyan reduction and harmonic reduction were compared to STARS-2
results (assumed exact). The results summarized in Appendix B2.3 indicate that
harmonic reduction is inherently more accurate and efficient than Guyan reduction
for this geometry.

Modification of the NASTRAN hydroelastic formulation was accomplished by
utilization of ALTER-DMAP statements in Rigid Formats 7 and 3 for calculation of
fluid matrix data and hydroelastic modes, respectively. Listings of the modified
Rigid Formats are presented in Appendix C with bulk data for a basic checkout
problem consisting of a circular cylinder with fluid. The results of elementary
assembled hydroelastic analysis problems consisting of a fluid-filled hemispherical
elastic container and a fluid-filled circular cylindrical shell are summarized in
Appendix B3.

The results of this initial study clearly indicate the accuracy and efficiency
inherent in the modified hydroelastic analysis for the two problems considered.
Excellent agreement between finite element and exact analytical solutions was
achieved.

4.2 ANALYSIS OF THE 1/8-SCALE EXTERNAL TANK

Upon verification of the re-formulated NASTRAN hydroelastic analysis, a study
of 1/8-scale model ETdynamics was initiated. The structural and fluid models utilized
were nearly identical to those discussed in the previous sections; the current mathe-
matical model utilizes symmetric harmonics n = 0, 1, 2, 3 for the fluid. Normal and
tangential motionofthe tank surface is conveniently described in terms of local spherical
and cylindrical reference frames. Harmonic reduction with harmonics n= 0, 1, 2, 3
retained, is utilized on the structural model with ultimate reduction to an analysis set of
128 outward normal harmonic DOF's.
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Computational efficiency in the ET study is very good with the total run time

per liquid level never exceeding 20 cpu min computation times plus 5 cpu min plot

tape preparation (for approximately 130 plots) on Grumman's IBM 370/168 computer.
In a typical run, 128 eigenvalues were extracted by the Givens method and the lowest
25 free-free mode shapes with modal pressure distributions computed. In the attempt

to study ET dynamics with the old NASTRAN hydroelastic analysis, computation time

was in excess of 70 cpu min with multiple submissions and only one eigenvalue and

mode shape extracted by the unsymmetric inverse power method. Some further cost
savings are anticipated due to checkpoint-restart capability; an inconsistency in

Grumman's NASTRAN job control language (JCL) data, causing errors in checkpoint

runs has recently been detected and corrected. By utilization of checkpointing in a
first case liquid level NASTRAN run, structural and fluid data may be saved on tapes

eliminating much of the computation time associated with preparation of matrix data
common to all liquid levels. It is expected that the total running time per liquid
level will be reduced to about 10 cpu min for cases subsequent to the initial run.

To date, three liquid fill conditions have been studied consisting of:

• Liftoff - h = 75 in. , h = 141 in.

• Post max Q - hT —„. = 50 in. , hT „ = 130 in.
1AJA J-<Hn

Modal data for each of these fill conditions is summarized in Tables 4-1 through 4-3
with dome pressure gain presented as a measure of POGO sensitivity (A derivation
of the pressure gain parameter is presented in Appendix B4). CALCOMP plots of the
current analysis mode shapes are presented in Fig. 4-1 through 4-72. Unrealistic
behavior of the individual tank dome apexes is present in the liftoff configuration
(Fig. 4-1 through 4-23) and in the post max Q configuration (Fig. 4-24 through 4-28).
This localized behavior is eliminated by an "apex fix" in the post max Q configura-

tion (Fig. 4-29 through 4-50) and in the empty configuration (Fig. 4-51 through 4-72)

with negligible effect on natural frequencies. The apex fix consists of a set of MFC's
forcing the apex and the set of grid points connected to it by triangular elements to
move as a rigid body in the zeroth harmonic. *

* This should not be confused with the preliminary apex fix presented in Appendix B2.4.
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In order to verify the current NASTRAN results, the dynamic pressure distribu-
tions in the first bending (Fig. 4-73) and axial modes (Fig. 4-74) were studied and
found to be consistent with structural deformation and modal generalized mass.
Additional confidence in the current analysis results was achieved upon comparison of
the current empty tank modes presented in Fig. 4-51 through 4-53 with the few modes
calculated in a previous analysis based on no reductions (Fig. 4-75 through 4-77).
The frequency comparisons for this case are as follows:

Mode

1st Bending

LH2 Cylinder N = 3

"Exact" No Reductions

104.4

151.6

Harmonic Reduction

105.6

153.0

T13-KT)

The above comparisons indicate the accuracy associated with harmonic reduc-
tion applied to geometrically axisymmetrie but structurally non-axisymmetric tanks.
Analysis/test comparisons are currently in progress and will be fully documented in
the Task 21 final report.

Table 4-1 1/8-Scale External Tank (ET) Hydroelartic Mode Summary (at Lift-off)
Mode No.

4 "

5

6 '
7

8 '

9 "

10 '

11

12 '

13

14 '

15 '

16 '

17

18

19 "

20 '

21 '

22

23 '

24 '

25

Freq.
(Hi)

29.7

34.5

35.7

36.6

54.9

57.8

61.4

62.1

63.8

68.4

96.0

96.1

109.4

114.5

117.8

119.7

119.8

124.2

128.6

135.0

135.9

138.2

Modal
Mass

(Ib-secVin)

4.751

0.857

0.760

0.428

2.667

0.131

0.067

0.395

0.520

0.581

0.618

0.433

0.455

0.741

0.277

0.142

0.264

0.221

0.062

0.475

0.431

0.589

Description of Mode

ET 1st Axial n=0

LOX n=2 (No Dome)

ET 1st Bending n=1

LOX n=3 (No Dome)

ET 2nd Axial n=0

LH, Cylinder n=2.3

LHj Cylinder n»3.2

LOX n=3 (No Dome)

ET 2nd Bending n=1

LOX n=2 (No Dome)

LOXn=1

LOX n=0

LOX, LH2 n=0

LOX. LHj n=2.3

LOX n=3 (No Dome)

LH; Cylinder. LOX n=2.0

LOX n=0

LOXn=l

UHj Cyliraiet n=J

LOX n=0

ET. LOX Dome n= 1.0

LOX n=2

LOX Dome
Pressure Gain

xlO3

0.84

0.02

0.26

0.05

o.«
0.10

0.11

0.07

0.45

0.01

0.66

1.95

1.00

0.06

0.04

0.55

1.78

1.63

Q.01

0.97

1.25

0.04

LH; Dome
Pressure Gain

xlO3

0.22

0.005.

0.11

0.03

0.59

0.12

0.22

0.03

0.04

0.02

0.005

0.04

0.18

0.009

0.003

0.010

0.11

0.02

0.001

0.16

0.03

0.01

" = POGO Sensitive Mode

Note: Modes 1. 2. 3 are Rigid Body Pitch Plane Modes

T13-8IT)
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Table 4-2 1/8-Scale External Tank (ET) Hydroelastic Mode Summary (Post Max Q)

Mode No.

4

5

6 *

7 *

8

9 *

10 *

11 "

12

13

14 *

15 *

16 *

17

18

19

20 *

21 *

22

23 *

24 *

25 *

Freq.
(Hz)

42.0

45.5

49.2

51.8

58.6

61.7

79.2

79.7

105.7

107.8

113.7

120.7

120.9

125.5

130.6

144.6

146.2

148.6

149.1

150.6

162.9

167.8

Modal
Mass

(Ib-sec2/in.)

0.549

0.294

0.427

1.809

0.140

0.074

1.158

1.135

0.359

0.177

0.244

0.160

0.346

0.126

0.106

0.396

0.125

0.338

0.211

0.283

0.089

0.079

Description of Mode

LOX n=2 (No Dome)

LOX n=3 (No Dome)

ET 1st Bending n=1

ET 1st Axial n=0

LH2 Cylinder n=2, 3

LH2 Cylinder n=3, 2

ET 2nd Axial n=0

ET 2nd Bending n=1

LOX n=2 (No Dome)

LOX n=3 (No Dome)

LOX n=0

LOXn=1, ETn=1

LOX n=0

LH2 Cylinder n=3, 2

LH2 Cylinder n=3, 2

LOX n=2

LOX n=1

LOX n=0

LOX n=3 (No Dome)

ET Bending, LOX Dome n=1

LOX n=2

LOX Dome, ET n=0

LOX Dome
Pressure Gain

x103

0.085

0.044

0.500

0.799

0.041

0.121

0.529

0.718

0.019

0.033

2.72

2.66

1.28

0.038

0.085

0.097

2.59

1.25

0.03

0.828

0.911

4.27

LH2 Dome
Pressure Gain

x103

0.055

0.040

0.478

0.684

0.034

0.099

0.256

0.102

0.006

0.004

0.033

0.021

0.215

0.003

0.014

0.010

0.057

0.095

0.004

0.114

0.008

1.76

*=POGO Sensitive Mode

T13-9IT)
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Table 4-3 Empty 1/8-Scale External Tank (ET) Mode Summary

Mode No.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Freq.
(Hz)

105.6

153.0

161.7

226.0

257.8

274.7

328.3

332.0

332.8

343.7

357.8

431.0

459.1

472.9

482.2

498.6

513.2

533.1

567.2

604.6

625.4

628.0

Modal
Mass

(Ib-sec2/in.)

0.0425

0.0094

0.0172

0.0497

0.0770

0.0271

0.0122

0.0149

0.0234

0.0118

0.0696

0.0210

0.0615

0.0114

0.0185

0.0076

0.0697

0.0243

0.0487

0.0391

0.0116

0.0144

Description of Mode

ET 1st Bending n=1

LH2 Cylinder n=3

LH2 Cylinder n=2, 3

ET 2nd Bending n=1

ET 1st Axial n=0

LH2 Cylinder n=2. 3

LH2 Cylinder, LOX n=3, 2

LOX, LH2 n=3, 2

LOX, LH2 n=3,2

ETn=3

ET Bending n=1,3

LH2 Cylinder n=2

LH2 Cylinder n=3, ET n=1

LH2 Cylinder n=3

ETn=2

LOX n=3

ETn=1,2, 3

ET n=2, 1

ETn=1,2,3

ETn=2, 1,3

LOXn=3

ET n=3, 2

T13-10(T)
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T13-123

+15.0PSI

-13.6PSI

DISPLACEMENT N = 0 PRESSURE N = 1 PRESSURE

Fig. 4-73 Post Max Q External Tank 1st Bending Mode (Mode 6)
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+155 PSI

-133 PSI

M
T13-124 DISPLACEMENT N*=0 PRESSURE

Fig. 4-74 Post Max Q External Tank 1st Axial Mode (Mode 7)
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