General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
KIC SIZE EFFECT STUDY ON TWO HIGH-STRENGTH STEELS USING NOTCHED BEND SPECIMENS

Fred R. Stonesifer
Naval Research Laboratory

Prepared for:
National Aeronautics and Space Administration

November 1974

DISTRIBUTED BY:

NTIS
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
Report Title:

K_{IC} SIZE EFFECT STUDY ON TWO HIGH-STRENGTH STEELS USING NOTCHED BEND SPECIMENS

Author:

Fred R. Stonesifer

Performing Organization:

Naval Research Laboratory
Washington, D.C., 20375

Controlling Office:

National Aeronautics and Space Administration

Distribution Statement:

Approved for public release; distribution unlimited.

Abstract:

Five methods are used to calculate K_Q values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid K_{IC} values from specimens of sizes well below that required by E399.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Material</td>
<td>2</td>
</tr>
<tr>
<td>Specimen Preparation</td>
<td>2</td>
</tr>
<tr>
<td>Test Results and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Conclusions</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
</tbody>
</table>
K\textsubscript{IC} SIZE EFFECT STUDY ON TWO HIGH-STRENGTH STEELS USING NOTCHED BEND SPECIMENS

INTRODUCTION

The work reported here is part of a study for NASA entitled "Evaluation of High Toughness Materials". Earlier phases involved the characterization of a 10% Ni quenched and tempered steel and weldments of it, particularly with respect to its fracture toughness (1). Confirming earlier reports, it was found to be a very tough material, justifying anticipated difficulty in measuring the plane strain fracture toughness with specimens of practical size. To address this problem, this phase provides for K\textsubscript{IC} tests on the base plate in a series of specimen sizes, starting with full plate thickness, then to subscale specimens surely too small to meet the established size criteria. For comparison, a similar size group of specimens was prepared of a common low alloy Q&T steel, tempered so as to leave a lower (140ksi) level of tensile yield strength. With this data base, in the form of load versus notch-opening records, various schemes for analyzing the undersize specimen records could be attempted to estimate the full-size specimen value of K\textsubscript{IC}. The results of such attempts are reported here.

MATERIAL

The 10%Ni material of nominal composition, 10Ni-8Co-2Cr-1Mo, was from a three-inch plate from U. S. Steel Corporation heat No. C51363. This steel was manufactured by the Basic Open Hearth method, vacuum-induction melted, vacuum-arc remelted, cold rolled, double austenitized, and aged. The austenitizing cycle consisted of a 180 minute hold at 815°C followed by quenching in agitated cool water. Aging was at 950°C for 10 hours. The resulting 0.2% offset yield strength was about 180 ksi.

The low alloy steel was AISI 4340 of nominal composition, 40C-70Mn-1.8Ni-80Cr-25Mo, from a commercial grade, three-inch plate produced by Benedict-Miller, Inc. from heat no. A1707-7B. The plate was heat treated and drawn back to obtain a yield strength of about 140 ksi.

SPECIMEN PREPARATION

Figure 1 shows the specimen configuration with dimensions given in terms of the specimen depth, \(W \). Three identical specimens were machined from each of the two materials with beam depths, \(W \), of six, five, and four inches. The halves of these broken specimens were then used to machine specimens with depths of three, two, and one inch.

Valid \(K_{ic} \) values were estimated before testing so that the fatigue precracking loads could be determined for each specimen size and material. These loads were determined such that the \(K_f (\text{max}) \) would at no time exceed 60 percent of \(K_{ic} \), and at the finishing load \(K_f (\text{max})/E \) would not exceed 0.002 in². Therefore the listed (see Table 1) maximum load was not exceeded at any time, and the finishing load was not
exceeded during growth of the last 2.5% of the total initial crack length.

TEST RESULTS AND ANALYSIS

Standard ASTM 0.505" tensile specimens were tested to obtain the tensile properties, tabulated in Table 2. The notched bend specimens were tested in simple three-point bending over a span of 4W essentially as prescribed in ASTM test method E399 (2).

The various sized fracture toughness precracked specimens were loaded to failure in a closed-loop controlled testing machine. The output from an E399 type clip gage in the specimen notch was recorded on the x-axis of an x-y plotter. The load cell output plotted on the y-axis completed the load-displacement record. K values were calculated from the formula in the E399 standard method using various values of load and a/w.

Five values of K were calculated for each specimen. Three of these calculations were based on the actual measured crack length and loads read directly from the load-displacement record. The other two calculations involved use of an effective crack length which is the measured crack plus an additional allowance for the plastic zone.

The 5% secant loads were determined by the intersection of the load-displacement curve with a secant line drawn through the origin with a slope 95% of that for the initial linear portion of the record. This process is illustrated in E399. The maximum load is simply taken as the ultimate load on the load-displacement record.

KQ values calculated from the 5% secant and the maximum loads were then "corrected" by the graphical method as proposed by Kies (3). A "corrected" a/w is determined by the intersection of a line of slope S, passing through the measured a/w and the f(a/w) curve. (The limit of solvability for this method is reached when the two curves become tangent). General formulas for f(a/w) and S are given in Figure 2. More details of this method can be obtained in the referenced report.

The "scaling correction" was proposed by Stonesifer and Smith (4). This method adds a plasticity correction to the load rather than to the crack length. Figure 3 illustrates how the corrected load is obtained. This method is based on total deflection at maximum load and the elastic modulus of the material. The corrected load is presumably the load that would have been obtained had the specimen not plastically deformed but remained elastic to the same level of strain.

The average values of KQ calculated by each of the five methods are shown in Table 3 for every specimen size and material. These values are then shown plotted in Figures 4 and 5. A successful correction method would be expected to show a constant KQ that is independent of specimen size.

Using the 5% secant K_Q for the six-inch specimens in the E399 size requirement, one finds that a minimum dimension of 2.64 inches is required for the 10% Ni alloy or 2.28 inches for the 4340 steel. Therefore specimen depths of twice this amount, or 5.28 and 4.56 inches would be required for valid K_{Ic} determinations for these two materials.

CONCLUSIONS

None of the methods tried for predicting valid K_{Ic} values from sub-sized specimens seemed to be completely satisfactory for these two materials. From these data one might conclude that the best method would be that of using the maximum tensile load. This method assumes no sub-critical crack growth prior to failure.

Several new approaches to the problem have been recently developed which may be more successful. Two such developments have been the J-integral (5) and the equivalent energy (6) methods. These later methods require additional test data not presently available for the specimens tested in this study.

REFERENCES

<table>
<thead>
<tr>
<th>Specimen Depth W (in.)</th>
<th>Test Span (in.)</th>
<th>Maximum Load (lbs.)</th>
<th>Finishing Load (lbs.)</th>
<th>10% Ni Steel $\sigma_y=180$ksi; $K_{IC}=200$ksi/(\text{in.})</th>
<th>Maximum Load (lbs.)</th>
<th>Finishing Load (lbs.)</th>
<th>4340 Steel $\sigma_y=140$ksi; $K_{IC}=140$ksi/(\text{in.})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5,760</td>
<td>1,730</td>
<td></td>
<td>4,040</td>
<td>1,730</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>16,200</td>
<td>4,860</td>
<td></td>
<td>11,400</td>
<td>4,860</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>30,000</td>
<td>9,000</td>
<td></td>
<td>21,000</td>
<td>9,000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>46,100</td>
<td>13,800</td>
<td></td>
<td>32,300</td>
<td>13,800</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>63,100</td>
<td>18,900</td>
<td></td>
<td>44,200</td>
<td>18,900</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>85,700</td>
<td>25,700</td>
<td></td>
<td>60,000</td>
<td>25,700</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2 TENSILE PROPERTIES

<table>
<thead>
<tr>
<th>Material Property</th>
<th>10% Ni Steel</th>
<th>4340 Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2% Offset Yield Stress (ksi)</td>
<td>183.1</td>
<td>139.8</td>
</tr>
<tr>
<td>Ultimate Yield Stress (ksi)</td>
<td>190.1</td>
<td>156.2</td>
</tr>
<tr>
<td>Young's Modulus (x10^6)</td>
<td>28.3</td>
<td>29.8</td>
</tr>
<tr>
<td>Reduction in Area (%)</td>
<td>68.2</td>
<td>45.3</td>
</tr>
<tr>
<td>Elongation over 2" gage length (%)</td>
<td>17.5</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Note: Each value is average of 3 tests.
Table 3: Comparison of K_Q Values Calculated by Various Methods

<table>
<thead>
<tr>
<th>Material</th>
<th>Specimen Depth (in.)</th>
<th>10% Ni Steel</th>
<th>$K_Q (ksi \times \text{in})$</th>
<th>4340 Steel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>1 2 3</td>
<td>4 5 6</td>
</tr>
<tr>
<td>K_Q based on 5% secant load</td>
<td></td>
<td>110.8 159.0 171.9</td>
<td>172.8 166.6 188.0</td>
<td>97.6 116.8 115.8 126.1</td>
<td>130.5 133.5</td>
</tr>
<tr>
<td>K_Q based on 5% secant load with Graphical Correction</td>
<td></td>
<td>118.3 171.1 161.2</td>
<td>179.4 171.3 193.4</td>
<td>107.2 124.9 120.6 130.4</td>
<td>134.4 136.7</td>
</tr>
<tr>
<td>K_Q based on Maximum load</td>
<td></td>
<td>176.7 186.2 193.7</td>
<td>176.8 186.4 191.0</td>
<td>128.4 138.0 148.6 150.9</td>
<td>153.4 133.9</td>
</tr>
<tr>
<td>K_Q based on Maximum load with Graphical correction</td>
<td></td>
<td>188.5 200.1 204.2</td>
<td>183.5 191.6 196.4</td>
<td>140.9 147.5 154.6 156.1</td>
<td>158.0 137.1</td>
</tr>
<tr>
<td>K_Q as determined by Scaling correction</td>
<td></td>
<td>255.3 224.0 231.5</td>
<td>215.2 221.3 221.3</td>
<td>170.8 170.3 188.1 220.4</td>
<td>184.0 159.6</td>
</tr>
</tbody>
</table>

Note: Values are average of 3 or 4 tests
NOTES:
1) SURFACE "A" ARE TO BE MACHINED PARALLEL TO "C" & PERPENDICULAR TO SURFACES MARKED "B"
2) SURFACES MARKED "D" MAY BE SAW CUT
3) BREAK & DEBURR ALL OUTSIDE EDGES

Fig. 1 - Fracture Toughness Bend Specimens
\[\frac{K_I^2}{\sigma^2 W} = f\left(\frac{a}{W}\right) \]

PLASTICITY CORRECTION

GRAPHICAL METHOD, SCHEMATIC

CORRECTED, \[f\left(\frac{a}{W}\right) \]

UNCORRECTED, \[f\left(\frac{a_0}{W}\right) \]

\[S = \frac{f\left(\frac{a}{W}\right)}{f\left(\frac{a_0}{W}\right)} \]

\[\Delta a_0 \]

\[\frac{a_0}{W} \]

\[\frac{a}{W} \]

Fig. 2 - Graphical Correction Method

NRL
Fig. 3 - Scaling Correction Method
Fig. 4 - K_Q Values Calculated for 10% Ni Steel
Fig. 5 - K_Q Values Calculated for 4340 Steel