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ABSTRACT

A finite difference formulation is presented for thermal wave propa-

gation resulting from periodic heat sources. The numerical technique

can handle complex problems that might result from variable thermal

diffusivity, such as heat flow in the earth with ice and snow layers.

In the numerical analysis, the continuous temperature field is repre-

sented by a series of grid points at which the temperature is separated

into real and imaginary terms. Next, computer routines previously de-

veloped for acoustic wave propagation are utilized in the solution for

the temperatures. The calculation procedure is illustrated for the

case of thermal wave propagation in a uniform property semi-infinite

medium.

INTRODUCTION

Because of increasing concern over environmental heat losses, en-

vironmental heat balances are now an integral part of many design pro-

cedures. In certain applications, environmental heat transfer calcu-

lations can be concerned with the effect of periodic solar temperature

variations. An example of such a problem might be the impact of oil

pipe lines on the periodic temperature distribution beneath the arctic

tundra. In order to analyze problems of this type as well as more
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general thermal wave propagation problems, a finite difference formu-

lation is developed in this paper.

At present, analytical solutions of thermal wave propagation

(refs. 1 and 2) are limited to relatively simplegeometries with con-

stant thermal properties or lumped constant temperature regions. The

present finite difference technique, however, can handle the heat flow

field complications which might arise from (1) variations in thermal

properties, (2) complex geometries, or (3) complex boundary conditions.

For example, the flow of heat into the earth with covering ice and

snow layers could be readily calculated.

The finite difference technique presented herein represents a

direct extension of a difference theory developed for noise propagation

in ducts (refs. 3 and 4). First, the temperature field is represented

by a series of grid points in which the temperature at each grid point

is separated into real and imaginary terms. Next, the governing energy

equation and the appropriate boundary conditions are present and

written in difference form. Finally, computer routines previously

developed for acoustic wave propagation are utilized for the solution

of the resulting thermal wave difference equations. The calculational

procedure is illustrated for the case of thermal wave propagation in

a uniform property semi-infinite medium.



3

SYMBOLS

A coefficient matrix, eq. (34)

a thermal diffusivity

C submatrix, eq. (35)

c specific heat

F matrix eq. (34)

k thermal conductivity

m total number of grid rows

n total number of grid columns

T temperature

T amplitude of temperature boundary condition

To temperature in far field

t time

X axial position of exit plane

x dimensionless axial coordinate, eq. (9)

Ax axial grid spacing

Y transverse width of temperature field

y dimensionless transverse coordinate, eq. (10)

Ay transverse grid spacing

Zexit exit impedance, eq. (23)

6 dimensionless temperature

60 boundary condition

p density



spatial temperature field

o boundary condition

w circular frequency

Superscripts:

1 dimensional quantity

J 1 or 2

K 2 or 1, K=J-(-l)

(1) real part

(2) imaginary part

Subscripts:

i, j i, axial index, j, transverse index, see Figure 2

r reference quantity

1 material #1

2 material #2
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GOVERNING EQUATION AND BOUNDARY CONDITIONS

Conduction Equations

The governing differential equation describing the conduction of

heat energy in its two dimensional form is given by

a aT a aT aT
- k- -- + - k- = pc ()

x' ax' y' ay' -"-at

where the prime, ', is used to denote a dimensional quantity. Define

a dimensionless temperature

T - T
8 - T (2)

o 0

where T is the initial temperature of the medium assumed to be uniform

and T is the amplitude of the temperature variation at the surface

or other appropriate convenient temperature. Therefore, the governing

equation (1) becomes

a ae a ae ae
x k-- +  -- = pc- (3)ax3 ax y 5 y at(

Equation (3) can be rewritten as

1 a as 1 a a6 1 as
pca ax' x pca r y7 ar at

where the thermal diffusivity is defined as

a = - (5)



6

and the reference diffusivity

k
r

a (6)r PrCr

For a /periodic heat source (neglecting the initial transient),

the solution for the temperature can be assumed to be of the form

6(x',y',t) = (x,y)e i t  (7)

Substituting equations (5) and (7) into equation (4) gives

a r k + a k- i - = 0 (8).ka ax' ax' ka y' ay' ar r r

Finally, the spatial coordinates x' and y' are non-dimensionalized

by assuming

, 27x /x (9)

2a

r
y' = /2 Y (10)

2a
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Thus,

a x k + a k - i 8 = 0 (11)
kar x ax kar ay ayr r

For uniform properties (a equals ar), equation (11) reduces to

+ - i 82 = 0 (12)
Dx2  @y2
ax ay

This equation is independent of the frequency parameter 0. The fre

quency parameter enters the problem by coordinate stretching the

dimensionless variables x and y.

Using the exponential notation displayed in equation (7), the di-

mensionless temperature p has, in general, both real and imaginary

parts.

Thus,

0(x,y) = q(1 ) + io(2) (13)

Consequently, equation (12) can be broken into its real and imaginary

parts by substituting equation (13) into equation (12),

+2 (1) 2 (1) (
2 2 + 8242= 0 (14)2 +

ax ay

2 (2) 2(2) ( )

2. 81 = 0 (15)
ax ay
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The above two equations can be expressed as a single equation

2 (J) 2 (J)K)2 2 - (-1) 8  =K 0 (16)

where J equals 1 or 2 and K equals 2 or 1 respectively.

The solution for temperatures can be found by either solving the

complex equation (12) or the set of real equations represented by

equation (16). From the standpoint of computer efficiency, the com-

plex.equations are the easiest to handle. Equation (16) will only

be used to indicate what type of solution schemes are most advantageous.

Therefore, any remaining equations or boundary conditions will be

left in complex form. Of course, the true physical temperature is

represented by only the (1) component.

Boundary Conditions

Surface temperature. - The surface temperature (see Figure 1)

treated in this paper assumes

6(0,y,t) = 0o(y) cos Wt (17)

which in complex form is written as.

iwt
(0O,y,t) = 6 (y)e (17)

Therefore, the surface condition on c becomes

p(O,y) = o0 (y) (18)
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where 4o is a real quantity.

Adiabatic. - The temperature distribution at y = 0 and Y is

chosen such that the heat flux is zero. Thus,

1 y = 0 (19)0 Yy

Exit temperature. - The exit condition chosen sets the mean level

about which the temperature oscillation can occur. For example, the

exit temperature could be assumed to be of the form

T = T at x = X (20)

8 = 0 at x = X (21)

Exit impedance. - Another possible exit condition is very useful

in treating a problem in which the medium is assumed to be semi-infinite

in the x direction. Consider the one dimensional problem in which

the exit plane is at.infinity. The analytical solution is derived in

reference 1 (pg. 329) and shown to be (for uniform properties)

= e-27(+i)x (22)

Borrowing an analogy from acoustics, the ratio between the temper-

ature 4 and the temperature gradient is defined as the impedance~exx ..

Zexit;
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Zexit = (23)
ax

For a one-dimensional semi-infinite medium,

Zexit 4 (24)

The ratio defined by equation (24) is not a function of x. Thus, the

temperature field of a semi-infinite medium can be closely approximated

by a finite medium, if equation (24) is used as the exit boundary

condition. Of course, for a one-dimensional semi-infinite problem, the

application of equation (24) at any position will give an exact agree-

ment (within numerical accuracy) with analysis, as will be shown later

in an example.

SOLUTION TECHNIQUE

Finite Difference Equations

Instead of a continuous solution for temperature, the temperature

will be determined at isolated grid points by means of the finite

difference approximations, as shown in Figure 2. This enables changing

the differential equations to a system of algebraic equations for the

temperature at each grid point. The governing equations can be approxi-

mated in difference form (ref. 5) by using either a Taylor series

expansion, a variational, or an integral formulation. In this problem,

where a gradient is specified along the exit boundary, the integral

method for generating the finite difference approximation is most convenient.



The energy equation in finite difference form is developed by

applying the integration method (ref. 5, pg. 168) to the cells in

Figure 3. The cells are enclosed by the dashed lines which are

spaced midway between the grid lines (not shown). The grid lines would

go directly through the grid points. Thus, the integration of the

energy equation, equation (12), over the cell becomes

2 + 2 - i 872T dxdy (25)

2  2

cell L x i y

By applying Green's theorem for the plane region, equation (25) becomes

dS - i 82 i,j cell dxdy = 0 (26)

where dS is a length element along the unit cell boundary, and N is

the outward normal to the cell boundary.

As usual, the difference formulation approximates the first

derivative

- i+l,j (27)ax 1 AX

i2

and so forth.
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Cell 1 - central. - The integration equation, (26), is now

applied to the central region of the temperature field, labeled cell 1

in Figure 3. In evaluating the surface integrals in equation (26),

the gradients are assumed to be constant on each side of the cell.

Thus, equation (26) becomes

. + - 2 1 + AX + i (2wAx) 2 i, + +lj

2

+ (Ax 'j+ = 0 (29)

Someintermediate algebraic steps involved in the derivation of equatipn

(29) and the following equations are presented in Appendixes C and D

of reference 3, for a difference equation very similar to equation (29).

Cell 2 - adiabatic boundary. - Now consider the difference equation

which applies in Cell 2, which is adjacent to the upper boundary in

figure 3. For this unit cell, equation (26) can be expressed as

2 + 2
1 Anx 2

im-1 2 L \y/ im

1
2 i+l,m (30)

where equation (19) was used to evaluate the - term along the adiabatic@N

boundary. A similar equation applies at the lower boundary.

Cell 3 - exit plane. - In a similar manner, the difference equation

which applies to cell 3 is found to be
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1 X /A:# 2
2 nj-l + -L + - + i (27x) + (l+i)27rAx j

+ =nj+l 0 (31)
2 n,j+1

where equation (24) written in the form

= nj (32)@x . i-1 n,,j (

was used to evaluate at the exit.
aN

Cell 4 orinet. - Finally, the difference equation for cell 4 is

2 A_ n,m-1 + -m L2 + )2 + i (2rAx) 2

+ (1+i) 27Axj n,m = 0 (33)

MATRIX SOLUTION

The collection of the various difference equations at each grid

point forms a set of simultaneous equations which can be expressed in

matrix notation as

{A} * [ ] = [F] (34)

where A is the known coefficient matrix, $ is the unknown column vector

containing the unknown complex temperatures, and [F]is the known column

vector containing the various initial conditions.
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Equation (34) can also be expressed in terms of all real

quantities. In order to accomplish this, the column vector is

expressed in terms of () and (2) and the A matrix is subdivided as

follows

Al I-C (1) P(1)+C A (2) 2
The Al has a form typical of those matrices found in two-dimensional

steady state heat-conduction problems, while the C matrix represents

the coupling that occurs between the () and (2) temperatures in the

(-1)J term of equation (16).

Standard computer texts such as reference 5 dealing with the steady

state heat conduction problem point out that the AI matrix is positive

definite in at least one row; consequently, iteration schemes such as

Gauss-Seidel can be used to obtain a solution. However, in the matrix

equation (35), the C matrix adds to the off-diagonal elements and as a

result the matrix will no longer be positive definite. As a result,

conventional iteration techniques cannot be used. However, matrices

of the form of equation (34) or (35) can be solved by elimination

techniques. In particular, a solution of the block tridiagonal form of

the complex matrix equation (34) appears to be the most efficient from

both operational time and computer storage consideration. Dr. D. W. Quinn

of Wright-Patterson Air Force Base, Dayton, Ohio has developed a

computer package which will efficiently handle equation (35). This

code had to be modified slightly to give results in terms of temperature
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rather than acoustic pressure for which it was developed.

APPLICATIONS

Semi-Infinite Body

As anexample of the use of the numerical technique, the case of

one-dimensional heat wave propagation into a semi-infinite medium will

now be considered. This case allows a comparison of the numerical and

analytical temperature distributions in the medium. The analytical

solution for this problem is given by equation (22) in this report.

Because there is no variation of temperature in the y direction,

the two-dimensional grid lattice shown in Figures 2 and 3 can be

reduced to a one-dimensional lattice as shown in the upper sketch of

Figure 4. The calculation was made for a.depth of 1 with the exit

impedance given by equation (24) to simulate a semi-infinite medium.

As seen in Figure 4, the agreement between the numerical and

analytical results is good. By a series of numerical calculations,

the number of grid points necessary to get accurate temperature'

variations for this example was found to be

n~12X (36)

where X represents the position of the exit plane as shown in Figure 1.

Composite Structure

Finally, in order to solve problems with varying composition, the

material can be assumed to be broken up into many bands each with a

uniform composition for which equation (29) applies. However, to

complete the problem, it is necessary to develop the difference equation

at the junction between two materials as shown in Figure 5.
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Integration of equation (11) over the cell shown in Figure 5 gives

a k + a k - i 8 2  dxdy -=.0 (37)

r r

The integration limits - and + stands for the left and right sides (also

bottom and top) of the cell respectively. Integration of equation (37)

gives

F0-a1 + 2 dd t da dy
r ax + r

+ +

a 2 dy dx + 2 2 dy dx
r ay 0+ r @y

- i 8w2  i,j -T dxdy = 0 (38)

It is necessary, as shown above, to break the x integration into two

domains (- to 0- and 0+ to +), since the integrand is discontinuous

at the center of the cell, labeled 0 in Figure 5. Now, equation (38)

can be directly integrated to give

a x ax . ar 3 x 0

a+ a 2

a dx + 
dx

y a r

- i 82ij AxAy = 0 (39)
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which yields

a+a2  A 2 a [al+a2a +a2  2( O -_ + +"

a I -a a 2 0 (41)

+ a )i+1j

where itehas been assumed that

condition is thatthe heat flux are equal at the interface, For ex Equation(39)mple,

can now be used as the interface between two different materials. For

the special case where al, a2 and ar are equal, equation (39) reduces

to equation (29).

Other approximations could be used to develop the difference

equations at the interface. For example,

a 0- a - (a-a) (al-a2) Oi+1,j i-,j
l ax 2 ax 0+  2 ax 0  2 Ax

(42)
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In this case, the coefficients in front of the i. and 4i+l

terms in equation (40) would be identically equal to ar 2

This approximation would average the temperature gradient at the in-

terface. It would, in effect, give the same results had the interface

between materials 1 and 2 been positioned midway-between the grid

points. With the interface positioned midway between the grid points,

the difference equations to the left of the interface would be

written as

+ + 2 + + i (2-2 x-A y J i j -1 i -1 , 3 A y a li , j

+ i+l,j + 2 i,j+l 0 (43)

while to the right of the interface

( 2 8- + i-,j - 2 1 + (y- +i a2 (2TrAx) 2 ij

y 4 i,j-1 i-1,3 a 2 1,j

+ 
+  A x 2

i+,j Ay i,j+l =  (44)

a1
If equation (43) were multiplied by a-, equation (44) multiplied by

a2  r al+a2
2and the resulting equations averaged, then would be thea 2 )

r  r
coefficient on.the 4 terms, which would be consistant with equation (42).

With sufficient number of grid points, either approximation should

yield approximately the same temperature distribution except very near to

the interface.
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CONCLUDING REMARKS

A finite difference solution for heat wave propagation in a two-

dimensional medium has been presented. A special exit impedance is

derived which allows a finite heat field to approximate a semi-infinite

medium. The numerical theory is shown to be in good agreement with

the corresponding exact analytical results for a semi-infinite one-

dimensional medium.

The finite difference formulation is flexible and should be a

useful tool in the solution of complex heat conduction problems.
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Figure 1. - Schematic of temperature field.
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Figure 2. - Grid-point representation of two-dimensional heat field.
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Figure 4. - Analytical and numerical temperature
variations for one-dimensional heat wave prop-
agation into a semi-infinite medium.
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INTERFACE

Figure 5. - Grid-point representation of
interface between two materials.
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