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NOZZLE FREE JET FLOWS WITHIN THE STRONG CURVED SHOCK REGIME

Tso-Shin Shih, Ph.D.
Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign, 1975

A study based on inviscid analysis has been made to examine the

flow field produced from a convergent-divergent nozzle when a. strong

curved shock occurs. It is learned that a certain constraint is im-

posed on the flow solution of the problem which is the unique feature

of the flow within this flow regime and provides the reason why the

inverse method of calculation cannot be employed for these problems.

An approximate method has been developed to calculate the flow field

and results have been obtained for two-dimensional flows. Analysis

and calculations have also been performed for flows with axial sym-

metry. It is learned that under certain conditions, the vorticity

generated at the jet boundary may become infinite and the viscous

effect becomes important. Under other conditions, the asymptotic

free jet height as well as the corresponding shock geometry have

been determined.
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NOMENCLATURE

A,B,C,D coefficients of O function

M Mach number

n,s curvilinear coordinates measured normal to and along streamline

p pressure

q velocity

R gas constant.

S entropy

t time

u,v velocity components in x- and y-dircctions

X,Y Cartesian coordinates

X shock profile

6 shock turning angle

n dimensionless normal coordinate

6 stream angle

K ratio of specific heats, K = 1.4 for air

E dimensionless horizontal coordinate

p density

a shock angle

velocity profile

stream function

w vorticity

Subscripts

a asymptotic state conditions ORIG)PGE

c evaluated at nozzle centerline

e evaluated at nozzle exit plane
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j evaluated at free jet boundary

o stagnation conditions

s evaluated at curved shock

VUI~c IMX
~8E~Bp~GV'A~



1. INTRODUCTION

The study of compressible flow through a convergent-divergent nozzle

provides the most basic and fundamental knowledge of the flow of a com-

pressible fluid. Depending upon the ambient pressure ratio (ambient to

the supply pressure), a variety of flow patterns occurs both inside and

outside the nozzle. While the flow inside the nozzle will be essentially

unchanged for sufficiently low pressure ratios, the free jet flow patterns

may be entirely different due to the existence of a family of oblique shock

solutions. These flow phenomena may be further complicated by the fact

that the real fluid is viscous and the flow may separate (shock induced

separation) from the solid wall inside the nozzle when the wall boundary

layer cannot cope with the high ambient pressure prevailing outside the

nozzle. One should recognize, however, that in order to understand the

viscous effect on the overall flow pattern, it is a prerequisite that the

flow solution based on purely inviscid analysis be established.

In the major operating range of the nozzle pressure ratios, the in-

viscid flow patterns of the free jet flow are relatively simple, and the

description of them can be found in standard text books [1,2, 3 ].* There

exists, however, a range of the pressure ratios where the inviscid free

jet flow patterns are very complicated and have not been established.

Referring to Fig. 1 where a series of two-dimensional nozzle free jet

flow is depicted, an oblique shock is generated from the edge of the noz-

zle when the ambient pressure pa is kept slightly above the exit pressure

pe. This shock can be regularly reflected from the centerline (Fig. la)

if the strength of the incident shock is not strong enough to prevent The

occurrence of such a reflection. For higher pressure ratios where such a

*Numbers in brackets refer to entries in REFERENCES.



regular reflection is not possible, Mach reflection may occur within

the flow field (Fig. lb). Recent studies by Chang [4] and Chow and

Chang [5,6] on Mach reflection of shock and Mach disc showed that for

small nozzle Mach numbers (MN < 1.484 for K = 1.4), Mach reflection

cannot occur since the triple point condition based on inviscid analy-

sis cannot be satisfied. For larger nozzle Mach numbers, Mach reflec-

tion of shock is possible and the Mach stem height will be increased

for higher pressure ratios. Even in this situation, there exists a

range of nozzle Mach numbers where the Mach stem height can never reach

the height of the nozzle for sufficiently high pressure ratios and a

strong curved shock necessarily occurs in the flow field (Fig. Ic).

Perhaps the above description of the flow events may be best illus-

trated in Figs. 2, 3, and 4. Figure 2 shows the possible conditions for

the occurrence of a triple point (Mach reflection pattern) and various

limits for shock reflection. It is also recognized that from inviscid

considerations no triple point can occur for MN < 1.484 (K = 1.4).

Figure 3 illustrates the Mach stem height calculated by either detailed

calculations or by approximate method corresponding to different operat-

ing conditions. It may be seen that for moderate supersonic nozzle Mach

numbers, the maximum Mach stem height is still smaller than the height

of the nozzle. Figure 4 illustrates the corresponding pressure ratio when

Mach reflection occurs. It is now obvious that for pressure ratios higher

than those required for Mach reflection (or regular reflection for M <

1.65) but lower than the corresponding normal shock values, the regime

of strong curved shock prevails.* Under this condition, a shock wave

*This regime may overlap that of Mach reflection.
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(which may even belong initially to the weak shock solution) is generated

at the corner of the nozzle (Fig. Ic) andproceeds downstream with increas-

ing wave angle and shock strength until the normal shock condition is at-

tained on the centerline of the nozzle. This shock is never reflected,

and the downstream flow field is bounded by a constant pressure boundary.

The majority'of the flow field is subsonic. Since the curved shock gener-

ates vorticity, the flow is thus rotational. Eventually all streamtubes

are straight and parallel to the nozzle centerline so that the pressure

becomes uniform and is equal to the ambient pressure. However, the ve-

locity, density, etc., are non-uniform which is, of course, the result of

the existence of the vorticity. This state--termed the asymptotic state--

can exist only at the mathematically "far downstream" positions.

It should be pointed out that in previous studies [4,5,6] on the oc-

currence of triple point, inviscid considerations were found to be ade-

quate from experimental observations made with a shock tube [7] for rela-

tive strong incident shocks. However, for weak incident shocks (small

Mach number and small shock strength), triple point has been observed [7]

under conditions even when the inviscid analysis does not yield a solution.

It is conceivable that under these conditions, the thickness of the shock

wave may not be thin enough that its subsequent interaction with the flow

fields may become an important point of consideration for the solution at

the triple point. In view of these observations [7], .the range of occur-

rence of Mach reflection presented by Chow and Chang may not be precise;

nevertheless, it provides useful guidance in describing the flow regimes

of free jet flow under different operating conditions.

While the existence of such a strong curved shock flow regime has

been mentioned only briefly by Ferri [2], no work has been performed in
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the study of associated free jet patterns within this flow regime. It is

true that all nozzles do not normally operate under such flow conditions

and even they do, the viscous effects may significantly modify the flow

pattern. The motivation of studying such flow problems comes not only

from filling the gap of information which, so far, is lacking. The unique

character of such a rotational subsonic or mixed flow field downstream of

a curved strong shock and extending to far downstream positions offers con-

siderable interest and challenge. It should be reiterated that a flow so-

lution, on the basis of purely inviscid flow analyses, should be estab-

lished before any viscous effects can be incorporated into the consider-

ations. This is indeed the purpose of the present investigation.

Since the problem under consideration concerns the determiiation of

the profile of a strong curved shock and the details of the free jet flow

behind it, it is similar to the blunt body problem, i.e., a blunt body

immersed in a supersonic flow with a detached shock wave. The method of

analysis for the blunt body problem will be reviewed.

The blunt body problem has been a matter of concern since early 1950,

and many methods for solving problems of this type have been developed.

These methods of approach may be classified as solutions to direct or in-

verse problems. For the direct problem, the shape of the body is given

while the shock profile and details of the flow field between the shock

and body are to be examined. In the inverse problem, the shock shape is

specified and the resulting body configuration and accompanying velocity

and pressure fields on, or ahead of, the body are to be calculated. These

different methods of analysis are discussed in the following section,

For the direct problem, the analyses usually can be divided into

(1) the method of integral relations, (2) the unsteady flow approach, ,nd



(3) the relaxation method. " The method of integral relations was originally

developed by Dorodnitsyn [8] as a general method of numerical solution for

nonlinear hydrodynamic problems. It reduces the problem of integrating a

system of nonlinear partial differential equations to that of solving an

approximate system of ordinary differential equations. This method was

originally applied to the blunt body problem by Belotserkovskii [9] to.

calculate the supersonic flow of a perfect gas past a circular cylinder.

Following this method of approach, many calculations for more general body

shapes in symmetric flows have also appeared [10].

The use of the method of integral relations was also proposed by

Mel'mikov [11] for calculating the flow behind the Mach stem of an over-

expanded supersonic nozzle where Mach reflection occurs. For the case of

a single strip, a system of ordinary differential equations with corre-

sponding boundary conditions describing the problem was derived. However,

no numerical results were obtained.

In the unsteady flow method, the steady flow solution is obtained as

the limiting state is reached asymptotically in time from an unsteady flow

with constant free stream and body conditions and suitably chosen initial

conditions. The unsteady flow equations are solved by finite difference

techniques. Von Neumann and Richtmeyer [12] first suggested this idea to

calculate one-dimensional flow associated with shocks. In their calcu-

lation, large computer storage is required and, as a result of the shock

not being considered as a sharp discontinuity, the computational time is

too lengthy. Later, Von Neumann and Richtmeyer's idea was developed and

extended by Lax and Wendroff [13] and others. By properly setting the

equations into finite difference form, solutions may be obtained in which

ORIGINAL PAGE IS
OF POOR QUALITY
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shock waves are approximated by narrow regions where the physical parame-

ters undergo drastic changes. Moretti and Abbett [14] further improved

this method by introducing special three-dimension.al method ;of character-

istics to describe the conditions on the shock and body boundaries. The

points between shock and body were calculated by employing the technique

developed by Lax and Wendroff. This method has also been extended to

calculate the three-dimensional steady flows by Moretti and Bleich 115].

In tl.e relaxation method, a stream function is usually introduced

as a dependent variable. The differential equation for the stream func-

tion is considered as the basic equation. The plane for numerical cal-

culations is covered by a network of squares. The basic differential

equation is written in finite difference form and a residue which must

be zero everywhere when the final solution is reached is defined at each

point. The assumed values of the dependent variables are then substituted

into these equations. In general, the residue which is a measure of the

failure of the assumed solution to satisfy the equation will not be zero.

The problem is to reduce by suitably adjusting the assumed values of the

dependent variables the residuals to zero at every point. Gravalos,

Edelfelt, and Emmons [16] and Hayes and Probstein [17] used this method

to calculate the blunt body problem.

In the inverse problem, the shape of the detached shock is assumed

and the numerical calculations are subsequently carried out until the

body whose geometry is obtained by locating the points corresponding to

constant stream functional values (e.g., = 0) is reached. One may ob-

serve that the resulting body shape corresponds to the selected detached

shock geometry. However, fundamental questions arise with respect to the

uniqueness and the existence of a solution with respect to the stability
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convergence of calculation. procedures. Hayes and Probstein [17] stated:

"the most important single feature of this inverse problem is

the insensitiveness of the shock shape to local changes in

the body shape, and this feature leads to essential diffi-

culties in the inverse problem. A minute local change in the

shock shape will generally cause a large change in the body

shape and may even preclude the existenc.e of a solution."

From a mathematical point of view, they also stated:

"the determination of the subsonic part of the flow field in

the problem is governed by an elliptic partial differential

equation"

and

"we know as far as elliptic differential equations are con-

cerned, the initial value problem is improperly posed and

leads to an unstable solution when treated by finite difference."

However, the inverse problem was solved successfully by several authors

[18,19,20] who found that suitable numerical methods would yield suf-

ficiently accurate results even though such methods have regions of

numerical instability.

It is now appropriate to point out that for blunt body problems,

the elliptic region is finite. The flow will pass through a sonic line

and become supersonic somewhere along the body. This may be the reason

that, even when numerical instability and insensitivity of shock to body

shapes exit, indirect problems can be calculated successfully. For the

present problem, the elliptic region extends to infinity and is thus un-

bounded. It will be seen that application of such an inverse method,

i.e., guessing a shock shape and "marching downstream," would be completely

unworkable; in fact, it is doomed to fail.
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Since the present flow regime of curved strong shock is identified

only after the phenomenon of Mach reflection is understood, it is also

necessary to describe briefly the work by Chow and Chang [6] on Mach

reflection. It was recognized that when Mach reflection occurs, the

central core flow will pass through a strong shock (Mach shock) while

the fluid above it will go through relatively weak incident and re-

flected shocks. Since it is necessary that these two portions of the

fluid assume the same pressure and same streamline flow angle along

the common boundary, it is obvious that the mutual interaction between

the streams plays the controlling role to the solution of the problem.

It was shown that for supersonic flow state behind the reflected shock,

the core flow will eventually pass through a throat-like condition simi-

lar to the choked secondary flow within the supersonic ejector system [21].

The detailed calculations of the flow field, including the determination

of the Mach stem height, may be performed with the method of characteris-

tics for the upper stream and with the simplified one-dimensional analysis

for the core flow after the method of integral relations has been applied

for both streams. However, when the state behind the reflected shock is-

subsonic, such detailed calculations are not possible and the Mach stein

is estimated from an approximate method stressing the interacting force

between two streams. These considerations have also been extended into

axisymmetric flow configurations. Some of these results are presented in

Figs. 2, 3, and 4; other results were reported by Chang [4] and by Chow

and Chang [6].
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2. THEORETICAL CONSIDERATIONS

2.1 DESCRIPTION OF THE PROBLEM

On the basis of the discussion presented in the preceding chapter,

it is recognized that the present problem occurs for a supersonic flow

issuing from a nozzle when the ambient pressure is high enough that an

oblique shock is generated at the corner of the nozzle. The wave angle

of the shock increases as it moves downstream until a normal shock is

attained on the centerline of the nozzle. The flow behind the shock is

bounded on one side by a constant pressure free jet boundary and is ro-

tational. The viscous effects occuring along the jet boundary and within

the fluid are disregarded. Eventually, all streamlines become parallel

to the axis of symmetry, and the pressure is equal. to the ambient value.

The velocity, however, is non-uniform at this asymptotic state as a re-

sult of the presence of vorticity. A schematic diagram depicting such a

flow field is shown in Fig. 5. Since the flow is symmetric with respect

to the x-axis, only one-half of this region will be considered.

2.2 BASIC RELATIONS GOVERNING THE FLOW

One now proceeds to formulate the problem in a more detailed and

precise manner. The governing relations are listed sequentially in

the following sections.

2.2.1 Shock Relations

For the occurrence of an oblique shock within a supersonic

flow field, the governing algebraic equations are:
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Ps 2K 2 2 K - 1M sin - (2.1)
pe K+ 1 e K+ 1

2 2
M sin a - 1

tan 6 = 2 cot a e (2.2).
M (K + cos 2 a) + 2e

Ps _ tan a (2.3)
Pe tan (o- 6)

s cos aco 62.4)u cos ((2.4- )

s cos a sin (2.5)(2.5)
u cos (a- 6)e

2.2.2 Free Jet Flow Region

For a two-dimensional inviscid flow of a compressible fluid,

the continuity and momentum principles can be given as:

(Hereafter, unless mentioned otherwise, all fluid properties will be

treated as normalized by the corresponding values at the nozzle exit

condition, and all length quantities are normalized by the half-height

of the nozzle.)

apu apv
ax +y =  2.6)

au u_ 1 ap
pu + pvy 2 3x (2.7)

- K M2
e

av av 1 ap
pu K 1 2  y (2.8)

e

The energy equation can be given simply as

DS
Dt 0 (2.9)

ORIGINAL PAGE IS
OF POOR QUALry



where S denotes entropy. It is understood that due to the curved shock

prevailing upstream, the flow field is not homentropic. Nevertheless,

the flow is isentropic along individual streamlines. This would also

imply that the flow is isoenergetic throughout the field.

The flow region under consideration is bounded by (1) a constant

pressure jet boundary whose profile, yj(x) is yet unknown, 
(2) a line of

symmetry which is the x-axis, (3) the upstream curved shock whose shape,

xs(y), is also unknown, and (4) the asymptotic state prevailing at 
far

downstre.am position (i.e., x -+ ). The boundary conditions imposed on

the solution of Eqs. (2.6), (2.7), and (2.8) are:

P = Pa along yj(x) (2.10)

U= u
s

v = v

along xs (y) (2.11)

P = Ps

P = Ps

and

v = 0, = 0 at y = 0 (2.12)

In addition, any solution corresponding to a particular ambient pres-

sure ratio must be subjected to a certain constraining condition when the

asymptotic state is reached. This is considered in detail in the next

section.

2.2.3 Constraining Condition at the Asymptotic State

One now gives attention to the control volume shown in Fig. 6a.

The continuity principle would yield
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yaj -

f Pa u dy = P Ue y = (2.13)

,O

The x-momentum principle also gives

aj u2 + 1 p y + 2 (2.14)J Pa a K + H2Pa Ye 2 e e e e
KM KM

o e e

which can be rewritten as

yaj Pu 2 dy = I (p - 1) (2. 15)

Sa K 2

o e

It should be noted that for the present problem, the right-hand side of

Eq. (2.15) is a constant value which is greater than zero but less than

unity.

After introducing p aj Uaj, and yaj as reference quantities for the

integrands inEqs. (2.13) and (2.15) and defining = u/uaj and

n = Y/Yaj, these equations become

1

P Uaj aj f a dn = 1 (2.16)
aj aj aj Paj

1

p P. y dn = 1 (P - 1) (2.17)
aj aj ajf Paj K M2  a (2.17)

o e

Upon combining Eqs. (2.16) and (2.17), one obtains

11 1 (Pa- 1) 1

f Pa_ 2 dn = Mf a Pa di (2. 18)
Saj aj aj

o o

which is equivalent to
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1 1- (p1
__p ( KM2 a

f a K M d l 0 (2.19)
Paj aj

where pa/Paj is related to through

p 1- C.
a aja aj 2

(2.20)
aj 1 -C 2 .

aj

and Caj is a constant for a particular nozzle Mach number operating under

a particular pressure ratio. It should be noted that the two integrals

have positive definite integrands which are never greater than unity as

varies from c ( c = Uac/uaj < 1) to unity; thus,

1 1

r Pa > ; a 2
Saj aj

o o

and

1
1 2 a - 1)

K M
< <1.

c- Uaj

Equation (2.19) provides the constraining condition of the flow when the

asymptotic state is reached which in turn imposes the additional condition

which the solution of the problem must satisfy.

It is now clear that this constraint is the reason that the indirect

approach to the blunt body problem cannot be adopted for the present

calculations. The hope of estimating a curved shock profile and marching

downstream and correcting the upstream shock shape from some unmatched

properties prevailing downstream can never be realized, If a certain shock

shape is assumed, it immediately determines the corresponding asymptotic

state for each of the stream tubes. Usually this profile will not satisfy
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the constraining condition'givcn by Eq. (2.19). 1Marching downstrcam

with such a shock will necessarily result in illogical mathematic

operations (e.g., seeking the square root of a negative number) if these

calculations were performed on a digital computer and the computation

was interrupted before the asymptotic state was reached. Since an ac-

curate estimation of the shock shape* is impossible, such interruption

can never be avoided. This explains why the indirect method cannot be

applied to the present problem.

A method has been devised and is suggested to solve the present

flow problem. It is recognized that with a given nozzle operating at

a particular pressure ratio within this flow regime, the asymptotic con-

ditions of the jet boundary and center streamlines are known. A velocity

profile at the asymptotic state which, in addition to fulfilling all re-

quired boundary conditions, contains one additional parameter which is to

be determined by the constraining relations given by Eq. (2.19). Once

the asymptotic profile and thus yaj are determined, the associated up-

stream curved shock geometry can be evaluated and the flow field between

the shock and the asymptotic state can be determined through numerical

calculations.

2.3 ASYMPTOTIC STATE

Since the solution of the problem relies on the establishment of the

asymptotic flow profile, a detailed examination of the conditions imposed

on such an asymptotic flow state is therefore necessary.

*It is believed that even if the correct shock shape were inserted upstream,
the subsequent error of calculations due to rouiid-off or truncation would
eventually cause the termination of calculations.



Under the asymptotic..flow condition, the slope of the velocity pro-

file is precisely the vorticity of the flow. A study of the vorticity

generated by the shock* at the corner of the nozzle would also yield

the slope of the profile of the jet boundary streamline at the asymptotic

state.

2.3.1 Vorticity at the Jet Boundary Streamline

One now examines the flow condition (downstream of the shock)

at the corner of the nozzle where the shock is generated (Fig. 7). In

the streamline coordinate system, the continuity equation is given in

dimensional form by:

21 - M q 3e C2 21)
e q+ o= 0, C2.21)

q as an

and the equations of motion for the s and n directions are, respectively:

q q 1 i (2.22).
as P as'

and

2 DO ap (2.23)

P q as an

where 6 is the streamline angle and q is the velocity of the fluid. The

vorticity can also be expressed by

aq a p aS (2.24)
W an - qas p q R an2

For a jet boundary streamline at the corner of the nozzle, Eq, (2.21)

implies 3a/anlj = 0 as ap/as = 0. It may be seen that

Sas p dS do ) 0. C2.25)
j p q R an p q R do dO an

*The infinite vorticity due 'to the discontinuous change in velocity at the
jet boundary is, of course, not under consideration.

ORIGINAL PAGE IS
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It is thus recognized that -vanishing vorticity occurs along the jet

boundary, implying that the slope of the velocity profile at the asymptotic

state should vanish at the jet boundary.

2.3.2 Velocity Profile at the Asymptotic State

One now realizes that this velocity profile 4 in Eq. (2,19)

should satisfy the conditions

(i) At 1 = 0:

ac d
u= and 0 (2.26)

c aj dj

(ii) At r = i:

= 1 and 0 (2. 27)do1

In view of the simple requirements to be satisfied by such a profile,

many functions seem to satisfy the need of the present analysis. It should

be noted that it is not a simple matter to select such a profile, It is

pointed out that a very stringent requirement which has not been presented

herein is that the curvature (or d2 /dy 2 ) of the profile should be non-

negative at ri = 0 for the whole range of the pressure ratios. As no

physically possible flow situation can occur under the condition when

d2 /dn2 1=0 is negative, it has been found that polynomials, sine, and co-

sine functions, cannot meet this requirement throughout the range of pres-

sure ratios.

A profile has been selected which has the following form:

= A + B erf [C (1 - n2)] + D erf [C (1 - n4)] (2.28)

where A, B, and D are parameters to be determined from conditions given by

Eqs. (2.26) and (2.27). Only even powers of n appear in the above equation

due to the condition of symmetry. Upon evaluating these parameters,

Eqs. (2.28) becomes:
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2 (1 - c ) 2 .1 - c
1 erf [C (1 - n )] + c erf [C (1 - 1 )] (2.29)

erf (C) erf (C)

The coefficient C is yet to be determined for each particular pressure

ratio so that the constraining relationship, Eq. (2.19), can be satis-

fied. A range of values of C has been found for different nozzle Mach

numbers under various pressure ratios and is given in Table 1.

Once the value of C is determined from the constraining condition,

the free jet height yaj at this position can also be computed and the

detailed shape of the asymptotic profile completely established. This

information would readily lead to the determination of the geometry

and the strength of the upstream curved shock wave. Some of these typi-

cal velocity profiles are presented in Fig. 9.

2.4 CORRESPONDING UPSTREAM SHOCK PROFILE

After the asymptotic height of the free jet, yaj, and its detailed

profile are established, the corresponding curved shock configuration

can be determined through the following considerations: (Also, see

Fig. 6b.) If one carries out the integration

Ya

J P ua dy (2.30)
0

along the asymptotic profile, the continuity principle would imply that

the fluid assuming the position ya at the asymptotic section would have

passed through the shock at height ys which is equal, to

Ya

Ys a Ua dy (2.31)
0

since the velocity of the fluid at ya has a known value a3 its stagnation
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pressure poa can be found-from

Poa (2.32)
a 1 - C2 2

aj a

The ratio of the stagnation pressures across the shock at ys can be re-

lated through the shock wave angle a by

K + 1 2 .2 (K/K-i)

2 M sin a

K + 1 2 .21 + 2 M sin poa oa a2 e oa oa a(.
(2.33)1/K- p p p

( i 2  2 - K - 1oe a oe

K + 1 e K + 1

where pa/Poe is the operating pressure ratio.

Thus, the wave angle a can be found as a function of any position ys

along the shock. Additional integration of the relationship

dy s
- tan a (2.34)dx

with the initial condition of xs = 0, ys = 1 would produce the shock con-

figuration xs(Ys) corresponding to the established asymptotic profile.

2.5 FLOW FIELD BETWEEN THE SHOCK AND THE ASYMPTOTIC STATE

One now proceeds to investigate the detailed flow field between the

curved shock and the final asymptotic state. The basic differential

equations governing the flow are rewritten as:

-- + + u -+ v - 0 (2.6)Dx Dy Dx Dy

( 1u u + v C2,7)
ax Ty 2 DxKM e
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pUv ( 1 +7V (2.8)
Ux vy K M2 y

e

For the convenience of numerical calculations, another pair of inde-

pendent variables, 5 and $, which are related with x and y coordinates

through

x- x (W)
=s (2.35)

1 + x - x (0)

pv and 4 = pu (2.36)
ax Dy

are introduced. i is the dimensionless stream function and x , which can

easily be interpreted as a function of , is the upstream curved shock

configuration. Upon adopting this pair of independent variables, the

semi-infinite physical region is transformed into a rectangular finite

domain in the 5,t plane. Lines of constant i values correspond to stream-

lines, shock corresponds to = 0, and = 1 corresponds to the free jet

boundary. The asymptotic state assumes the location = 1 (see Fig. 8).

It may easily be established that the transformational relations are:

x (1 - (1 + pv d / - P (2.37)

and

a 2 ds a a
= (1 - ) pu d + pu D (2.38)

and Eqs. (2.6), (2.7), and (2.8) become

2 dxs u 2 vu 2 2 sdv
(1 - )p + pv p v - (1 - ) p2 u

+ 2 av 2 pp u + (1 ) u = 0 (2.39)
DE,
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1- )2 pu + 2 (1- )2 ( + dX - p 1 v 0 (2.40)2- + M1 (2- + pv l
K M KD iK2

e e

2 v 1 2 dx p 1 Dp
(1 - )2 ( - )2 + - 0 (2.41)

D5 2  diD K M 2 39
e e

In addition, the isoenergetic condition is given by

2 2
1 1 + u + 1 + 1 1 (2.42)

K - 1 M2 p 2 2 K - 1 M2
e e

The isentropic flow relationship along individual streamlines can be

written as

- = f() (2.43)

where f(4) is evaluated .according to the already established shock con-

ditions.

It may be observed that the asymptotic flow' condition which may be

given as

p = pa, v = 0, = 0, = 0

u = 0, = 0, and = 0 at ( = 1 (2.44)

satisfies Eqs. (2.39), (2.40), and (2.41) identically.

The boundary conditions for the system of equations are:

(1) At = 0, all flow properties are provided from the shock

relations given by Eqs. (2.1) through (2.5). (2.45)

(2) At = i, all flow properties are provided from the

asymptotic state. (2.46)

(3) At = i, p = pa, and p = Paj" (2.47)

(4) At = 0, v = 0, 9p/34 = 0, au/a = 0, and Dp/Dy = 0. (2.48)

ORIGINAL PAGE IS
OF POOR QUALITy
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2.5.1 Numerical Calculations

A predictor-corrector finite difference method has been ap-

plied to solve numerically the above partial differential equations (i.e.,

Eqs. (2.39), (2.40), and (2.4.1)) with the corresponding boundary conditions

given by Eqs. (2.45), (2.46), (2.47), and (2.48). In order to carry out

the numerical calculations, the square ABCD in the ,qi plane has been

divided into small meshes as shown in Fig. 8c.

In the predictor phase of the numerical method, flow properties p,

u, and v within the region are estimated. The pressure can always be re-

lated with these p, u, and v values through the isoenergetic condition or

the isentropic relationship when its i value is known. To obtain the

initial information of p, u, and v, their values along the = 0.5 line

is established initially by obtaining:

(1) The p,, u , and v * values from the standard three-point

central difference scheme from the known values of properties

at = 0 and = i,

(2) The p , u , and v values from the basic equations, and

(3) Integration of these derivatives from i = 1 toward 4I = 0

numerically by applying the formula of

f (p - Ai) = f () - ( 4) A4 (2.49)

where f denotes any representative property of the fluid.

Initial values of u (or v) at i = 1 must be adjusted so that the con-

dition

v(9=O ) = 0 (2.50)

is satisfied on the axis.

*Subscripts now indicate differentiation.
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These processes are..repeated for constant C lines between

0 < < 0.5 and 0.5 < < 1.0.

In the corrector phase of the calculations, values of p, u, and v

are recalculated by following the same procedures but using the standard

five-point central difference formula [22] in C derivatives and the three-

point central difference in 4 derivatives* starting from the 5 = 0.5 line.

In correcting the property values from the = 1 line toward the axis

(9 = 0), a more sophisticated local predictor-corrector technique 120] has

been applied. These correcting calculations should be repeated until the

differences of the fluid property between the successively determined

values of all node points in the 5, plane are within a desirable limit.

In this study, this limit is taken as 10-6

Once the final flow properties are determined, including those along

the jet boundary, the profile of the jet may be established by integrating

the expression dyj/dx. = v./u. with the initial condition of yj = 1 at

x = 0.

2.6 DEGENERATE STATE

It should be pointed out that for each nozzle Mach number, there

exists a pressure ratio corresponding to the normal shock appearing at

the exit section of the nozzle. The downstream flow field is uniform

(i.e., yj - 1) and the constraining condition becomes the Rankine-Hugoniot

relationship which is automatically -satisfied by the normal shock. Such

a state is termed the "degenerate state" and the corresponding pressure

ratio for its appearance is presented in Fig. 4.

*This must be modified for the lines adjacent to shock, the asymptotic
state, and the qj = 1 and q) = 0 stremnlines.
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3. RESULTS AND DISCUSSION

The method described in the previous chapter has been translated

into a FORTRAN IV computer program with double precisi,n. For a given

initial Mach number at a certain operating pressure ratio, it takes

approximately five seconds of computational time on the IBM 360/75

digital computer to calculate all flow properties related to the prob-

lem. In this study, cases of three initial Mach numbers (Me = 1.49, 3.0,

and 5.0) operating at different pressure ratios have been calculated.

The results are plotted and presented in Figs. 9 through 18.

In Fig. 9, the calculated asymptotic velocity profiles C are plotted

against the coordinate rn. It can be seen from those profiles that the

change of from c to unity occurs mainly in the upper part of n. This

is especially true for higher pressure ratios and also true for higher

nozzle Mach numbers. From Table 1 it can be seen that the coefficient

C of p function (Eq. (2.29)) has larger values at higher pressure ratios.

This explains why the core flow is essentially uniform under these flow

conditions.

The results of the free jet flow calculated by-predictor-corrector

scheme also shows that when the operating pressure ratio is sufficiently

high, there is a uniform core flow around the centerline. The portion

of this uniform core flow increases as the pressure ratio is increased..

When the normal shock pressure ratio is reached, the entire free jet

flow becomes uniform.

The calculated centerline pressure variation and the free jet

boundary profile are plotted against the x coordinate in Figs. 10 and 11.

As the operating pressure ratio increases toward normal shock pressure

ratio, the following phenomena have been observed:
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(1) The value of shbck sthnd-off distance xsc' shown in Fig. 12,

is reduced toward zero as the normal shock condition is ap-

proached.

(2) The corresponding asymptotic free jet boundary height, yaj'

increases toward unity.

(3) The practical distance, x a, for the free jet flow to reach the

asymptotic flow conditions is also reduced.

The pressure distribution and its variation throughout the field

corresponding to specific flow conditions are shown in Fig. 13. Example

to illustrate the differences in flow properties between the initial pre-

dicted value and final corrected values at ( = 0.5 are presented in

Figs. 14 and 15.

It should be mentioned that the asymptotic velocity profile repre-

sented by equation 4 is certainly not the only type which can be adopted

for the present problem. In a different effort, a profile of the form

given by

2 (1 - c) - c
I = 1 - tanh (c) tanh [c (1- n2 tanh (c) tanh [c (1 - n4

( tanh (c)

(3.1)

has been employed, and the results are shown in Fig. 16. It can be seen

that the difference between the l1 and p profiles under the same con-

dition is indeed small, and this small difference has also been observed

under various pressure ratios. However, if one adopts a polynomial pro-

file of the form

2 = A + B T2 + C T 4 + D 16, (3.2)

it is found that the behavior of this profile is quite different from that

of or 1 at the same pressure ratios. In fact, when a certain level of
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pressure is reached, the profile has an absolute minimum velocity ocur-

ring not at the centerline which does not correspond to any physically

realistic flow condition (see Fig. 17). This is why the profile of a

simpler form given by equation #2 has not been employed for the present

study.

The solution of the problem, nevertheless, relies on the selection

of the type of asymptotic profile. Although profiles of a similar

nature may be adopted for this study, and the final results are not much

different from each other, these solutions can be considered as only ap-

proximate solutions. Meanwhile, the selection of the profile in its

present form, which is monotonically increasing for increasing ya values,

has dismissed the possibility of profiles with negative slope (positive

vorticity) away from the centerline, whose occurrence may seem to be im-

probable but cannot be ruled out by any basic principles. In this sense,

the selection of the asymptotic profile in its present form is somewhat

restrictive.

Perhaps it is due to the restrictive character of the profile that

some numerical instability of the results has been observed. In numeri-.

cal calculations by finite difference schemes, it is generally recognized

that for better definition or resolution of the flow field, finer grid

should be employed. In the present study, a small step of r (Aq = 0.01)

has been employed for calculations since it is needed especially in the

region close to the centerline where normal shock occurs. However, all

results reported here were obtained with AE = 0.125. Finer grid size in

the direction has led to oscillatory flow results, Figure 18 shows one

set of these results for the pressure distribution along the centerline

when a smaller AC (AEj = 0.0625) is employed. It.is thus obvious that with
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the same numerical limit of 10- 6 as the margin for convergence, a grid

finer than AC = 0.0625 may not even lead to convergent solutions.

It should also be mentioned that the question of how this curved

shock flow regime merges with the regime of Mach reflection cannot be

answered in this investigation. Additional study or even experimental

explorations are needed b.efore the problem can be resolved successfully.

Similar considerations can be applied to axisymmetric flow con-

figurations within this curved shock flow regime. A detailed study and

results are reported in the appendix. It should be noted that with the

axisymmetric geometry, the vorticity along the jet boundary is no longer

zero. In fact, on some occasions, the vorticity may approach infinity.

Under this condition, the viscous effect, of course, becomes important.

Prompted by the occurrence of such unusual occasions, perhaps it

should be suggested that the vorticity consideration on the jet boundary

is not important and should not be taken into consideration in the es-

tablishment of the asymptotic profile since viscous mixing does occur

along the free jet boundary in actual flows. Whether this change in

approach would result in simpler analysis or simpler asymptotic profiles

is yet to be examined.
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4. .CONCLUSIONS

From this study, it is recognized that a strong curved shock flow

regime exists in the operation of the convergent-divergent nozzle. Al-

though the precise manner of change-over between the Mach reflection

and the present curved shock flow regimes has not been clearly defined,

the pattern of the flow field associated with the occurrence of a

strong curved shock is, nevertheless, established, and the gap of in-

formation on nozzles operating under these conditions is satisfac-

torily filled. The inviscid flow analysis of nozzle flow problems thus

yields consistent flow patterns throughout the entire range of the pres-

sure ratio.

In the study of the flow field within this flow regime, it is im-

mediately recognized that an integral constraining relationship exists

at the asymptotic state which points out the inadequacy of the indirect

approach to the problem. Instead of asserting that the flow field is

produced as a result of the upstream shock, it may be interpreted that

the prevailing ambient and the asymptotic conditions forced the appear-

ance of the shock with a specific geometry. This is, of course, typi-

cal for all elliptic types of flow problems.

The suggested method of solution to these problems relies on the

selection of the asymptotic profile. It is not known whether there

exist other approaches or methods which are equally effective in deal-

ing with these problems.
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Table 1 C Values for Different Flow Conditions

M = 1.49 M = 2.0 M = 3.0 M = 4.0 M = 5.0
e e e e e

a/Poe C a oe a oe a oe aC paoe C

0.50 0.6067 0.42 1.4038 0.22 2.2994 0.07 1.0426 0.044 2.8406

0.51 0.8410 0.43 1.5455 0.23 2.7216 0.08 1.5317 0.045 3.1077

0.52 1.0352 0.44 1.6923 0.24 3.3338 0.09 2.0884 0.046 3.4330

0.53 1.2121 0.45 1.8484 0.25 4.3267 0.10 2.9865 0.047 3.8388

0.54 1.3826 0.46 2.0191 0.26 6.2304 0.11 5.2914 0.048 4.3604

0.55 1.5540 0.47 2.2111 0.27 11.4360 0.12 31.4710 0.049 5.0564

0.56 1.7331 0.48 2.4348 0.28 72.0330 0.121 56.700 0.050 6.0341

0.57 1.9276 0.49 2.7047 0.051 7.5120

0.58 2.1480 0.50 3.0427 0.052 10.0170

0.59 2.4097 0.51 3.4832 0.053 15.2500

0.60 2.7373 0.52 4.0826 0.054 32.9090

0.61 3.1709 0.53 4.9463 0.0546 54.6450

0.62 3.7792 0.54 6.2994

0.63 4.6953 0.55 8.7246

0.64 6.2289 0.56 14.3560

0.65 9.3159 0.57 40.3770

0.66 18.7750 0.573 75.8470

0.668 77.1230
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APPENDIX

FLOW WITH STRONG CURVED SHOCK WITH AXIALLY SYMMETRIC CONFIGURATION

The basic flow pattern of the axially symmetric flow within this

flow regimeis similar to that of two-dimensional flow. The curved

shock occurs at the exit of the nozzle and becomes a normal shock at

the axis of symmetry. Behind the shock, the flow is rotational and

bounded by a free jet boundary. Eventually this free jet flow reaches

an asymptotic state at far down stream position (x - oo) where the

pressure is constant. A schematic diagram depicting such a flow field

is shown in Fig. 5 where x and y are interpreted as cylindrical coordi-

nates.

A.1 BASIC RELATIONS GOVERNING THE FLOW

The governing relations are listed sequentially in the following

sections.

A.1.1 Shock Relations

The governing shock equations are the same as those for

two-dimensional flow. See Eqs. (2.1) through (2.5).

A.1.2 Free Jet Flow Region

For axially symmetric inviscid flow of a compressible fluid,

the continuity and momentum principles can be given as:

Dpuy Dpvypuy + pvy 0 (A.1)
ax ay

au au 1 Bpu @ + pv - + 2 = 0 (A.2)
x y K M2 x

Dv Dv 1 a o
pu x ay K 2 ay

e
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The energy equation can be given as

DS = 0 (A.4)
Dt

The flow region is bounded by (1) a constant pressure jet boundary,

(2) the upstream curved shock, and (3) the asymptotic state prevailing

at far downstream position (i.e., x + c).

The boundary condition for Eqs. (A.1), (A.2), and (A.3) are:

p = Pa along the free jet boundary,

u = us , v = vs , p = Ps, and p = ps along the curved shock,

au
v = 0, D 0 at y = 0.

Dy

A.1.3 Constraining Condition at the Asymptotic State

Consider the control volume shown in Fig. 19. The continuity

principle would yield

Yaj y

P a a Ya dya = pe ue y dy = A.5)

O o

and the x-momentum principle also gives

y . 2aj 2 Pa Ye Pe Ye 2 ye
P U Y dya +  + P u - (A.6)a a a a a M 2 e e 22K M 2KM

e e

which can be rewritten as

Yaj 2 1a 1 \
j a ua Ya dya = 1 - 2 . A.7)f K M2

0 e

After introducing paj, uaj, and y aj as reference quantities for the

integrands in Eqs. (A.5) and (A.7) and defining = a/ua j and q = yy aj'
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these equations become

1

p y a n d Ti (A. 8)
2P 1Paj Uaj Yaj aj 2

aj KM

1

Paj Uaj Yaj f v dn = 1 - M (A.9)

o e

Upon combining Eqs. (A.8) and (A.9), one obtains

1
(pa - 1)

1 21-
a e dr = 0 (A.10
aj - K M 2)

. A method similar to. the two-dimensional flow method has been applied

to calculate this flow case. Detailed calculation procedures will be

discussed in the following sections.

A.2 ASYMPTOTIC STATE

Since the solution of the problem relies on the establishment of

the asymptotic flow profile, a detailed examination of the conditions

imposed on such an asymptotic flow state is, therefore, necessary.

Under the asymptotic flow condition, the slope of the velocity pro-

file is precisely the vorticity of the flow. A study of the vorticity

generated by the shock at the corner of the nozzle would also yield the

slope of the profile of the jet boundary streamline at the asymptotic

state.

A.2.1 Vorticity at the Jet Boundary Streamline

Referring to Fig. 7, the continuity equation and the equation

of motion in the streamline coordinate system are (in dimensional form):
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1 - M2
e - q e _ sinO (A.11)

q ys n y

qq _ 1 ~ (A. 12)
as p s

2 30 _ (A.13)
q s - n

The vorticity can be expressed as

W = - q 9 p DS (A.14)
Dn as pqR n

For a jet boundary streamline at the corner of the nozzle, Eq. (A.11)

can be written as

S sin 6 as = 0. (A.15)
Dn y Ds

At asymptotic state, the relation between the vorticity and the slope

of velocity profile can be expressed as

Wa = = aj (A.16)
a Yaj DD

The vorticity at the shock can be written as

= p 3S = (dS do H0 (A.17)
s pqR ns pqR do d6 n

For axially symmetric flow, the vorticity along each streamline is

not constant. It is proportional to the pressure moment y p relative

to the axis of symmetry. Thus, along the constant pressure free jet

boundary, the vorticity at the asymptotic state can be related to the

vorticity at the shock by

S p dS d a ) (A.18)
sa s Y pqR do d n y (A.18)

The change of entropy with respect to the shock angle dS/do can be

obtained from the following relations:
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M sin a cos 0
dS 4RK e

doc (K- 1)(K + 2K1) 2 K-2K 2 si 2  K-
K+1 e K+ 1

cos O/(M2 sin3 o)
e (A.19)

2 K 1

(K + 1) M sin o

Taking the derivative of Eq. (2.2), one obtains

do 1/sin 2 6
d6 M2  (K + 1) M 4 sin 2 a

1 (K + 1 e - 1- e (A.20)

cos 2 M 2 sin 2  - 1 (M2 sin - 1)

e e

thus, the.slope of the asymptotic velocity profile can be related to the

shock angle, shock turning angle, and the asymptotic free jet height by

_ ps sin 6 4K
ST=1 Ps qs qaj (K - 1)(K + l)

- cos 0

M sin a cos o M sin 3 
e e

2K M 2 sin 2 a K . 2 K - 1
K+1 e K+1 +

(K + 1) M sin +

e

1

sin 2  4 i 2 )
2  M (K + 1) M sin a

Cos 2 sin 2  (2 in2 T l2
e (M2sin -1)

2

Y F (Me , 0, 6, y j) (A.21)
2 e aj

s
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It shou.ld be pointed out that at certain pressure ratios, da/d6

in Eq. (A.20) becomes undefined (i.e., da/d6 = +) as shown in Fig. 20.

This implies that the slope of the asymptotic velocity profile is also

undefined. However, when the pressure ratios are different from that

particular pressure ratio, present calculations are successful and the

corresponding shock profiles can be computed.

A.2.2 Velocity Profile at the Asymptotic State

The velocity profile 4 in Eq. (A.10) should satisfy the con-

ditions of:

(1) At r = 0:

=ac and -- 0
c uaj d

(2) At n = 1:

= 1 and = F (M , , , j)

A similar velocity profile has been selected as

= A + B erf [C (1 - n2)] + D erf [C (1 - n4)] (A.22)

Since the boundary condition. d/dn n=1 is related to the asymptotic

free jet boundary height y aj iteration must be applied to determine the

values of those coefficients and the free jet boundary height, y

A.2.3 Corresponding Upstream Shock Profile

After the asymptotic free jet height yaj and its detailed pro-

file have been established, the corresponding curved shock configuration

can be determined through the following consideration.
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If one carries out the integration,

SPa Ua y dy

0

along the asymptotic profile, continuity principle would imply that the

fluid assuming the position ya at the asymptotic section would have

passed through the shock at height ys which is equal to

1/2

Y = 2(f Pa ua y dy) (A.23)

0

Since the velocity of the fluid at ya has a known value of ca , its stag-

nation pressure poa can be found from

(K/K-1)
P 12 (2.32)

Pa 1 - C2 2
aj a

The ratio of the stagnation pressure across the shock at ys can be re-

lated through the shock wave angle a by

K + 1 2 (K/K-l )

K + 1 2  2 o1( + -1 M 2 )sin 2 p p p2 e Poa Poa a
(A. 24)

2K 2 sin K- 1 l/l) oe a oe
K+ 1 K + 1

The wave angle a, thus, can be found as a function of any position ys

along the shock.

The calculated shock profiles and asymptotic velocity profiles for

Me =1.49 at different pressure ratios are given in Fig. 20.

It should be noted that at low pressure ratios, the maximum asymptotic

velocity is not at free jet boundary. This is, of course, a result of the

positive vorticity occurring at the corner of the nozzle under these specific

pressure ratios.
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