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CQMPUTATION-BASED RELIABILITY ANALYSIS

John F. Meyer

1. Introduétion

'Quahtitative methods of analyzing system reliability
have been:récognized as an important need since the end
of World War II. Early objects of reliability analysis
were pieces of electronic communication and control
equipment‘whose functional requirements were relatively
easy to Spécify. Accordingly, what constituted the
t‘success'” or “faiiure® of such systems could be described
in a straightforward manner and reliability measures
such as ”pfobability of success," 'mean-time-to-failure,"
Havailabiiity,” étc. were relatively easy to formulate.

During'the last thirty years, however, the structural
and functional complexity of man-made systems has in-
creased'frememdously, particularly in the computer field,
and the réliability analysis task has likewise become much
more complex. This is especially true in the céselof
fault-tolérant computing systems, where vérious types of

structural redundancy must be accounted for in the analysis.



Beginniﬂg with the reliability analysisAof fault-
tolerant lbgic networks [1] and relay netWorks {21,

a considerabie amount of effort has been devoted to
‘developing analytic methods for assessing the reliability
of computinéAsystems. Recent contribﬁtions in this regard
include thefaﬁélysis of fault-tolerant systems based on
architecture;level descriptions of their structure [3]-[6].
In generalj these methods are based on formal models which,
at some desired level of abstraction, represent the structure
of the syétems fo be analyzed. Given a particular class

of models, the ability to ''rely on'" a system is thenquanti-
fied via one or more 'reliability measures" (defined on

the model claés). In defining such measures, what it means
to "rely Qﬁ“~a system is usually expresSed in terms. of some
underlying concept of system '"success'" or '"failure."
Indeed, thé‘measure that is commonly referred to as
"reliability" can be generally defined as '"the probability
of system success in its use environment" (seé [71, for
example).  Thus, it is the meaning of success (or failure)
that gives meaning to a reliability measure and, in tﬁrn,
to any analysis that uses the measure.

In the discussion that follows, we wish to focus on
the last of these issues, namely the concept of ''success"
as it pertains to the reliability analysis of computing
systems. In particular, we contend that success criteria
should be '"computation-based'" so that-they can adequately

reflect the computational needs of the user. This is in



contrast to 'structure-based" success criteria which

can specify what is required of a system's structure,

but can speéify what constitutes successful behavior

only as it'depends on the success of the structure. In
relatively éimﬁle computing systems where computational
integrity ié closely related to structural integrity
(e.g., as the success of addition reélates to the struc-
tural integrify of an adder), such structure-based success
criteria may indeed suffice. On the other hand, if the
success of"é'computation depends not only on-structure but
also on such‘things as the state of the system prior to
initiation of the computation, the time of initiation, and
tﬁe input data, then structure-based criteria cannot
express variafions in success that result from such depen-
dencies. CoﬂSequently, reliability measures that utilize
structure—béSed criteria may not be indicati&e of a system's
ability to successfully perform computations.

The purpose of the discussion that follows is to
formally establish the point we have just made. We begin
with an example that is intended to illustrate the need
for computation-based reliability analysis, that is, analysis
that utilizes computation-based success criteria. We then
develop a formal model of a computer that is just complex
enough to admit to the formulation of computation-based
criteria and, in turn, reliability measures that utilize

these criteria. Finally, we apply the formal model to
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illustrate how the results of a computation-based analysis

can differ from those of a structure-based analysis;

2. The Need. .

To illustrate the need for computation-based
reliability‘analysis consider, for example, thé reliability
equations'tﬁgt have been developed for systems employing
modular redundancy and sparing [3], [4]. These
equations are based solely on a structural representation
(at the architecture leVel) of the system in question
and, consequently, whatever the underlying success
criteria may be, they too are structure-based.

In parficular, therefore, these criteria apply as
well to a féult—tolerant aerospacé computer as they do
to a faulf—tolerant pocket calculator. Let us eXamine,
on the other hand, how the computational requirements
for two such-systems might differ.

A computer housed in an aircraft or spacegraft
is called o§ fo perform a variety of functions at different
times and for different lengths of time during the course
of a flight (see [ 8], for example). A pocket calculator
may be reduired only to add or multiply (any time it is
called on to do so). What constitutes successful com-
putation is iikewise very different. 'In the case of an
aircraft or spacecraft computer, success criteria will

vary according to what function is computed and when
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the computéfion takes plaée. For example, more strict
criteria might apply to flight confrol computations
- during anrautomatic laﬁding than to graphic display
computatiﬁns'performed while en route. Consequently,
a structdrél~failure of a given type mighticause a
computational_failure if it occurs during an automatic
landing, but might be tolerated if it occurs before
that time{ in the case of a pocket calculator, on the
other hand;tsuccess criteria are simple and essentially
'independeﬁt_df what is computed or when computations
take place.

Given‘fhese differences in computational requirements,
as they are perceived by the users of each system,
let us examihe the consequences of applying strudtﬁre—
based reliability equations of the type referred to at
the outset. 1In the case of a pocket calculator, the
reliability values determined by the equations may be
quite meaningful to the user since, here, the success
or failure oi‘a computation corresponds closely to the
success or failure of the structure (as defined by the
stfucture4based success criteria of the modelj. In the
case of an aircraft or spacecraft computer{ on the
other hand, fhe reliability values determined by the
equations may be misleading since, in‘general, the success
or failure of computations will not correspond to the

success or failure of the computer's structure. 1In



particulaf; as noted éérlier, a structural failure might
correspond'fé computational failure at one time (while
landing) andAto computational success at another time
(while en roﬁte). In other words, ''success in the use
environment'" may differ considerably from fhe kind of
structure-based success criteria that models of this type
employ. -

The exambie just cited is indicative of the need fo
more fully'éccount for the behavior of a computer (i.e.,
the cbmputafions it performs) when analyzing its relia-
bility. 'quaccomplish this, reliability measures must
refer tb cénéepts of-system success which invdlve more
than just the status of various components of subsjstems.

For systems described at the architecture-level,
this ﬁeed haé already been acknowledged by Bouricious,
et al., [5];:[6] through the introduction of parameter
called "coverage.'" According to their definition, coverage
is '"the co.nditional probability that, given the existence of
a failure in the operational system, the system is able to
recover and continue information processing with no
permanent loss of essential information."” Thus, coverage
involves the kind of ”computatibn—based” success criteria,
the use of“which‘we are advocating.

To analYtically evaluate coverage and, more generally,
any computaﬁibn—based reliability measure, the system-mbdels

used must be capable of representing behavior (compu-



tations)}éé well as structure (the computer). In this
regard, oné-should not be misled by the use of the coverage
~parameter in connection with purely structural models.
Although Suéh models can employ coverage as a parameter
(as was doné_when the concept was first introduced [5]),
they cannbf:be used‘to evaluate the parameter. The latter
problem ié the type of problem that we are concerned with
here and'ohe'that we feel deserves further investigation.
In thevfemainder of this paper, our objective is to
_ establish, in quite simple and general terms{_the kinds
of thingsrthat need to be considered in developing models

and measures for computation-based reliability analysis.

3. Computers with Faults ’ .

We begih.by viewing a digital computer as a rather
general typé;of system which, at diScrete\points in time,
receives ihﬁut data which, in turn, effects changes in the
system's internal state. It will be assumed that time is
represented by the natural numbers, i.e., the time base
is the set T = {0,1,2,...} . It will be further assumed
that the state set is ''coordinatized'" where a subset of thé
coordinafés represent the values of those state variables
that are observable as output variables.

The transition structure of such a system may vary
with time bécause faults (structural failures) occur or
because the system is reconfigured in an attempt to

recover from a fault. At a given instant of time the



structuré is fixed, however, and is described by a
transitiqp function which determines the state 'of the
computingfsyStem at time i + 1, given the state at time i
and the input received at time 1i. Forﬁalizing this

notion, we have:

Definition: A (formal) computer is a system

{

C = (X,Q,4)

where

X is a nonempty set, the input set of C,

Q is a'nénempty set, the state set of C,

A is .a sequence of functions

A= (85,6,,65,...)

0’ 172’

where Sif Q x X > Q, the transition function of C

at time i (i € T)

Thus a computer, as defined above, is a “discrete-time,
time-varying system whose structure at time i is des-
cribed by transition function Gi . In particular, if
é € Q is the state of C at timé i and 2 € X is the input
received at time i then Gi(q,a) is the state of C at time
i+ 1 . In_case structure does not vary with time,

that is,

S . = 51, for all I € T (3.1)



then C is time-invariant. Thus if C = (X,Q,A) is time-
invariant; A:is uniquely determined by 60 and C can
alternativéiy‘be regarded as a (state) sequential machine
with (fixed)tfransition function § = 60

. A computer is finite-input if |X| < « and finite-

state if |Q] < » . Note that even in case a computer
is both fihife—input and finite-state, it is not finitely
specifiable;unless,its structure A is finitely specifiable.
However, in the subsequent application of this model to
reliability analysis, all computers (both fault-free and
faulty) of éoncern in the analysis will indeed be finitely
specifiable;

The moét general view of computer behaviof is that
of ”string;mdnipulation;” Beginning in some initial
state qo,,determined by the program to be exeéuted and
by stored dafa, at some initial time i, C receives an
input sequence of symbols agay-. -2, 4 where a.j e X is
interpreted as the input received at time i + j . 1In
response to_fhis input sequence, there results a sequence
(trajectory) of states qoql...qn.where qj € Q is inter-
preted as the state of C at time i + j . Thus the
"'state behavior" of C may be viewed as a function from
T x X* into Q' where T is the time base, X* is the set
of all finite-length sequences of input symbols (including
the null seqﬁence A), and Q+ is the set of all finite-

length seduences<xfstates. More precisely, if C = (X,Q,A)
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and q € Q , the state-behavior of C in q is a function
aq: T x X* - Q+ defined inductively as follows for all

ie T:
. i ) =
i) aq(l ) = a
If x ¢ X* , a e X:

ii) aq(i,ga) = a,(1.x)85(a" ,a)
wheré J = 2g(x) (the length of x)

and Q' is the final state of aq(i,x)

It is easy to verify that this formal notion‘of state-
behavior captures the intuitive notion discuséed above.
Note that aq maps input sequences of length n into state
trajectories of length n + 1

Having established the concepfs of "computer" and
"state-behavior," we adopt a concept of "computation"
that is soﬁéwhat more general than usually>considered.
Since compﬁtafional errors may be due to erroneous initial
states, initial times, and input sequences, aé well as
to faulty computers, we regard a computation as con-
sisting of four things: an initia% state q; an initial
time i, an input sequence X and a state sequence y . More
precisely, a éomputation (over X and Q) is a quadruple
(q,i,x,y) where q € Q , i € T, x ¢ X¥* and y €'Q+ such that
2g(y) = 2g(x) + 1. Accordingly, q, i, x, ahd y are

referred to as the initial state, initial timé, input

sequence and state trajectory (respectively) of the com-
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putation..‘Relative to a particular computer C, a com-

putation of C is a computation of the form (q, i,x,aq(i,x))

The fundamental question of deciding whether a computer

is a "success in its use environment'" will be based on

the nature of such computations. However, even more

basic than the notion of a computational erfér is the concept
of a ”fault,ﬁ that is, a transient or permanént change

in computef structure that may, in turn cause errors.

In terms of the concepts of a "representation scheme"
and a ”sysfém with faults" [ 9], the ”specific#tion class
5pandb“réa112ation class" A that we wish to consider

.is the class'gf all computers (as defined abové), that

is, both & and & are equal to the class
€ = (c|C is a computer}

Moreover, we will restrict our attention to faults that
occur during the use of a computer (as opposed to faults
that occur during the design process) and so, in the
representafion scheme (@,€%.0) , o is taken to be the
identity fuﬁ¢tion. In this representation scheme, a
"computer with faults' will be defined as follows.

The '"fault-free'" specification, that is, the des-
crdption of‘thé underlying system as it exists befére
any physical failures occur, will be assumed time- "
invariant (see condition (3.1)). This is not unreasonable
since many physical systems and, in particular, most

computing systems can be represented as time-invariant
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systems asflongAas there areino structural changes due

to physicaiifailures. Suppose now that a physical failure
does occuf;where the failure may be transient) permanent,
or a combinﬁtion-of the two, that is, a permahent physigal
failure that has a transient component while the permanent
change is téking place. Such physical failures can then
be represénted by (formal) faults as follows. If C =

(X,Q,47) is:a computer, a fault of C (at time i) is a

triple (t,m,i) where

T: QVR X » Q, the transient component,

mT: Q@ x-X » Q, the permanent component,

i is a donnegative integer, the time of occurrence (i € T).

The iéﬁerpretation of (t,m,1i) is a physical failure
that occursAbetween time i1 and time i + 1 . 1 is the
transitioﬂ fﬁnption that the failing system exhibits while
the failure.ié'taking place and 7 is the tranéition
function thét-fhe system exhibits after the failure has
taken place. Thus, if f = (1,7,i) is a fault of computer
C % (X,Q,A) , the result of f is the computer Cf =

(x,Q,8%) where, if aT = (s7,61,6L,...) then

1’722

§. if 0 < j < i
1 0 <3 i
8§, = T if j = i ' (3.3)

T if j > i
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If, in the‘result of £f = (t,m,i), there is no permanent
change in strﬁcture,_that is, w = 51—1 then f is a

transient fault (at fime i). A fault (w,t,i) which

represents no change whatsoever, that is, ©m = 61_1 and

T=6 is referred to as a null or improper fault

i-1’

(at time i). Given this notion of a fault at time i,

by a '"fault' wé will generally mean a sequence of faults
that represehts a succession of physical failures. More

precisely, a (multiple) fault of C is a sequencé

where i, < i, < ... < %k and fij is a faultvqf C at time ij
The corresponding result of f is an immediéte generalization

of definition (3.3).
Given these concepts of '"fault," '"result of a fault,"
we obtain the following specialization of the general

notion of a "system with faults."

Definition: A computer with faults is a triple (C,F, o)

such that

i) C-éAqg where C is time invariant,
ii) F is a set of faults of C, where F contains at
least one null fault,

iii) o¢: F - @, where o(f) = c! (the result of f).

In keeping with our earlier interpretations of these

objects, if (C,F,¢) as a computer with féults, C will be
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referred to as the fault-free computer and if f is not a

null faulf,'Cf‘will be referred to as faulty.
To illusﬁrate each of the ingredients of a computer
with faults, consider the triply modular redundant (TMR)

configuration:

pa > C2 . >| Voter p___

where each module Cj is a time-invariant computer C =

(%X,3,5) with

> -
1] ]
~ O
O
- |
o)
~- -
o ©
=
[u—
[—

and'

Then this (fault-free) TMR configuration is represented

by the computer:
‘C = ({0,1},Q,4)
where
Q = {(ay,95,95,94)|q; € {0,1}}

with qy, 94 and dq representing the states of modules 1,

2 and 3 (respectively) and qy representing the value of
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the voter output. The transition structure
A= (60,51,62,...)

is given by:a fixed function § = §, for all i, where

§((dy,45:45,9,4),8) = (41,95,95,1(a],95,95))

with qi = s(éi,a)‘and U equal to the majority function
(realized,ﬁy‘the votef).

To iiluéfrate‘the concepts of a '"fault" and the
"result of a fault," suppose that at time 2.fhere is a
transient struck-at-one failure at the output of module 1
and at time44 there is a permanent stuck-at-zero
failure af the oﬁtput of module 3. Then this succession

‘of failuresvis represénted by the (multiple) fault
f = (fz,f4)

where fz is:the fault a2t time 2 and f4 is the fault at

time 4. More specifically, f, is the fault
(15,75,2)
where (letting qj = E(qi,a)):
T5((q1,95,93,9,),2) = (1,95,a3,1(1,95,45))
and -

f4 is the fault
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where
T4((q3,95,43,94).2) = (41,93,0,u(a],d5,0))

and

The result of the fault f is the computer Cf = ({0,11},Q, Af) where

(s if 0 < j <2
TziIf j= 2
£ _ . .
dj = To if j = 3
1 T4 if j = 4
L T4 if j > 4

4. Tolerance Relations for Computations

Given the class of computers with faults (overrsome
specified inpﬁt,set X and state set Q), we noW’consider
the basic isSue raised ét the outset of this discussion,
namely, the'fdrmulation of computation-based success
criteria. .Although such criteria could be formally
specified in a variety of specific ways, the following
general formulation appears to be quite reasonable.

We viewjéiparticular computation realized by
some possibly faulty computer as being a ''success' if
it is ”withip tolerance'" of the desired (error-free)
computationf In these térms, what is regarded as a
successful.  computation (in the use environmént) is
specified by a '"tolerance relation' on the set of all
possible computations. In general, such a relation can

be formally defined as follows.
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—

Definition: If U is the set of all computations (over

X and Q), a tolerance relation (for computafions) is a

relation o on U such that o is reflexive.

The reflexive condition of the definition says
simply that every computation is within tolerance of
itself. -Aeeerdihgly the strongest tolerance relation
is the relation of equality; the weakest is the relation
c=0Ux1U whefe every computation is within tolerance

'of every other computation. The latter says that anything
the computer:does is acceptable and therefore represents
a theoretical extreme as opposed to a practical one.

It shouid also be noted that the concept of tolerance,
as defined‘above, is general enough to permit tolerable
deviations in- initial state, initial time and input as well as
tolerable devietions in the state trajectory. Thus, for
example, if (q,i,x,y) were the desired compuﬁation and

a delay of up to 5 time steps could be tolerated then
(q,i+j,x,y)o(q,1i,x,y). (1<3<5)

However, the purpose of the present investigation can be
adequately sefyed by examining how internal causes
(faults) affect the state trajectory of a computation,
and neglecting external causes that might affect initia-
lization, timing, and input.

Given a computer with faults (C,F,¢) and some
specified tolerance relation ¢, it is now possible» to define

precisely what is meant by computational success. To
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this end, sﬁbpose f € F, u is a computation of the
(possibly faulty) computer Cf and u' is the-éomputation
of the fault;free computer C where u' has ﬁhe same
initial state, initial time, and input sequence as u.
Then, assuﬁing no external causes of error, we can regard
u as a “éuccess” if u is_within tolerance of u'. More

precisely,vif,o is a tolerance relation and f-e F:

Definition:. A computation u of Cf is a og-success if

uo(q,i,x,aq(i,x)) "where q, i, and x are the initial étate,
initial tiﬁe and_input sequence of u. Otherwise u is a
g-failure. |

If a cémpﬁtation of—C:f is a o-failure, we will say

it is caused by f. 1In case f can cause no o-failures,

then f is o-tolerated. When the tolerance relation is
understood; we will drop the reference to ¢ and refer
to a computation u as simply a '"success" or, in the
opposite case, a '"failure."

Since state trajectories can be distinguished by a
tolerance relation, the concept of failure, as defined
above, can capture internal computational failures as
well as inpﬁt—butput failures. To illustrate, let C be
the TMR configuration considered earlier and suppdse o
is the relation of equality on U (i.e., uou' iff u = u').
Then the fault f = (fz,f4), considered in the earlier

example, can cause ¢g-failures even though f cannot cause
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input—output;failures (assuming the modules are properly
initializéd);f To be more specific, let us suppose the

module transition function o is given by:

(g,2) §(q,a)
(0,0) 0

) - (0,1) 1
(1,0) 1
(1,1) 0

Then, for example, if q = (0,0,0,0), i = 0, and x = 101

then

“§<i,x)“= (0,0,0,0)(1,1,1,1)(1,1,1,1)(1,0,0,0)

since the-trahsition function at time 2 is 12.. On

the other hand
ay(1,x) = (0,0,0,0)(1,1,1,1)(1,1,1,1)(0,0,0,0)

Thus the cbmﬁutations u = (q,i,x,aé(x)) and u' ?
(q,i,x,aq(x)) are not equal, that is u ¢ u' and hence u
is a o-failure.

To continue the example, suppose o' is a second
tolerance relation which requires only that values on
the output‘line (coordinate 4) be what they should be.
More precisely, (q,i,x,y)o'(q,i,x,y') if y and y' have

the same 1éngth, say n, and the jth state of y has the
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th state of y', i =

the same 4th.coordinate as the J
0)1,...,n—1'.- Giﬁen that o' is the tolerance relation
of interesﬁ;'it can be shown that the fault f = (fz,f4)
does not cause any o-failures (provided all module states
are the same When the computation begins). in othér '
words, althdﬁgh f can cause interﬁal failures (according

to tolerance relation o), it can cause no input-output

failures (according to tolerance relation ¢').

5. Reliability Measures

In genéral,va ""realiability measure' ‘is a function
from some:&iass of systems into some set of numbers (or
produqt set of numbers) whose value, for a given system,
reflects the ability to rely on that system in_some
specified uSéIenvironment. When viewed in thié way,
the concept}pf a reliability measure includes such
‘measures as "mean-time-to-failure,'" '"availability,"
”recoverability,” etc., as well as the measure ‘''proba-
bility of success (in the use environment).'" What we
wish to examine now is how such reliability measures
might be formulated in terms of the computation-based
success criteria developed in the previous section.

The investigation will focus on the measure "probability
of success,'" although other measures of the type men-

tioned above could be dealt with in a similar fashion.
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In géneral, to formulate the measure 'probability
of supcessf where, as earlier, success means Wsﬁccess in
the use en&ifdnment,” the probabilistic nature of both
the system ahd the environment must be taken into account.
In classical structure-based formulations, the eﬁvironment
is usually{déscribed by a single parameter t (the duration
of time that the system is utilized) and assumed to be
deterministié-(i.e., it is assumed that t has a known
fixed value ﬁhen evaluating probability of success).
However, wheﬁ other aspects of the environment are con-
sidered, such as the computational requiremenfs of the
user, it is more realistic to regard the environment
as probabilistic.

To fqrﬁélize this view, if (C,F,¢) is a computer .
with faults where C = (X,Q,4A), the environment of C

can be represénted by a probability space

(E, &.Pg) (5.1)
where

. *
E=QxTxX ,
&

PE - & - [0,1] is a probability measure.

{E'|E' ¢ E} (the "events'" on E) ,

Here, an element (q,i,x) in the sample space E describes
an environment wherein the computer is to realize a

computatidn.with initial state q, initial time i, and



22

input sequénCe x. The interpretation of the probability

measure PE is the usual one, that is, if E' e<§ then:

PE(Ejj'= the probability that the (experienced)

- environment is in the event E'.

As for the probabilistic nature of the faults of C,

it can be‘represented by a second probability space

(F,&.Pp) (5.2)

where F is -the set of faults of C
F - {F'|F' c F}
and Pq & - [0,1] is a probability measure.
Again the iﬁterpretation of PF is the usual one, that is,
if F' ¢ & then:
PF(F!) = the probability that the (experienced)

fault is in the event F'.

Given the spaces (E, (g’,PE) and (F,,@:PF)', the proba-
pilistic nature of both the environment and the faults

of C can then be repreSented by a single space

(G, %.P)
where G=ExF,
Y =-1cl6 cay,

and P:% ~» [0,1] is the (unique) probability

measure that satisfies the condition:
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P({(e,f)})z=.PE({e})°PF({f}), for all (e,f) € G (5.3)

Note that_Eq};(S.B) expresses an underlying assumption
that environmental eﬁents are independent of faults,
which we feel is quite reasonable. If G' eg? R the
interpretaiion of P(G') is the probability that the
(experienced) environment and fault has a description
e and f ;érespeetively, such that (e,f) ¢ G'.

A probabilistic framework has now been established
for a formal‘definitidn of “probability of success in the
use environment” or what we will refer to simply as

”reliability)“

Definitionzi‘If C = (C,F,p) is a computer with faults,

o is a tolefance relation on the computations of C, and
P is the probability measure defined by Eq. (5.3) then

the reliability of C (denoted RO(C)) is the probability

R_(C) = P(H)

(q;i,x,f) the computation (q,i,x,af(i,x))
where H= ({ - a

is a o-success
Note that R0 may be viewed as a reliability measure (from
computers with faults into the real interval [0,1])

where the value of R0 for computer C is RO(C). Thus the

above definition yields a whole class of reliability measures
that differ according to the choice of a tolerance

relation o .



24

6. Analysis of a Read-only Memory

To illﬁstrate'fhe application of computétioh—based
reliability-measures, let us suppose the system to be
analyzed is a 1024 word, 32 bit/word read-only memofy
(ROM). Theﬁlthe ROM (before the occurrence of any
physical féilﬁres), can be represented by the fault-

free computeriC = (X,Q,A) where

Cx = {0,13%°
-1;QV= X x Y where Y ='{0,1}32
= (6,8,8,...1}.

and A

To describe the (fault—free) transition function § , with
each "address'" a € X we associate a word c(a) € Y -

thé "content of a." Then for all q € Q ,
§(q,a) = (a,c(a))

Suppose fufther thay the physical failures of_concern

are memory cell failures that permanently alfer the cbntent
of an addreSsk Then, for some specific address b, such
failures égnjﬁe formally represented by (single) faults

of the‘form'

f(b,i) = (t,m,1i)
where T = 7 (i.e., f(b,i) is a permanent faulf) and
fé(q,a) if a # b

m(q,a) = g

(a,c), where ¢ # c(a), otherwise.
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If null-faults of the form f = (§,8,i) are also included,
then the fault set F is the set of all sequences of
single faults, i.e., f ¢ F if and only if, for some

m>1,

£ = (£(by,19),E(Dy,dp), 0, E(by 1))

where il §-iéf< . < im . As for thé underlying tolerance
relation G-QZWQ assume that no readout errors can be
tolerated'(i,e.,,tﬁere can be no errors in the Y coor-
Adinate valﬁés 6f a state). As no failures are postulated
for the addréssing structure (which determines the X
coordinate Values), we can therefore take o to be.the
relation of'eduality 6n the computations of C.

Regarding the environment of the system; let us
suppose the'ROM is part of an aircraft computervwhere it
receives slowly changing address updates at the rate
of 1 per~ﬁinate. (Time i will be interpreted as the ith
minute). tet'us suppose further that as inputs change,
the 1ikelihood of repeating a given address is negligible.
Then, for a mission duration of t minutes (where t <
1024), the environment of the ROM is described by a
probability'space (E,(E,PE), where E and & are as
defined in (5}1), and PE is subject to the éondifion

that, whenever

‘PE({(q’i’aOal"'aZ—l)}) > 0 | )
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then/} = 0‘, i =t , and a # ay if j # k

The p?bbabilistic nature of the faults f € F is
determined by that of the physical memory cells.
Assuming that a single cell failure changes the contents
of that cell, a fault f(b,i) corresponds to no failures
in each of the 32 cells (addressed by b) until time i
and then at least one cell failure (among the 32) between
time i and tlme i+ 1. Thus, if cell fallures occur
at constant hazard rate A , the value of P (éeg (5.2))

for a fault f(b,i) is given by:

e—32Ai e—321

PF<{"f<b,i)}) = (1 - )

-32)1 -32A(i+1)
e - €

The probabiiity<xfa sequence of single faults can be
formulated-in a similar manner.

We now have enough infermation.to determine the
reliability of C according to the measure RO . By
definition, R:(C) is the probability P(H) of the event
H con51st1ng of all tuples (q,1,x,f) such that the

computatlon (q i,x,o (1 X) 1is a O-success, that is

aé(i,x)'= ag(1,%) . We note first that P({(q,i,x,aé(i,x))})
will be 0 if i # O , 2g(x) # t or the sequence x has
repeated addresses (since PE({(q,i,x)}) = 0 under these

conditions).. Thus we need only consider tuples (q,i,x,f)
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such thgt i:=:0 , X % aoai...aT_l , and aj # ag it j # k
In this caée;'it follows that the computatién‘u =
(q,O,x,aZ(QQx}) is a o-success if and only if, for each
time i (0'< i'i T - 1) and for all j such that 0 < j < i ,
the fault:f(ai,j) does not occur in the sequence f.

This will eﬁsﬁre that, for éach time i, the'(i+1)th

state of aé(o,x) is equal to the (i+1)th state of

aq(O,x). Méréovér,'sinée a; occurs exactly once in the
sequence x; ﬁ§ fault f(ai,j) with j > 1 ; will cause

a o-failure at a later time. Thus, if we let.

F, = {fl(q,O,x,aé(O,x)) is a o-success} ,

I

it follows t@at

e-32Ai
1

o
(=N

i

—32At (t+1)
5

= e
Summing over the environment

E = {(q,0,%)|PL({(q,0,%x)}) > 0}

ﬁ(H) = ‘ZEZ _‘PE({q,O,x})'PF(Fg)

(q9,0,x)cE

we have:
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:E: , -320t (t+1) ‘
_ PE({q,O,x})'e 2

£q,0,x)eE "
-32At(t+1)

= 1oe 2
-32At(t+1YH

2

Hence R_(C) = e (6.1)

The above example is intended to illustrate the many
concepts i@tﬁéduced in previous sections and, for this
reason, theAdévelopment has been somewhat more lengthy
than what w¢ﬁld normally be required to achieve the end '
result. Thé:éxample_also serves to illustrate how a
computation—ﬁased reliability measure can differ from
a structureébased measure. In particular, suppose we
consider the:usual structure-based success criteria for
the examplelin question, that is, ''no memory cell failures
during thefufilization interval t." Since the ROM
has 1024 wofds with 32 bits/word, the reliabilityi
(probabilify of success) in this case is given by

e—(1024)32kt

R(C) = (6.2)

\

Comparing Eqs? (6.1) and (6.2), we note first that
the structure-based formula says that the system failure
rate is constant, while the computation-based formula
does not. Second, we note that, even in the case of

maximum utilization for theé environmental assumptions
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of (6.1) (i.é!, t = 1024) wherein all addresses are
interrogated;tthe effective failure rate given by the
cbmputatioﬁ;based measure is only half that of the
structure—béSed measure. To~obtain a more coﬁcrete
comparison, suppose that the memory cell hazard rate

is 1077 failufés per hour and the utilization interval
is 10 houfs  {which might be required of a lbng-range
aircraft),i_Then A =10°7/60 , t = 600 and substituting
in Eq. (6.i):~ | |

3

R_(C) = o~9.616x10

. 9904

On the othefﬁhand, substituting these same values in

(6.2): -

R(C)

1l
o

.9680

Thus the céhputation—based measure yields a considerably
higher estimate of the ROM's reliability (in this use
environment) than does the structure-based measure.
Judging by other examples we have looked at, this kind
of differenéé is typical.b In other words, structure-
based measurés Will often yield a more pessimistic view
of a computer's reliability than is warranted by the

computational needs of the user.
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7. Concluéidn

The purpose of this investigation has been to give
a precise méahing to the notion of a computétion—based‘
reliébility ;ﬁalysis in terms of a simple but general
model of a ¢dmputer with»faults. This is not to suggest
that the proposed model is the only one that could be
or should be used in the analysis ofva specific class
of computiﬂg systems. The investigation does indicate,
however, the‘kinds of things that should be considered
if reliabiliﬁy measures are to more accurately reflect
computatidﬁai heeds of the user. It is hoped that this
will provide a framework for more detailed investigations
regarding fﬁe‘feasibility of computation—baéed analysis

methods.
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