
012146-2-T

Compufcrffon-Basecf
Reliability Analysis

Final Technical Report covering the
period from January, 1974 to December,

i

J. F. MEYER

January 1975

Prepared under

NASA Grant NCR 23-005-622

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

S Y S T E M S ENGINEERING L A B O R A T O R Y
THE UNIVERSITY OF MICHIGAN, ANN ARBOR

THE UNIVERSITY OF MICHIGAN

.SYSTEMS ENGINEERING LABORATORY

Department of Electrical & Computer Engineering
College of Engineering

SEL Technical Report No. 83

COMPUTATION-BASED RELIABILITY ANALYSIS

Final Technical Report Covering the Period_ from
January 1, 1974 through December 31,[̂

J-t/ I ~r

Project Director

John F. Meyer

Prepared under

NASA Grant
NGR-23-005-622

TABLE OF CONTENTS

1. Introduction

2. The Need

3. Computers with Faults

4. Tolerance Relations for Computations 16

5. Reliability Measures 20

6. Analysis of a Read-Only Memory 24

7. Conclusion 30

REFERENCES 31

COMPUTATION-BASED RELIABILITY ANALYSIS

John F. Meyer

1. Introduction

Quantitative methods of analyzing system reliability

have been recognized as an important need since the end

of World War II. Early objects of reliability analysis

were pieces of electronic communication and control

equipment whose functional requirements were relatively

easy to specify. Accordingly, what constituted the

"success1' or ''failure" of such systems could be described

in a straightforward manner and reliability measures

such as "probability of success,", "mean-time-to-failure,"

^availability," etc. were relatively easy to formulate.

During the last thirty years, however, the structural

and functional complexity of man-made systems has in-

creased trememdously, particularly in the computer field,

and the reliability analysis task has likewise become much

more complex. This is especially true in the case of

fault-tolerant computing systems, where various types of

structural redundancy must be accounted for in the analysis.

Beginning with the reliability analysis of fault-

tolerant logic networks [1] and relay networks [2],

a considerable amount of effort has been devoted to

'developing analytic methods for assessing the reliability

of computing systems. Recent contributions in this regard

include the analysis of fault-tolerant systems based on

architecture-level descriptions of their structure [3]-[6].

In general, these methods are based on formal models which,

at some desired level of abstraction, represent the structure

of the systems to be analyzed. Given a particular class

of models, the ability to "rely on" a system is then quanti-

fied via one or more "reliability measures" (defined on

the model class). In defining such measures, what it means

to "rely on" a system is usually expressed in terms of some

underlying concept of system "success" or "failure."

Indeed, the measure that is commonly referred to as

"reliability" can be generally defined as "the probability

of system success in its use environment" (see [7], for

example). Thus, it is the meaning of success (or failure)

that gives meaning to a reliability measure and, in turn,

to any analysis that uses the measure.

In the discussion that follows, we wish to focus on

the last of these issues, namely the concept of "success"

as it pertains to the reliability analysis of computing

systems. In particular, we contend that success criteria

should be "computation-based" so that they can adequately

reflect the computational needs of the user. This is in

contrast to "structure-based" success criteria which

can specify what is required of a system's structure,

but can specify what constitutes successful behavior

only as it depends on the success of the structure. In

relatively simple computing systems where computational

integrity is closely related to structural integrity

(e.g., as the success of addition relates to the struc-

tural integrity of an adder), such structure-based success

criteria may indeed suffice. On the other hand, if the

success of a computation depends not only on structure but

also on such things as the state of the system prior to

initiation of the computation, the time of initiation, and

the input data, then structure-based criteria cannot

express variations in success that result from such depen-

dencies. Consequently, reliability measures that utilize

structure-based criteria may not be indicative of a system's

ability to successfully perform computations.

The purpose of the discussion that follows is to

formally establish the point we have just made. We begin

with an example that is intended to illustrate the need

for computation-based reliability analysis, that is, analysis

that utilizes computation-based success criteria. We then

develop a formal model of a computer that is just complex

enough to admit to the formulation of computation-based

criteria and, in turn, reliability measures that utilize

these criteria. Finally, we apply the formal model to

illustrate how the results of a computation-based analysis

can differ from those of a structure-based analysis.

2: The Need

To illustrate the need for computation-based

reliability analysis consider, for example, the reliability

equations that have been developed for systems employing

modular redundancy and sparing [3], [4]. These

equations are based solely on a structural representation
0 -

(at the architecture level) of the system in question

and, consequently, whatever the underlying success

criteria may be, they too are structure-based.

In particular, therefore, these criteria apply as

well to a fault-tolerant aerospace computer as they do

to a fault-tolerant pocket calculator. Let us examine,
0

on the other hand, how the computational requirements

for two such systems might differ.

A computer housed in an aircraft or spacecraft

is called on to perform a variety of functions at different

times and for different lengths of time during the course
o

of a flight (see [8], for example). A pocket calculator

may be required only to add or multiply (any time it is

called on to do so). What constitutes successful com-

putation is likewise very different. In the case of an

aircraft or spacecraft computer, success criteria will

vary according to what function is computed and when

the computation takes place. For example, more strict

criteria might apply to flight control computations

during an automatic landing than to graphic display

computations performed while en route. Consequently,

a structural failure of a given type might cause a

computational failure if it occurs during an automatic

landing, but might be tolerated if it occurs before

that time. In the case of a pocket calculator, on the

other hand, success criteria are simple and essentially

independent of what is computed or when computations

take place.

Given these differences in computational requirements,

as they are perceived by the users of each system,

let us examine the consequences of applying structure-

based reliability equations of the type referred to at

the outset. In the case of a pocket calculator, the

reliability values determined by the equations may be

quite meaningful to the user since, here, the success

or failure of a computation corresponds closely to the

success or failure of the structure (as defined by the

structure-based success criteria of the model). In the

case of an aircraft or spacecraft computer, on the

other hand, the reliability values determined by the

equations may be misleading since, in general, the success

or failure of computations will not correspond to the

success or failure of the computer's structure. In

6

particular, as noted earlier, a structural failure might

correspond to computational failure at one time (while

landing) and to computational success at another time

(while en route). In other words, "success in the use

environment" may differ considerably from the kind of

structure-based success criteria that models of this type

employ.

The example just cited is indicative of the need to

more fully account for the behavior of a computer (i.e.,

the computations it performs) when analyzing its relia-

bility. To accomplish this, reliability measures must

refer to concepts of system success which involve more

than just the status of various components or subsystems.

For systems described at the architecture-level,

this need has already been acknowledged by Bouricious,

et al., [5], [6] through the introduction of parameter

called "coverage, " According to thei-r defi-n-iti-on-, eove-r-age

is "the conditional probability that, given the existence of

a failure in the operational system, the system is able to

recover and continue information processing with no

permanent loss of essential information." Thus, coverage

involves the kind of "computation-based" success criteria,

the use of which we are advocating.

To analytically evaluate coverage and, more generally,

any computation-based reliability measure, the system models

used must be capable of representing behavior (compu-

tations) as well as structure (the computer). In this

regard, one should not be misled by the use of the coverage

parameter in connection with purely structural models.

Although such models can employ coverage as a parameter

(as was done when the concept was first introduced [5]),

they cannot be used to evaluate the parameter. The latter

problem is the type of problem that we are concerned with

here and one that we feel deserves further investigation.

In the remainder of this paper, our objective is to

establish, in quite simple and general terms, the kinds

of things that need to be considered in developing models

and measures for computation-based reliability analysis.

3. Computers with Faults

We begin by viewing a digital computer as a rather

general type of system which, at discrete points in time,

receives input data which, in turn, effects changes in the

system's internal state. It will be assumed that time is

represented by the natural numbers, i.e., the time base

is the set T = {0,1,2,...} . It will be further assumed

that the state set is "coordinatized" where a subset of the

coordinates represent the values of those state variables

that are observable as output variables.

The transition structure of such a system may vary

with time because faults (structural failures) occur or

because the system is reconfigured in an attempt to

recover from a fault. At a given instant of time the

8

structure is fixed, however, and is described by a

transition function which determines the state 'of the

computing system at time i + 1, given the state at time i

and the input received at time i. Formalizing this

notion, we have:

Definition: A (formal) computer is a system

C = (X,Q,A)

where

X is a nonempty set, the input set of C,

Q is a nonempty set, the state set of C,

A is a sequence of functions

A = (60,61,62,...)

where 6 . : Q x X -> Q, the transition function of C

at time i (i e T) .

Thus a computer, as defined above, is a ""discrete-time,

time-varying system whose structure at time i is des-

cribed by transition function 6. . In particular, if

q e Q is the state of C at time i and a e X is the input

received at time i then 6.(q,a) is the state of C at time

i + 1 . In case structure does not vary with time,

that is,

(3.1)

then C is time-invariant. Thus if C = (X,Q,A) is time-

invariant, A is uniquely determined by 6g and C can

alternatively be regarded as a (state) sequential machine

with (fixed) transition function 6 = 6Q .

, A computer is finite-input if |X| < «° and finite-

state if |Q| < °° . Note that even in case a computer

is both finite-input and finite-state, it is not finitely

specifiable unless its structure A is finitely specifiable.

However, in the subsequent application of this model to

reliability analysis, all computers (both fault-free and

faulty) of concern in the analysis will indeed be finitely

specifiable.

The most general view of computer behavior is that

of "string manipulation." Beginning in some initial

state qn, determined by the program to be executed and

by stored data, at some initial time i, C receives an

input sequence of symbols â a., . . . a .. where a. e X is

interpreted as the input received at time i + j . In

response to this input sequence, there results a sequence

(trajectory) of states q^q^...q where q. e Q is inter-

preted as the state of C at time i + j . Thus the

"state behavior" of C may be viewed as a function from

T x x* into Q where T is the time base, X* is the set

of all finite-length sequences of input symbols (including

the null sequence A), and Q is the set of all finite-

length sequences of states. More precisely, if C = (X,Q,A)

10

and q e Q , the state-behavior of C in q is a function

a : T x x* .-»• Q defined inductively as follows for all

i e T:

i) aq(i,A) = q

If x e X* , a e X:

ii) aq(i,xa) = aq(i,x)6.. (q
1 ,a)

where j = £g(x) (the length of x)

and q' is the final state of a (i,x)

It is easy to verify that this formal notion of state-

behavior captures the intuitive notion discussed above.

Note that a maps input sequences of length n into state

trajectories of length n + 1 .

Having established the concepts of "computer" and

"state-behavior," we adopt a concept of "computation"

that is somewhat more general than usually considered.

Since computational errors may be due to erroneous initial

states, initial times, and input sequences, as well as

to faulty computers, we regard a computation as con-

sisting of four things: an initial state q, an initial
\

time i, an input sequence x and a state sequence y . More

precisely, a computation (over X and Q) is a quadruple

(q,i,x,y) where q e Q , i e T , x e X * and y e Q such that

= &g(x) + 1. Accordingly, q, i, x, and y are

referred to as the initial state, initial time, input

sequence and state trajectory (respectively) of the com-

11

putation. Relative to a particular computer C, a com-

putation of C is a computation of the form (q,i,x,a (i,x))

The fundamental question of deciding whether a computer

is a "success in its use environment" will be based on

the nature of such computations. However, even more

basic than the notion of a computational error is the concept

of a "fault," that is, a transient or permanent change

in computer structure that may, in turn cause errors.

In terms of the concepts of a "representation scheme"

and a "system with faults" [9], the "specification class

e^and "realization class" &l that we wish to consider

is the class of all computers (as defined above), that

is, both &r and £n> are equal to the class

*@ = (C|C is a computer} .

Moreover, we will restrict our attention to faults that

occur during the use of a computer (as opposed to faults

that occur during the design process) and so, in the

representation scheme (< '̂,< '̂,p) , p is taken to be the

identity function. In this representation scheme, a

"computer with faults" will be defined as follows.

The "fault-free" specification, that is, the des-

cription of the underlying system as it exists before

any physical failures occur, will be assumed time-

invariant (see condition (3.1)). This is not unreasonable

since many physical systems and, in particular, most

computing systems can be represented as time-invariant

12

systems as long as there are no structural changes due

to physical failures. Suppose now that a physical failure

does occur where the failure may be transient, permanent,

or a combination of the two, that is, a permanent physical

failure that has a transient component while the permanent

change is taking place. Such physical failures can then

be represented by (formal) faults as follows. If C =

(X,Q,A) is a computer, a fault of C (at time i) is a

triple (T,7r,i) where

T: Q x X -> Q, the transient component,

ir; Q x x ->• Q, the permanent component,

i is a nonnegative integer, the time of occurrence (,i e T),

The interpretation of (i,7r,i) is a physical failure

that occurs between time i and time i + 1 . T is the

transition function that the failing system exhibits while
/

the failure is taking place and IT is the transition

function that the system exhibits after the failure has

taken place. Thus, if f = (x,7T,i) is a fault of computer
f

C = (X,Q,A) , the result of f is the computer C =

(X,Q,Af) where, if Af = (6j|j, 6* , S* > • • •) then

6. if 0 < j < i

(3.3)

13

If, in the result of f = (T,TT,JL), there is no permanent

change in structure, that is, TT = <5-_-i then f is a

transient fault (at time i). A fault (ir,T,i) which

represents no change whatsoever, that is, TT = 8.J i and

T = 6. -. , is referred to as a null or improper faulti—j. ~~—̂ ——̂ —

(at time i). Given this notion of a fault at time i,

by a "fault" we will generally mean a sequence of faults

that represents a succession of physical failures. More

precisely, a (multiple) fault of C is a sequence

f = (f ,f ,...,f)
xl 2 xk

where i-, < iQ < ... < i, and f. is a fault of C at time i.1 - . 1 - k i. j

The corresponding result of f is an immediate generalization

of definition (3.3).

Given these concepts of "fault," "result of a fault,"

we obtain the following specialization of the general

notion of a "system with faults."

Definition: A computer with faults is a triple (C,F,cp)

such that -

i) C e «? where C is time invariant,

ii) F is a set of faults of C, where F contains at

least one null fault,
r;

ill) cp: F -»• <@ , where (f>(f) = C (the result of f).

In keeping with our earlier interpretations of these

objects, if (C,F,cp) as a computer with faults, C will be

14

referred to as the fault-free computer and if f is not a
f

null fault,. C will be referred to as faulty.

To illustrate each of the ingredients of a computer

with faults, consider the triply modular redundant (TMR)

configuration:

where each module C. is a time-invariant computer C
J

(X,Q,A) with

and

X = Q = {0,1}

A = {"6,"6,"6,.. .} .

Then this (fault-free) TMR configuration is represented

by the computer:

C = ({0,1},Q,A)

where

Q = {(q1,q2,q3,q4)|qi e (0,1}}

with q.., q2 and q., representing the states of modules 1,

2 and 3 (respectively) and q4 representing the value of

15

the voter output. The transition structure

A = (60,61,62,...)

is given by a fixed function 6 = 6 . for all i, where

<S((q1,q2,q3,q4),a) = (q.[,q^ , q^, y (q^ , qg , qg))

with q'. = 6(q. ,a) and y equal to the majority function

(realized by the voter).

To illustrate the concepts of a "fault" and the

"result of a fault," suppose that at time 2 there is a

transient struck-at-one failure at the output of module 1

and at time 4 there is a permanent stuck-at-zero

failure at the output of module 3. Then this succession

of failures is represented by the (multiple) fault

f = (f2,f4)

where f~ is the fault at time 2 and f4 is the fault at

time 4. More specifically, f« is the fault

where (letting ql = 6(q.,a))

and - Tr = 6

f4 is the fault

16

where

and

U4 = T4

f fThe result of the fault f is the computer C =({0,1},Q,A) where

^ 6 if 0 £ j < 2

T2
:if j = 2

TT2 if j = 3

T4 if j = 4

^ *4 if j > 4 .

4. Tolerance Relations for Computations

Given the class of computers with faults (over some

specified input set X and state set Q), we now consider

the basic issue raised at the outset of this discussion,

namely, the formulation of computation-based success

criteria. Although such criteria could be formally

specified in a variety of specific ways, the following

general formulation appears to be quite reasonable.

We view a particular computation realized by

some possibly faulty computer as being a "success" if

it is "within tolerance" of the desired (error-free)

computation. In these terms, what is regarded as a

successful^computation (in the use environment) is

specified by a "tolerance relation" on the set of all

possible computations. In general, such a relation can

be formally defined as follows.

17

Definition : If U is the set of all computations (over

X and Q), a tolerance relation (for computations) is a

relation 0 on U such that a is reflexive.

The reflexive condition of the definition gays

simply that every computation is within tolerance of

itself. Accordingly the strongest tolerance relation

is the relation of equality; the weakest is the relation

a = U x U where every computation is within tolerance

of every other computation. The latter says that anything

the computer : does is acceptable and therefore represents

a theoretical extreme as opposed to a practical one.

It should also be noted that the concept of tolerance,

as defined above, is general enough to permit tolerable

deviations in initial state, initial time and input as well as

tolerable deviations in the state trajectory. Thus, for

example, if (q,i,x,y) were the desired computation and

a delay of up to 5 time steps could be tolerated then

However, the purpose of the present investigation can be

adequately served by examining how internal causes

(faults) affect the state trajectory of a computation,

and neglecting external causes that might affect initia-

lization, timing, and input.

Given a computer with faults (C,F,cp) and some

specified tolerance relation a, it is now possible to define

precisely what is meant by computational success. To

18

this end, suppose f e F, u is a computation of the

(possibly faulty) computer C and u1 is the computation

of the fault-free computer C where u' has the same

initial state, initial time, and input sequence as u.

Then, assuming no external causes of error, we can regard

u as a "success" if u is within tolerance of u'. More

precisely, if a is a tolerance relation and f e F:

f
Definition: A computation u of C is a q-success if

ua(q,i,x,a (i.x)) where q, i, and x are the initial state,

initial time and input sequence of u. Otherwise u is a

q-failure.

f
If a computation of C is a q-failure, we will say

it is caused by f. In case f can cause no q-failures,

then f is q-tolerated. When the tolerance relation is

understood, we will drop the reference to q and refer

to a computation u as simply a "success" or, in the

opposite case, a "failure."

Since state trajectories can be distinguished by a

tolerance relation, the concept of failure, as defined

above, can capture internal computational failures as

well as input-output failures. To illustrate, let C be

the TMR configuration considered earlier and suppose q

is the relation of equality on U (i.e., uqu1 iff u = u1).

Then the fault f = (f2>f4), considered in the earlier

example, can cause q-failures even though f cannot cause

19

input-output failures (assuming the modules are properly

initialized). To be more specific, let us suppose the

module transition function a is given by:

(q ,a)

(P , 0)

(0,1)

(1,0)

(1,1)

6 (q , a)

0

1

1

0

Then, for example, if q = (0,0,0,0), i = 0, and x = 101

then

aj(i,x) = (0,0,0,0)(1,1,1,1)(1,1,1,1)(1,0,0,0)

since the transition function at time 2 is T~ . On

the other hand

aq(i,x) = (0,0,0,0)(1,1,1,1)(1,1,1,1)(0,0,0,0) .

Thus the computations u = (q,i,x,a (x)) and u' =
T.

(q,i,x,a (x)) are not equal, that is u ^ u' and hence u
T.

is a a-failure.

To continue the example, suppose a' is a second

tolerance relation which requires only that values on

the output line (coordinate 4) be what they should be.

More precisely, (q,i,x,y)a'(q,i,x,y') if y and y' have

the same length, say n, and the j state of y has the

20

the same 4 coordinate as the j state of y1, i =

0,1,...,n-1 . Given that a1 is the tolerance relation

of interest, it can be shown that the fault f = (f0,f.)£ 4t

does not cause any o"-failures (provided all module states

are the same when the computation begins). In other
i

words, although f can cause internal failures (according

to tolerance relation a), it can cause no input-output

failures (according to tolerance relation a1).

5. Reliability Measures

In general, a "realiability measure" is a function

from some class of systems into some set of numbers (or

product set of numbers) whose value, for a given system,

reflects the ability to rely on that system in some

specified use environment. When viewed in this way,

the concept of a reliability measure includes such

measures as "mean-time-to-failure," "availability,"

"recoverability," etc., as well as the measure "proba-

bility of success (in the use environment)." What we

wish to examine now is how such reliability measures

might be formulated in terms of the computation-based

success criteria developed in the previous section.

The investigation will focus on the measure "probability

of success," although other measures of the type men-

tioned above could be dealt with in a similar fashion.

21

In general, to formulate the measure "probability

of success" where, as earlier, success means "success in

the use environment," the probabilistic nature of both

the system and the environment must be taken into account.

In classical structure-based formulations, the environment

is usually described by a single parameter t (the duration

of time that the system is utilized) and assumed to be

deterministic (i.e., it is assumed that t has a known

fixed value when evaluating probability of success).

However, when other aspects of the environment are con-

sidered, such as the computational requirements of the

user, it is more realistic to regard the environment

as probabilistic.

To formalize this view, if (C,F,<p) is a computer

with faults where C = (X,Q,A), the environment of C

can be represented by a probability space

(E, #,PE) (5.1)

where

E = Q x T x x ,

$= {E1 |E' £ E} (the "events" on E) ,

PE : $ -> [0,1] is a probability measure.

Here, an element (q,i,x) in the sample space E describes

an environment wherein the computer is to realize a

computation with initial state q, initial time i, and

22

input sequence x. The interpretation of the probability

measure ?„ is the usual one, that is, if E' e <o* then:
£1

P_(E') = the probability that the (experienced)
Ei

environment is in the event E1.

As for the probabilistic nature of the faults of C,

it can be represented by a second probability space

(5.2)

where F is the set of faults of C

& '= {F- |F' c F}

and P- '.' ̂ -*• [0,1] is a probability measure.

Again the interpretation of P- is the usual one, that is,

if F' e ̂ then:

P-p-(F') = the probability that the (experienced)

fault is in the event F'.

Given the spaces (E, <£?,PE) and (F,̂ T,P.p), the proba-

bilistic nature of both the environment and the faults

of C can then be represented by a single space

where G = E x F ,

^ = {G1 |G' £ G} ,

and P : ̂ -»• [0,1] is the (unique) probability

measure that satisfies the condition:

23

P({(e,f)}) = PE({e))-PF({f}), for all (e,f) e G (5.3)

Note that Eq. (5.3) expresses an underlying assumption

that environmental events are independent of faults,

which we feel is quite reasonable. If G1 e «^ , the

interpretation of P(G') is the probability that the

(experienced) environment and fault has a description

e and f , .respectively, such that (e,f) e G'.

A probabilistic framework has now been established

for a formal definition of "probability of success in the

use environment" or what we will refer to simply as

"reliability."

Definition: If C = (C,F,<p) is a computer with faults,

a is a tolerance relation on the computations of C, and

P is the probability measure defined by Eq. (5.3) then

the reliability of C (denoted R (C)) is the probability

Ra(C) = P(H)

where H =
(q,i,x,f) f, -the computation (q,i,x,a (i,x))

is a a-success

Note that R may be viewed as a reliability measure (from

computers with faults into the real interval [0,1])

where the value of R for computer C is R (C). Thus the

above definition yields a whole class of reliability measures

that differ according to the choice of a tolerance

relation a .

24

6, Analysis of a Read-only Memory

To illustrate the application of computation-based

reliability measures, let us suppose the system to be

analyzed is a 1024 word, 32 bit/word read-only memory

(ROM). Then the ROM (before the occurrence of any

physical failures), can be represented by the fault-

free computer C = (X,Q,A) where

X = {0,1}10

•30

Q = X x Y where Y = {0,1}

and . A =(6,6,6,...}.

To describe the (fault-free) transition function 6 , with

each "address" a e X we associate a word c(a) e Y ,

the "content of a." Then for all q e Q ,

6(q,a)=(a,c(a)).

Suppose further that the physical failures of concern

are memory cell failures that permanently alter the content

of an address. Then, for some specific address b, such

failures can be formally represented by (single) faults

of the form

f(b,i) = (T,TT,i)

where T = IT (i.e., f(b,i) is a permanent fault) and

6(q,a) if a ? b
7r(q,a) =

(a,c), where c / c(a), otherwise,

25

If null-faults of the form f = (6,6,i) are also included,

then the fault set F is the set of all sequences of

single faults, i.e., f e F if and only if, for some

m _> 1 ,

f = (f(b1,i1),f(b2,i2),...,f(bm,im))

where i1 < i0 < ... < i . As for the underlying tolerance_L . £ • m

relation a , we assume that no readout errors can be

tolerated (i.e., there can be no errors in the Y coor-

dinate values of a state). As no failures are postulated

for the addressing structure (which determines the X

coordinate values), we can therefore take a to be the

relation of equality on the computations of C.

Regarding the environment of the system, let us

suppose the ROM is part of an aircraft computer where it

receives slowly changing address updates at the rate

of 1 per minute. (Time i will be interpreted as the i

minute). Let us suppose further that as inputs change,

the likelihood of repeating a given address is negligible.

Then, for a mission duration of t minutes (where t <_

1024), the environment of the ROM is described by a

probability space (E, (p'.Pg), where E and Jo are as

defined in (5.1), and PE is subject to the condition

that, whenever

26

then i = 0 > A = t , and a. ^ a, if j ^ k .
^- J K

The probabilistic nature of the faults f e F is

determined by that of the physical memory cells.

Assuming that a single cell failure changes the contents

of that cell, a fault f(b,i) corresponds to no failures

in each of the 32 cells (addressed by b) until time i

and then at least one cell failure (among the 32) between

time i and time i + 1. Thus, if cell failures occur

at constant hazard rate X , the value of PF (see (5.2))

for a fault f(b,i) is given by:

PF({f(b,i)» = e
 32Xi(i _ e

 32X)

-32Xi

The probability of a sequence of single faults can be

formulated in a similar manner.

We now have enough information to determine the

reliability of C according to the measure R . By

definition, RO(C) is the probability P(H) of the event

H consisting of all tuples (q,i,x,f) such that the
f

computation (q,i,x,a (i,x) is a o-success, that is

aj(i.x) = a (i,x) . We note first that P({(q,l,x,o*(i,x))})

will be 0 if i ̂ 0 , fcg(x) ̂ t or the sequence x has

repeated addresses (since P_({(q,i,x)» = 0 under these
Cj

conditions). Thus we need only consider tuples (q,i,x,f)

27

such that i = 0 , x = ana1 . . . a 1 , and a . ^ a , i f j ^ k .
*J J- T— X J .K

In this case, it follows that the computation u =

(q, 0,x,a (0,x)) is a a-success if and only if, for each

time i (0 •<_ i <_ T - 1) and for all j such that 0 _< j £ i ,

the fault -f('a. ,j) does not occur in the sequence f.

This will ensure that, for each time i, the (i+1)
•p "i~ Vi

state of a (0,x) is equal to the (i+1) state of

a (0,x). Moreover, since a. occurs exactly once in the

sequence x, no fault f(ai,j) with j > i , will cause

a a-failure at a later time. Thus, if we let

~FF
v
 = {f|(q,0,x,a (0,x)) is a a-success} ,x q

• " " i

it follows that

F = n e-32Xi
x

-32Xt(t+l)

- , - . . - e 2

Summing over the environment

E = {(q,0,x)|PE({(q,0,x)}) > 0}

we have:

- Z, PE({qJo,x».pF(Fx:
(q,0,x)eE

28

Z -32Xt(t+l)

_ PTP({q,0,x})-e
 2

(q,0,x)£E *

-32Xt(t+l)
2

-32Xt(t+r)

Hence R (C) = e 2 . (6.1)

The above example is intended to illustrate the many

concepts introduced in previous sections and, for this

reason, the development has been somewhat more lengthy

than what would normally be required to achieve the end

result. The example also serves to illustrate how a

computation-based reliability measure can differ from

a structure-based measure. In particular, suppose we

consider the usual structure-based success criteria for

the example in question, that is, "no memory cell failures

during the utilization interval t." Since the ROM

has 1024 words with 32 bits/word , the reliability

(probability of success) in this case is given by

R(C) = e-<
1024>32Xt (6.2)

i

Comparing Eqs. (6.1) and (6.2), we note first that

the structure-based formula says that the system failure

rate is constant, while the computation-based formula

does not. Second, we note that, even in the case of

maximum utilization for the environmental assumptions

29

of (6.1) (i.e., t = 1024) wherein all addresses are

interrogated, the effective failure rate given by the

computation-based measure is only half that of the

structure-based measure. To obtain a more concrete

comparison, suppose that the memory cell hazard rate

-7is 10 failures per hour and the utilization interval

is 10 hours (which might be required of a long-range

aircraft). Then X = 10~ /60 , t = 600 and substituting

in Eq. (6.1):

= . 9904 .

On the other hand, substituting these same values in

(6.2):

R(C) = e ~

= .9680 .

Thus the computation-based measure yields a considerably

higher estimate of the ROM's reliability (in this use

environment) than does the structure-based measure.

Judging by other examples we have looked at, this kind

of difference is typical. In other words, structure-

based measures will often yield a more pessimistic view

of a computer's reliability than is warranted by the

computational needs of the user.

30

7. Conclusion

The purpose of this investigation has been to give

a precise meaning to the notion of a computation-based

reliability analysis in terms of a simple but general

model of a computer with faults. This is not to suggest

that the proposed model is the only one that could be

or should be Used in the analysis of a specific class

of computing systems. The investigation does indicate,

however, the kinds of things that should be considered

if reliability measures are to more accurately reflect

computational needs of the user. It is hoped that this

will provide a framework for more detailed investigations

regarding the feasibility of computation-based analysis

methods.

REFERENCES

[1] J. von Neumann, "Probabilistic logics and the
synthesis of reliable organisms from unreliable
components," Automata Studies, (Ed. by C. E. Shannon
and J. McCarthy), Princeton University Press,
Princeton, N.J., 1956, pp. 43-98.

[2] E. F. Moore and C. E. Shannon, "Reliable circuits
using less reliable relays," Journal of the Franklin
Institute, Vol. 262, part I, pp. 191-208, part II,
1956, pp. 281-297.

[3] F. P. Mathur and A. Avizienis, "Reliability analysis
and architecture of a hybrid-redundant digital system:
Generalized triple modular redundancy with self-
repair," Proc. 1970 Spring Joint Computer Conference,
AFIPS Conf. Proc., Vol. 36, 1970, pp. 375-383.

[4] F. P. Mathur, "On reliability modeling and analysis
of ultra-reliable fault-tolerant digital systems,"
IEEE Transactions on Computers, Vol. C-20, No. 11,
November, 1971, pp. 1376-1382.

[5] W. G. Boricius, W. C. Carter, and P. R. Schneider,
"Reliability modeling techniques for self-repairing
computer systems," Proceedings ACM 1969 Annual
Conference, 1969, pp. 295-309.

[6] W. G. Boricious, W. C. Carter, D. C. Jessep,
P. R. Schneider, and A. B. Wadia, "Reliability
modeling for fault tolerant computers," IEEE
Transactions on Computers, Vol. C-20, No. 11,
November, 1971, pp. 1306-1311.

[7] A. M. Breipohl, Probabilistic Systems Analysis,
John Wiley and Sons, Inc., New York, 1970.

[8] R. S. Ratner, et al., "Design of a fault tolerant
airborne digital computer (Vol. II - Computational
requirements and technology)," Final Report, SRI
Project 1406, Stanford Research Institute, Menlo
Park, California, October, 1973.

[9] J. F. Meyer, "A general model for the study of
fault tolerance and diagnosis," Proc. of the 6th
Hawaii International Conference on System Sciences,
January, 1973, pp. 163-165.

31

