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ANALYSIS OF BONDED JOINTS

S. Srinivas*
Langley Research Cente.

SUMMARY

A refined elastic analysis ¢f bonded joints which accounts for transverse shear
deformation and transverse novmal stress was developed to obtain the stresses and dis-
placements in the adherends and in the “ond. The displacements were expanded in terms
of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were
functions of the axial coordinate. The stress distribution was obtained in terms of these
coeificients by using strain-displacement and stress~-strain relations. The governing dif-
ferential equations were obtained by integrating the equations of equilibrium. These dif-
ferential equations were solved, and the boundary conditions (interface ur support) were
satisfied to complete the analysis,

Single-lap, flush, and double~lap joints were analyzed, The effects of adhesive
properties, plate thicknesses, material properties, and plate taper on maximum peel and
shear stresses in the bond were studied, Also, the results obtained by using the thin-
beam analysis available in the literature were compared with the results obtained by using
the refined analysis. In general, thin-beam analysis yielded reasonably accurate resulis,
but in certain cases the errors were high. Numerical investigations showed that the maxi-
mum peel and shear stresses in the bond can be reduced by (?) using a combination of
flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates. Of the
three joints considered, for a given total adhesive thickness and joint volume, the double~
lap joint had the smallest maximum peel and shear stresses in the bond, whereas the flush
joint had the highest,

INTRODUCTION

Bonded joints in primary structures are becoming increasingly common. In these
joints, the adhesive which transfers the load from one member to another is subjected to
a shear stress and a normal stress in the thickness direction (called peel stress). The
joint, when subjected to static or fatigue loads, can fail from excessive shear or peel
stresses in the bond. Thus, for a proper design of bonded joints, reasonably accurate
estimates of the maximum peel and shear stresses in the bond are needed. Several papers
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in the literature deal with the stress analysis of bonded joints. De Bruyne (ref. 1) ana-
lyzed single-lap joints but ignored the bending effects. Goland and Reissner (ref. 2) ana-
lyzed single-lap joints, taking into account large deflections. Erdogan and Ratwani

(ref. 3) have analyzed the problem of a stepped joint but ignored the variation of stresses
across the thickness (i.e., the bending effects). Wah (ref, 4) analyzed single-lap joints of
anisotropic materials, Hart-Smith (ref, 5) has obtained the static failure loads for single-
lap, double-lap, and scarf joints, taking into account plastic deformations in the adhesive,
In all these references, the adherends were assumed to be thin beams; consequently, the
transverse shear deformation and transverse normal stress were neglected. Neglecting
these strains and stresses can cause errors in the stresses and displacements obtained
by using thin-beam analysis.

In this paper a refined elastic analysis is developed in which the transverse shear
deformation and the transverse normal stress are not neglected, The adhesive is assumed
to be elastic. The accuracy of thin-beam analysis is assessed by comparing the bond
stresses calculated from the thin~beam analysis with bond stresses calculated from the
refined analysis., In addition, methods of reducing the maximum peel ond shear stresses
in the bond are studied. The configurations considered for anuivsis are double-lap, flush,
and single~lap joints, The plates can be stepped or tapered and can be of composiie mate-
rial, Effects on maximum peel and shear stresses of thickness, modulus, and plaie tapor
and of different adhesives along the length of the bond are studied.

SYMBOLS
a*(n) x~distance from origin to outer end of nth element ({ig. 2)
* () x~distance from origin to plate supports (fig. 2)
C11(1,Cqo(d)
119 12(] ' elastic constants of jth plate
Con(i),C33())
c*(n) thickness of nth element of plate 1 (fig. 2(a)) in single-lap joint
Dy1:P1gs
generalized rigidities (see egs. (20))
Dg2:P33
d*(s) thickness of sth segment of plate 1 (see appendix A)



e*(s) distance from neutral axis of compound beam to top surface of sth segment

of plate 1

Ef(j) longitudinal Young's modulus of fiber in fiber-reinforced composite plates

EE adhesive Young's modulus in thickness direction

F arbitrary constant

*(s) thickness of sth segment of plate 2 (see appendix &)

G; adhesive shear modulus

H; thickness of plate 2 at inner end B in a double-lap joint (fig. 8(c))

H; thickness at ends A and B of plates 1 and 2 in single-lap joint (fig. 8(a));
thickness of plaie 2 21 A in double-jup et (fig. 8{c))

h*.n) thickness of nth element of plate 2 (fig. 2)

K*(s) bending stiffness of sth segment (appendix A)

k power of Z in weighting function zk (see eq. (15))

k;,k; spring constants of bond in x- and z-direction, respectively

ky = kyt"

ky = kyt*

L* total length of joint, b*(1) + b* (@) (fig. 2)

* length of lap region (fig. 1)

l: length of stiff adhesive (fig. 7)

M bending moment

m number of steps



€x:€7,5€x7

c*

integral of direct stress X

applied load on joint at end C per unit width (fig. 1)
applied stress at end ¢, P/t"

integral of shear siress oy,

vertical reaction at +  ports (fig. 9)

number of elements in iup region (r = %y

shear force

thickness of overhang 1 in single~lap @ud o ity oo spctivilickness af
overhang 1 in double~lap joints (fig. 1ii

displacement in x-direction of jth plate
integral of direct stress o0,
displacement in z-direction of jth plate
=x/t*

coordinates

=z/t*

strains in plates

deflection, measured from neutral axis in large deflection analysis of single-
lap joints (fig. 9)

adhesive thickness

distance from neutral axis to reference axis in large deflection analysis of
single-lap joints (fig. 9)



£* axial coordinate used in large deflection analysis (fig. 9)

c dire:t stress in thickness direction in bond; referred to as peel stress when
it is tensile

0y40,,0x, Str¥sses in plates

T shear stress in bond

& fu1etions of X occurring in expansion of u-displacement in z-coordinate
V] functions of x occurring in expansion of w-displacement in z~coordinate
Indices:

i used in expansion of displacements in z-directica (see v¢;5. (1) and (2))

j plate, where j=1,2

n element, where n=1,2,.. ., r

s segment (see appendix A), where s+ 1,2,. .., m+2

An asterisk denotes a dimensional quantity.

All linear dimensions are nondimensionalized by dividing by t* and are then
written without the asterisk: for example, a*()/t* = a(n).

All elastic moduli are nondimensionalized by dividing by E;(l), the Young's mod-
ulus of the fiber in plate 1, and are then written without the asterisk; for example,
¥ *
Ef(2)/Ef(D) = E(2).
A prime denotes differentiation with respect to X.

Numbers in parentheses are indices.
ANALYSIS

The three types of joints considered are single lap, flush, and double lap. (See
fig. 1.) In a single-lap joint, the two main plates, which are constant, tapered, or stepped
in thickness, are joined by bonding them directly. In a flush joint, the two main plates
are joined by bonding a lap plate on one side only. In a double-lap joint, the two main



plates are joined by bonding two plates — one on each side. In double-lap and flush joints
the main plates are of constant thickness, whereas the lap plate or plates are constant,
tapered, or stepped in thickness,

For the purpose of this analysis, tapered plates are idealized as stepped plates,
The analysis is applicable for cases in which there are debonds. In the analysis, the
joints are split into two regions, lap and overhang (see fig. 2). The lap region is further
split into 4 number of smaller elements, depending on the number of steps and presence
of debond. Plate thickness and material properties are assumed to be constant within
each element. For exampl», in figure 2, where the joint has four steps, the lap region is
treated as four bonded elements (1, 2, 5, and 6) and two unbonded elements (3 and 4) for
plates 1 and 2. The governing differential equations for each element are solved sepa-
rately. At the ends of each element the appropriate boundary conditiuns are satisfied,

In a double-lup joint, because of symmetry about the x-axis, the Literal deflections
of the joint are small compared with the joint thickness and, therefore, there is no need
to consider the eifects of lurge deflections in the unalysis. The overhany regions are
treated as unbonded elements. At the support ends of the overhang (C and D) support
conditions are satisfied and at the junctions of overhangs and lap region (A and B) inter-
face conditions are satisfied.

In a single-lap joint, the deflections can be of the order of the juint thickness,
depending on the overall length of the joint und the applied lvad, Therefore, the effect of
large deflections should be taken into account in the analysis. This is done approximately
by carrying out the analysis in two stages: (1) the forces and displacements at the two
ends of the lap region (A and R) are obtained by accounting for large deflections in an
approximate way (see appendix A) and (2) the forces und displacements thus obtained are
imposed on the lap region at the junctions A and B,

A flush joint, in which the overhung region 2 is very small, is analyzed much like a
single-lap joint except that the boundary conditioas at D are different for the two cases
(see appendix A).

GOVERNING DIFFERENTIAL EQUATIONS

Bonded Elements

The governing differential equations were derived {or the uth element, Howeyusr,
in equations (1) to (23) the index n is dropped for the sake of simplicity. In this deviva-
tion, the joints are assumed to be in a state of either plane stress or plane strain in the
xz-plane, A unit width is chosen.



The displacements u and w in each plate are expanded in terms of polynomials
in the z--urection; the coefficients of these polynomials are functions of x only, Enough
ter M@ L retulred in the expansion to obtain a good approximation of the transverse shear
strvdn eq, owd (rdasverse normid stress g, in the plates. For double-lap joints, sym-
Aotey b ibo X~ 18 is taken into account in the expressions for plate 1, and only the
purtiom © 2 ¢ 1~ cnsidered. The expressions for displacements follow,

For sityie=lay ard flush joints:

\
ui) = t* > ol,nzd
=0
> (i=12) h
2
W) =t w2t
i=0 J
In the thin-beam analysis,
o(joz) = w(jol) = w(jyz) =0
: (j = 10 2)
. -3(j,0
d’(]’l) = ...._1.%}%.]....).
For double-lap joints:
1 | ™
u(l) = t* ) o(Li)z2
i=0
$ (2)

w(l) = t* z w(1.4)z2i+!

3

i=

L=

J

and u(2) and w(2) are given by equations (1). In the thin-beam analysis,
o(1,1) = ¢(1,0) = ¥(L,1) = 0(2,2) = ¥(2,1) = +(2,2) = 0

3
o(2,1) = ..‘ﬁé%?l



In equations (1) and (2) ¢ and y

are functions of x only.

Strains are obtained by differentiating equations (1) for single-lap and flush joints

to give
2 )
) = O o'zt
i-0
2 g
() = wianzt! (G = 12) (3)
i=0
2 . y
) = O ozt t e vzt
1=0 "
and by differentiating equations (2) for double-izp joints to give
1
&)= > o1z
i=0
1«
(1) = O (21 + DLz > (4)
i
i=0
& i 2i+1
exz(D) = ) 2in(12271 4y (1022
i=0
and
€(2). €,(2), and ex,(2) ure given by equations (3).
The stress-strain relations for plane stress or plane strain are given by
W) ey et 0 &) |
= ; i e i) !
0z(0) | ={Cyali)  Cooli) 0 f ez(1) | (5
Oy (1) | © 0 033(1)1'ch2(1) |



Substitution of equations (3) and (4) into equation (5) yields the following expressions for
stresses in terms of displacements.

For single-lap and flush joints:

~

2

Ll

ox(’) =
i
S

o) = Y (C12) ©'G.Z! + Cya(i w'u.mz"‘] > (=1,2 (6)
1=0

2
€. r
o) = Cagti| ol tiz! ™! s w'(j.i)z’]
i=0 J

For double-lap joints:

1 ™
XOED) [Cn‘” o' (10228 4 € (1wt (2 + 1)22{{
i=0 i
1 | .
oM = 2, [012(1) ' 1zZ3 ¢ Cop vt @i + 122 ) a
i=0
1‘ ‘
Oyz(1) = L C33(1)£2i<5(1,1)221‘1 . w'(l.i)zz“ﬂi
i=0 - J

and ox(Z), 0,(2), and 0,,(2) are given by equations (6).

The adhesive layer at the bond surface is represented by equivalent linear springs
*
in the x- and z-directions. The spring constants k; and k; are given by the equations

G* s E*
Ky = —= ky = —& (8)
n n



Thus, the shear stress 7T and the transverse normal stress o in the bond are

given by
)

T = k;[u(Z) - u(l)}z:1
<9)

o= k;[W(?.) - w(l)]z_l

o

Substituting equations (1) and (2) into equations (9) yields

For single~lap and flush joints:

2 N
T=k ‘ i) = 1,1]
X 24 [w(z ) = o(l,i)
> (10
2,
o=k Y [ve@d - vt
i=0 /
For double-lap joints:
N
M2 L]
ekl N o@D (L)
‘Li=0 »=0 |
|
K L
0=k w2 - : w(L)
i=1 i=0 f
- J
The equations of equilibrium of two~dimensional linear elasticity are
po,(j) oy, )
{12)

ox | 8z
(i=1,2

8Oxz(1) ao'z(j)_O
X 9z

10



The equilibriung conditions at the bond surface are

Oxz(1) = 04,(2) = 7

(13)
0,(1) = 0,(2) = ©
The stress-free conditions on the outer surfaces are
oy g (1) = 0,(1) = 0 (Z=1-c for single-lap joints)
oxz(1) = 05(1) = 0 (Z = 0 for flush joints) ) (14)
Ox2(2) = 0,(2) = 0 (€& = 1+h forall joints) )

Equations (12) are multiplied hy zK and integrated by parts through the thick-
ness for each plate. During integration the equilibrium conuitions at the bond surface
(egs. (13)) aud stress-free conditions at the outer surfaces (egs. (14)) ure satisfied. This
process ylelds

N1 - kQ(k-1) - (D7 = 0 (15a)
Q,(jvk) - kV(j,k"l) - (“I)jo‘ =0 (1510)

The values of k in equations (15a) and (15b) are the same as the powers of Z usedin
the expansions of u and w, respectively (see eqs. (1) and (2)). That is, for single-lap
and flush joints: k=0, 1. 2 for both equations (15a) and (15b); for double-lap joints:
k=0,2 for equation (15a) and k=1,3 for equation (15b).

In equations (15), N, Q,and V are integrals of stress given by

33)
{N(j,k); V(i.k); Q(j,kﬂ = c’ ) {Gx(i): 04(j); sz(i)} z¥ az (16)
J valj)
a(ly=1-¢ (Single~lap joints)
(17a)
a(l) =0 (Double~-lap and flush joints)

11



af2) = 31 =1 B2 =1+h

(17b)

Substituting equi.. oms (6) and (7) into equation (16), the integrals of stresses are

obtained in terms of displacements and are written as follows.

For single-lap and flush joints:

T
N(th) =
i

[Dy3(ket) 6'(G1) + 1D Guket-1) 0,00 |

éL\ \/‘N

N

.

[D300ke) 0'(G4) + 1Dgg(evi=D W3]

b

V(J k) =
i

1]
o

[~

QUM = O [iDgalikei-1) 60,0) + Dggli ke ¥'(1,0)]

1
o

i y

For double-lap joints:

=

N(1,k) =

[Dll(l,k+21) ¢"(1,1) + (2i + 1)Dy,(1.k+21) gb(l,i)}
1

i1

0

-t

»

V(lgk) =

[D12(1,k+21) &'(L) + (21 + DDyy(L,ke21) xp(l.i)]
1

Lt

1

0y

AN
QB = > [21D33(1,k+2i.—1) O(1,1) + Dyg(Lks2i+1) z}/'(l,i)]
{0

and N(2,k), V(2,k), and Q(2,k) are given by equations (18).

In equations (18) and (19)

3

?

(18)

(19)

( B8(3) ,
iDll(j’g); D]_z(j,g); Dzz(j,g); D33(ja % = Sa(;) {Cll(j); C12(j); sz(j); C33(j} 28 dz (20)

12



when g is a dummy variable and o and g are obtained from equations (17). If the
material properties are constant through the thickness, equation (20) becomes

5 a8+l g+l
{Dll(j’g); .o '} = {Cll(j’g); .. ) ﬂ(l) ﬂ'(j) (21)

g+ 1

Substitnting equations (18) and (18) into equations (15) yields the following governing
differential equations,

For single-lap and flush joints:

2

> {Dn(j Jet) 6"'(5,1) - KiDya (k=2 6(3,)

i=0

+[1D12(j,k+i-1t kD33(j,k+i-l)-1w'(j,i§

2

- (1)K, }J [(b(Z,i) - <z>(1,i)] =0 (922)
i=0

2

Z {[1D33(j,k+i-1) - lez(j,k+i-1)]o'(j.i)

1=0

+ D33(j:k+i) kl/"(i,i) - kiDgz(jak*i'z) ’1&(3;1)\

{\V]

=

A

- (~1)jkz
i

[zlz(Z,i) - w(l,i)] =0 (22Db)

£

i
o

For equations (22a) and (22b) j=1,2 and k=0.1, 2.

13



For double-lap joints:

\ Dyq(1,k+21) "(1,1) - 2KiDgy(1,k+21-2) 0(1,0)

[(214,1)1)12(1 Jk+21) - KDga(l, k+21)}1p (1,1%

-

2 L
il Y 0@ - Y oLy =0 (232)
i=0 i=0

1
} zm (1,k421-1) = KD 1o (1,ks21-1) 1" (L,0)
33 12 |

+ D33(1,k+21+1) Y(1,1) - k(2i+1) D22(1,k+21-1) d/(l,i&

o

tl/(2 i) - \ Y(li)j=0 (23b)
Ll 1=0

+kz

1
o

2,
> {Dll(z,k+i) 6"(2,1) - KiDgg(2,k4i-2) 6(2,1)
i=

o

- [1D12(2,k+i~1) - kD33(2,k+i—1)-!z,9'(2,1%
.

L

&(2,i) - #(1,i); =0 (23¢)

i=J

"Ryl

i=

"L - 00

14



2
B {[j.D:x}(Z,k**i‘l) - lez(z,k+i‘1)}(.‘)'(2,i)

—

i=0

+ D33(2,k1‘i) t{/"(z,i) - kiDzz(z .k"‘i"Z) d/(Z,i}

2 1 1
“kp| D wed) - S w(td|=0 (23d)
i=0 i=0

For equation (23a), k=0, 2; for equation (23b), k =1, 3; and for equations (23c)

and (23d), k=0, 1, 2, Note that all the preceding equations were derived for the nth
element but the index n was not included for the sake of simplicity. In the remainder
of the paper, the index n is included (see appendix B), The procedure for solution of
equations (22) and (23) is given in appendix C.

Unbonded Elements

For an unbonded element, the governing differential equations are the same as those
for the corresponding plate in the bonded element, but with ky asa kpy equal to zero.

PROCEDURE FOR ANALYSIS

The following procedures were used in the analysis for the respective cases.
For single-lap and flush joints:

(1) The differential equations (22) are solved for all the elements in the lap region
(see appendix C).

(2) The forces and displacements at the junctions (A and B) between the lan region
and the overhangs are obtained with large deflections taken into account (see appendix A).

(3) All the interface conditions within the lap region are satisfied. At junctions A
and B the proper forces and displacements obtained in step 2 are imposed (see
appendix B).

(4) The resulting simuitaneous algebraic equations are solved io obtain the arbitrary
constants. Displacements and stresses in the plates and shear and peel stresses in the
bond are calculated by using equations (1), (6), and (10).

15



For double-~lap joints:

(1) The differential equations (23) are solved for all the elements in the Jap region
(see appendix C).

(2) The differential equations are solved for the overhang regions. (For overhang
region 1, eqs, (23a) and (23b) with kg = k, = 0; for overhang region 2, eqgs. (23¢) and (23d)
WIth kx = kz = On,

(3) All the interface conditions within the lap region and at junctions A and B are
satisfied (see appendix B).

(4) The boundary conditions at the supports are satisfied (see appendix B).

(5) The resulting simultaneous algebraic equations are solved to obtain the arbitrary
constants., Displacements and siresses in the plates and shear and peel stresses in the
bond are calculated using equations (2), (7), and (11).

NUMERICAL RESULTS AND DISCUSSION

Numerical results are presented in figures 3 to 8 for single-lap, flush, and double~
lap joints, In the examples of double-lap and flush joints, the two main plates which are
being joined are of the same material and thickness., In all the examples, the plates are
of umdlrec’uonal composite material, All elastic moduli are nondimensionalized by divid-
ing by Ef (1), the Young's modulus of the fiber in plate 1. All linear dimensions are non-
dimensionalized by dividing by t*, the thickness of overhang 1 in single-lap and flush
joints or the half-thickness of overhang 1 in double-lap joints. The nondirensional
Young's modulus of the plate resin is 0.00776 in all examples, The nondimensional
Young's and shear moduli of the adhesive in all examples, except those in figure 4, are
0.00867 and 0.00155, respeciively. In figures 3 and 4, results from the refined analysis
and thin~-beam analysis (the analyses in refs, 1 and 2 were extended for the present con-
figurations) are presented. In figures 5 to 8, only the results obtained from the refined
analysis are presented. In single-lap and flush joints, the stresses and displacements
are nonlinear with respect to the applied stress p, and the results are presented for a
typical case of p/E;‘(l) = 0.002.

The longitudinal distribution of the direct and shear stresses in the bond are plotted
in figure 3 for two types of plate 2 fiber materials. In single-lap joints (figs. 1(a), 3(a),
and 3(b)) and flush joints (figs. 1(b), 2(c), and 3(d)), the direct stress in the bond is tensile
(i.e., peeling type) at both ends A and B. In double-lap joints (figs. 1(c), 3(e), and 3(i)),
the direct stress in the bond is compressive at the inner end B, whereas it is tensile at
the cuter end A. Generally, both the maximum pee¢l and shear stresses occur at the inner
end B in flush joints (figs. 1(b), 3(c), and 3(d)). The maximum shear stress in double-lap

16



joints (figs. 1(c), 3(e), and 3(f)) and the maximuim peel and shear stresses in single-lap
joints (figs. 1(a), 3(a), and 3{b)) could occur at either end, depending on the relative thick-
ness and elastic moduli of plates 1 und 2. In single-lup juints, the ratios of peel and
shear stresses at B to peel and shear stresses at A are greater when the thickness or
elastic moduli of plate 2 are smaller (compare figs, 3G and 3(bj).  In double-lap joints,
the ratio of the shear stress at B to sheur stress at A is larger when the thickness or
elastic moduli of the lap plates are smaller (compare figs. 3(e) and 3(D).

For all joints, the muximum peel stress in the bond as a function of the adhesive
shear modulus for various values of the adhesive Young's modulus is shown in fig-
ures 4(a), 4(c¢), and 4(e). The maximum shear stress in the bond as a function of the
adhesive Young's modulus for various values of the adhesive shear modulus is shown in
fipures 4(b), 4(d), and 4(f). In all joints, the maximum peel stress in the bond is lurger
when the Young's modulus or the sheur modulus of the adhesive is Larger (figs. 4G, 4{¢),
and 4(e)). Also, the maximum shear stress in the bond is Ltrger when the shear nodulus
of the adhesive is Lurger bui is not significantly influenced by the adhesive Young's inod-
ulus (see figs. 4(b), 4(d), and 4(f)). Thus, 4 reduction in adhesive shear modulus reduces
both maximum peel and shear stresses in the bond, but a reduction in adhesive Young's
modulus reduces only the peel stress.

The thin-beam and refined analyses give similar longitudinal distributions of sheay
and peel stresses in the bond (figs. 3(4) to 3(f)). Also, the thin-beam analysis yields rea-
sonably accurate values of maximum peel stress in the bond at low values of adhesive
shear and Young's moduli (figs, 460, 4(¢), and 4(e)) and of maximum shear stress at low
values of adhesive shear modulus (figs. 4(h). 4(d), and 4(f)). Although the resulis are not
included, it was found that errors obtuined by using thin-beam anmdysis ure Lurger when
lap length is smaller,

For all joints, the maximum peel and shear stresses in the bond as functions of
adhesive thickness are shown in figures 5(a), 5(d), und 5(g) and figures 5(b), 5(¢). and 5¢h),
respectively. Also, the flexibility of the joint (us measured by the axial displacement of
plate 1 at outer end A) as a function of adhesive thickness is shown in figures 5(c¢), 5(f).
and 5@1). In all the joints, for lurger adhesive thickness, the maximum peel stress
(figs. 5(a), 5(d), and 5(g)) and maximum shear stress (figs. 5(b). 5(e¢), and 5h)) in the bond
are smaller whereas the joint flexibility (figs. 5(¢). 5(f). and 5(1)) is slightly larger. Of
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the three types of ioints considered, for a given total adhesive thickness and joint volume.l
the maximum peel and shear stresses are lowest in double-lap joints and highest in flush
joints. ‘The following table gives the results for a total adhesive thickness of 0.2t°;

*(h* +1*) for single-lap joints
Joint volume = {2*(h* +t*) for flush joints

47*(h* +1%) for double-lup joints

Type of joint o/p -T/p Flexibility
Double lap? 0.056 0.07 40.3
Single lap 10 .08 46.8
Flush .35 173 32.8

4Two bonds and thus the total adhesive thickness is twice
the thickness of a single bond.

In general, for flush joints, the maximum peel stress in the bond is much higher
than the maximum shear stress (figs. 5(d) and 5(e)). For moderate adhesive thicknesses
(n = 0.1 to 0.2), the maximum peel stress is nearly equal to the maximum shear stress in
single-lap joints (figs. 5(a) and 5(b)) and double~lap joints (figs. 5(g) and 5(h)). Thus, the
maximum peel stress can be roughly estimated if the approximate value of muximum
shear siress in the bond is known,

In figure 6, data for the flush and double-lap joints are shown us a function of max-
imum direct stress in the lap plate. The lap-plate thickness is shown in figures 6(a)
and 6(d); the maximum peel stress is shown in figures 6(b) and 6(e); and the maximum
shear stress is shown in figures 6(c) and 6(f). Lap plates with three different moduli are
considered. In both flush and double-lap joinis, the maximum direct stress in the lap
plate, which occurs at the inner end B (fig. 1), is larger when the lap~plate thickness is
smaller (figs. 6(a) and 6(d)). In flush joints, the maximum shear stress in the bond is
larger when the maximum lap-plate stress is larger or the lap-plate modulus is smaller
(fig. 6(c)). Similar behavior is observed for maximum peel stress in the Jower ranges of
maximuin lap~-plate stress (fig. 6(b)). In double-lap joints, the maximum peel stress
(fig, 6(e)) and the shear stress (fig. 6()) in the bond at the outer end A are smaller when
the maximum lap-plate stress is larger or the lap-plate modulus is smaller. For the
same conditions, the shear stress at the inner end B is larger (see dashed curves in

fig. 6(f)). Therefore, to reduce the maximum bond shear stress in double~lap joints, it is

advantageous to use a high-modulus lap plate; the minimum lap-plate thickness is then
governed by either the strength (maximum allowable stress) of the lap plate or the
strength of the bond in shear.
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The preceding discussion referred to joints in which the plates are of constant thick-
ness and the same bond is used along the entire length of the joint,  In the following dis-
cussion, variations from these conditions are considered. For all joints, the bond shear
stress at a particular location is a function of the load that is transferred from one plite
to another at that location. The load transfer is in turn a function of the stiffness of the
plates and the adhesive, When the plates are of constant thickness and the same bond is
used along the entire length of the joint, a lurge amount of the luad is transferred near the
end or ends. Making the bond more flexible in the high-load-transfer region than in other
regions or tapering the plates might reduce the high load transfer., Such a reduction will
lower the maximum shear and peel stresses in the bond.

For all joints, the effect of combining flexible and stiff bonds is illustrated in fig-
ures T(a) to 7(f). The maximum peel stresses in the flexible and stiff bonds are shown in
figures 7(a), 7(c), and T(e) as functions of length of stiff bond {; the maximum shear
stresses are shown in figures T(b), T7(d), and 7(f). For Ig/¢ near 1, the maximum peel
stress in the flexible bond is It. :» when it is used in combination with a stiff bond than
when it is used alone {solid curves), Similarly, the maximum peel stress in the stiff
hend is less when it is used in combination with a flexible bond than when it is used alone
(dr.shied curves). The iwo preceding observations are true for maxinmum shear stress
also. A small length of stiff bond does not reduce the pecl und shear stresses in the
flexible bond. As Ig 7 approaches unity. the stresses in the 5tiff bond are larger and
the stresses in the flexible bond are smaller. Therefore, depending on the particular
joint and bond properties, optimum lengths of stiff and flexible bonds can be chosen to
assure the lowest possible stresses in the bond.

The maximum peel stress in the bond as a function of taper ratio (He;Hb‘; is shown
in figures 8(a) and 8(c) for single-lap and’Aouble-lap joints, respectively, The muximum
shear stress in the bond is shown in figures 8(b) and 8(d). In single-lap joints, for larger
taper (i.e..smaller taper ratio), the maximum peel (fig. 8(a)) and shear (fig. 8(b)) stresses
are smaller; the decrease in peel stress is more pronounced than the decrease in shear
stress. In duublee.lag joints, for larger taper, the maximum peel (fig. 8(c)) and shear
stress at the outer end A (fig. 8(d)) are smaller, whereas the shear stress at the inner
end B (fig. 2(d)) is slightly larger. Therefore, in double~lap joints, the maximum shear
stress caunot be reduced by tapering, Further, in double-lap joints, bond length does not
have a significant influence on stresses in the bond, when it is greater than 40 times the
half-thickness of the main plate. Although the results are not included, it was found that
tapering is not effective in flush joints.
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CONC LUDING REMARKS

A refined elastic analysis of bonded joints which accounts for transverse shear
deformation and transverse normal stress was Jdevelged to obagin the stresses and dis-
plicements in the plates and in the bond.  Sinple-lap, flush, wnd double-lap joints were
analyzed.  This analysis showed that the thin-Evam analysis, which neglects transverse
shear deformation and transverse normal stress, is, in geaeral, reasonably aceurate for
estimating maximum peel and shear stresses.  But, when the Lap length 1s small or the
stiffnesses of the bond in the longitudinal and thickness ditections are high, the errors in
the stresses in the hond could be high,

Maximum peel and shear stresses in the bond can be reduced by the following
methads: (1) In all joints, making the bond flesible either by increasing the adhesive
thickness or decreasing the adhesive elastic moduli, (2} in all joints, by usie 4 combina-
tion of flexible and stiff bonds with flexible bond in regions of high stresses in the bond
and stiff bond in regions of low stresses, (3) in double-lap joints, by using thinuer but
higher modulus lap plates, (4) in flush joints, by using thicker and higher modulus Lap
plates, and (5) in single-lap and doubie-Iap {only peel stress) jomts, by tapering the plate
or plates, Of the three types of joints analyzed, for a given total adhesive thickness and
joint volume, the double-lap joint had the snudlest maximum stresses in the bond and the
flush joint had the highest.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va.. February 13, 1975,
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APPENDIX A
EFFECT OF LARGE DEFLECTIONS ON SINGLE-LAP AND FLUSH JWJINTS

As mentioned in the section "Analysis,” for single=lap and flush joints, the forces
and deflections at the ends ¢f the lap region are calculated, taking the effect of larpe
deflections 1nto account in an approximate way,  The procedure followed s like one used
by Goland and Reissner (ref, 2).  The complete joint is treated as a beam with discon-
tinuntics in the neutral axis (see fig. 93 as well as bending stiftness.  In the Lap regaon,
the two plates are assumed to be perfectly bonded throughout and to act like & compound
beam. From geometry, the eccentricity in the neatral axis  g*(s) is piven by

sy e*(s) + 1 -d¥(s) - e"(m+ 2) (AD)

where e*(s) is the distance from the neutral axis of the compound beunt to the top sur-
face of the sth segment of plate 1. If the nuterial properties are uniform across the
depth of the individual plates, then from elementary strength of materials, the distance
¢*(s) and the bending stiffness K*(s) are given by

\

*

E(D) d(s)2 + E(zw{[f(s) rde) - d(s)2}

e*(s) - t

2[E(Dd(s) + E2)1(s)] ey

3 , - 3 3
K*(s) %— E(l){d(s) - 0(5)]3 + 0(5)‘3} + E(Z){Lf(sl + d(s) - v(h’l] - Ld(b'i - ('(Si] }\*

<

where

E) - Cqq() C 1

) = - :

J 11 Coa(i)
The support conditions at end C (fig, 9) are

M{m+2) = 0 (Ada)
and

¢(m+2) =0 (A3

where M s the bending moment and £ is the nondimensional defle enpon.
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APPENDIX A

The boundary conditions at end D (fig. 8) are

For single-lap joints:
Bending monient M(l)=0 (Ada)

Deflection g(ly=a0 {Adb)

For flush joints:

Shear farce S(1y=0 (ASa)
de(l)
Slope ke SL AN § | 51
p dE (ASh)

The vertical reaction R at end C (fig. 9) is given by

P
R-= --‘-11-:(-2 (Single~lap joints)
(A6)
R=0 (Flush joints)

The moment M(s) in the sth segment at location &, when the contribution of
deflection is taken into account, is given by

M(s) = {R(L*E) - P[)u(s) + ((s)]}’f* (A7)

According to thin~-beam theory,

_K'(s) d?e(s)

M(s) = 5 (A8)
t dg
Therefore, {rom equations (A7) and (A8) after some manipulation
1 dzC(s) R
3 5 8(s) = u(s) - -I;(L-S) (A9)
g(s) d¢

22



APPENDIX A
where g(s) = t* Kf: ). Solution of equition (A9) gives
s

e(s) = 1(s) R8I | =(s)e R _ () 4 %(L~£) (A10)

where Y(s) and Z=(s) are arbitrary constants,

The conditions of continuity of displacements and slopes are satisfied at the ends of
each sepgment. For the end segment 1 at D, either condition (A4} or condition (A5} 1s
satisfied, For end segment m + 2 at C, condijtion (A3b) is satisfied. The resulting set
of simultaneous algebraic equations is sulved to obtain the arbitrary constants.

Using equatic'.., (A10) and (A7) yields the deflections and moments at the end of the
lap reginn,
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APPENDIX B
BOUNDARY CONDITIONS
The equations for the boundary conditions are presented in this appendix,

For single-tap and flush joints:

(1} At interfacss X = a{n), where n=1,2,.. ., 1r -1 [see fig, 2):

N(n,j.k) - N(n+1,j.k)
Q(nt.'uk) - Q(’l+1".’uk)

{1_192: k:O.l»Z’
ofng,k) - o+ 1,,k)

L.kl = L+ Lk

(2) At junction B, X - O

At the center line u(2) (see eys. (1)) is expressed as

2

]
u(2) = o(1.2.0) + .;.(1,2.1)[.1 *;“Z’l . f.»(l.z.z{l..:z.,‘_‘i?l" 0
[ - -

The direct stresses in the overhang were assumed to be linear across the thick-
ness {see figs, 2 und 9)

.
- plh(l) - 1
N(12.0) - ]!M<_2)'f *’[ =
-t (B1
} (B1)
] prh(l) - 1-'12
N(1.2,2) - {M-‘;Z-li[hm - 1]
Lt )

v(l.2.D) = ¢(1.2,2) = 0

N(1,1,k) - Q(1.1,k) = 0 (k =0,1,2)
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APPENDIX B

In equations (Bl) and (B2), M(2) and £{(2) are moment and deflection at junc-
tion B (see figs. 2 and 9) for step 1 (which is same as sepment 2) and are
obtained by taking large deflections into account (see appendix A).

(3) At junction A (see figs, 2 and 9), X - a(r):
N(r,1,0) = p

N(r,1,1) = M(m+1) +123

N(r,1,2) = M(m+1) +§

v(r,1,0) = (m+1)
w(r,1,1) = ¥(r,1,2) = O
N(r,2,k) - Q(r,2,k) = 0 (k=0,1,2)
where M(m+1) and C(m+1) are moment and deflection at junction A for

step m (which is same as segment m + 1) and are obtained by taking large
deflections into account (see appendix A).

For double-lap joints:

(1) At interfaces, X = a(n), where n-1,2,. .., r=1 (see fix, 2):
N{n,1,k) = N(n+1,1.k) k=0,2)

Qn,1.k) = Q(n+1,1,k) k=1,3

a»n, 1K) = o{n+1,1,k)
(k=0,1
w(nllok) = L’/(INI.I.R)

N({n,2.k) = N(n+1,2,k)
(k=0,1,2)
Q(nazak) = Q(n+1.2,k)
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APPENDIX B

¢(n,2,k) = o(n+1,2,k)

k=0,1,2)
¥w(n,2,k) = ¢¥(n+1,2,k)
(2) At junction B, X =0 (see fig. 2):
N(l,i,k) =0 (k = 0’ 2)
Q(1,1,k) =0 k=1,3)
. 3
N(1,2,k) = N(1,k)
Q(1,2,% = Q1,k) g
(k=0,1,2)

o(1,2,k) = &(1,k)

W(1,2,k) = %(1,k)
o
where 2:, 1'2/, I:I, and Q refer to overhang 2.

(3) At junction A, X =a(r) (see fig. 2):

N(r,1,k) = N(2,k) k=0, 2)
Qlr,1,k) = Q(2,k) k=1,3)

o(r,1,k) = Zb(z,kﬂ

(k =0, 1)
Ulr, 1K) = %2,k
N(r,2,k) =0
(k=0,1,2)
Q(rlz’k) =0

~

where 3), fb, N, and Q refer to overhang 1.
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(4) At support D, where symmetry is assumed to be about a vertical axis through D
(see figs. 1 and 2):

5(2,k) = 0
(k=0,1,2)
Q2K =0

where ¢ and @ refer to overhang 2.

(5) At support C, where the stress p is assumed to be uniform across the thick-
ness (see figs. 1 and 2):

N(1,0) = p

QLD = Q(1,3) = 0

~

where N and Q refer to overhang 1.
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APPENDIX C
SOLUTION OF DIFFERENTIAL EQUATIONS (22) AND (23)

Equations (22) and (23) are simultaneous second~order ordinary differential equa-
tions. They can be formally written in matrix notation as

[r]i-j-z- +{0] EC;E + 1]} = {0} €y

where I‘ﬂ', ) , and '] are coefficient matrices and x 3V is a column matrix of <
L

and . Equation (Cl) is solved by using any of the standard methods, such as the one
described in reference 6. The solution of equation (C1) has the form

q
)=, FO ) 2
v=1

where F(v) are arbitrary constants. The column matrices {A(v)} are constants or

are power or exponential functions of X. The vaiues of q are

24 for single-lap and flush joints
20  for double-lap joints
12 for unbonded elements without symmetry about x~axis

8 for unbonded elements with symmetry about x-axis (plate 1in
double~lap joint)
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Figure 6.~ Concluded.
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Figure 7.~ Continued.
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Figure 8.~ Effect of plate taper on maxinium peel and shear stresses in bond. Plates are of same material.
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