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NOMENCLATURE

AFA R  Flexible and rigid areas of cavity

a Plate length

b Plate width

c Cavity sound speed

D Eh3/

F Modulus of elasticity

F mt h cavity natural mode
m

H Plate admittance function
n

h Plate thickness

In; I Plate transfer function; see Eq.(28)

K2 = m 2 a4
n n

D

L see equation (62), et. seq.
mr

Lx, Ly Characteristic lengths of random pressure field

M Plate generalized mass; also cavity generalized mass
m

m Plate mass/area

n normal

P; P = pa ; see equation (57)
hD

p Pressure on plate

Qm Generalized force on plate

qn Generalized plate coordinate

R Correlation function

t Time

U Pressure field convection velocityc

V Cavity volume

W see equation (57)m



w Plate deflection

x, y, z Cartesian coordinates

ac, , Y Empirical constants for random pressure field

V2 Laplacian

6* Boundary layer thickness

Power spectral density

Pm Plate density

a stress

T Dummy time

Cm Modal damping

Wm Modal frequency



1. INTRODUCTION

In the present report we shall treat the response of a structure

to a convecting-decaying random pressure field. The treatment

follows along conventional lines after Powell and others. That is,

the pressure field is modelled as a random, stationary process

whose correlation function (and/or power spectra) is determined from

experimental measurements. Using this empirical description of the

random pressure, the response of the structure is determined using

standard methods from the theory of linear random processes.[2,3]

The major purpose of the report is to provide a complete and

detailed account of this theory which is widely used in practice

(in one or another of its many variants). A second purpose is to

consider systematic simplifications to the complete theory. The

theory presented here is most useful for obtaining analytical

results such as scaling laws or even, with enough simplifying

assumptions, explicit analytical formulae for structural response.

Some of these latter results are thought to be new; however, so

many authors have considered various simplified versions of the

general theory, the authors hesitate to claim novelty for any

specific result. Hence, the title of the present report.

It should be emphasized that, if for a particular application

the simplifying assumptions which lead to analytical results must be

abandoned, numerical simulation of structural response time histories may

be the method of choice. [4 ,5 ] Once one is committed to any sub-

stantial amount of numerical work (e.g. computer work) then the

standard power spectral approach loses much of its attraction.
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2. INPUT-OUTPUT RELATIONS FOR STRUCTURE

In the present section we derive the input-output relations for

a flat plate. It will be clear, however, that such relations may be

derived in a similar manner for any linear system.

The equation of motion for the small (linear) deformation of a

uniform isotropic flat plate is

DV4w + m a2w = p (I)

where w is the plate deflection, p the pressure loading and the

other terms are defined in the Nomenclature. Associated with (1)

are the natural modes and frequencies of the plate which satisfy

DV 4 - n 2m in = 0 (2)

th
where n is the frequency and n (x,y) the shape of the n

natural mode. In standard texts it is shown that the in

satisfy an orthogonality condition

ff n Pm dxdy = 0 (3)

for m n

If we expand the plate deflection in terms of the natural modes

w = Z qn(t) n(,y) (4)
n

then substituting (4) into (1), multiplying by m and

integrating over the plate area we obtain



Mm[m + m2 qm]  Qm (5)

m =1,2,".

where we have used (2) and (3) to simplify the result. Mm and

Qn are defined as

Mm = ff m *m2 dxdy

(6)

Qm f p m dxdy

d/dt

For structures other than a plate the final result would be un-

changed, (5) and (6); however, the natural modes and frequencies

would be obtained by the appropriate equation for the particular

structure rather than (1) or (2). Hence, the subsequent

development, which depends upon (5) only, is quite general.

Before proceeding further we must consider the question of

(structural) damping. We shall defer a discussion of acoustic or

fluid damping to a subsequent section. Restricting ourselves to

structural damping only we shall include its effect in a gross

way by modifying (5) to read

Mm m + 2 mm q + m2 m (7)

where Cm is a (non-dimensional) damping coefficient usually

determined experimentally. This is by no means the most general

form of damping possible. However, given the uncertainty in our

knowledge of damping from a fundamental theoretical viewpoint
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(see [6]) it is generally sufficient to express our meager knowledge.

If damping is inherent in the material properties (stress-strain law)

of the structure, the theory of viscoelasticity may be useful for

estimating the amount and nature of the damping. However, often

the damping is dominated by friction at joints, etc., which is

virtually impossible to estimate in any rational way.

Now let us turn to the principal aim of this section, the

stochastic relations between loading and response. We shall obtain

such results in terms of correlation functions and power spectra.

The correlation function of the plate deflection w is defined

as

T

R ((;x,y) E lim 1 f w(x,yt)w(x,y,t+r)dt (8)
w T-- 2T -T

Using (4) we obtain

R w(T;x,y) = Z Z m(x,y)(x,y) R (T) (9)
mn rn

where

T
R (qm ) lim 1 q m(t)qn(t+T)dT (10)

mn Tm 2T -T

is defined to be the cross-correlation of the generalized coordinates,

qm. Defining power spectra
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W(;x,y) 1 f R (T;x,y) e dr (11)
T -C

(w) 1 f R () e d (12)
mqn -m - m n

we may obtain from (9) via a Fourier Transform

w (w;x,y) = E Z m(x,y)n(x,y) q (W) (13)
mn mn

(9) and (13) relate the physical deflection w to the generalized

coordinates or displacements qm,

Consider next similar relations between physical load p

and generalized force Qm. Define the cross-correlation

T
RQ () E lim 1 -f Q(t)Qn(t+T) dt (14)
Qm~n T-- 2T -T

Using the definition of generalized force (6)

Qm(t) - ff p(x,y,t) im(x,y) dxdy

Qn(t+T) Eff p(x*,y*,t+T) n (x*,y*) dx*dy*

and substituting into (14) we obtain
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RQmQn(T) ffff im(x,y)n(x*,y*)

(15)

* R (r;x,y,x*,y*) dxdydx*dy*
p

where we define the pressure correlation

T
R (T;x,y,x*,y*) E lim 1 f p(x,y,t)p(x*,y*,t+T)dt (16)

P T- 2T -T

Note that a rather extensive knowledge of the spatial distribution

of the pressure is implied by (16).

Again defining power spectra

iwT
D (W) - 1 f R () e dr  (17)

%mdn T [ m7)

co

(w;x,y,x*,y*) E 1 fR (T;x,y,x*,y*) e dr (18)
p pT

we may obtain from (15)

SQmQn(W) = ffff *m(x,y)n(x*,y*)

(.19)

* ¢ (w;x,y,x*,y*) dxdy dx*,dy*

Finally, we must relate the generalized coordinates to the
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generalized forces. From (7) we may formally solve (see [2]), for

example)

qn(t) = Hn(t-t 1 ) Qn(tl) dt1  (20)

where

H (t) 1 I () e i t dw (21)
2n --

and the "transfer function",

1
I (W) E M [w L + 2 C i n-wzL ]
n n n nn

Also
Co

I( ) = f H (t ) e- i t dt

which is the other half of the transform pair, cf (21).

From (20) and (10)

T
R qmq() = lim 1 fff H m(t-tl) H (t+1-t2)Qm(t )Qn

nm T--n 2T -T 1  2

* dt1 dt2 dt

Performing a change of integration variables and noting (14),
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R qn() = ff H () H (n) R (r-n+() d~dn (22)

m n - cc m n QQ

Taking a Fourier Transform of (22) and using the definitions of

power spectra (12) and (17), we have

4qmqn(W) = Im( ) in(-) QmQn (W) (23)

Summarizing the relations for correlation functions are (9),

(15), and (22) and for power spectra (13), (19) and (23).

For example, substituting (19) into (23) and the result into

(13) we have

(D (w;x,y) = EE m(X,y) n (X,y) Im () In(-W)
mn

* fff m (x,y) Pn (x*,y*) (24)

* D (w;x,y,x*,y*) dxdydx*dy*

This is the desired final result relating the physical loading

to the physical response in stochastic terms.

Sharp Resonance or Low Damping Approximation

Often (24) is approximated further. Two approximations are

particularly popular and useful. The first is the "neglect of
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off-diagonal coupling". This means omitting all terms in the double

sum except those for which m = n. The second is the "white noise"

approximation which assumes that ¢' is essentially constant relative
p

to the rapidly varying transfer functions Im(w). Making both of

these approximations in (24) we may obtain the mean square response

Co

w2 (x,y) R (T=O;x,y) = jf w(w;x,y) dw
0

Z IT m2 (x,y) ffff tm(x,y) im (X*,y*)
44m

M2W 3 m

• (wm;x,y,x*,y*) dxdydx*dy* (25)

Of course, only one or the other of these approximations may be

made, rather than both. However, both stem from the same basic

physical idea: The damping is small and hence, Im has am

sharp maximum near w = Mm" That is

m (im) I n(- m) << I im(w) 12

Im( n) In(- n ) << I In( n ) 12

and the "neglect of off-diagonal coupling" follows.

Also

f p I Im() 12 dw + (m) f I m() 12 dw

and (25) follows by simple integration.
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Note that if we take the spatial mean square of (24) then

using orthogonality (for a uniform mass distribution) one may show

that the off-diagonal terms do not contribute (see Powell[l]).

Finally note that if we desire stress rather than deflection,

then it may be shown that analogous to (25) one obtains

G2 = E am2 (X,y) ffff ,m(X,y) ,r(x*,y*)
4 m

M 2 3cm
m m m

* p ( m; x,y,x*,y*) dxdydx*dy* (26)

where a is stress due to w = m
m m



3. SIMPLIFIED RESPONSE CALCULATIONS

Miles' Approximation for Spatially Well-Correlated Noise Sources
(Acoustic source characteristic length is large compared to
structural dimensions)

One sometimes makes the further simplifying assumption that

the acoustic pressure loading is perfectly correlated over the

plate, i.e.

D (W; x,y,x*,y*) = D (W) (27)

and the power spectra is independent of spatial coordinates.

This is reasonable provided the characteristic length associated

with the acoustic source is large compared to the plate length

and width. For jet engine noise the characteristic length is

on the order of the engine diameter and this assumption is par-

ticularly useful. For boundary layer noise, where the charac-

teristic length is much smaller (on the order of the boundary

layer thickness), it is less so. It is normally a conservative

assumption in that the plate response is overestimated.

Using (27), (25) and (26) we see that

I ffff p m(X,y) im(x*,y*) dxdy dx*dy* =

IMiles p() [ mdxdy]2  (28)

Hence (25) and (26) become
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w2 (x,y) = r (x,y) p(W ) [If Pm dxdy] 2 (29)
4 m

M 2W 3

a2 (x,y) = CF X 2 (x,y) p (W M) [lff m dxdy] 2 (30)

m mMm2Wm 3

These may be interpreted in a particularly helpful way by

recognizing that for a uniform, unit, static pressure load

(see (5) and (6))

ms ms = ff(1)l m dxdy (31)

Mw 2  Mw 2
mm mm

and thus the physical deflection due to this uniform, unit, static

load is

ws =m mffm dxdy (32)
m m M-

mm

and the corresponding stress is

a q m s am = E dxdy (33)
m mM W Zmm

If the response is dominated by a single mode (both acoustically

and due to the static load), then the summations in (29 - 33)

may be ignored and (29) and (30) written as
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2 = Ti m (wm) (wS)2 (34)

m

72 () (S)2 (35)
M m

Im

The above forms are due to Miles [7 ]

Nearly Uncorrelated Noise Sources
(Acoustic source characteristic length is small compared to

structural dimensions)

For some noise sources, e.g. turbulent boundary layers, the

assumption of perfect correlation is not satisfactory and a

different limiting approximation may be more useful. A typical

(empirical) form of the pressure power spectra is[5 ]

-Ix-xl -I II
p (w;x,y,x*,y*) = D0(w) e L e L cos W Ix-x*l (36)

c

We wish to consider the case where L << a, L << b and
x y

Lx,Ly - (boundary layer) noise characteristic lengths in

x,y directions

a, b - structural lengths in x,y directions

In Miles' approximation, it was implicitly assumed that Lx >> a,

L >> b.
y
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If we substitute (35) into (25) or (28), the result is

I ffff D p m(x,y) im(x*,y*) dxdy dx*dy* (36)

0o () 4 L L ff im2 (x,y) dxdy

To obtain the above we note that if L << a, L << b then
x y

only for x* 1 x and y* - y will the integrand of right hand

side of (36) contribute. Thus

4 0 L2(Xy) ffeX-X* e-lz1cos wlx-x*ldx*dy* dxdy
x y c

Performing the integral over x*, y* (for definiteness consider a

rectangular plate of dimensions, a,b)

I (w)L L y ff m2[2-e-X/L cos kx/L - e (a-x)/L

* cos k (a-x)/L
x

0[2 - e-Y/L - e (b)/L ] dxdy

where k - L
X/U

c

Neglecting e- X/Lx, etc. compared to 2, one finally obtains

(36). Note this last step is a particularly good approximation
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if 4m is small near x = 0, a and y = 0, b. Conversely, if

m had its maxima near the plate edges, the above might require

modification (this is not the usual case).

If one still assumes the response is dominated by a single mode

(a more questionable assumption for L << a than L >> a

we see, comparing the above result for I to Miles' approximation,

that the latter may be modified to give the structural response

by multiplying by a factor of (square root for rms response)

S4 L L ff m2 (x,y) dxdy (37)
x 7 m

IMiles [ffimdxdy]2

For typical m , this ratio will be on the order of

4(Lx/a)(Ly/b) and hence, as expected, leads to a reduction

in the estimated structural response from that given by the

Miles' approximation.
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Numerical Example

As an example, we have considered a clamped isotropic plate

(with and without tiles) representative of those recently tested

in a wind tunnel for Space Shuttle 8] . Although this was nomi-

nally a panel flutter test, some tile failures occured for reasons

other than flutter. Hence, it is of interest to assess the possible

impact of vibroacoustic response on these panels.

Metallic Panel Only:

The aluminum metallic panel has the following properties

E = 107 psi a = 24"

Pm = .1#/in 3  b = 18"

h = .05"

The first natural mode is approximated by

= 1 - cos 2rx [1 - cos 2 y

Using a Rayleigh-Ritz approximation the calculated natural

frequency is 37 cps as compared to the measured value of 42 cps [8 ]

Also it is calculated that

ws = .62 inches/psi

and a = 2360 psi/psi
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From Figure 12 of Reference [9], p = .00305 psi2 /cps at 37 cps

and it is assumed that (1 = .01.

Thus, using Miles' approximation,

= T_ [W, D ]1/2 as (35)
I45

= 7400 psi

However, from Vaicaitis [ ], et. al.,

L = 1.22 &* L = .26 6*x y

where 6* is the boundary layer thickness. Taking 6* = 1 inch

and using the previously assumed i1 , we compute from (37)

I = 9 L L = .0066

x b
IMiles a b

which reduces the rms stress to

FG = 7400 x [.0066]1/2 = 600 psi

Addition of Tiles:

The measured value of m is 85 cps with 1" tiles resting on

a soft felt strain isolator which in turn is bonded to the metallic

panel 8] From Muhlstein [9 ], et. al., D = .00148 at 85 cps.p
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It is assumed that il = .02 and

s is estimated from
with tiles

s = (mass x w12) aS
with tiles no tiles no tiles

(mass x W12 )tiles

(The above could be computed more precisely from the analysis of

Reference [10] if it were necessary.)

Now

massno tiles = .005 #/in2

masstiles = (.005 + .0052) #/in2

metallic plate and tiles

* os = 295 psi/psi

The stress in the metallic plate with tiles added is then

S= 655 psi (Miles' approximation)

= 53 psi corrected for Lx, Ly effect.

The bending stress in the tile itself is computed to be 65.5 psi

and 5.3 psi respectively. Here, we make the conservative

assumption that the isolator is ineffective and the tile bends

with the metallic plate, i.e.
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aTile = (Et)= 50,000 x 1 = .1
s  -Tile

aAluminum (Et) l107 x .05
s Aluminum

The through the thickness stress (assuming tile moves up

and down on isolator with no motion of metallic plate) is

computed using the following values

a 1 psi/ps i

1 = .1

wl = 680 cps

P = .0002 psi 2/cps

The result is

-- = 1.2 psi Miles' Approximation

Correcting for Lx, Ly but now using dimensions of tile, a = b = 6",

we have

I = .079

Miles

and 1 = 1.2 x [.079]1/2 = .34 psi.
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Tile = (Et)Tle 50,000 x 1 = .1
s Tile

S

Aluminum (Et)A 07 x .0S

The through the thickness stress (assuming tile moves up

and down on isolator with no motion of metallic plate) is

computed using the following values

a = 1 psi/ps i

1 = .1

wl = 680 cps

= .0002 psi2/cps

The result is

7-= = 1.2 psi Miles' Approximation

Correcting for Lx , L but now using dimensions of tile, a = b = 6",

we have

I = .079

Miles

and 1 = 1.2 x [.079]1/2 = .34 psi.
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Trial Modes

Sometimes it is convenient to use assumed trial modes rather

than the natural modes. To determine the latter may itself involve

a rather elaborate calculation.

Define

m - natural mode am - stress due to @m

4. - trial mode oj - stress due to #j

where, assuming for simplicity that D ( m) is independent

of position,

q = 4 mp( m )  [ff dxdy]2  (38)

mm m

Mm  = ffm m2dxdy

th
- m natural frequency

Cm - mth damping ratio

Clarkson[11 ] and others advocate retaining only m = 1.

It will be shown (see equations (41) - (48) that

ff1mdxdy = bm a b

M = mab Z (b )2 (39)
m J

a = Z b a.
m ) 3



- 21 -

(38) and (39) may then be used to calculate a2, viz.

(-2 (40)
m m

m

Here we neglect qmqn. Call this OPTION I.

Relationships Between Natural Modes and Trial Modes:

We have

m . bjm 4 (41)
J

where b.m are the eigenvectors of a natural mode calculation

using the trial modes, 4..

We also know

w = Z qm m = aj 4 ** (42)
m j

Using orthogonality property * of %m, we determine from

(42) that

qm = Z a ff j mdxdy

ff im2dxdy (43)

Using (41) in (43) and orthogonality property * of 4j

qm = a' b.
JJ CJ (44)

(b ~lm) 2

*Note we are assuming mass distribution is uniform.

**a. are generalized coordinates associated with 4j.
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Thus

_ Z aj bjmbkn

qmqn = E ajk (45)
jk

[E (bjm )2][E (bkn )2

In practice we probably only need consider m = n.

We also need for some purposes to consider

Mm f ff m m2dxdy and ff mdxdy

Using (41)

ff m pm2dxdy = m EE bk m b m f f k 4jdxdy
kj

or Mm  = m E (b m)2 a b (46)

where a,b are length, width of plate

and ff mdxdy = E b.m ff 4.dxdy
j

= b, a b (47)

Also from (40) and (41)

a = E b.m a. (48)
m j j

cf. (39) and (46) - (48).

* again assuming'mass is uniformly distributed.



- 23 -

Summary:

Note this method is not limited to uniform pressure loading,

even though for convenience we have made this assumption up to

this point.

OPTION II

Calculate

T
aja k  lim 1 f a.(t)ak(t)dt (49)

k T-  2T -T

The a. would have to be determined from a suitable modal
J

dynamic analysis.

Calculate

= = c a ak ajok
jk

a. - stress at x, y due to w = (x,y)

OPTION III

Calculate aja k
j k

Calculate qmqn q Z aja k b m bkn
jj k (50)

[E (b m ) 2 ][E(bkn ) 2 ]

j k

Calculate

mn mn
mn

am stress at x, y due to w = pm(X,y)
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Since m are natural modes, it should be possible to approximate

Note b.m are eigenvectors from a trial mode eigenvalue

calculation.
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4. SOUND PRESSURE LEVEL IN AN ACOUSTIC CAVITY

In many instances the transmission of random pressure

fluctuations from an external flow through a flexible wall into

an interior cavity is of concern. Given the wall motion, the

cavity pressure (sound) field may be determined. However, there

also may be a "feedback" in that the cavity pressure modifies

the plate motion. There also may be "feedback" due to pressure

changes in the external flow as a result of flexible wall motion.

Both give rise to acoustic or aerodynamic damping which may

substantially modify the wall motion. Although this modification

may be significant [4] in some instances, in this elementary dis-

cussion we ignore it.

The following analysis follows closely the derivation of

Ventres [4] which is notable for its generality and simplicity.

The analysis is valid for arbitrary cavity geometry and time

dependent motion. The end result is an expansion for the acoustic

pressure within the cavity due to motion of the walls, in terms

of the normal modes of the cavity with its walls assumed to be

rigid.

Let the cavity occupy a volume V, and be surrounded by a wall

surface A, of which the portion AF is flexible, while the

remainder AR  is rigid. If the fluid within the cavity is at

rest prior to motion of the wall, the fluid pressure p satisfies
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the familiar wave equation, and associated boundary condition:

V2 p - 1/C 2  2 = 0 (51)

2= -p a2w on AF  (52)
an

= 0 on AR

In these equations p and c are the fluid density and acoustic

velocity within the cavity, and w is the displacement of the

flexible portion of the wall in the normal direction n (positive

outward).

iwt
Equation (51) has normal mode solutions Fme i , m = 0,1,2

with the following properties

V2 F = - wm F (m 53)

aF = 0 on A (54)

an

1 / Fm F dV = 0 m f n

Mn m n
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Note that equation (53) has the solution w0 = 0, F0 = 1. All

other frequencies wm , m = 1,2, . . . are positive, however.

The wave equation (51) can be transformed into a set of

ordinary differential equations in time by using Green's

Theorem in the form:

f (pV2F - F V2 P) dV =
m m

V
(56)

( Fm F ) dA
A - m

A n an

By defining

Pm 1 I pFm dV

pc 2V V

(57)

W = 1 f w F dA
V A m

and making use of the fact that p and F satisfy equations (51)
m

and (53), and boundary conditions C52) and (54), the following

ordinary differential equations are obtained from (56):

S+ 2  P = -W (58)
m m m m

A dot ( ) denotes differentiation with respect to time. The

quantities Pm and Wm are the coefficients in normal mode

expansions for the pressure and plate deflection, e.g.

P Pm Fm (59)
pc m

m
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Since the normal modes F satisfy the homogeneous boundary con-

dition (54) on the entire wall surface A, the normal derivative

of expression (59) does not converge uniformly on the flexible

portion, AF , of the wall surface. Expression (59) is suitable,

however, for calculating the pressure itself throughout the

cavity and everywhere on the wall surface, including the

flexible portion.

Equations (58) may be easily solved for arbitrary wall

motions. The solution appropriate for the usual initial con-

ditions, p = ap = 0, at t = 0 is
at

P0 = - W t)

(60)
t

P (t) = - Wm([) cos Wm(t-r) dT
0

In keeping with the intention that the cavity be in equilibrium

at t = 0 and for all previous time, it has been specified that

w = 0 and aw = 0 at t = 0 in (60).
at

The wall deflection w is often expressed as a series of

the form

w = E qm (61)
m

in which the modal functions T are defined over the region

AF. their properties being determined by structural considerations.
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In this situation the quantities Wm  are, from (57)

Wm = AF Lmr qr (62)

where

L m 1 F r dA
A A

F F

Equations (58) become

Pm + 2  = - AF L q (63)
m mm F mr r

In the present context the relationships between structural

motion and cavity pressure power spectra are of interest.

Taking a Fourier Transform of (63), we have

(_W2 +W 2) P A L w2
m m F mr r (64)

Defining power spectra in the usual way, we obtain

pp I~mMrs q12 ( qsPP qq
mn

where H -H H 66)
mnrs mr ns

and mr F mr
V C-2+,,m2)

Alternatively using C60) and (621 one can relate the correlation
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functions of Pm and qr. Subsequently, one can relate qr

to w via (61) and P to P via (59). Eventually, we may obtain

a relationship between the power spectra of P and w, the desired

result. Since much of this analysis parallels that of earlier

sections on the relationship of external pressure to structural

motion we omit details here.
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5. EMPIRICAL EXPRESSION FOR RANDOM PRESSURE SPECTRA

From (25) it is seen that the pressure power spectra is

required. This quantity is usually determined by measurement

with an empirical curve fit made to the data. Here we shall

concentrate on boundary layer pressure fluctuations although

the results will be qualitatively representative of other

random fluid motion such as engine noise, etc.

Let us begin by considering the correlation function (16).

Various authors have given empirical equations. Typical is

the one given by Y. L. Lin
[3 ]

R (:; x,y,x*,y*) = P2 e- alx*-x

Se-B I(x*-x)-Uc e -Yly*-yl (68)

p2, Uc, a, 6, Y

are constants chosen to fit the experimental data. Note that

R depends only on the difference of the spatial coordinates.

To the extent that this is an accurate approximation this greatly

reduces the amount of experimental information required.

Let us consider for a moment physical interpretations of

the constants. From (68)
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RP (r;x,y,x*,y*) = R p(T;x*-x,y*-y) (69)

For x-x* = y-y* = 0,

R (T;0,0) = 2 (70)

Hence, p2 is is the mean square pressure, see (16), at any

point on the plate. The mean square at all points is the same

by virtue of the assumption that only the spatial differences

appear in (68).

Next consider Ix*-xl # 0. The second exponential factor

of (68) represents a convecting pressure form traveling at

velocity Uc. For fixed x*-x and y*-y, R will have a maximum

at Tmax = (x*-x)/U
c

Finally, the constants a, 8, y may be written

a c /6 *

y c3/*

where 6* is the boundary layer thickness and ci, c2 , c3 are

non-dimensional constants on the order of .01-1. Of course, it

is expected on physical grounds that the spatial scale would be

roughly of the size of 6.
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Using the definition of power spectra (18) and the empirical

expression (68) we have

p (w;x*-x,y*-y) E 1 f R (T;x*-x,y*-y)e dr (72)
p p

( 2U e- lx*-x -Yy*-y -iw(x*-x)
S(BUc) +,, Uc

This equation is the input needed for (24) or (25) to carry

our analysis further. Alternatively ¢ may be available directly

from experimental data.

It should be noted that more complicated correlation and power

spectra functions are sometimes used. See (36) and Reference [5].
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6. CONCLUDING REMARKS

A review of power spectral methods for determining linear

response of structures to random pressure fluctuations has been

given. Various simplifying assumptions are made for the purpose

of obtaining useful explicit formulae for structural response.

The transmission of sound through a flexible structure into

an interior cavity is also briefly treated.
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