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Abstract

This report describes the modification of a new theory of the reflectance

of particulate media so as to apply it to analysis of the infrared spectra

obtained by the IRIS instrument on Mariner 9. With the aid of this theory

and the optical constants of muscovite mica, quartz, andesite, anorthosite,

diopside pyroxenite, and dunite, we have made modeling calculations so as

to refine previous estimates of the mineralogical composition of the Martian

dust particles. These calculations suggest that a feldspar rich mixture is

a very likely composition for the dust particles. The optical constants

used for anorthosite and diopside. pyroxenite were derived during this pro-

gram from reflectance measurements made by F. Elaine of NASA Goddard Space

Flight Center. Those for the mica were derived from literature reflectance

data. Finally, a computer program was written to invert the measured ra-

diance data so as to obtain the absorption coefficient spectrum which should

then be independent of the temperature profile and gaseous component effects.

ii Arthur D Little I
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1. INTRODUCTION

The infrared spectra obtained by the IRIS experiment on Mariner 9 contain

extensive data concerning the extraordinary dust storm raging on Mars at

the beginning of the encounter. The principal features arising from the

dust are rather broad diffuse bands centered near 480 cm and 1085 cm\
Such bands are commonly observed in silicate minerals and represent the

Si-0 bending and stretching vibrations, respectively. Their precise

shapes and locations provide information concerning the mineral compo-

sition and particle size distribution of the dust cloud. However, owing

to the rather featureless bands, it has been difficult to interpret the

spectra of the du=t in very specific ways. Comparisons with Mie theory

calculations for quartz • suggest particle diameters between 2 and 20 vim

and the location of the Si-0 stretching band permits the SiO, content of
2 3

the dust to be estimated as 60 ±10%. Hunt, et al., suggest the clay

mineral montmorillonite as a major component of the Martian dust cloud.

They base this conclusion on the comparison of the Mariner radiance data

with laboratory transmission spectra in which montnorillonite shows two

rather broad bands at approximately the correct positions and lacks other

strong features in the. mid-infrared. While other published spectra of
4 5 6montmorillonite are somewhat different in these respects, ' ' we believe

that a proper comparison, requires that either radiance, transmission or

absorption coefficients be compared for laboratory data and the Martian

experiment to eliminate shifts and other changes caused by the physical

conditions of the measurement. For instance, it is well known that the

bands in reflectance spectra are often shifted to longer wavelengths

with respect to their counterparts in transmittance spectra owing to the

influence of the real part of the refractive index.

As the dust particles are unlikely to be spherically shaped, the Mie

theory may not be strictly applicable. The authors have developed a

theory of scattering by particulate media where the particles may be
78arbitrarily shaped. ' During nhis contract, our theory has been

Arthur D Little



I'll
I- f

»*» t\

T
• :

modified to apply to atmospheric particles rather than those packed

together on the ground. The revised theory has then been used together

with the optical constants of typical candidate minerals and rocks to

model the radiance spectrum of Mars. As literature values of the op-

tical constants are scarce for mineral species, we have applied classical

dispersion theory to measured spectra of muscovite mica, diopside pyrox-

enite and anorthosite so as to be able to adequately cover the possible

range of structural types for silicate minerals. The anorthosite and

diopside pyroxenite are, of course, rocks rather than minerals but are

representative of essentially single mineral species.

Finally, we have written computer programs to invert the Martian radiance

data with the aid of the known (C0_ band derived) atmospheric temperature

profile so as to be able to derive an absorption coefficient for the

Martian dust that is free of'the temperature profile and the Martian gas

absorption. Such absorption coefficient spectra are perhaps the best

vehicles for making detailed comparisons between the Mariner data and

laboratory spectra. .

-2- ArthurD Little I
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To calculate the spectral radiance of the dust cloud on Mars for any

proposed mixture of mineral partic.les one must first derive the scat-

tering and absorption cross-sections of the individual particles, then

compute the scattering and absorption coefficients of the particulate

medium, and finally apply a radiative transfer method to determine the

radiance of the cloud as a function of frequency.

To calculate the cross-sections of a particle of a given candidate

mineral, we use modified geometrical optics fcr wavelengths small

compared with the particle size (coarse particle theory), and modified

Rayleigh theory for wavelengths large c spared with the particle size

(fine particle theory).

In the coarse particle theory we consider the particle to be a polyhedron

but treat the edges of the facets of the polyhedron as though they were

perturbations of the smooth surface of a sphere of the same volume as

the actual particle. Therefore, we first calculate the scattering and

absorption by the smooth sphere by ray tracing and then adjust the results

to take account of the effect of the edges. We do this by regarding each

edge as an elongated ellipsoid of particle material adhering to the sphere.

We allow the ellipsoids to have a wide range of cross-sectional shapes and

calculate their effect statistically. It is found that edges treated in

this way can cause a large increase in the absorption, notably in strong
7 8 9

reststrahlen bands. ' ' Some of the concepts presented in these references

such as the contact factor and the discrete layer model apply to packed

mineral powders and are, of course, omitted in the present application

to a dilute suspension of particles in an atmosphere. We also omit here

the diffuse reflection from surface asperities on the particle and con-

sider only the Fresnel reflection from a smooth surface. In the case of

thin mica flakes, where the perturbed sphere is clearly not a good approxi-

mation to the particle shape, we do the ray tracing directly and average

over all orientations of the flake. This removes any refractive scattering
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from these calculations. It can be shown that the average geometrical

cross-section of any jonvex randomized particle is the total surface area

of the particle divided by '\. The average slant path t through a particle

ignoring refraction is given, therefore, by

V
S/4 (1)

where V is the volume and S the surface area of the particle. For the case

of a disk of diameter D and thickness H, (1) becomes

(2)

Allowing for refraction, the average path can be shown to be approximately

Hnt
(3)

^Jn2t2 . t2 + H2

where n is the refractive index. In our computer program we have arbi-

trarily chosen an aspect ratio D/H = 5/1 for mica flakes. Equation (Ẑ -

then becomes

2Dn

- 51

In the fine particle theory where the wavelength is large compared with

the particle size, the edges of the particle become much less important

than the general shape of the particle. We therefore represent an arbi-

trary particle by a smooth ellipsoid. Since the particles may have a

wide variety of shapes, we allow the ellipsoids to vary considerably in

their axial ratios. For our purpose it is most useful to specify an

ellipsoid by its depolarization factors L, M and N, whose sum is Uit,

since these factors cause widely differing absorption even in particles

of the same volume. The average power absorbed by a randomly oriented

» ...i r»i
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ellipsoid of volume V and complex index m, placed in an electric field E

with angular frequency u, is . •

6
In (m2 - 1)

ATT + L(m2 - Air + M(m2 - 1) An + N(n>2 -1)

where Im means ."imaginary part of." .. . •

This expression demonstrates clearly that, as stated above, the absorbed power

is not independent of the shape of the small particle, as is often assumed.

Independence of shape is true only when jm2 - l|«l, which. Is certainly not

the case for a strong reststrahlen band. In such a region of the spectrum

m can have values that approach the poles of the expression in square brackets

in (5). .For a sphere, L=M=N=Aii/3, and there is.therefore a single pole in m-

space on the imaginary axis at the point s; «• -1̂ 2. In a strong reststrahlen

band the trajectory of m in m-space, as .frequency is changed, runs almost

parallel to the imaginary axis, and slightly displaced from it. In the case

of a sphere, the pole at -i</2" therefore produces a sharp absorption peak. On

the other hand, for a distribution of ellipsoidal particles with a continuous

range of values L,M,N (subject to L4WfN = An), a continuous distribution of

poles will be spread along the imaginary cJtis in m-space. The trajectory of

m therefore remains close to poles over a considerable portion of the trajec-

tory, thereby giving rise to & broad absorption maximum.

On averaging Equation (5) over all allowable combinations of L,M,N, one
9 • ' '.finds for the average absorption cross-section of small particles with a

wide variety of shapes

2u2vd3 / m2?.nm2

m2 - 1
/

where v is the frequency in cm" and 7id3/6 = V. It is found that this

expression does indeed give a broad absorption band in a strong reststrahlen

region, while a Mie theory calculation for spheres of the same volume V

gives a sharp absorption band. , . .

(5
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It is worth noting that the validity of expressions (5) and (6) demands

a more stringent requirement on the particle size d than the criteria

nd/A«l and |m|nd/X«l given by van de Hulst for the Rayleigh region.

The additional restriction is clearly related to the minimum separation

of the m-trajectory from the imaginary axis, but has not been formulated

owing to the lack of an explicit exact theory for ellipsoids.

Reference 9 also gives an expression fov the average scattering cross-

section for the distribution of small ellipsoidal particles.

The absorption mechanism just discussed acts also at the edges of large

particles, regarded as elongated ellipsoids, and is responsible for the

enhanced absorption mentioned earlier with respect to the coarse-particle

theory.

In the intermediate range of wavelengths where X-d, we estimate the
9

cross-sections by means of a suitable bridging formula that gives a

weighted average of the results from the fine and coarse particle

theories in such a way that the two theories merge slowly.

The radiative transfer method by which the radiance of the dust cloud

is calculated is based on a six-stream model, also used by Conel, with

three upward-directed streams and three downward-directed streams, all

inclined at an angle of cos (1//3) to the vertical. Additional programs

were written to carry out the calculation of a brightness temperature

based on the radiance obtained from an arbitrary number of isothermal

layers for a dust cloud, treating the ground as a blackbody. We assume

that the dust cloud varies with height Z only with respect to concentration

N (particles/cm5) and not with respect to particle size distribution or

mixing ratios of different minerals. The details are given in Reference 9.
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III. OPTICAL CONSTANTS OF MINERALS

In order to model the radiance ti^ectrum of the Martian dust, it is necessary

to have information on the complex refractive index, m « n-i k, of the can-

didate species over the spectral range involved. As such data has long
12been available for quartz, this mineral is commonly used for model cal-

culations despite the fact that it represents an extreme in the behavior
i •>

of silicate minerals. The literature data *" is particularly useful as it

is given in the form of classical dispersion theor;- parameters so that the

optical constants at any point in the infrared can be calculated when

needed from a small set of oscillator parameters.

Recently, Pollack, et al., have published similar parameters for basalt

and andesite rocks. The difficulty with using such data for rocVs is that

in addition to the usual problem of orientation of the crystallites common

to any microcrystalline material, rocks are generally mixtures of variable

composition. Therefore, any such parameters would be appropriate only for

the particular rock used in the measurement. However, Prof. Frondel of

the Harvard geology department informs us that the composition of andesites

are not as exceesively variable as for many other rocks. Andesite consists

principally of oligoclase or a~.Jesine feldspar but other minerals are fre-

quently present.

There are however, some rocks of almost single mineral composition. They

include dunite, anorthosite and pyroxenite. We believe it is worthwhile

to model using optical constants for such rocks as they represent struc-

tural types and the only significant variations (beside anisotropy) are
14

in the cation ratios. It is well known that the Si-0 stretching fre-

quency correlates with structural type. Such modeling amounts to disre-

garding the anisotropy involved, on the basis that it would always be

approximately the same for natural unoriented samples. A further reason

for the use of essentially monominerallic rocks as opposed to single

crystals of minerals is that it is often hard to obtain suitable mineral



samples for analysis and that, in general, three sets of optical ccr.stants

would be required for each single crystal corresponding to the three prin-

cipal mineral orientations, .

Optical constants for dunite (olivine) calculated by R. Vincent were

obtained from R. Curran of NASA Goddard Space Flight Center. A sample

.of anorthosite from Essex County, New York, was obtained from Ward's

Natural Science Establishment. Prof. Fronidel of Harvard University

examined our sample and noted that some crystallites were rather large .

so that averaging might be necessary. Anorthosites consist largely of

feldspar anorthite which is the calcium-rich end member of the plagio-

clase feldspar.minerals. Our polycrystalline sample was polished for.

reflectance measurements on three sides. The plan was that any orien-

tation effects caused by large non-random crystals within our sample

could be examined and might be averaged out. la addition, a microcrystal-

line diopside pyroxenite rock, whicri is essentially pure diopside, was

obtained from.Prof. Frondel and polished.for a similar analysis.

The ref".jctance measurements were made, by F. Elaine of NASA Goddard Space :

Flight Center. A wire grid infrared polarizer was used to ascertain

whether significant polarization effects exist. After examining the

measurements made both with and without the polarizer for the pyroxenite

and anorthosite, we chose suitable spectra for reduction to the optical

constants.. • . .

The optical constants of muscovite mica have been obtained from the

published data of Vedder. As the author no longer has the concomitant

data on the refractive index, we used his recorded measurements, together

with Elaine's measurements for the anorthosite and pyroxenite rocks to

produce classical oscillator parameters for use in our modeling calcula-

tions. For the two rock samples a set of averaged optical constants was

produced while formica three sets of optical constants for the E|'|a, EJ|b,

0



and E_[a,b orientations v;ere obtained. The EJa.b Is very close to an E J j c

orientation so that the three possible sets of optical constants for this

mineral are now available.

The computer program used to generate the optical constants from re-

flectance data in terms of classical oscillator parameters (Lorentz

lines) is similar to one previously used for garnet and glass. The

old program has been modified to gie.;L̂ ;' improve the convergence rate,

and a statistical section has been added at the end to calculate the

standard deviations of the Lorentz line parameters. A detailed dis-

cussion of the method ot regression is given in the Appendix.

Tables 1-5 show the Lorentz line parameters and their estimated standard

deviations, o, obtained by fitting the measured reflection spectra. The

formula for the dielectric constant in terms of the tabulated parameters

is

1 + fW (7)

where S. is the line strength, Y. the damping and v the frequency for

each resonance, j. eQ is the high frequency dielectric constant.

Figures 1-5 show the measured spectral data (plotted as points) and

the theoretical spectrum for comparison. It is of course possible to

improve the fits still further by the addition of additional resonances,

but we believe that the experimental data does not warrant additional

eCTort. We recognize that a truly rigorous set of averaged optical con-

stants for rock species cannot be obtained in this way in view of orien-

tation-polarization effects, the imperfect nature of the surfaces and

tue approximation involved in averaging reflectances rather than cross-

sections. Nonetheless, we believe that the set of pseudo-optical con-

stant:: obtained here for monominerallic rocks are entirely adequate to
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characterize the structural type represented by the spectral data for

the Martian dust.
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tô̂D

OO00r»O*
OCM3

CMO
CMO0000

OOON
N
O

O

CMO00COO

N
O

o
CMO

m
 

sr
 
ON

sf
 

OO
 

CO
o
 
o
 
o

vo 
sr

N
O
 

f
-
l

CO
 

CM
 .
osr

C
O

OOCM0mo

oo
•

oC
Or«.O*o

O
N

CMOOCMO

OO00t-l
COOO

\Do
CMo

O
N•
O
N

O
N
O
N

CO

r--I-l
.ON

OsrooCMcoNOOCM
•

r*.cosrr-

ooCM
sr 

ON 
sr 

sr
CO
 

fH
 

CM
 

sr
O
 

O
 

C
M
 
i
H

o
 
o
 
o
 
o

vovO
mor— O

osrsro

O
N
C
M

N
O

o

ix. 
in 

iH
sr 

CM 
r-»

so 
m
 

sr

N
O

• 
*

CMV
OiHsr

coN
O•
no

r̂
 

oo 
ON

mo

ou

coiHr>.•
 -

CMIOu

auuoIBI-l0)M<tCk

1gOI-)I

§VlV
I

oCMco0)U: 0
0

f
c

n



SPl<i;5.'f-%
:".

iIIk•;,I?*Cj
;

ti,i 1.'!-• -

?.!_•'

i.t-r•-<I-=.i '',''•"•

'
•

'
"

I
"

.
! 

! 
1

" ' 
• 

i 
1

-̂
J
R

-
!*̂

!̂
™

,.̂
^
 

„
 

1
-
 

!
 

j

«
*

•nV
 

*
 "

^
 

_
is 

SR 
•

J! 
18 

•
r1*F 

?1
1

 
l!

>
:

?; 
Tj 

;

|
 
•
"

t. 
._.

|- 
!!

|
M

 
^

-
N

 
c

M
O

O
-

*
e

M
r

~
-

»
e

M
O

O
<

j
-

'» 
i

-
»

o
e

n
e

n
i

-
i

e
s

r
«

.
r

H
-

j
i

n
i

n
r

i 
C

f
l

O
O

O
O

O
r

H
r

H
O

O
O

i 
\
\ 

^
1 

"
;: 

- 
. 

.

Ŝ 
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IV. MODELING THE MARTIAN DUST

We have used the optical constants for the various mir.arals and rocks

together with our theory of particulate scattering to model the

observed infrared spectra obtained during the Martian dust storm.

For this purpose an averaged spectrum was obtained from Dr. Conrath,

together with the relevant temperature profile. This profile consists

of 19 atmospheric layer heights and associated temperatures, a scale

height derived from the 15 u carbon dioxide band, and a blackbody

temperature for the ground. We used a linear interpolation of the

temperature data to get an average temperature for each layer so that

we actually used 18 atmospheric layers in our program. Some of the

modeling calculations had previously been run with an 8 atmospheric
2

layer profile tauen from the revolution 20 and the spectral shape

differences between the two profiles are minor.

A set of computed spectra for quartz as a function of particle size

is shown in Figure 6 together with the Martian dust. This set illus-

trates the trend to feature broadening as the particle size is increased,

which has also been observed in Mie scattering calculations. Thii trend

appears to be quite general and indicates the approximate particle size

by the breadth of the Si-0 stretching band. We treat quartz as if it

were randomly oriented so that we always take a 2:1 ratio for the

E_|_c:E||c particle densities. For submicron particles, our calculations,

which are in this case based on Rayleigh scattering by a distribution of

elliptical particles, clearly indicate that the sharpening no longer

occurs. The absorption coefficient decreases with Nd3 and ;he scattering

coefficient with Nd5, but by the time one reaches submicron sizes, the

scattering is negligible compared to the absorption. Therefore, on the

assumption that the volume fraction ird3N/6 of the particles is constant, .

the absorption coefficient is also constant and one can no longer estimate

N and d independently l:rom a given spectral band. We have demonstrated
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FIGURE 6 COMPUTED SPECTRA OF QUARTZ
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this difficulty in several runs and believe the Mie theory would show

the save results for a distribution of shapes, as it passes over to

Rayleigh scattering for very small particles, if the Mie theory could

be extended co such a case. Owing to the calculated breadth of our fire

particle bands, other constraints must be applied to set a lower boundary

on particle size if the particle size is quite small. For coarse par-

ticles, however, the broadening trend is so strong that the feldspars,

which have smaller frequency dependent excursions in the optical con-

stants, produce relatively featureless spectra at particle sizes in

excess of 10 y. /

Figure 7 shows the spectra of 1 u particles of the species that we have

run (in the case of mica flakes, A p diameter particles having a thick-

ness of 0.8 u). The general trend of the Si-0 stretching bands near

10 p with structure can be seen to run from quart: at the high fre-

quency end through the feldspars (anorthssite and andesite), mica, and

pyroxenite to dunite. This trend, as is well known, is due to the

variation in silicate structure where quartz represents a complete sharing

of the tetrahedral SiO, oxygens and the sharing is gradually reduced until

in the olivine structure possessed by the dunite there is no oxygen sharing.

The SiO, tetrahedra are, in this case, isolated by the intervening cations
I I

(mostly Mg ). The trend is of a general sort, however, and individual

variations within each structural type are known to cause a range of band

positions that allows considerable overlap between adjacent structural
14types.

The particle densities shown in Figure 7 were held constant. They are

adjustable parameters in our computer program but their basic effect is

simply to change the spectral level provided the densities are sufficient

that the spectral bands may be clearly observed. The mica data was cal-

culated for a random orientation of flakes by taking equal numbers of

particles of each of the three orientations EJ|a, E||b, and EJa.b (essen-

tially E||C). We have also examined the effect of considering only

n1 & I !
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the two orientations., E||a and F.| |b, as opposed to all three orientations

in order to examine the range of differences to be expected if the par-

ticles are settling slowly with the sheets aligned parallel to the ground

ather than tumbling in random fashion, although even in such a case sig-

nf:;leant amounts of the E||C orientation would be seen owing to the diffuse

nature of the radiative transfer.

We chose to obtain the optical constants and run the mica data, not only to fill

in the structural sequence discussed above, but as a proxy for the clay
3

mineral montmorillonlte suggested by Hunt, et̂ al.., to be a good Martian

candidate. Transmission spectra published by Moenke indicate that mont-

morillonite and muscovite have very similar spectra, which is not unex-

pected owing to their common sheet-like structure
-1

Moenke shows a Si-0

stretching frequency about 10cm lower in muscovite than in montmorillonite,

althcngh the spectra of both species are known to be somewhat variable. ' '

As already stated, andesites are rocks of somewhat variable composition.

The evidence that this high concentration feldspar containing rock had

similarities to the Martian data led us originally to propose the ail

feldspar rock anorthosite as a candidate species and so to develop its

optical constants. The resulting spectrum gave, for the first time, to

our knowledge a possible explanation of the hitherto mysterious band near

1380 cm" . However, a reexaminatiorj of the data (Figure 4) which resulted

in the resonance giving rise to this feature casts some doubt on its

reality. The mathematical analysis (Table 4) appears to validate the

line in question, but the raw data shows the reflectance level to flatten

out at still higher frequencies. Because of the low value of the reflec-

tance and the noise characteristics of the measurements, we are hesitant

to claim the reality of the 1380 cm" feature.

Examination of the data in Figure 7 indicates that the Si-0 stretching

band of the two feldspar containing rocks and the muscovite mica fit the

l -25- ArthurD Little In



Martian data considerably better than the other species with respect to

both band shape and position. The feldspars appear to have a somewhat

higher stretching frequency band than the mica, as expected, and thus

fit the Martian data somewhat better. However, the low frequency band

near 500 cm is another matter. For this band the nica is preferable

owing to its lack of a window region in the center of the band, but

contraindicated by the relative strength of the Dand compared to the

Si-0 stretching band. In the latter respect, the feldspars are pre-

ferable. Both of these characteristics might be improved on by the

choice of a suitable mixture, as the attempt to model the spectrum of

Mars with a single species is likely to be quite unrealistic.

The choice of 1 vi for the anorthosite size in Figure 7 was based on the

band breadth behavior of a set of anorthosite spectra analogous to

the quartz set given in Figure 6. The Sl-0 stretching band, as shown

in Figure 7, is slightly less broad than in the Martian data suggesting

that the particle size Is slightly greater than 1 p. Our 2 y anoithosite

results on the other hand give a broader band whose shape has been suf-

ficiently distorted so that it no longer resembles the Martian band.

Similarly, for mica (whose band position mrkes it also a tenable can-

didate) the best appearing spectrum results from a flake of thickness

near 1 \i and significantly smaller particles have a distinctly narrower

band.

If we restrict ourselves to single species, we feel that in view of the

lack of optical constants for very many mineral species, a reasonably

good fit to the Martian data Is shown by both anorthosite and mica in

Figure 8. Here we have simply reduced the particle densities so as to

better approximate the data. While the anorthosite fit Is by no means

perfect, the band positions for both major bands (ignoring the 500 cm

peak in the middle of the low frequency band), their breadths and rela-

tive intensities strongly suggest a feldspar as a principal candidate

for the. Martian dust. The mica fit is not quite as good as discussed
».., *

above.

-26-
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All the plagioclase feldspars appear to show similar spectral structure

to the anorthosite and, as the window in the middle of the 500 cm band is

the principal difficulty, we decided to try a mixture of anorthosite with

quartz. The result of one run is shown in Figure 8. The quartz does

fill the window in the 500 cm" band as well as shift the Si-0 stretching

band to slightly higher frequencies which is desirable, but, unfortunately,

introduces a discontinuity in the Si-0 stretching band. This feature

is due to the use of 1 p quartz rather than a slightly larger size (see

Figure 6) to avoid a defect in our simple bridging relationship which was

designed for mixing either coarse particles of several types or fine par-

ticles of several types. The defect results from bridging between the two

theories for the entire mixture rather than separately for each mineral

component. Judging by our various runs, the best fit should be produced

by fine particle anorthosite and somewhat coarser particle quartz. We have

dashed in the expected result of such reprogramming on the figure. As the

evidence of our various runs suggested that a combination of coarse particle

(4 u) mica and quartz might also result in a better fit than the mica alone,

we ran such a mix as well, and it is also included in Figure 8. It is im-

portant to note that 4 y mica, as before, refers to the disk diameter and

the thickness is taken to be 0.8 u. The relative coarseness (4 p) of the

quartz particles is used principally to assure that the mica spectrum is

not forced into the fine particle regime owing to the previously mentioned

defect in our simple bridging relationship. The Si-0 stretching band is

better centered than for the mica alone but appears too broad. Significant

additional structure in the 800 cm region and in the 500 cm band is

created but all things considered the fit is not too bad.

In comparison to the mi::ture of anorthosite and quartz, the relative flat

ness and extra breadth of the Si-0 stretching band and the intensity

reversal shown compared to the two principal Martian bands (near 500 cm

and 1000 cm ) are the most significant reasons for our preference of the

feldspar dominated mix. This is even discounting the somewhat uncertain

1380 cm feature as discussed previously.

-28- ArthurDLittklnc
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We believe that a feldspar dominated mixture containing some quartz

and mica would provide 'a still better fit, but this would require some

reprogramming of the relationship bridging our fine and coarse particle

theories.

' I
/ 4, S -29- Arthur D Little Ire
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V. DETERMINATION OF K(v), S(v) AND SCALE HEIGHT H OF THE DUST CLOUD BY

INVERSION OF OBSERVED SPECTRA

A. INTRODUCTION

At bur meeting at Goddard Space Flight Center in July 1973 we suggested

the possiblity that the effect of atmospheric gas absorption could be

removed from the dust cloud spectra if, with the help of a.simple radiative

transfer theory, one suitably combined the spectra observed for two quite

different temperature profiles. We have.pursued this idea further and

now believe that the two-temperature profile scheme, besides eliminating

the effect of gas absorption, can provide spectral data directly related

to the scattering and absorption cross-sections of the dust particles

themselves and therefore be of greater diagnostic value than the cloud

spectral radiance or brightness temperature. The parameters that can be

derived by the two-temperature profile method.are the scattering and

absorption coefficients S(v) and K(v) of the dust cloud which are pro-

portional to the scattering and absorption cross-sections of the particle's,

and independent of.temperature distribution and gas absorption. The. method

requires an assumption about the scale height of the dust cloud, e.g., the

same as that of the atmosphere.

1 n
I li

s D

• - n
:g C.
i '""
ID

;pr

t i!

In the spectral regions with negligible gas absorption the method is very

simple. With gas absorption a more involved computer program is necessary.

In both cases the procedure can be readily used in computer modeling, i.e.,

in calculating spectral radiance for given temperature profile, particle

density distribution, and particle scattering and absorption cross-sections

•ierived from our theory or the Mie theory. . .

The foregoing inversion scheme was worked out at a time when it was thought

that the dust particles were large enough, relative to the wavelength,

Arthur D Little Inc
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that S and K would be of comparable magnitude. It has since developed,

from aerodynamic considerations and the spectral evidence discussed above,

that the particle size (M. u) is small compared with the wavelength

("v-lO u) • Under these conditions the effect of S on the spectral shape

is too small to permit S to be determined by the two-profile method. We

have therefore considered the possibility of determining the scale height

H and K(v) for the dust cloud, instead of S(v) and K(v), by the two-

profile scheme.

B. DETERMINATION OF S AND K IN SPECTRAL REGIONS HAVING NEGLIGIBLE GAS

ABSORPTION

We assume that the dust cloud varies with height Z only with respect to

concentration (particles/cm ) and not with respect to particle size dis-

tribution or mixing ratios of different minerals. Under these conditions,

S and K are each proportional to concentration n(2). The radiance of the

cloud, in spectral regions with no gas absorption, is not changed if the

cloud is compressed to uniform particle concentration, provided that each

plane of particles retains its original temperature. The new height Z of

any plane is related to the original height Z by the formula

Z - — n(Z0)dZQ (8)

where n. is the concentration near the ground.

We represent the radiation distribution at any point in the uniform cloud

by six mutually perpendicular discrete beams equally inclined to the Z-axis.

From symmetry the three upward-directed beams are of equal intensity and

produce a resultant flux density I(v). The three downward-directed beams

have a resultant flux density J(v). The radiative transfer equations then

have the simple form

S .11 Arthur D Little Inc
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77 = -(K + S)I + SJ + KB

~ - -(K + S)J + SI + KBdi.

(9)

(10)

where B » B(T,v) is the Planck function at any point.

Using a Green's function approach, we have solved (9) and (10) for the

radiative flux N leaving the top of the cloud under the assumption that

the ground is composed of the same particles as the cloud and has a uniform

temperature corresponding to a Planck function B_(\>).

The result is

- R)Y
f
/ B(h)e~Yhdh (11)

where H is the thickness of the uniform cloud and h = H-Z. The parameters

R and y are the reflectance (albedo) of a semi-infinite cloud, and the

extinction coefficient of the radiation in the cloud, respectively, and

are related to K and S by the formulas

VC2 2KS

(12)

(13)

PUtt f

In practice one could divide the cloud into a nursber of isothermal layers

as in Figure 9. Equation (11) then becomes

Arthur D Little Ire
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Ground

d3 + d2 (14)

This simple result can obviously be extended to any number of isothermal

layers.

II

f f O
Ih

Eq (14) can be modified to replace layer thicknesses by layer heights and

to treat the ground as a blackbody rather than as an isothermal semi-

infinite extension of the cloud. The new equation, generalized to n layers,

i s ' • . . ' " ' • ' ' - : • • • •

- R)e
-YH

2R2e

H

i=l

2
- R2e

-YH _

(15)
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where vH ° 0, B0 is the Planck function for the ground and the H,o (j 1
represents the heights of the i layers. The calculations have been made
on the assumption of an exponential dependence of particle concentration

on height. As before the cloud is treated as if it were compressed to

J .-. layers of equal particle density having, however, the temperatures of the

f; I[> original layers.
k
«.

? . » " ) . ' •
j: | i To determine R and y from the Martian spectra, one would select two

| spectra with widely different temperature profiles taken closely enough

i' i I in time and space so that the dust cloud can be assumed to be unchanged.

I '' ' For the two spectra Equation (15) can be written in the form
I I .- • • . •

f i; N «= (1 - R) F(BA, B3, B2, B1, BQ, Y) (16)

N' - (1 - R) F(B'4, B'3, B'2, B'lf B'Q, Y) (17)

where N. N1, and the B's and B' 's are known.

On dividing (16) by (17), 1 - R cancels out and we obtain an equation fo"

Y alone. This can be solved readily by Newton's method. R can then be

determined directly from Equation (16).
i '•I i
F i —. The scattering and absorption coefficients can be found by means of the
\ Mi; t L! relations

(18)

(19)
1 -f- R

which one can derive from (12) and (13).

t.

-34-
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C. DETERMINATION OF S AND K IN THE PRESENCE OF GAS ABSORPTION

In spectral regions where gas absorption 18 significant, K/S ie, in

general, no longer independent of Z since the absorption coefficients of

the gas and dust do not vary in the same way with Z. The simple solution

(11) therefore does not apply. We may, however, make the dust cloud

uniform as before by the Z-transf ormation (8) . At the same time we oust

similarly adjust the gas absorption coefficient from K (Z_) to K (Z) by

the formula

(20)

Next we divide the cloud into a number of isothermal layers as before.

In any given isothermal layer, the general solution of (9) and (10) is

. I I = Ae~YZ + CeYZ + B

J = RAe YZ + B

(21)

(22)

M ;-'

where A and C are arbitrary constants to be determined by the boundary

conditions of continuity of I and J at each interface. At the top of

the cloud J = 0 and we assume now that the ground has an arbitrary

emissivity e(v). For the case of the four-layer subdivision shown in

Figure 10, we have eight arbitrary constants, A., C., A,, C_, A-, C~, A,,

C, and eight equations derived from the boundary conditions. These

simultaneous equations are displayed in Table 6. It is clear how the

matrix can be extended to the case of more layers.

ArthnrDI iftlelnr.
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Figure 10

The outgoing flux density at the top of the cloud is obtained from the

condition of continuity of I at this interface, which is

N = A.e~Y4Z4 + C.eY4Z4 + B.4 4 4 (23)

For a given experimental situation B(Z) and K (Z) from Equation (20) are
o

known. For any choice of K and S for the cloud of particles one can

therefore obtain R(Z) and y(Z) from S and K = K + K . Then, with a
o r

suitable assumed value of e, all coefficients in Table 6 are known so that

A, and C, can be calculated by Gaussian elimination. A theoretical value

of N can therefore be found from (23) for the particular choice of 1C and

S. The same can be done for an experimental run with a widely different

temperature profile, yielding a theoretical value N'. One then manipulates

K and S until the theoretical values of N and N1 agree with the measured
P

values. Instead of the two-dimensional Nevton's method, which is often

troublesome, we prefer an iterative method with over-relaxation to carry

out the computation.
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The question of how large a difference in temperature profile is required

to give good values of K (v) and S(v), free of the effects of temperature

gradient and gas absorption, is best answered by actual trial on the

computer. For this purpose one could plot a K versus S curve correspond-

ing to matching of theoretical and experimental values of N for each

temperature profile. Each of these curves can be obtained by Newton's

method in one dimension. The intersection of the curves determines the

required values of K and S. The accuracy of the procedure can be eval-
P

uated from the crossing angle of the two curves.

D. DETERMINATION OF K(v) AND H WHEN S(v) IS SMALL

We now restate the problem as being to find both the absorption coefficient

K (v) and the scale-height H of the particulate layer given two measured

radiance spectra for widely different, but known, temperature protiles

and a known profile of the gas absorption coefficient K (v). Again we have
o

two equations and two unknowns. The equations can be derived as follows.

In the absence of scattering the upward and downward radiative fluxes, I

and J are given by the differential equations:

dl
dZ^- = -KI + KB

dJ
dZ- ̂  = -KJ + KB

(24)

(25)

where B is the Planck function and K •* K + K is the total absorption
g P

coefficient ?t any height Z. Since these equations are not coupled (on

the assumption that the ground is black) and we are interested only in

the upwards flux, Equation (25) may be disregarded. For a set of n layers,

each with uniform K and B, the solution of (24) is:



P ;4?t; '«t
t-'
A

'K Z (26)

I2 = A2e"
K2Z

I j ll
f L- »

Jt i; ' "fe- fc

i n* *~>> i !
t t ii

I:

1 ft

II

l i iI":

I = A e~KnZ + Bn n n

At Z «• 0, I. • BQ where BQ is the Planck function for the ground temperature.

At Z ™ Z. the boundary between the first and second layer, 1^ = !_, etc.

Therefore:

B o- B i

-K. Z.

-K Z -K Z
e 2 2 A 2 - e

e J A3 - e B 4 - B 3

-K -Z
.n-1

-K Z .
- e n "^A = - Bn n

The radiance from the top of the cloud is given by:

-K Z
N - A en

(27)

(28)

For given values of the Rs, Zs and Bs, the pet of Equations (27) can

readily be solved sequentially for the unknown A's, starting at the first

equation. In this way, A can be computed, and therefore N from Equation

-39- ArthurD Little Inc



In order to avoid overflow problems in the computer program, we replace

A., A_ by X.., X- where

-K.Z.
Xx - e

 4 \ (29)

Then (27) and (28) become

— K Z
e 4 V - B) (30)

-(K, - K,)Z K,Z - K.Z,
e 2 X 1X - e 2 1 *

and

N = X + B (31)
n n

A3 a preliminary step in the computer program we have chosen to compress

the atmosphere in such a way that the exponentially distributed dust with

assumed scale height H becomes a layer of uniform density extending from

the ground to a height H. The required transformation is:

o H ll -Z' o H l - e-ZH - (32)

where Z is transformed into Z'. The same transformation is, of course,

applied to the atmospheric gas. The experimentally determined temperatures

T(Z) are kept constant in the transformation, I.e.:

•
l(Z') = T(Z)

-40- AnhurDLittklnc



K :i

.The known absorption coefficient K (Z) of the gas is transformed according
o

to the relation . • . "

g
(34)

In the computer program, for the first temperature profile at a given .

frequency, we select a value of the dust scale height H and then by

Newton's method find what value of the dust absorption coefficient K

gives a theoretical .radiance in agreement with the experimental value at

the chosen frequency. This is repeated for a series of values of H, so

that a.graph of K versus H can be drawn from the computer output. The

sams is done for the other temperature profile. The intersection of the

two K versus H graphs gives the solution for dust scale height and the

absor, tion coefficient at the chosen frequency. On repeating the procedure

at another frequency a different value of K will, in general, be found

but H should, of course, be the same if the experimental data are noise-

free and free of systematic error. •

On running the program for morning and afternoon temperature profiles at

a frequency of 1000 cm , for which the. atmospheric absorption is very

weak, we found that the two computed K versus H curves crossed each

other at an angle of about 90° (Figure 11) and yielded the solution

H = 7 km and K 1.1 x 10~6 cm"1. The value of H is in fair agreement

with the scale height of about 10 km for the Martian atmosphere. The

optical thickness K H of the dust cloud at this frequency is 0.77.

Unfortunately, on repeating the computations at 506 cm (Figure 12), we

found.that the K versus H curve for the morning profile stayed above

the curve for the afternoon profile for all values of H. Therefore, no

solution could be obtained. The reason for this difficulty is that the

morning temperature profile is too close to isothermal to.provide much

information about the dust cloud. If the profile were strictly isothermal,

at the same temperature as the ground, the observed radiance would have a

blackbody spectrum corresponding to the ground temperature and would

.therefore contain no information about K (v) or H.
• • ' . - . • .- P : . . • . ' • . ••
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To investigate the question further, we have examined the behavior of N

versus K for the various cases. When the temperature varies monotonically

with height (including the ground, temperature) N versus K is a steep

curve that intersects the experimental N at a well defined value of K .

On the other hand, when the Planck function for the ground is between the

Planck functions for the various layers (morning profile), the .curve is

quite flat and K is very susceptible to small errors in the experimental

radiance. •

We believe that the procedure for determining K and H would work very well

if the second profile were monotonically increasing with height or mono-

tonically decreasing at a significantly lower rate than for the afternoon

profile. We recommend that NASA should search for such a pair of profiles

and carry out the necessary computations with the help of our program.

We also recommend, if a suitable second profile is not available, that

the data for the afternoon profile should be used alone, along with an

assumed value of dust scale height, e.g., 10 km, to determine a complete

K spectrum. Such a spectrum will be free of the effects of the tempera-

ture distribution and of atmospheric absorption and will be equivalent to

the transmission spectrum (without reflection losses) obtained by a labo-

ratory spectrometer for a single crystal of the dust material. Such a

presentation of the Martian infrared data would allow simple averaging of

K over many spectra for purposes of comparison with laboratory trans-

mission spectra of various candidate minerals.

E. COMPUTER PROGRAMS

A listing of MARK,, the computer program we wrote to carry out the inversion

when S = 0 is given in Figure 13. This program was written in double

precision fortran for the General Electric Mark III Time Sharing Service.

. •t a -44- ArthurD Little Inc
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HARK IH03COT 0«'»7/74

i.)

P .

IOOC UP TO 50 LAYERS
110 IMPLICIT DOUBLE PRECISION CA-H)
180 IMPLICIT DOUBLE PRECISION <0 -Z>
130 DIMENSION Tf50>«P<50><Ai .PfSO>.Z<SO>.TEMP<S>.AAISO>
140 l.CAPK<iO>.ZSa<50>
145 MEAL TEKP.DX.PIP.ZR
150 BPLCTO -1*19090- 12* VN»VN>VN/<CEXP(|.438DO*»N/TE>- 1 'C>0>
l«0 ITEB-I
no i PR i NT. -HEAD IN VN.AVCRAD.N.H.E.TG.ALPH.PS.TS-
180 READC"NUM3~>999>kN.4VGRAD.N H . IM.TG. ALPH. < P< 1 > .1 < 1 > . I • I , N>
IBS 999 F9RH4T«V>
190 PRINT. WN.AUGRAD.N.H. EM. TG. ALPH. <P< I > .T< 1 > . 1 -I .N>
200 CAPIM-D-5
205 ALPH- IQ. DO* • ALPH
2IOC TBANSFOBM P TO Z
820C PO Is AT THE GROUND
230 RGAS-I .889206
232 PCONV-9 -B693D-4
234 DO 10 l-l.N
836 10 P< I l-P<t )»PCONV
837 NI.N-I
83B DO II I-I.N1
840 II ALPI I>«4LPH«IS.DO»<PH>»PCl»l»'Ca.DO»DSCRTUTCI>«T«l»l»/2.DO»
841 CHARS«376*t)0
860 DO 60 I-I.NI
861 lt-0
862 DO 70 IN«I«S
863 70 TEHPCIN1.0.
864 DDX-O.DO
»65 DPIP»T«»/P(I>
866 65 CONTINUE

OX.DDX
P1P-OPIP
ZR>CLCINT< I .DX.PI P.TEMP>
£C I ).-RCAS«DBLE<ZR)/CnAHS
It-ll'l
I F ( I Z ' C E . N ) CO TO SI
DDX-P<IZ»I >-P(IZ)

86T
866
269
270
871
272
273
874
275 IF(I.CE.|Z> CO TO 65
876 60 CONTINUE
2BO 51 IST-0
290 DEK..005DO»CRPI
300 CAPKD-CAPI-DCK
310 25 CONTINUE
340 DO 2 I-I.NI
350 IFUTER.CT'I I CO TO 53
360 1F(IST.GE.I> CO TO 53
3*0 ZSOf I>«H»I1.CO-EEXP<-Z(I)/H»)
395 53 CAPKC-| .73205IDO»ALPC|>«DEXPCZ(t>/H)
400 55 CAPK<II-CAPKG«CAPKD
410 8 CONTINUE
415 CONS*CAPK<NI>*ZSO(NI>
420 AACI»IEPL<TC>-BPL(T(| I»*DEXP(-CONS>
430 DO 90 I -2 .NI
440 AAII »AACI-I >*DEXP(ZSO(I-I > • 'CAPKr 1 ) -C«PK( I - 1 ) ) > -CEXP
450 (izsQci-i I*CAPK< i >-CONS»CBPL<TI i > >-BPLCT<I -i >»
460 90 CONTINUE
470 RAD»AA(NI >*BPLCT<N|»
475 PRINT. RAD
480 l r< IST .£0 - l> CO TO 22
490 DEL-RAD-AVCRAD
500 CAPKD«CAPKD«2.DO*CEK
510 IST-1ST-I
580 CO TO 25
530 it DELK-RftO-AVCRAD
540 DrOK.(CELK-DEL)/ce.DO«DEK>
550 C4PI«CAP| -ICEL»CELK»/C2.DO«DrCK)
570 PRINT. ITER.CAPI
5<!0 ITE»- ITEB»I
590 CO TO 51
«00 END

- \ \
FIGURE 13

OBIGINAL PAGE IS
OE
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It can be rather simply converted to any other fortran service by suitable

changes in the I/O statements and replacement or deletion of the integra-

tion subroutine CLCINT. This subroutine is used to calculate the equivalent

heights Z(i) for the various layers, i, from the pressure and temperature

data if the number of layers used is less Chan the total Lumber given.

It is a modified Simpson's rule integration. The calling sequence is

ZR = CLCINT (1, DX, PIP, TEMP). 1 is an indicator for the modified Simpson's

rule, DX is set equal to 0 for the initial call and to the desired incre-

ment thereafter, PIP is the integrand and TDtP is a storage array.

-46- ArthurD Little Inc



• . • Appendix :

General Description of Fitting Process

The first step wt take is to read the graphical output of the

. . spectroneter at intervals of 5-10 cm and enter the data in digital

form into a time-sharing system. After performing a linear transforma-

. tion to correct for the zero and one-hundred percent reflectance errors,

we make a new graph of the data on a Hewlett-Packard 7200A plotter

which is attached to the terminal used to access the time-sharing

.. ; system. Transcription errors and doubtful data points are easily pin-

"" •- pointed and eliminated at this juncture. We then make a final plot of
1 •• the purified data; reproductions of this plot are used later to assist

in the fitting process. The purified data are also listed and punched

. . in cards to serve as input to the program used to carry.out the least

I ^ squares fitting.

\ ' Our regression (least square fitting) program requires that first

: , approximations to the Lorentz line parameters be supplied as input.

I We make use of the HP plotter and time-sharing system to help obtain

( • •' • . the required first guesses by plotting the reflection spectrum corre-

t spending to the guessed Lorentz lines on reproductions of the data plot.

It is fairly easy to adjust the parameters to ameliorate a grossly erroneous

approximation. After two or three lines have been roughly established

in a limited band at, say, the high frequency end of .the spectrum, we

improve the fit by means of the least squares program. Then we make a

graph of the results and guess the parameters for a few more lines to

[} expand the range of frequencies covered; again the entire set is

improved by the least squares fitting program. In this way the full

Lj span of the spectral data is eventually covered. We find that this

stepwise procedure needs much less mental and computational effort than

j [ . an attempt to guess ten to fifteen lines simultaneously to start the

fitting process. .

I t
I: '"
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The Repression Problem and Method of Solution

We are given the spectral reflectance of a sample as measured by a

known instrument and we wish to find the values of a set of classical

oscillator parameters that give the theoretical reflectance spectrum

that best matches the measured spectrum. We solve the problem by the

method of least squares; that is, we vary the oscillator parameters to

minimize the root mean square difference between the measured and

theoretical spectra.

Let R. be the reflectance measured at a frequency v and R(v,P) be

the theoretical reflectance of a sample with the set of oscillator

parameters P at a frequency v. We wish to minimize the residual

• T = I (R (v,,P) - R,)2 (Al)
J 3 J

which we can do by setting equal to zero the partial derivatives of T

with respect to the individual parameters. Due to the complicated nature

of the function R(v,P), however, the resulting simultaneous equations

are highly non-linear and must be solved iteratively.

The function R(v,P) may be broken Into two parts corresponding to

the two planes of polarization TT and s which are parallel and perpendic-

ular, respectively, to the plane of incidence of the beam of light falling

on the sample in the measuring instrument. We write

R(v,P) = afl(v) Rs(v,P) (A2)

where a (v) and a (v) are instrumental corrections taken to be knownit s
functions of frequency.

The Fresnel formulas give R (v,P) and R (v,P) in terms of the angle
TT S

of incidence $ and dielectric constant c = c(v,P) which characterizes

the electrical properties of the material. Thus

R - 2 (A3)

•

n



e cos $ - Z ,.,,.
E cos I + Z <A5>

2 - cos
Z + cos

Z = /e - sin'' <fr (A7)

Finally, according to classical dispersion theory, the dielectric constant

has the form of a sum of m simple resonances (Lorentz lines) :

c(v,P) = e +1 - ^ - ^-2 (A8)
k=1 1 + A \ t - (t}k k

In our work, we take the set of .parameters P to be made up of the following

quantities:
p «= ey o

Plk " Sk (MO)

Thus the equations to be solved simul. ineously for the parameters

p , are seen to be

3p ,ruk

whence, by Equation Al, we find

(A13)

E [R<v.,P> - R . ] l = 0 (AU)

s \ It is evident that the quantities r and r (which are amplitude ratios)

are analytic functions of the parameters p , , but that the Intensity

". ratios R , R and R are noc, and therefore the calculation of their

'~ derivatives requires some special medicine in the form of a simple

:"• lemma, to wit:



Let w(z) be an analytic function of z = x + ly. Then it is

easy to show .that •

,2 . ... . . ' ' . • • . ' •

-' 2 Re<w* :£>. . (A15)
3|w
3x

the asterisk denoting the complex conjugate.

We see that . •

v) Re(r* 2 a (v) Re(r* ̂r—
sv s 8p, (A16)

The differentiations called for in Equation A16 are elementary; the

work is simplified by use of the relations

dc
(A17)

i i-i

? n
.pi .a
vie..»i u

and

We find

3r,

and

s.. dr

Hpk

3e
dc 3p,

de

dc

3 C - . ,
3p .roo

e - 2 sincos 9
Z (c cos .$'+.

cos
Z

1

3e _1_
5"lk = °k

3c
3P

-iv

2k V

3e
3p3k

(Z + cos

2v

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A2A)



f.

where we have written, for short,

V! n

.r t;

rl
!»

(A25)

Equations A16 through A25 suggest clearly the few lines of Fortran coding

needed to compute the derivatives which occur in Equation A1A. If the

coding is systematically organized, the machine time needed to compute

all the required derivatives is not great in comparison to the computa-

tion of R(v,P) itself.

The next question to be discussed is the. numerical method used for

solving the set of simultaneous equations of the type of Equation A14.

In the past, we have used Gauss-Seidel iteration with over-relaxation,

solving the individual equations by Newton's method. However, we were

plagued with frequent divergences, lines whose resonance frequencies

wandered excessively, lines coalescing with neighbors, and so on.
19

Others have used the method of steepest descent at first, followed by

Newton's method as a final phase. The objection to the descent method,

perhaps only philosophical, is that the distance traveled in the steepest

direction must at the same time have conflicting units ascribed to it.

To put it another way, if the units in which the problem is stated are

changed, the sequence of steps in the descent process will suffer a

change which is of a substantial nature.

It is also preferable, in automatic computation, to use a unified

procedure rather than a sequence of two or more procedures, which entails

the decision of when to move from one phase to the next to be made, as

well as cht chore of extra coding.

In our recent work, reported on here, we have employed a different

technique which is a hybrid between Newton's method and descent methods.

What we do is to calculate a certain approximation 6P to the correction

to all the parameters P as prescribed by Newton's method but then make

only the correction c 6P, where c is a scalar selected to minimize the

residual. In the usual form of Newton's method, a set of simultaneous

linear equations must be solved or, equivalently, a matrix must be



inverted. When the starting approximation is poor, the matrix may bf

singular or nearly so, and difficulties in solving the equations and

instabilities are commonly experienced. In our method, we take a matrix

which is an approximation to the matrix occurring in Newton's method but

which is positive definite, so that inversion is always possible.

To elucidate the method mathematically we will eliminate the double

subscripts v and k used hitherto to distinguish the parameters by setting

P. = P . (A26)

with i = 0 for v «= k = 0

I " 3(k - 1) + p for u, k

Using this notation we may write the simultaneous equations to be

solved (Equation A14) in the form

Z [R(v.,P) - RJ 3R<V.1 'P) = o <A27>

Now suppose that we have an approximation P to the set of parameters P.

We substitute P for P in Equation A27; of course, the right-hand side

will not be zero but some other quantity, say 6T.. Thus

I [R(v ,P ) -R ]
j J ° J 3p

6T (A28)

Now let the error in P be 6P. We substitute rlie expression
o

P =• P - SP (A29)
o

into Equation A27 and expand In power series, keeping only the first ->rder

terras, to find

.3R(V.P0)
 3R^ 'Po) + [R(v P )-R ] 52R(v,1.P

J o J dp. op,AJ On »P,

i n
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Equation A30 represents a set of linear simultaneous equations to be

solved for the errors 6p and is the mathematical expression of Newton's
A

method. In our procedure we drop the second teis;
2

[R(v,,P ) - R.] 3 R<vj'po) in the coefficient of 6p. for two3 0 J aP aP *
reasons.

First of all, when P is close to P, the theoretical spectrum should be

close to the measured spectrum, so the quantity [R(v.,P ) - R ] 6p. is
3 o J A

second order. In the second place, the matrix whose elements are

? - •?-. ° - V ' ° is positive definite and symmetric, and therefore
J 3pt 3px

its inverse is known to exist and is likely to be easy to compute. There-

fore we set up and solve the equations

3R(Vj.P0)
6T,, (A31)

Having found the elements 6p of the set 6P from Equation A31, we next
A

find the scalar c which minimizes the residual

T(c) = E[R(v ,PQ - c6P) - R ]
2 (A32)

We do this simply by tabulating T(c) at a few well chosen values of c

and finding the minimum of s..i interpolating parabola. Once the new

approximation P - c6P is found the process is repeated until the

residual converges to some irreducible value, whereupon the last approxima-

tion to the set of parameters is declared to be the required set.

Statistical Analysis

Once the Lorentz line parameters themselves are determined it is

desirable to estimate their standard deviations to get an idea of the

errors that may be in the parameters determined by the least squares

fit. To do this we make the assumption that the difference between the

theoretical and measured spectra is entirely unsystematic and due only to

noise which is uniform over the spectrum. This may be well warranted

in some cases but it is not entirely -alld in others, and therefore thr

M- 5.-11•«• i I'
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results of the statistical analysis may not be quantitatively correct.

The statistical estimates of error should, however, serve to indicate

which parameters are better or worse determined than others in the sane

spectrum. In any case, this basic assumption should always be borne

in mind when one is interpreting the estimates of standard deviations.

In order to calculate the standard deviations of the Lorentz line

parameters we imagine the measurements R to be in error by amounts

6R and calculate the change, 6P, that this causes in the parameters

that result from the least squares fit. Evidently the equations to be

satisfied are

? [R(v P + 6P) - R - 6R ] .1' = - - 0 (A33)
J J J J ap^

Now we expand Equation A33 in the manner used to expand Equation A28 and

again neglect all but the lowest order terms to obtain a set of simul-

taneous linear equations for the errors 6p in the parameters:
A

P) 3R(vj.P) 6 . s 3R(vj.P) fiR (A34)A

Equation A34 may be written in matri;; notation as

UUT 6P = U6R (A35)

X ... where U is a matrix whose elements are

3R(v.,.p)

: "j

i. 6R is the vector whose elements are 6R.
the superscript T denotes transpose.

T'• The matrix VJU is the symmetric, positive definite matrix encountered

previously in the discussion of the descent method.
" *.

i' Clearly, we cannot solve Equation A35 for 6P since we have no way of

knowing 6R, but we can obtain statistical information about 6P. To start

»t with we take the expectations (symbolized by the angle brackets) of both

-
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I

.sides of Equation A35: .

UUT <6P> = U <6R> (A3b)

Obviously, if <6R> = 0, as we have a right to assume it is, then it

follows that (6P> = 0. In other words, if the measurements are unbiased,

then the estimates of the parameters are unbiased. To get a second

moment we multiply both sides of Equation A35 by their transposes and

take the expectation of the result. We may write

UU <6P6P > UU = U <6R6R > U (A37)

We assume now that the .measurement errors are Independent and all have the
• ' - - *T» . •

same standard deviation o. Thus the matrix ^6R6R )> is a diagonal
2 • ' ' • ' ' • •

matrix with diagonal elements all equal to o and Equation A37 becomes

. . UUT <6P6PT> UUT = UUT o2 (A38)

whence the matrix of variances and covariances of .the Lorentz line param-

eters is seen to be • . .

<6P6PT> T -1 2
(UU ) o (A39)

An estimate of o may be obtained from the residual after the least squares

fit. We take

E[R(v ,P) - Rj*
a = J = J . . .

N - 3m - 1 . ' '

where N is the number of measurements made .

m is the number of Lorentz lines used for fitting

(A40)

: /i i ;-..- , • • ' . <
' -t U

Finally it is to be noted that the variances of the classical

oscillator parameters E , S, , Y,, pnd vi, are related to the elements of the
O K K K - . . - - -

variance matrix computed according to Equation A39 by the relations

2> (AA1)

• r- i

f (n
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