AN APPROXIMATE CLOSED-FORM SOLUTION FOR LEAD-LAG DAMPING OF ROTOR BLADES IN HOVER

David A. Peters

Ames Research Center
and
U. S. Army Air Mobility R&D Laboratory
Moffett Field, Calif. 94035

April 1975
AN APPROXIMATE CLOSED-FORM SOLUTION FOR LEAD-LAG DAMPING OF ROTOR BLADES IN HOVER

David A. Peters

Ames Research Center and
U.S. Army Air Mobility R&D Laboratory
Moffett Field, Calif., 94035

National Aeronautics and Space Administration
Washington, D.C. 20546

Simple stability methods are used to derive an approximate, closed-form expression for the lead-lag damping of rotor blades in hover. Destabilizing terms are shown to be a result of two dynamic mechanisms. First, the destabilizing aerodynamic forces that can occur when blade lift is higher than a critical value are maximized when the blade motion is in a straight line equidistant from the blade chord and the average direction of the air flow velocity. This condition occurs when the Coriolis terms vanish and when the elastic coupling terms align the blade motion with this least stable direction. Second, the nonconservative stiffness terms that result from pitch-flap or pitch-lag coupling can add or subtract energy from the system depending upon whether the motion of the blade tip is clockwise or counterclockwise.
AN APPROXIMATE CLOSED-FORM SOLUTION FOR LEAD-LAG
DAMPING OF ROTOR BLADES IN HOVER

David A. Peters

U. S. Army Air Mobility R&D Laboratory
and
Ames Research Center

SUMMARY

Simple stability methods are used to derive an approximate, closed-form expression for the lead-lag damping of rotor blades in hover. Destabilizing terms are shown to be a result of two dynamic mechanisms. First, the destabilizing aerodynamic forces that can occur when blade lift is higher than a critical value are maximized when the blade motion is in a straight line equi-
distant from the blade chord and the average direction of the air flow veloc-
ity. This condition occurs when the Coriolis terms vanish and when the
elastic coupling terms align the blade motion with this least stable direction.
Second, the nonconservative stiffness terms that result from pitch-flap or
pitch-lag coupling can add or subtract energy from the system depending upon
whether the motion of the blade tip is clockwise or counterclockwise.

INTRODUCTION

Flap-lag stability is an important fundamental basis for the study of
hingeless rotorcraft dynamics. Although a simple flap-lag analysis is not ade-
quate for the absolute determination of blade stability, it is invaluable for
giving insight into the basic physical mechanisms that underly the more com-
plex dynamic phenomena. Reference 1 described the flap-lag dynamics of a
hingeless rotor in hover by using the simplified model of a rigid blade with
root spring restraint. Numerical results provided a systematic study of the:
effect of blade parameters on rotor stability, and applications of Routh's
criteria identified stability boundaries for some specialized conditions. The
present paper studies this same problem using different methods that provide
additional explanations of the system behavior. These methods permit the
development of an approximate, closed-form expression for the lead-lag
damping. In addition, the methods illustrate the specific contributions of
various dynamic mechanisms to the blade damping.
SYMBOLS

- a lift curve slope per radian
- C_{d_0} profile drag coefficient
- $[C]$ matrix coefficients of $\dot{\beta}, \zeta$ terms
- $[D]$ damping matrix, $\frac{1}{2} [C + C^T]$
- F_1, F_2 dimensionless elastic forces
- $[G]$ Coriolis matrix, $\frac{1}{2} [C - C^T]$
- $i \sqrt{-1}$
- $[K]$ stiffness matrix
- μ rotating flapping frequency divided by Ω
- \bar{p} equivalent flapping frequency, $\sqrt{p^2 - \frac{Y}{8} \theta_\beta}$
- R elastic coupling parameter
- s Laplace transform variable, rad$^{-1}$
- x_1, x_2 flap and lead-lag directions
- β perturbation flapping angle, positive up, rad
- β_0 equilibrium flapping angle, rad
- β_{pc} precone angle, rad
- γ Lock number
- δ angle between lead-lag direction and the principal axis of blade motion, rad
- δ_m angle between lead-lag direction and the direction of the natural vibrations of the rotating blade in a vacuum, $\frac{\Delta}{\omega_\zeta^2 - p^2}$, rad
- δ_m' modified δ_m including pitch-flap and pitch-lag coupling, $\frac{\Delta - \frac{1}{8} \theta_\zeta}{\omega_\zeta^2 - \bar{p}^2}$
- δ_θ perturbation pitch angle, $\theta_\beta \beta + \theta_\zeta \zeta$, rad
- Λ elastic coupling term
\(\Delta \theta \)
partial derivative of \(\Delta \), \(\frac{\partial \Delta}{\partial \theta} \)

\(\epsilon \)
perturbation of lead-lag eigenvalue, rad\(^{-1} \)

\(\zeta \)
perturbation lead-lag angle, positive forward, rad

\(\zeta_0 \)
equilibrium lead-lag angle, rad

\(\eta \)
real portion of \(\epsilon \), rad\(^{-1} \)

\(\theta \)
equilibrium pitch angle, \(\theta_0 + \theta_B (\beta_0 - \beta_{pc}) \), rad

\(\theta_0 \)
collective pitch, rad

\(\theta_B, \theta_\zeta \)
pitch-flap and pitch-lag coupling

\(\tilde{\theta}_B \)
coupling due to \(\theta_B \), \(\left[\phi + \frac{8}{Y} (\beta_0 - \beta_{pc}) \Delta \theta \right] \theta_B \)

\(\lambda \)
eigenvalue of \([D]\)

\(\begin{bmatrix} \lambda_B \\ \theta_\zeta \end{bmatrix} \)
eigenvector of \([D]\)

\(\rho \)
thickness ratio of ellipse of motion (positive for clockwise motion)

\(\phi \)
average inflow angle (A of ref. 1), rad

\(\phi_B \)
flapping component of lead-lag mode shape when lead-lag component = 1, \(\phi_B = \delta + i\rho \)

\(\omega_\zeta \)
lead-lag frequency divided by \(\Omega \)

\(\Omega \)
rotor rotational speed, rad\(^{-1} \)

\((\cdot) \)
\(\frac{d}{d(\Omega t)} \)

\((\cdot)^* \)
complex conjugate
The linearized flap-lag equations of motion, as derived in reference 1, may be written in the form

\[
\begin{pmatrix}
\ddot{\beta} \\
\ddot{\zeta}
\end{pmatrix} + \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \begin{pmatrix} \dot{\beta} \\
\dot{\zeta}
\end{pmatrix} + \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{pmatrix} \beta \\
\zeta
\end{pmatrix} - \begin{pmatrix} 0 \\
0
\end{pmatrix}
\] (1)

where

\[
C_{11} = \frac{Y}{8}
\]
\[
C_{12} = 2\beta_o - \frac{Y}{8} (2\theta - \phi)
\]
\[
C_{21} = -2\beta_o + \frac{Y}{8} (\theta - 2\phi)
\]
\[
C_{22} = \frac{Y}{8} \left(2 \frac{C_{d_0}}{a} + \theta \phi \right)
\]
\[
K_{11} = p^2 - \frac{Y}{8} \theta \beta \equiv \bar{p}^2
\]
\[
K_{12} = \Delta - \frac{Y}{8} \theta \zeta
\]
\[
K_{21} = \Delta + \left[\frac{Y}{8} \phi + (\beta_o - \beta_{pc})\Delta_\beta \right] \theta \beta \equiv \Delta + \frac{Y}{8} \Delta_\beta
\]
\[
K_{22} = \omega_\zeta^2
\]

and \(\beta_o, \sqrt{\zeta_o}, \theta, \phi, \theta_\zeta, \Delta_\beta, \sqrt{C_{d_0}/a} \) are considered small quantities whose products may be neglected with respect to unity. Equation (1) also contains a contribution from the homogeneous terms of reference 1, \((\beta_o - \beta_{pc})\Delta_\beta \theta \beta\) in \(K_{21}\), that results from the effect of pitch-flap coupling on the steady elastic pitch angle.

From reference 1, it is known that the least stable mode of motion is predominantly lead-lag. It is also known that the frequency of the motion is near \(\omega_\zeta \) and that the damping is very small. This allows a perturbation solution for equation (1) to be derived. The perturbation solution is obtained by applying the following perturbation expressions to the Laplace transformed equation (1).
where ε and ϕ_β are considered small quantities.

\[
\begin{bmatrix}
K_{11} - K_{22} & K_{12} \\
+iC_{11}/\sqrt{K_{22}} & +iC_{12}/\sqrt{K_{22}} \\
-K_{21} & iC_{22}/\sqrt{K_{22}} \\
+iC_{21}/\sqrt{K_{22}} & +2i\varepsilon/\sqrt{K_{22}}
\end{bmatrix}
\begin{bmatrix}
\phi_\beta \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

The solution of equation (3) is simply

\[
\varepsilon = -\frac{C_{22}}{2} + \frac{[K_{12} + iC_{12}/\sqrt{K_{22}}][K_{21}i - C_{21}/\sqrt{K_{22}}]}{2\sqrt{K_{22}}(K_{22} - K_{11} - iC_{11}/\sqrt{K_{22}})}
\]

\[
\phi_\beta = \frac{K_{12} + iC_{12}/\sqrt{K_{22}}}{(K_{22} - K_{11}) - iC_{11}/\sqrt{K_{22}}}
\]

Equations (4a) and (4b) give the change in frequency $\text{Im}(\varepsilon)$, damping $\text{Re}(\varepsilon)$, and mode shape θ_β due to the presence of flap-lag coupling. They imply that transient motion of the blade tip is a slowly decaying or growing ellipse. Although equation (4a) can be directly applied to obtain an approximate expression for lead-lag damping, the identical result can be obtained by applying simple stability methods to equation (1). This latter method has the advantage of describing the specific contributions of various dynamic mechanisms to the blade damping and will be used in this paper.

NEGATIVE AERODYNAMIC DAMPING

The first stability method to be considered is based on the Kelvin-Tait-Chetaev theorem, reference 2. This theorem applies to equation (1) when no pitch-flap or pitch-lag coupling is present ($\theta_\beta = \theta_\gamma = 0$) and when the matrix $[C]$ is decomposed into symmetric and antisymmetric parts.

\[
[D] \equiv \frac{1}{2} [C + C^T] \text{ damping matrix}
\]
The theorem states that if \([D]\) has all positive eigenvalues, then the system is stable if, and only if, \([K]\) has all positive eigenvalues. Stated another way, the theorem implies that if \([K]\) has all positive eigenvalues, then a necessary, but not sufficient, condition for instability is that \([D]\) have a negative eigenvalue. Thus, for a hingeless rotor without pitch coupling, for which \([K]\) is always positive definite, an instability can occur only if \([D]\) has a negative eigenvalue. The Coriolis and stiffness terms are conservative and can provide no positive or negative damping of their own.

Therefore, the stability of equation (1) is determined by the eigenvalues of the damping matrix

\[
[D] = \frac{\gamma}{8} \begin{bmatrix}
1 & -\frac{\theta + \phi}{2} \\
-\frac{\theta + \phi}{2} & \theta \phi + 2 \frac{C_{\text{do}}}{a}
\end{bmatrix}
\]

(5)

One can obtain approximate values for the eigenvalues of \([D]\) by utilizing the fact that \(\phi, \theta, C_{\text{do}}/a\) are small quantities. The eigenvalue \(\lambda\) and eigenvector \(\langle \lambda_\beta, \lambda_\zeta \rangle\) are given from

\[
\begin{bmatrix}
\frac{\gamma}{8} - \lambda & -\frac{\gamma}{16} (\theta + \phi) \\
-\frac{\gamma}{16} (\theta + \phi) & \frac{\gamma}{8} \left(\theta \phi + 2 \frac{C_{\text{do}}}{a} - \lambda\right)
\end{bmatrix}
\begin{bmatrix}
\lambda_\beta \\
\lambda_\zeta
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

and are

\[
\lambda = \frac{\gamma}{8}, \quad \frac{\gamma}{8} \left[2 \frac{C_{\text{do}}}{a} - \frac{(\theta - \phi)^2}{4}\right]
\]

(6a)

\[
\begin{bmatrix}
\lambda_\beta \\
\lambda_\zeta
\end{bmatrix}
= \begin{bmatrix}
1 \\
-\frac{\theta + \phi}{2}
\end{bmatrix}
\begin{bmatrix}
\frac{\theta + \phi}{2} \\
1
\end{bmatrix}
\]

(6b)

The term \(\theta - \phi\) in the smaller lead-lag mode eigenvalue is the average blade angle of attack. Thus, the lead-lag damping decreases quadratically with the blade lift. Blade instabilities are only possible when the eigenvalue becomes negative and creates a source of negative damping. This can occur when the blade lift exceeds the critical value.
This relation was also derived in reference (1) by application of Routh's criteria.

The corresponding eigenvector of $[D]$, equation (6b), shows that this minimum value of damping occurs along an axis which is equidistant from the blade chord line and the direction of the mean air flow velocity relative to the blade. Thus, there exists an axis of minimum damping that makes an angle $(\theta + \phi)/2$ with the lead-lag direction, as shown in figure 1. Blade motions nearly aligned with this axis will be unstable when equation (7) is fulfilled, but motions deviating from this axis will be stabilized by the large flap damping that exists in the direction perpendicular to the $(\theta + \phi)/2$ axis.

Another way of looking at this phenomenon is to consider the aerodynamic forces when blade motions make an angle δ with the lead-lag direction, figure 1. Blade motion in the positive lead-lag direction with $\delta = 0$ increases the blade lift, but the lift has a component in the negative lead-lag direction. Therefore, the increased lift opposes the motion and provides damping. For blade motions with $\phi < \delta < \theta$, the lift is similarly increased by positive velocities. In this case, however, the lift has a component in the positive direction of motion and therefore adds energy to the motion providing negative damping. When $\delta > \theta$, the lift is decreased by positive lead-lag velocity and the motion is stabilized. The aerodynamic energy added to the blade is maximum when $\delta = (\theta + \phi)/2$. The fact that the minimum damping occurs along the $(\theta + \phi)/2$ axis can also be derived by calculating the work done on the blade by the aerodynamic forces and showing that this energy is maximized when $\delta = (\theta + \phi)/2$. The relation between the direction of motion and the damping (or energy dissipation) is illustrated in figure 2 where the damping coefficient in the direction of blade motion is plotted versus δ. The minimum damping (i.e., the eigenvalue) occurs at the midpoint of the destabilizing region. Flap-lag instabilities in hover are a result of this negative aerodynamic damping.

In the previous discussion, the blade was assumed to move in a straight line. The blade may actually move, however, around an elliptical path as shown in figure 3. Thus, even when the principal axis of motion is along the $(\theta + \phi)/2$ axis, blade motions can be in the flap direction near the tips of the ellipse. This flap motion will stabilize the blade by introducing flap damping into the system. Since the uncoupled flap damping $\gamma/8$ is nearly an order of magnitude larger than the uncoupled lead-lag damping, $(\gamma/8)[(2C_{d0}/a) + \theta\phi]$, flapping motion is highly stabilizing. For blade elliptical motion with thickness ratio ρ and tilted from the lead-lag plane by an angle δ, the flapping component of the mode shape is

$$\phi_\delta = \delta + i\rho$$

where δ and ρ are assumed small. The generalized damping of this mode is determined in the same manner as is the generalized mass or stiffness: the damping matrix is pre- and post-multiplied by the mode shape.
The parameter \(\eta \) is the real portion of the eigenvalue. The first bracketed term in equation (9b) is the negative damping from the portion of the motion parallel to the \((\theta + \phi)/2\) axis. The second term is the positive flap damping obtained from the portion of the motion perpendicular to the \((\theta + \phi)/2\) axis. Equation (9b) gives the quantitative effect of mode shape on lead-lag damping. Motions along the \((\theta + \phi)/2\) axis are least stable, and deviations from this axis (either in angle or ellipse thickness ratio) stabilize the motion by utilizing the large flap damping.

ELASTIC COUPLING

The previous discussion implies that coupling between flap and lead-lag motion will be destabilizing if it tends to align blade motions with the \((\theta + \phi)/2\) axis. One effect that can produce such a coupling is the amount of elastic (structural) coupling between flap and lead-lag. This effect is represented mathematically by the off-diagonal terms of the stiffness matrix. For small pitch angles, the stiffness matrix of the spring model in reference 1 may be approximated by

\[
[K] = \begin{bmatrix}
p^2 & \Delta \\
\Delta & \omega_\zeta^2
\end{bmatrix}
\]

where

\[
\Delta = R\theta(\omega_\zeta^2 - p^2 + 1)
\]

\[
0 \leq R \leq 1
\]

and \(R \) is an elastic coupling parameter. For this discussion \(\Delta \) need not be restricted to this form, and in a later section the effects of pitch-flap and pitch-lag coupling on the stiffness matrix will be considered.

Because of the elastic coupling \(\Delta \), the natural vibrations for the blade rotating in a vacuum will be inclined with respect to the lead-lag plane by an angle \(\delta_m \), as shown in figure 4. For small \(\Delta \) and \(\omega_\zeta \neq p \), this angle is given by

\[
\delta_m = \frac{\Delta}{\omega_\zeta^2 - p^2}
\]
The inclination of the mode in a vacuum δ_m is not generally equivalent to the inclination of the mode including aerodynamics δ. For the special case of $\delta_m = (\theta + \phi)/2$ and $[G] = 0$, however, aerodynamic coupling is eliminated and δ does equal δ_m. Thus, the least stable condition occurs when δ_m are aligned with the $(\theta + \phi)/2$ axis.

$$\Delta_{\text{least stable}} = \frac{(\omega_\zeta^2 - p^2)(\theta + \phi)}{2} \quad (13)$$

For example, the least stable condition for the approximation in equation (11) is

$$R_{\text{least stable}} = \frac{\left(1 + \frac{\phi}{\theta}\right)(\omega_\zeta^2 - p^2)}{2(\omega_\zeta^2 - p^2 + 1)} \quad (14)$$

A similar result that was obtained in reference 1 from Routh's criteria, is that the smallest $(\theta - \phi)$ for instability occurs when equation (14) is satisfied.

A quantitative expression for the relation between elastic coupling and blade damping can be obtained by applying the mode shape component ϕ_B, equation (4b), to the damping expression in equation (9b). Assuming again that $[G] = 0$, ϕ_B is given by

$$\phi_B = \delta + ip = \theta + \phi + \frac{\left[\Delta - \frac{\theta + \phi}{2}(\omega_\zeta^2 - p^2)\right]}{\left[(\omega_\zeta^2 - p^2)^2 + \left(\frac{\gamma}{\delta} \omega_\zeta\right)^2\right]} \left[(\omega_\zeta^2 - p^2) + i \frac{\gamma}{\delta} \omega_\zeta\right] \quad (15)$$

Equation (15) shows that an inclination of the modal axis δ_m with respect to the $(\theta + \phi)/2$ axis results in elliptical blade motions. An expression for the lead-lag damping can be obtained by substituting equation (15) into equation (9b).

$$-\frac{16}{\gamma} \eta = 2 \frac{C_{d_0}}{a} \left(\theta - \phi\right)^2 + \frac{\left[\Delta - \frac{\theta + \phi}{2}(\omega_\zeta^2 - p^2)\right]^2}{(\omega_\zeta^2 - p^2)^2 + \left(\frac{\gamma}{\delta} \omega_\zeta\right)^2} \quad (16)$$

Equation (16) contains two components of damping: (1) the minimal possible damping $2(C_{d_0}/a) - (\theta - \phi)^2/4$, and (2) the stabilizing effect of separating the δ_m axis and the $(\theta + \phi)/2$ axis. Equation (16) also shows that above or below certain critical values of Δ (or δ_m) no instability is possible. The blade motion is always stable when

$$\left|\Delta - \frac{\theta + \phi}{2}\right| > \frac{\theta - \phi}{2} \sqrt{1 + \left(\frac{\gamma}{\delta} \frac{\omega_\zeta}{\omega_\zeta^2 - p^2}\right)^2}$$

9
This is illustrated in figure 5 which indicates regions of possible instability when \(p = \sqrt{4/3}, \gamma = 8 \). Instabilities are only possible when the modal axis \(\delta_m \) is sufficiently close to the \((\theta + \phi)/2\) axis, and the least stable condition occurs when \(\delta_m = (\theta + \phi)/2 \). At \(\omega_c = p \), the definition for \(\delta_m \) breaks down and instabilities appear to be possible at all values of \(\delta_m \). In terms of \(\Delta \) at \(\omega_c = p \), however, instabilities are only possible when

\[
|\Delta| < \frac{\gamma}{16} (\theta - \phi) \omega_c
\]

The least stable condition occurs when \(\Delta = 0 \).

Also shown in figure 5 are lines of constant \(R \) in the \(\delta_m, \omega_c^2 - p^2 \) plane. For \(\phi/\theta < R < 1 \), instabilities can only occur when \(\omega_c \) is above a critical value. For \(R \) values in the upper half of this region, \([1 + (\phi/\theta)]/2 < R < 1\), the least stable condition \(\delta_m = (\theta + \phi)/2 \) is never obtained; but in the lower half of the region, \(\phi/\theta < R < [1 + (\phi/\theta)]/2 \), the least stable condition is obtained for some finite value of \(\omega_c \). For \(R < \phi/\theta \), instabilities can only occur when \(\omega_c \) lies between upper and lower critical values.

When \(\theta + \phi \) and \(\theta - \phi \) are positive, which is the case for hover or axial flight, instabilities are not possible for sufficiently soft inplane rotors with \(0 < R < 1 \). Blade motion is always stable when

\[
p^2 - \omega_c^2 > \frac{\gamma}{16} \omega_c \frac{\theta - \phi}{\sqrt{\phi}}
\]

Thus, most physically realistic soft inplane configurations are stable in hover. When \(\theta + \phi \) is negative, however, such as is the case in autorotation conditions, the stability boundaries in figure 5 will move down with respect to the constant \(R \) contours; and potential instabilities can occur for some realistic soft inplane configurations, \(\omega_c < p \).

CORIOLIS COUPLING

Another effect that can couple flap and lead-lag motion is the Coriolis matrix \([G]\). From equation (1), this matrix is given by

\[
[G] = \begin{bmatrix}
0 & 2\theta_0 - \frac{3\gamma}{16} (\theta - \phi) \\
-2\theta_0 + \frac{3\gamma}{16} (\theta - \phi) & 0
\end{bmatrix}
\]

(17)
where B_0 is the equilibrium coning angle. To the order considered in this paper, B_0 is

$$B_0 = \frac{p^2 - 1}{p^2} B_{pc} + \frac{\gamma}{8p^2} (\theta - \phi)$$

(18)

where B_{pc} is the blade precone. The B_0 portion of $[G]$ is the gyroscopic Coriolis term due to rotational effects. The $(3\gamma/16)(\theta - \phi)$ portion of $[G]$ is an apparent Coriolis term due to the conservative portion of the aerodynamic coupling.

The matrix $[G]$ is antisymmetric and is, therefore, unaffected by coordinate transformations. Thus, $[G]$ will alter the response even when the model axis is aligned with the $(\theta + \phi)/2$ axis. In terms of the instability mechanism described earlier, the blade motion is least stable when $[G] = 0$ and the coupling is minimized. From equations (17) and (18), this condition occurs when

$$B_0 = \frac{3}{32} \gamma (\theta - \phi)$$

$$B_{pc} = \frac{\gamma}{8} (\theta - \phi) \frac{3p^2 - 4}{4(p^2 - 1)}$$

(19)

For $B_{pc} = 0$, the minimum damping condition becomes $p = \sqrt{4/3}$ for all values of $(\theta - \phi)$. This same result was obtained in reference 1 using a different method. Thus, the least stable condition occurs when all Coriolis coupling is eliminated by the equilibrium coning.

The quantitative increase in damping when B_{pc} is not given by equation (19) can be found from the contribution of $[G]$ to the mode shape ϕ_B, equation (4b).

$$\phi_B \bigg|_{due to \ [G]} = \omega_c \left[\frac{2B_0 - \frac{3\gamma}{16} (\theta - \phi)}{(\omega_c^2 - p^2)^2 + \left(\frac{\gamma}{8} \omega_c\right)^2} \left[- \frac{\gamma}{8} \omega_c^2 + i(\omega_c^2 - p^2) \right] \right]$$

(20)

The contribution to ϕ_B given in equation (20) may be added directly to the contribution in equation (15) because B_0, θ, and ϕ are small quantities. Substitution of the combined mode into equation (9b) gives the contribution of the Coriolis terms to the blade damping.

$$- \frac{16}{\gamma} \eta \Bigg|_{due to \ [G]} = \frac{\omega_c^2 \left[2B_0 - \frac{3\gamma}{16} (\theta - \phi)\right]^2}{(\omega_c^2 - p^2)^2 + \left(\frac{\gamma}{8} \omega_c\right)^2}$$

(21)
Of course this damping is only indirectly due to the conservative Coriolis forces and is a direct result of the flap damping. An interesting fact is that the damping due to \([G]\) and the damping due to \([K]\) are uncoupled. This is because the mode shape contributions of \([K]\) and \([G]\) are orthogonal. Each effect provides positive damping independent of the other, and neither of the terms can provide negative damping to cancel the effect of the other.

As in the case with elastic coupling, there is a range of Coriolis coupling for which the mode shape is so far from the \((\theta + \phi)/2\) axis that no instability is possible. From equations (16) and (21), this condition is

\[
\left| \frac{16}{Y} B_0 - \frac{3}{2} (\theta - \phi) \right| > \frac{\theta - \phi}{2} \sqrt{1 + \frac{(\omega_\zeta^2 - p^2)}{(\frac{Y}{8} \omega_\zeta)^2}}
\]

(22a)

For the special cases \(\Delta = 0\) or \(\omega_\zeta = p\), a more restrictive criterion is obtained.

\[
\left| \frac{16}{Y} B_0 - \frac{3}{2} (\theta - \phi) \right| > \frac{\theta - \phi}{2}
\]

(22b)

This formula can be written in terms of \(\beta_{pc}\) and \(p^2\) from equation (18). Thus, for \(p^2 > 1\), no instability is possible for

\[
\begin{align*}
\beta_{pc} &> \frac{Y}{8} (\theta - \phi) \\
\beta_{pc} &< \frac{Y}{16} (\theta - \phi) \frac{p^2 - 2}{p^2 - 1}
\end{align*}
\]

(23)

Figure 6 shows the regions for which no instabilities are possible when \(\Delta(\omega_\zeta^2 - p^2) = 0\). Also shown is the contour of the least stable condition, equation (19). When \(\Delta(\omega_\zeta^2 - p^2) \neq 0\), the area of possible instabilities is slightly enlarged. Thus, the Coriolis matrix \([G]\) is a stabilizing influence. The least stable condition is \([G] = 0\) and, for sufficiently large \([G]\), no instabilities are possible.

The damping expression, including elastic and Coriolis coupling terms, can be written from equations (16) and (21).

\[
\eta = \frac{Y}{16} \left[\frac{2 C_d}{a} - \frac{(\theta - \phi)^2}{4} \right]
- \frac{Y}{16} \frac{(\omega_\zeta^2 - p^2)^2}{(\omega_\zeta^2 - p^2)^2 + \left(\frac{\omega_\zeta}{\frac{Y}{8} \omega_\zeta}\right)^2} \left[\frac{16}{Y} B_0 - \frac{3}{2} (\theta - \phi) \right]^2
\]

(24)
Equation (24) shows that curves of constant damping form ellipses in the
\((16/\gamma)\beta_0, \Delta/(\omega_c^2 - p^2)\) plane. For example, the family of ellipses having only
profile drag damping, \(\eta = -(\gamma/8)(C_{d0}/a)\), is illustrated in figure 7. The
thickness ratio of each ellipse in this family is \((\gamma/8)\omega_c/(\omega_c^2 - p^2)\). Every
ellipse also passes through the same four points,

\[
\frac{16}{\gamma} \beta_0 = (\theta - \phi), \quad 2(\theta - \phi)
\]

\[
\delta_m = \frac{\Delta}{\omega_c^2 - p^2} = \phi, \quad \theta
\]

and no ellipse contains any of the four shaded areas. Thus, the area outside
of the unshaded cross is always stable.

PITCH-FLAP AND PITCH-LAG COUPLING

Pitch-flap coupling \(\theta_\beta\) and pitch-lag coupling \(\theta_\zeta\) are parameters that
describe the pitching motion of the rotor blade due to flap or lead-lag
deflections.

\[
\delta \theta = \theta_\beta \delta + \theta_\zeta \zeta
\]

(25)

These parameters are defined so that positive flap (upward) and positive lead-
lag (forward) motion produce positive pitch. Their effect on the flap-lag
equations is seen in the stiffness matrix from equation (1)

\[
[K] = \begin{bmatrix}
p^2 - \frac{\gamma}{8} \theta_\beta & \Delta - \frac{\gamma}{8} \theta_\zeta \\
- \Delta & - \Delta \\
\Delta - \frac{\gamma}{8} \theta_\beta & \omega_c^2
\end{bmatrix}
\]

(26)

where \(\delta_\beta \equiv \left[\theta + (8/\gamma)(\beta_\text{pc})\Delta_0\right] \delta_\theta\). The effect of \(\theta_\beta\) on the \(K_{11}\) term is
usually treated by defining an equivalent flapping frequency

\[
\bar{p}^2 \equiv p^2 - \frac{\gamma}{8} \theta_\beta
\]

It should be noted, however, that the equilibrium formula, equation (18), is
still valid in its present form in terms of \(\bar{p}^2\) and \((\theta - \phi)\). It may be
rewritten, however, in terms of \(p^2\) and \((\theta_0 - \phi)\).
The coefficients in equation (1) must be expressed in terms of the total equilibrium pitch angle, \(\theta = \theta_o + \theta_p (\theta_o - \theta_{pc}) \). Thus, pitch-flap coupling affects the blade dynamics by changing the flapping frequency and the blade equilibrium.

Another effect of \(\theta_p \) and \(\theta_c \) is the coupling produced in the off-diagonal terms \(K_{12} \) and \(K_{21} \). First, the pitch-lag coupling \(\theta_c \) changes the mode shape by altering \(K_{12} \), equation (4b). This effect can be included in the analysis by replacing \(\Delta \) with \(\Delta - (y/8)\theta_c \) in equation (24). A second effect of \(\theta_c \) and \(\theta_p \) is that they produce an asymmetric or nonconservative stiffness matrix. The energy dissipated or added by this asymmetry can be approximated by integrating the dot product of force and distance around a closed path, figure 3. The integration yields

\[
\text{Energy dissipated} = \int (F_1 \ dx_1 + F_2 \ dx_2)
\]

\[
= \int (K_{11}x_1 \ dx_1 + K_{22}x_2 \ dx_2 + K_{12}x_2 \ dx_1 + K_{21}x_1 \ dx_2)
\]

\[
= \int [K_{11} \ d\left(\frac{1}{2} x_1^2\right) + K_{22} \ d\left(\frac{1}{2} x_2^2\right) + K_{12}(x_2 \ dx_1) + K_{21}(x_1 \ dx_2)]
\]

The energy dissipated can be evaluated from the following relations: (1) the integral around a closed contour of a perfect differential is zero, (2) the integration of \(x_1 \ dx_2 \) is the area enclosed within the contour, and (3) the integration of \(x_2 \ dx_1 \) is the negative of the enclosed area.

\[
\text{Energy dissipated} = (K_{21} - K_{12}) \ (\text{enclosed area}) \quad (27)
\]

The area is taken as positive for integration in a clockwise direction. Thus, the nonconservative or antisymmetric portion of \([K]\) may either dissipate or add energy.

For the particular case of flap-lag dynamics, the enclosed area is approximated by the area of the ellipse of motion \(\rho \pi \); and the antisymmetric stiffness term is \(K_{21} - K_{12} = (y/8)(\theta_p + \theta_c) \). Thus, the damping contribution due to the nonconservative terms is

\[
\eta_{\text{nonconservative stiffness}} = \frac{\text{Energy dissipated}}{2\pi \omega_c} = \frac{y \rho}{16 \omega_c} (\theta_p + \theta_c) \quad (28)
\]
Thus, energy is either added or dissipated depending on the sign of $\delta_B + \delta_\zeta$ and the sense of the motion ($\rho > 0$ clockwise, $\rho < 0$ counterclockwise). Taking $\Delta = \Delta - (\gamma/8)\omega_c$ in equations (24) and (4b), and adding the nonconservative stiffness contribution from equation (28), one obtains the complete expression for lead-lag damping.

$$-\frac{16}{\gamma} \eta = \left[2 \frac{C_{d0}}{a} (\frac{\theta - \phi}{2})^2 \right] \left[\frac{\Delta - \frac{\gamma}{8} (\omega_c^2 - \bar{p}^2)}{\omega_c^2 - \bar{p}^2} \right] + \omega_c^2 \left[\frac{2B_0 - \frac{3\gamma}{16} (\theta - \phi)}{\omega_c^2 - \bar{p}^2} \right]$$

$$+ \frac{\gamma}{8} (\delta_\beta - \delta_\zeta) \left[\frac{\Delta - \frac{\gamma}{8} (\omega_c^2 - \bar{p}^2)}{\omega_c^2 - \bar{p}^2} \right] + \left(\delta_\beta + \delta_\zeta \right) \left[\frac{2B_0 - \frac{3\gamma}{16} (\theta - \phi)}{\omega_c^2 - \bar{p}^2} \right] - \left(\frac{\gamma}{8} \right)^2 \delta_\beta \delta_\zeta$$

(29)

The second line of equation (29) represents the effect of pitch-flap and pitch-lag coupling on blade damping.

The effect of pitch-flap coupling is entirely due to the nonconservative terms. Thus, for clockwise motion in the x_1, x_2 plane, positive δ_β is stabilizing. Equations (15) and (20) show that the motion is clockwise when $\rho > 0$ or

$$\left(\omega_c^2 - \bar{p}^2 \right) \left[\frac{\Delta - \frac{\gamma}{8} \delta_\zeta - \frac{\theta + \phi}{2}}{\omega_c^2 - \bar{p}^2} \right] + \left(\frac{16}{\gamma} B_0 - \frac{3}{2} (\theta - \phi) \right) > 0$$

(30)

which agrees with equation (29). This effect is illustrated in figure 9. There is a straight line that divides the δ_m, $(16/\gamma)B_0$ plane into two regions in which blade motions are either clockwise or counterclockwise. Along this straight line boundary $\rho = 0$ and blade motions enclose no area. Thus, on this boundary pitch-flap coupling has no effect. Of interest is the fact that the minimum damping point with $\theta_\delta = \theta_\zeta = 0$ is on this boundary and also represents a condition unaffected by θ_ζ.

For pitch-lag coupling, there are nonconservative stiffness terms and elastic coupling terms that affect the damping. When both effects are included, the boundary between stabilizing and destabilizing regions is a straight line in the δ_m, $(16/\gamma)B_0$ plane. This effect is illustrated in figure 10 which gives the total effect of δ_ζ on blade damping except for the $\delta_\zeta \delta_\beta$ coupling effect already treated in equation (30). The boundary between the stabilizing and destabilizing regions is perpendicular to the δ_β boundary in figure 9 and passes through the same minimum damping point. Thus, at the condition of minimum damping with $\theta_\zeta = \theta_\zeta = 0$, there is no effect of θ_β or θ_ζ alone, although there is a coupling effect if θ_β and θ_ζ are included together. There are, therefore, three factors that can change the effect of
θ_B or θ_C from stabilizing to destabilizing or vice versa: (1) the sign of δ_B or δ_C, (2) the sign of $(\omega r^2 - \bar{p}^2)$, and (3) the region (i.e., half-plane) in which $(16/\gamma)\beta_0$ and δ_m (or δ_m^*) lie.

CONCLUSIONS

The following conclusions may be drawn from this analysis.

1. The destabilizing effect of aerodynamic forces that can occur when $(\theta - \phi) > 2\sqrt{2(C_d_0/a)}$ is maximum when the blade motion is in a straight line along the $(\theta + \phi)/2$ axis.

2. Coriolis and elastic coupling can move the mode shape with respect to the $(\theta + \phi)/2$ axis and thereby influence the blade stability.

3. The least stable condition occurs when the Coriolis terms are zero and when the elastic coupling terms align the rotating mode shape in a vacuum with the $(\theta + \phi)/2$ axis.

4. Pitch-lag coupling produces a change in the equivalent elastic axis, and pitch-flap and pitch-lag coupling introduce nonconservative stiffness terms that stabilize or destabilize the blade motion depending upon whether the motion is clockwise or counterclockwise.

REFERENCES

Figure 1.- Geometry of blade motion and aerodynamic force.
\[\frac{\gamma}{8} \left[2 \frac{C_{do}}{a} + \theta \phi \right] \]

AERODYNAMIC DAMPING

\[-\frac{\gamma}{8} \left[\frac{(\theta - \phi)^2}{4} - 2 \frac{C_{do}}{a} \right] \]

\(\delta \)

\((\theta + \phi)/2 \)

\((\theta + \phi) \)

Figure 2.- Aerodynamic damping coefficient for motion in \(\delta \) direction.
Figure 3.- Elliptical blade motions.

Figure 4.- Rotating mode shape in vacuum.
Figure 5. Effect of elastic coupling on regions of potentially unstable motion, $\gamma = 8$, $p = \sqrt{4/3}$. No pitch coupling.
Figure 6: Effect of Coriolis coupling when $\Delta(\omega_2^2 - p^2) = 0$. No pitch coupling.
Figure 7.- Ellipse of constant damping $\eta = -(\gamma/8)(C_{d0}/a)$, and regions of potentially unstable motion. No pitch coupling.
Figure 8.- Energy dissipated for motion around a closed contour.
\[\delta_m = \frac{\Delta - \gamma / 8 \theta_\xi}{\omega_\xi^2 - \bar{p}^2} \]

Figure 9.- Effect of pitch-flap coupling. Blade motion is destabilized in region 2 when \((\omega_\xi^2 - \bar{p}^2) \delta_\beta < 0\)
Figure 10. - Effect of pitch-lag coupling. Blade motion is destabilized in region $\{\frac{1}{2}\}$ when $(\omega_0^2 - \bar{p}^2)\theta_\zeta < 0$.