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ABSTF ACT 

In this report certain novel or advanced concepts are described 

that presently appear to have the potential for propulsion applications 

in the post-1990 era of space technology. The studies are still in 

progress; hence, only the current status of investigation is presented 

here. The topics for possible propulsion application are lasers, 

nuclear fusion, matter-antimatter annihilation, electronically excited 

helium, and energy exchange through the interaction of various fields. 
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SECTION I 

INTRODUC TION 

D. D,  Papailiou 

I t  i s  anticipated that the demand for new m o r e  sophisticataii propulsion 

schemes with capabilities substantially exceeding those of t h e  canver.tiona1 pro- 

pulsi.on systems will increase  as we extend our activit ies deeper in  space. Cur-  

r e n t  chemical propulsion sys tems being developed fo r  the space program are 

achieving close t o  the theoret ical  maximum attainable performance. T h e  tech-  

nology For so lar  e lectr ic  propulsion i s  in various stages of development, and the 

resultant systems a r e  expected to  find application well before 1990. These 

advanced technologies e x h ~ b i t  knovm limitations and will not be adequate for 

many of the m o r e  amkitions miss<ons. 

The gecera: t>!%ective of this effort is to generate new propulsion con- 

cepts a s  well as tlr: investigate those a l ready existing, the common charac ter i s t ic  

of these concepts br;ing the i r  high potential for application in propulsion in the 

post-1990 era of space exploration. * 
One of the directions to follow in developing such schemes is t o  investi-  

ga te  the possibility of using energy sources of known capability for releasing 

l a r g e  amounts of energy as compared to the chemical propellants used currently.  

Along this l ine,  work continues in the fields of nuclear  fission and fusion, l a s e r s ,  

metastable  and radical species ,  and matter-ant imatter  annihilation. However, 

an equally important direction, although perhaps m o r e  difficult to pursue, i s  to 

exploit the energy resources  existing in space and planetary atmospheres .  In  

space  and the vicinity of planets, energy i s  s tored in the form of various fields 

such as  gravitational, magnetic, e lectr ic ,  etc., o r  in  elementary ?article 

concentrations. The major prohibitive factor in using th i s  energy  is i t s  low- 

density level. 

.I. w 

The report  studies form part of the activit ies sponsored b y  NASA on this sub-  
j ect  under the "New Horizoos" program for propclsion. 
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The studies to be discussed a r e  s t i l l  in  progress ;  hence, the information 

presented represents  the cur rent  status of the investigation. The topics included 

h e r e  are  l asers ,  nuclear  fusion, matter-ant imatter  annihilation, metastables 

and r ad icah ,  and energy exchange through t h e  interaction of various f ields.  The 

scope adopted in this investigation varies  with each subject. The factors con- 

s ide red  a re :  (a) the present s ta te  of investigation of each concept, and (b) the 

objective and direction chosen in pursuing the  investigation. 

Although a large number of publications on j.asers and related subjects 

appeared in the l i te ra ture  during the past decade, only a few a r e  devoted to 

l a s e r  propulsion, There  is  a tendency ir, these publications to oversimplify and 

to focus attention on a limited narnbzi- cE dspects of the problem. This i s  pe r -  

haps due to the lack of dSta in rn..ny related cr i t ical  a reas .  This shortcoming 

becomes crucial  hen an attempt is mzdc :'? evaluate some of the proposed con- 

cepts  and to conciuct comparative studirt. among them or  with other forms of 

advanced propulsion, 

One of the  objectives of the work on l a s e r s  described in Section 11 was 

to  f o r m  a f r a m e  of r,?ference fo r  a subsequent evaluation of various l a se r  pro- 

pulsion concepts. As a resul t  of this effort a comparative study of solar  e lec-  

t r i c  ve r sus  i a se r  e lectr ic  propulsion is current ly in progress .  Section 111 is a 

summary  of work on the problems of tracking and pointing. I t  also discusses  

some  of the li, xitations inherent to particular l a se r  configurations. In this work, 

two particular sys tems have been selected and studied, corresponding t o  l a s e r  

beam wavelengths of 0.4 and 10 mm, One of the conclusions obtained in this 

study i s  tnat these configurations cannot compete with solar  energy for inter-  

plsnetary flights. However, l a s e r  systems with different character is t ics  may 

prove to be capa'tle of competing with solar  radiation. The analysis of such 

sys t ems  in t e r m s  of optics, energy conversion, wavelength (ultraviolet o r  

shor t e r  wavelengths) and cither parameterc ,  should probably be the subject of 

future studies. 

There a r e  two lactors  which make the u s e  of matter-antimatter annihila- 

tion energy at t ract ive for propulsion applications - namely, the extremely high 

r a t e s  of energy released during matter-ant imatter  annihilation processes  and 

the "clean" products of the reactions involved, f rom the point of view of radio- 

act ive contamination. The re leased  energy is two o rde r s  of magnitude higher 
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than that of a typical fusion, and it i s  close to the upper limit of energy 

production as defined by the Einstein's mass-energy relation. However, severe 

problems associated with antimatter production and storage place the current  

state of this  technology a t  the conceptual level and project its possible implernen 

tation in propulsion beyond the year 2000 A. D. Since the existing work related 

to the use of matter-antimatter z<.?nihilation energy in propulsion is minimal, 

an attempt was  made to f i r s t  identify and discuss problem arears, based on 

existing information and then to develop a plan for  a systematic investigation of 

the recognized problems. The results of this effort, which are discussed in 

Section IV, will  form the frame of reference for future research toward evalu- 

ating the concept, 

Research on electronically excited solid helium in relation to the use 

of helium metastable species for propulsion application is reported in Section V. 

Several concepts have been proposed ir the past decades for the utiliza- 

tion of energy available in nature for propulsion applications. Research cog- 

ducted here consists of a search for energy exchange mechanism which, in 

principle, would allow transfer  of energy from energy sources in s race  into a 

working scheme onboard the spacecraft. A concept is discussed a l ~ n g  this line 

in Section VI that pertains to the interaction of a fluctuating magnetic field with 

an electrically conducting fluid In turbulent motion aboard the spacecraft. Also, 

the conditions a r e  examined for the complete annihilation of the magnetic field 

and the t ransfer  of its energy to t he  fluid in  the form of Joule heat. ?'.:is con- 

cept i s  presently in a conceptual stage. However, i f  the identified problem of 

estimated long characteristic decay times of the magnetic field as compared to  

the interaction time can be sclved, this scheme i s  relatively f ree  from the tech- 

nical difficulties associated with the development of other concepts. Therefore, 
* 

i t s  f;yeptud kpplication, a t  leas? for certain missions, may not be in the distant 

future. 

In Section IT an analysis is  presented of the  state of the art and prob- 

lems involved in the application of nuclear fusion in propulsion, This work is 

based on information available in t he  open literature. In this study the rasults 

of research for ground applications have been taken as a basis for examining 

the capabilities of the concept and the anticipated problems for its implementa- 

tion in propulsion. 
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The evaluation of the concepts with high potential for propulsion i s  

presently based on two criteria - namely, their state of readiness and the 

energy-releasing capabilities translated into specific impulse numbers. How- 

ever, none of the concepts discussed in this work has reached a state of develo3- 

ment that allows a complete evaluation of either their potentials or al l  existing 

problems that might become evident in subsequent stages of development. It is, 

therefore, possible that with continuing research in these fields the present 

evaluation might change in the future, A positive aspect of this research activity 

is the high payoff potential in propulsion and in other fields of interest, such as 

energy production. 
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SECTION I1 

LASER PROPULSION - CONCEPTS AND PROBLEMS 

E. J. Roschke 

A. INTRODUCTION 

A survey on laser  propulsion and related subjects is being conducted a s  

part of the "New Horizonsu program. This survey will include reviews of 

various concepts that have been proposed for  laser  propulsion, laser devices, 

power transmission, energy conversion, and applications. As such, there will 

be no independent analyses perfcrmed herein. The purposes of this survey a r e  

to (1) identify the most important problems attendant on the various modes of 

l a se r  propulsion, (2) identify and assess  those applications that appear 'in have 

the greatest  promise, (3) identify areas  of further research  and study interest,  

and (4) document pertinent references. 

B. REVIEW OF CONCEPTS FOR LASER PROPULSION 

This review will provide the historical perspective and overview neces - 
sary to achieve the goals s e t  forth. A review of this type can be organized 

along several  lines: (1) the concepts themselves, i. e. , the various modes of 

l a se r  propulsion, (2) mission objective, c ,  g, , launch to or3it ,  orbi t / intra-  

orbital, escape, translunar, interplanetary, interstel lar ,  etc, , or (3) applica- 

tion, e. g., manned/unmanned, scientific, auxiliary function, power transmission, 

etc. 1t is judged simpler to begin by reviewing the concepts themselves, 

because these often dictate the missions or  applications anyway. 

At the outset i t  is important to question the justification for any potential 

l a se r  propulsion systetr~s.  If feasibility can be demonstrated, the overriding 
,. . 

question becomes one of economics. That is, the laser  propulsion system 

should offer the capability of la rger  payloads a t  a lower specific cost, or offer 

the capability of accomplishing missions that can be achieved i n  no other way. 
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There  are ,  however, other considerations such as  reliability, o r  mission 

duration. F o r  example, i f  i t  became imperative i n  the future that a manned 

mission to the outer p lane t s  (o r  an interstel lar  mission) be accomplished in 

a reasonable timy frame, l a s e r  propulsion might be acceptable despite enormous 

financial and resource costs  i f  other forms of propulsion such a s  photon, mat ter /  

antimatter,  etc. ,  prove impossible. Nevertheless, the climate of the present 

t imes  is such that economics probably will remain the deciding factor for a 

long time to come. 

It is convenient to divide l a s e r  propulsion systems into two categor'ies: 

those in which impinging l a s e r  energy is utilized directly, and  those that utilize 

the energy a s  a source f o r  some other form of propulsion. I n  the f i r s t  category 

are the laser-powered sail, various methods for direct  heating of propellants, 

and laser  -induced fusion schemes. In the second category are l a se r  -electric 

propulsion, auxiliary energy sources,  etc. 

1. Laser-Powered Sail  

It is ironic that the concept of the l a se r  -powe. ed sai l ,  which apparently 

was the f i r s t  propulsion appJ-ication suggested for l a se r s ,  is probably the most  

dubious in  t e r m s  of feasibility. In  1962,  orw ward(') mentioned briefly that the 

concept of the solar  sa i l  might be extended by utilizing la rge  l a s e r s  i n  close- 

solar orbits and impinging their  beams on large sai ls  to  power vehicles at 

ex t reme distances f rom the sun: he concluded the concept was not feasible. 

In  1966 ~ a r x ' ~ )  suggested that manned inters tel lar  missions might be aceom- 

plished with X-ray laser  beams impinging on sail-driven vehicles. His claim 

tha t  propulsion a t  the velocity of light a t  an  efficiency approaching unity could 

be achieved i n  the l imit  of an  infinite t ime interval was refuted by Redding i n  

1 96 7!3) 

~ o e c k e l ! ~ '  re-examined this problem and concluded that (1) the l a se r  sa i l  

was  not competitive with other advanced propulsion sys tems within the solar  

sys tem and (2) inter s te l la r  propulsion, even by X-ray l a s e r s ,  would require  

huge b e a m  powers and beam diameters.  Thus, the laser-powered s a i l  i s  

probably just an interesting curiosity and is not likely to be a practical mode of 
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propulsion. A major disadvantage of the laser  sa i l  ia that  only one-way trips 
ox flyby missions would be possible outside af earth-orbit  because there would 

be no deceleration capability in  the absence of another onboard propulsion 
( 2 )  sys tem . 

2.  Propellant Heating Sys tern s 

K a n t r o w i t ~ ( ~ )  called attention Lo the concept of remote heating of propellant 

by earth-based l a s e r s  but did not elaborate on the technical details. He est ima- 

ted  that approximately 1 GW of beam power would be required to  place a l -ton 

payload i n  low earth-orbit. Also considered was orbital insertion of a payload 

by laser  propulsion following ear th  launch to Mach 15 by other means of propul- 

sion. The major problems of laser propulsion outlined by Kantrowitz a re  s t i l l  

appropriate and furnish an excellent datum for the discussions to follow: these 

a r e  (1) scaling up current l a s e r s  to the power levels that will be required, (2) 

improving pointing and tracking accuracies,  (3) gaining better understanding of 

the interaction with, and propagation of high power l a se r  beams i n  the atmos- 

phere, and (3) better understanding of materials  exposed to intense laser beams. 

a. Heating of Gaseous Propellants 

Rorn and ~ u t r e ' ~ )  have ma d e  a simple analysis of launch to low earth-orbit  

of a vehicle utilizing propellant heating by a gr  ound-based l a se r  beam that i s  

focused into a nozzle to impinge on a propellant injection plate. Hydrogen pro-  

pellant, seeded to  facilitate absorption, is expelled thrcugh a supersonic nozzle 

to  provide thrust. Optinlum values of specific impulse a r e  in the range 1200 to 

2000 seconds. Approximately 250 MW of laser beam power would be required 

to place 1 ton of gross weight (payload of 200 lb) into earth-orbit. The differ- 

ence between this value and that of Kantrowitz i s  due to a more detailed account- 

ing of subsystem efficiencies. The cost analysia of Rom and Putre  i s  confined 

to the launch vehicle and does not include the ground-based power and laser  

facility, which is assumed available on a periodic basis. 

~inovitch'?)  envisions a space tug, operating in spiral  earth -orbit, which 

receives energy by ground-based, high-power laser  of the order of 460 MW. In 

this concept, the laser  beam is intercepted by a cylindrical /parabolic reflector 
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which concentrates the energy on seeded hydrogen propellant located within a 

t ransparent  core  a t  the ref lector  focal axis. The heated propellant is directed 

to a spherical p res su re  chamber and then expelled through a rocket nozzle. The 

concept of Minovitch is not well conceived and harbors judgment e r r o r s  but 

contains some good mission analysis mater ia l  and a reasonable discussion of 

a tmospheric  transmission, including specific suggestions for l a s e r  locations 

at points of high altitude in  the western United States. 

b. Heating of Solid Propellants 

An alternative to the heating of gaseous propeiiants is the use  of ablative 

solid propellants; otherwise, the concepts a r e  s imilar .  The mos t  complete 

discussions of the use of ablative solids in  l a se r  propulsion appear  to be due to 

Pirri, e t  a l . ,  (" 9, Avco (AER L), and Har s tad (") (JPL). In general. most  

concepts involving solid propellants appear more  favorable when pulsed, ra ther  

than steady, laser energy is utjlized. Pirri and ~ e i s s " )  est imate that  specific 
4 impulse values of l o 3  to 10 seconds appear feasible i n  the regime of fully 

ionized propellant vapor, which is in  general  agreement  with the es t imates  of 
(lo) Pre l iminary  experimental resul ts  with nonmetallic propellants, Hars tad  . 

however, a r e  not encouraging; Pirri and ~ o n s l e r ' ~ )  obtained values of only 100 

to  500 seconds because of heat addition limitations. In principle, additional 

th rus t  i s  provided by expansion of the propellant vapor through a suitable super-  

sonic  nozzle. 

The physics of steady and pulsed high inten3ity laser / so l id  interactions in 

vacuum and a i r  are being studied by Avco Evere t t  Research  Laboratory, 
(9. 11-14) Three Lincoln Laboratory (MIT), and the Naval Research  Laboratory . 

r eg imes  a r e  noted: (1) t ransparent  vapor region, (2) partially ionized vapor 

region,  and (3) fully ionized (opaque) vapor region. B e a m  intensity for ionization 
2 

threshold has been estimated for metals to be 10 ~ ~ / c m ~ , ( * )  and as much as 
4 2(10) It i s  of in te res t  to  compare the propellant ionization threshold 10  MW/crn . 

to  the f l u  required for laser-induced atmospheric breakdown, which for  dust-  
3. 1(5* *) The presence of ionized f r e e  air has been estimated to  be 10 M W / C ~ - .  

g a s e s  is likely to  cause laser beam attenuation and a lso  affec,rs the so-called 

coupling coefficient, which is the thrust developed per unit l a se r  power. 
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Rob and ~ u r c o t t e ' l ~ )  have shown that vapor lplasrna expanding into the  

a tmosphere instead of a vacuum produces a strong detonation wave. P i r r i  and 

~ o n e l e r ' ~ )  i r rad ia ted  carbon rods at  the focus of a parabolic rocket nozzle with 

a high-power, long-pulse GOZ l a s e r  and obtained specific impulse values of 100 

to  500 seconds. They call  this  concept "radiation-driven detonation wave" pro-  

~ u l s i o n ,  and have extended the idea to the so-called " laser  pulsejet. The laser 

pulse  jet utilizes no propellant a t  a l l  other than the air within the nozzle. The 

concept is, of course,  only applicable in  a gaseous atmosphere; theoretically, t h e  

spe.:ific impulse i s  infinite because no propellant i s  c a r r i e d  onboard the vehicle. 

Firri and ~ o n s l e r ' ~ )  have conducted experiments with a polished aluminum 

nozzle that fo rms  a parabolic reflector for the incident l a s e r  beam. They used 

a pulsed CO l a s e r  with pulse t imes between 25 and 100 psec. Results were  not 2 
wholly satisfactory because of imperfect  focusing and the deposit of oxide on the 

p o2i s he d aluminum nozzle . 

Detonation propulsion has  been proposed for use nea r  planets of high 

atmospheric  pressure, e. g. , Jupiter. Theore t ical  and experimental work on 

detonation propulsion has been performed a t  JPL. Vars i  and Back (I6' have 

conducted experiments (single pulse) by electrically detonating a solid propellant 

and expanding the gas through a conical nozzle with various env i ronm nta l  gases 

a t  different ambient pressures .  For  a 1 -bar ambient pressure, typical values 

of measured specific impulse were about 220 seconds, which increased to about 

290 s ~ c o n d s  at an  ambient p r e s s u r e  of 70 bars .  Gases used were N2 and GOZ. 

3. L a s e r  Fusion 

The advent of ever  higher-energy l a s e r s  has  promoted consideration of 

propulsion by nuclear fusion along the l ines of t he  old Orion concept, wherein 

periodic fission explosions far-removed from a space vehicle were transformed 

to  impulse through a pusher-plate and shock-absorber systenl a t  the rear  of the 

vehicle. It is well to note that Pro jec t  Orion was terminated in 1965 solely on 

political, and not technical, grounds'17). Boyer and 13alcomb(18) recount Lhis 

p rocess  and statn that the u s e  of fusion rather  than fission should remove s a m e  

of the old objections, namely, atmospheric contamination by fission products, 

and the prospect  of producing much smal le r  explosions, much lower energy 
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r e l e a s e  per  pulse,  and hence much sma l l e r ,  l ighter  vehicles, Reaction products 

are l imited to  neutrons and g a m m a  rays.  Hyde, e t  a l . ,  ( I9 )  envision m i c r o -  

explosions through fusion of the o r d e r  of mill i tons as  compared to the kiloton 

leve ls  associated with nuclear  f ission,  

The bulk of the work on l a s e r  -induced fusion, and applications to propul- 

sion, appear to  have been accomplished by Lawrence Livermore  Radiation 

Laboratory and Los Alamos Scientific Laboratory.  ( la '  1 9 )  T h e r e  a r e  two 

b a s i c  variations of the concept: ( I )  the ex te rna l  system,  i. e . ,  the pusher-plate 

idea and (2) the internal  sys tem,  i. e. , confinement in a p r e s s u r e  ves se l  and 

gaseous pl.asma discharge through a nozzle o r  th rus te r ,  Thermonuclear  burn-  

ing  of a propellant pellet (typically deuterium) is induced by an  a r r a y  of impinging 

l a s e r  beams c a r r i e d  onboard. The l a s e r  beams are focused on a very  small 

volume. Confinement is achieved by implosion, which rapidly r a i s e s  the p ro -  

pel lant  t o  ex t remely  high density,  initiating fusion and plasma expansion. 

Large vehicle s izes  and payloads can be accommodated; only the p re s su re  - 

v e s s e l  concept would be used in  the ea r th ' s  atmosphere.  Fusion react ions  would 

be initiated at the  ra te  of about one p e r  second a t  standoff dis tances  of 30 to  100 

m e t e r s .  (I8' Specific impulses  of the o rde r  of 4000 Lo 10.000 seconds for t h e  

externzl:syi; tem, and 800 to  1500 seconds for the internal  sys tem,  a r e  considered 

feasible(18): thrust-to-weight ra t ios  of 3 t o  4 appear  achievable. L a s e r  fusion 

propulsion should be mos t  useful for inter lunar  o r  cx t raso la r  miss ions,  and pos - 
s ib ly  for i n t e r s t e l l a r  missions.  

The physics of laser- induced propellant implosion a r e  ex t remely  compli-  

ca ted  and beyond the scope of this review. ~ o ~ e r ' ~ ' )  recent ly  has published a 

lengthy account of t h i s  field. P r i m a r y  concerns  a r e  problems associated with 

the  absorption process and potential  instabil i t ies in  the compression process. 

P r o p e r  shaping of the l a se r  pulse may be crucial, Burgess (21) discusses  some  

of the problems that must be faced in the development of fusion l a se r s .  Non- 

linear propagation processes  lead to  pulae distort ion,  beam self -focusing, and 

broadening of the pulse spectrum. 
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4, Laser -Elec t r ic  System 

The laser -e lec t r ic  sys t em is a refinement of the now well-developed solar- 

e lec t r ic  propulsion system. Spacecraft  development is within the s ta te  of the  

a r t .  Other problems associated with laaer beam power, optics, pointing and 

tracking, and atmospheric attenuation (for ground-based l a s e r s )  are  common to  

other sys tems a s  well, and have been discussed elsewhere. Lase r  energy could 

be used to  augment solar  energy, or to replace solar energy on deep-space 

missions to Lie outer planets. A specific problem is energy conversion, and 

many concepts and devices have been considered. Existing silicon so lar  cells 

could operate a t  increased efficiency using l a se r  i r radiat ion at about 0. 8 pm, 

Unfortunately, the highest power lasers operate a t  much longer wavelengths. 

5. Power Transmission 

In 1969, ~obinson( '" examined briefly the use  of power t ransmission by 

l a s e r  f rom earth-orbit to  ground. At  that t ime l a se r  transmission w a s  not yet 

considered competitive with microwave t ransmission because of the compara-  

tively low power and efficiency of l a s e r s  of that time. It was acknowledged that 

l a s e r  systems would have one decided advantage over microwave systems: m u c h  

smaller t ransmit ter  and receiver  antennas. Lase r  t ransmission to ear th  f rom 

orbit again r a i s e s  the problem of atmospheric attenuation and distortion. This 

problem would not exis t  for intraorbi ta l  applications, e. g . ,  power t ransmission 

to other spacecraft ,  or for direct  propulsion utilization in  translunar or  inter - 
planetary missions. Orbital laser stations would utilize converted solar  enc rgy. 

Hansen and Lee (23) re-examined the problem in 1972 and concluded that 

l a se r  t ransmission of power by single beams or free-running l a se r s  was f ca -  

sible for distances several times the earth-moon distance, and distances of up 

t o  2 A.U. for systems using phased-array t ransmit ters .  They examined a wide 

variety of factors  including range, power, efficiency, optics, converters ,  point- 

ing and tracking, rad ia tors ,  l a se r  systems, etc. 

From the standpoint of financial cost,  weight  and volume, high -power 

lasers for power t ransmission will be required to have high efficiency. High 
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efficiency is especially important for cases where the l a s e r  generator i s  car r ied  

aboard the spacecraft, e. g, , for power t ransmission from ear th  o r  solar orbit, 

and for l a s e r  fusion propulsion. Hertmberg, e t  al!f4' have examined theoreti- 

cally the feasibility of l a se r  power transmission. They envision a closed-cycle 

gas dynamic laser .  called a photon generator, which generates high power with 

a n  efficiency approaching that attained i n  the production of electricity from 

heat. A s imi lar  device, the inverse  l a s e r ,  i s  suitably designed to receive and 

c o n v ~ r t  incoming Zaser energy so  that useful xifork may be extracted, e. g. ,  con- 

version device, turbine, etc,  The inverse  Zaser system then becomes a photon 

engine, which could be ca r r i ed  aboard another spacecraft. 

Laser power t ransmission has strong competition from microwave systems.  

In  1968,  laser('^' suggested such a system and developed the concept f u r t he r  

t o  what is now known as the Satellite Solar Power Station (SSPS). (26' G l a s e r  

es t imates  a cost of $500/kW for power transmitted f rom orbi t  to ground. More 

recently, the resul ts  of a four-company study team headed by Glaser  have been 
(27) This study team concluded that SSPS was technically published by Brown . 

feasible and could deliver power to gr id a t  an  efficiency of 68% referenced to 

solar  cell  output in  orbit. However, the iinancial cost  still was considered not 

competitive with conventional methods of power generztion on the ground. From 

the standpoint of propulsion, microwave sys tems would appear  to be noncompe ti- 

tive with l a s e r  systems because of the excessive size nf t ransmi t te rs  and 

receivers .  

6. Previous Reviews and Feasibil i ty Studies 

The two best reviews of l a s e r  propulsion applications are those due to 

Arno, e t  al. '28) and Nakarnura, e t  al. (29) Both appeared in 1972 and treat a 

wide var iety of potential systems and applications, A popularized t reatment  of 

(30) Moeckel advanced chemical propulsion sys  terns was published by Cohen . ( 3 1 )  

made an analytical, parametr ic  comparison of various propulsion methods that 

are divided into two types: mission ~ e r f o r m a n c e  limited by maximum specific 

imp~i l se  (Type  I) and mission performance limited b y  minimum speci f ic  m a s s  

(Type  11). For  example, propellant heating o r  pu l s ed  f u s i o n  by laser  is Type I, 

whereas the  laser -e lec t r ic  system is Type 11, A comparison by mission analysis 
( 1  8) of various nuclear propulsion methods was made by Boyer and Balcomb , 
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In summary, a wide variety of propulsion and other applications for l a s e r s  

has been suggested i n  the l i te ra ture  and i s  bes t  typified by Table 1, which has 

been reproduced f r o m  Arno, et al. ( 2 8 )  The present  author has  suggested the 

possible feasibility and ~ o t e n t i a l  application Lor various concepts in  Fig. I ,  as  

based on this prel iminary review. Probable feasibility i s  dictated partly by 

cornparison/competition with cu r ren t  sys  terns. 

C. REVIEW OF LASER DEVICES AND PERFORMANCE 

The state of the a r t  of laser devices is changing s o  rapidly that an overall  

review i n  depth is virtually- impossible. The l i terature  on l a s e r s  appears to 

be increasing a lmost  exponentially. F o r  example, a 1972 bibliography on just 

one type of l a se r ,  the Nd:YAG solid l a se r  (YAG denotes Y3Al5OI2), occupies 

15 journal pages. (32) Current  l a s e r  development cuts ac ross  nearly al l  the 

disciplines of science and technology and covers a wide range of scientific and 

industr ia l  applications. In  addition, the current  periorma.nce of very high p o w  r 

l a s e r s  i s  difficult to  determine because of mi l i ta ry  securi ty  associated with 

t h e r m a l  weapons. According to one ar t ic le"  the power output of continuous - 
wave l a s e r s  was increased by three orders  of magnitude in the 1962-1972 

(33)  decade . This performance improvement probably will be equalled or 

exceeded in  the next decade. 

An insight into l a se r  devices and development is afforded from past 

(34-37) a11 of which were limited in  scope. ' An excellent, extensive reviews,  
(38)  review of molecular-gas l a s e r s  has just been published by Wood. 

1. Laser Classification 

There are various ways to classify lasers: (1) according to t h e  lasing 
(39.40) liquid , (34)  semiconductors, ma te r i a l ,  i. e. , solid, 

j 3 3 , 3 5 - 3 8 )  , (41s42)  and gas,  

(2) according to the method of pumping o r  excitation, i. e. , optical, e lectr ical ,  

chemical,  o r  thermal;  and (3) according to  the mode of operation, i. e . ,  con- 

tinuous-wave (CW), pulsed, Q-switched, and phase-locked (sometimes called 

mode-locked). Transient or short-pulse operation often is accomplished by 

Q-switching (utilizing some form of active o r  passive shutter system), and is 

some  times called the 'Igiant-pulse, 1 '  "big -Sang1I technique, e tc. 
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Table 1. Laser system applications from Arno, et al. (2 8) 

ELECTRIC POWER TRANSMISSION 

Orbit to Earth 

Ear th  to satelli te/spacecraft  

Spacecraft to spacecraft  

Ground to ground 

ENERGY TRANSFER FOR PROPULSION 

Launch vehicle - ablative propellant 

Launch vehicle - H2 propellant 

Aircraft  tzkaoff/takeofE a s s i s t  

Aircraft  flight sustaining 

Orbit keeping/drag make -up/attitude control 

Orbit changing 

Interplanetary electric propulsion 

Laser -detonated fusion propulsion 

Laser- ower red sail spacecraft  

COMMUNICATIGNS 

Interplanetary 

Ter res t r i a l  

Between orbit and ground 

PHOTON TRANSMISSION/ILLUMINATION 

Remote area illumination 

Atmospheric probe from ground 

Atmospheric probe from orbit 

Night scan of clouds, Earth resources 

~ l a n e t / c o m e t / a s t e r o i d  illumination 

Beacon/signal/transit 

Planet atmospheric analysis 

Chemis try/gas and materials  properties 

Interferometry 

Chemical processing 

HEAT TRANSFER 

Cutting, drilling, punching 

Welding 

Data recording (punching) 

Tunneling, mining 

Material analysis (ionization, vaporization) 

Chernica.1 processing 

Weapons 

Nuclear fusion 





A summary of laser  classification appears  in  Table 2; many other sub- 

classificctions a r e  possible. A disadvantage of cur rent  solid-state and liquid 

l a s e r s  is that they require external  optical pumping, e. g. , flash-lamps. Semi- 

conductor laser  s are sti l l  relatively low-power device s although they have high 

efficiency; homojun:*tion devices a r e  now considered obsolete. Recently, a new 

type of Iaser based on electrochemiluminescence has been suggested by Mea - 
s u r e  s '43) to take advantage of Ule bes t  features  of liquid ar.3 semiconductor 

l a se r s .  There a r e  numerous types of gas l a s e r s  that uti l ize neutral  (atomic), 

ic7lized, or molecular gases, including metal l ic  vapors,  o r  chemical reactions. 

The ' 'purely chemical" laser  is s o  called *in reference to  reactions obtained 

without any external pumping. Thermal  pumping i n  gas l a s e r s  may be accom- 

plished i n  many ways, e. g., combustion, detonation and travelling shock waves, 

a rc- je t ,  nuclear reaction, 2tc. In principle, all current  I a se r  types can be 

operated in the modes  listed i n  Table 2. Very high power outputs (hundreds of 

gigawatts) m a y  be achieved i n  a single shor t  burst ,  o r  in  a ve ry  short  duration 

wave -train, by Q -switching o r  phase -1ockcd operation. 

Because gas  l a s e r s  can achieve high power, although overall  efficiencies 

a r e  still rather low, and a r e  versa t i le ,  they are receiving the most  attention 

for mil i tary applications. It appears  that gas l a s e r s  a r e  a l so  the most  likely 

candidates for laser propulsion sys tems;  therefore,  they will be discussed i n  

more detail later. 

2. Lase r  Performance 

In general, the i r n ~ o r t a n t  performance fac tors  of lasers include wave- 

length and both average and peak power output, e. g., in  the pulsed mode, Also 

of importance a r e  the duration, the pulse width and shape, and the maximum 

repetition rate of the pulses (which often i s  mater ia l s  -limited). Lase r s  have 

been operated i n  a wavelength range that spans the ultraviolet, visible, infrared, 

and into the submillimeter region. Gas l a s e r s  have the widest range of wave- 

lengths to date. Recently, vacuum ultraviolet  wavelengths have been achieved 

with atomic gas l a s e r s ;  this wavelength region i s  of intereot for nuclear fusion 

l a se r s .  Even shor t e r  wavelengths are desirable  for some applications that 

requi re  extremely fine focusing. Although an X-ray l a se r  has  been reported,  
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Table 2. Laser classification 

Lasing 
Material 

Solid - 
State 

Semi - 
conductor 
(injection) 

Liquid 

Gas 

Types 

Doped crystals 

Crystalline materials 

Glass 

Diffused homo juncti on 

Single /double heler ojunction 

Large optical cavity (LOC) 

Rare e a ~  th solutions 

Organic dye solutions 

Inorganic dye solutions 

Neutral (atomic) gas 

Ionized gas 

Molecular gas 

Chemical 

Pumping / 
Excitation 

Optical 

I le trical 

Optical 

Optical 

Electrical 

Chemical 

Thermal 

Mode 

Continuous - 
wave 

Pulsed 

Q -switched 
Phase -locked 

Continuous - 
wave 

Pulsed 

Continuous .- 
wave 

Pulsed 

Q -switcned 

Contir~uous - 
wave 

Pulsed 

Q -switched 

Phase -locked 

i l ,  

'tr. 
Remarks 1 

High -power continuous ope ration 
llmi ted by mate rials 

High peak power in pulsed opera- 
tion 

4 Predicted power: l o l  lW average 
10 W peak 

High efficiency, low power 

Temperature sensitive 

May suffer degradation for long- 
term continuous use 

Poor spectral and coherence 
proper t i c s  

Requires optical pumping 

Tunable 

Can!t be Q-switched at high power 

Cover the widest range of wave - 
lengths 

Pressure  and temperature depen- 
dent 

Thermally-pumpe d gas dynamic 
l a se rs  may operate open or 
closed cycle 

High power, low overall efficiency 



s o m e  c o n t r o v e r s y  over t h i s  claim e x i s t a  (44, 45) The Russ ians  a r e  working on 

a g a m m a - r a y  l a s e r ,  the so -ca l l ed  "graser" ,  a concept  t h a t  w a s  abandoned by  

t h e  Americans a decade ago; t h e  e s s e n t i a l  p r o b l e m  is t o  develop a n u c l e a r  laser 

t h a t  u t i l i z e s  m i c r o f i s  sion. (46) 

By 1970, a v e r a g e  power  outputs of gas  l a s e r s  had been i n c r e a s e d  s i g -  

n i f icant ly ,  e. g.. the Avco CO gas dynamic laser had been o p e r a t e d  in contin-  2 
uous ,  s ing le -mode  at 30 kW and  at 60 kW in mult i-mode.  (33' It is a s t i m a t e d  - 
t h a t  t h i s  dev ice  has now been operated at 200 kW. (33)  A s a m p l e  s p e c t r u m  of 

laser p e r f o r m a n c e  as r e p o r t e d  by E l e c c i a n  (37) is shown i n  Fig. 2, in  which 

atmospheric l'windows" h a v e  been  indicated. The CO gas l a s e r  o p e r a t e s  a t  

approximately 5 pm, the l o w e r  window, a s  do  s o m e  of t h e  c h e m i c a l  l a s e r s .  

A t m o s p h e r i c  windows are of importance for laser s y s t e m s  t h a t  m u s t  t r a n s m i t  

o r  receive through t h e  e a r t h 1 s  a t m o s p h e r e ;  a list of atmospheric windows has 

been given by  Minovitch. ( 7 )  

Very short pu l ses  of t h e  o r d e r  of 0. 1 t o  1 nanosecond a t  e n e r g y  l eve l s  of 
5 6 

10 t o  10 joules  will  b e  r e q u i r e d  f o r  l a se r - induced  nuclear t h i s  is 
16 

equivalent  to p o w e r  l eve l s  of 1014 t o  10 watts .  Emmett ( 3 6 )  r epor ted  in  1971 

t h a t  3 picosecond pu l ses  had been  achieved b y  Sandia and 10 t o  100 picosecond 

p u l a e s  by  Los Alarnos,  but at m u c h  lovrer e n e r g y  l e v e l s .  Recently,  Sandia has 

p r o d u c e d  200 joule  pulses  of 2 nanosecond dura t ion ,  and expects  to ach ieve  1000 

j o u l e  pulses  in the  n e a r  fu ture ,  (48) Of i n t e r e s t  is t h a t  convers ion  t o  X - r a y  

e n e r g y  in  1 nanosecond has been  predic ted  far l a s e r - h e a t e d  plasmas sub jec t  

to pulses  of the order of 25 p icoseconds ,  by  Whitney and Davis .  (49)  P u l s e  

repe t i t ion  r a t e s  in gas  lasers a r e  l i m i t e d  by excess ive ,  and nonuniform, gas 

heating prob lems .  ( 3 8 )  A l r e a d y  in  1971. however.  E m m e t t  (36' repor ted  t h a t  

laser opera t ion  a t  m a r e  t h a n  1000 p u l s e s / s e c  had been achieved in Canada. 

Because economics  wi l l  e x e r t  a strong influence on the fu tu re  develop-  

m e n t  of l a s e r  propuls ion s y s t e m s  ( s e e  Sect ion  11-B), t h e  ef l ic iency of e n e r g y  

product ion  by  t h i s  means wi l l  be a n  impor tan t ,  i f  not dominant ,  f ac to r .  It 

is difficult to d e a l  with t h i s  subjec t ,  however. b e c a u s e  t h e r e  are s o  m a n y  t y p e s  

of l a s e r  systems, a n d  b e c a u s e  ef f ic iencies  a r e  not qtated in a cons i s t en t  way. 

Indeed,  it  is diff icul t  t o  compare eff ic iencies  among d i f fe ren t  l a s e r  systems 
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because  input  o r  "available" power  is not known d i r e c t l y ,  e. g. , pure ly  c h e m i c a l  

l a s e r s ,  b e c a u s e  of g e o m e t r i c a l  d i f f e rences ,  and p r o b l e m s  of cornpar in3  flowing, 

nonflowing, open, and c losed-cyc le  s y s t e m s .  Quoted ef f ic iencies  must be 

s c r e e n e d  ca re fu l ly  with r e s p e c t  t o  t h e i r  defini t ions which, often, a r e  vague. 

Many  values of ef f ic iency quoted in  t h e  l i t e r a t u r e  refer t o  j u s t  the  l a s e r  

itself, a n d  s o m e t i m e s  are cal led  t l e l ec t r i ca l ' l ,  " the r~na l l ' ,  o r  "chemicall l  

e f f ic iencies ,  But m o r e  impor tan t ,  t he  ef f ic iency of t h e  power  s o u r c e  and,  in 

s o m e  c a s e s ,  the  output opt ics ,  should be  included i n  a n  f l o v e r a l l l l  efficiency. 

F o r  propulsion, power  t r a n s m i s s i o n  a n d  o t h e r  appl ica t ions ,  the only  r e a l l y  

meaningful  efficiency is the  " sys tem"  eff iciency,  which inc ludes  t h e  eff iciency 

of the o p t i c s / t r a n s m i t t i n g  s y s t e m ,  a t t enua t ion /d i spe r s ion ,  e t c . ,  of the  m e d i a  

( a t m o s p h e r e )  where appl icable ,  and  t h e  eff iciency of the  r e c e i v e r / c o n v e r t e r .  

T h e  r e c e i v e r / c o n v e r t e r  e f f ic iency m a y  b.; highly v a r i a b l e  depending o n  t h e  type 

L . f  s y s t e m ,  e. g. , d i r e c t l y  heated propellant ,  s i l i con-ce l l  r e c e i v e r s  f o r  t r a n s  - 
mit ted  power ,  and so  on. Sys tem eff ic iency wi l l  be  ' d i scussed  in  a l a t e r  sec t ion .  

For t h e  p r e s e n t  p u r p o s e s  t h i s  d i s c u s s i o n  will  be confined t o  l a s e r  eff iciency 

a n d / o r  o v e r a l l  efficiency. 

T h e  h ighes t  e f f ic iencies  h a v e  been obtained f o r  s e m i c o n d u c t o r  l a s e r s .  

A s  much  as 70% of t h e  input e l e c t r i c a l  power  has been conver ted  to l a s e r  ra- 

diat ion in  t h e s e  dev ices ;  (37)  they  are, however,  low power  devices .  Sol id-s ta te  

dev ices  y ie lded  l a s e r  ef f ic iencies  of 30% in 1968, (37' anrl probably have been 

improved cons ide rab ly  s i n c e  then. The o v e r a l l  efficier.cies of so l id  l a s e r s  a r e  

low, however ,  because  of the  genera l ly  low eff ic iency of t h e  op t i ca l  pumping 

sys tem.  

A 157'0 l a s e r  ef f ic iency f o r  conver t ing  heated  gas t o  l a s e r  radia t ion  w a s  

achieved by u t i l iz ing  a n  open-cycle,  combust ion-dr iven GOZ, g a s  

dynamic  l a s e r  (GDL). P u l s e d  g a s - l a s e r s  have  developed l a s e r  ef f ic iencies  

ranging from 5 to 25% at o n e  a t m o s p h e r e  p r e s s u r e ,  ( 3 6 )  In  pr inc ip le ,  clused-  

cycle opera t ion  should i m p r o v e  GDL eff ic iencies  but the s u p e r s o n i c  d i f fuse r s  

r equ i red  are not highly eff icient  s o  t h a t  p red ic ted  r e s u l t s  a r e  not as good as 

might  be expected. Tu l ip  and ~ e ~ u i n ( ~ O )  have  p red ic ted  t h e o r e t i c a l  l a s e r  

ef f ic iencies  of 25% f o r  the rmal ly -d r iven ,  c losed-cycle .  C02 g a s  l a s e r s .  
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I n  con t r a s t ,  t h e  m a x i m u m  (quan tum)  e f f i c i ency  to  b e  expec ted  of CO l a s e r s  i s  2 
40%. (24' 3 3 )  T h i s  u p p e r  l i m i t  is d u e  t o  i nab i l i t y  t o  e x t r a c t  e n e r g y  f r o m  t h e  

ro t a t iona l  m o l e c u l a r  s t a t e s  of GOZ.  When  t h e  e f f i c i ency  of t h e  p o w e r  s o u r c e  is 

c o n s i d e r e d ,  the o v e r a l l  e f f i c i ency  of t h e  GDL is r a t h e r  low;  v a l u e s  of 0. 5 t o  1% 

are  quoted by  K l a s s  ( 3 3 )  f o r  open-cyc le  ope ra t ion .  

An i m p r o v e m e n t  has b e e n  p o s s i b l e  i n  e l e c t r i c  d i s c h a r g e  l a s e r s  (EDL); 

24% l a s e r  e f f i c i ency  h a s  b e e n  a c h i e v e d  by  t h e  A i r  F o r c e  f o r  cont inuous wave 

EDL gas l a s e r s ,  a n d  30% is e x p e c t e d  in  t h e  n e a r  fu tu re .  ( 3 3 )  o v e r a l l  e f f ic ien-  

c i e s  a r e  of t h e  o r d e r  of lo%, m u c h  b e t t e r  t han  f o r  t h e  t h e r m a l l y - d r i v e n  GDL. 

Plurnrner a n d  ~ l o w a c k i ' ~ ~ )  h a v e  p r e d i c t e d  l a s e r  e f f i c i enc i e s  exceed ing  5070 

f o r  t h e  GO s u p e r s o n i c  EDL, w h e r e  e f f i c i ency  is def ined  as t h e  r a t i o  of output 

optical power  t o  input  e l e c t r i c a l  power .  

T h e  "chemica l "  e f f i c i ency  of p u r e l y  c h e m i c a l  l a s e r s  is t h e  o r d e r  of 

5%, 
(33, 36, 37) 

but  v a l u e s  as  l a r g e  as 20% a r e  an t i c ipa t ed .  ( 3 3 )  An o v e r a l l  

c h e m i c a l  e f f i c i ency  of 10% h a s  been a c h i e v e d  in  a c h e m i c a l  GDL. ( 3 3 )  ~y i t se l f  

t h e  c h e m i c a l  laser is fundan len ta l ly  s i m p l e ,  light, a n d  c o m p a c t ,  but  t h e  a s s o c -  

i a t e d  s u p p o r t  e q u i p m e n t  is bulky  and  heavy.  

To c l o s e  t h i s  d i s c u s s i o n  o n  l a s e r  p e r f o r m a n c e  it i s  of i n t e r e s t  t o  l i s t  tha: 

"best"  p e r f o r m a n c e  r e s u l t s  a c h i e v e d  in v a r i o u s  l a s e r  f i e l d s  in  1971, as  given 

by E m m e t t .  ( 36 )  Although t h e s e  va lues  h a v e  p r o b a b l y  been  exceeded since then .  

t h e  l i s t  wil l  s e r v e  as a m i l e s t o n e  s u m m a r y .  

L a s e r  P e r f o r m a n c e :  B e s t  R e p o r t e d  R e s u l t s  ( 197 11 

A v e r a g e  P o w e r :  60  k W  at  10.6  m i c r o n s  ( m u l t i - m o d e )  

Peak P o w e r :  2. 5 x loL3 w a t t s  a t  1. 06 m i c r o n s  

Conve r s ion  of C h e m i c a l  E n e r g y :  4 to 5'70 i n  p u r e l y  c h e m i c a l  l a s e r  

Wavelength Range:  S u b m i l l i m e t e r  to 1 523 a n g s t r o m s  

Tunabili ty: Many  cont iguous  ranges f r o m  3410 angstroms to 3.  5 m i c r o n s ;  
s o m e  tunab le  r a n g e s  a t  l o n g e r  wavelengths  
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3. G a s  L a s e r s  

T h e  w a s t e  power  in  l a s e r s ,  i. e . ,  t h a t  po r t ion  not  conve r t ed  t o  u se fu l  

l a s e r  rad ia t ion ,  m u s t  be r e m o v e d  by cool ing,  whicL d e p e n d s  o n  t h e  t h e r m a l  

conduct ion  o r  d i f f ~ s i o n  p r o p e r t i e s  of t h e  l a s e r  m a t e r i a l .  In  s o l i d s  t h e r e  a r e  

obv ious  l imi t a t ions .  In  f lu ids ,  g r e a t  a d v a n t a g e  m a y  be  ga ined  by  f o r c e d  con- 

vec t ion  o r  h igh-speed  flow. In  g e n e r a l ,  g a s  l a s e r s  a r  h igh -power  devices t h a t  

a r e  m o r e  s u i t a b l e  than  s o l i d  l a s e r s  f o r  cont inuous  wave o p e r a t i o n  and  a r e  a m e n  

a b l e  t o  a g r e a t e r  v a r i e t y  of pumping  o r  exc i t a t i on  m e t h o d s .  V e r s a t i l i t y  i n  

p e r f o r m a n c e  is ach ieved  b y  v a r y i n g  p a r a m e t e r s  s u c h  as p r e s s c r e  a n d  t e m p e r a -  

t u r e  and ,  i n  f lowing s y s t e m s ,  t h e  mass  r a t e  of flow. A wide  r a n g e  of wave -  

l e n g t h s  a l r e a d y  h a s  been a c h i e v e d  (F ig .  2), and t h e r e  is expec ta t ion  that t h i s  

r a n g e  wil l  be ex tended  f u r t h e r .  A s  s t a t e d  e a r l i e r ,  g a s  l a s e r s  a r e  t h e  p r i m e  - 

c a n d i d a t e s  for m i l i t a r y  app l i ca t ions ,  p a r t i c u l a r l y  t h e r m a l  weapons .  ( 3 3 )  

Gas l a s e r s  may be o p e r a t e d  without  flow, e. g. , in s e a l e d  t u b e s ,  o r  with 

flow. E x a m p l e s  of t h e  f a r m e r  a r e  t h e  e l e c t r i c  d i s c h a r g e  l a s e r  (EDL)  o r  the 

e l e c t r o n  beam l a s e r  (E-beam l a s e r ) ,  which a r e  p a r t i c u l a r l y  well su i t ed  t o  

h i g h - e n e r g y  s h o r t  b u r s t s  a s  typif ied b y  t h e  Avco "big-bang" concept .  (See  

r e f e r e n c e s  33, 38, 52. ) T h e  t e r m  "gas dynamic l a s e r "  (GDL), which o r i g i n -  

a l l y  was app l i ed  to a t h e r m a l l y - d r i v e n ,  f lowing-gas  l a s e r ,  h a s  b e c o m e  a  

g e n e r a l  t e r m  b e c a u s e  GDL s y s t e m s  now e x i s t  t ha t  u t i l i z e  e l e c t r i c a l ,  chemical, 

o r  t h e r m a l  pumping. I t  is becoming  c o m m o n  t o  p r e f a c e  "GDL" b y  a t e r m  d e -  

s c r i b i n g  t h e  pitmping o r  exc i ta t ion ,  e .  g . ,  t h e r m a l l y - d r i v e n  GDL. G e r r y  (3 5) 

po in t s  ou t  t h a t  t h e  appl ica t ion  of f low to v a r i o u s  g a s  l a s e r s  v a r i e s  with t h e  

pumping  me thod .  All  t h r e e  pumping  m e t h o d s  men t ioned  above  r e l y  on f low 

f o r  r e m o v a l  c;f w a s t e  ene rgy .  But ,  i n  addi t ion ,  c h e m i c a l l y - p u m p e d  GDL u t i l i ze  

f l o w  for t e m p e r a t u r e  con t ro l ,  mixing,  a n d  r e a c t a n t  r e p l e n i s h m e n t ,  a n d  t h e r m a l -  

l y -pumped  GDL ut i l ize  f low f o r  t h e  p r o d u c t i o n  of  g a s  i n v e r s i o n  f r o m  e q u i l i b r a t e d  

h o t  gas. 

C u r r e n t  CDL a r e  open-cyc le  d e v i c e s ,  and m o s t  of t h e m  u t i l i ze  g a s e s  

expanded t h r o u g h  n o z z l e s  at  s u p e r s o n i c  ve loc i t i e s .  If o p e r a t e d  for extended 

t ime i n t e r v a l s ,  these  devices  r e q u i r e  a s ign i f i can t  f u e l  storage. Addi t iona l  

i n f o r m a t i o n  o n  C D L  devices may b e  ob ta ined  f r o m  r e f e r e n c e s  33 ,  36 ,  37, 50, 
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51, 53 - 55. Conceptua l ly ,  h i g h e r  e f f i c i e n c i e s  could be  obta ined  by c losed -cyc le  

ope ra t ion .  ( 3 3 )  In  t h i s  c a s e ,  h o w e v e r ,  d i f f u s e r s  a r c  r e q u i r e d  f o r  p r e s s u r e  

r e c o v e r y .  A e r o d y n a m i c  f a c t a r s  a f f ec t ing  G D L  d e s i g n  1 i v e  been  d i s c u s s e d  by  

D i r e c t o r .  '56) A t  low e n v i r o n m e n t a l  p r e s s u r e s ,  s u c h  a s  h igh-a l t i tude  o r  s p a c e ,  

d i f f u s e r s  would no longer b e  r e q u i r e d .  T h e o r e t i c a l  a n a l y s e s  pe r t a in ing  t o  

c l o s e d - c y c l e  GDL system s a r e  ava i l ab l e .  (24, 50) 

The  f i r s t  r e p o r t e d  work on h i g h - p r e s s u r e ,  pu lsed  g a s  l a s e r s  a p p e a r e d  in 

1969 -1 970, a c c o r d i n g  t o  Wood. ( 3 8 )  T r a n s v e r s e l y  exc i ted  a t m o s p h e r i c - p r e s s u r e  

l a s e r s  a r e  now ca l led  T E A  l a s e r s ,  and  f o r m  a f a s t -g rowing  field of r e s e a r c h .  

H igh  g a s  p r e s s u r e  is b e n e f i c i a l  becauoe  l a s e r  p o w e r  output  is roughly p r o -  

p o r t i o n a l  to  the  s q u a r e  of t h e  p r e s s u r e ,  at l e a s t  up  to 4 a t m o s p h e r e s .  A l so ,  

h igh  p r e s s u r e  would tend  to a l l e v i a t e  t h e  d i f f u s e r  p r o b l e m .  P r e s s u r e s  up  t o  

10 o r  even a 1 0 0  a t m o s p h e r e s  a r e  envis ioned .  A p r o b l e m  is to  generate 

u n i f o r m  d i s c h a r g e ;  o n e  a p p r o a c h  t o  t h i s  p r o b l e m  is t h e  s o - c a l l e d  e l e c t r o -  

ion iza t ion  (ELION) l a s e r .  High p r e s s u r e  also t e n d s  to  e n h a n c e  t h e  p r o s p e c t  of 

tunabi l i ty  i n  s o m e  gas lasers. An e x c e l l e n t  a n d  c u r r e n t  r e v i e w  of h i g h - p r e s s u r e  

pulsed  l a s e r s  has been  publ i shed  b y  Wood. ( 3 8 )  

To q u o t e  Wood, "Today,  t h e  most s u c c e s s f u l  l a s e r s  bu i l t  ba sed  upon t h e  

h i g h - p r e s s u r e  concept  exh ib i t  t h e  fol lowing p r o p e r t i e s :  l a r g e  bandwidths 

( lead ing  to t h e  poss ib i l i t y  of c o n t i n l ~ o u s  wavelength  tunab i l i t y  and  u l t r a s h o r t  

p u l s e  gene ra t ion ) ,  high p e a k - p o w e r  outputs ,  l a r g e  pu l se  e n e r g i e s ,  high 

e f f i c i enc i e s ,  l ow c o n s t r u c t i o n  and  o p e r a t i n g  c o s t s ,  and  ou tpu t s  spanning wave- 

l eng ths  f r o m  t h e  vacuum u l t r a v i o l e t  t o  t h e  f a r  i n f r a r e d .  '' H i g h - p r e s s u r e  o p e r -  

a t i o n  h a s  been  ach ieved  in  n e a r l y  30  d i f f e r e n t  gases. T h e  peak  p o w e r  ach ieved  

i n  pulsed  m o l e c u l a r  l a s e r s  h a s  b e e n  plot ted in  F ig .  3; d a t a  w a s  adap ted  f r o m  

Wood. Wood l i s t s  m a n y  a p p l i c a t i o n s  for these l a s e r s ,  inc luding  s p a c e  p r o  - 
puls ion  and n u c l e a r  fus ion ,  but  d o e s  not  men t ion  t h e r m a l  weapons  o r  o t h e r  

m i l i t a r y  u s e s .  These l a t t e r  a r e a s  a r e  of i n t e r e s t  b e c a u s e  t h e  p r o b l e m s  c l o s e -  

l y  p a r a l l e l  t h o s e  an t i c ipa t ed  f o r  p ropu l s ion .  

A c c o r d i n g  t o  KZass, ( 3 3 )  t h e  l ead ing  c o n t e n d e r s  for h igh -power  l a s e r  

weapons  a r e  ( I )  t h e  t h e r m a l l y - p u m p e d  g a s  d y n a m i c  l a s e r  (GDL) - highest 

p o w e r  l e v e l s  (200 kW), ( 2 )  the  e l e c t r i c  d i s c h a r g e  l a s e r  ( E D L )  - s e c o n d  h ighes t  
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PEAK POWER OUTPUT, WATTS 

Fig. 3. Observed performance of pulsed molccular lasers 
during  years  197 1 - 1  973 adapted from 
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power  l e v e l s  (100 kW), and ( 3 )  c h e m i c a l  l a s e r s  - power  l e v e l s  now approaching 

10 kW. In a m o r e  r e c e n t  a r t i c l e ,  K l a s s  (57) r e p o r t s  t h a t  t h e  U. S. Navy has  now 

shi f ted  its r e s e a r c h  i n t e r e s t s  t o  chemical l a s e r s .  T h e  m a i n  r e a s o n  f o r  th i s  

is  tha t  c h e m i c a l  l a s e r s  c a n  o p e r a t e  in  t h e  2.6  t o  5. 0 m i c r o n  range ,  where  

re l a t ive ly  l i t t l e  absorp t ion  by the a t m o s p h e r e  o r  m o i s t u r e  o v e r  t h e  ocean  

s u r f a c e  o c c u r s  (sh ipboard  opera t ion) .  Additional informat ion  on c h e m i c a l  

lasers m a y  be found in  r e f e r e n c e s  58-61. 

D. PROBLEM AREAS 

Cons ide ra t ions  for l a s e r  propuls ion  begin with the  power s o u r c e  and t h e  

pumping/excitat ion e n e r g y  f o r  the l a s e r ( s )  and end with the  l a s e r  t a r g e t  and/or 

r e c e i v e r / c u n v e r t e r  loca ted  on  the a p p r o p r i a t e  vehicle.  I n  s o m e  ins tances ,  

e .  g . ,  p roposed  l a s e r - f u s i o n  propuls ion  concepts ,  the e n t i r e  system is conta in-  

e d  on o r  within a s p a c e c r a f t  launched by o t h e r  m e a n s .  Although s u c h  concepts  

I e l imina te  s o m e  problerns ,  e .  g., a t m o s p h e r i c  in te rac t ions ,  they in t roduce  o t h e r s ,  

I e,  g ,  , a se l f  -contained ~ n e r g y / ~ o w e r  s o u r c e  is requ i red .  B e c a u s e  l a s e r  p r o -  

pulsion s y s t e m s  a r e  concep t s  of the  fu ture ,  l i t t l e  w o r k  has  becn done to  

c l a r i fy  s u b s y s t e m  prob le rns  o r  s y s t e m s  in tegra t ion  p r o b l e m s  re la t ive  t o  the 

design of ground ins ta l la t ions  and  s p a c e  vehic les ,  o r  t o  m i s s i o n  ana lys i s .  

Aside  f r o m  this ,  many  p r o b l e m s ,  obvious o r  ant ic ipa ted ,  a r i s e  f r o m  c o n s i d e r -  

a t ion  of t h e  va r ious  subsystems. In  s o m e  ins tances  work re la t ive  to  o t h e r  

a r e a s  of i n t e r e s t  m a y  be utilized i n  th i s  r e g a r d .  As an example, satellite 

ranging is useful  a s  adjunct  information on a t m o s p h c r i c  p rob lems .  

It is diff icul t  t o  d i s c u s s  p r o b l e m s  a s s o c i a t e d  with l a s e r  proptils ion cxcept  

by m e a n s  of a  genera l i zed  approach .  Although many  p r o b l e m s  a r e  common l o  

all concepts ,  t h e r e  m u s t  be spec ia l i zed  t r e a t m e n t  accord ing  t o  miss ion ,  o r  

when cons ide r ing  such  d i v e r s e  schemes a s  d i r e c t  propel lant  heat ing,  l a s e r -  

fusion, o r  l a s e r - e l e c t r i c  s y s t e m s .  Vi ta l  to all s y s t e m s  is t h e  development of 

adequate  e n e r g y  flux l eve l s .  Arno,  et al .  , (") lists t h e  following f a c t o r s  tha t  

inl luence t h e  flux level: laser wavelength a n d  power  level, opt ics  quali ty and  

s i ze ,  pointing (and t r a c k i n g )  a c c u r a c y ,  beam attenuation and d i s p e r s i o n ,  a n d  

distance dilution (flux l e v e l s  v a r y  i n v e r s e l y  with the s q u a r e  of t h e  d i s t ance  f rom 

t h e  source ) .  Most  p r o b l e m s  of l a s e r  propulsion s y s t e m s  a r i s e  d i rec t ly  o r  in-  
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Table 3. General  problems associated with high -power laser  systems 
f o r  propulsion 

---- 
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P r o l ~ l c n l s  

Avai labi l i ty  of 1-xisting puwcr  Y ~ S ~ C ' I T I ~  

Operational eff iciency anrl c o s t  (inclrlri- 
ing arrxilia r y  facilitic-s) 

S i tc / loca t ion  

I ,  G r e a t l y  ir~ll,rovcti cfr"icivncics neetled 

2. {Jowrr  scale- l ip  ( feas ib i l i ty  p ro t>nl~ lc )  

3, 1,oatcr wavclcbngtlrs dcs i ra l ) l c  f o r  itn- 
prover1 r a n g r / l o c u s i n g ,  op t ics  p r u b -  
I c m s  

4. I l n i f o r n ~  exci tat ion ( l a r g e  l a s e r s )  i s  
hard  to  achicvc.  p . ~ r t i c ~ l l a r l y  gas 
l a s e r s  

5. Irnproved l a s i n g  n i a t v r i a l s  r e q u i r e s  
r e s c a r c l ~ / c l c v e l a p m u n t  . 1 types:  
sol id ,  liriuitl, gas 

6. S u p c r r a d i a n c c  c s ~ l s c s  ampl i i i ca t ion  
or  s t r a y  s igna ls  

7. R e s e a r c h  rcqui rcd  to  dcvelop u!tra - 
s h o r t ,  shapc-controlled pu1st.j 
([us ion) 

H, High a c c u r a c y  recjirirrd l o r  fusion 

0 .  Diagnos t ics  Tor u l t r a - s h o r t  prllses 
l o r  1ast . r  rc.sc,a rch ntac*cl~d 

10. D e v c l o p n ~ c n t  uf s m a l l  liglitweiglit 
s y s t e m s  n i ~ c t l c ~ l  f o r  onboard  pro-  
pulsion 

11. Continuous operat ion al ! a s c r s  in 
s p a c c  rrtjrlircv t*if ic icst  storage/ 
handling rbf filc!s /propellants 

- 
1 .  La rgc   optic.^ ( I  0 t o  I00 rnctcra) m a y  

b r  ntbcded. W ~ ~ i g h t  rcctirctione nrctled 
f o r  iargi*, l~ ia f~-c~t ta l i ty  optics .  P r o b -  
lcms incl t~rlc  bcntling s t r e s s ~ s  and 
t l lcrrnal  t i i s to r t io t~ .  

2. High a c c u r a c y  nc.ct l~t l ,  hctarnca nioris  
rlifficult u i t h  ~ l e r r c a s i n g  ui tvr l t~ngt l l  
( f a r  1'V, X - r a y )  

3, Ziighcr power  d c n s i t t c s  d r s i r a b l e  
will r e q u i r e  intpravcd m a t e r i a l s  and 
dcsijin. Opt ica l  non- l in ra  r i t i e s  oct-11 r  
in m a n y  m a t e r i a l s  a t  Iiigll p o u c r  
d e n s i t i e s  

4. R c s c a r c l ~  nrcdcrl f o r  n ia tc r ia lu  of 
g r c a t c r  pjrrily and i l l lp ro tvd  p e r -  
fo rn lancc .  p a r t i c u l a r l \ ~  a t  I nw  
uavc lcngt  11s 

5. L o n g - t c r m  ciinicnsional s t a h i l ~ t y  
t h r  rrrlal degrat la t ion nl  s u r f a r  t.6. un-  
evrmn s o l a r  heating. a c c r i r a t c  I I ~ U V C -  

m r n t  o r  l a r g e  op t ics  s v s t c n i s  
4 

Subs ystcnl 

en"gy' 
P o w c r  
Sourcc 

L a r ~ z r s  
a  ncl 

L a s c r  
S y s t c r l ~ s  

O p t i c s  
and 

O p t i c s  
S y s t c m s  

P r e s e n t  L in i i t a t ions  

F U ~ L I ~ C  avai labi l i ty  f o r  p r o j c c t c d  nceds  i s  
tiilficirlt t o  an t ic ipa te  o r  plan. P o w e r  s o t t r c c  
dcvcloprncnt  lor l a s c r  p ropuls ion  a l o n e  not 
c c o n o n ~ i c a l .  

1. Low convers ion  e f f ic iency  

2. P o w e r  leve l s  s t i l l  too  low 

3, P r a c t i c a l  wavclcngtll rangc:  
0. 0 3  11r11 < X<20 [rni 

4. Nonhrnifortii exci tat ion in hiah-powc r 
l a s e r s  c a u s e s  op t ica l  s c a t t c r i n ~  

5. T r a c e  i m p u r i t i e s  in l a s i n g  rnn te r ia l s  
itlay l i l ~ l i t  pnwcr  l cvc l  tiue t o  s e l f -  
Iocusitlg o r  loca l  llrc*aktlown 

6. rrigh gain Iiarci t o  achic?vc a t  high p o w e r  
I e v c l s  

7. U l t r a - s h o r t  pt11sc.s at high powcr  l i ~ v c  
not yct bccn ach ic~vcd  

h. M ~ l l t i p l c  l a s c  r  fuclrsing rliificult 

9. P r c s c n t  r c s c a r c h  t l iagnost ics  not s r r f -  
f i c i ~ t l t  ( t i l l l C ' / ~ p ~ ~ ~  r1.3 elution) 

10. P r e s c n t  aux i l i a ry  c q l ~ i p n l c n t  i s  hcavy 
and l,irlky, lack of rlcvc*lop~nc.nt 

11. F u e l  tox ic i ty / s tora~c / l ianc l l ing  (sorlic 
c h e m i c a l  l a s e r s  toxic)  

1 .  S i ~ e  r r l r r rn t ly  l i tni tcd to about 1 n l c t c r  
lxtt I 0  n i c t c r s  consiclrrct l  poss ib le  - 
l a r g c  op t ics  tenrl t o  br bulkp/llc.avy, 
caiisitlg po in t ing / t rack ing  proh lcn ls  

2. F r a c t i o n  of wavclcngth a c c u r a c y  is 
p o s s i b l e  a t  1  m e t e r  diameter. F a b -  
r i ca t ion  difficirltics l i m i t  l a r g e  op t ics  

3 .  C u r r c n t  ilpper bound uf 100 M W  u i t h  
10 1nctc.r opt ics  lit l l i tcd by n i a t c r i a l s  

h e a t i n ~ ,  u.lriclr i n c r r m a s c s  wi th  d c c r e a s -  
ing X ( c u r r e n t  l o w c r  bound is  
A - 0. 3 p r ~ ~ )  

4. Xlatcr ials  performance l i m i t e d  by c u r -  
r ~ n t  rt-[lcctivity, t r a n s r n i s s i v i t y ,  and 
absorp t ion  for windows. Icnscs .  and 
m i r r o r s  

5. S y s t c n l s  in tegra t ion  s tu t l i cs  lacking. In 
s p a c e ,  cooling s y s t c n l s  a n d / o r  r a d i a t o r s  
 nay bc. rccluirctf for op t ics  s y s t c ~ ~ ~ s  in 



Table 3 (contd) 

Point ing 
and 

T r a c k i n g  

SuI>systc~m 

- 5  
D i v e r g r n c r  of 10 r a d  d c m o n s t r a t V d  in  
l u n a r  rangina.  point in^ a c c u r a c y  of 
2 r r a d  sch icvcd  i n  Orbi t ing A s t r o -  
nornical  Obsc rva to ry ,  NASA 1'185 goal  
Tor ~ o i n t i n g  i s  5 x lo*' rad lhlOT p r o -  
g r a r t ~ ) .  

- 

T o t a l  angu la r  uncc.rtarnly (rnt l t i d~ny  hi-a111 
(lit c.rar.ncc and a tniosptir. rzr  d z s t u r l a n c o s )  
of 10 -8  to  10-6 r a d  w ~ l l  he ri-qtrlrvd In 
e a r t h  orbr l .  Advaot t.d p h a r c d  . ~ r r a y s  or  
l a s e r s  ~ l l l  r cqu l r tb  - 3 x 10-11 rncl 
a c c u r a c y .  

P r t ~ s c n t  L imi t a t ions  

T r a n s n t i t -  
t ing hlcdium 
( A t n ~ o s p h v r c  

J1roblt.rns 

- 
Ta  rgct 

1 In t e rac t ions  

C u r r ~ n t  s t a t c  of a r t  not  ycat w ~ l l  d rv r lopcd .  
T r r a t m ~ n t  d i f f icul t  becauac. t f f ~ c t s  m a y  bc  
loca l i zed ,  but n ius t  bc i n t r g r n t c d  o v e r  path 
lengtlr i n  spactb  and,  poss ib ly ,  t ime.  I<now- 
l r d g c  l inti tcd by clifliculty of n ~ o d e l i n g  l a r ~ i -  
l>eam,  high powcr  r .xpcr in i rnts  i n  t h r  atniou 
phcrr.  Thcrt .  art. bcam s i z e  and  rnrrfiy 
rlux l r v r l  r~ffccts .  

IJroblr,rjis inclurlr: 

11 I.:fft-cts of winds ,  t l u t ~ r i d ~ t y ,  l n p s c  rntrx 
( t t ~ t ~ i p r ~ r n t n r t ~ l ,  dens i ty  changes ,  p a r  - 
t iculalr .  n ~ e t t s r  ( l~qujc l ,  so l id ) ,  anti 
l u r l ~ u l c n c t ~ .  

2) Disp t . r s~on ,  r i - f rac t ion.  sc in t i l la t ron.  
3 )  Slant  p a t h s / o l ~ l i q u r  anplr,s, l rn r  or 

s i ~ h t ,  hor izon approach.  
4 )  Sca t t c r inp ,  c .  g . ,  I<eylr ;gh,  s t i ~ l ~ u l a t r d -  

R 3:nan. st irriulated- f3ri l l o u ~ n .  
5 )  I , a s r r  i n t r r a i t t o n q  such  an  I>c*am 8tr.r.r- 

ing ,  t h r r ~ n a l  Iloorrring, a t l l iosphrr i  t 
l ~ ra t ing / t~ r r*a )edown,  th r rn ra l  rlcloc usrng, 

SurCar (* snrl Imlk da:nage to  opL1c s c- l rnrrnls ,  
beginning s t a g e s .  Range o l  phpnomrna  caspr.c~ally fo r  ClV opc-ratron. P l a s r r ~ x  Tor- 
clifficult to c x p l a i n / c l a s s i l y ,  t h r r r  arc. n l a t ~ o n / a t > s n r p t ~ o n  (twan, blockrnfil. Or h- 
n u m e r o u s  variables. hlodclinp, d l l f icul t -  

locusi r~f i  ;3r iusrnn, 

niunl pulsrny for  h ~ a t ~ n p / c o o ! * n ~  anrl \ a p o r -  
I r s  a r s  appa r rn t .  i x a t ~ n n  of propr l l an t s .  I n t i . n ~ r / ~ r c c  lsr* 

R e c c i v r r /  
Convc r t s  r  

N o  c.lcvrlopmt.nts t o  da tc  fo r  I n r ~ r - e c n l c  
l a s e r  s y s t r r n s  ( p a p r r  studies only). htay 
r e q u i r e  b reak th roughs  bcyond c u r r e n t  
s t a t e  of ar t .  

LIa tch~nl :  wit11 l n s r r  sys tc .ms,  low r f f l r ~ r n r  v ,  
l a r y e  s r l r ,  t h~- r t r i a l  anrl s p ~ n r t - - r t * l a t ~ r I  
dcj i radat ion,  ~ r i a s s ,  r ad ra to r  dvsipn for  
wastt- h r a t  rrrrroval,  s rn lu l e t ton I t t . s t i n~ .  
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d i r e c t l y  f r o m  these f ac to r s .  In fo rmat ion  on g e n e r a l  and spec i f i c  p r o b l e m s  h a s  

been  gleaned f rom r e f e r e n c e s  5, br 21, 23, 28. 29, 33, 36, 33, 58, and 63. 

A reasonab le  c l a s s i f i ca t ion  m a y  then be  m a d e  accord ing  t o  t h e  v a r i o u s  sub-  

s y s t e m s  involved, as shown in T a b l e  3.  T h e  r e m a i n d e r  of th is  sec t ion  will  b e  

devoted main ly  t o  l a s e r s  and  op t i c s ;  p r o b l e m s  re la t ed  to t r a n s m i s s i o n ,  atmos - 
p h e r i c  d i s tu rbances ,  and recep t ion  wil l  b e  d i s c u s s e d  briefly in subsequent  

s e c t i o n s .  

1. P o w e r  S o u r c e s  

If it is a s s u m e d  t h a t  t h e  u s e  of h igh-power  l a s e r s  f o r  p ropu l s ion  p u r p o s e s  

would be too in f requen t  t o  jus t i fy  s p e c i a l  power  s o u r c e s  f o r  t h e i r  act ivat ion,  

t h e n  exis t ing  t e r r e s t r i a l  power  s o u r c e s  a r e  t h e  a l t e rna t ive .  These m a y  be 

c o m m e r c i a l  e l e c t r i c  o r  n u c l e a r  power  genera t ion  fac i l i t ies .  Thus ,  a ground- 

based l a s e r  f ac i l i ty  would r e q u i r e  locat ion  in  c l o s e  p r o x i m i t y  to a large power  

s t a t i o n  o r  power  grid. ~ a n t r o w i t z ' ~ )  e s t i m a t e d  that a p p r o x i m a t e l y  1 G W  of 

beam power on t a r g e t  would be r e q u i r e d  t o  p lace  a I - ton  payload in low e a r t h -  

o r b i t .  F o r  c o m p a r i s o n ,  Arno,  e t  al. , 128' r a t e  t h e  output of t h e  Grand  Coulee 

Dam as 1. 9 GW. I n  t h i s  c a s e ,  a n  o v e r a l l  e f f ic iency (of l a s e r - d e l i v e r e d  power )  

of approx imate ly  5070 would b e  needed,  a value  f a r  too opt imis t ic .  Rom and 

~ u t r e ' ~ '  as s u r n e  tha t  o v e r a l l  e f f ic iencies  of conver t ing  ground-based e l e c t r i c a l  

e n e r g y  t o  h e a t  onboard a vehic le  m a y  b e  in t h e  range  of 10 t o  5070; t h e s e  values 

are  not cons i s t en t  with the c u r r e n t  s t a t e  of t h e  a r t  and a r e  m u c h  too high.  T h e  

u s e f u l  e n e r g y  output of the r e c e i v e r / c o n v e r t e r  is m o r e  likely I;, be m u c h  l e s s  

t h a n  1% of t h e  l a s e r  input ene rgy ,  even ignor ing the  eff iciency of the  power  

s o u r c e ,  This is due  to t h e  r a t h e r  low e f f i c i enc ies  of t h e  l a s e r / a p t i c s / t r a n s -  

m i s s i o n  s y s t e m ,  a s  well i.s r e c e i v e r / c o n v e r t e r  efficiency. 

2. L a s e r s  

Because  l a s e r s  have been the  sub jec t  of extens ive  r e s e a r c h  and develop- 

m e n t ,  many p r o b l e m s  re la ted  t o  propuls ion  a l r e a d y  m a y  b e  anticipated.  In -  

c r e a s i n g  l a s e r  output i s  not s i m p l y  a m a t t e r  of i n c r e a s i n g  t h e i r  s i z e ,  because  

l a s e r s  a r e  diff icul t  t o  s c a l e .  This i s  due  t o  t h e  fac t  tha t  t h e  combination of 

physica l  phenomena involved d o e s  not usua l ly  s c a l e  l inea r ly ,  and a l s o  because  
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s p a t i a l  i n i ~ o n ~ o g e n e i t i e s  m a y  b e c o m e  m o r e  c r i t i c a l  with I n c r e a s i n g  s i v e .  In  

addi t ion,  p r e p a r a t i o n  of l a r g e  l a s i n g  e l e m e n t s ,  e. g. , so l id  rods ,  without  i m  - 
pe r i cc t ionn  is diff icul t .  E t u m e t t  ( 3 6 )  s t a t e s  t h a t  two of t h e  m a s t  s i g n i f i c a n t  

o b s t a c l e s  t a  achiev ing  h igh  a v e r a g e  p o w e r  a r e  l ow  c o n v e r s i o n  e f f ic iency  and  

nonuni for ln i ty  of exc i ta t ion .  It b e c o m e s  m o r e  d i f f icu l t  to  a c h i e v e  u n i f o r m  

exc i t a t i on  a s  t h e  s i z e  is i n c r e a s e d ,  p a r t i c u l a r l y  i n  t h e  c a s e  of l a r g e  g a s  l a s e r s ;  

n o n u n i f o r m i t i e s  c a u s e  o p t i c a l  s c a t t e r i n g  2nd p o w e r  l o s s .  I n  m o l e c ~ l a r  g a s  

l a s e r s ,  o p t i c a l  b reakdown  of g a s e s  a t  high p o w e r  d e n s i t y  m a y  c a u s e  uncon t ro l -  

( 3 8 )  O t h e r  p r o b l e m s  a r c  l i s t e d  in T a b l e  3 .  l e d  o s c i l l a t i o n s ,  a c c o r d i n g  to  Wood. 

L a s e r s  f o r  induced fus ion  have  s p e c i a l  p r o b l e m s  of their  own b e c a u s e  
(20. 21. 47. 48) If , m l l ~ t i p ~ e  t h e y  r e q u i r e  u l t r a - s h o r t ,  high - e n e r g y  puls  e s .  

l a s e r  b e a m s  a r e  used,  t h e  b e a m s  m u s t  be a c c u r a t z l y  s y n c h r o n i z e d ,  a n d  a c c u r -  

a t e l y  focused  on  a v e r y  s m a l l  volume; the  width and s h a p e s  of t h e  p u l s e s  m u s t  

be  c a r e f u l l v  coutrollecl t o  avo id  d e s t r u c t i v e  inf luences .  ('l) It h a s  j u s t  been  r c -  

ported(64) t h a t  ki lojoule  p u l s e s  f o r  fus ion  r e s e a r c h  h a v e  been  ach ieved  in 

F r a n c e ,  a n d  b y  Sanclia and  L o s  A l a m o s  in  t h e  United S t a t e s .  T h e  F r e n c h  

ach ieved  th i s  l e v e l  in 100 p i c o s e c o n d s ,  yielding a b r i e f  p o w e r  of a b o u t  10 t e r r a -  

w a t t s .  S o o n  i t  m a y  b e  p o s s i b l e ' t o  t e s t  t h e  p red ic t ion  of X - r a y  e n e r g y  f r o m  s h o r t  

p u l s e s  as  s u g g e s t e d  by Whi tney  a n d  Dav i s .  (49)  A s  l a s e r  p u l s e s  b e c o m e  i n c r e a s -  

ing ly  s h o r t e r ,  t h e r e  wil l  b e  a c o r r e s p o n d i n g  need  f o r  d i a g n o s t i c s  with su f l i c i en t  

t i m e  resoluticrn and i n c r e a s e d  capab i l i t i e s  i n  t h e  X - r a y ,  u l t r a v i o l e t ,  and i n f r a r e d  

wavelength  r eg ions .  ( 4 7 )  T o  r e q u o t e  r e f e r e n c e  47, "The m a j o r  l ong- range  

d i f f icu l ty  i n  deve loping  a l a s e r - f u s i o n  p o w e r  r e a c t o r  wi l l  be  a n  a r r a y  of engin-  

e e r i n g  p r o b l e m s  tAat wi l l  m a k e  t h e  p l ~ y s i c s  p r o b l e m  look t r i v i a l .  '' 

Although not d i r e c t l y  r e l e v a n t  t o  t h e  deve lopmen t  of l a s e r s  anci l a s e r  

p ropu l s ion  s y s t e m s ,  t h e  e f f e c t s  of l a s e r  r ad i a t ion  on the h u m a n  e y e  are p e r t i n -  

e n t  t o  s a f e t y  a t  g round f a c i l i t i e s  a s  we l l  a s  to manned  m i s s i o n s .  A c o m p r e h e n -  

s i v e  t r e a t m e n t  of t h i s  s u b j e c t  was  g iven  by  Makous  and Could. (65'  T h e y  l i s t  

f ive  p o s s i b l e  e f fec ts  on t h e  h u m a n  eye:  ( 1 )  t h e r m a l  (hea t ing ) ,  ( 2 )  e l e c t r i c  

f ie ld,  ( 3 )  e l e c t r o s t r i c t i v e  s t r e s s ,  ( 4 )  r ad i a t ion  p r e s s u r e ,  and  ( 5 )  photochen.1ical 

e f fcc ts .  Of c o u r s e ,  h i g h - e n e r g y  l a s e r s  a l s o  m a y  cause d a m a g e  to  o t h e r  t i s s u e s  

b e s i d e s  t h e  eye .  T h e  extent of d a m a g e  due  t o  t h e  f i v e  e f f ec t s  d e p e n d s  on w a v e -  

length,  e n e r g y  leve l ,  a n d  c u r a t i o n  of e x p o s u r e .  A l a r g e  n u m b e r  of c a s e s  a r e  

poss ib l e .  T h e o r e t i c ~ t  d a r n a g e  t h r e s h o l d s  f o r  a 25  p s e c  l a s e r  p u l s e  m a y  o c c u r  
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in the range 0. 2 t o  8. 4 e r g s ,  depending on va r ious  ccndi t ions .  I t  is s u r p r i s i n g  

that a kilojoule pu l se  d i r e c t e d  into the  e y e  h a s  sufficietlt  momentum t o  i m p a r t  

a speed of 4000 k m / s e c  to a b s o r b i n g  t i s s u e s  hav ing  the dens i ty  of wa te r .  
( 6  5) 

3 ,  Opt ics  

Fur t l l e r  developments  i n  h igh-power  lasers  are being h a m p e r e d  b y  pro11 - 
l e m s  re la ted  t o  optics  and o p t i c s  sys tems  f o r  t r a n s ~ n i t t i n g  and receiving.  Opt ics  

e l e m e n t s  inc lude  ~vindows ( f o r  t r a n s m i s s i o n ) ,  It-nsc*ri (for f o c u s i ~ l g  and beam 

a d j ~ i s t m e n t ) ,  and m i r r o r s .  Cons ide ra t ions  f o r  Laser propuls ion  in t roduce  addi- 

t i o n a l  p rob lems .  A br ief  cliscussion of opt ics  p r o l ~ l e l ~ ~ s  rc la tcd  to o rb i t a l  l a s e r  

power - s t a t ions  was given b y  Hansen and L e e ;  (231 some  optics p rob lems  a r e  

l isted h e r e  i n  Table 3 ,  Aside from cost ,  the main op t i c s  p rob lems  for laser 

spacc appl ica t ions  fal l  into o n e  of the  fo l lowing  c a t e g o r i e s :  

1 )  Des ign and pc r fo rn iance .  

2 )  F a b r i c a t i o n  and qual i ty  cont ro l .  

3) M a t e r i a l s  development .  

4 )  ~ a s e r / o ~ t i c s  in te rac t ions .  

5) T e s t i n g  tmethods. 

6 )  Long-du ration p e r f o r m a n c e .  

Many p r o b l e m s  are r e l a t e d  to s i z e ,  bccai ise opt ics  of the  o r r l r r  of 10 trlcat- 

ers  o r  l a r g e r  a r c  anticipated f o r  s p a c e  applicat ions.  Thc  p r c s c n t  s ta te  of  t l ~ c  

a r t  is ce r t a in ly  1 m e t e r ,  with 10 m c t o r s  c o n s i d c r t ~ d  feas ib le ;   optic^ of t h e  

o r d e r  of 100 lnc ters  would  r e q u i r e  several tcclinological b reak th rou ,  Only 

a b r i c l  d i s c u s s i o n  of problems can be  p rcscn tcd  h c r c .  The scope  of p  - ~ b l r m s  

is l arge  i ndeed ,  but the  reader  rmay accjuil.e an insight  into tlic fielcl f r o m  a  

col lec t ion  of 8 3  p a p e r s  published b y  NASA i n  1970. (66) 

T h e  d e s i g n  a n d  f ab r i ca t ion  of l a r g c  optics  n i t h  s i ~ r f a c c  a c c u r a c y  to  a 

f r a c t i o n  of a wavelength, and acccp tab le  s u r f a c c  rol~gllness, i s  a ct?allenging 

p rob lem.  L a r g e  optics tend t o  b c  1 ~ 1 l k ) r  and heavy ,  w l ~ i c l l  magnifies p r o l ~ l c m s  

a s s o c i a t e d  with b e n d i n g  a n d  t h e r m a l  s t r c s s ~ s ,  nlounting, and m o t ~ i l i t y  rcqui red 

by  pointing and t racking,  a n d  t r a c k i n g  response. Quali ty cont ro l  is impor tan t  

wi th  respect  t o  s u r f a c e  accuracy but a l s o  t o  m a t e r i a l s  utiiformity, i .  e. , h i ~ h 1 y  

3 0 
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hornogeneous  m a t e r i a l s  without  m i n u t e  voids ,  i nc lus ions ,  o r  g r a d i e n t s  i n  

phys i ca l  p r o p e r t i e s  a r e  d e s i r a b l e .  New a n d  i m p r o v e d  m a t e r i a l s  a r e  needed  f o r  

wavelength  app l i ca t ions  o u t s i d e  the v i s ib l e ,  e .  g. , X - r a y ,  u l t r av io l e t ,  a n d  

i n f r a r e d .  F a b r i c a t i o n  of l a r g e  m e t a l l i c  m i r r o r s  h a s  been  i m p r o v e d  t h r o u g h  t h e  

u s e  of e l e c t r o f o r m i n g .  (67) which p e r m i t s  high a c c u r a c y ,  d e c r e a s e d  weight ,  and  

reduced  t i m e  a n d  c o s t  of f ab r i ca t ion .  G e n e r a l  E l e c t r i c  h a s  p roduced  3 meter ,  

and  l a r g e r ,  m i r r o r ;  u s ing  t h e  p r o c e s s .  G l a s s  t echno logy  h a s  been i m p r o v c d  

s igni f icant ly  t h rough  the i m p e t u s  of l a s e r  deve lopmen t .  (68)  

The i n t e r a c t i o n  of h igh-power  l a s e r  beams with  op t i ca l  componen t s  p r o -  

d u c e s  l o c a l  hea t ing  and  m a y  l e a d  to n o n l i n e a r  o p t i c s  (NOL) phenomena ,  e. g. 

( s e e  r e f e r e n c e  691, various s c a t t e r i n g  e f f e c t s ,  and damage, dcgra.dation, or 

d e s t r u c t i o n  of  s u r f a c e s  o r  bulk m a t e r i a l s .  T h e r m a l  o r  m e c h a n i c a l  s t r e s s  con-  

c e n t r a t i o n s  may  l e a d  to o p t i c a l  d i s t o r t i o n ,  f r a c t u r e ,  o r  l o c a l  m e l t i n g  in m a t e r -  

ials sub jec t ed  t o  pulsed  l a s e r s .  Bulk a n d  s u r f a c e  d a m a g e  h a s  been  d i s c u s s e d  

b y  s e v e r a l  i n v e s t i g a t o r s .  (70, 71, 72 )  
Damage m e c h a n i s m s  inc lude  t h o s e  d u e  

t o  p a r t i c u l a t e  i nc lus ions  (h igh  l o c a l  s t r e s s e s ) ,  t h e r m a l  s t r e s s  c o n r ~ ~ l t r a t i o n s ,  

se l f - focus ing  (non l inea r  dependence  be tween  r e f r a c t u r e  index  and  l o c a l  e l e c t r i c  

f ie ld) ,  a n d  e l e c t r o n  a v a l a n c h e  ( c a u s e d  b y  se l f  - focus ing) .  E x p e r i m e n t s  h a v e  

been  p e r f o r m e d  on  a  v a r i e t y  of m a t e r i a l s  and  t y p i c a l  p o w e r  f luxes  t h a t  l e a d  t o  

breakdown i n  op t i ca l  m a t e r i a l s  h a v e  b e e n  publ ished.  ' 7 0 v  72) If the  d u r a t i o n  

of u l t r a - s h o r t  p u l s e s  is of t h e  o r d e r  of t h e  a c o u s t i c  w a v e  propagat ion ,  t h e r m a l -  

ly - induced  p l a n e - w ~ v r  s t r e s s e s  m a y  o c c u r  i n  window m a t e r i a l s .  ( 7 3 )  Al l  of t h e  

p r o b l e m s  d i s c u s s e d  h a v e  s o m e  d t p e n d e n c e  o n  wavelength ,  p o w z r  f lux l eve l ,  and  

du ra t ion  of e x p o s u r e  t o  l a s e r  r ad i a t ion .  

O t h e r  areas of c o n c e r n  f o r  l a r g e  o p t i c s  i nc lude  m e a n s  f o r  a s s e s s i n g  

m a t e r i a l s 1  homogenei ty ,  po l i sh ing  and  t e s t i ng ,  and  d i m e n s i o n a l  s t ab i l i t y .  Di -  

m e n s i o n a l  s t a b i l i t y  of o p t i c s  on  t h e  g r o u n d  i s  i m p o r t a n t  a n d  is inf luenced b y  

a t m o s p h e r i c  i n t e rac t ions ;  in space, Zong-duration d i m e n s i o n a l  s t a b i l i t y  m a y  be 

c ruc i a l .  N o u t h e r m a l  f a c t o r s  t h a t  a f f ec t  d i m e n s i o n a l  s t a b i l i t y  inc lude  ( 1 )  r e l a x -  

a t i on  of r e s i d u a l  s t r e s s e s ,  (2)  p h a s e  c h a n g e s ,  ( 3 )  a n i s o t ~ o p i c  p r o p e r t i e s ,  

( 4 )  c h e m i c a l  g r a d i e n t s ,  (5 )  p h y s i c a l  p r o p e r t y  c h a n g e s ,  and (6)  i n -o rb i t  o r  space 

changes in phys i ca l  p r o p e r t i e s .  (74s 75)  Radiation f o r c e s  p r o d u c e  bending 

moments as well.  (2 3 
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5. PROBLEMS ASSOCIATED WITH POWER TRANSMISSION 

In  t h i s  s ec t ion ,  s o m e  p r o b l e m s  assoc ia tec l  with b e a m  d i v e r g e n c e ,  po in t -  

i ng  a n d  t r a c k i n g ,  a t m o s p h e r i c  i n f luences ,  a n d  las  e r  - t a r g e t  i n t e r a c t i o n s  wil l  

be d i s c u s s e d  b r i e f ly .  

1. L a s e r  Beam D i v e r g e n c e  

E v e n  i f  o p t i c s ,  and point ing and  t r a c k i n g  a r e  p e r f e c t ,  l a s e r  b e a m s  d i v e r g e  

s l i g h t l y  b e c a u s e  t h e  op t i c s  a r e  d i f f r ac t ion - l imi t cd .  ' 2 3 )  Tile d i f f r a c t i o n  ol a 

p a r a l l e l  beam of r ad i a t ion  of wavelength  X b y  a c i r c u l a r  a p e r t u r e  of d i a m e t e r  d  

s c a t t e r s  t h e  r ad i a t ion  th rough  a half - ang le  9 = 1. 2 2  X /d, w h e r e  the c o n s t a n t  

1. 22 arises f r o m  t h e  m a t h e m a t i c s  of F r a u n h o f e r  d i f f rac t ion .  B e c a u s e  r e a l  

( e s p e c i a l l y  l a r g e )  o p t i c s  canno t  b e  f a b r i c a t e d  t o  a p p r o a c h  the  d i f f r ac t ion  l imi t ,  

m a n y  a u t h o r s  '5' 2 3 )  u s e  a l a r g e r  va lue ,  s u c h  a s  2. If D is t h e  d i a m e t e r  of t h e  

r e c e i v e r ,  then  t h e  r a n g e  R at which  focus ing  is a c c o m p l i s h e d  is a p p r o x i m a t e l y  

R = dD/2X. The r a n g e  m a y  be i n c r e a s e d  b y  i n c r e a s i n g  t h e  r e c e i v e r  and t r a n ~ -  

r n i t t e r  d i a m e t e r ,  o r  d e c r e a s i n g  the  wavelength.  A t  d i s t a n c e s  l a r g e r  t han  R ,  
2 

t h e  beam power  d e n s i t y  d e c r e a s e s  i n v e r s e l y  as R . It i s  t o  be noted t h a t  t h e  

d i f f r a c t i o n  a n g l e  of o n e  b e a m  i n  a phased  a r r a y  of Tu' l a s e r s  is r e d u c e d  by a 

f a c t o r  of N. ( 2 3 )  

L a s e r  beam d i v e r g e n c e  i n  p r e v i o u s  l u n a r  r ang ing  e x p e r i m e n t s  h a s  been  

e s t i m a t e d  v a r i o u s l y  as 2 w 1 0 ' ~  t o  r ad i an .  (" 23) Rorn and  ~ u t r e " '  e s t i -  

m a t e  t h a t  a b e a m  d i v e r g e n c e  of abou t  5 x r a d i a n  would be a c c e p t a b l e  f a r  

o r b i t a l  s y s t e m s  at 1000 km wi th  10 m e t e r  op t i c s .  To m a x i m i z e  t h e  power  r e -  

c e p t i o n  of a v e h i c l e  with f ixed receiver size moving away f r o m  earth, i t  m a y  be 

n e c e s s a r y  t o  c o n t r o l  b e a m  d i v e r g e n c e  as a function of t i m e .  T e c h n i q u e s  of t h e  

t y p e  s u g g e s t e d  b y  ~ a s s e ~ ' ~ ~ '  m a y  be useful i n  t h i s  rega l ld .  

2. Po in t ing  a n d  T r a c k i n g  

- 6 Poin t ing  a n d  t r a c k i n g  p r e c i s i o n  of 5 x 10 radian h a s  been d e m o n s t r a t e d  

i n  ea r th -based  a s t r o n o m i c a l  t e l e s c o p e s  '23) d e s p i t e  t h e  fact t h a t  expected d i s -  

p e r s i o n  d u e  to a t m o s p h e r i c  d i s t u r b a n c e  i s  of t h e  o r d e r  of l o m 5  radian. (5 ,  23) 
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- 8  I n  v a r i o u s  bal loon e x p e r i m e n t s  point ing a c c u r a c i e s  in t h e  r a n g e  4 x 10 t o  

2 x r a d i a n  h a v e  been  ach ieved .  ( 2 3 1  77) The orbit in^ A s t r o n o m i c a l  O b s e r v -  - 
story (OAO) h a s  ach ieved  a poin t ing  a c c u r a c y  of 2 x I O - ~  t a  2 x r ad i an .  (2 3 )  

NASA p r o g r a m s  wi l l  r e q u i r e  t r a c k i n g  a c c u r a c i e s  of t h e  o r d e r  af l oq8  r ad ian  by 

1985. 

Poin t ing  a n d  t r a c k i n g  r e q u i r e m e n t s  f o r  laser p ropu l s ion  a r e  d i f f icu l t  to  

a n t i c i p a t e  and ,  of c o u r s e ,  a r e  dependen t  on the  s y s t e m  and  mission.  Hansen  

and ~ e e ' ' ~ )  s u g g e s t  t ha t  point ing a c c u r a c y  shou ld  be half  tha d i f f r a c t i o n  limit, 

T r a n s m i s s i o n  th rough  t h e  a t m o s p h e r e  wi l l  h a v e  g r e a t  i m p a c t  on  point ing and 

t r a c k i n g ,  a n d  t rac tk ing  r e s p o n s e  a c c u r a c i e s  l o r  a n y  l a s e r  p ropu l s ion  s y s t e m  

w h e r c  s u c h  t r a n s m i s s i o n  is r e q u i r e d .  ~ i n o v i t c h ' ~ '  h a s  suggested W e s t e r n  

moun ta in - top  sites for laser t r a n s m i t t e r s .  It a p p e a r s  t h a t  m a n y  l a s e r  a p p l i -  

c a t i o n s  wil l  r e q u i r e  o v e r a l l  a c c u r a c i e s  of t h e  o r d e r  of l o u 8  rad ian .  o r  b e t t e r ,  

w h i c h  i s  t h e  NASA 1985 goal .  

An i n s i g h t  in to  poten t ia l  r e q u i r e m e n t s  is a f fo rded  with r e f e r e n c e  t o  s o m e  

s i m p l e  c a l c u l a t i o n s  by Arno,  et al. , (28)  who h a v e  ca l cu la t ed  r e q u i r e d  l a s e r  

power f luxes  as a function of m i s s i o n  d i s t a n c e  i f  t h e  combined  d i f f r ac t ion  a n d  

poin t ing  a c c u r a c y  is lo - ' l r ad i an .  T h e i r  r e s u l t ,  based on t h e  a s s u m p t i o n  that 

beam e n e r g y  is u n i f o r m l y  d i s t r i b u t e d  o v e r  t h e  t a r g e t  spot ,  is r c p r o d t ~ c e d  i n  

F i g .  4. 

F i g u r e  4 ind ica t e s  t h a t  p r e s e n t  o p t i c s  wi l l  l i m i t  l a s e r  s y s t e m  u s e  t o  

rough ly  e a r t h  s y n c h r o n o u s  o r b i t .  

Lee a n d   ans sen'^^) po in t  ou t  t h a t  l i m i t s  a r e  i m p o s e d  on  point ing and 

t r a c k i n g  by t h e  unce r t a in ty  p r i n c i p l e ,  i. e .  , if h is P l a n c k '  s  cons t an t ,  h <  I&, 

w h e r e  I is  p o l a r  m o m e n t  of i n e r t i a  of a t r a c k i n g  e l e m e n t  with r e s i d u a l  ro t a t ion -  

al s p e e d  W, a n d  6 is t h e  a l l o w a b l e  a n g u l a r  unce r t a in ty .  It a p p e a r s  t h a t  r e q u i r e -  

m e n t s  f o r  p r e c i s i o n  phased  arrays in the f u t u r e  m a y  a p p r o a c h  t h i s  l i m i t .  
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DISTANCE, m 

Fig. 4. Power flux and a p p l i c a t i o l i  regimes 
(reproduced f r o m  A r n o ,  e t  al. ) 

V a r i o u s  conditions i n  the a tmosphe re  m a y  lead t o  t h e  a t t enua t ion ,  rcfrac-  

t i o n ,  d i s p e r s i o n ,  etc. ,  of laser b e a m s .  These  c o n d i t i o n s  m a y  bc c l a s s i f i e d  

r o u g h l y  i n t o  two g r o u p s :  ( I )  d i s t u r b a n c e s  t h a t  occur n a t u r a l l y  a n d  arc p r e s e n t  

i r r e s p e c t i v e  of a n y  l a s e r  beams and ( 2 )  disturbances t h a t  occur because  o f  

atmospheric i n t e r a c t i o n  wi th  a l a s e r  beam. B e c a u s e  t h i s  is a complex, 

r e l a t ive ly  new,  and p o o r l y  unde rstoocl f i e l d  a t  p r e s e n t ,  only token d i s c t i s s i o n  

is possible. 
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a. N a t u r a l  D i s t u r b a n c e s  

B c c a u s c  t h e  a t m o s p h e r e  con ta ins  v a r y i n g  t c m p c r a t u r e  and  d c n s i t y  g r a d -  

i e n t s ,  winds, t u r b u l e n c e ,  humid i ty ,  and  p a r t i c u l a t e  ~ n a t t e r .  i t  i s  c a p a b l e  of 

p roduc ing  a wide  v a r i e t y  of o p t i c a l  e f fec ts .  A t y p i c a l  c s a m p l e  i s  s c in t i l l a t i on  

(a twinkl ing e f fec t ) ,  w l ~ i c h  is c a u s c d  by t h c  p r e s e n c e  of v a r i a b l e  dens i ty  r eg ions  

t h a t  r e s u l t  fro111 t u r b u l c n c e  o r  moving  s t r a t i l i e d  l a y c r s  c r o s s i n g  a n  op t i ca l  

l ine-of -s ight .  Hcccn t  s a t e l l i t e  e x p e r i m e n t s  ( 7 8 )  c o n f i r m  t h a t  s c in t i l l a t i on  a t  

o r b i t a l  d i s t a n c e s  is within t l i c  Z i ~ n i t s  measu red  f o r  s t e l l a r  s c in t i l l a t i on .  A t m o s  

pher ic  a b s o r p t i o n  m a y  c a u s e  a l o s s  of bcan i  p o w e r  of the o r d e r  of 1 so?,, (6 )  

C h a r t s  f o r  a t m o s p h e r i c  t r ans imis s iv i ty  as  a f i~ t lc t ion  of wavclcngt l l  a r c ,  givctn in 

reference 79, and a  tab le  of  a t m o s p h e r i c  "windows" h a s  been g iven  by Mino- 

vi tch.  (7) If  s i a n a l  ve loc i ty  is a n  i m p o r t a n t  f a c t o r ,  then  two r eg ions  of t h e  -- 

a t m o s p h e r e  m u s t  b e  c o n s i d e r e d ,  a c c o  )*ding to ~ a ~ f i e l d : ' ~ ~ )  ( I )  t h e  un - i o n i l e d  

p a r t  ( t r o p o s p h c r c  and  s t r a t o s p h e r e )  and ( 2 )  t l ic ion izpd  p a r t  ( i onosphe re ) .  S ig -  

n a l  veloci ty  wi l l  v a r y  d i f f e r e n t l y  i n  t h e s e  two r eg ions .  

A t m o s p h e r i c  t u r b u l e n c e  is diff icul t  t o  t r e a t  b e c a u s e  of i t s  rand on^ c h a r -  

a c t e r  and  v a r i a t i o n s  in i t s  s c a l e  and intc ~ s i t y ;  i t  m a y  causc a t tenuat ion  and  

ct ispersion.  S c v e r a l  a n a l y s e s ,  (80, 81, 8 2 )  and  s o n ~ c  e spe l* imcn ta l  d a t a  ( 8 2 ,  8 3 )  

a r e  ava i lab le .  F r o m  t h e  s t andpo in t  of focrtsing, B a k k c r  and  V r i e n d  find 

that f a v o r a b l e  w e a t h e r  condi t ions  f o r  l a s c r  t r a n s m i s s i o n  inc lude  ( 1 )  c loudy o r  

o v e r c a s t  w e a t h e r ,  ( 2 )  l i gh t  o r  no w inds ,  a n d  ( 3 )  dur ing ,  o r  j u s t  a f t e r ,  l igh t  

r a in fa l l .  Presumably tl-lcse cotlclitions t end  t o  f a v o r  reduced  t u r b ~ r l c n c c ;  l lo\vcvcr,  

w a t e r  vapor  i n t r o d u c e s  a b s o r p t i o n  p r o b l e ~ n s .  Dowling ( 8 3 )  s u g g e s t s  a  f i r s t -  

o r d e r  c o r r e c t i o n  f o r  b e a m  d i v e r g e n c e  d u e  t o  t u r b u l e n c e  o v c r  a path length  L 
2 2 

s u c h  t h a t  0 = €lo2 + (KC ) L, w h e r e  0 i s  t o t a l  d i v e r g e n c e .  O D  is r l i vp rg rnc r  i n  
n 

a vacuum,  K is a p r o p o r t i o n a l i t y  cons t an t ,  a n d  C is a s t r u c t u r e  COI-lstant.  
n 

F i n e - s c a l e  t u r b u l e n c e  m a y  c a u s e  s tattering, which a l s o  m a y  r c s u l t  i ron1  w a t e r  

v a p o r  a n d / o r  p a r t i c u l a t e  m a t t e r .  

F e w  stuclics h a v e  been  made  of h igh -power  l a s e r  bcan l s  o v c r  l ong  pa ths ,  

a n d  m o s t  o l  them w e r e  p e r l o r m c d  at ground l cvc l .  Recen t ly ,  Mason and 

I,indberg(") s tud ied  thc  p ropaga t ion  of a  s m a l l  1 5  mW IIe-Ne l a s e r  o v e r  a n  

8 0  k m  path high above  t h e  d e s e r t  f l oo r  in New Mcxico;  c x p e r i n l c n t s  w e r e  con -  

duc ted  o v e r  a p e r i o d  of h o u r s ,  including d a y  a n d  night.  Ucam def lec t ions  of as  
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much as 20  m e t e r s  w e r e  o b s e r v e d  which,  i n  th i s  case, a m o u n t s  to de f l ec t ion  
- 3  

a n g l e s  of as m u c h  as 2 , 5  x 10 r ad i an .  T h i s  is one type  of beam s t e e r i n g .  In 

g e n e r a l ,  mos t  l a s e r  app l i ca t ions  wil l  r e q u i r e  beams d i r e c t e d  a long  s l an t  p a t h s  

t h r o u g h  t h e  a t m o s p h e r e .  Not  only  d o e s  t h i s  i n t roduce  g r e a t e r  a t m o s p l l e r i c  

a b s o r p t i o n  b e c a u s e  of a longer path length ,  b u t  t h e  p r o b a b i l i t y  of i n c r e a s e d  re-  

f r a c t i o n  and  nonhomogene i t i c s  is a l s o  i n c r e a s e d ,  

b. L a s e r -  A t m o s p h e r e  I n t e r a c t i o n s  

A s  yet, t h e r e  is l i t t l e  e x p e r i e n c e  with h igh -power  l a s e r  heaim p ropaga t ion  

t h r o u g h  t h e  a t m o s p h e r e .  On  a l a b o r a t o r y  s c a l e ,  it h a s  been  shown by Chodr,ko 

and   in"^) t h a t  m o d e s t  l a s e r  p o w e r  may  induce  t u r b u l e n c e  i n  a n  otherwise 

l a m i n a r  a t m o s p h c r e ,  and t h i s  is a c c o n l p l i s l ~ e d  at  s n r p r i s i n g l y  Tow Reyno lds  

n u m b e r s .  T h i s  is but o n e  e f f ec t  of g a s / a t m o s p h e r i c  heat ing.  I n s t a b i l i t i e s  

a s s o c i a t e d  wi th  o p t i c a l - a c o u s t i c  coupling of a l a s e r  beam in a n  a b s o r b i n g  gas 

h a v e  been  d i s c u s s e d  by B r ~ z e c k n e r  a n d  J o r n a ,  (86'  Localized hea t ing  may c a u s c  

t h e r m a l  clefocusing, which is d i v e r g e n c e  r e s u l t i n g  f r o m  c h a n g e s  in  r e f r a c t i v e  

i n d e x  t r a n s v e r s e  t o  t h e  b e a m  c e n t e r  l ine .  

V a r i o u s  t h e o r e t i c a l  s t u d i e s  of non l inea r  t h e r m a l  p r o c e s s e s  in the a t m o s  - 
p h e r e  r e s u l t i n g  f r o m  l a s e r  b e a m  p ropaga t ion  a r e  ava i l ab l e ,  c .  g . ,  see refer -  

e n c e s  87 and 88. Such  t h e r m a l  p r o c e s s e s  depend on  op t i c s ,  a c o u s t i c s ,  

t h e r m o d y n a m i c s ,  fluid d y n a m i c s ,  and e l e c t r ~ n ~ a g n e t i c  t h e o r y ;  t h e y  a r e  very 

complex .  V a r i o u s  r e g i m e s  a r e  d e s c r i b e d  a c c o r d i n g  t o  w h e t h e r  cool ing  p r o c  - 
a s s e s  a r e  d o m i n a t e d  by  conduct ion ,  f r e e  convec t ion ,  o r  f o r c e d  convect ion .  

The t h e o r e t i c a l  r e s u l t s  of B i s s o n n e t t e  (88 )  h a v e  been  r ep lo t t ed  h e r e  in  F ig .  5. 

A c c o r d i n g  t o  B i s s o n n e t t e  t h e  t h r e s h o l d  below which t h e r m a l  d i s t o r t i o n  is 

p r a c t i c a l l y  neg l ig ib l e  c o r r e s p o n d s  t o  a F r e s n e l  n u m b e r  F = 1 ( ind ica t ed  in  

F i g ,  5). 

So -ca l l ed  t h e r m a l  b looming o c c u r s  when t h e  a t m o s p h e r e  b e h a v e s  as  a 

l e n s ,  which  m a y  de focus  a n d  d i s p e r s e  the beam.  T h e r m a l  b looming i s  no t  a 

d i r e c t  a t t enua t ion  e f fec t  b u t  r a t h e r  a n  e n e r g y  d i s p e r s i o n  e f fec t ;  it i s  c o n s i d e r e d  

a s e r i o u s  o b s t a c l e  t o  t h e r m a l  weapons  deve lopmen t .  (63) A c c o r d i n g  t o  B r a d l e y  

and H e r r m a n n  (89)  t h e r m a l  blooming is d i f f e ren t  a c c o r d i n g  to whether t h e  laser 
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Fig.  5. V a r i o u s  reg imes  of hor izonta l  propagation 
in a quiescent  atmosphere at  sea levcl  of a 
CW C 0 2  1as r cam.  Redrawn from 
B i s  sonnctte.  a$ 
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is opera t ing  in  a  continuous wave o r  a pu l se  tnode. Far  C W  opera t ion  the I~cated 

a t m o s p h e r e  bekaves l ike  a thiclc l e n s  with ahc r ra t io t l s ,  but in pulsed opera t ion  

t h e  l ens  is thin and located  n e a r  the focus .  A Incans of compcnsat ion  has  been 

suggested.  ( g 9 )  P i r r i  and w e i s s " )  s t a t e  tha t  t h e r m a l  blooming is not a p rob lem - 4 
when l a s e r  pu l ses  a r e  less than  10 s e c .  According t o  K l a e s ,  (' 3, t h e r m a l  

d i s to r t ion  is influenced b y  many  f a c t o r s  including a t m o s p h e r i c  op t i ca l  p r o p e r  - 
t i e s ,  the  range and power  of the  bcam,  beam d i a m e t e r ,  s t r eng th  of focusing, 

and winds. 

If l a s e r  beam in tens i ty  becomes  suf l ic ient ly  l a r g e ,  gas  breakdown and 

t h e  productinu of p lasma  o c c u r s .  Th i s  l e a d s  to beam blocking; if rcgians  of  

to ta l ly  ionized gas a r e  f o r m e d ,  u p  to l O O 5 b  of the  b e a m  encrgy  m a y  b c  absorbed .  

P l a s m a ,  and radiation d r i v e n  shock w a v e s  m a y  p ropaga te  u p  the  l a s c r  beam 

tonarc1 i t s  s o u r c e .  Obviously,  t h e s c  phenomena would b c  ~ ~ n a c c c p t z b l c  for both 

t h e r m a l  weapons appl ica t ions  and ea r th -bascd  l a s c r  s y s t e m s  f o r  propulsion.  

I n  clean, d u s t - f r e e  a i r ,  a  t l ~ r e s h o l d  pa:ver flux f o r  b reakdob~n  a t  a tmobpher ic  

p r e s s u r e  i s  of the  o r d e r  of 1 G l Y / c r n  , ( 5 '  o r  1 t o  10 G W / C ~  2(63)  l o r  p l ~ l s e d  

l a s e r s ,  depending on p u l s e  dura t ion .  Al thot~gh t l ~ e s e  f l u s  levels  ~vou ld  a p p e a r  

to bc sa fe  for m o s t  l a s e r  propuls ion  appl ica t ions ,  i t  is notrd tha t  171ilcl1 lowcr  

values o c c u r  \\'hen pa r t i cu la te  m a t t e r  is p r e s e n t  in t h e  a i r .  Prcsumal~lgr ,  

l o w e r  breakdown values would o c c u r  a t  high a l t i tnde  w h e r e  the  a i r  dcns i ty  is 

v e r y  low.  111 addition, KZass ( 6 3 )  r e p o r t s  tha t  th resho ld  brcakdo\vn i s  reduced a s  

t h e  beam s i z c  i n c r e a s e s ,  b y  a s  much a s  two o r d e r s  of rxagnitudc, b u t  i t  i s  a l s o  

t r u e  that  p l a s m a s  can be  c l e a r e d  out by  subs tant ia l  c r o s s  winds. 

T h e  p r e s e n c e  of p a r t i c ~ ~ l a t e  m a t t e r  i n  a i r  can c a u s e  opt ica l  sca t t e r ing ,  

c .  g. , Rayleigh sca t t e r ing .  Ou t s ide  the  e a r t h ' s  a t n l o s p h c r e ,  i n  so l i i r  spacc ,  

s o m e  l a s e r  beam attenuation f rom Raylc>igh s c a t t e r i n g  m a y  bc expected  dne t o  

r c s idua l  m a t t e r ,  bu t  th is  h a s  been shown t o  be a negtigiblc effect .  ( 2 3 )  o t h e r  

f o r m s  of s c a t t e r i n g  include s t imula ted-Raman  scat ter ing(")  and s t imula ted-  

B rillouin sca t t e r ing .  ( 9 0 ) .  
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4. L a s e r - T a r g e t  I n t e r a c t i o n s  

L a s e r - t a r g e t  i n t e r a c t i o n s  a r e  t o  be expec ted  whe13ever t h e  l a s e r  Iwatn is 

i n t e r c e p t e d  b y  a n  ob jec t  o r  a  s u b s t a n c e .  Excludinl;  t h e  atn-rospherc,  which 

a l r e a d y  h a s  been  d i s c i ~ s s e d  and  n?h ic l~  i s  not t ~ s u a l l y  a n  in ten t iona l  t a r g e t  e s -  

c e p t  i n  i n s t a n c e s  when e n e r g y  e s t r a c t i o n  f r o m  p l a s m a  i s  sought ,  thcrc- a r c  

n u m e r o u s  t a r g e t s  to c o n s i d e r .  T h e s e  m a y  vary f r o m  op t i c s  and  r e c t . i v e r / c u l -  

l e c t o r  s u r f a c e s ,  t o  p r o p e l l a n t s  s i t u a t e d  t o  prodtrce hea t ing  a n d / o r  vapori; .ation. 

A s u m m a r y  of p o s s i b i l i t i e s  i s  g i v e n  i n  T a b l e  4. C u r r e n t  r e s e a r c h  a p p e a r s  t o  

b e  concen t i a t e ;  in  t h r e e  a r e a s :  (1) s u r f a c e  da rnaae  Lo op t i c s .  ( 7 0 " 7 3 1 ( 2 )  m o -  . . -. 

mentum transfer and thrust  fro111 so l id  p r o p e l l a n t s ,  
(8- I i )  

and (3) b a s i c  s tud ies  

on  v a r i o u s  so l id  t a r g e t s  in vacutiln and  in d i f f e r en t  g a s e o u s  a t m o s p h e r e s .  ( 1 2 - 1 4 ,  

6 3 '  91) P r e s u m a b l y ,  a g r e a t  d e a l  of m i l i t a r y  r e s e a r c h  is being condtlctcd on 

the  b e h a v i o r  of cand ida t e  t a r g e t s  cxposcd t o  h igh-power  l a s c r  b c a l ~ l s ;  m i l c h  of 

t h a t  work  i s  c l a s s i f i ed .  B e a m  bloclcing and t h e r m a l  b l o o r n i ~ ~ g  a r e  important 

a s p e c t s  of c a t e g o r i e s  ( 2 )  and ( 3 ) .  

F. ENERGY CONVERSION 

Al l  l a s e r  propi i ls ion concep t s  t h a t  d o  not d i r c c t l y  u t i l i ~ e  thca e n e r g y  of a n  

impinging  l a s e r  b e a m  f o r  i m p u l s e  ( l a s e r - p o w e r e d  s a i l ) ,  o r  p r o p e l l a n t  hea t ing  

t o  p r o d u c e  t h r u s t ,  wil l  r equi re  some  form of e n e r g y  conve r s ion .  I n  the  case of 

l a s e r - e l e c t r i c  p r o p ~ i l s i o ~ ~ ,  ('" 29)  l a s e r  rad ia t ion  could bc used  t o  a u g m e n t  o r  

replace s o l a r  r ad i a t ion  f o r  l u n a r  o r  n c a r - e a r t h  m i s s i o n s ;  t h i s  e n e r g y  \voiild 

then  be c o n v e r t e d  t o  e l e c t r i c i t y  f o r  at1 electric prop\ i ls ion s y s t e n l .  If t h c  

t r a n s m i t t e r  i s  e a r t h - b a s e d ,  then  a t m o s p h e r i c  t r a n s m i s s i o n  p rob le tns  i n  po in t -  

ing  and  t r a c k i n g  m u s t  b e  c o m p e n s a t e d .  If, on thc! o t h e r  h a n d ,  t h e  powcr  s t a -  

t i on  i s  l oca t ed  in c a r t h - o r b i t  as s u g g e s t e d  b y  Hansen  and Lee, ( 2  3 )  t h e n  

a t ~ n o s p l l e r i c  p r o b l e m s  a r e  avo ided  but the laser  powe r - s y s t e m  d e s i g n  becomes 

m o r e  co lnp lex  due  t o  s i x e  and  weight  limitations. E n c r g y  f o r  an o r b i t a l  l a se r  

t r a n s m i t t e r  could b e  d e r i v e d  f r o m  the s u n ,  c .  a .  . sun-pllrnpcd so l id  l a s c r  o r  a 

sc l f -co~lta ined nucle  a r  so t i r cc .  
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Table  1. L a s c r / t a ~ g e t  in te rac t ions  

(921 Recently Shimada of 3PL s u m m a r i z e d  potential  l a s e r  conve r t e r s ,  re- 

produced h e r e  i n  Tab le  5. Of t h e  v a r i o u s  concep t s ,  t h e  s t a t e  of the a r t  is most 

advanced for photovoltaic and the rmion ic / t l~c rmor l ec t r i c  dcv ices .  Thc q u a n t u m  

eff ic iency of m o s t  photocliode m a t e r i a l s  h a s  a s t r o n g  wavelength clcpendence 

that peaks s h a r p l y  i n  s o m e  c a s e s .  (28)  Si l icon ce l l s .  i o r  cxarnple, have  a max- 

imum cjuantum eff iciency approach ing  70% a t  0, 8 t o  0. 8 5  pm, (23. 28) Even  

h i g h e r  ef f ic iencies  m a y  be  obtained a t  l o w e r  wave leng t l~s  (about 0. 6 pni )  by  

m e a n s  of an t i r e f l ec t ive  coatings.  (28 )  ~ a k a r n u r a ' ~ ~ )  has  pointed out  t h a t  s i l icon 

cells begin t o  c sh ib i t  nonl inear  p r o p e r t i e s  when the  incident  power  flux approach-  
2 

e s  100 M W / c m  , which exceeds  s o l a r  f lux ou t s ide  the ear th 's  a t m o s p h e r e  by a 

f a c t o r  o l  m o r e  than seven.  Unfortunately,  t h e r e  does  not s e e m  t o  b e  a c u r r e n t  

laser that  o p e r a t e s  nea r  the wavelength of peak e f f i c i ency  f o r  s i l icon ce l l s .  

Ther rn ion ic  and t h e r r n o e l c c t r i c  s y s t e t n s  may operate  a t  10. 6 pm (Tab le  5),  

but  not a t  very  high  convcrs ian  efficiency. H o ~ v e v c r ,  CdI-lgTc photovoltaic 

m a t e r i a l  m a y  o p e r a t e  at 10. 6 yn1 with efficiencies a s  h igh  a s  70::). ( 2 3 )  T h e  

CO g a s  l a s e r  o p e r a t e s  at 1 0 . 6  1~-m. 
2 

I t  em 

Opt ics  

P r o p e l l a n t s  

C o l l e c t o r s  

R e c e i v e r s  / 
C o n v e r t e r s  

W capons 
S y s t e m s  

i 
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Target 

Windows, l e n s e s ,  m i r r o r s  

1 .  Gas  ( seeded)  
2 Solid 
3 .  Pe l l e t s  {fusion) 

Spaceborne  m i r r o r s  

Mi l i t a ry  vcl l icles ,  a i r c r a f t  
a n d / o r  ~ n i s s i l e  s u r f a c e s  and 
s u b s y s t e m s  

Results of In te rac t ions  
- 

Sur face /bu lk  degrada t ion  a n d  
d a m a g e  nonl inear  opt ics  

1 .  Heating 
2. Heating, vapori7at ion and/or 

detonation 
3 .  Rapid hcat ing/ implos ion 

S u r f a c e  darnage/degradat ion  

Sur face  damagc /degrada t ion  

~ a ~ ~ ~ a g e / c l c s t r u c t i o n  



S 
r 
H 
m 

Table 5 .  Laser converters, after Shimada, JPL, 1974 (92) 
t-l 
=r g - 
K 
3 
B 
0 
w 
pl 
3 
p. 

5 
CIJ 
W 
I 
4 
N 
w 

Device  

1. Si s o l a r  cel l  

2. GaAs jr~nction 
cell 

3. Schottky 
b a r r i e r  cell 

4. Photocel l  

5. L a s e r  p lasma-  
dynamic 

6. Themmionic 

7. Thermoelectric 

8. Laser rec t i f ie r  

9. I nvc r sc  laser 

10. Tu rb in r  

I I ,  Cont rollrd 
fusion 

Input 
Power  

(w/crn2) 

< I 0 0  

-100 

< 100 

1 o2 

l o 2  - 10 3 

2 
10 - 10 

3 

I o2  

10- I  ? 

I o 3  

1 0 ~ 1 ~ .  peak 

Pr inc ip le  

Photovoltaic 

Photovoltaic 

Photovolta ic 

E l e c t r o n  
emiss ion  

l o n  emiss ion  

Electron 
emiss ion  

Scebcck Effcct 

Sonlinca r i ty  

Qua nturn 

Therma l  

Nuclear  

Optin~rtrn Wave- 
lengtk Ipm) 

0. 7 - 0. 9 
0. i - 0. 7 

0, 3 - 0. b 

- 0. 7 

-0 .  3 

10.6 

10. b 

> I .  000 

? 

10. h 

1. 0t1 

Max. Effi- 
ciency 

3 0 

4 0 

3 0 

30 

30 

15 

10 

i-0 ? 

30 ? 

? 

Prob lem 
A r ca s  

Sur face  recombination 
should be m i n i m i ~ c d  

Fabricat ion of increased  
act ive a r e a s  

Nccd c l  cctron collection 
with cxtrcmely low work 
function (< 1. 0 eV)  

Ion yield is n o t  kno\vn 

Good heat a b s o r b e r  i s  
rcqu i  rcd 

Good heat a b s o r b e r  is 
requi red 

I;3lcctronic c i rcu i t  t rch-  
n o l o ~ y  abnvr  I00 G H s  is 
nonexistent 

?.:..ans for efficient coup- 
ling of 1asi.r with workinc 
fluid is rrqtrired 

Technolop)- 
Availability 

Now 

1977 

1 9 7 5  

l Q F 0  

1 Q e O  

X o w  

Sou*  

19F 5 

? 

1 Q.!-0 



It i s  c l e a r  that  t11uc11 r e s e a r c h  and clcvclopmunt will b e  r equ i red  t o  protluce 

l a s e r  convcrs ion  sys lc rns  t h a t  can  b e  optin~i.rccI with r e s p e c t  to cff iciency,  wvavc- 

length,  l i fc t imc,  s i ze ,  ancl weight i;lr l a s e r  propuls ion  p u r p o s e s .  

G. OPTIMIZATION STUDIES FOR APPLICATIONS 

An i m p o r t a n t  cons ide ra t ion  in the  development of futu  re l a s c r  p r ~ p u l s i o n  

systelrls is t h e  amount  of 'lascr radiation that can be  dcliverorl to a given t a r g e t  

in a given i ~ ~ t c r v a l  of t i m c .  T o  m a s i m i x e  th i s  de l ivery .  two objec t ives  m a s t  

f i r s t  be a c c o r ~ ~ p l i s l ~ e c l :  ( I )  1:. rge l a s e r ;  and power  genera t ion  fac i l i t ies  n lus t  

be dcvclopcd tha t  a r c  both t cchn ica l ly  and e c r ~ n o n ~ i c a l l y  f eas ib lc  and ( 2 )  ~ n r a n s  

f o r  trans117ission of l a r g e  high-power,  w c l l - ~ : o l l i n ~ a t e d  l a s e r  beams  mus t  be  

deve loped .  To  th i s  cucl, m a n y  of t h c  p r o b l e m s  l isted in  T a b l e  3 niust  b e  s u r -  

mountccl. It i s  ant icipated b y  n ~ o s t  e x p e r t s  tha t  e v e r  Imorc \vavc.lengths will 

become available, that t h e  wavelength s p e c t r u m  will  be broadened ( l~opefu l lv  

in to  t h e  X-ray region),  and that much h igher  power l e v e l s  wi l l  beconlc poss ib le .  

It i s  l ike ly  tha t  p ~ i l s c d  l a s e r s  will beg in  to show m o r e  a n d  m o r e  a d v a n t a g e s  

o v e r  continuous wave typcs ,  but I ~ I L I C I I  warlc i s  necdcd to develop pulses  of op- 

t i m a l  shapc ,  dura t ion ,  ancl repeti t ion ra t e .  

P i r r i  a n d  ~ r e i s s ' "  r a i s c  t h c  following t echn ica l  qiicstions rrgi lrding 

l a s e r  p ropu l s io t~ :  

1) H o w  i s  c f f i c ionc)~  ~llasinl izecl  with rcspcc t  to pt11sc e n e r g y ,  dura t ion  

a n d  wave length ,  ambien t  p r e s s u r e ,  and  working fliiid ? 

2) How efficient arc t h e  e n e r g y  convcrs io t l  p r o c e s s e s  (absorpt ion ,  

heating. and espans ion)  basic to l a s e r  proptilsion ? 

3 )  How cfficicntly m a y  Iascr -propel lc t l  structures ( v e h i c l c s / s p a c c -  

c r a f t )  be des igned ? 

The qilestioll of eff iciency is impor tan t  because it  will, i n  p a r t ,  determine cost. 

M o s t  treatlmctlts of l a s c r  s y s t c n ?  cff icieucy a r e  e i t h e r  v a g u e  o r  incomplete  

(Section 11-C, L a s e r  P e r f o r m a n c e )  and d o  not inc lude  the ef f ic iency af subsys -  

tem components ,  e. g., the power  source o r  the optics .  For esample ,  P i r r i  
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and  ~ c i s s ' ~ )  define l a s e r  propulsion efficiency a s  the ra t io  of vehicle kinetic 

e n e r g y  to uti l ized l a se r  energy.  Even with perfect  energy  conversion,  they 

obtain n typical value of 60% f o r  propulsion efficiency. 

A m o r e  r ea l i s t i c  and sobe r  examination of the facts ,  e. g, , Nakamura,  ( 2 9 )  

d o e s  not give g r e a t  cause  for optimism. More  recent ly ,  ~ h i r n a d a ' ~ ~ )  compared 

c u r r e n t  technology with fu ture  goals for l a s e r  propulsion applications, r e p r o -  

duced he re  in  Fig .  6. Overa l l  ( sys tem)  efficiencies a r e  cur ren t ly  as  much  Less 

than  1% if the l a s e r ,  and i t s  power source, optics, and receivcr /c i . rnver ter  a r c  

considered.  An inc rea se  of s e v e r a l  orders of magnltudc would be r equ i r ed  to 

achieve Shimada's  sys tenl  e f f i c i ~ n c y  goal  of 10% o r  g r e a t e r ,  i. e . ,  1070 of the 

input power  to a l a s e r  would be available for propulsion as  the output of the 

r e c e i v e r  / conver te r .  

It appears  thal  definitive optimization studies fo r  l a s e r  propulsion m u s t  

await  fur ther  developments and substantial  advancements in the s ta te  of t he  art. 

Even  so, i t  appears  that more rea l i s t i c  analyses t h ~ n  previous t r e a tmen t s  ( fo r  

csa lnp les ,  s e e  re fe rences  6, 7, 8, 18, 2 8 )  a r e  possible a t  this t ime.  

A n  important  qllestion has been  ra i sed  b y  P i r r i  a n d  ~ e i s s " )  i n  that  

f u r t h e r  theore t ica l  analyses  o n  l a s c r  p ropuls io~l  sy s t ems  wil l  rcquil-c.  suppor t -  

i v e  expe r in~cn t a l  da-a in a number  of areas. To accomplish  this ,  ~ s p c r i m e n t s  

utilizing prototype m o d e l s  will be r c q u i r e d  u n d c  r p r o p e r l y  s i rnl~la tcd conditions. 

Typical  examples  are the  propagation of high-power l a s e r  beams t11rougl.l t1lc 

a tmosphere ,  and l a s e r / t a r g e t  in teract ions .  Th i s  i s  a difficult f ie ld  bccause  

many physical phenomena assoc ia ted  with these  p r o c e s s e s  d o  not s ca l e  readily,  

ancl even may bc shiited to en t i re ly  c l i f fc ren t  rcgint rs .  T h u s ,  it will be  diff icul t  

to s i ~ n u l a t c  t h e  interactions of l a r g e ,  l a s e r  beams with l a r g e  t a rge t s  on 

a labora tory  sca le .  Because ful l -scale  c x p c r i n ~ c n t s  will be costly and difficult 

to  just ify a p r io r i ,  means mus t  b e  found to accompl ish  meaninpf t~l  modcl cx- 

pcr i~ments .  
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3 + CURRENT RVEM 
- EFFlCi ENCY 

CURRENT TECHNOLOGY - GOAL 

SOURCE 

LASER CIG 

< 180 KWE < 1 MWE 
2-3 YEARS LlFE - 5-10 YEARS LIFE 
71-309k v--30% 

OEN C Y C L E  - CLOSED CYCLE 
1-10% 77-4060% 

-- 10M - 50M 
OPTICS HEAVY - VEUY LIGHT 

33-m q--9046 

R / t  'SOLAR' CELLS - 3 
T-IW% 

SYSTEM EFFICIENCY GOAL > 1096 

F i g .  6. Subsystem and system efficiencies for laser propu l s ion ,  
after Shimada, JPL, 1 974(q2) 
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H. SUMMARY AND CONCLUSIONS 

The v a r i o u s  concepts  of l a s e r  p ropu l s ion  tha t  have been proposed i n  rec -  

ent y e a r s  have b e e n  d e s c r i b e d  and d i s c u s s e d  b r i e f l y ;  v a r i o u s  appl ica t ions  a r e  

iisted i n  Tab le  1 and Fig. 1. Although t h e r e  h a s  b e e n  l i t t le  r e s e a r c h  and 

deve!opment d i r e c t e d  speci f ica l ly  t o w a r d s  l a s e r  propuls ion ,  an immense amount  

of work  has been done on l a s e r s  t h e m s e l v e s ,  and l a s e r  s y s t e m s .  L a s e r  

dev ices  and p e r f o r m a n c e  have  been reviewed h e r e  and a l a s e r  c l a s s i f i ca t ion  

a p p e a r s  in T a b l e  2. A t r u e  p e r s p e c t i v e  of t h e  potent ia l  f o r  l a s e r  propulsion.  

and competi t ion with o t h e r  f o r m s  of advanced propuls ion ,  can  h e  ;~.:hieved onlv 

b y  consider ing  t h e  e n t i r e  systsn.1: t he  power  s o u r c e ,  t h e  l a s e r ,  opt ics ,  

r e c e i v e r / c o n v e r t e r  and, in s o m e  appl ica t ions ,  a t m o s p h e r i c  t r a n s m i s s i o n  and 

e n e r g y  convers ion .  Unfortunhtely, such a p e r s p e c t i v e  is i m p o s s i b l e  t o  a c h i e v e  

at th i s  t ime b e c a u s e  informat ion  is lacking i n  many areas .  For example ,  much  

w o r k  has  been devoted t o  e n e r g y  convers ion  s y s t e m s ,  p a r t i c u l a r l y  in t h e  photo-  

vol ta ic  and t h e r m i o n i c  a r e a s ,  but none of t h i s  w o r k  h a s  been d i r e c t e d  spec i f i c -  

ally toward  l a s e r  appl ica t ions ,  T h e  l i t e r a t u r e  r ev iew given h e r e  is bel ieved to 

contain a l l  of t h e  signif icant  work  in  l a s e r  propuls ion  and,  in o t h e r  a r e a s ,  is 

thought t o  r e p r e s e n t  c u r r e n t  thdught and p r o g r e s s .  

B e f o r e  l a s e r  propuls ion  b e c o m e s  t echn ica l ly  and economica l ly  p rac t i cab le ,  

it will  b e  n e c e s s z r y  to develop (1) l a r g e  power  s o u r c e s  ( e l e c t r i c  o r  nuc lea r ) ,  

(2) l a rge ,  high-power l a s e r s  tha t  c a n  b e  pulsed rapidly,  and (3)  m e a n s  f o r  t r a n s -  

m i s s i o n  of l a r g e ,  wel l -col l imated  b e a m s  with highly a c c u r a t e  pointing and 

t racking.  It is probably  s a f e  t o  a s s u m e  tha t  adequa te  op t i c s  can  b e  developed 

in  the fu ture .  Many g e n e r a l  p r o b l e m s  h a v e  becn identif ied in T a b l e  3.  T h e  d e -  

velopment of l a r g e  baam power  l e v e l s  appears f eas ib le ;  if t h i s  p roves  t o  b e  

marg ina l ,  t h e  u s e  of mul t ip le  l a s e r s  in phased a r r a y s  i s  a  l ike ly  a l te rnat ive .  

A f o r m i d a b l e  obs tac le  t o  l a s e r  propuls ion  s y s t e m s  is tha t  projec ted  s y s -  

t e m  eff iciencies a r e  undoubtedir- m u c h  h igher  than could be  achieved cur ren t ly .  

e .  g. , s e e  F ig .  6. E x t r e m e l y  a c c u r a t e  pointing and t r a c k i n g  s \  s t e m s  will be 

requ i red  f o r  at l e a s t  two r e a s o n s :  (1 )  f a i l u r e  to i n t e r c e p t  a s igni f icant  por t ion  

of the  l a s e r  b e a m  a t  the r e c e i v e r  wilt cause povier l o s s  and g r e a t l y  reduce  s y s -  

t e m  eff iciency even though the  o t h e r  s u b s y s t e m s  a r e  adequa te  and (2 )  a p a r t i a l  
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miss could  cause c a t a s t r o p h i c  d a m a g e  t o  o t h e r  v e h i c l e  p a r t s  if a b e a m  of 

h igh -power  flux were t o  impinge on areas o t h e r  t han  the in tended  r e c e i v e r .  

For l ong - range  t r a n s m i s s i o n ,  this m a y  r e q u i r e  a s u b s t a n t i a l  p h y s i c a l  s e p a r a t i a n  

b e t w e e n  vehicle and r e c e i v e r .  In t h i s  r e g a r d ,  t he  d i f f icu l t ies  i n h e r e n t  i n  d i r e c t  

p r o p e l l a n t  hea t ing  concep t s  a r e  obvious.  

L a s e r  t r a n s m i t t e r s  m a y  be  g r o u n d - b a s e d ,  l oca t ed  in  e a r t h - o r b i t ,  o r  

c a r r i e d  a b o a r d  a veh ic l e ,  B e c a u s e  l a s e r  b e a m  i n t e r a c t i o n s  with t h e  a t m o s p h e r e  

i n t r o d u c e  a s p e c i a l  s e t  of p r o b l e m s  ( d i s c u s s e d  in Sec t ion  11-E), r e m a r k s  con- 

c e r n i n g  t h e  f e a s i b i l i t y  of v a r i o u s  p ropu l s ion  concep t s  wil l  b e  d iv ided  a c c o r d i n g  

to t r a n s m i t t e r  loca t ion .  

1. Ground-Based  L a s e r  T r a n s m i t t e r s  

Launch to o r b i t  b y  d i r e c t  hea t ing  of s u i t a b l e  p rope l l an t s  t o  p r o d u c e  

t h r u s t  h a s  been  d i s c u s s e d .  T h i s  concep t  i s  not a t t r a c t i v e  a n d  m a y  b e  f e a s i b l e  

o n l y  f o r  qu i te  srr:illl payloads. (281 29) T h i s  concep t  a p p e a r s  b e t t e r  adap ted  t o  

o r b i t a l  i n s e r t i o n ,  s t a t i on  keeping ,  i n t r a o r b i t a l  m a n e u v e r s  and ,  poss ib ly ,  

a c c e l e r a t i o n  t o  e s c a p e  ve loc i ty .  At p r e s e n t  t h e  concep t  a p p e a r s  t o  b e  confined 

t o  m o d e s t  p o w e r  r e q u i r e m e n t s .  In  addi t ion  t o  a d e q u a t e  pointing a n d  t r a c k i n g  

capab i l i t y ,  a d e q u a t e  t r a c k i n g  r e s p o n s e  i s  a p r o b l e m .  

T h e  coi lcept  of a n  o r b i t i n g  r e l a y  s t a t i on  a t  f i r s t  a p p e a r s  a t t r a c t i v e .  R e -  

f l e c t o r  op t i c s  would be used  t o  d i r e c t  a n  e a r t h - b a s e d  l a s e r  bean]  t o w a r d  o the r  

v e h i c 2 e s / s p a c e c r a f t  in o r b i t  o r  n e a r  e a r t h .  T h e  addi t ion  of  yet  a n o t h c r  s u b -  

s y s t e m ,  h o w e v e r ,  may b e  ques t ioned  on t h e  g rounds  of e f f ic iency .  

A t m o s p h e r i c  i n t e r a c t i o n  p r o b l e m s  m a y  l i m i t  t h e  c s e f u l n e s s  of s u c h  

c o n c e p t s  but m a y  b e  o v e r c o m e  i n  p a r t  b y  us ing  pulsed  iidtl:rr t han  cont inuous 

wave l a s e r s .  High r e s p o n s e  sys terns would be needc;:! i r .  ::,,.riper_.-ate f o r  - .  c h a n g i n g  beam paths and  loca l ,  d y n a m i c  change,; !n zL?ri-:. !,:li~:~).:: :sndi t ions.  
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2, Transmi t te rs  in Orbi t  o r  Space 

An obvious solution to atmospheric propagation problems and uncertain- 

t ies  is  to locate the laser  t ransmit ter  outside the ehrth 's  atmosphere,  e, g . ,  

see reference 2 3 .  The problem then will be  to develop compact, high-power 

self-contained power sources  for  the l a se r ( s ) .  Conventional nuclear reac tors  

might b e  used for this purposes.  (23)  Another possibility is to utilize large solar 

col iectors/converters ,  e i ther  for sun-pumped solid l a se r s ,  o r  for conversion 

to electrical power for the l a s e r  input. Lase r  output could then be beamed to 

other vehicles to heat propellants for thrust,  to  provide auxiliary electric 

power, or  for l aser -e lec t r ic  systems. A s  pointed out by Arno, e t  al., (2 8) 

systems that require multiple energy conversion s teps always suffer the con- 

sequence of reduced efficiency. N a k a m u r a ,  e t  al, , ('" conclude that lascr -  

e lectr ic  sys  terns, even for  near -ear th missions,  would require pointing and 

t r a c k i n g  accuracies  beyond the presen t  technology. 

Of interest ,  but not direct ly  related to laser propulsion, is the orbital 

power station utilized fo r  e a r t h  power consumption. Solar power unattenuated 

b y  t h e  ear th ' s  a t m o s p h e r e  is collected and converted, t h e n  transmitted to 

earth either by  microwave o r  laser beam. The microwave concept is wel l -  

developed and is considered feasible in a ve ry  recent analysis b y  Patha a n d  

Woodcock. (93) The l a s e r  c o n c e p t  mer i t s  f u r t h e r  attention because it h a s  not 

been restudied recently. 

P r o g r e s s  toward l a s e r  fusion is advancing rapidly. If successful,  

application to l a s e r  propulsion i s  an at t ract ive alternative. Micropellets s u b -  

jected to multiple l a ser  ir radiatiott  a r e  compressed r a p i d l y  a n d  sequentially; 

implosion t r iggers  the fusion reaction. A recent a r t ic le  by  Emmett,  Nuckolls, 

a n d  ~ o o d ' ~ ~ '  describes t h e  theory, p r o b l e m s ,  and applications of l a s e r  fusion. 

It appears,  however, that definitive and m eanirgful studies of propulsion b y  

laser-induced fusion a r e  not yet possible. 
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I n  surilmary, meaningful conclusions concerning l a se r  propulsion would 

be premature.' Laser  propulsion l i terature  i s  not extensive and suffers f rom 

some  general  deficiencies that: a r i s e  partly from lack of data: (1)  t reatments  

a r e  incomplete and not sufficiently comprehensive, (2)  cost analyses a re  

incomplete and often ignored, especially power source  costs ,  ( 3 )  systems 

analyses and subsystem integration studies are incomplete, (4) incomplete mis- 

s ion analyses,  and ( 5 )  lack of conceptual design with engineering detail. Thus, 

comparisons with competing propulsion systems a r c  very  difficult. 

I. RECOMMENDATIONS 

The following a r e a s  should be investigated: (1) mission and systems analy- 

sis, ( 2 )  thermal  control (spacecraft) ,  ( 3 )  receivers  /converters ,  (4) pointing ancl 

tracking, and (5) lunar ranging. To initiate further studies,  we need to develop 

a deeper and more complete understanding of cur rent  progress  in high-power 

l a s e r s  and associated optics systems.  

More comprehensive system/subsystem studies of the more promising 

l a s e r  propulsion concepts should be conducted. These studies include: (1 )  orbit-  

ing power stations, (2 )  l aser -e lec t r ic  sys tems,  and ( 3 )  laser-fusion systems.  

Modeling and simulation studies of laser - ta rge t  interactions and /o r  laser- 

atmosphere interactions should also be investigated. 
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SECTION III 

CHARACTERIZATION OF LASER PROPAGATION 

AND COUPLED POINTING 

A, A,  Vetter 

Laser  energy has recent ly been ser iously considered for use in propulsion 

systems that represent  the ent i re  spectrum of performance level  requirements,  

f rom attitude control to  launch booster.  In many of the proposed schemes for 

the conversion of l a se r  energy to propulsive thrust,  the l a s e r  is an external 

power supply fromwhich the energy must be transmitted to the u s e r  vehicle. 

The problems concerning the capabilities of t ransmission and pointing of the 

l a s e r  beams have been given oniy cursory  analyses,  with insufficient detail to 

actually determine where l a s e r  propulsion could be applicable to a specific 

mission. The analyses contained i n  this repor t  are attempts to determine the 

important functional relationships of laser t ransmis  sion sys tern parameters to 

the average power impinging on an ex t ra t e r r e s t r i a l  spacecraft .  The objective 

is to improve the accuracy of the l a s e r  t ransmission sys tem model with regard 

to  propagation and pointing effects, without relying on empir ical  formulations 

or complex numerical  computations. 

This r epor t  does not contain a l l  of the answers  for all cases  of laser  

propulsion. More precisely,  it: i s  a summary  of the work done by t h e  author 

in attempting to  determine how and where laser propulsion would be feasible 

with state-of-the - a r t  capabilities. The determinations and comparisons a r e  

totally analytical; no experimental work was per  formed. M a n y  important 

aspects of l a s e r  propulzion a r e  given only passing mention, and the reader is 

asked  to consider the work that is  described herein,  not the work which ,  due to 

lack of t ime, could not be considered. It should also be emphasiztsd that i t  is 

the methods that a r e  of importance, not the part icular  resu l t s  obtained from 

part icular  choices of exemplars, The reader  i s  invited to choose his own s tate  

of - the -a r t  capabilities and subetitute them freely,  provided that the res traintr 

on the approximations zre not violated. 
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A. INTRODUCTION 

The concept of a l a s e r  beam should include the notion that  i t  i s  coupled 

electromagnet ic  energy, with the interact ion accounting for the resul tant  beam 

charac te r i s t ics .  Because i t s  temporal coherence is vastly super ior  t o  that of 

o ther  light sources ,  diffraction efiects dominate the description of laser beam 

propagation. In attempts to t ransmi t  energy by l a s e r  beam, these diffraction 

effects will set a l imit  t o  t!le efficiency of the tranmission.  The efficiency of 

t r ansmis s ion  also is dependent upon the alignment of t he  beam with t h e  energy 

rece iver .  

The two most  important  approxi~na t ions  t o  electromagnetic wave propaga- 

tion, the Fraunhofer and F r e s n e l  approximations,  will be presented and utilized 

to  i l lus t ra te  the charac te r i s  t ics of diffraction-limited l a s e r  beams.  T h e  exam - 
p le s  chosen will be those ca ses  which arc often used to approximate r ea l  laser 

beams, The coupling of diffraction pat terns  with the accuracy of pointing thc 

l a s e r  beams will be presented for two cases ;  one considers  a single laser and 

the other considers  an a r r a y  of phase-coupled l a se r s .  

B. ELEGTR OMAGNETIC WAVE PROPAGATION APPROXIMATIONS 

For the cases to be considered,  l a s e r  light will be represen ted  as an 

e l ec t r i c  vector propagating along a directional vector which will define one 

axis in three-dimensional space. The temporal f luctuation will be taken as  

sinusoidal and perfectly coherent,  allowing a representat ion i n  which temporal  

dependence need n ~ t  be explicitly shown and pure phase dependencics c a n  bc 

ignored.  Let the light amplitude in a plane perpendicular to  the  propagation 

vector  be given by U(x ,y ) ,  where x, y a r e  rect i l inear  coordinates of this plane 

and z i s  the  t h i r d  rect i l inear  coordinate whose axis coincides with the propaga- 

t i on  vector. 3:: Let the coordinates 6, q correspond to x ,  y for z = 0, which will 

be taken a s  t h e  l a s e r  aper ture .  Then the l ight  intensity (energy flux) i n  the  

l a s e r  ape r tu r e ,  JO, i s  given by the complex square  of t h e  light amplitude: 

+See paragraph  111-J below for nomcnr:lature l is t .  
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The far -field or Fraunhofer  approximation can be applied for ranges 

which arc  l a rge  compared to the  aper ture ,  

2 2 
where  ( 4  .I- rl Imax indicates the square of the la rges t  radius  of t h e  aperture 

and A is the l a se r  wavelength. The result ing approximation for the l i gh t  ampli- 

tude in the x, y plane a t  range z ,  U, i s  given by (95)  

and resembles the Four ie r  t ransformation of the aperture  amplitude function. 

The near-Field or F r e s n e l  approximation can be applied for c loser  rangcs  

than the Fraunhofer approximation, but is considerably more complex, This 

approximation, which is valid for ranges such that 

can be obtained by replacing ihe spher ica l  Huygens wavelets with a quadratic 

sur face  and is given by 

The  F r e s n e l  approximation i s  often valid for  rangcs  much less than  given in 

Eq. (4) ,  depending on the amplitude distribution in the aperture. The F r e s n e l  

approsimation can be valid for essentially a l l  ranges  z30, as wi l l  be shown  for 

the case of a gaussian distribution in a l a rge  aper tu re .  

For both of the above relations,  given i n  Eqs, (3 )  and ( S ) ,  and fo r  all of 

the analysis  to follow, phase fac tors  which contribute nothing to the i n t ens i ty  

distribution have been deleted, 
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C. DIFFRACTION P A T T E R N S  FOR SOME SIM.PLE APERTURE 
AMPLITUDE FUNCTIONS 

A s  a f i r s t  approximation, a s sume  that  the l a s e r  output i s  uniform in  

intensi ty  and phase across a c i rcu la r  ape r tu re  of diameter  d. Then the aper- 

ture amplitude function is given by 

The far -f ield intensity distr ibution pa t te rn  i s  then given by 

where  r i s  the rad ia l  coordinate of polar coordinates i n  the x , y  plane and J is 

( 9 6 )  the first order Bessel function. This distribution is known a s  the Airy pat tern , 

The diffraction angle of this pattern i s  taken as the angle t o  the first zero ,  which 

occurs For rd/Xz = 1.22. If the beam diameter,  D, is defined as the distance 

i n  the far-field plane between the f i r s t  z e r o e s  of t h c  diffraction pat tern,  then 

for the Airy pat tern,  

L e t  the coefficient on the right-hand side be called the diffraction coefficient o 

so that this  diffraction equation can be wri t ten a s  

For t he  c i r cu l a r  aper ture  the fraction of energy intercepted within the b e a m  

diameter i s  0. 838.  
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The dependence of the relative intensity of the diffraction pat tern on the  

range i s  most readily displayed by considering the maximum intensity, which 

occurs at thc center of the pattern.  

The charac te r i s t ic  fall-off distance,  L, can be seen  from this relation to be the 

aperture area divided by the wavelength 

Conservation of energy requires this inver3,- -d<stance-squared decrease  i n  

ene rgy  for the far-field region. 

The far -field intensity distr ibution for r. Laser with an output which is 

uniform in intensity and phase across rectangular  ape r tu re ,  s o  that 

= 0 otherwise 

is given by 

2 2 
I(., y1 = L~ (2) [sinc In lsinc 1 n fl 

where  the s inc  function is defined by (97) 

s in  x 
s inc x = 

X 

The maximum intensity of the pat tern is found a t  the  cecter,  
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F r o m  which the energy flux charac te r i s t ic  fall-off distance is equal to the 

ape r tu re  area divided by the wavelength. 

In  o r d e r  to  find the fraction,  i, of total power, P,  in the diffraction pat-  

tern a s  a function of the dis tance f r o m  the cen te r ,  t h i  normalization of I = P / a b  0 
is required. The fraction E i l 3  defined by 

Since the in tegra l s  a r e  separab le ,  due to the symmet ry  of the aper ture ,  and a r e  

of the same form, integration over y leads  to clarification. Let 

where w and q a r e  dummy p a r a m e t e r s ;  then 

The fraction is plotted as  a function of the distance parameter  ax/Xr. for 

0 < ax/Xz < - 2 i n  Fig. 7, which is the rlormalized integration of the single dimen- 

s ion diffraction pattern. The fract ion c1 is tabulated in Table 6 as a function of 

the distance parameter ax/Xz for  l a r g ~ r  values of t h e  parameter .  A square 

ape r tu re ,  with sides of length a, will have the  f i r s t  z e r o  of i t s  far-field pattern 

a t  x = Xz/a. The fraction of the power il-ltercepted i n  t h e  far-field plane in  a 

square of sides 2Xz/a wil l  be, from Table 6 and Fig. 7. [ C ~ ( I ) J ~  = 0. 815. The 

diffraction coefficient i s  2 where  t h e  beam and ape r tu r e  s ides  are employed i n  

Eq. (9). 

The l a s e r  output is  most often approximated with a c i rcu la r ly  symmetrical  

ape r tu re ,  a constant phase amplitude,  and  a gaussian distribution of l i g h t  inten- 

sity. The l ight intensity distr ibution i n  the aper ture  plane for a gaussian beam 

is given by 
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Fig. 7, Fraction of power within t h e  nondirnensional distance and t h e  related s inc  function 



Table 6. Integration of the intensity distr ibution of a single ape r tu r e  

where  !is the charac te r i s t ic  length of t he  distr ibution,  corresponding to 
2 

s tandard  deviations, and the power of the laser, P, i s  given by P = l? IO. The 

F r e s n e l  approximation yields a n  intensity pa t te rn  which is gaussian, 

Distance 
Parameter 

E- 

0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0  

4.5 

5.0 

Although t h e  Fresncl approximation i s  s t r i c t l y  not applicable close to  the laser 

aperture, the above result i s  c o r r e c t  for a l l  ranges, including the aperture 

plane where z = 0. 
2 

For the far-field, w ! ~ e r e  z >> 2 1  /A, the Fresnal approxi - 
mation reduces to the Fraunhofer approximation: 
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Frac t ion  of 
P o w e r  Intercepted 

5 

0.0 

0.774 

0,903 

0.932 

0.95 1 

0.960 

0.967 

0.972 

0.976 

0. 978 

0.981 

Distance 
P a r a m e t e r  

ax 
L 

5.5 

6. 0 

6.5 

7.0 

7.5 

8.0 

8.5 

9.0 

9. 5 
10.0 

Frac t ion  of 
Power Intercepted 

€ 1  

0 .902  

0.984 

0.985 

0.986 

0.987 

0.988 

0.989 

0.990 

0.990 

0.991 



The maximum intensity of the pat tern is found on t h e  cenier: 

F rom which the fall-off distance,  L, can be obtained in  the l imit  oi the far- 

field as 

The beam diameter  snd diffraction coefficient cannot be chosen based on the 

distance t o  the first z e r o  of We intensity pat tern since the gaussian distribution 

has no nodes. Choosing the beam diameter  by twice the distance corresponding 

to  & s tandard  deviations, the beam diarnetck i s  given by 

s o  that the diffraction coefficient can be found a s  a function of range 

w h e r e  the aper ture  d iameter  has been taken a s  21.  For t h e  f a r - f i e ld ,  t h e  dif- 

f ract ion coefficient reduces  to Q = 2. The fraction of energy flux contained within 

this defined beam dianie ter i s  0, 957, 
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D. COUPLJNG POINTING E R R O R  WITH DIFFRACTION PATTERNS 

T h e  s m a l l  d ivergence of the l a s e r  makes i t  su i table  fo r  power t r an smi s s ion  

over dis tances  where  o t h e r  w i r e l e s s  methods fail. Sma l l  d ivergence is advan- 

tageous,  however, only i f  t h e  l a s e r  can be pointed a t  a  t a rge t  with sufficient  

accuracy to  ef fect  energy  transfer, 

A measure of t r an smi s s ion  efficiency is the instantaneous r z t i o  of 

energy in te rcep ted  by the t a r g e t  t o  the maximum intercepted energy  a t  the  given 

range.  Consider  the pointing problem as  that of a moving target in a f ixed  d i f -  

. - i t ion pattern; this  approximat ion wi l l  be quite a d e q u a t e  fcr the c a s e  of ranges  

large enough s o  that  

r s in (3 2 

Since  the diffraction pa t t e rns  to be cons idered  have the i r  c-.:::ximum intensi t ies  

a t  the center of the patterns,  the nlaximum intercepted power is found when the 

t a r g e t  is centered a t  t h e  origin.  If the t a r g e t  function, T, is given by 

T(x,y)  = I i f  x, y a r e  within the geomet r ic  t a rge t  boundary 

0 i f  x, y a r e  ou t s ide  (27) 

then the maximum i n l ~ r c e p t e d  power,  Po$ is given by 

w h e r e  u ,  v a r e  dummy Ca.rtesian coordinates  corresponding to x ,  y. The r a t i o  

of in tercepted power a t  a  given point  in the far - f ie ld  plane, 8;  i s  then given by 
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for which the range dependence is contained implicitly in the intensity function. 

The time-averaged value of the intercepted power ratio,  B ,  is a measure  

of the expected value of power received at the target.  This value must  take into 

consideration the time-dependent pointing e r r o r .  If the pointing error i s  con- 

sidered in a probabilistic sense in order  to eliminate explicit temporal considsr-  

ations,  then the averaged value i s  most  appropriately termed the expectation 

value. Let the pointing function in  the target plane, i ,  e. , the probability that the 

t a rge t  will be a t  a particular place in the diffraction pattern, be given by the 

function G; then the expectation value, E, is given by 

if the fvI  =15on G i s  normalized s o  tha t  its integral  over the two-d ime~s iona l  x,y 

plane is I .  The average power ictarcepted by the target,  PA, is the product of 

the  maxlmunl power and the expectation value. 

Consider the case of perfect  pointing s o  t h a t  the pointing function is rep re -  

sented by a t-wo-dimensional delta function a t  t h e  center of the diffraction pattern. 

T h e n  the expectation value is equal to unity and the average power i s  equal t o  the 

m a x i n ~ u m  power. The maximum power is a function of the target size and inten- 

sity pattern through which range dependency appears.  
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2, Square A p c r t u ~ e  Laser 

For a simple approximation to the problem of coupling l a se r  propagation 

with pointing, .tonsider. a uniformly illuminated square laser aperture which t rans  - 
mits  powcr to a ,.quare tarset ,  Further assume, in  order  to allow for separa-  

tion of the integrals, that the  kpsrture and target a r e  aligned in  the s a m e  orir:n- 

tation. Then the maximum power for a target  of s i d e  2 s  ,,can be found by substi-  

tution of Eq. (13) for  b = a and the  target function 

T(x,y)  = i 1x1 5 s  and l y )  - < s (32)  

= 0 otherwise 

into Eq. (28), with the result i l .  t h e  far-field a s  

where w is a dummy parameter  which is defined by  w = ax/Xz. By comparison 
2 with the previously defined function 2, and since IO = ~ / a  , 

Assume, as a f i r s t  approximation, that the pointing function can be repre - 
sented by a two-dimensional step function whose orientation coincides with that 

of the aperture. Then the pointing function as  seen in the target  plane is 

G(X,Y) - 1 

- 2  for Ix l< - t and Iy) - < t 

= 0 otherwise ( 3 5 )  

The meaning of this function is that  a bound exists on the ability to point and 

that the target is equally likely to be found at any point inside that limit, Since 

each of the functions I, G, and T are separable in to  x and y compor~ents, consider 

the one -dimensional expectation value E whose square yields the previously 1 
defined expectation value E. F o r  this case, 
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Consider a siightly more  general form of the single d imens ion  expectation 

value : 

where F i s  an appropriate function which depends on the diffraction pattern;  for 

the case of the square  aperture,  the definition of F is obtained f rom Eq. (36). 

Changing the 1imit.s of integration and integrat ing:  

Let A =  5 - t, then IAI 5 s ,  and consider thc limiting, but useful,  case  of s << t. 

Expand F(t+ A) i n  a Taylor series about A = 0 for the l a s t  two t e r m s  ol  Eq. (38). 

Integrate to obtain 

where the even derivative t e r m s  d r o p  out. Since ~ ' " ( t )  , t", and sirnila-ly 
F(2n-1) . (t) , t - 2n, the first term i n  Eq. (39)  reprenr:nLs a good es t imate  for E l  

2 
i f  ( s / t )  << 1. 

Again considering the special case of the  square  aperture l a s e r ,  the  single 

dimension expectation value is 

JPL Technical M e m o r a n d u m  3 3  - 7 2 2  



where the previous normalization of I = p/a2 has been substituted. Since 
0 

symmetry was assumed throughout, the expectation value i s  then the square of 
2 

the pa r t i a l  value, which will then be approximated, for ( s / t )  << 1 ,  by 

The pointing accuracy can be represented by the half-angle p) of the furthest  

l imit  of the pointing function: 

Substikuting this relation and the definition of Eq. (3  l ) ,  

Therefore, for the f i r s t  approximation, the t i ~ ~ e - a v e r a g e d  intercepted power is 

d i rec t ly  proportional to the a r e a  of the target  and inversely proportional to  the  

square  of the range. 

3. Circular  Aperture Laser 

Since the resu l t  for the rectangular aperture  l a s e r  has  been shown to be 

relat ively simple, i t  is natural  to extend the resu l t  to the case  of a single c i r -  

cu lar  laser aper ture  with a gaus sian intensity distributian. The maximum power 

intercepted by a circular  ta rge t  of radius s is  found by substitution of Eq. (20) 

and the c i rcu lar  target  function 

into Eq. $8), with the resul t  of 
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where the laser power is given by P = I,-, j2+ 

Assume a circular step function pointing function which is described in the 

target plane by 

1 
G = for r - < t 

f? t 

0 for r > t  

Since the pointing function and the intensity distribution pattern are dependent 
2 only on the radial coordinate, the expectation value can be obtained for  ( s i t )  << 1 

by calculation of the mean of the ratio of intercepted power, 6 ,  within the area 

defined by the pointing function. This corresponds to calculation of the first 

term of the ser i e s  in X,q, (39). This  term is integrable analytically, yielding 

the expression for the approxima tion to the expectation value, 

Consider the simplification of the far-field (Fraunhofer) approximation and con- 

vert  to the pointing angle u to find the average power intercepted as 

From which tho dependence can be seen to  be similar to the previous result. 
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4. Gaussian Pointing Function 

Consider the case of a l a s e r  with a gaussian distribution 01 intensity in  the 

aperture plane s o  that thc diffraction pa t te rn  is given by Eq. (20). Define the 

diffraction pa t tc rn  parameter  A by 

Xz A = -  for Fraunhofe r diffraction 
2 8 

for F re sne l  diffraction (48) 

to provide a simplified form for the intensity 

where P i s  the powr; i:1 khe laser. 

Let  the pointing function, G{r),  be desc r ibed  by a normal  probability func- 

t ion with the square of the pa rame te r  I3 a s  twice the var iance of t h e  distribution. 

Define thepointing accuracy by t h e  angle t.~ w h e r e  

V = B - z 

s o  that  this angle corresponds t o K n  s tandard deviations. 

Assume,  for the f i r s t  approximation, that the mean incident power i s  given 

by that at t!lc center  of the target.  This approxinlation i s  equivalent to taking 

only thc f irst  te rm in  Eq, ( 3 9 ) ,  which has been shown to be valid for cases of 

small t a rge t  or large pointing e r r o r .  Since the shape of the ta rge t  is not impor-  

tant for this approximation, as  only thr surface area  perpendicular t o  the p ro -  
2 

pa2atioi-i -ructn:. is considered,  choose any ta rge t  with area  S . The  t a rge t  func- 
2 

tion ca.n be z;.l:roximated by a delta function with area  S , 
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Thc r a t io  of intercepted power, B, is given by 

where the maximum power is approximated by 

The expectation value can be i n h g r a t e d  analyt:, ' ~p to find t h e  simple function 

The average power intercepted by the t a rge t  is given by 

Substituting for the grouped p a r a m e t e r s  A and B, 

The dependence of average intercepted power  on the laser a n d  pointing 

parameters  can be found from Eq. (57). For the c a s e  of poor pointing ability, 

the first t e r m  in the denommator,  v z ,  wi l l  dominate, yielding the average i n t e r -  

cepted power as inversely proportional to the square  of the pointing pa rame te r  V. 

For cases  in which the bean1 spread is  the most important fac to r ,  t h e  middle 

te rrn, Xz / 2  b ,  will dominate, yielding the s a m e  dependence as would be calcula.  

ted  from modified ray optics as the power within a beam of diameter  2 1 .  For 

cases where  the ta rge t  i s  close enough for the b e a m  spread t o  be small and the 

pointing is good, then the ini t iz l  beam characteristics dominate. The third te rm 

i n  the denominator,  which is the  important  one f o r  this c a s e ,  is  independent of 

range, wavelength, and pointing. 
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E. ANALYSIS OF A COUPLED SYSTEM 

The g a u s s i a n  pointing function and gaussian l a s e r  beam are the best approx- 

i m a t i o n s  to reality t ha t  wjll  be d i s c u s s e d .  S ince  t h i s  approx imat ion  tends  to be 

a r e l a t i v e l y  simple form for the  expectation value and avtxrage i n t e r c e p t e d  power 

and s i n c e  i t  is applicable i n  the near-field as  well  a s  the far -field, th is  system 

is  chosen l o r  more detailed ana lys i s .  

The approxinlation is  not valid i f  the target  size is of the same order of 

magn i tude  a s  e i t h e r  the pointing p a r a m e t e r  B o r  the beam s p r e a d  parameter A. 

In fact there i s  a s ize  for which t h i s  approximat ion  ind ica tes  t h a t  a l l  of the  laser 

power is in tercepted .  This  size, Sm, i s  found f r o m  Eq. (56) with the  condition 

that PA = P, 

For  t a r g e t s  l a r g e r  than S the average power  should be taken as the n lax imum,  
m' 

i, e , t h e  laser p o w e r ,  P. The accuracy of t h i s  apprax imat ion  is shown i n  Fig. ti, 

where the  approximat ion  is compared t o  e x a c t  numerical solu t ions  for a c i r cu l a r  

t a r g e t  with B = A. T h e  exac t  solution is at m o s t  about  40% below t h e  a p p r o x i m a -  

tion, as  i s  quite a c c u r a t e  for t a r g e t  s i z e s  a l m o s t  equal t o  t h e  p a r a m e t e r s  A 

and B. 

The sens i t iv i ty  of the a v e r a g e  in te rcep ted  power to  changes i n  t h e  l a s e r  

p a r a m e t e r s ,  X and 1 ,  pointing p a r a m e t e r ,  u,  and range, z ,  is obtaincd b y  ca l -  

cu la t ion  of the p a r t i a l  derivatives in  t h e  f o rm  of 

Thus a fractional change of q wi l l  r e s u l t  i n  approx imate ly  an @-fold f rac t iona l  

change i n  P. The influence coeff ic ient  is a means to p r e s e n t  the i n s t an taneous  

r e l a t i o n  in  a  power form:  
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- RPPROXI MRT 1 ON 

N EXRCT FOR CIRCULAR TWIXT 

Fig. 8 ,  Relative accuracy of the approximation as a function of t a rge t  s i z e  
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Thus,  fo r  example, an inf luence  cocff:ci.ent of unity implies a l inear  re la t i  onship  

and zero implies independence. The coe l f~c icn ts  a r p  

where the order  of the t e r m s  i n  the denominator  has been mainta ined s o  tha t  

t he  influence of the parameters  i n  the t h r e e  special  c a s e s  of poor pointing, 

large beam spread, and small range can be obtaincd by inspect ion .  

Given a laser with p a r a m e t e r s  X and , t h e  min imum pointing accu racy ,  

represen ted  by v corresponding t o  these  paramettlrs i s  to  be obtaincd. m' 
Point ing systems with pointing e r r o r s  g r e a t e r  than vm wi l l  br pointing-l imited;  

systems with pointing errors less than v ,  will be beatn-spread-Limited.  Let 

t h e  minimum acceptable r a t i o  of centroid  ene rgy  flux to the maximum encrRy 

flux of the diffraction p a t t e r n  be given by y. Tllen the rad ia l  d is tance  ro, at 

which the energy flux will d r o p  by a factor of y, will  be g i ~ r c n  f rom Es. (50) by 

Let T be the  fraction of t i m e  fo r  wl-ich the pointing system h a s  a dis tance  c r r o r  

i n  the t a rge t  plane less t han  o r  equal t o  rd Then t h r  r equ i red  pointing para - 
meter B i s  given by in tegra t ion  of Eg, (50). 
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The choice of y and T will  define the system sufficiently we l l  to y ie ld  the point- 

ing parameter i n  terms of t he  laser parameters. 

Employing t h e  forms for A .ind R defined i n  Eqs, (40) and (51 ) ,  r c spc~c t ivc ly ,  

Now consider s o m e  numerical cxalnples of the  point ing accuracy rrquirccl 

for a pointing sys tem to maintain a sufficiently s m a l l  t a r g e t  wi th in  the ha l f -  

power points 01 a gaussian l a s e r  beam a t  a  3 sigma p e r f o r m a n c e  level. Then 

the minimum a.cceptable ra t io  of cen t ro id  e n e r g y  flux to maximum e n e r g y  flux, 

v ,  i s  taken a s  1/2. F o r  thc pa in t ing  sys tem p c r f o r n ~ a n c e  l c v c l  to be 3 s ignla  

( three standrird deviations), the  poin t ing  s y s t e m  r c n ~ a i n s  within thc pointing 

e r r o r  y for the  i r a c t i o n  of t ime,  7, of 0, 9973.  This m e a n s  t h a t  t h e  i n t c r -  m 
ceptcd power ra t io  B to A is B / A  = 0. 3423,  The aperture  d i a m e t e r  m u s t  be 

larger than the character is t ic  fall-of1 d is tance ,  1, in order to allow tho  bcanl t o  

assume a  representation of a gaus: i iz? p ro f i l e ,  A s s u n ~ e  that t h ~  ape r tu r rx  is twicc 

the charactcr is t ic  distance, t h e n  

This point ing accuracy requirement  has two limits of interest. F i r s t ,  con-  

s i d e r  t h e  far- f ie ld ,  whcrc  t h e  gaussian l a se r  beam h a s  i ts  divergence d r t e r -  

mined by the l a s e r  wavelength  and aper ture  and  the requirrd pointing accuracy 

is tied d i r e c t l y  t o  that d ivergence.  P l a c i n g  the far-firald limit of 2Xz >> [ 2 / )  
2 

into Eq. (66) y i e l d s  thr expected behavior, which  is indcp~nr l rn t  af z, 
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where k is the constant coefficient of 0 , 3 4 2 3 .  Ncw consider the near-field, 

where  the gaussian beam can be cepresented by a cylinda.ica1 projection of the 

aperture as represented in Fig .  9 .  The required pointing: accuracy i s  determined 

by the aperture and range and is independent of the laser  wavelength. This  
2 behavior is obtained by assuming ( 2 e )  >> 2 A z f o r  whicil Eq. ( 6 6 )  degenerates t o  

-- 
LASER - -  

A - - - D ' 
A - - ROPAGATION 

1- RANGE, 

Fig.  9 ,  Near-field region where the range is sufficiently c lose  to  the 
aperture so  that diffraction effects are negligible. The max- 
imum pointing e r s o r  can then be approximated by the ratio 
of b e a m  radius t o  range. 

These limits as wel l  as  the intermediate behavior of u are illustrated in  m 
Figs. 19-13, wherr l ines of constant v are given as  functions of wavelength and m 
effective aperture, 2 1 .  The far-field results are  illustrated in Fig. 10 for the  

range of 1 A. U .  The transition to the near-field limit i s  shown in  the  succes  - 
sive figures through Fig. 13.  In these figures, a s  wel l  as  Tables 7 through 10, 

the FORTRAN E-format representation of numbers has been employed (e ,  g . ,  
-6 

2 .  15E-06 is 2. 15 x 10 ), 
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Fig. 10. Lincs of constant pointing accuracy requirement  (in radians) for  the range of 1 A,U.  



EFFECTIVE RFERTURE M 

Fig. 11. Lines  of constant v ( radians)  for t he  earth-moon rarnge 
m 



EFFECTIVE UPERTUF?E M 

4 Fig. 12. Lines of con'~kant Vm (radians) far synchronous orbit range 
W 



RANGE: rl.OOE 05 M 

1 o4 

m 
x to" 

1 o0 1 o1 
EFFECTIVE RPERTURE M 

Fig. 13. Lines of constant u (radians) for low ear th-orbi t  range 
m 



The maximum target s i ze  for which the approximation is valid is tabula- 

ted for a few choicl  values of wavelength and effective ape r tu re in  Tables 7 

through 10, The rnaxirjmm ta rge t  size ha4 been taken as  the  square root of the 
2 

target area ,  S , and i s  determined from Eq. (58). The validity of the approxi- 

mation is i l lustrated in Fig. 1 4  where the exact numerical resul ts  for a circular  

t a r  g e t  are given. For target sizes smaller  than half of the maximum size ,  the 

approximation becomes quite good. 

F. COMPARISON WITH SOLAR ILLUMINATION 

It is interesting- if not requisite, to determine the ~ o r ~ d i t i o n s  for  a l a se r  

s y s t e m  to provide more power to a target than can be received from the so lar  

flux. Detailed analyses will be omitted i n  favor of a simple comparison. Con- 

siderat ion is not given to analyses of vehicle construction or trajectory, nor to 

laser pointing o r  propagation. In order to minimize the clutter, the phase angle 

wi l l  be taken as  zelro s o  that the range wi l l  be taken f rom the  ear th to the  vehicle 

along t h e  line of syzygy. 

The solar flux as a function of distance from earth,  z ,  i s  given by 

where Q~ i s  t he  solar c o n s t a ~ t  and K i s  the sun-laser  distance. Thus the 

power per ugft area that can be obtained from t h e  solar flux, PS, is  approxi- 

mated by 

where vS is the conversion efficiency for solar  radiation. The maximum power 

per unit area ,  L' for a gaussian laser beam is found a t  t h e  center of the beam 

and is obtained f rom Eq. (22), 
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Table 7. Maximum t a r g e t  s i ze  for the approximations to be valid at a 
range of 1 A.U,  

Range i? 4. OOE 05 meters 

Wavelength 

(m) 

A p e r t u r e  

(m) 

Pointing Accuracy 

( r a d )  

Max. Size 

(m) 

N. B. : 1 ,  A p e r t u r e  i s  twice the charac te r i s t ic  d i s t ance .  

2 .  Pointing accuracy is for half power  with 3 sigma probabil i ty.  

I 3 .  Approsimti.tions valid only for smal le r  t a r g e t s .  

I 4, Atmosphere  inval ida tes  resul ts  f o r  a p e r t u r e s  1arqi.t than  
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Table 8. Maximum target s i z e  fo r  the approximations to be valid at 
ear th-moon dis tance 

Ranee is 4. OOE 07 r n e t e r s  

I Wavelength I Aperture  I Pointing Accuracy I Max. Size 

(m)  

N, B. : 1. Aper tu re  is twice the charac te r i s t ic  d i s tance ,  

Pointing accuracy is for half power with 3 sigma p robab i l i t y .  

Approximations val id only f o r  smaller t a r g e t s ,  

4. Atmosphere  invalidates r e s u l t s  for a p e r t u r e s  l a rge r  than  

0 .2  M. 
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Table 9. Maximum target size for the approximations to be valid at 
synchronous orbit distance 

-- - 

N. B. : 1 .  Aperture is twice the character is t ic  distance, 

Range is 4. OOE 

Wavelength 

(m) 

I . O O E - O ~  
l.00E-07 
1.00E-07 
1.00E-07 
1.00E--07 

5.00E-07 
5.00E-07 
5.00E-07 
5.OOE-07 
5. OOE-07 

1,OOE-06 
1.OOE-06 
I. OOE-06 
1.00E-06 
1.9OE-06 

2 .  Pointing accuracy is f o r  half power with 3 sigma probability. I 
3 .  Approximations valid only for smaller targets .  

4, Atmosphere invalidates results for apertures l a rger  than 

0.2 M. 

08 meters 

Aperture 

(m) 

1 . 0 0 ~ - n  1 
5.002.-01 
1.00E 00 
5.00E 00 
1.00E 01 

1.00E-0 1 
5.00E-01 
1.00E 00 
5.00E 00 
1.00E 01 

1.00E-01 
5.00E-01 
1.00E 00 
S.OOE 00 
1.OOE 01 
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Pointing Accuracy 

(rad)  

3 . 4 2 ~ ~ 0 7  
6.85E-08 
3 .42E-08  
7. 17E-09 
5.48E-09 

1 . 7 1 ~ - 0 6  
3.42E-07 
1.71E-07 
3 ,  -s:E.-OB 
1. 7bY--1 i8  

3 .42E-06 
6.  g 5 L - 0 7  
3 . 4 2  E-07 
6.85E-08 
3,45E-08 

M a x .  Size 

(m) 

4 . 2 3 ~  02 
8.46E 01 
4 . 2 3 E  01 
8.86E 00 
6.77E 00 

2.11E 0 3  
4.23E 02  
2.11E 02  
4 .24 .E  0 1  
2.18E 01 

4 . 2 3 E  0 3  
8.46E 02 
4 . 2 3 E  02 
8.46E 0 1 
4.26E 01 



Table 10. Maximum target s ize  for t h e  approximations to be valid at 
low ear th-orbi t  range 

Range is 1, 

Aperture I /ml 

1.00E-0 1 
5.00E-0  1 
1. O O E  00 
5. O O E  00 
1.00E 01  

Pointing Accuracy  

(rad)  

Max, Size A 

I N. B. : 1. Aperture is twice the character is t ic  distance. I 
I 2. Pointing accuracy is fo r  half power with 3 sigma probability.l 

I 3. Approxir.lations valid only for smaller targets.  I 
I 4. Atmosphere invalidates r e su l t s  f o r  apertures l ~ r g r r  thzn I 
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!- M EXRCT FOR CIRCULAR TFlRGET 

Fig.  14, Comparison of the approximation with the r x a c t  numerical 
solution f o r  a circular taxget 
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w h e r c  P is the total  powcr of the l a s c r  a n d  q L  is the e f f i c i ency  of convers ion r j f  

l a s e r  radiat ion.  Since thc  cu~ld i t ions  that w e r e  choscn i l lus t ra te  the b r s t  c a s c  f u r  

l a se r  energy t r a n s f e r ,  the r e su l t s  should be trcatccl cautiously.  Ilowevcr,  it i s  

uscful to know whcn a lascr  sy s t em cannot, even with pcrfvct pointing, collcct  

more  powcr than can be obtained f rom the constant su l a r  sr jurce.  

One condition sought is that  f o r  wh ich  PL > Fs for all rlistatlcrs I ~ O I T I  t h ~  

l a s c r .  This cr i ter ion is satisficd whcn tlic p a r a t ~ ~ c t c r s  arc? such that 

F r o m  conscrvat iun of cncrgy  considera t ions  aK K' i s  found to  br constant at 
24 3 8 X 10 W when cvaluatcd at  c a r t h ,  w h e r c  GK is 1.4 X 10 W and K i s  

11 1. 5 X 1 0 m ,  However, evpn i f  th is  condition w c r o  sa t is f ied ,  the power pcr  arc3a 

a t  large dis tances  could bc too small to be useful ,  For in tc rp lanc ta ry  distances, 
2 

t h e  condition can he rc laxcd sl ightly.  F o r  z >> ! //h, the pa ra rne tc r s  n lus t  sa t is fy  

the approxitilate r c l a t i m s h i p  

W i t h  a r a n g c  f r o m  ea r t h  o r  cart11 orb i t  to t h c  closest approact1 o r  Jupitc-r,  

where  the rangc is  about four t i m e s  t h e  earth-sun dis tancc ,  the  rcquircmr-nl ,  as 

imposed by Eq. (73:, i s  l owered  by about a th i rd .  Thc c o r r c ~ p c ~ n d i t i p  range to 

M a r s  i s  a t u u t  ha l f  t h e  ea r th - sun  clistancc, ccr~lsequetltly the rcquircrrlrnt is a n  

order of magnitude lower than for the  stel lar range. 

If t h e  l a s e r  is s i tua ted  at Jupi te r ,  t h e  dcnclminatclr in  Eq, ( 7 3 )  bi=culnes 

l a rge r  a s  compared to  an ear th  Location ,,?d the rcquirerncnt lowcr  l(lr fixcd and 

finite ranges .  At Jupiter's distance K is 7.8 x 1 ~ ~ ~ n - 1 ,  and th r  rnimmun, d i s t a n c r  
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to Saturn  is about the same, so  tha t  for J u p i t e r  to Sa tu rn  t r a n s t i ~ i s s i u n  tllc~ 

r e q u i r e m e n t  would be reduced  by 4 f r o m  the s t e l l a r  condition. 

G. MULTIPLE LASERS AND PEIASE CQN'ri<OLLED LASI.:R AILRAYS 

The c o m p a r a t i v e  p c r f o  r n ~ a n c c  of p h a s e  a n d  f r c r - runn ing  (nun-phase  c o n -  

t r o l l e d )  l a s e r  a r r a y s  a r e  evaluated  fo r  e x t r a t e r r e s t r i a l  cne rgy  t r a n s f r r  hia t he -  

rnat ical  m o d e l s  of the a r r a y s ,  d i l f rac t ion  e l l c c t s ,  and po in t ing  c a p a b i ~ i ~ y  a r c  

devclopcd to obtain p a r a m e t r i c  descriptions of thc  t imc-avcragcr l  power  i n t e r -  

cepted by a s p a c c c r a f t  The a n a l y s i s  p rov ides  a n  i n ~ p r o v c m c n t  o v e r  ray  op t l c s  

techniqur:~ for the  t r a n s m i s s i o n  app rox i~na t i ons  whilc  nlaintaining simplicity af 

applicat ion.  Tflc boundar ies  for  advantage of linca r anu squarp a r r a y s  of phaserl 

l a se r s  a r e  de ternl incd fo r  t r a n s n i i s s i o n  distances fo r  which the F r a u n l ~ o f c r  

approx imat ion  ol Light propagat ion  is val id.  P r u j c c t i o n s  fru111 c o n t c t ~ ~ p u r a r y  

capabi l i t ies  a r c  rriadc to  i l l u s t r a t e  the  l i tn i t s  of advantage  of the phascd  a r r a y  

concept  f o r  lase!.  cne rgy  t r a n s l c r ;  e a r t h - b a s e d  phased a r r a y s  p r e s e n t  no a d v a n -  

t a g c ,  whilc s p a c e b o r n e  phascd  a r r a y s  a r c  advantageous  l o r  s y s t c t i ~ s  with v r r y  

a c c u r a t e  pointing capab i l i t i c s .  

1. The  P h a s e d  A r r a y  

The phascd  a r r a y  concept  has  bccn suggcs tcd  d s  a n i~ thoc l  fur inc reas ing  t 1 1 ~  

cncrgyf lux  a t  the  s p a c c c r a f t .  The cohcrcnct -  uf the  l a s c r  a ; l r ~ w s  the phas rd  a r r a y  

concept i o  bc applied to tnanipula tc  the d i f f rac t ion  pa t t e rn  oi thc a r r a y  i n  o r d e r  to  

d e c r e a s e  i t s  effect ive d ive rgencc .  Howcvcr, s ~ n a l l c r  c . f fr~ct i s . c~  clivcrgc~ncc. i s  advan- 

tageous  only i f  t l ~ c  l a s ~ r  s y s t e m  can bc pointed at a t ~ r g c t ,  i . c . ,  a s p a c e c r a f t ,  with 

suff icient  a c c u r a c y ,  S u m c  of tllc characteristics o l  t h e  phast~tl  a r r a y s  will bib 

deta i led  and c o m p a r e d  wi th  currcspancling arrays of uncoupled l a s e r s  t r )  r l r t c r -  

mine  t h e  bounds of advalltagcuus appl ica t ion  of tile p h a s c d  a r r a y  concept .  

This  sec t ion  p r e s e n t s  m a t h e m a t i c a l  ~ n o d c l s  (11 l a s e r  t r an smi s s ion  s y ~ t c n ~ s  

with  r e g u l a r  a r r a y s .  R e c t a n g u l a r  a p c r t u r c s  a r c  c h f ~ s e n  bccausc  t h e  funct i r~nal  

depcndctlc:ics can be obtained without tb obfuscat ion of n t in .~ r r i ca l  a n a l y s i s .  The  

diffcrcncti in tllc r e su l t  c a u s e d  by the  c h u ~ c e  of r ec tangu la r  o v e r  c i r r l ~ l z r  a p c r -  

t u r c s  i s  not s ignif icant  for t h i s  analysis. Also ,  for  clal.ificatlot1, i!lr frlnctiun 

which describes the  r e s p o n s e  of the  pointing s y s t e m  has  b v P n  idca l i z rd   ti^ a  s t e p  

function f r o m  the m o r e  realistic n o r m a l  probabi l i ty  functinn, 'X'hc details; of 

l a s c r  g c n c r a t i n n ,  phasc  cont ro l ,  energy  cunvers ion ,  and u l t i n ~ a t c  : ncrgy  rjsajic 

have bccn cscludrcl,  a s  have  any r l iscussion UI, t h r  fr*i~sibi.lity, jus t i f ica t iun ,  tlr 

cost ul  build in^ a phascrl a r r a y .  
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2, Analys i s  

The phased a r r a y  is a group of regularly spaced l a s e r s  with paral le l  

optical  axes and with a l l  l a s e r s  in t h e  a r r a y  controllrd s o  that each emits thr 

s a m e  wavelength light a t  the s ame  phase. If rhc frcqucncy and phase controls 

are removed s o  that the phasc of each of the l a s e r s  i s  uncorrela ted,  thcn thr 

a r r a y  will be ternled a f ree-running a r r ay .  Conceptual d iagrams for both typcas 

of a r rays  a r c  shown in Fig.  15.  For both a r r a y s  the 'beam1 i s  assumcd to he 

composed of light which i s  constant in amplitude and pl-rasr a c r o s s  thc exit  a p c r -  

ture .  Phase  control, when applicd, is assumc4d to be pcbrfect i n  o rde r  to prcbscnt 

the best  case.  

A row of N identical phased l a s e r s  with square  ape r tu re s  and  spaiial  p ~ r i o d  

c will yield the light intensity pat tern given by 

2 
' p ( x * ~ )  = ~ ( a l h z ) ~  [w]" [oinc (aay/Xnj pinc (n  ax/hrll 

2 
s in  (ncy  b z )  

T h e  f i r s t  and l a s t  two terms a re  identical with the single aper ture  which i s  

given in  Eq. (13) with b = a ;  the second t e rm,  called t h ~  a r r a y  factor,  i s  de t e r -  

mined by the charac te r i s t ics  of the a r r a y ,  

Diffraction effects for the l inear  a r r a y  of p h a s e d  l a s e r s  depend upon the 

direction i n  the far-field planc. In the direction perpendicular t o  the a r r a y ,  the 

diffraction coefficient i s  t h e  s a m e  as f o r  the  single aper ture ,  wh i l e  in  t h c b  d i r ec -  

tion of the a r r a y ,  t h e  diffraction angle is a factor of a/Nc snlal ler .  IJowcver, 

the fraction of power  intercepted i n  this angle i s  a factor of approximately a / c  

sma l l e r ;  this approximation is accurate  t o  within 109'0 for a l l  N and  1% for 

h'> 6 .  - 

If each of the l a s e r s  i n  t h e  row of N i s  free-running, thcn tho t ime- 

averaged light intensity pa t te rn  i n  t h e  fa r  -field i s  given, within thc Fraunhole 1. 

approximation,  by h' t imes  that  of a single aper ture .  This is val id for N l a s e r  

apertures, even if they a r e  not in a row, whenever t h ~  c r i te r ion  of Eq. (21 is 

satisfied.  The  normalized diffraction pat tern i s  th r  same a s  that of a s in~ lc l  

ape r tu re ;  hence,  t h e  diffraction coefficirnts a r e  identical. 
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Fig .  15. Conceptual diagrams for  phased and f ree - runn ing  a r r a y s  
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Since the d i f f r ac t ion  pa t te rns  fo r  the s q u a r c  ape r tu r e  lasers uncouple ivit11 

respect  t o  thr. two c a r t c s i a n  coord ina tes ,  the square array of lasers  has  a 

d i f f rac t ion  pattern whicti can he obtained r l i r ~ c t l y  f r o m  the lor rn  of the l i n c ~ a r  

array. J f  t h c  prev ious  n o m e n c l a t u r t ~  i s  re ta ined,  with N a per fec t  squarc., t h v n  

the  l igh t  in tens i ty  p a t t e r n  i n  thtl fa r - f ie ld  for  a  s q u a r e  a r r a y  ol N 1 n s r . r ~  

i s  

I ( x ,  y) = P (a/Xz) s i n  ( v N ~ "  c x / X z )  s i n  ( n N  
s i n  (T c x / A z )  s i n  ( . r t c y / h z )  

T h c  First and last t e r m s  a r c  t h e  s a ~ n c  as for thr  s ingle  ape r tu re ;  the seconrl tc~rnt  

is the  a r ray  fac to r .  Ti:, .  s qua rc  phased a r r a y  has a d i f f rac t ion  coelf icicnt  

i d e n t i c a l  to tha t  of a linear a r r a y  of N'" l a s e r s .  

I n  o r d e r  f o r  energy t o  be t r a n s f e r r e d  by l a s e r  bean1 i t  i s  n e c e s s a r y  for  

the l a s e r  or l a s e r s  to be ~ o i n t e d  so  tha t  p a r t  of the beam i s  inc ident  upon thp  

target. Of in t e r e s t  he re in  is the  t ime-averaged  power a s  defined previous ly .  

Let  the ta rge t  be s q u a r e  with s ide  2s  and assunle thr  s t e p  function pointing func- 

t i o n  as given by Eq. (35) .  Then the expectat ion value is s e p a r a b l e  with respcct  

to the x, y axes, s o  that  only the single -din;cnsion expectation value, El, need 

by cons ide red  i n  de ta i l ,  

An a r r a y  of f r e e -  running l a s e r s  has the same n o r m a l i z e d  expectation valuc 

as the single l a s e r ,  pl-ovidcd that  thca F r a u n h o f c r  approxi:-nation r e m a i n s  valid. 

The a r r a y  need n o t  be r e g u l a r ,  but the configurat ion is cons t ra ined  by the 

requirement of parallel  opt ica l  axes. 

Cons ide r  the case of a l inear  a r r a y  of phased l a s e r s .  The n o r m a l i z e d  

f a r - f i e l d  pattern yields a component  expectat ion valuc which  is given as 

1 / 2  

E l  = ( )  ( S / U Z )  c2 (au/X, c l a p  N) + higher  o r d e r  t e rms  

where thc f r a c t i o n  c2 is  given by 
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Then f o r  the phased l i n e a r  array, the f i r s t  o r d e r  approximation is 

The first o r d e r  approxinlat ion f o r  t h r  case of the square a r r a y  can be 

obtained from the c a s e  of a l i n e a r  a r r a y  of N"' lasers by squaring the s ingle  

d imension expecta t ion  value 

The t i m e - a v e r a g e d  power t r a n s m i t t e d  t o  a vehicle can be found by mult iply-  

ing t h c  n o r m a l i z e d  expecta t ion  value by the number  of l a s e r s  and by t h e  power 

per laser-, i. e. , a factor of NP.  Although the fraction,. c 1  and c m u s t  be 
2 

evaluated, the i r  functional f o r m s  a re  e a s i l y  adapted to approximat ion  s ince  they 

a r e  monotonic as shown in  Fig.  16 ancl approach  a limit ~f 1 for l a rge  vplucls of 

the dis tance  p a r a m e t e r ,  Since t h e s e  f a c t o r s  a re  independent  of t h e  range,  z, 

they need be evaluated only once to f ind t he  a v e r a g e  power  intcrccptrd as a func- 

tion of the r ange .  

3.  C o m p a r i s o n  of Concep t s  

A l i ~ e a r  ;rrray of N p h a s e - c o n t r a l l c d  l a s c r s  y ie lds  a fa r - f i e ld  p a t t e r n  i n  

which thc center in tens i ty  1s proportional t o  N' and the  diffraction coefficient i n  

the di rec t ion  of  the row is propor t iona l  t o  I /N a s  co t i~parcd  to thcs s ing lp  l a s c r .  

A f :*ea-running l i n e a r  array of N lascrs h a s  its c e n t e r  i n t ens i ty  p ropor t iona l  to  

N and d i f f r a c t i o n  coefficient independent  of N. I n  o r d e r  t o  c o m p a r e  thc  t n o  

s y s t e m s ,  c o n s i d c r  the case  witl. N = 5 and with s p a c i n c  equal  to the  a p ~ r t u r c  

s o  that  c - Za, T h e  r e l a t i v e  l ight  in izns i ty  i n  tllc d i r e c t i o n  a long t he  a r r a y  is 

shown f o r  these  c a s e s  i n  F i g .  2 7. 
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Let Rj be the ratio of the expectation values of the phased to  free-running 

l inear  a r r ays ,  s o  that when R > 1, the phased a r r a y  would provide a la rger  

expectation value: 
.l 

For the limiting case of small values of au/X, the phased a r r a y  has an  expecta- 

t ion value which is N times that of the free-running a r r a y ;  the maximum value 

of the ratio occur s  a t  this l imit .  For large values of au/X, the two expectation 

values a r e  identical, R d l .  The case  of N = 5 and c / a  = 2, given i n  Fig. 18, i l lus-  

t r a t e s  typical behavior of this ratio,  For  au/X ,< 0.27 the phased a r r a y  has 

theoretical advantage, but fo r  g rea te r  val.ues i t  is  ei ther  disadvantageous to or 

not  significantly different f r o m  the free-running z r ray .  

A square a r r a y  of N phase-controlled l a s e r s  yields a far-field pattern i n  
2 

which the center  intensity is proportional to N and the diffraction coefficient i s  

proportional t o  a s  compared to  a single l aser .  A corresponding f r ee -  

running a r r a y  has  i t s  center intensity proportional to  N and diffraction coefficient 

independent of N. The diffraction patterx: ' .:'+I r of the two array directions is  

given by that of the linear a r r a y ,  as shown 11.1 Big. 17, Let Rs be the ratia of 

the expectation values for the square  a r r a y s ,  in an analogous manner  to R e 
The maximum value of R i s  N, which i s  approached in  the l imit  of sma l l  au/X. 

9 
The behavior of this ratio, shown in Fig. 18, is s imi lar  to that for  a l inear  

a r r ay .  Again the distinction between the two systems disappears for  la rge  

values of au/X. 

The previous comparisons contained the implicit  assumption that the addi- 

tion of phase and frequency control did not change the power output of the l a se r s .  

I t  i s  more  reaoonable to a s sume  that when constraints a r e  placed on a l a se r ,  

the total power output would decrease.  Let < be the r a t io  of the power output of 

the individual phase-controlled l a s e r  to that of the free-running lase Then 

the previous discussion concerned cases  with = 1. If - < 1/N, then the expec- 

tation value of the phased a r r a y  i s  always l e s s  than that of the corresponding 

free-running array; hence, the range of interest is 1 /N  - < j - < 1. The ratios 

R and R are altered to  include this effect by a multiplication by 5: e s 
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Fig, 18. Ratio of the relative power of the phased t o  free-running aysterna 
for a linear array of five 1as.ers and a square array of 25 lasers 
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Choose the smal les t  value of au/X for  which R equals 1 as the lir tit for advan- 

tage of the phased ar ray .  The phased a r r a y  will have an  advantage only for 

values of au/X smal le r  than these l imits,  which a r e  shown in  F iga .  19 and 20 

for the previously discussed cases .  

H. CONTEMPORARY CAPABILITIES 

State -of-the -a r t  capabilities for l a s e r  sys tems will be projected to  provide 

a baseline upon which the utility of these sys tems m a y  be evaluated. The analysis 

will be applied to ear th-based and earth-orbiting l a s e r  sys tems which simultane- 

ously maintain al l  of the s ta te  -of -the -ar  t values. S o m e  of the parameters  involved 

i n  the analysis a r e  not independent of the others;  however, only firs t-orc?er 

dependency will  b e  considered. 

Although the highest power C W l a s e r s  have wavelengths in the middle 

infrared, equal power levels a r e  expected to be developed In the shor te r  wave - 
length regions. The CO l a s e r  at 10.6 pm is presently considered a s  leading 2 
the power race ,  -with the CO l a s e r s  a t  5 .3 pm and the H F  l a s e r s  a t  2. 3 pm as  

i t s  leading competitors. (9 8) The visible l a s e r s  have power which is growing a t  

a rate s imi lar  to  the inf rared  l a s e r s  and the UV l a s e r s  a r e  gaining in  numbers. 

F o r  this exerc ise ,  two typical wavelengths of 10 p m  and 0.4 pm (blue) will be 

chosen to i l lustrate  the range of probable l a s e r  systems. 

The optical equipment for high power l a s e r s  must be sufficiently Large to 
6 - 2 

avoid high power densities. A l imit  of roughly 10 W m for distortion and 10 
8 

W m-' for f rac ture  may be r.2plied to  transmitting optical mater ials .  (99' Reflec- 
- 2 

tive optics have a significantly higher limit of at leaet l o 8  W rn lor distortion. 

The state of the a r t  for the size of diffraction-limited optics is 6 m e t e r s  for 

ground-based systems ('0°) and 3 m e t e r s  for the earth-orbiting Large Space 
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Fig, 19. Limits of advantage of phased linear aTrays 
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Fig. 20. Limits of advantage of phaaed square arrays 
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Telescope. (Io2' Since diffraction-limited l a s e r s  with significant power presently 

exis t ,  'Io2' all lasers will  be assumed to  be diffraction limited. The cu r ren t  

prediction of 10 meter  optics ' lo3* lo4 )  will  be oscd.  Consequently, the  u p p e r  

l imi t  on the total power p e r  l a s e r ,  P, is 100 MW, I f  windowless high-powered 

lasers are developed, then this total  power can be two o r d e r s  of magnitude 

la rger .  

- 6 
Stat ic  high energy laser systems can be aligned to within 2 x 10 radian,  (105) 

Atmospheric inhomogeneities l imit  ear th-based t e lescopes  to a seeing accuracy 
-6 

of about 5 x 10 radian, thus their  pointing accuracy  has been designed to per-  

form a t  that  level. Spaceborne telescopes have done much better;  the Strata- 
- 8 

scope system can point a 1 me te r  telescope with an accuracy of 8 x 10 radian (106) 

- 8 
and the 3 meter Large Space Telescope is expected to point within 2 . 4  x 10 

radian,  'lo') A projected pointing accuracy of 2 x 10" rad ian  will be assumed 

for an earth orbiting system.  

Dis tor t ion  and attenuation of l ight  by the earth's atmosphere  makes a high 

power density earth-based system unlikely, Uncler good conditions, t h e  atmos- 
- 5  pheric diffraction for a lower power visible laaer  is about 10 radian. (107' 

Attenuation by absorption l imi t s  the choice of laser wavelength to those for which 

the a tmosphere  is re la t ively t ransparent .  However, the atmosphere is not 

completely t ransparent  to any wavelength, 'Io8) and adverse woather conditions 

will  add to the absorption. At the power densit ies which a r c  considered, only 

a very s m a l l  fraction of the beam need be absorbed f o r  the index ui retraction 

of the a i r  to change significantly. The resu l t s  are thermal bloomling and beam 

steering; the former causes  the beam to spread and the latter causes i t  to miss  

the target. Atmospheric turbulence will also cause a loss in  beam strength,  (109 )  

and a smoothing of diffraction structure, lo' Phase-compensated optical sys t ems  

can be employed to  compensate for some of the phase dis turbances  caused by t h e  

atmos7here. (''I) These sys t ems  apply coherent optical adaptive techniques to 

introduce a phase varia t ion i n  the  output beam which compensates  for the phase  

distort ions produced by turbulence and thermal blooming. The t a rge t  provides 

a feedback which enables the adaptive sys tem to seek  the optimum phase align.. 

ment. Although only small, low power density lasers  have been s h w n  to be 
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adaptable, the upper Limit on power density i s  determined by atlnospheric 

breakdown o r  optical m a t e r i a l  breakdown. F o r  the ear th-based laser a r r a y ,  a 

pointing accuracy of 1 x radian will be assumed, and the beam spread  will 

be  optimistically taken as that of the diffraction l imit .  

The method of conversion of t h e  l a s e r  energy to  e lec t r ica l  energy i s  not 

of concern here. Since the efficiency of conversion i s  involved, a little will be 

said about photovoltaic devices. The so l a r  ce l l  present ly  has an efficiency of 

about 0. 1; however, improvements ,  Zed by a dec rease  i n  impuri t ies  and defects,  

could r a i s e  this t o  nea r ly  0.22. ('12) The monochromatic l a s e r  h a s  a large 

theoretical  advantage over  the polychromatic sup a s  much of the s o l a r  flux i s  

wasted i n  both the long wavelength and short wavelength regions, owing to insuf- 

ficient quantum energy and to energy i n  excess  of that required for a photoelectric 

event, respectively. A ce l l  which is tailored to the l a s e r  wavelength can be 

expected to have an efficiency of about 0.4 and possibly higher. ( lo) A conversion 

efficiency of 0.5 will be projected,  with the reserva t ion  t h a t  it could be low. 

F o r  la rge  aper ture  systems, the  ranges  for validity of the Fraunholer 

approximation include all interplanetary space beyond the moon. I t  i s  possible 

for the r e su l t s  for theae exemplars to be extrapolated to ranges on the order bf 

ki lometers ,  i f  focusing optics a r e  applied, The light intensity pattern of th t  

far-f ie ld  is valid for c l o s e r  ranges within the F r e s n e l  approximation i f  the beam 

is focused with n.on-vignetting diffraction-limited optics. 

I. CONCLUSIONS 

The ability to estimate the propagation and pointing characteris tics of 

l a s e r  sys  terns has  been developed for  energy t r ans fe r  over l a rge  distances. 

These ana lyses  will be combined with the es t imates  of contemporary capabilities 

to  determine the utility or futility of laser energy t r ans fe r  to a n  e x t r a t e r r e s t r i a l  

target. 
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The single laser analysis with the assumption of gaussian pointing and 

l ight  distribution will be employed as an exemplar of individual l a se r s .  The 

assumption of no less than half the possible power with a three sigma probability 

yields pointing cr i te r ia  shown in  Fig. 21. Variable range focusing can be applied 

if the laser is composed of a large number of elements which a r e  controlled by 

one of the coherent optical adaptive techniques. This focusing is accomplished 

by phasing the elements to form a representation of a converging spherical  wave 

whose radius of curvature is variable. In the far-field (Fraunhofer diffraction 

region) diffraction phenomena dominate so that focusing has  a minimal effect. 

For ranges  greater  than near earth-orbit ,  the ear th-based l a se r  system 

is pointing-limited, while the ranges around near earth-orbi t  require  le s s  s t r in-  

gent pointing than i s  projected. For  the 10 me te r  optics, diffraction effects are 

not important to the beam shape at the low earth-orbi t  range, a s  is i l lustrated 

i n  Fig. 2 1 where the required pclinting accuracy i s  independent of l a s e r  wave- 

length. The situation i s  different for the spaceborne l a se r  system where the 

excellent pointing capability makes the 10 prn l a se r  beam spread-limited for all 

ranges. For  ranges grea ter  than synchronous orbit, the pointing accuracy and 

pointing c r i t e r i a  are  well matched. Thus an  earth-based l a s e r  sys tem will be 

pointing-limited i f  i t  attempts to transra~it  far ther  than low earth-orbi t ,  but a 

spaceborne laser system could point a s  well as required for a 0 .4  pm l a s e r  but 

much better than required for  a 10 pm la se r .  

None of the contemporary systems can provide more  power than the sun 

for al l  interplanetary distances.  The beam spread of the 10 pm l a s e r  allowe the 

sun to provide more  power at distances far ther  than the earth-moon range. The 

0.4 pm l a s e r  can supply m o r e  than enough flux to better the sun a t  the earth- 

moon range, but i t  cannot bea t  the sun a t  interplanetary range, The power con- 

s tants  of these two l asers ,  which correspond to the left-hand side of Eq, (73). 

are 1 . 3  x 10'' W for 10 prn and 7 . 8  x l oZ2  W for 0.4 prn. 
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Fig. 21. Pointing criteria u fo r  half power with three sigma probability m 
as a function of range for a 10 meter aperture 



The phased array of l a s e r s  has  a theoretical advantage over a corresponding 

a r r a y  of free-running l a s e r s  for  l a se r  energy t ransfer  sys t ems  which have diffuse 

beams and excellent pointing capabilities. When the previously discussed values 

for  the ear th-based system a r e  substituted, the parametr ic  group ~ u / X  has values 

of 1 fo r  the 10 pm l a s e r s  and 25 for the 0.4 prn lasers .  Assuming the bes t  case 

of ?, = 1,  a factor of 4 decrease  in  au/X is r e q u i r e d  before any advantage i s  

obtained by the phased a r rays .  Lower  values for r would require  correspondingly 

l a rge r  improvement factors.  Increasing the wavelength or decreasing the aper - 
ture  diameter  to  improve the relative position of the phased a r r a y  would be count- 

erproductive for far-fizld ranges as this would cause the average power received 

to  decrease (Fig. 16:. There is no distinct advantage for  phase-controlled over 

free-running arrays for earth-based operations, When the values for the space- 

borne sys t em a r e  substituted, the parametr ic  group au/X has values of 0.02 far 

the 10 pm lasers and 0.5 for  the 0.4 pm lasers .  Evcn for the best case of = 1, 
the visible phased a r r a y  does not have a significant advantage over t h e  c o r r e s -  

ponding free-running a r r a y  (Fig. 1 8 ) .  However, the phased a r r a y  of middle 

infrared lasers a t  10 pm does have a significant advantage over the free-running 

a r r a y  i f  there  a r e  enough lasers in  the ar ray .  As  can be seen f rom Fig. 19 and 

Fig ,  20, the phased  arraj will have a theoretical advantage far reasonable values 

of and all values of N. 

Since the phased and free-running a r r a y s  have the same  character is t ic  

distance for  energy flux dispersion, the range is not a factor i n  the comparison; 

thus the relative worth of these two alternatives depends only on the diffraction 

and pointing parameters ,  The object has been to determine i f  the addition of 

phase control to  an a r r a y  of la rge  l a s e r s  would significantly improve the power  

t ransfer  to a target. The conclusion of this work i s  that phase control of laser 

a r r a y s  can yield a significant improvement in  power t ransfer ,  but i t  should not 

be applied indiscriminately as  there are cases where i t  will harm the p e r -  

formance of a laser energy t ransmission ti: stem. 

JPL Technical Memorandum 33-722 



J. NOMENCLATURE 

Diffraction pattern parameter for the  gaussian dis. tribution 

Pointing function parameter for  a gaussian dis tr ibut io~i  

Nominal beam diameter 

Expectation value of normalized intercepted powe r 

Diffraction pattern function 

Pointing function 

Light f ntensity 

Bessel function of Iirst order 

Sun-earth distance, 1.5 x 1 0 l r  meters 

Laser energy fall-or F distance 

Total power of orre Ti;'er 

Average interce2~eci power 

Power per unit i ~ ~ - 7  from the laser source 

Power  per .~ri l t  area  from the sun 

Maximum inkercepted power 

Ratio of expectation vaiues of phased to free -running a r rays  

Square root of target a r e a  

Target function in target plane 

Light amplitude function 

Half of the sides of a rectangular aperture 

Spatial period of an array of l a se r s  

Diameter of circular aperture 

Constant 

Characteristic l eng th  of gauss ian distribution of l ight  intensity 

Dummy parameter 

Radial distance in target  plane 

Half of the side of a square target 

Maximum pointing e r r  or in the target plane 

Dummy zartesian coordinates corresponding to x, y 

Dummy parameter 

Cartesian coordinates in the target plane 

Range from laser to target 
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Influence coefficient 

Ratio of intercepted power at a point in  the target plane to maximum 

intercepted power i n  that plane 

Minimum acceptable rat io of centroid energy flux to maximum energy 

flux 

Difference i n  target  plane 

Fraction of laser power within a distance f rom the center of the beam 

Ratio of laser  power without t o  with phase control 

C a r t e ~ i a n  coordinates 02 the aperture plane 

Conversiox~, efficieccy of lasar snergy 

Conversion efficiency od solar energy 

L a s e r  wavelength 

Diffrac.tion coefficient 

Half -angle pointing angia for gaus sian pointing function 

Fraction of time for which the pointing system has  less than a spe- 

cified error 

Half -angle representation of furthest extent of pointing function 
3 

Solar constant. 1 .4  x 10 W rn-2 
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THE USE OF MATTER-ANTIMATTER 

ANNIHILATION ENERGY IN PROPULSIOY 

D. D. Papailiou 

A. INTRODUCTION 

The discovery of the positron in  1932 justified the predictions of Dirac 

and  verified the existonce of a particle-antiparticle symmetry  in  nature. 

Since then, advances in  l inear  accelerator  technology have led to the produc- 

t ion of heavier antiparticles such as antiprotons, antideutcrons, and antial- 

phas. 

When a part ic le  and an antiparticle a r e  brought together, annihilation 

o c c u r s  simultaneously with the re lease  of la rge  amounts of energy in the form 

of various part ic les ,  created during the annihilation process ,  A typical 

annihilation i s  that of a proton-antiproton, which develops as follows: 

Initially, positive, negative, and neutral IT-mesons a r e  produced according to 

the reaction: 

f -  
p + p + flf t T- + f ro  (average number of mesons produced = 5) 

Since Tf-mescns a r e  unstable, they decay to muons, neutrinos, and Y-rays as 

follows: 

Finally, the muons decay, producing positrons,  electrons,  and neutrinos: 
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Therefore,  the final products of annihilation a r e  electrons,  positrons, and 

y - r a y  radiation. The energy associated with these part ic les  represents  approxi- 

mately half of the total annihilation energy, the remainder  being lost  in the form 

of neutrinos. 

The energy per unit m a s s  released f rom the above annihilation reactiori i s  
13 

approximately 4 . 5  x 10 joules per gram. This figure is about two o r d e r s  of 

magnitude higher than the corresponding energy released from a typical nuclear 

fusion reaction. F o r  instance, the  fusion of four protons to form an  alpha particle 

is followed by an energy r e l ease  of 0. 75 x l o L 2  joules per gram. As indicated in  

t h e  preliminary analysis presented in the Appendix, the amount of ant imatter  

needed for propulsion is ve ry  small ,  of the order  of 10" g m .  According to 

these  values it appears that, at: least  in principle, the use of matter-ant imatter  

annihilation energy f a r  propulsion i s  VI- ry attractive.  However, several  difficult 

problems must  be salved before i t  would ~ e c o m e  feasible.  

The purpose of the present  section is to summarize  existing information on 

the subject and to  discuss problems related to the  use  of the matter-antimatter 

annihilation energy for propulsion. The material presented is a s  follows: The 

question of ant imatter  production is examined (paragraph IV-B); existing infor- 

mation on atom -antiatom (ion-antiion) interatomic potential energy is presented 

(IV-C) - this information is necessary  for calculations of annihilation c r o s s  sec-  

t ions and annihilation energy ra t e s ;  questions of matter-antimatter separation 

and the problem of controlling matter-antimatter annihilation processes  a r e  con- 

s idered  (IV-D); possible schemes for antimatter s torage are presented (IV-E); 

and  a number of studies are suggested (IV-F) on probLems related to  the applica- 

t ion of antimatter to  propulsion, 

B. ANTIMATTER PRODUCTION 

There a r e  two possible ways of obtaining antimatter:  I t  can be produced in 

the  laboratory, or  it can be obtained from existing sources  in our galaxy. The 

possibility of utilizing ant imatter  available in nature i s  a t t ract ive;  however, i ts  

existence in large quantities, even within the rnetagalaxy*, i s  debatable. 

5 
Total number of galactic systems.  
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Direct detection of ant imatter  in the universe i s  presently not possible, 

because of the symmetr ic  s t ruc ture  of mat te r  and antimatter (par t ic les  and 

antiparticles have equal m a s s  and opposite quantum numbers and e lec t r ic  

charges) ,  The only possible way of detecting antimatter in the universe is by 

studying matter-ant imatter  annihilation reactions. The detectable final 

prodzrts  of these reactions a r e  Y-ray radiation (average energy h V - 200 MeV) 

and radio waves, 

The q tes t ion  concerning the existence of antimatter in the universe i s  

of interest  to cosmologists i n  relation to the development of theories explain- 

ing the origin and evolution of the universe 3-1 16) and also theories explain- 

ing the enorrnouE amounts of energy needed for quasars ,  Seyfert galaxies, and 

radio stars. (1 17) 

P 
Arguments for the existence of la rge  amounts of antimatter in  the 

universe are presented by the proponents of the theory of a "symmetr ic  

universe" containing equal amounts of ma t t e r  and antimatter (KLein, (113) 

Alfven and ~ l e i n "  1 8 ) ) .  However, according to  Steigman and Hoyle, (1 19) 

existing measurements  ( lZ0' l 2  ')of energet ic  Y-rays (h V 1 200 MeV) se t  

l imits on the amount of ant imatter  in the universe. These measurements  are 

interpreted by  these investigators as indicating that in te rs te l la r  gas is over- 

whelmingly of one kind (E <N M ). It should be noted that the above-mentioned 
(3 

measurements  indicate the existence of a line source of Y-ray radiation of 
- 4  -2 -1 -1  

strength dF / d ~  = 2 x 10 crn sec r ad  in the galactic plane, and also of 
Y -4 -2 -1 

a source of strength F = I 0  c m  sec in the direction of the galactic 
Y 

center. Therefore,  i t  appears  that :he amount of antimatter i n  the universe 

rather than its existence is questioned by cosmologists. 

At present  antimatter is produced in  the laboratory either in  the form of 

a positron beam which, together with an electron beam, circulates  in "storing 

rings" ( l Z Z )  or  in the f o r m  of antinuclei (antiprotons, antideuterons, etc. ) pro- 

duced by means of large linear accelerators .  l iZ3)  The electrons and p o ~ i t r o n s  

produced during p - p- annihilation will also interact;  however, the re leased  

annihilation energy during e - e' interaction is very law (0. 5 MeV) compared 
+ to that produced during p - p- annihilation. Therefore,  e - e annihilation will 

be excluded from the present diecussion. 
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Large l inear  acce lera tors  (such as, for  instance, the one in use at 

Los Alarnos) can produce a proton beam of protons per  second. When 

such, a beam collides with a target,  antiprotons are produced as p a r t  of the 

debris. The antiproton yield is independent of beam energy and i s  of the 

following order of magnitude: 

n- 
yield i 2, lo-' 

n U 

total 

Fac to r s  such as limitation in the number of antiprotons which can be  captured 

by an applied magnetic field and optimum s ize  of the target i n  order to avoid 

collisions of antiprotons with target nuclei reduce further the production of 

antiprotons by two orders of magnitude. Hence, the r a t e  of antiproton pro-  

duction is of the order 

dn- 
P , 1 0  1 1 antiprotons/ second 
d t 

Based on this number the estimated t ime to produce or  = kilogram of antiprotons 

i s  

8 
t =  1.9 x 10 years 

This number led Steigman (lZ3) to the conclusion that the use of antimatter for 

propulsion purposes i s  not feasible. However, given that the energy released 

by annihilating one gram of antimatter is approximately equal to 4. 5 x 10 13 

joules, it appears that even a small  antimatter mass of the order  of a mgr 

might be sufficient for  propulsion purposes ( see  Appendix A).  According to 

Kantrowi t z ,  the amount of energy required to place 1 lb in  a lower orbi t  
7 is approximately 1.62 x 10 joules. The time required ta produce 1 mgr  of 

antimatter is 
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Furthermore, advancement i n  the a r e a s  of producing proton beams of 

increased  intensi t ies  and improving the remainder  of the fac tors  affecting 

ant imat ter  production which m o s t  likely will  occur  in the future are expected 

to reduce the production t ime.  It should a l so  be pointed out that  the present ly  

used methods a r e  not designed for  an t imat te r  production but r a the r  for studies 

in the field of the physics of e lementary par t ic les .  

The question of producing heavier ant ipar t ic les  such as antideuterons,  

antialphas,  and even heavier ones, has been examined by Hagedorn. (125) 

The resu l t s  of this study are r a the r  pe s s imi s t i c  s ince the indication i s  that the 

production of antinuclei with A antinucleons re la t ive  to antiprotons drops 

according to the relation 

The following conclusions pertaining to production can be stated: 

1) The question of ant imat ter  occur rence  i n  nature  cannot be 

answered conclusively at the p re sen t  time. Fu r the rmore ,  

even i f  antimatter were t o  be found in the fukre at distances 
within our reach ,  i t s  practical utilization might  p r e sen t  

s e r ious  problems.  To demons t ra te  the point, consider  the 

simple question of how a mat te r - spacecraf t  can survive i n  an 

anti matte^ environment.  

2)  The labora tory  production of an t imat ter  i n  sufficient quantities 

will possibly be feasible in the not-too-distant future.  A study 

to investigate the possibil i ty of increasing production r a t e s  a t  

the level  required for propulsion applications is present ly  

needed. The problems  of antimatter s torage ,  annihilation rate 

control ,  and development of practical propulsion ~ c h e m e s  are  

those on which future s tudies  should a l s o  be focused. 
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C . MATTER-ANTIMATTER ANNIHILATION PROCESSES - 
ANNIHILATION CROSS SECTION 

Knowledge of the important annihilation reactions occurring in a mat te r -  

antimatter misture i s  essent ial  to the derivation of annihilation c r o s s  - section 

expressions corresponding to these processes .  Fac to r s  defining the dominant 

annihilation mechanisms in a matter-ant imatter  mixture are part ic lc-  

antiparticle relative velocitia s (kine tic energies) ,  their  degree of ionization, 

and their number densit ies.  The information concerning annihilation c ross  

section is needed for estimating the r a t e s  of annihilation and energy re lease  

during the annihilation processes .  The knowledge of c r o s s  sections is needed 

for the studies of the application of the matter-antimatter annihilation concept 

to propulsion, f o r  u s e  in  solving problems rclated to particle-antiparticle 

separation, thc storage of antimatter,  and the control of annihilation ra tes .  

Matter -antimaLter interactions take place on three  differ cnt sca les  : 

(1) large sca le  interactions, (2 )  atomic scale  interactions,  and  ( 3 )  nuclear 

scale  interactions.  Interactions ( I )  and (2)  are cliscusscd below. The proton- 

antiproton nuclear reactions discussed in thc Introcluction a r e  suificient Tor the 

purpose of t h i s  study. 

1. Large Scale Interactions 

Large sca le  interactions involve the  presence of e lectr ic ,  magnetic, and 

gravitational fields. Typical of studies on large scale  interactions a r e  those 

made by Alfven and ~ l e i n ( " * )  and by ~ l i v e n ( l ~ ~ : .  Although the emphasis in  

these studies is placed on the cosmological aspects of matter-ant imatter  in tc r -  

action, severa l  elements of these studies, referr ing to the behavior of an 

"ambiplasmal '  in the presence of various fields, a r e  conductive to the study of 

t he  problems related to the application of the  concept in propulsion. 

2 .  Atomic Scale Interactions 

Several  interaction mechanisms leadin? to mat te r  -antimatter annihilation 

have been described, mainly b y  Morgan and Hughes (12 7, 128) and by 

Morgan (129). In general, they can be classified as follaws: 
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1) Di rec t  annihilation. 

2) Radiative capture leading to the formation of a positronium 
+ - 

(Ps), in the c a s e  of e - e interactions, a protonium (P t )  - t 
i n  the case of p - p interaction,  or a nucleoniurn in the 

case of heavier  par t ic les ,  with the simultaneous emission 

of a photon. (127) 

3)  Rearrangement collisions in which atoms,  ions, o r  molecules 

form bound s t a t e s  before actual annihilation occurs. 

The conditions for which a par t icu la r  annihilation process  a s sumes  the 

predominant ro le  in  a mat te r -an t imat te r  mixture a r e  as  follows: 

a. Direct  Annihilation 

F o r  collision energ ies  above about 100 eV o r  for a completely ionized 

particle-antiparticle mixture ,  the d i r ec t  annihilation c r o s s  sections apply. ( 1 2 7 )  
I- - - 

Morgan and Hughes have investigated the c a s e s  of e - e and p - p direct-  

annihilation c r o s s  sections.  

- f 
F o r  kinetic energ ies  above 10 keV for e - e interactions and 10 MeV - 

for p - p interactions,  measu red  in the center  of mass  system, the Coulomb 

field effect is negligible and therefore  the plane wave approximation ( 1  30) 

can  be applied to es t imate  annihilation cross sections. Morgan and Hughes (127) 

applied the plane wave approximation to calculate e' - e' annihilation cross  - 
sections above 10 keV. They also used available experimental data of p - p 
annihilation cross sections ( I 3  in  the range 20 MeV to 6 GeV to suggest an - 
es t imate  l o r  p - p c r o s s  sections in  the range 10 MeV to 1 GeV. In this - 
range they noticed that the p - p c r o s s  section curve is approximately fitted 

by the expression 

(where v is velocity) 

.Q* 'L. 

The definitions of Ps and P t  are given i n  paragraph IV-C-2-b. The formation 
of a nucleonium is  the r e s u l t  of the interaction of a nucleus and an antinucleus 
with the simultaneous emiss ion  of a photon. 
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- f 
w h e r e ,  f o r  nonrela t iv is t ic  veloci t ies ,  the e - e c r o s s  sect ion Dye i s  given 

by the e-xpression 

- 
F o r  kinetic ene-  .ies below 10 keV and 10 MeV f o r  e - ct and p - p- 

in te rac t ions ,  respect ively ,  Coulomb field in te rac t ions  cannot be neglected. 

Morgan and Hughes ( l Z 7 )  considered this  effect in es t imat ing  d i r e c t  annihilation 

c r o s s  sec t ions  by multiplying O and 'Jlye, respect ively ,  by the r a t i o  of the 
P - 4- 

squa re  of the ampli tude of the Coulomb wave functions for zero e - e and - 
p - p s\:paration, and by the corresponding Coulomb wave functions in the 

plane wave approximation.  

b.  Radiative Capture  

As a l ready  mentioned,  radia t ive  cap ture  is ano ther  mechan ism which 

can contribute to pa r t i c le -an t ipa r t i c le  annihilation. The following sadla t ive  

cap ture  reac t ions  can occu r  in a mix tu r e  of ionized H - g. 

11 - 3 For pa r t i c l e  densi t ies  l e s s  than 10 cm the so-formed Ps and P n  remain 

intact unti l  annihilation o c c u r s  and the re fore ,  f o r  these  densi t ies ,  radiative 

cap ture  should be  cons idered  in  es t imat ing total annihilat ion c r o s s  sect ions .  

Morgan and Hughes derived exp re s s ions  fo r  radia t ive  capture annihilation - - 
c r o s s  sec t ions  for both e - ef and p - p reac t ions  (0 D ) However,  - f r e '  r p  
they a l s o  found that although, f o r  e - e reac t ions ,  ga e and U have corn - 

r c - 
parable values ,  for  p - p reac t ions ,  values  of T f a r  exceed corresponding 

OrP 
values  of U for a l l  energies of i n t e r e s t .  Given that the annihilation energy 

rF  
r e l ea sed  during c -  - e C  reac t ions  is negligible in compar i son  with t h a t  released - 
f r om p - p reactions, we can conclude that, in  genera l ,  the contribution of 

radiative capture  reactions should be neglected in  calculat ing annihilation 

energy rates. However, they migh t  influence other  f a c to r s  such a s ,  for 
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i n s t a n c e ,  the cons is tency of a n  "ambiplasma".  The consequences  of cllanges 

i n  e l ec t ron-pos i t ron  concen t ra t ions  will be d i s c u s s e d  below i n  p a r a g r a p h s  

IV-D and IV-E. 

c. R e a r r a n g e m e n t  Co l l i s ions  

R e a r r a n g e m e n t  co l l i s ions  become i m p o r t a n t  a t  e n e r g y  l eve l s  below 

t h o s e  co r respond ing  to  the to ta l  a t o m i c  binding of the e l e c t r o n s  in  a n  a t o m  and 

p o s i t r o n s  i n  a n  ant ia tom (about  100 eV f o r  an H - m i x t u r e ) .  Within this low 

e n e r g y  range ,  r e a r r a n g e m e n t  c r o s s  sec t ions  a r e  far g r e a t e r  than d i r e c t  

annihi lat ion c r  os s sec t ions  and,  t h e r e f o r e ,  p a r t i c l e  - an t ipa r  t icle  annihi lat ion 

c r o s s  sec t ions  are equal to r e a r r a n g e m e n t  c r o s s  sec t ions .  The above s t a t e -  

m e n t s  are c o r r e c t ,  provided tha t  pa r t i c l e -an t ipa r t i c l e  dens i t i e s  are not  

suff iciently h igh to  lead to b reakup  and provided,  also, tha t  a t o m s  and an t i a toms  

are not wholly ionized (comple te ly  s t r i p p e d  of the i r  e l e c t r o n s  o r  pos i t rons ) .  

S e v e r a l  f o r m s  of r e a r r a n g e m e n t  co l l i s ions  can o c c u r  in  a m a t t e r - a n t i m a t t e r  

m i x t u r e  (1281 lZ9); however ,  they a l l  f a l l  in to  t h r e e  m a i n  ca tegor ies :  ( I )  

a tom-an t i a tom,  (2)  a tom-ant i ion  ( ion-ant ia tom),  and ( 3 )  ion-antiion col l i s ions .  

To e s t i m a t e  annihi lat ion c r o s s  sec t ions  for  a given a tom-an t i a tom p a i r ,  the 

i n t e r a t o m i c  potent ia l  e n e r g y  of th is  p a i r  should be known, Th i s  i s  not  e a s y  

t o  d e t e r m i n e  and in  a l m o s t  all c a s e s  it involves extens ive  ca lcula t ions .  F o r  

ins tance ,  i n  the  work by J u n k e r  and Bards ley ,  (I3') which r e p r e s e n t s  the bent 

exis t ing  ca lcula t ions  on H - fl i n t e rac t ion ,  a wave f~ rlction containing u p  to 7 5  

t e r m s  was  u s e d  to e s t i m a t e  i n t e r a t o m i c  potential  e n e r g i e s .  Cons ide rab le  

w o r k  on a tom-ant ia tom i n t e r a t o m i c  potential  e n e r g i e s  h a s  been car r ied  out by 

Morgan  and Hughes in r e l a t i o n  to the study of c r o s s  sec t ions  for r e a r r a n g e m e n t  

col l i s ions .  The method i s  b a s e d  on a pe r tu rba t ion  expansion for the  e s t i m a t i o n  

of the i n t e r a t o m i c  potential  V, i n  which the pe r tu rba t ion  potential  ene rgy  i s  the 

s u m  of the Coulomb e n e r g i e s  behveen the p a r t i c l e s  of the a tom and the p a r t i c l e s  

of the ant ia tom.  Morgan e s t i m a t e d  upper  and lo\\*er l imi t s  of V for  

s p l ~ e r i c a l l y  s y m m e t r i c  a t o m s  and an t i a toms ,  from which he de r ived  cor- 

responding l o w e r  and u p p e r  bounds of r e a r r a n g e m e n t  annihi lat ion c r o s s  

sec t ions ,  In mode l ing  the p e r t u r b a t i o n  potential ,  the following comnlon f e a t u r e s  

of a tom-ant ia to in  in te rac t ion  w a r e  cons ide red .  F i r s t ,  fo r  an  a tom-ant ia tom 
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p a i r ,  there i s  no i n t e r a t o m i c  exchange energy  as in the c a s e  of a n  a tom-a tom 

p a i r  b e c a u s e  of the opposi te  s igns  of e l e c t r o n s  and pos i t rons ,  a s t z t e  which 

prohibi t s  their in te rchange  i n  an  a tom-an t i a tom p a i r .  Second, f o r  c lose  

enough a tom-ant ia tom distances ( R  + O), the potent ia l  V is g iven by the 

re l a t ion  

which is the Coulomb ~ o t e n t i a l  energy between the pos i t ive  nucleus  with Z pro-  

tons and the  negative ant inucleus  with ant iprotons ,  F o r  f u r t h e r  desc r ip t ion  

of the po ten t i a l  V, the p a r t i c u l a r  c h a r a c t e r  of e a c h  of the t h r e e  c a s e s  mentioned 

above should be cons ide red .  F o r  ins tance ,  f o r  a tom -ant ia tom p a i r s  (case ( I ) ) ,  

the lowes t  o r d e r  t e r m  of the expansion,  E l ,  c a n  be used  as the u p p e r  bound f o r  

V. (El  is  the e l e c t r o s t a t i c  potential  e n e r g y  between the nucleus  and tne 

undis tor ted  e lec t ron  c h a r g e  d is t r ibut ion  of the a tom and t h e  a n t i a t o m . )  F o r  

the l o w e r  bound the Long range van d e r  Waals  potent ia l  of the f o r m  V = C / R  
b 

can be employed. It  should  be emphas ized  that ,  obtained th is  way, the upper  

and lower  bounds of annihi lat ion c r o s s  sec t ion  can  be  d i f fe ren t  by s e v e r a l  

o r d e r s  of magnitude and t h e r e f o r e  c a n  only be u s e d  to  obtain a v e r y  rough 

e s t i m a t e  of the range  within which annihi lat ion c r o s  s sec t ions  and annihi lat ion 

r a t e s  l i e .  The a c c u r a c y  of t h e s e  ca lcula t ions  wi l l  be  demons t ra ted  in p a r a -  

g raph  IV-E, where  some e s t i m a t e s  wil l  be given i n  r e l a t ion  to the p r o b l e m  of 

a n t i m a t t e r  s to rage .  The v a r i o u s  pa r t i c l e -an t ipa r t i c l e  col l i s ion  m e c h a n i s m s  

and the conditions under  which they are s igni f icant  in  defining annihi lat ion 

r a t e s  a r e  s u m m a r i z e d  i n  Table 1 1 .  

In conclusion, i t  should be  ment ioned tha t  m o r e  a c c u r a t e  annihi lat ion 

c r o s s - s e c t i o n  ca lcula t ions  a r c  needed lo r  the study of r e a r r a n g e m e n t  col l i s ions  

which, as wi l l  be d i s c u s s e d  i n  p a r a g r a p h  IV-E, are necessary for the study 

of annihi lat ion p r o c e s s e s  i n  l iquids and sol ids .  
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Table 11, Par t ic le-ant ipar t ic le  collision mechanisms 
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.A 

Mechanism 

Direct  annihilation: Coulomb 

field not important 

Direct  annihilation: Coulomb 

field important 

Radiative capture 

Rearrangement  collisions 

I 
Conditions for Which the Mechanism 
Contributes Significantly to the 
Annihilation C r o s  s Section 

a) Kinetic energy levels above those 

corresponding to the total atomic 

binding of the e lectrons of an atom 

or positrons of an antiatom (for a 

H - mixture above about 100 eV), 

b) Completely ionized atoms.  

Kinetic energies  above 10 keV and 
-f - 

10 MeV for  e - e and p - p 
interactions,  respectively.  

a) In general ,  important  a t  par t ic le  
1 1  - 3 

densit ies less than 10 cm . 
b) Negligible for p - p interactions 

for  all energ ies  of interczst. 
- 

C )  e - e' interaction values of 

radiative-capture annihilation 

cross sect ions  are comparable to 

those due to d i r ec t  annihilation. 

Kinetic energies below those c o r r e s -  

ponding to the total atomic binding of 

the electrons of an atom or positron 

of an antiatom, provided that part ic le  

densities are  low (below 10' crna3) 

and the atoms and antiatoms are  not 

completely ionized. 



Ad.equate information exis ts  for accurate studies of ma t t e r  vantimatter 

annihiiation p roces ses  in an "ambiplasmatt  consisting of protons, antiprotons, 

e lectrons,  and positrons.  In this case ,  annihilation occurs through d i r ec t  

interactions since the antiplasma is completely ionized. 

D. MATTER-ANTIMATTER SEPARATION, MATTER-ANTIMATTER 
ANNIHILATION REACTIONS CONTROL 

Alfven ( '  18) has  considered the problem of ma t t e r  -antimatter separation.  

He proposed a separat ion mechanism involving the presence  of e lectr ic ,  

magnetic, and gravitational fields. In what follows, the concepts introduced 

by Alfven will be discussed i n  re la t ion to problems associated with the possible 

development of a ma t t e r  -antimatter propulsion scheme. 

In his  f i r s t  approach to the problem, Alfven investigated an  "electroly- 

sis process"  fo r  mat te r -an t imat te r  separation.  Two adjacent clouds of 

' lambiplasma, ' I  one r ich in e lectrons-posi t rons  and the other in protons- 

antiprotons, w e r e  assumed.  This  par t icular  configuration is  essent ia l  for 

matter-ant imat ter  separat ion s ince i t  was founc! that a ' ' symmetr ic  ambiplasma" 

cannot separate under the influence of a combined e lec t r ic  and magnetic field. 

The means  by which such a configuration can be achieved will be discussed 

la ter  in this section. If this configuration (Fig. 22) s t a r t s  expanding, or  

contracting, in the presence  of a magnetic field, a cu r r en t  loop will be formed 

resul t ing in an electron-proton motion toward the area A and a positron- 

antiproton motion toward the a r e a  B, thus separat ing ma t t e r  f rom ant imat ter ,  

This p roces s  wi l l  also resu l t  i n  the formation of a thin Layer ("Leidenfrost") 

between the separated mat t e r  and ant imat ter ,  within which annihilation will 

occur at a lower  rate.  The amount of separat ing m a s s  M is given by a rela- 

tion s i m i l a r  to that describing an electrolysis  p rocess ,  that  is  

where m H atom mass, I = cur ren t ,  and T = t ime, The e lec t r ic  cu r r en t  
H 

appearing in  this expression i s  related to the applied magnetic field. The 

proper t ies  of the "Leidenfros t" a r e  of par t icu la r  importance for separat ing 

JPL Technical Memorandum 33-722 111 



i) EXPANSION 
-t* 
s - s w  ENRICHED REGION 

MATTER _ _ _ L _ C _ _ _ I -  I - l b  ANTIMATTER 

@ 
C-- 

- 
P+ - P- ENRICHED REGION 

, EXPANSION 

Fig.  22. Par t ic le  -antipart icle separat ion scheme 

mat te r -an t imat te r  and a l s o  for  controlling annihilation ra tes .  In par t i cu la r ,  

the qualitatively described i nc rea se  of p r e s s u r e  in this l ayer  caused by the 

high energy par t ic les  produced i s  of importance for separation.  This p r e s s u r e  

is t r ans fe r r ed  to the mat te r -an t imat te r  clouds by means of the applied magnetic 

f ield,  thus separat ing the two clouds f u r t h e r .  On the other  hand, the cha rac t e r -  

i s t i c s  of the "Leidenfrost, " including tempera ture  and par t ic le  densit ies,  

p resumably  can be  coni;rolled by the applied fields and init ial  clouds condition, 

thus achieving control  of the r a t e  of annihilation i n  the layer ,  

A l h e n  '12') studied also the behavior of a "syrnrnctric arnbiplasrna" i n  

the presence  of a gravitat ional field and found that diffusion of par t i c les  of - -t 
different  mass produced a final s ta te  of separation into regions of high e - e 

f - 
and p - p concentrations.  As already mentioned, this condition is necessary 

for fur ther  separat ion of mat te r -an t imat te r  i n  cosmological  problems;  however,  

i n  propulsion applications, par t ic le  concentration might be controlled without  

the p re sence  of a gravitat ional field. 
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Another important aspec t  of the problem of using ant imat ter  in propulsion 

i s  that of the radiation emitted by the e lectrons and positrons spiraling in the 

magnetic field. It has been mentioned that a total of two t.3 four  e lectrons and 

positrons pe r  annihilated couple p' - p -  a r e  produced from the decay of muons 
4- - 

with an average kinetic energy  of 100 MeV. Although e - e annihilation energy 

is negligiLle (0. 5 MeV), the presence of e lectrons and pc~si t rons  i s  very  

important in the separation p roces ses  and the re lease  of their  kinetic energy 

in the form of radiation. The fact  that the frequency of this radiation can be 

iontrol led by the magnitude of the applied magnetic field is especially signifi- 
4 

cant. In a magnetic field B the e lectrons and positrons emit  synchrotron 

radiation. The decay t ime, Td, i s  

- - 5 x l o 8  1 s e c  
Td BZ I + ( w / w )  

0 

2 
where W is their  kinetic energy and W = rn c (see,  for instance,  Alfven and 

o e 
Fal thammar ,  reference 1 3 3 ) .  If Td C< T , where T i s  the average electron 

0 0 
(positron) lifetime before annihilation occurs, the e lectrons (positrons) radiate  

most of their  energy in the fo rm of synchrotron radiation. If, however, Td>T,,  

ve ry  little synchrotron radiation is emitted.  The energy maximum of the synchro-  

tron radiation (hvmax) depends on the kinetic energy  of the e lectrons and the 

applied magnetic field B in  the following way: 

Depending on the applied propulsion scheme,  control  of the wavelength m i g h t  

b e  desirable  in using the synchrotron radiation energy, for instance,  for  the 

heating of a given mass of propellant, (The average kinetic energy  of e lectrons 

and positrons represen t  the one- third of the useful annihilation energy. ) 

The preceding discus sion leads  to the following COG zlusicns: 

1) A mechanism is available whlch, in principle, can provide 

separation of a ma t t e r  -ant imat ter  mixture  and contr 01 of 
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the annihilation reaction rates in this mixture. This mechanism 
- I " - +  

involves a four-component (e , e , p , p ) ' 'ambiplasma" in the 

presence of magnetic and electr ic  fields, 

2 )  Of part icular  importance is the study of the physical processes  

occurring i n  the "Leidenfrost" layer.  

E. ANTIMATTER STORAGE 

It has been discussed that the attractive feature of: mat ter  -antimatter 

annihilation, favoring the application of the concept in propulsibn, i s  the 

large amount of energy released during annihilation. How ever,  the same 

feature i s  the source of a number of difficult problems, including that of 

antimatter storage. In the la t ter  case annih,llt",on should be avoided. 

The separation mechanism proposed by Alfven could p x v i d e  the basis  

for the development of an antimatter s torage scheme; however, other ochemes 

involving antimatter in  liquid o r  solid s ta tes  should also be considered. The 

existence of an interatomic potential b a r r i e r  a t  a cer ta in  distance separating 

an atom-antiatom pai r  could, in  principle, allow the storage of antimatter in 

the form of matter-,ntimatter mixture. Such a b a r r i e r  was found by Janker 

and Bardsley (I3') in  their  calculation of the interatomic potential of a hydrogen- 

antihydrogen pair. ;:< 

The interaction of matter-antimatter in a solid o r  liquid. s ta te  has been 

examined recently by Morgan. (lZ9' The annihilation processes  orcurr ing in a 

solid mixture of matter-antimatter a r e  different f rom those occurring i n  a gaa  

mixture, owir; to the fixed positions of atoms and antiatoms i n  a solid, which 

prohibits atom-antiatom collisions. Annihilation in this case would f i r s t  occur 

" ~ c c o r d i n ~  to information released to the author by Dr.  D. Morgan recently. 
more  accurate  calculations car r ied  out by Kolos and Schraeder of Marquette 
University showed no bump in the potential V. 
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among the electrons of the atoms and positrons of antiatoms through direct  

annihilation o r  positronium formation. This initial process would leave the 

atom-antiatom pair with opposite charges resulting in their attraction and the 

formation of nuclecrnium and probably m o r e  positroniurn, which would sub- 

sequently undergo annihilation. 

Morgan applied the method of upper and lower estimates of annihilation 

c r o s s  section to investigate the stability of the following matter  -,intimatter 

schemes. 

1)  Solid o r  liquid matter  -antimatter mixture. 

2 )  Matter -antimatter in  surface contact. 

3) Matter -antimatter contact involving the gaseous state,  

4) Antimatter in a vacuum. 

In the case of a solid matter-antimatter mixture, Morgan assumed the 

form V = El + Ep for the potential energy, where E was calculated by using 1 
the atomic model and E2 was taken to be proportional to IIg6 (van der  W s a h  

potential energy for large interatomic distances), Based on this  model, ex- 

pressions for annihilation rates and corresponding energy production were  

obtained a s  functions of the interatomic distance R ,  Subsequently, a tolerable - 1 - 1 
amount of heat  production was assumed to be equal to 1 cal mol  sec and 

the interatomic distance and lifetime corresponding to this amount were  

estimated for H - and He - g e  mixtures. These values were  compared to 

calculated values of the interatomic distance Rmin at  which a minimum in 

V appears, and to the lifetimes and energy production ra tes  corresponding to 

it. These values for  an  H - mixtures are shown i n  Table 12. 
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Table 12. Minimum and maximum lifetimes of an H - H mixture 

It i s  evident f r o m  these resu l t s  that this s torage scheme i s  not feasible, 

PI 

(atomic units) 

R = 28.5 

R = 9.7 min 

The same model was used to estimate the degradation r a t e s  of ma t t e r -  

ant imatter  a t  surface contact. The calculations showed that the velocity with 

which the two sur faces  are approached in  order  to maintain contact ranges - 1 
f r o m  approximately 10 to 10 c m / h r  and the energy released due to annihila- - 2 - 1 tion i s  of the o rde r  of l o L 4  cal  crn sec  . The large ra tes  of released 

energy rule out the possibility of using this scheme for antimatter storage. 

It should be mentioned, however, that besides the uncertainty in these resul ts  

due to the inadequacies of the model of V employed, the approach that was 

followed is  oversimplified, s ince i t  does not take into account important 

physical processes ,  such as the formation of a "Leidenfrost" layer between 

the contact sur faces .  Consideration of such phenomena might completely 

change the r e su l t s  c .)tained. 

Because of the estimated high rate of re lease  of annihilation energy, 

Morgan rejected the possibility of storing a gaseous mixture of matter-ant imatter  

in a magnetic bottle o r  in a solid-matter container, and a lso  the possibility of 

storing gaseous antimatter in  a solid-matter container. 

W 

(ca l /mol  sec)  

1 

2 . 9 3 2  x 10 15 
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Life t ime 

14,203 yea r s  

1 . 5 ~  1 0 ' ~ s e c  



In the ca se  of electromagnetic suspension of solid ant imat ter  in a 

vacuum, annihilation would occur only i f  vaporized ant imat ter  a toms collide 

with the sol id-mat ter  wal l s  of the enclosure.  An upper l imit  to the annihila- 

tion energy r a t e s  can be estimated by assuming that the annihilation c r o s s  

section of vaporized antiatoms colliding with the mat t e r  wall atoms i s  the 

same a s  that of an antiatom interacting with a n  individual a tom of the wall. 

It i s  a l so  assumed that a l l  the antiatoms striking the wall sur face  undergo 

annihilation. Under those conditions the energy production r a t e  W i s  related 

to the l ifetime in y e a r s  by the s imple  expression 

5 x - 1 - 1 w = 6 . 8 3  x 10 cal  mol s e c  

where  is the atomic number  of ant imat ter .  This scheme for  s tor ing 

antiatoms was suggested by Morgan ( I z9 )  a s  feasible. 

Based  on the preceding discussion the following conclusions concerning 

ant imat ter  s torage can be drawn: 

1) Present ly ,  i t  appears  that the mos t  promising scheme for 

ant imat ter  s torage is that of solid ant imat ter  magnetically 

suspended in vacuum. 

2) Besides  the mechanism of mat te r -an t imat te r  separat ion discussed 

in  paragraph IV-D, which was proposed by Alfven, the possibility 

of storing ant imat ter  in the form of a mat te r -an t imat te r  mixture  

and also the possibility of storing solid ma t t e r  in  contact with 

solid ant imat ter ,  should be explored. Specific problems i n  these 

a r e a s  a r e  discussed in paragraph IV-F.  

F. PLANS FOR F U T U R E  STUDIES ON PROBLEMS R E L A T E D  
TO THE USE OF MATTER-ANTIMATTER ANNIHILATION 
ENERGY IN PROPULSION 

The preceding sect ions  summar ize  the existing information on anti- 

rnatter and the annihilation processes associated with par t ic le-ant ipar  ticle 

reactions.  In addition cer ta in  problem a r e a s  such as ant imat ter  production 

and s torage,  mat ter-ant imat ter  separation,  and control  of annihilation 
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r a t e s  a r e  discussed in  re la t ion to the possibil i ty of developing a ma t t e r -  

ant imat ter  propulsion scheme.  In this  section problems a r e  suggested for 

future studies in the above a r e a s .  

1 .  Antipart icle Production Methods 

The ant ipar t ic les  produced in l a rge  l inear  acce l e r a to r s  are currently 

used for the study of e lementary  par t ic le  react ions .  No specific effor ts  have 

been directed toward increas ing  their  production r a t e s .  Therefore ,  the 

initiation of a program should be considered that would study methods specifi-  

cally designed to i nc rea se  ant ipar t ic le  production to the requ i red  level for 

propulsion application, This  p rogram should be developed i n  collaboration with 

workers in  the field of e lementary par t ic le  physics. Some of the problems 

which should be considered are 

1) Increase  of the production rate of protons in l inear  

acceLerators (present ly  l o i 5  pro tonsIsec) .  

2)  Increase  of antiproton yield, which as  already discussed - 2 
is of the order 10 . 

3) Maximize the number  of antiprotons collected by an applied 

magnetic field in the a r e a  of antiproton production. 

4) Optimize the size of the t a rge t  on which the proton beam 

impinges in o r d e r  to obtain minimum annihilation be tween 

the produced an t imat te r  and the ma t t e r  - target .  

2.  Mat ter  -Ant imat ter  Separation Mechanism 

The mat te r -an t imat te r  separat ion mechanism proposed by A l f v e n  

(paragraph IV-D) should be  studied, The configuration fo r  study would be 

two clouds - one of e lectrons-posi t rons  and the other  of protons-antiprotons - 
moving in  a magnetic field, The assumption that the par t i c les  are i n  thermo- 

dynamic equil ibrium corresponding to  a cer ta in  t empera tu re  can be made and 

a velocity distr ibution function can be defined. The physical processes occur - 
ring in this  configuration would be atudied,  including annihilation processes and 

synchrotron radiation. Of par t icu la r  impor tance  is the study of the character of 
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and the phenomena occurr ing in the "Leidenfrost" laye;. in relation to the 

possible use  of the layer  for annihiliition-reaction control. The formulation 

of the equations describing these phenomena and a n  initial dimensional analysis  

of these equations might revea l  some essent ia l  charac te r i s t ics  of the problem. 

Also, the question of ' 'criticality" i n  mat ter-ant imat ter  react ions  should be 

studied; that  i s ,  the conditions under which the r a t e s  of annihilation energy 

released a re  too high, leading to "explosion. " 

3 .  Ant ima t t e r s to rage  

In the a rea  of ant imat ter  s torage the following problems should be 

studied: 

1) The possibility of reducing annihilation rates in the ca se  

of mat ter-ant imat ter  in  contact, due to "Leidenfrost" 

formation. The influence of a magnetic field on the 

charac te r  of this layer i s  of importance,  

2 )  The possibility of changing the interatomic potential of an 

,atom-antiatom pa ir  by applying a s t rong magnetic field. 

This possibility, which would allow storage in the form of 

a mat ter  -ant imat ter  mixture ,  has  been suggested by Morgan. 

3 )  Finally, Morgan's proposed s torage scheme of solid anti- 

ma t t e r  magnetically suspended i n  vacuum should be fur ther  

investigated. 

4. Annihilation C r o s s  Sections 

In the field of par t ic le-ant ipar t ic le  interactions,  m o r e  effort should be 

devotecl to  developing methods for accurate  es t imat ion of annihilation c r o s s  

sections. 
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SECTION V 

ELECTRONICALLY EXCITED SOLID HELiUM 

J. S. Zmuidzinas 

In this section the problems of energy storage in  electronically excited 

solid helium a r e  discussed, and some of the work done i n  this a r e a  at JPL and 

at  the University of Wisconsin is reported. Earlier considerations of the problems 

are contained i n  references 134 and 135. 

4 For  reasons of economy, only the abundant isotope of helium, He, i s  

of interest ,  although most  of our considerations would be applicable to 3 ~ e ,  

p e r h a p s  with minor  modifications to ref lect  the isotopic m a s s  difference, The 

effects of nuclear spin and s ta t i s t ics  will not be important in  what fo'llows. 

ENERGY -STORAGE CAPABILITIES O F  SOLID HELIUM 

From among an infinite number of possible excited electronic states of 
3 

the helium atom, only the metastable 2 S state is of pract ical  in te res t  for energy- 
3 

storage applications. The reason  for th is  is that only the 2 S state  has a suf- 

ficiently long lifetime (-2. 3 hours);  a l l  of the other s ta tes  a r e  much shor te r -  
3 l ived.  The excitation energy of the 2 S s tate  is 19.8 eV. For the case of a 

10070 electronically excited solid helium, this t ranslates  to a specific e n e r g y  of 
3 

approximately 500 rnegajoules/kg or 0. 5 megajoules /cm , the density of solid 

helium being close to that of water  a t  p r e s s u r e s  3 25 atm. This specific energy 

is almost two o rde r s  of magnitude higher than that of the most  energetic chemical. 

fuel presently available, the hydrogen-fluorine system. 

B. LIFETIME CONSIDERATIONS 

3 The theoretically predicted lifetime of the 2 S state of the helium atom i s  

quite long; 137' however, this lifetime may, i n  general, be considerably 

shortened when the atom finds itself in  a eolid-helium lattice, because in  that  

environment various perturbing influences are present. Thus the problems 
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arise:  (1) how to est imate the influence of the latt ice on the lifetime and (2) how 

to  stabilize the excited atoms and thereby prolong their lifetime. A number of 
3 physical processes  tending to modify the He(2 S) lifetime in solid helium have 

been identified and descr ibed in  re ferences  134 and 135. Later  in this section 

s o m e  recent  work on the problem will be discussed, specifically the influence 
3 of phonons and excitons on the He(2 S) lifetime. 

C, EXPERIMENTS I N  PROGRESS 

Experiments have recently been star ted at  the University of Wisconsin to 

produce electronically excited solid helium and investigate i t s  physical proper- 

ties. The principal investigator i s  Professor  W. A. Fi tzsimmons,  who has had  

a grea t  deal  of experience i n  the investigation of electronically excited supe r -  

fluid helium. 

3 In the Wisconsin experiments,  about 1 cm of solid helium is produced in 

a p res su re  cell  a t  a temperature of about 1.45 OK, with pressuree varying from 

27 to 29 atm. At this temperature,  liquid helium I1 solidifies to the bcc phase 

at about 27 atm, as verified in these experiments. When the p res su re  is ra i sed ,  

a bcc hcp phase transit ion, a l so  observed, occurs  a t  about 2 8  atm, Solid 

helium is excited by an incident pulsed, 200-keV electron bean1 of approximately 
3 3 

0. 1 FA. The presence of excited a C helium moleculea (bound states of H e ( 2  S )  

and ground-state a toms) i n  the target  is inferred by observing t h e  2. 1 micron 
3 3 

a G -. b n molecular absorption band i n  the sample. At  present  i t  i s  not c lear  

whether the observed transit ion occurs  in solid or liquid helium; the la t ter  could 

be produced locally as a r e su l t  of heating the solid by an excessive electron beam 

current.  Experiments a r e  now being performed to resolve this question; after 

these experiments,  the l ifetimes, mobilities, concentrations, etc. of the various 

electronic zxcitations in  solid helium will be studied, 

D. THEORETICAL WORK A T  JPL 

So fa r ,  theoretical work at JPL haa been mainly concerned with the  catre 

of relatively low & 10%) concentrationr of excited atams/mo~ecules in solid 

helium, because such concen t ra t i~na  are expected to be typical of the initial 
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exper iments  on solid helium. Later ,  both experimental  and theore t ical  s tudics 

will  be extended to  the high-concentration regin-ie. 

To s impli fy  the theor3tical  analysia,  i t  is convenient to study the behavior 

of a single excited atom (henceforth denoted by He*) inside a host  lat t ice of 

normal  helium atoms. Such t rea tment  neglects H e +  -He* in teract ions  and is 

expected to  be valid for  the condition of low He::: concentrations being investigated, 

I n  analogy to the situation i n  superfluid helium, (13*' i t  can be expected that 

excimers (excited a toms and molecules)  will be trapped inside cavit ies o r  "bub- 

bles"  i n  solid helium. The bubble effect  ahould help to iaolate the exc imer  from 

the perturbing influence of the surrounding latt ice and thus should help to mod- 

e r a t e  any l ifetime -shortening effects at tr ibutable t o  the lattice. T o  understand 

the physics of excimer trapping, calculations a r e  being made a t  JPL to determine 

bubble pa rame te r s  (principally the la t t ice  distort ion around an  exc imer  and the 

energy of the distorted la t t ice) .  

To th i s  end, a computationally very economical cell model of quantum 

sol ids  has  been developed 39' and tes ted  to compute the ground-s tate propert ies  

of hcp solid helium. The predictions of this simple model agree  remarkably 

wel l  with experimental  data and with the much mare sophisticated and expensive 

Monte Carlo '140) and dynamical field (14') calculations. The model  ie now bcing 

used  to compute the lat t ice proper t ies  of an aton1 in hcp solid helium, 

In para l le l  with the above calculations, studies have been m a d e  of the 

effects of phonons and excitons on the radiative l ifetime of an He'% atom i n  solid 

helium. (142) The basic physics of the situation is briefly this:  As the excited 

a tom radiatively decays, the  bubble around i t  collapses and i n  s o  doing overshoots,  

thereby exciting latt ice vibrations or phonons, The excitation of the phonons ha s  

two effects. The first i s  that the emit ted line i s  shifted f rom i t s  normal  free- 

atom position. The second effect is that the emission of phonons, along with the 
3 

photon, contributes to an effective shortening of the radiative l ifetime of t h e  2 S 

s ta te ,  Fortunately,  this shortening effect is rather  smal l ,  of t h e  o rde r  of 

lat t ice distort ion energy 3 0.01 electronic  excitation energy 
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A much m o r e  dramat ic  e f fec t  i s  expected as  a resu l t  of the coupling of t he  

emitted photon to excitonic modes of solid helium. P re l imina ry  calculations 

show that, under favorable c i rcumstances ,  the phenomenon of photon trapping 

m a y  occur. This  happens if the emitted photon has  a frequency which falls  into 

the opacity band of the sol id  helium lat t ice ,  i. e. , into a region of frequencies 

for which wave propagation with r e a l  wave vectors  i s  not allowed by the d i sper -  

sion relation of the medium, Since there  is a finite, even though generally 

smal l ,  probability that an a r b i t r a r y  configbration of phonons can be emitted 

along with the photon, the frequency of the emitted photon can vary considerably 

and hence the conditions for per fec t  photon trapping can never be realized in 

practice.  Our studies indicate,  however, that  par t ia l  photon trapping i s  feasible 

and could l ea6  to  a substantial  lengthening of the  radiative l ifetime of the He::: 

s ta te  in  solid helium. 'fo provide unambiguous answers  about the feasibility of 

photon trapping, much more refined calculations a r e  needed, and these a r e  now 

being undertaken. One of the basic ingredients i n  those calculations is the dielec- 

tric tensor of solid helium a t  vacuum ultraviolet  wavelengths. In general ,  

calculations of die lectr ic  properties of ma te r i a l s  f rom "f i r s t  principleslI a r e  

ve ry  difficult. I n  the ca se  of solid helium, these difficulties a r e  mitigated by 

the fact that  a toms in solid helium in te rac t  very  weakly (by van d e r  Waals forces).  

Because of this ,  i t  can be expected that  the e lectronic  s t ruc tu re  of solid helium 

will be character ized by n a r r o w  conduction bands, and the s imple  tight -binding 

approach should be adequate. Work along these l ines is now in progress .  
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SECTION VI 

E N E R G Y  EXCHANGE MECHANISM FOR PROPULSION APPLICATION 

D. D. P a p a i l i o u  

A. INTRODUCTION 

I t  is known t h a t  e n o r m o u s  energy r e s o u r c e s  e x i s t  in spacc a s s o c i a t e d  

with e l e c t r i c ,  magne t i c ,  g r a v i t a t i o n a l ,  a n d  o t h e r  f i e ld s .  It is a lso known t h a t  

the m a j o r  d i f f icu l ty  in t app ing  t h i s  energy a r i s e s  from t h e  e x t r e m e l y  low d e n -  

s i t y  leve l  a t  which th i s  e n e r g y  i s  s t o r e d  in  s p a c e .  S e v e r a l  c o n c e p t s  have  been  

p roposed  duri.ng t h e  l a s t  20 y e a r s  f o r  u t i l i ~ a t i o n  of t h i s  e n e r g y .  E x a m p l e s  

of s u c h  e f f o r t s  a r e  A l l v e n ' s  '143)1 'sai l ing in  t h e  solar wind" and  F o r w a r d ' s  

(144)1'7er0 t h r u s t  v e c t o r  con t  roll1 concep t s .  

The  main ob jec t ive  of t h i s  s tudy  is t o  ident i fy  a n d  i n v e s t i g a t e  s chemes  

f o r  e f f i c i en t  u t i l i ~ a t i o n  of t h e s e  e n e r g y  r e s o u r c e s  f o r  app l i ca t ion  t o  p ropu l s ion .  

T o  t a p  t h e  energy stored i n  t h e  various f i e ld s  in s p a c c ,  o n e  c a n  in p r i n c -  

i p l e  seek a physical  rnechan i sn l  which,  for e x a m p l e ,  can  b e  u t i l i zed  to produce 

a n  exchange  of e n e r g y  be tween  the  m a g n e t i c  f i e l d  and a n  a p p r o p r i a t e  second 

f ie ld coupled  t o  it, l oca t ed  a b o a r d  t h e  s p a c e c r a f t .  O n c e  s u c h  a n l e c h a n i s m  is 

ident i f ied,  t h e  following q u e s t i o n s  c o n c e r n i n g  i t s  f e a s i b i l i t )  mus t  be examined. 

1) U n d e r  what condi t ions  would t h e  exchange process result in a 

n c t  i n c r e a s e  of e n e r g y  a s s o c i a t e d  with t h e  f ie ld on  the s p a c e c r a f t ?  

2) U n d e r  what  condi t ions  would t h e  e n e r g y  exchange  r a t e s  be high  

enough for p r a c t i c a l  u t i l i za t ion  of t h e  concep t  i n  p r o p u l s i o n ?  

S o m e  of the p e r t i n e n t  p r o b l e m s  for a n  add i t i ona l  i nves t iga t ion  a r e  t h o s e  

c o n c e r n i n g  e n e r g y  s t o r a g e  and the  d e s i g n  of a n  e f f ic ien t  s c h e m e  for ut i l iza t ion  

of the " t r apped"  e n e r g y .  I n  t h e  fol lowing s e c t i o n s  a novel,  conceptua l ly  p ro -  

m i s i n g  e n e r g y  exchange  m e c h a n i s m  is p r e s e n t e d  and  the q u e s t i o n s  r e g a r d i n g  
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its f e a s i b i l i t y  a re e x a m i n e d .  T h e  c o n c e p t  i n c o r p o r a t e s  a n l e c h a n i s ~ n  f o r  t h e  

u t i l i ~ a t i o n  oi t h e  e n e r g y  a s s o c i a t e d  w i t h  a f l u c t u a t i n g  t n a g n c t i c  f i e ld .  Thcse 

f i e l d s ,  w h i c h  a c c o r d i n g  t o  o b s e r v a t i o n s  a r e  p a r t i c u l a r l y  s t r o n g  in t h e  v i c i n i t y  

of planets s u c h  as t h e  e a r t h  a n d  J u p i t e r ,  '145'can b e  c o u p l e d  wi th  v e l o c i t y  f i e l d s  

of e t e c t r i c a l l y  conducting f l u i d s  in t u r b u l e n t  m o t i o n  l o c a t e d  o n  t h c  s p a c e c r a f t .  

U n d e r  c e r t a i n  c o n d i t i o n s ,  t o  b e  d i s c u s s e d  in  t h e  fo l lowing  s e c t i o n ,  t h e  t o t a l  

energy of t h e  t u r b u l e n t  f l o w  f i e l d  c a n  h e  i n c r e a s e d  at t h e  e x p e n s e  a i  t h e  e n e r g y  

a s s o c i a t e d  w i t h  t h e  f l u c t u a t i n g  m a g n e t i c  f i e ld .  

B. I N T E R A C T I O N  O F  FLUCTUATING M A G N E T I C  AND FLOW F I E L D S  

T h e  e n e r g y  t r a n s f e r  processes w h i c h  o c c u r  b e t w e e n  a f l u c t u a t i n g  m a g n e t i c  

f i e l d  a n d  t h e  v e l o c i t y  f i e l d  of a c o n d u c t i n g  f lu id  i n  t u r b u l e n t  m o t i o n  h a v e  b e e n  

studiecl  b y  a s t r o p h y s i c i s t s  a n d  f lu id  m e c h a n i c s  i n v e s t i g a t o r s  in  r e l a t i o n  t o  

q u e s t i o n s  c o n c e r n i n g  t h e  o r i g i n  a n d  a m p l i f i c a t i o n  of weak magnet ic  f i e l d s  o b -  

served in  s t a r s .  Actr ia l ly ,  t h e s e  s t u d i e s  are p a r t  of a m o r e  g e n e r a l  e f f o r t  t o  

d e v e l o p  p l a u s i b l e  t h e o r i e s  14" 14') (dynamo theor ies )  t o  e x p l a i n  t h e  

m e c h a n i s m  b y  m e a n s  of w h i c h  t h e  r r ~ a g n e t i c  f i e l d s  e x i s t i n g  in  t h e  s t a r s  s u s t a i n  

t h e n l s e l v c s .  

B a t c h e l o r  f i r s t  i n v e s t i g a t e d  t h e  c o n d i t i o n s  u n d e r  w h i c h  the t u r b u l e n t  

e n e r g y  of a c o n d u c t i n g  f l u i d  c o u l d  b e  t r a n s f e r r e d  t o  a w e a k  m a g n e t i c  f i e l d  a n d  

r e s u l t  i n  its a m p l i f i c a t i o n .  

m 

T h e  e q u a t i o n  d e s c r i b i n g  t h e  rate of c h a n g e  of a m a g n c t i c  f i e l d  B couplecl  
4 

w i t h  a v e l o c i t y  f i e l d  V of a c o n d u c t i n g  m e d i u m  i s  of t h e  f o rm 

w h e r e  V m  is t h e  m a g n e t i c  d i f f u s i v i t y ,  p is t h e  m a g n e t i c  p e r m e a b i l i t y  and ois 

t h e  e l e c t r i c  c o n d u c t i v i t y .  I n  d e r i v i n g  Eq. ( I )  i t  w a s  a s sumed  t h a t  V / c  <<1 

( c  = speed of l igh t ) .  T h e  e q u a t i o n  f o r  t h e  r a t e  of c h a n g e  of the  e n e r g y  in t h e  

f i u c t u a t i n g  m a g n e t i c  f i e l d  p e r  u n i t  v o l u m e  can be d e r i v e d  f rom the  above e q u a -  

tEon. T h i s  e q u a t i o n  h a s  t h e  fo l lowing  f o r m :  ( 1  48)  
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The above  equation c a n  a l s o  t a k e  t h e  f o r m :  (149) 

In Zcj. ( 3 )  t h e  s u b s c r i p t  B m e a n s  a conlponcnt  in t h c  d i r e c t i o n  of m a g n e t -  

i c  force and  s u b s c r i p t  i  i nd i ca t e s  a s u m m a t i o n  o v e r  t h r e e  ort1.1ogonal compon-  

e n t s ,  The m a g n e t i c  and veloc i ty  f i e ld s  a r e  coupled t h r o u ~ h  t h e  f i r s t  t e r m  in 

t l ~ c  r igh thand p a r t  of Eqs. (1), (2 ) ,  a n d  ( 3 ) .  T h i s  t e rm in Eq. ( 3 )  can  be  in-  

t e r p r e t e d  phys i ca l ly  as r e p r e s e n t i n g  t h e  f low of e n e r g y  t o  o r  from t h e  t u r b u l e n t  

ve loc i ty  f i e ld ,  t h e  d i r e c t i o n  depending  on  t h e  e f f ec t  t h a t  t h e  ve loc i ty  g rad ien t  

l a ~ / a x , ~ I ~  h a s  on  t h e  m a g n e t i c  l i n e s .  A s t r e t c h i n g  of t h e  m a g n e t i c  l i n e s  

c o r r e s p o n d s  to a n  i n c r e a s e  in  the m a g n c t i c  e n e r g y  I B ) '  a t  t h e  crpcnsc  of t h e  

ve loc i ty  f i c l d ,  while a  c o n t r a c t i o n  of t h e  mz-gne t i c  l i n c s  i nd ica t e s  a f law of 

e n e r g y  in  t h e  oppos i t e  d i r e c t i o r ,  T h e  s e c o n d  t e r m  in E y s .  ( 2 )  and  ( 3 )  r cprc -  

sents.  as  c a n  b e  c a s i l  seen, losses itl the m a g n e t i c  e n e r g y  i n  t h e  fo r tn  of 
J ? Soulean  d i s s ipa t ion ,  - ( 3  = c u r r e n t  dens i ty ) .  
0 

An ef f ic ien t  d y n a m o - m e c h a n i s m  c a p a b l e  of t r a n s f e r r i n g  energy f ro tn  t h e  

t u rbu len t  f luid t o  t h e  m a g n e t i c  f ie ld requi res  a  J o u l e a n  d i s s ipa t ion  tern7 s m a l l -  

e r  than t h e  coupling t e r m  (Eqs. ( 2 )  and ( 3 ) ) .  A s  wil l  be d i s c u s s e d  in t h e  

following sec t ion ,  t h i s  is a v e r y  r e s t r i c t e d ,  if a t  a l l  pos s ib l e ,  case, t he  common 

proccc lure  being t h a t  of a r ap id  decay of t h e  m a g n e t i c  f ic ld e n e r g y  into Joulc 

heat. S i n c e  t h e  st~ccessiul  use of th, concep t  i n  p ropu l s ion  r e q u i r e s  a t r a n s f e r  

of energy f r o m  t h e  m a g n e t i c  t o  t h e  t u r b u l e n t  f low f ield r a t h e r  than  a flow of 

e n c r g y  in t h e  oppos i t e  d i r e c t i o n  (which  is r e q u i r r d  for a n  ef fec t ive  dynamo 

mechanism), t h e  above r e s u l t s  a r c  f a v o r a b l e  f o r  t h i s  applicat ion.  
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C. APPLICATION OF THE CONCEPT IN PROPULSION 

The b a s i s  for t h e  app l i ca t ion  of t h e  concep t  of f luc tua t ing  m a g n e t i c  f i e l d -  

t u rbu len t  conduct ing  flow i n t e r a c t i o n  i n  propuls ion  is shown i n  F ig .  23. In 

t h i s  f i g u r e  a conduct ing f luid ( e .  g . ,  m e r c u r y ,  l iquid s o d i u m ,  o r  ionized g a s )  

which is i n  t u rbu len t  mo t ion ,  is shown a b o a r d  a s p a c e c r a f t  moving  with a v c l -  

oc i ty  Uo t h r o u g h  a n  e x t e r n a l  f luc tua t ing  m a g n e t i c  f ie ld B. T h e  c o n d u c t i n g  

tu rbu len t  f l u i d  occup ie s  t h e  v o l u m e  SOLo, a s  shown in F i g .  23, which m i g h t  be, 

i n  the  c a s e  of m e r c u r y  or sodium, a channe l  of lengtli  Lo and  c r o s s  s ec t ion  S 0' 

"0 
__F 

I N  TURBULENT FLUID 
OF CONDUCTIVITY, cr 

w RUCTUATINC MAGNETIC FIBD, 0 

7 - - 
MAGNETIC ENERGY DENS1 TY & 

POWER GAIN; P = Uo x SO x - 
8 TP 

Fig .  23. Fluctuating m a g n e t i c  f i e l d / t u r b u l e n t  conduct ing  f low i n t e r a c t i o n  

- 
T h e  e n e r g y  d e n s i t y  of t h e  f luc tua t ing  m a g n e t i c  f ie ld I3 i s  1 ~ ~ 1 / 8 n ~ .  T h e  

conduct ing fluid,  a s  i t  m o v e s  with t h c  ve loc i ty  U sweeps a vo lume  p e r  uni t  0' 
t i m e  equa l  t o  S U If t h e  m a g n e t i c  e n e r g y  contained in t h i s  volume could be 0 0' 
annih i la ted  and  t r ans fe r r ed  t o  t h e  conduct ing  t u r b u l e n t  f luid in  a n o t h e r  f o r m ,  

t h r o u g h  t h e  e n e r g y  t r a n s f e r  m e c h a n i s m  expla ined  above ,  t hen  the  p o w e r  P 

gained b y  t h e  conduct ing fluid is 
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-- 
2 

For  a value 1 l3'1 = 1 (gauss )  , which is a c h a r a c t e r i s t i c  o r d e r  of magni tude  

v a l u e  of a f luctuat ing m a g n e t i c  f ie ld  (for ins t ance ,  n e a r  ~ u ~ i t e r " )  a n d  f o r  values 
4 U o  = 3 x 1 0  n t / s e c  and So = 1 m2, the  power gain is 

P = 1 2 0  wat ts  

I n  t h e  following sec t ion  a n  a t t e m p t  will b e  m a d e  t o  a n s w e r  t h e  ques t ions  posed 

i n  t he  In t roduct ion  concerning t h e  conditions u n d e r  which t h e  appl ica t ion  of t h e  

concept in propuls ion  could be feas ib le .  

D. FEASIBILITY CONSIDERATIONS 

The  q u e s t i o n  concerning the  d i rec t ion  of e n e r g y  flow between t h e  coupled 

f luc tuat ing  m a g n e t i c  and veloci ty  f ie lds  was  first cons ide red  by Batche lo r .  (149) 

His ana lys i s  w a s  based on the s i m i l a r i t y  be t  ween Eq. ( 3 )  and the vor t i c i ty  

equat ion  i,n fluid mechan ics ,  

w h e r e  W r e p r e s e n t s  vorti.city f luctuat ions and v is the  k inemat ic  v i scos i ty  of 

t h e  fluid. H e  con t luded  tha t  a  hydromagne t i c  dynamo, in which e n e r g y  flows 

f r o m  t h e  ve ldci ty  field t o  t k ?  magne t i c  f ield,  c a n  o p e r a t e  only  under  t h e  con-  

d i t ion  t l  < V .  In  the  c a s e  in which V > v ,  t h e  Joulean d i s s ipa t ion  t e r m  in m rn 
Eqs. ( 2 )  and ( 3 )  is m u c h  larger than the  coupling term in t h e  s a m e  equat ions .  

I n  t h i s  c a s e  the magnetic f i e ld  d e c a y s  v e r y  rapid ly  into hea t ,  i m p a r t e d  t o  the  

e l e c t r i c a l l y  conducting medium. Tab le  1 3  shows  values  of t h e  magne t i c  d i f -  

fus iv i ty  V f o r  m e r c u r y ,  l iquid sodium, and ionized hydrogen.  It can  b e  seen m 
i n  Tab le  13  tha t ,  i n  all t h r e e  c a s e s ,  V ,  > V .  

. . . - . . . . . . - .- 

.t, *A- 

P r e c i s e  e s t i m a t e s  of the e n e r g y  as:.;ociated with the f luctuat ing m a g n e t i c  f ie ld  
can he obtained only f r o m  related power  spectra. T h i s  in fo rmat ion  is  cur - 
r ent ly  not ava i l ab le ,  However ,  available results show that the f luc tuat ing  
magnetic f i e ld  near J u p i t e r  is  much s t r o n g e r  than .that of t h e  e a r t h  and that 
the c h a r a c t e r i s t i c  value of 1 (gauss)Z adopted h e r e  is reasonab le .  
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Table 13. Values of physical quantities f o r  various conducting m e d i a  

T h e  a b o v e  a n a l y s i s  i nd ica t e s  t h a t  a n y  of t h e  conduct ing  f lu ids  c o n s i d e r e d  

is su i t ab l e  a s  a working  f luid in t h e  e n e r g y  exchange  scheme shown in  F ig .  22 

It a l s o  a n s w e r s  ques t ion  1 )  posed in  the  In t roduct ion  c o n c e r n i n g  the d i r e c t i o n  ...' 
e n e r g y  flow between coupled t u r b u l e n t  f low f i e ld s  and  f luc tua t ing  m a g n e t i c  

f ie lds .  

L iquid  Hg 

L i q u i d N a  

Ionized Hz 

To a n s w e r  t h e  s e c o n d  ques t ion  posed i n  the In t roduc t ion ,  we  wi l l  e x a m i n e  

t h e  condi t ions  u n d e r  wh ich  c o m p l e t e  annih i la t ion  of t h e  magne t i c  f i e ld  can  be 

ach ieved  by t r a n s f e r r i n g  t h i s  e n e r g y  t o  the conduct ing  fluid in t h e  f o r m  of 

J o u l e  hea t .  

It has  been found that f o r  t h e  working  f l u i d s  c o n s i d e r e d  V m > V  and,  

t h e r e f o r e ,  t h e  coupling term i n  Eq. ( 3 )  is negl ig ib le  as c o m p a r e d  to t h e  d i f -  

fus ion  t e r m  u mm2. I n  t h i s  case Eq. ( 3 )  t a k e s  the form 

T h i s  is a d i f fus ion  equat ion  ind i ca t i ng  t h a t  t h e  m a g n e t i c  f ie ld  d e c a y s  into t h e  

T 

(OK) 

2 9 3  

3 7 3  

l o 5  

0 

( m h o / m )  

1 .  07 x 10' 

1 0 . 4 ~ 1 0  

5 . 3 ~  10 
4 

conduct ing f lu id ,  of conduct iv i ty  a, wi th  decay  t i m e  TD of t h e  o r d e r  of 
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V 

2 
(m / s e c )  

7 . 7 4  x 1 0 - I  

7. 64 x 10.' 

1 5  

V 

2 
(m /set) 

1 .  14 x loe7 
7. 6 x 

10 



T h e  c h a r a c t e r i s t i c  t i m e  ind ica t ing  t h e  p e r i o d  d u r i n g  which  a given f luc tua t ion  

of the  m a g n e t i c  field i n t e r a c t s  wi th  t h e  t u r b u l e n t  v e l o c i t y  f ie ld of t h e  conduct -  

- i n g  fluid is of the  o r d e r  

I n  o r d e r  t o  a c h i e v e  c o m p l e t e  annih i la t ion  o f  the f luc tua t ing  m a g n e t i c  f ie ld ,  the  

d e c a y  t i m e  T,, should equa l  o r  b e  less than TI; t h a t  is. 

Table 14 q i v e s  va lues  of t h e  d e c a y  t i m e  T f o r  t h e  cond1.1ctirlg f lu ids  c o n s i d e r e d  D 
;n t h i s  work an6 a l s o  t h e  i n t e r a c t i o n  t i m e  7 f o r  t h e  fo l lowing  c h a r a c t e r i s t i c  I 
v a l u e s  of ve loc i ty  and  length. 

4 Ug = 3 x 10 m/sec  a n d  Lo = l m 

Table 14. R e p r e s e n t a t i v e  v a l u e s  of d e c a y  a n d  i n t e r a c t i o n  t i m e s  
f o r  v a r i o u s  conduct ing  m e d i a  

T h e  v a l u e s  i n  T a b l e  14 show that even  i n  t h e  m o s t  f a v o r a b l e  c a s e  ( ion-  

ized hydrogen) t h e  d e c a y  t ime of the  m a g n e t i c  f i e ld  i s  t h r e e  o r d e r s  of m a g n i -  

t u d e  h ighe r  t h a n  t h e  i n t e r a c t i o n  t ime and  t h e r e f o r e  no complete annih i la t ion  of 

t h e  m a g n e t i c  f i e ld  can be achieved.  F u r t h e r m o r e ,  t h e  magn i tude  of t h e  

spacecraft's ve loc i ty  has a n  oppos ing  e f f ec t  on  t h e  p o w e r  gain and t h e  i n t e r -  

a c t i o n  t ime.  A s  c a n  be s e e n  f r o m  Eq. ( I ) ,  h igh v a l u e s  of Uo a r e  d e s i r a b l e ,  
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s i n c e  t h e  power  ga in  P is d i r e c t l y  p r o p o r t i o n a l  t o  t h e  ve loc i ty  Uo.  H o w e v e r ,  

a c c o r d i n g  t o  i t s  def in i t ion ,  t h e  in t e rac t ion  t i m e .  T I ,  decreases  with i n c r e a s i n g  

va lues  of U r e s u l t i n g  i n  an i n c r e a s i n g l y  un favorab le  effect on the e f f i c i ency  0' 
of the p roposed  s c h e m e ,  

The p r e c e d i n g  d i s c u s s i o n  l e a d s  t o  t h e  concLusion t h a t  a key  f a c t o r  i n  t h e  

e f f i c i ency  of t h e  s y s t e m  is t h e  c h a r a c t e r i s t i c  d e c a y  t i m e  T T h e r e f o r e ,  a t  D ' 
t h e  p r e s e n t  s t a g e  of deve lopmen t  of t h e  concept ,  e f f o r t  shou ld  b e  devoted  t o  

inves t iga t ing  ways of m i n i m i z i n g  t h e  v a l u e s  of t h e  d e c a y  t i m e  7 of t h e  f luc -  D 
tua t ing  m a g n e t i c  f ie ld.  

Accord ing  to Eqs. (1) and  (7), t h e  d e c a y  t i m e  7 c a n  be  r educed  by us ing  n 
conduct ing  m e d i a  with low e l e c t r i c a l  conduct ivi ty ,  0; h o w e v e r ,  t h e r e  is a n o t h e r  

i m p o r t a n t  a s p e c t  of t h e  p r o b l e m  which is expec ted  t o  h a v e  f a v o r a b l e  r e s u l t s  ir. 

d e c r e a s i n g  t h e  t i m e ,  It has been  a r g u e d  by s e v e r a l  i n v e s t i g a t o r s  (146, 1 4 9 ,  
'DO 

150) t h a t ,  in  the  c a s e  of t h e  i n t e r a c t i o n  of f luc tua t ing  m a g n e t i c  f ie lds  wi th  

t u r b u l e n t  f ie lds  of conduct ing  f lu ids ,  t h e  decay t i m e  T is much s h o r t e r  than D 
t h a t  c a l c u l a t e d  f r o m  c o r r e s p o n d i n g  v a l u e s  of t h e  e l e c t r i c a l  conduct ivi ty ,  0 .  

V e r y  little is known c o n c e r n i n g  t h e  e x a c t  m e c h a n i s m  b y  which t u r b u l e n c e  

a c c e l e r a t e s  t h e  decay of t h e  m a g n e t i c  f i e ld  in to  J o u l e  hea t .  I n  gene ra l ,  it 

a p p e a r s  t h a t  t h e  in t eyac t ion  of t h e  t u r b u l e n t  mot ion  of the conduct ing fluid and 

t h e  f luc tua t ing  m a g n e t i c  f ie ld r e d u c e s  t h e  s i ze  of t h e  m a g n e t i c  f luc tua t ions ,  

t h e r e f o r e  d e c r e a s i n g  t h e i r  d e c a y  t i m e .  

S e v e r a l  models of t u r b u l e n t  "eddy m a g n e t i c  diffusivi ty"  h a v e  been s u g -  

gested,  m a i n l y  in  r e l a t i o n  t o  t h e  p r o b l e m  of t h e  h y d r o m a g n e t i c  dynamo.  

E l s s e s e r  '147)introduced an eddy  m a g n e t i c  d i f fus iv i ty  equa l  t o  
rn 

w h e r e  Rem i s  t h e  m a g n e t i c  Reynolds  n u m b e r  equa l  to U L /V . B a s e d  on  t h e  
0 0  m 

above  r e l a t i o n s ,  t h e  t u r b u l e n t  ' 'eddy m a g n e t i c  diffusivi ty"  is 
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S i m i l a r  m o d e l s  have been  d i s c u s s e d  by  P a r k e r ,  50) C h a n d r a c h o c h a r ,  (1 51) 

Piddington,  and  o t h e r s .  ( 152) 

Although no p h y s i c a l  ins ight  e x i s t s  a t  present  c o n c e r n i n g  t h e  processes 

involved in t h e  d e c a y  of the  m a g n e t i c  f l uc tua t ions  in a t u r b u l e n t  conduct ing  

f lu id ,  an  ind ica t ion  of t h e i r  e f f ec t  on  t h e  c h a r a c t e r i s t i c  d e c a y  t i m e  TD c a n  be  

obta ined  by  us ing  E l s s e s e r ' s  model.  In t roduc ing  t h e  r e p r e s e n t a t i v e  v a l u e s  

L = 1 m and  U O  = 3 x 1 0 4 m / s e c  i n  Eq. ( l l ) ,  t h e  obta ined  v a l u e  of t h e  e d d y  
0 4 2 

m a g n e t i c  diffusivi ty ,  V '  is 3 x 10 m / s e c  c o r r e s p o n d i n g  t o  a d e c a y  t i m e  
7 m - ~ 

- 3  
T~ = 1. 5 x 10 s e c .  T h i s  va lue  is c o m p a r a b l e  t o  t h e  va lue  of t h e  i n t e r a c t i o n  - - 

t i m e  T = 3. 3 x l o d 5  g iven  in Table 13. I 

E. CONCLUSIONS A N D  SUGGESTIONS 

It h a s  b e e n  d e m o n s t r a t e d  in  t h e  p r e c e d i n g  r;ections t h a t  t h e  i n t e r a c t i o n  oC 

a f luctuat ing m a g n e t i c  f ield with a n  e l e c t r i c a l l y  conduct ing  fluid in  t u r b u l e n t  

mo t ion  c a n  p r o d u c e  a n  e n e r g y  flow f r o m  t h e  m a g n e t i c  f ie ld t o  t h e  conduct ing  

f luid,  in t h e  f o r m  of J o u l e  hea t .  It w a s  a l s o  r ecogn i7ed  t h a t  a  m a j o r  diff icul ty ,  

at t h e  p r e s e n t  s t a g e  of deve lopmen t  of t h e  concept ,  is t h e  long  d e c a y  t i m e  of 

t h e  m a g n e t i c  f ie ld a s  c o m p a r e d  t o  i t s  i n t e r a c t i o n  t i m e  with t h e  t u r b u l e n t  

conduct ing fluid.  T h i s  d i f f e r e n c e  be tween  t h e  two c h a r a c t e r i s t i c  t i m e s  7 D 
a n d  T which  amoun'cs t o  s e v e r a l  o r d e r s  of  magn i tude ,  p roh ib i t s  t h e  c o m p l e t e  I' 
annih i la t ion  of t h e  m a g n e t i c  f ie ld,  and  t h e r e f o r e  c a u s e s  a r educ t ion  i n  t h e  

a m o u n t  of e n e r g y  t r a n s f e r r e d  t o  t h e  conduct ing  fluid. 

T h e  p r e l i m i n a r y  a n a l y s i s  conducted  in  t h e  p r e c e d i n g  s e c t i o n s  l e a d s  to  

t h e  two g e n e r a l  conc lus ions :  

1 )  T h e  app l i ca t ion  of t h e  concep t  in p ropu l s ion  a p p e a r s  p romis ing  

f o r  f l ights  i n  a r e a s  of r e l a t i v e l y  s t r o n g  m a g n e t i c  f i e ld s  s u c h  as, 

f o r  i n s t ance ,  t h o s e  e x i s t i n g  in  t h e  v ic in i ty  of J u p i t e r  and  o t h e r  

p lane ts .  

2) T h e  r a t e  a t  wh ich  e n e r g y  is ga ined  by  t h e  conduct ing  fluid in  t h e  

f o r m  of h e a t  d u r i n g  i n t e r a c t i o n  with t h e  f luc tua t ing  m a g n e t i c  f ie ld,  
7, 

i s  low,  t y p i c a l l y  of t h e  o r d e r  of 10 wa t t s .  However,  t h e  concep t  

b e c o m e s  a t t r a c t i v e  in  the case i n  which  th is  e n e r g y  i s  cont inuous ly  
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co l l ec t ed  and s t o r e d  d u r i n g  prolonged f l igh ts  in t h e  arcas  o l  

s t r o n g  m a g n e t i c  f ie lds .  F o r  i n s t ance ,  t h e  e n e r g y  co l l ec t ed  ove r  

a per iod  of 24 h o u r s  a t  t h e  r a t e  of 120 wat t s  is equal t o  approx-  
5 i m a t e l y  6 x 10 j ou l e s .  

B a s e d  on thc  p r e c e d i n g  d i s c u s s i o n ,  t h e  fol low~ing t o p i c s  a r e  sugges t ed  

f o r  f u r t h e r  inves t iga t ion .  

1) A theoretical-expcrimental  e f f o r t  shou ld  be conducted  t o  

e x a m i n e  t h e  m e c h a n i s m  of decay of a fluctuating m a g n e t i c  f ield 

i n  an e l e c t r i c a l l y  conduct ing  fluid i n  t u r b u l e n t  motion, 

2) An evalua t ion  s t u d y  O F  t h e  app l i ca t ion  of t h e  concep t  ( i .  e., t h e  

i n t e rac t ion  of m a g n e t i c  f i e ld s  with conduct ing  f l u i d s  in t u rbu len t  

mot ion)  t o  p ropu l s ion  shou ld  be conducted, inc luding  t h e  

kind of m i s s i o n s  f o r  which i t  a p p e a r s  su i t ab l e .  

3) An a p p r o p r i a t e  s c h e m e  shou ld  b e  developed  f o r  t h e  u t i l i za t ion  of  

t h e  co l l ec t ed  e n e r g y  in  propuls ion .  

F i n a l l y ,  i t  s l ~ o u l d  b e  mentioned t h a t  althougll  t h e  a n a l y s i s  p r e s e n t e d  

r e f e r s  t o  t h e  case of a f luc tua t ing  m a g n e t i c  f ie ld i n t e r a c t i n g  with a t u r b u l e n t  

conduct ing fluid,  t h e  concep t  can a l s o  s e r v e ,  i n  p r inc ip l e ,  a s  a n  exchange  

mechanism f o r  co l lec t ing  e n e r g y  f r o m  o ther  f i e ld s  e x i s t i n g  i n  s p a c e  - f o r  

example ,  f luc tua t ing  e l e c t r i c  f i e ld s  a n d  Alfven waves .  
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SECTION VII 

THERMONUCLEAR FUSION TECT3NOLOGY AND ITS APPLICATION 

I N  SPACE PROPULSION 

Teh -Ming Hsieh 

A. INTRODUCTION 

In space exploration, chemical  and so la r  e lec t r ic  propulsion sys t ems  have 

inherent  limitations. Nuclear propulsion systems outperform then1 (153-156) 
and, 

fo r  effective deep space exploration,  a re  indispensable. Three types of nuclear 

reactions a r e  ~ o s s i b l e  sou rces  of the required energy: 

1)  Nuclear F iss ion  Reaction: Heavy nuclei, such a s  uranium, can 

r e l ea se  energy  by fission following the absorption of a neutron. F o r  

u ~ ~ ~ ,  about 200 MeV* of energy  i s  re leased  per  fission!'57) Far 

f i s s ion  energy, both the technology of instantaneous release (as in 

the A-bomb) and of controlled r e l ea se  (as i n  a light water  reac tor )  

have been achieved. 

2 )  Thermonuclear  Fusion Reaction: Light nuclei, such a s  deuterolls, 

can  fuse into heavier  nuclei under cer ta in  conclitions. When the 

Tusion react ions  take place, energy is released at the ra te  of  about 

(158) Since a d uteron weighs about L ll2Oth 7 to 9 MeV per deuteron. 

as nluch as a uranium nucleus,  this type of react ion r e l ea ses  about 

4. 5 t imes the amount of energy of the fission reaction on the same 

weight basis ,  Although the technology of instantaneous fusion energy  

r e l ea se  has  been achieved (as  i n  the H-bomb), the technology of con- 

trolled fusion energy re lease  remains  to be developed. 

3) Thermonuclear  Fiss ion Reaction: Some light nuclei, such as boron- 

11, can in t e r ac t  with a proton and spl i t  into s e v e r a l  helium nuclei 
(1 591 

with the r e l e a s e  of energy. The  only fission products arc  charged 

'P1 MeV = 1.602 x joule = 4.449 x kW-hr. 
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par t ic les  (a lphapart ic les)  - t h i s  means that superclean (particularly 

wi th  respect  to radioactivity) power and  d i rec t  conversion to e lec t r i -  

cal energy a r e  possible. This concept is i n  the ea r l i e s t  s tages  of 

exploration. 

These nuclear react ions  a r e  summarized i n  Table 15. 

Table 15. Nuclear reactions 

Nuclear fission propulsion concepts have been extensively studied and 

some  p rog rams  are well developed. Space propulsion systems uti l izing 

nuclear f ission energy can produce major gains in payload and t r ip  time o v e r  

chemical  rockets  for manned t r ips  to M a r s  and Venus.  5 4 )  For  unmanned rnis- 

sions, the mass ratio of payload to spacecraf t  and t h e  length of journey are also 

much improved,  On the other hand, thermonuclear  fusion propulsion offers 

Type of Reaction 

Energy r e l ea sed  per 
react ion (MeV) 

Relative energy  re leased  
p e r  unit m a s s  (based on 
fission) 

Relative radioactivity 
p re sen t  i n  sys tem (Lased 
on fission) 

Reaction tempera ture  

Di rec t  energy  conversion 
without intermediate  
medium 

Status of technology 
development 
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Thermonuclear  
Fiss ion 

- 8 

- 1 

- 0 
- l o 9  OK 

Most suitable 

Ea r l i e s t  stages 
of explor a ti on 

Nuclear F iss ion  

-200 

1 

1 

Room temperature 
and up 

No 

Well developed 

Thermonuclear  
Fusion 

-8 

-4.5 

- 4 
- 1 0  

- lo8  OK 

Poss ib le  

Being 
developed 



even longer m i s s i o n  l i fe ,  s h o r t e r  t r ip  time, h i g h e r  r a t i o  of je t  power  t o  

propuls ion  s y s  tern weight, and higher spec i f i c  impulse .  (154, 156, 162 ,163)  

Most l i t e r a t u r e  on s p a c e  f u s i o n  propuls ion  s t a r t s  with the assumpt ion  that  

the fusion t e chno logy  will  be ava i l ab le  s o m e  day ,  d e s p i t e  the  many p r o l ~ l e n ~ s  yet  

to be solved a n 4  the many new technologies t o  be advanced.  It is hoped that,  by 

briefly reviewing h e r e  the s t a t u s  01 ground power fusion technology development ,  

a b e t t e r  unders tanding of t h e  potent ia l  of fus ion power  lor space propuls ion  will  

be c rea ted .  Thus the p u r p o s e  of th is  r e p o r t  is t o  d e s c r i b e  t h e  s t a t e  of the a r t  

of thermonuclear  fusion power technology and t o  d i s c u s s  i t s  potent ia l  applicat ion 

to space  propulsion.  M a n y  t h e r m o n u c l e a r  fusion p r o b l e m s  have been r epea ted ly  

d i s c u s s e d  i n  the  l i t e r a t u r e ;  t h e s e  wi l l  be mentioned only b r i e f l y  he re .  Those 

p r o b l e m s  that  a r e  important t o  s p a c e  appl ica t ions ,  a n d  a r e  e i t h e r  neglec ted  e l s e -  

w h e r e  or  not p a r t i c u l a r l y  e m p h a s i z e d ,  wi l l  bc d i s c u s s e d  i n  more detai l .  

B. BASIC CONCEPTS O F  THERMONUCLEAR FUSION P O W E R  

1. F u s i o n  F u e l s  

Although o r d i n a r y  hydrogen - the most abundant  and  l igh tes t  i so tope  - can  
.I. 

be used a s  a fusion fuel ,  its c r o s s  ~ c c t i o n s ' ~  for fusion reac t ions  arc, unfur tun-  

a t e ly ,  too low. The p r i n c i p a l  t h e r m o n u c l e a r  fusion fuels which have been con- 

sidered are d e u t e r i u m ,  t r i t i u m ,  and heliuxn- 3, The corresponding fusion 

r e a c t i o n s  a r e  (1 58, 164) 

2 4 
1 D + 1 ~ 3  2He ( 3 . 5  M e V )  + n (14.1 MeV) 

- H e 3  (0. 82 MeV)  + n (2 .45  M e V )  
.El2+ j 7. 
1 1 3 1 

(4 T (1. 0 Me\') + l A  (3. OZ M e V )  1 

7. 

The cross sec t ion  is a measure of probabi l i ty  of in terac t ion .  It h a s  t h c  d imen-  
sion of area. The c o m m o n l y  u s e d  unit is the barn.  One barn i s  equal to 1 0-24 
.,2, ( 1  57) 
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2 4 1 
1 D i. 2 ~ c 3  - 2He (3.6 M e V )  + (14.7  h!cV) 

The c r o s s  sections f o r  these  reactions are shown i n  Fig. 24. 

For ground power applications, the D-T fuel is  tile m o s t  promising: i t  h a s  

a higher c r o s s  section, lower  ignition tempera ture ,  l a r g e r  Q value - the ra t io  of 

energy to energy  needed to sus ta in  the fusion reaction, etc. ( I 6  5, For 
3 

space propulsion applications,  however, D-We i s  the tnost  suitable,  because 

only charged are produced; (Ib6) s u c h  par t i c les  can be captured by an 

external  magnetic field. 16') Compared to a sys t em using D - T I  which 

produces neutrons, the shielding ~ r o b l e r n s  would be grea t ly  reduced  and t h c  

weight penalty f rom shielding would he much l e s s  severe .  

Deuter ium i s  an  abundant natural  e lement ,  :: The total  amount of deuterium 
17 i n  the s e a  is estimated at 10 pounds, a supply which, i f  used l o r  fusion power, 

should l a s t  much longer than the sun is expected to l as t ,  (169) Tr i t ium i s  ve ry  

s ca rce  i n  nature.  I t  m a y  be produced by letting the neutrons Iron1 the  fusion 

reactions r e a c t  with lithium. ( l 7 O '  17') Since lithium i s  a l s o  a good coalant, 

many conceptual  designs of fusion powclrplants involve the  utilization of lithium 

surrounding the reactor  fo r  cooling and breeding. (172' 173' Tri t ium i s  \volatile 

and radioactive (with a half-life of about 12 yea r s ) .  The l a rge  t r i t ium inventory 
7 8 

i n  the blanket of the  r e a c t o r  (-1 to 10 kg, or -10 to 10 curics ) ( lb9)  and the 

induced radioactivity of the reac tor  s t ruc tu re ,  produced by neutrons f rom the 

tr i t ium, would be a public hazard;  this h a z a r d ,  however, would be much smal- 

l e r  than tha t  from f iss ion products.  (1 74) 

3 3 
H e  is also  very scarce in  nature.  If D-He fuel i s  used for s p a c e  pro-  - 

5 
pulsion, the simple thermonuclear  r eac t i an  of D-He will not ~ r o d u c e  neutrons,  

3 
An additional advantage of using the D-We fuel  is that  t h e  t r i t ium p r o b l e n ~ s  of 

recycling a n d  radiation can be avoided, The prescncc  of t h e  deuterons, however, 

will p e r m i t  s ide  react ions  of the D-D type. F u r t h e r m o r e ,  for eve ry  neutron 

generated f r o m  a D-D react ion,  one a tom of t r i t ium will be produced. This  

t r i t ium then resu l t s  i n  a c e r t a i n  number  of D - T  react ions  which produce neutrons,  

*Deuterium is present as one pa r t  i n  every 6800 a toms  of hydrogen in ordinary 
water. One gallon of s e a  water contains 1 /6  teaspoon of heavy water ,  which 
can be eas i l y  extracted a t  very low cost. ( 175) 
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1 10 100 
DEUTERON ENERGY (KEV) 

Fig. 24. Cross sections for  D-T, D-D (total), and D - H ~ ~  reaction8 (158) 
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In o rde r  to rninimize the production of neutrons,  i t  is beneficial to have an excess  
3 

of He , This reduces  the ne t  power density to some extent, but this reduction i s  

sma l l e r  than the reduction i n  the r a t e  of neutron production. (143) 

2. Conditions for  Controllcd Thermonuclear  Fusion 

Because of the strong Coulomb repulsion fo rces  be tween two appr oachlng 

nuclei ,  fusion reactions can  take  lace only a t  very high energy. (Ib4) F~~ 

example,  D and T ~ u c l e i  m u s t  have kinetic energ ies  of a t  l e a s t  -10 keV o r ,  
El (l7') At such hi. . t empera tures ,  D - T  fuel can exist correspondingly,  " 10 OK. 

only in the ionized s ta te ,  i, c ,  , plasma. The h igh  tempera ture  of the plasma 

gives r i s e  to  thc following problems: (1) no known solid ma te r i a l  can contain 

the plasma in s teady-sta te  condition ( lb4 )  and  (2)  once the plasma contacts the 

container wall ,  the fusion react ions  will be quenched, because the p lasma i s  

v e r y  tenuous arld the encrgy loss  r a t e  is too high. (176) 

The charged particles must  be confined long enough for fusion reactions 

to take place.  Lawson se t  a c r i te r ion  for  determining the length of time a 

p lasma must  be confined at a given density and tempera ture  to  reach  a break-  
(166,170,178) 

even point in  the input vs. output power balance, 

14 n r  > 10 sec-par t ic les /c rn3  D - T  at >I0 kcV 

15 3 
nT > 10 s e ~ - ~ a r t i c l e s / c r n ~  D-He a t  Zl00 k e V  

n7 > 10'' ~ e c - ~ a r t i c l e s / c m ~  D-D a t  >50 keV 

where n is  the ion density i n  par t ic les /crn3 and r i s  the p lasma confinement 

t ime in seconds.  In o rde r  not to produce an explosion i n  t h e  D-'I' fusion reactor, . 

the  density n mus t  be l imited to approximately 1,000-10, 000 t imes l r a s  than 
3 

that  of air (i. e .  , n - < "1 015 to - 1 0 ' ~  pa r t i c l e s / cm 1, while t h e  confinement timr 

m u s t  reach a t  leas t  a few fractions of a second. (I7') F o r  highly compressed 

laser- induced fusion, i n  which the energy i s  re lcased  i n  an explosive mode, 
3 

densit ies could be of the o rde r  of par t ic les /crn or m o r e ,  s o  that confine- 

ment  t imes of picoseconiis would be adequate. ( 1  80) 
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At present,  the minimum conditions for plasma confinement time, plasma 

density,  and plasma temperature a t  the break-even point in  power balance have 

been achieved separately. F igure  25 shows quantitatively how the plasma con- 

ditions (n, 7, T) of some devices stood a t  the beginning of this decade. (181,182) 

I t  is optimistically believed that, by the end of this decade o r  ear ly  in  the next 

decade, the break-even requirements  n, 7, T can be met  simultaneously in a 

single device. (180,183) 

3.  P l a s m a  Confinement and Instabilities 

As mentioned previously, the plasma must  be confined for a sufficient 

time and cannot be i n  contact with any mater ia l  wall. The fact that a plasma 

consis ts  of charged part ic les  makes it possible to confine them by applying a 

strong external magnetic field. In  strong magnetic fields, individual charged 

p<r t i c l e s  a r e  confined to movement along field l ines i n  tight helical t ra jec-  

tor ies .  Despite the magnetic confinement, however, some of these charged 

par t ic les  escape without undergoing fusion reactions. Collisions between p a r -  

ticles resu l t  in a slow leak of par t ic les  f r t m  the magnetic container, re fer red  

to as the c lass ica l  loss. This kind of loss cannot be eliminated completely and 

i t  s e t s  an upper l imit  on con:-nement t ime, which has been termed the classical  

confinement time. Until recently, a l l  plasma experiments yielded loss  r a t e s  

considerably in excess of classical  values. These anomalous losses  seemed to 

be associated with plasma turbulence. F o r  a fklly turbulent plasma, the con- 

finement time i s  termed the Bohm time, which has been used as  a basis  fo r  

comparing the quality of plasma confinement. In a number of types of research  

devices,  c lassical  confinement t imes are  now severa l  hundred t imes the Bohm 

t ime,  and this  is adequate for  a fusion reactor.  (1  80) 

There are other kinds of plasma instability which cause the hot plasma to 

be lost  before i t  has  reached the required temperature: (1 84) 

1) MWD instability - plasma is a diamagnetic mater ia l  and will always 

move to the weaker magnetic field. 

2 )  St ream instability - a condition arising f rom the presence of a 

directed beam of energetic particles in a plasma. 
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I ,  ION TEMPERATURE 

b 

2. ION DENSITY 

3, CONFINEMENT TIME 

Fig. 25. Development of various fusion reactor devices ,  corn a r e d  wi th  
the requirements  for controlled thermonuclear fusion ( 1  8?, 182) 
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3)  Hydromagnetic instability ar is ing from imposed cur rents  within the 
4 3 

plasma itself producing J x B forces ,  

4) Other instabilities arising f rom density gradients,  velocity gradients, 

etc. ( I  84,185) 

Dur1,ig the past decade, plasma stability has  been achieved (e. g. , by the 

u s e  of magnetic wells and sheared  fields). More advanced stabilization tech- 

niques such as dynamic stabilization, feedback stabilization, and a new technique 

used i n  the topolotron a r e  being developed. (185-187) Today, i t  can be said that 

mos t  plasma instabilities, which have been one of major  stumbling blocks i n  

fusion technology, have been identified and understood, and methods of dealing 

with them in specific machines have been developed. 

4. Fusion Energy Release and Energy Losses  from Plasma 

After a fusion reaction, the total m a s s  of the par t ic les  - which generally 

consist of a heavier fused nuclei plus a nucleon - is l e s s  than the total m a s s  of 

the two fuel nuclei befo2e the reaction, I t  i s  this ITmass defectT1 which i s  converted 

into energy and released. A rough est imate of the power per  unit volume avail- 

able from fusion reactions is given a s  (158, 163,188) 

-13 2 -  wv watts /cm 3 
'DD 

= 3 . 3  x 10 nD 

where is the average fusion reaction ra te ,  a is the  c r o s s  section, v i s  the 
3 

relative velocity between colliding ions, and n i s  the ion density i n  par t ic les  /cm. 

~ l t h o u ~ h G  depends on the prec ise  ion distributions, i t  is e stirnated that the 

differences a r e  no more than 10% iii -2e adopts calculated for a Maxwellian 

distribution. Ths  values of based on Maxwellian distribution f u r  D-T,  
3 D-D, and D-He reactions a r e  given in  Fig. 26. (155) 
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Fig. 26. Values of based on h4 wellian d i  tr'bution fo r  D-T, Y D-D (total), and D-He reactions b 5%) 
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In  addition to ene rgy  losses  due to  runa\vay par t ic les  and charge exchange 

coll isions,  as  discussed i n  the section on p lasma confinement and instabil i t ies,  

there  are energy lo s ses  associated with radiation. (190) These a r e  (1) B r e r n s -  

strahlung, (2) gyromagnetic radiation, and (3) Cherenkgv radiation. 

a. Brernsstrahlung Loss  

The Bremsstrahlung loss  i s  an  unavoidable loss ,  p r imar i ly  i n  the form of 

X-rays ,  that occurs when electrons collide with nuclei, I t  i s  well  known that 

Bremsstrahlung lo s ses  i nc rease  dramatical ly  with p lasma impuri ty  content. 

Experiments  have shown that the presence  of l e s s  than 1% impuri ty  causes  a 

grea t  dissipation of the kinetic energy of the p lasma par t ic les  as Bremsstrahlung 

radiation. 79) Tho radiat ion 10s sa s by Brerns strahlung f rom the accelerated 

electrons a r e  mainly i n  the ultraviolet  and X-ray  region. The  l o s se s  a re  p a r -  

tially recoverable ,  but such recovery  would make i t  m o r e  difficult to hcat the 

plasma to  the required tempera ture ,  if impuri t ies  are present. A rough es t i -  

mate  of this kind of l o s s  can be obtained from the following formula: (1 58) 

- 3 1  2 2 5 . 3 ~  10 n 'I2 watts /cm 3 
Pbr  - e 

where T i s  tl-le kinetic t empera ture  of the e lec t rons  in  KeV (assuming a Max-  
e 

wellian distribution) , 

b. Gyromagnetic Radiation 

Gyromagnetic radiation is a l so  called cyclotron or  synchrotron radiation 

and is principally in  the microwave harmonic  radiation range. The ions i n  a 

plasma move moderately slowly and the associated emiss ion  of cyclotron rad ia -  

tion is insignificant. F o r  e lectrons,  the rate of energy loss may exceed t h e  

Bremsstrahlung loss.  A rough es t imate  of gyromagnetic radiation loss  i s  a s  

follows : (158)  
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It can be s e e n  that while the Brernsstrahlung loss  i nc reases  as  T ' I2,  t h e  e 
2 

gyromagnetic radiation varies as T . At tempera tures  below 5 keV, the gyro-  e 

magnetic radiation loss  i s  l e s s  than that due to  Bremsstrahlung. At higher 

tempera tures ,  the gyromagnetic radiation ra te  i nc reases  very rapidly and m a y  

grea t ly  exceed that of Bremsstrahlung.  However, the energy lo s ses  due to  

gyromagnetic radiation can la rge ly  be ref lected into the p lasma by the wall  of 

the vacuum vessel .  

C. Cherenkov Radiation 

When the e lectrons i n  a plasma attain re la t ivis t ic  velcci t ies ,  they emi t  

Cherenkov radiation. (19') This radiation appears  i n  the electromagnetic wave 

spec t rum a t  microwave, in f ra red ,  and visible frequencies,  but not beyond these 

frequencies.  At T < 50 k e V  the Cherenlcov radiation i s  insignificant. I t  increases e 
rapidly with the fifth power of temperature .  It a l so  depends on the dielectr ic  

and magnetic charac te r i s t ics  of the plasma. The expression for the es t imate  of 

this radiation loss  i s  too complicated to be presented here .  (1 90) 

5. Plasma Heating 

The p l a sma  must  be heated t o  a cer ta in  tempera ture  before a thermo-  

nuc lear  fusion reaction can proceed to a signficant extent. A number of methods 

of heating the plasma have been developed. A few examples of these methods 

a r e  a s  follows: (163,173,178,191) 

1) Ohmic heating by a large e lec t r ic  cu r r en t  flowing through t h e  plasma.  

A cur ren t  induced i n  the p lasma will heat  the plasn-la because of i t s  

resistance. Since the classical resistivity of a hot plasma drops 

rapidly with e lec t ron  temperature ,  the ohmic heating r a t e  lalls too 

low for the ignition temperature to be reached,  I-lrncc, this 

heating method is res t r ic ted  to  t h e  f i r s t  stage of p lasma heating. To 

reach fusion reaction temperat~res,  additional heating mus t  bc! 

applied. 

2 )  Adiabatic compression.  The magnetic coil  systcr-11 and the  fusion 

reaction chamber  are specially designed to  allow the major  r a d i u s  
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and minor  radius of the p lasma (while i t  i s  undergoing the init ial  

ohmic heating) to be reduced by means  of a pulsed ver t ica l  magnetic 

f ie ld.  (Adiabatic heating r e su l t s  f rom compression of the p lasma 

a t  a relatively slow ra te ;  shock heating, which will be discussed 

bctow, resu l t s  from the rapid c rea ted  b y  a shock 

wave, ) 

3)  Ion cyclotron. Adjusting the alternating frequency of the local  mag-  

netic field to be sl ightly lower than the frequency a t  which the ions 

spiral  along the magnet ic  field, causes  a wave motion to develop in  

the ~ l a s r n a .  The damping of these  waves r e su l t s  in  the conversion 

oI their  energy into heat. (1 58) 

4) Neutral  beam injection. Injection of a cu r r en t  of high energy a toms 

(3 100 keV)  into the established p lasma causes  p a r t  of the beam to 

become ionized through a combinktion of Lorentz  and coll isional ion- 

ization. Deuterium gas is f i r s t  ionized and then acce le ra ted  b y  an 

e lec t r ica l  field. The ion beam i s  neutrazized by picking up e lec t rons  

f rom a gas o r  meta l  vapor in a neut ra l izer  cell. Once neutralized,  

the energet ic  par t ic les  can en te r  the plasma through the s t rong niag- 

netic field and become ionized and trapped. This method of p lasma 

heating i s  a l so  useful for  reac tor  control, since t h e  par t ic le  energy 

and composition can be controlled f rom the outside. (176) 

5 )  Magnetic pumping. The magnetic field s t rength i s  continuously 

and rapidly increased  and decreased.  If the frequency of the alterna- 

tions is chosen cor rec t ly ,  the  p lasma heating that  occurs  during the 

inc rease  i n  field s t rength exceeds the plasma cooling that  occurs  

during the dec rease  i n  field strength,  and the plasma i s  heated. (1  94, 195)  

6 )  Shock heating. If the strength of the confining magnetic field is 

increased  suddenly, the plasma is conlpressed and heated. Both 

collisional and coll isionless shocks have been studied and a r e  possible 

heating mechanisms.  (1 95) 

C. THERMONUCLEAR FUSION SCHEMES FOR GROUND POWER 

Mos t  efforts i n  controlled thermonuclear  fusion r e s e a r c h  have been con- 

cen t ra ted  on the concept of employing s t rong magnetic fields to keep the hot 

p la sma  from coming i n  contact wit.? the vacuum container wal ls ,  which otherwise 
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would quench the fusion reaction. Recently, in  contrast  to this magnetic confine- 

ment  concept, much in t e res t  has  been directed toward using l a s ~ r  or relativistic 

electron beams to compress  the plasma and heat i t  to the react ion temperature 

i n  a very short period of time, before the plasma can s t a r t  to expand and diffuse. 

Thus t,he plasma i s  said  to be confined inertially. In addition, a few researchers 

a r e  exploring other possible methods. The various thermonuclear fusion schen-les 

will be discussed below under the three basic categories.  

1. Magnetically-Confined Thermonuclear Fusion Systems 

The magnetically-confined thermonuclear fusion sys tems a r e  the steady- 

state toroidal systems (principally, the tokamak), the magnetic m i r ro r  systems,  

and the pulsed high -beta pinch sys terns (principally, the theta pinch).  (183) The 

most notable features of these sys tems are (1) the magnetic confinement of plas-  

mas (which takes the advantage of the fact that charged part ic les  in  strong mag- 

netic fields are forced to  m o v e  along the field l ines)  and (2) plasma instabilities 

(which a re  the main problem in  such systems).  P r e s e n t  main efforts a r e  to  scale  

up the p lasma conditions (n, 7, T) f o r  achieving a positive power balance. 

A schematic arrangement  of a tokamak i s  shown in Fig .  27. A strong cur rent  

pulse on the pr imary winding ionizes the gas and generates a secondary plasma 

current, I in the torus.  This cur rent  produces a new poloidal magnetic field, 0' 
R e .  The induced azimuthal cur rent  has an upper  limit, the so-called Kruskal- 

Shafranov limit ,  beyond which a helical kink hydromagnetic instability can occur. 

This I<-S l imit  also places a strong limit on 4, the ratio of plasma pressure 

to  magnetic pressure.  For a tokamak, fl must  be limited to 1-4%. ( 191, 196)  

The poloidal magnetic field, Bq, p lus the azimuthal f ield,  I3 which is  induced 8' 
by the external  current,  I e ,  in the winding wires  make up the  confining magnetic 

structure.  The hot plasma i s  confined on magnetic surfaces composed of helical 
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f ie ld  lines, resulting from the superposit ion of the toroidal field and the poloidal 

field. 176)  he plasma current ,  is also used for  heating. It compres ses  

and resistively heats the plasma to a moderate temperature (-600 eV). It 

disappears  with  a time constant of L / R  (L: inductance; R: resistance of the 
3 

plasma, which could be rather high, -10 seconds).  ( I q 6 )  A heating enhance- 

me:lt tecI;:~ique such as  neut ra l  beam injection mus t  be applied to heat up the 

p lasma to fusion temperature .  ( 1  91 )  

I 
PLASMA 

APERTURE 
LIMITER 

VACUUM SHELL 

Fig. 27. The tokamak plasma conf inement  scheme (174) 
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Other toroidal devices a r e  a l so  being studied. The s t e l l a r a to r ,  which uses 

a rotational t ransform of the ax ia l  magnetic f ield,  can operate  in t rue  steady 

state,  because the confining magnetic f ields are  a l l  external.  ' lq6)  Internal  ring 

or multipole sys tems  in which the cur ren t -car ry ing  conductors have been s u s -  

pended or  levitated within the plasma can provide a longer confinement time than 

the tokalnak and a higher B .  (1 84,193) 

b. Magnetic M i r r o r  Sys tems  

Magnetic m i r r o r  systems a r e  open a t  both ends. I n  such sys t ems ,  the 

par t ic les  must be reflected o r  f rom the ends, where the magnetic field 

i s  much s t ronger  than in  the center .  Figure 28 shows schematically how the 

par t ic les  a r e  par t ia l ly  plugged in the regions of high field strength.  T h e  simpli- 

fied theory of plugging i s  as follows: The velocity component of a par t ic le  along 

the z-axis dec reases  a s  i t  moves  into a region of high field strength. I t  can fall  

to  ze ro  and be reflected i f  

where  B /B is the ra t io  of field s t rength a t  the end to that a t  the center ;  u,, 2 1 
is the par t ic le  velocity component along the  z-axis a t  the center ;  i s  t h e  

par t ic le  velocity component perpendicular t o  the z-axis  at the center.  

plasma ions  with sufficient momentum along the field l ine  czn escape through the 

end mirrors, which lie in a so-called m i r r o r  loss cone, and thus significantly 

decrease  the containment efficiency, probably to an  intolerable  extent. (1 76) 

A mirror  machine itself cannot provide a confinement t ime that i s  long 

enough to meet the equil ibrium condition. Energy injection is neces sa ry  to  

maintain the reac tor  i n  steady system operation, (1 98)  

In dense plasmas,  i t  has  been found that  increasing the ficld a t  the ends 

(i. e .  , the m i r r o r s  or plugs) is not sufficient to achieve confinement. Instead,  

the magnetic field mus t  be increased  i n  eve ry  direction,  surrounding the plasma 

and forming a magnetic well, (176) 

JPL Technical Memorandum 3 3  -722 149  



I i ORBIT OF I 
1 TRAPPED ION n I 

FIELD COILS 

LINES OF 
MAGNETIC 
INDUCTION 

Fig, 28. Magnetic mir ror  particle (and plasma) confinement configuration ( 1  6 3 )  
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High efficiency d i r ec t  conversion of fusion e n e r g y  to e lectr ical  cki r rent 

is a popular concept with the m i r r o r  sys tems .  I t  was f i r s t  proposed b y  Post i n  

1970. 9 9 )  Par t i c l e s  escaping through the m i r r o r s  (open ends) can be guided 

and expanded radially to the per iphery of a large disk a t  e a c h  end, w h e r e  the 

plasma density is s o  low that  e lec t rons  can be separa ted  from the ions. 

A possible way t o  improve the power balance i s  provided by the concept of 

a chain of m i r r o r s .  Kelley (1  967)  proposed a chain of three m i r r o r  tmachines, 

with a longer  machine a t  the center  and the two sho r t e r  machines a t  the ends. 

The potential i s  maintained constant along field l ines between the outer machines 

s o  that m i r r o r  loss  in the center  machine i s  reduced, ( I  94) 

It  can be seen that  p lasma plugging is a unique problem for. the open-ended 

systems.  High-energy neutral  beam injection is  essent ia l ,  and the la rge  amounts 

of e lec t r ic  power needed for  the injector could make t h e  m i r r o r  sys t em infeasible. 

C .  Theta Pinch Systems 

The Culham theta pinch device was t h e  f i r s t  device to demonstrate  how the 

anomalous Bohm diffusion can be largely suppressed.  The pinch effect on 

the plasnia i s  produced by a magnetic field which i s  generated by a cur ren t  

flowing through the p lasma itself. (201) In a theta pinch reac tor ,  a one-turn 

coil encloses  a long cylindrical  tube. A capacitor discharge through the single- 

turn coil generates  a rapid-r is ing,  < trnng magnetic field (1 5 tes la  in l e s s  than 

set). (1 74) This rapid-r is ing,  s t rong rvagnetic field ionizes,  shock-heats,  

and subsequently con-ipresses and fur ther  heats  the plasma. The induced c u r -  

rents flow i n  the plasma in  the theta direct ion by t r ans fo rmer  action. (189) The 

rat io  fi i s  inherently very high (near unity), which means very efficient use of 

the magnetic field. 

The length r e q u i r e n ~ e n t  for a l inear  open-ended theta pinch reac tor  depends 

on the field strength. Lengths are typically on the o rde r  of s eve ra l  hundred 

me te r s  to about one ki lometer .  
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A r e f e rence  theta pinch reac tor  considered by Thomassen, e t  al. (1973) (172) 

is designed t o  operate i n  a pulsed mode and use a combination of fas t  inlplosion 

heating and slow adiabatic compression,  via magnetic f ields,  to  ignite,  burn, 

and confine a D-T plasma. Shock and compression heating are followed by a 

burn  phase, purging, and the introduction o i  new fue l  (Post, 1973). (1 9 6 )  

For  a theta pinch r e a c t o r ,  a very  la rge  capacity for  inductive energy 

s torage  i s  required,  for u s e  in  generating a rapidly-increasing,  s t rong axial 

magnetic field. The n r  values achievable i n  l inear  theta pinches depend only on 

the length. To minimize the length of the power plant, a theta pinch reac tor  

should  operate  with the s t ronges t  possible magnetic fielcl. ('01) The advantages 

of this concept a r e :  

1) The plasma can be stably confined i n  the  rad ia l  direction,  escaping 

only by diffusing out the tube ends. (196) 

2 )  Access f rom the ends i s  easy.  (201) 

3 )  The magnetic field i s  used more efficiently than i n  toroidal devices. ( 1  90 1 

To  reduce the magnetic energy s torage  requ i rement  and reduce the plant 

size, a hybrid system involving the use  of a l a s e r  to heat  the p lasma from the 

ends has been proposed.  (''I) Thc l a s e r  heating rep laces  the shock-hea ting 

s tage  and i s  followed by the conventional adiabatic nlagne t ic cornpr e s  sion. A 

l a s e r  with a n  output energy  of 5 megajoules o r  more  is required.  (20 1) 

In acldition, a toroidal theta pinch r eac to r  concept i s  being advanced  by t h e  

Los Alamos Scientific Laboratory.  T h e  aspeck r a t i o  ol a closed-end theta 

pinch reac tor  is  much larger than that of a s teady-sta te  toroidal device,  wh ich  

means that the shape of the reac tor  looks more or l ~ s s  like the wheel tube of a 

bicycle ra ther  than a torus ,  As the first s tep,  physics questions such a s  t h e  

toroidal equil ibrium, hydromagnetic stabil i ty,  and shock heating mus t  be 

answered. 
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2. Inertially-Confined Thermonuclear Fusion Sys tems  

For  a Iong time most  scient is ts  have believed that controlled thermonuclear 

fusion can only be achieved through a magne tically-confined, s table ,  and  hot 

plasma. (lg5) Even today, m o s t  r e s e a r c h  programs are concentrated on the 

magnetic confinement approach, which is reflected i n  the $1 0 billion, 5 -year  

energy  R&D program budget. (20Z' ' 0 3 '  However, advancement in l a s e r  and 

re la t ivis t ic  e lectron beam technology has  promoted the ine r  tially -confined 

thermonuclear  fusion approach to  a very strong candidate position. 

The principal idea of these sys t ems  is to  heat  a D - T  p lasma of density n, 
4 

radius  r to a temperature ,  T, of - 1  0 eV instantaneously. Assuming the ~ l a s r n a  

expands a t  the ion thermal  velocity Vth = d m ,  t h e  effective containment 

t ime  T = r /V th  is kept so s h o r t  that equil ibrium, MHD, and microstabil i ty 

problems are avoided, (1 88,204) 

9 The minimum input energy i s  about lo7  to 10 joules, which mus t  be 

delivered, i n  a period of a few nanoseconds, t? a fuel pellet up to a few mill i -  

m e t e r s  i n  d iameter ,  
(204-206)  

corresponding to a power densi ty  roughly equal 
3 

t o  1016 to 10" W/crn . T o  produce laboratory break-even power, however, 
3 

an  energy of at leas t  10 jocles with a 1-nanosecond o r  s h o r t e r  pulse i s  

required, (206'207) One popular concept of supercompress ion  i s  t o  use  a hollow, 

high-density she l l  to compres s  and heat  a D-T  gas  mixture  within that shell ,  (208) 

P recompres s ion ,  which reduces  t h e  required t r igger  energy,  can perhaps be 

achieved by the use of a l ascr -genera ted  shock. A high-atomic-number ma te r i a l  

tamp, i f  feasible,  could enhance the iner t ia l  confinement tinre fur ther .  (204) 

a. Laser-Induced Fusion 

For power generation by laser-induced fusion to be economically competitive, 

i t  i s  generally considered that the fuel pellet ,  when i t  f u s e s ,  mus t  re lease  "75 

t imes  the ene rgy  i t  absorbs  f rom the l a s e r  pulse ( i .e . ,  a gain factor of -75). ( 206 )  

This  concept a s sumes  (1) that 10% of the input energy i s  actually absorbed$ by 

*I070 i s  a frequently-projected - but not yet  achieved - efficiency; cu r r en t  
technology is <I%. 
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the pellet and (2) that 30% of the power produced i s  recirculated to  provide power 

t o  operate the plant, 

The cu r r en t  output energy  capabil i t ies of the mos t  completely developed 

l a s e r s  a r e  typically a few hundred joules of output energy, with a pulse duration 

of a few nanoseconds. Thus,  p resen t  l a s e r  technology falls sho r t  of what i s  

requi red  for  fusion power generation. Recently, Battle c la i~ned to  have developed 

the  worldls mos t  powerful l a se r :  a 1 2  -beam, 7-s tage neodymium -doped glass  

laser producing 900 to 1500 joules of energy, in pulses  ranging from 1 .  5 to 5 .0  

nanoseconds. ('09) It is repor ted  that  the University of Rochester  Labora tory ts  
-10 laser is capable of delivering more  than 1 kilojoule of energy in 10 sec .  (2 10) 

4 
Designs a r e  i n  progress  fo r  a T O  joule module which could provide the basis 

5 for a I 0  joule C 0 2  l a s e r  system. ('07' I t  should be possible soon to demonstrate 

the feasibility of l a se r  fusion, since the break-even point (i. e ,  , fusion energy = 
3 

l a s e r  energy) i s  about 1 x 10 joules, which is readily achievable with present 

g la s s  l a s e r  technology, " l l j  (Recently, KMS Fusion, Inc. , claimed to have pro-  

duced thern~onuclear  neutrons f r o m  l a s e r  implosion, ) (2 12) 

8 
Because of the high p lasma density, 10 to  10'' joules o r  m o r e  of fusion 

energy output is expected. The amount of energy re leased  per pellet  will be 

eqt~ivalent  to  that  f rom somewhere between a fraction of a ton of T N T  up to a 

few tons. (2 04 

Since the energy i s  re leased  explosively, a rather  innovative design of the 

first wall of the combusion chamber  is required.  At Oak Ridge  National Labor-  

a t o r y  a "Blascon" reactor vesse l  concept was studied,  (2 3 ,  In the BLas con, a 

f r e e  -standing vortex i s  formed by rotating a lithium pool about a ver t ica l  axis. 

Because of the rotating thick lithium inner  layer ,  radiation damage and buildbp 

of radioactive impuri t ies  i n  the s t ruc tu re  a r e  reduced. However, the access  to 

the fuel pellet  is very r e s t r i c t ed  and achievement of t he  des i red  spher ica l  sym-  

m e t r y  seems " o  be impossible. Owing to  the time requi red  to es tabl ish the  

lithium vortex,  the frequency of operation i o  limited to  0. 1 Hz. A wetted wall 

concept has  been pursued a t  Los Alamos Scientific Laboratory,  (214 '  i n  which a 

thin ablative layer  of lithium protects  the inner porous wall of the reac tor  

vesse l .  I t  is estimated that  1 second is required to  achieve an  adequate vacuum 
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between micro-explosions, which l imits  the frequency of operation to 1 Hz. The 

dry wall concept developed a t  the Lawrence Livermore  Laboratory is essentially 

a simple cavity s t ructure 3 to  4 me te r s  i n  radius. I t  might be economically 
7 feasible for energy re leases  of l e s s  than 10 joules, 5, The character is t ics  

of these concepts a r e  shown i n  Table 16. 

Table 16. Some parameters for  three roposed !aser-induced fusion g chamber st2 4) 

-. -.. 

Sys tern 

Thermonuclear 
energy per  pulse 

R epe ti  tion r a t e  
of l a se r  

Mean power 

Inner wall 

Inner  wall 
diameter  

Wetted wall 
(Oak Ridge) (Los Alamos) 

150 MW (th) I zoo MW (th) 

D r y  Wall 
( L i v e r m ~ r e )  

Lithium vortex 
(with bubbles ) 

-1000 - 8000 MW (th) 

10 chambers Porous wall 
wetted by 2 
mm Li 

b. Fusion Induced by Relativistic Electron Beams 

Tightly focused relat ivis t ic  electron beams have only recently been 

ser iously considered a s  an alternative to laser beams as a means of hea t ing  and 

compressing fuel pellets for achieving fusion. ( 2 0 6 , 2 0 8 , 2 1 6 , 2 1 7 )  It is 

that megajoule electron bea-m acce lera tors  with a 10 nanosecond pulse duration 

can be developed that will offer a more efficient conversion of stored energy t o  

beam energy than do sub-nanosecond short-wavelength lasers, At  least one 

multimegajoule relativistic e lectron beam accelerator  i s  already operating a t  a 

50% efficiency level. The required gain factor can  be reduced to 15.  (208) 
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Intense relativistic e lectron beam experiments have been ca r r i ed  out for  

near ly  a decade, and much progress  has been made toward understanding the 

electron beam formulation, equilibrium, stability, and propagation, Large p l s e d  

electron acce lera tors  were developed pr imar i ly  for  application to the study of 

radiation effects i n  materials.  The accelerator  technology has proven to  be 

cornpar atively s imple,  inexpensive, and scalable to  higher power. (206) 

Only one beam is  theoretically necessary  for implosion because the thermal 

conductivity of the target e lectrons is so high that the fuel pellets quickly become 

spherical.  The confinement t ime can be extended by surroundiag the pellet  

with a high atornic number mater ial  and by the self -induced magnetic field of 

the focused electron beam. (216) 

The Aurora accelerator (Harry Diamond Operation laboratory)  has  achieved 

a beam pulse energy of 2.5-3. 0 rr-egajoules for 125 nanoseconds (-1013 watts) with 

an efficiency of "SO%, but the a r e a  of the beam i s  fairly large,  Another device, 

a t  North Carolina State University, has achieved a cu r ren t  density as high a s  
2 

25 megam?s/cm . I t  is estimated that to deliver a few megajoules, in -10 nano- 

seconds, onto a sphere seve ra l  mil l imeters  i n  diameter would require  a cur rent  
8 2 density of seve ra l  times 10 amps/cm for a beam in  the MeV range. (216)  

Much of the power of present  electron beams is wasted because their  pul- 

s e s  l a s t  longer than nuclear reactfon times bv one to two o rde r s  of magnitude. 

Foremost  among the problems i s  how to focus the electron beam to achieve 

energy densities suita: le for  triggering thermonuclear fusion. F o r  pulsed 

relativistic e lec t ror  beam power technology, dcvclopments i n  synchronized 

switching a r e  ~ a r t i c u l a r l y  needed, i n  o rde r  to  achieve a 10 nanosecond pulse. 
(26 8) 

To consider the kPplicatian of electron beams to the supercompression approach, 

the additional problem of spherical  loading must be solved, 

The realization of the r a the r  impress ive  decreases  i n  the break-even 

energy requirement that couid be obtained by compressing the D-T fuel many 
4 o r d e r s  of magnitude ("10 ) beyond "solid'l density i s  perhaps the factor most  

responsible for the increased level of in te res t  in  the iner t ia l  confinement concept. ( 208 )  

One majar  advantage of iner t ia l  confinement with implosion over magnetic con- 

finement for power production i s  tha t  the sys tem can be relatively small .  (207) 
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The problems to be overcome a r e  those involved in the supercompression of the 

fuel pellet by the laser  or  relativistic e lectron beams; the development of an 

efficient, high power beam machine; and finding a way to  couple the beam energy 

efficiently into the D-T fuel. The reactor  vesse l  must  be capable of containing 

the exp?.osive energy without damage. 

3.  Unconventional Systems 

A l t h ~ u g h  much experimental  progress  has  been made i n  improving both 

magnetic and iner t ia l  confinement, t h a ~ ?  is not a s  yet conclusive evidence that 

e i ther  approach will be successful  in  providing the ultimate power of thermo- 

nuclear  fusion for al l  mankind, a t  leas t  not in  the near future. Growing interest  

inconcepts other khan these two i s  natural; several of these a re  discussed below, 

a. Fusion-Fis sion Hybrid 

The concept of fusion-fission hybrid systems was ini  -:..;.i.d a,, ea r ly  as the 

beginning of the USAEC program in  controlled thermonuclear fusion r e sea rch  

f o r  the purpose of providing an  intense source  of neutrons to produce fissionable 

material .  The hybrid r eac to r  would operate with a sub-lawson plasma and a 

subcri t ical  f ission blanket. (218) The 14 MeV neutrons f rom a controlled D - T  

fusion plasma are used to produce neutron source multiplication (by a factor of 

about 5) and energy multiplication (by a factor  of about 50) through fission in a 

fissionable ma te r i a l  blanket srlrrounding the fusion plasma. Through 

utilization of fission energy,  the fusion energy yield can be increased by an order  

of magnitude. The values of the plasma character is t ics  n, T ,  T necessary  to 

achieve fcsion-fission react ions appear to be significantly lower than those 

required for pure fusion systems.  However, the potential contribution of hybrid 

sys tems to fission power economy seems  to be the p r imary  objective of this 

research ,  (2 1 8) 

b. Migmatron (Rutgers University) 

The main idea of the migmatron i s  to trigger the nuclear fusion reaction i n  

colliding beams of ions instead of i n  a plasma. The ions, in a magnetic field, a r e  

looping in a figure -8 course and colliding with themselves. No heating process  

JPL Technical Memorandum 33- 722 157 



i s  involved. Elec t r ic  power i s  obtained by d i rec t  conversion. A smal l - sca le  

cxperirnent was successful in  proving the theory, but the power output is too 

sma l l  watts). Some people a r e  skeptical about the basic theory of the 

device, contending that, when the device i s  scaled up, there wil l  be parHcle 

scattering which will create  a plasma and invalidate the theory. ( 2 1 9 )  

c.  Collision of Ions with a Relativistic Beam (Brookhaven 
National Laboratory) 

This concept is  basically the same a s  that of the migrrlatron in that the 

fusion reaction takes place i n  colliding beams instead of a plasma. A system of 

beams of deuterons and t r i tons traveling i n  the same  direction and being focused 

by a relativistic electron beam i s  found to be capable of yielding kilowatts of 

fllsion power p e r  meter of beam path. ( 220 )  The concept i s  i n  the ear ly  stages 

o l  exploration. Many basic problems such a s  beam instabili t ies,  the mechanism 

of beam collapse, and the nonlinear forces  developed i n  the composite beams 

need further study. 

d, Magnetically -Confined Fusion Induced by Laser  of Relativistic 
Electron Beam (Massachusetts Institute of Technology) 

In previous discussions on theta pinch systems,  the application of a l a se r  

to  heat the p lasma was mentioned. The main idea behind this relatively n e w  

and very promising concept i s  to use a l a s e r  o r  relativistic electron beam to 

induce fusion reactions in  a plasma which i s  magnetically confined. By this 

hybrid techn:que i t  i s  hoped to eliminate the most  immediate problems faced 

separately by the magnetically c o n f i ~ e d  and iner  tially confined approaches. 

The reauired magnetic field strength is greatly reduced s s  compared to  that 

for the magnetic confinement alone. At the same  time, the beam pulse length 

and bean? power requirements are relaxed to a grea t  extenl as  compared with 

those for the iner t ia l  confinement: approach alone. Electron beam generators  

presently exist in the  lcrawatt  power range, and their  application t o  a magrbet- 

ically-confined tor oidal device is very  pr  o~nising.  At MIT1 s Francis  B i t t e ~  

National Magnet Laboratory, a hybrid between the tokamak and l a s e r  method i s  

being studied. '221) Much more r e sea rch  is needed on problems such as beam/ 

plasma interaction, beam trapping and coupling with the plasma before the beam 
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c s n  escape,  effects of the beam on the g r o s s  stability of the magnetically 

confined plasma,  and the method for injecting the l a s e r  o r  e lectron beam into 

a magnetic confinement sys tem,  

D. PROBLEM AND RESEARCH AREAS FOR GROUND POWER 
THERMONUCLEAR FUSION 

M u c h  work remains  to  be done to demonstrate  the scientific feasibility of 

thermonuclear  fusion. P a r t  of this work h a s  been mentioned above. Although 

much p rog res s  has  been made i n  plasma physics,  some important physics 

problems such a s  microscopic  stability of plasma,  l a s e r  beam and p lasma in te r  - 
action, in termediate  6 plasma,  etc. a r e  not yet  well  understood. Engines rf.4.. 

studies on thermonuclear fusion reac tor  sys t ems  have been underway for only 

a few years .  The engineering problems m a y  fxrn out  to be much more difficult 

than the physics problems. (222) 

1. Prob lems  Peculiar to  Magne tically-Zcnfined Systems 

I n  a magnetically-confined system,  the magnet must be maintained a t  about 

liquid helium tempera ture  ("4 OK). (223)  The use of superconductors i s  required 

i n  order  to  l imi t  e lec t r ica l  power consumption to an acceptable level. The 

supercunducting magnets produced thus f a r  a r e  much sma l l e r  than those that 

would be required for a reac tor .  Insulation of a superconductor s e e m s  to be a 

difficult t ask  because of i r rad ia t ion  effects,  and cooling the magnet will take a 

long time because of the enormous s tored  energy. The production of a strorig 
5 

magnetic field of the o rde r  of 10 gauss i n  a volume of s eve ra l  thousands of m 3 

i s  required.  The magnet  coils mus t  be prevented f rom quenching (i. e . ,  

going f rom superconducting to  normal)  which, if i t  happens, will cause a symme - 
t r i c  f ields and produce powerful tangential fo rces  on the coils of the order of 

20 ,000 tons. A s turdy supporting s t r ~ c t u r e  i s  needed and mus t  be kept 

cooled to the s ame  ~ e r n ~ e r a t u r s  as the superconductor. A good insulation ma te r i a l  

which has  adequate t he rma l  expansion proper t ies  and will not de te r iora te  under 

heavy load is yet to be found. 
(197,224,225) 

The mechanical  p roblem faced in  designing the vacuum wall is obvio .: 

the wall sur faces  face, on one side,  the fusing plasma a t  z e r o  p r e s s u r e  and,  on 
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the other  side,  a coolant a t  higher p re s su re .  The wall has  to withstand erosion 

f r o m  the plasma inside and chemical  e ros ion  f rom the coolant outside. In addi-  
2 

tion, fast  neutrons (14 MeV, -lo15 n/cm -set), ( Ig8)  a sma l l e r  number of slow 

neutrons,  p r imary  y r ays ,  secondary ). rays ,  a rays ,  and f i  r a y s  (from tri- 

tium) will i r r ad i a t e  the wall, There  wil l  a l so  be the rma l  cycling and other 

s t r e s s e s .  Nuclear tr imsmutation of the wall mater ia l ,  and t r i t ium and 

helium diffusion will induce wall  damage such a s  s eve re  su r f ace  blistering,  vol- 

ume swelling, and void and defect  formation. (225) Photon-induced desorption 

m a y  be an important  effect  at wavelengths l e s s  than 2000 1, a region which has 

not ye t  been investigated. Phys i ca l  sputtering due to par t ic le  bombardment may 

be the most important  among a l l  the p roces ses  that affect the l ifetime of the 

f i r s t  wall, (226'227) Helium bubbles due to  ( n , ~ )  reaction can occur in  most 

s t r u c t u r a l  mater ia l s  (0. 1 - 1% of helium may be formed)  by the 14 M e V  neu-  

t rons ,  and this will  lead to the l o s s  of wall  ductility. Di rec t  exper iments  with 

the 14 MeV neutrons a r e  not ye t  possible. (170 )  Little work has  been done on 

radiat ion damage specifically for  thermonuclear fusion. The re  a r c  significant 

uncer ta int ies  i n  the energy and par t ic le  f luxes  impinging on the  wall, Experience 

from fission r eac to r s  does n3t offer much he lp  e i ther ,  because the nuc1ea.r data 

for par t ic les  with energ ies  oi 5 MeV or m o r e  a r e  e i ther  lacking o r  inaccurate.  

The lacking of sputtering yield data makes the engineering design study of fusion 

r e a c t o r s  of l imited value. Chgmical sputtering i s  even l e s s  understood. Impur-  

i t i e s  i n  the wal l  ma te r i a l  m a y  diffuse to the wall  surface and be thermal ly  

desorbed.  The mechanism of impuri ty  interact ion with the wall is another 

unknown area.  Impuri t ies  will i nc rease  the radiation loss  and may stop  he 

fusion reaction. I n  a toroidal device the impurities will  be accumulated and mus t  

be purged constantly. Technology for  diverting impuri t ies  needs to be developed, 

The feasible operating tempera ture  of the vacuum wall  has been assumed 

to  be about 1000 to  1300°K, whereas  the p l a sma  tempera ture  i s  well  above 

The ea r ly  values assumed for the heat flux of the f i r s t  wall  have been reduced 

ro the same o rde r  of magnitude as that for a liquid meta l  fast breeder  reactor  

Efficient heat removal methods, involving a minimum i n  (-0. 1 kW/cm ). 

pumping power requirements ,  and suitable lo r  use  in a very s t rong magnetic 

field and a high radiation environment,  should bc developed. 
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For a D-T fuel fusion power plant, the t r i t ium m u s t  be bred  in  the lithium 

blanket surrounding the reac tor .  With a thermal  efficiency of -3070, the reac tor  

would burn about 0. 5 kg of t r i t ium pe r  day p e r  gigawatt of electrici ty.  The con- 

centration of tr i t ium i n  the lithium mus t  be kept  very low, perhaps on the o r d e r  

of 1 gram of t r i t ium p e r  cubic m e t e r  of lithium (or - 1 ppm), '171-) s o  tha t  the 

s t ruc ture  will  not be embrit t led.  Tr i t ium is volatile. The recovery  sys t em 

must minimize the t r i t ium inventory and the amount percolating into the a tmos-  

phere or the s team system. (171'226) No fast and efficient ways of recovering 

such a low concentration of t r i t ium a r e  known. 

Introducing new fuel  into an a r e a  where a p lasma i s  confined by a s t rong 

magnetic field i s  certainly not a t r ivia l  problem. The refueling process  should 

not dis turb the self - sus  taining fusion reactions.  Ingenious techniques for 

refueling and for  the e x $ r s c t i m  of spent fuel will be needed before fusion power 

can be economically hizr .;, ssed.  

2. Prob lems  Pecu l i a r  to  Inertially-Confined Systems 

The most press ing problem of the inertially-confined concept is  the  develop-  

ment  of a l a s e r  or  e lectron beam sufficiently powerful and efficient  f o r  fusion 

power generation. 

The combus%ion chamber  corresponding to the First wall  of a magnetic 

confinement sys tern is a l so  a challenging engineering problem. Because the 

fuel pellet  will  be a solj,d, and highly precompressed ,  the fusion energy will be 

re leased in  an explosive mode. The  chamber mus t  be protected from being 

damaged by the blas t  waves. In a pulsed r eac to r ,  t h e  f lash of Bremsstrahlung 

radiation can raise the walls to a tempera ture  above their  melti.ng ~ o i n t .  P r o -  

p e r  cooling of the inner  wall will be necessary.  (1 88) 

The ~ h y s i c s  of the absorption of beam energy by the plasma is not well  

understood. (228) The role  of p lasma instabil i t ies i n  coupling t h e  l a s e r  ene rgy  

into the pellet ,  and the possible effects of other  instabil i t ies i n  limiting the  den- 

eic';ca~r,n 2 f  the pellet  under the influence of l a se r  heating are unanswered 
(!. 55,205) qaestions. 
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Other problems may occur ,  such a s  t h e  possibility of prcrnaturc hcating of 

the compressed  pellet  co re  a t  longer l a s e r  wavelengths and the possibility, a t  

the  highest l a s e r  intensit ies,  of strong st imulated backscat ter  of the incident 

radiation. The optical sur faces  transporting t h e  l a s e r  beam must be protected 

t o  some extent from pel le t  debr i s  and f r o ~ n  X-rays .  Targe t  design, fabrication, 

anrt delivery a r e  a l so  important  engineering problems. 

E. TMERMONU CLEAR FUSION FOR SPACE PROPULSION 

In a propulsion sys tem for space exploration, the primary use of thermo-  

nuclear  fusion energy  would be to produce thrust ,  , ' . :?reas  t e r r e s t r i a l  uses would 

involve the production of e lectr ic i ty ,  I t  would s c c  * 3t t h e  extremely high tenl- 

pera ture  p lasma presen t  i n  a fusion reac tor  could oa used directly to produce 

th rus t ,  without a conventional heat  cycle; for  e lectr ic i ty  production, however, 

a heat  cycle is considered necessary ,  Thus f a r  our discussion has been largely 

concerned with ground power fusion technology, The availability of almost 

inexhaustible and cheap fusion fuel (for ins tance,  deuter ium f ron  water), the 

inherent  freedom from reac to r  power excursion,  and the relatively slnall  radio- 

active re lease  hazard ( 8 - 1  / 10, 000 of tnat for  a nuclear f ission power  plant )  ( 2 2 9 , 2 3 0 )  

should be strong incentives to apply all possible, worldwide ef for ts  to r e sea rch  

and development on fusion technology. However,  commerc ia l  fusion p0wt.r 

m a y  not be rea l ized  until i t  i s  economically competitive with other power sys t ems  

such  a s  light water  reac tor  sys tems .  This m a y  tend to slow down the pace  of 

development of fusion power technology, par t icular ly  fo r  the ground-based 

application. A s  wil l  be discussed below, it  s e e m s  that  the fusion power for space 

propulsion is an attractive al ternat ive for  interplanetary exploration in the  

s o l a r  system. Hence, the development: of the fusion propulsion technology fo r  

space propulsion need not wait until the ground-based fusion power technology 

h a s  been well developed. In  addition to being f r ee  of economic r e s t r a in t ,  the 

cxoatmospheric e n v i r o n n ~ e n t  is  par t icular ly  suitable for magnetically-c0nfinc.d 

fusion syste ins ,  since no spec ia l  vacuum requirement  i s  imposed on the inner  

wall of the  fusion reactor .  ( Z 3 1 )  Some problems (such as  t r i t ium recycling) that 

must be solved for ground power fusion sys t ems  can be circumvented o r  

alleviated. 
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Fus ion  propuls ion  h a s  many a t t r a c t i v e  f ea tu res .  A few of them a r e  as  

follows: 

1) T h e  atilount of e n e r g y  r e l e a s e d  per  u n i t  m a s s  of fuel  by fusion r c a c -  

tions i s  l a rge r  than tha t  from c h e n ~ i c a l  o r  n u c l e a r  f i ss ion  reac t ions .  

This means tha t  the  n-.laximurn o b t a i n a b l e  spcc i l i c  i m p u l s e  (I ) is 
6 6 sP the h ighes t  12.6 x 10 sec f o r  fusion; 1. 3 x I0 s e c  f o r  f i s s ion ;  and 

-2 5 x 10 sec for chemica l ) .  '232) Canceotual fusion rocke t  s tud ies  

ind ica te  t ha t  I c a n  be a s  high a s  1 0 , 0 0 0  sec  (high t h r u s t  s y s t e m )  
(2 32) 

sP 
to 200,000 see (low t h r u s t  s y s t e m ) ,  (233)  i n  c o n t r a s t  to a n  I of 

SD 
about  I000 sec  for s o l i d  c o r e  nuc lea r  r o c k e t s ;  o r  2500 s e c  i a r  gas  

core rluclear s o c k e t s ;  or about  5G00 scc  for n u c l e a r  r l e c t r i c  

p r o p u l s i . ~ n  s y s t e r ~ ~ s .  For  the low t h r u s t  s y s t e m s ,  t h r  spcc i l i c  weight:: 

01 c a n  be a s  low as 0. 5 lcg/lc\Y, ( 2 3 3 )  a s  cornpar rd  t o  -30 ka/kW far 

n u c l e a r  e l e c t r i c  propulsion sys  terns. (2 3 4 )  

2 )  Direct convers ion  of fusion power  t o  e l e c t r i c i t y  is  p o s s i b l r  without 

applying a conventional  t h e r m a l  cycle .  ( l q 9 )  The was te  h e a t  can be 

r e j e c t e d  a t  a h i g h e r  t e m p e r a t u r e  (i. c . ,  prope l l an t  mixing t e m p e r a h l r e ) ,  

Thc rad ia to r  m a s s  is thus minimized.  (2 35) 

3 )  T h e  radioact ive  p roduc t  problem is much l e s s  s e v e r e  t h a n  i n  n u c l e a r  

f i s s ion  reac t ions .  Lower sh ie ld ing  m a s s  for t h r  spacecraft, and 

l o w e r  development  and  testing costs  on the ground are poss ib le .  No 

c r i t i c a l  mass  01 the fuel is required f o r  fus ion  propuls ion .  Thus  one 

can choose the s m a l l e s t  feasible opera t ing  un i t  mass,  so  a s  to m i n i -  

mize the total  vehicle mass. (232) 

4 )  The fusion propuls ion  s y s t e m  may have a h i g h  and variable specific 

impulse  (2500 to  200 ,000  s c c ) ,  a low specific wcight  (as low a s  0.  5 

kg/kW), and a low propel lant - to-payload weight  rat io.  123 3 ,  The 

o v e r a l l  p e r f o r m a n c e  is estimated t o  be a n  o r d e r  of n ~ a g n i t u d e  bclttcr 

than nuc lea r  ( f i ss ion)  elc c t r i c  propuls ion  s y s  tern, 

5 )  For  manned m i s s i o n s  beyond hjars, i n  a practical journey timr, a11 

high performance s y s t e m s  arc inferior to fusion propuls ion  s y s t ~ m s  

with respect  t o  payload r a t i o  and t r ip  time. (1 54) 

*The spec i f i c  weight  is is usually defined as  follows: 

t o t a l  w i g h t  of t h e  propuls ion  e ystc>m (Fg) 
iY = .. .- 

total  t h r u s t  power (kW) 

JPL Technical h..ierno r i indum 3 3-722 



6 )  The p r o s p e c t  for  fusion p ropu l s ion  would be even  b r i g h t e r  i f  the 
3 

pro tons  f r o m  the  D-He , etc .  fusion r e a c t i o n s  could be -.+tilized for  

the e n e r g e t i c  t h e r m o n u c l e a r  f i s s ion  reac t ions  d i scussed  above in  

p a r a g r a p h  VII-A. 

F. PROPOSED FUSION PROPULSION SYSTEhIS 

C u r r e n t  t h e r m o n u c l e a r  fus ion propuls ion  concepts  can  be grouped into two 

c a t e g o r i e s ,  namely ,  the s t l a d y - s t a t e  low- th rus  t s y s t e m s  and  the pulsed  high-  

t h r u s t  s y s t e m s ,  In a ste-,::y-state fus ion rocke t ,  p a r t  of the fusion reac t ion  p r o -  

d u c t s  would be d i r e c t e d  out of thc r e a c t i o n  c h a n ~ b e r  t o  the  magne t i c  nozzle* to  

p r o d u c e  th rus t ,  o r  to an  e n e r g y  convers ion  device  t o  produce  e l e c t r i c i t y  for i on  

eng ines .  It is a magnet ica l ly-conl ined s y s t e m .  By c o n t r a s t ,  the  pulsed  fusion 

r o c k e t  would be  an iner t ia l ly-conf ined s y s t e m .  T h e  p u l s e s  would be de r ived  f r o m  

a t l p u l s e  unit" s u c h  as  a D-T  pe l l e t ,  which would be induced to  explode by a n  

i n t e n s e  ene rgy  beam.  T h e  cloud of explosion d e b r i s  would be  used  t o  push thp 

s p a c e c r a f t  o r  to p roduce  t h r u s t  through a nozzle. The t h r u s t  tha t  c a n  be obtained 

f r o m  the  s t eady-s ta t e  s y s t e m s  is l i m i t e d  by the al lowable t e m p e r a t u r e  of the 

structure. P u l s e d  propuls ion  s y s t e m s ,  however ,  would o p e r a t e  i n  very s h o r t  

b u r s t s  and the t h e r m a l  waves  produced would have  l i t t le  t ime  to p e n e t r a t e  the 

str11h:ture; hence  the  s y s t e m  c a n  be exposed t o  a much h igher  t e m p e r a t u r e ,  a n d  

p r o d u c e  h igher  t h r u s t ,  without s t r u c t u r a l  damage. ( 2 3 3 )  The t h r u s t l w e i g h t  ratios 

of s t e a d y - s t a t e  s y s t e m s  a r e  much  s m a l l e r  than unity ( 1 5 5 ' ( 0 f  t h e  o r d e r  of 0. 01 

and s m a l l e r ) ,  w h e r e a s  for pu l sed  s y s t e t n s  t h e s e  r a t i o s  can  be as high a s  3 .6 .  (232) 

11 propu l s ion  s y s t e m  with a th rus t /we igh t  r a t i o  of l e s s  than unity would bc l i m i t e d  

t o  u s e  for  f e r r y  m i s s i o n s  between orbi t s .  

C o m p a r i s o n s  between t h e r m o n u c l e a r  fusion propuls ion  s y s t e m s  and n u c l e a r  

f i s s i o n  rocke t s  for i n t e r p l a n e t a r y  explora t ion  arc  shown i n  Figs .  29 and 30. 
(1 5 5 , 2 3 4 )  

It can be s e e n  t h ~ t  fusion p ropu l s ion  systeme have s u p e r i o r  capabi l i t ies .  Also,  

as ind ica ted  i n  t h e s e  two f i g u r e s ,  for  a  h igh- th rus t  fusion rocke t ,  the speci f ic  

impulse (I ) should be a s  high as poss ib le  (F ig .  29) and,  for  a low- th rus t  fusion 
9P 

rocket, the  spec i f i c  weight ,  a, should be a s  low as  poss ib le  (Fig, 30). For t h ~  
. . 

%A magnetic nozzle guides the  e scap ing  p l a s m a  in  thr d e s i r e d  d i rec t ion  by a mag- 
n e t i c  field. The b a s i c  p r inc ip le  is the s a m e  a s  fo r  the magne t i c  confinement of 
t h e  p l a s m a .  
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Fig. 2 9 ,  Comparison of pulsed high- thrus t  fusion rocket with 
nuclear rockets (after Moeckel) 

JPL Technical Memorandum 33-722 



1 10 

DISTANCE (IN A.U.) 

Fig. 30. Comparison of steady-state low-thrust fus ion rocket with 
nuclear  electric propulsion systcnl  (after Moeckel) 
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s p e c i f i c  weight,  a, of a 1 kg/kW of a s teady-s ta te  l o w - t h r u s t  fusion r o c k e t  and 

s p e c i f i c  i m p u l s e  I of 10 ,000  s e c  of a h igh- th rus t  pu l sed  fus ion  rocke t ,  the 
SP 

c r o s s p o i n t  i s  about  a t  Neptune fo r  the same t r i ~ ,  t ime.  !'or m i a ~ s i o n s  beyond the 

c r o s s p o i n t  (in th is  c a s e ,  n e a r  Neptune),  the low- th rus t  fur;ion r o c k e t  would p r o -  

v ide  a s h o r t e r  t r i p  t ime  than the  pulsed h i g h - t h r ~ s t  rocket .  I t  should be noted, 

hovr~ever,  tha t  th is  c r o s s p o i n t  will sh i f t  for  d i f ferent  values of and I 
SP' 

3 
A s  d i s c u s s e d  previous ly ,  D-He i~ the  m o s t  favored fusion fuel, p r i m a r i l y  

b e c a u s e  of the r e l a t ive ly  d e s i r a b l e  fusion p roduc t s  (mainly  charged p a r t i c l e s ) .  

The s e v e r i t y  of the  p r o b l e m s  of radia t ion  shielding and t h e r m a l  insula t ion  of t h e  

superconduct ing  s u b s y s t e m  would be g r e a t l y  reduced.  However ,  the opera t ing  

t e m p e r a t u r e  would n e c e s s a r i l y  be  h igher ,  r e su l t ing  i n  m o r e  rapid  e n e r g y  l o s s  

and m o r e  diff icul t  t r igge r ing  r e q u i r e m e n t s .  '156p236) One poss ib le  way ol dca l -  

ing with the p r o b l e m  of a h i g h e r  t r igge r ing  t e m p e r a t u r e  r e q u i r e m e n t  would be 

t o  u s e  D-T  fue l  f o r  s t a r t ing .  When a se l f -sus ta in ing fusion r e a c t i o n  had been 
3 

ach ieved ,  the r e a c t o r  would be swi tched t o  the D-He lue2. (190) 

1. S teady-Sta te  L o w - T h r u s t  P r o p u l s i o n  S y s t e m s  

The s t eady-s ta t e  t h e r m o n u c l e a r  fus ion propuls ion  s y s t e m s  a r e  c h a r a c t e r -  

i z e d  by r e l a t i v e l y  low spec i f i c  weight and v e r y  high spec i f i c  i m p u l s e ,  a s  corn- 

pared t o  o ther  low- th rus t  s y s  te rns  ( e ,  g, , n u c l e a r  e l e c t r i c  s y s t e m ,  s o l a r  electric 

s y s t e m ) .  T w o  poss ib le  a p p r o a c h e s  t o  a fusion p ropu l s ion  s y s t e m  a r c  shown 

i n F i g  31, (156) In the f i r s t  approach  the k inet ic  e n e r g y  d the cha rged  p a r t i c l e s  

from the p l a s m a  is used i nd i rec t ly ,  by conver t ing  i t  to e l e c t r i c  power fo r  use in  

i o n  engines  to produce  t h r u s t ,  In the second  approach  the e n e r g e t i c  p lasma  is  

u s e d  d i rec t ly ,  by being expel led  f r o m  the r e a c t o r  toge the r  with a suitable amount  

of propel lant  added to  bring the  exhaust  ve loci ty  down to  the  opt imum value.  

V a r i o u s  s c h e m e s  fo r  conver t ing  t h e  e n e r g y  of the  p l a s m a  p a r t i c l e s  in to  electricity 

a r e  poss ib le .  D i r e c t  convers ion  is p r e f e r r e d  because  i t  r e q u i r e s  no turbine  and 

e l e c t r i c  g e n e r a t o r ,  which a r e  v e r y  heavy and involve fa i lu re -p rone  n-roving p a r t s .  
(2 371 

D i r e c t  convers ion  s c h e m e s ,  such  as le t t ing  the  cha rged  p a r t i c l e s  f r o m  fus ion 

r e a c t i o n s  cxpand aga ins t  a magnetic f i r l d ,  have been proposed f o r   round-based 
fus ion  power. 
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Fig. 3 1. Steady -state fusion propulsion s y s  terns (156)  
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a .  Magnetic  M i r r o r  Engine 

One of thc e a r l i e r  and s i m p l e r  concepts  f o r  s t e a d y - s t a t e  propuls ion  s y v t ~ r n s  

w a s  the m a g n e t i c  mirror engine ,  shown schen la t i ca l ly  i n  F ig .  32. (2361 T h e  upper  

drawing shows  a configurat ion involving the appl ica t ion  of an  a s y m t s l c ~ r i c a l  mag- 

net ic  field at the open ends of the r e a c t o r  c h a m b e r .  Thc f ield s t r e n g t h  dt one 

end i s  m a d e  to "re much s t r o n g e r  tallan at the other end. The charged  p a r t i c l e s  

f low p re fe ren t i a l ly  out through the weak m i r r o r ,  a t  which point  the  propel lant  is 

in t roduced and mixed with the escap ing  p l a s m a  to obtain the optimuln exhaus t  

velocity. The p l a s m a  escaping through the s t r o n g e r  m i r r o r  could be used to 

g e n e r a t e  e l e c t r i c i t y  by d i r e c t  convers ion  fo r  onboard  use .  The second config-lra-  

t ion  involves  the  appl ica t ion  of a symrne t r i c a l  magne t i c  f ield a t  both ends of the 

r e a c t o r  c h a m b e r ,  which a r e  bent  90". The p l a s m a  leaking out the  two ends  is 

guided by a magne t i c  f ield (magnet ic  nozzle)  i n t o  un id i rec t iona l  flow a n d  expanded,  

a t  which point  propel lant  mixing t a k e s   lace. (236) 

Magnet ic  m i r r o r  eng ines  are not se l f -sus ta in ing;  the  s t eady-s ta t e  in jec t ion  

of a n  e n e r g e t i c  neu t ra l  b e a m  m a y  be requ i red .  Th i s ,  i n  t u r n ,  would r e q u i r e  a  

v e r y  heavy e n e r g y  s t o r a g e  s u b s y s  tern and would r e s u l t  i n  a s p e c i f i c  weight tha t ,  

for space  appl ica t ions ,  would be u n a c c e ~ k b l y  high. To reduce end- losses  

t o  an  acceptable  level ,  a m i n i m u m  length  of the ox d e r  of 1 km f o r  the r e a c t o r  

m a y  be r e q u i r e d ,  which i n  t u r n  would r e q u i r e  a shut t le  c r a f t  of e x t r e m e l y  l a r g e  

capaci ty  to s e r v i c e  it .  

b. Toro ida l  E usion R e a c t o r  Engine 

I n  the  to ro ida l  fusion r e a c t o r  engine ,  t h e r e  would be no need for t he  steady- 

statc in jec t ion  of fusion fuel ,  a p r o c p s s  which migh t  take  u p  a g r e a t  port ion of 

the power output  of the fusion power plant.  The  d i r e c t  fusion r o c k e t  concept  is 

shown schemat ica l ly  i n  F ig .  33. ( lS6 )  The p l a s m a ,  which i s  confincd in  thc  t o ro ida l  

magne t i c  f ie ld ,  is g radua l ly  l o s t  by diffusing toward  thc  wal ls .  A d i v c r t e r ,  s i m i -  

lar t o  the one sugges ted  f o r  the ground-based t a r o i d a l  r e a c t o r ,  is a s p e c i a l  s e c t i o n  

of the t o r u s  which can pre7,-ent the p a r t i c l e s  f r o m  diffusing to  the t o r u s  wall.  I t  

co l l ec t s  the particles  out of t h e  r e a c t i o n  chamber and  gutdcs them in to  the mag-  

s.3tic nozz le ,  where  the is  in t roduced.  (In a n  i t id i r ec t  fusion propul-  

s i o n  s y s t e m ,  the k inet ic  energy of the cha rged  p a r t i c l e s  f r o m  the fusion r c a c t i o r  4 

JPL Technical Memorandum 3 3-722 169 



STRONG WEAK 
MIRROR 

FUSION REGION :, j ,-' : !, MIXING AND ACCELERATION 
> . * . ' ,  . . I  ' a , - 4 *- ,, . P ;. 9 ,- ' m .  * 

>.*m'et -r , 3' 

MAGNETiC NOZZLE 
PROPELLANT 

{a) ASYMMETRICAL 

FUSION REGION 

PaOPEl LANT \ PROPELLANT 

(b) SYMMETRICAL 

Fig, 32. Magnetic mi r ro r  fus icn propulsion engines ( 2 7 6 )  
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ROCKET EXHAUST 

Fig.  3 3 .  h direct  fusion rocket based on a toro idal  fusion reactor  (1 55) 
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is converted to electr ical  power by the van de Grbff generator.  Ion engines 

are needed to produce thrust. The toroidal fusion reac tor  engine i s  considered 

to  be the more promising ciincept. ) 

At present,  the toroidal fusion reac tor  utilizes a heavy i ron  core t r ans -  

f o r m e r  through which a cur rent  is induced in  the plasma to prcvide the f i r s t  stage 

p la sma  (ohmic) heating. Since the specific weight should be as  sma l l  a s  possible 

fo r  space propulsion, this p lasma heating technology may not be appropriate,  

Also,  6 has been limited to a few percent, to ensure  stable operation, Much 

higher fl  values are  necessary in  order  to reduce cyclotron radiation losses  to 

a minimum, which in turn would reduce the weight of the radiator t o  a minimum. 

M o r e  advanced plasma heating and stabilization techniques a r e  to be developed 

for the purpose. 

Another  m a j o r  weight penalty of a steady-state fusion propulsion system is 

the heavy cryoplant required for cooling the superconductivity magnet. (162) The 

allowable s t ruc ture  temperature of the magnetic nozzle limits- the performance 

to some extent. 

2, Pulsed Prapulsion System 

The advantage of the pulsed thermonuclear fusion propulsion concept is 

&at  i t  offers great ly  improved performance in  thrust  and specific impulse .  D-T  

fuel i s  allowable for pulsed propulsion sys tems.  The fusion reactions take place 

i n  an  explcvive mode, The resulting part ic les ,  moving a t  extremely high veloci- 

t i e s ,  are available to produce high thrust. The smallness  of the interaction time 

per pulse - of the order of 100 psec or  l e s s  - provides a means of circumventing 

the overheating ba r r i e r  inherent in  steady-state systems.  (' 2 ,  The total ope r a - 
ting time of the " p ~ s p e l l a n t ~ ~  - i, e , ,  fusion plasma plus added propellant - i n t c r -  

act ion for even a high rnission velocity {night be under 1 second. ( 2 3 8 )  Pulsed 

£usion systems can be grouped into two categories - external  and internal,  a s  

shc.wn in Fig. 34.  
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Fig. 34.  Pulsed  fusion propulsion concepts (232) 
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propellant plus a smal l  charge  of fusion fuel, i s  ignited outside the  vehicle by 

a l a se r  beam, ( 2 3 9 )  a re la t ivis t ic  e lec t ron  beam, (240) o r  a nuclear fission bomh. (2401 

A " f i ~ s i o n l e s s ' ~  tr iggering device i s  preferable  because i t s  energy  output can 

be made much smaller; the minimum energy output of a thermonuclear b o m b  

detonated by a fiseion t r i gge r  i s  always above t h e  kiloton TNT equivalent energy  

range. 7 (240)  It i s  es t imated that  10 joule3 of input energy is sufficient fo r  t r ig -  

gering a fusion react ion i n  a fuel peliet  a fraction of a cubic cent imeter  in  vol- 

ume.  If the fue l  pellet  is optimally compressed and ignited, the amount, of 

tr iggering energy required would be lower, as is  discussed under t he  ground 

power application. (228) When the f u s ~ o n  reaction occurs ,  the cloud of propellant 

pl-~s fusion products immediately  impacts a portion of the vehicle, producing 
5 

acceleratic~~ls of the o rde r  of 10 g. It i s  desirable  that maximum momentum be 

impar ted  to the vehicle with a s  llttle increase  in  internal  energy as possible,  

The portion of the vehicle that receives the impact  energy m a y  be a pusher plate 

which is connected to a shock absorber, a rotating cable pusher (in which t h e  

cables ac t  a s  a paraso l  spinning about i t s  shaf t  and closing under  the impact  of 
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a n  impulsive gust), '241) or a concave magnetic m i r r o r  (in which the plasrna- 

induced electromagnetic force  s e r v e s  to  propel  the spacecraf t ,  which i s  rigidly 

connected to the m i r r o r ) .  (240' The shock i s  thus reduced to a manageable 

acceleration that the inst rumif i ts  in the payload and the s t ruc tu re  of the vehicle 

can withstand. If the flow of par t ic les  of the cloud is collimated, the maximum 

impulsive efficiency is apparently 5070. '232) However, the flow within t h e  euplo- 

s ive  cloud is generally isotropic.  As a resul t ,  the impulse imparted to the 

vehicle depends on the shape and size of the plate (or its var ia t ions) ,  and 

the maximum impulsive efficiency i s  hence much lower than i t  would be for 

collimated floiv, since the projected a r e a  of the pusher plate s u b t e n d s  only a 

s m a l l  solid angle. It  would be desirable  for the flow of the explosive cloud to 

be collimated; however, technology i n  this a r e a  has  not been  explored. 

b. Internal  Sys tems  

In an in te rna l  sys tem,  a pulse unit i s  exploded within a p r e s s u r e  vessel  

which is attached to the vehicle through a relatively s m a l l  shock absorber .  The 

wall  of the p r e s s u r e  ves se l  is cooled by a flow of propellant. The gas mixture, 

which is at  high tempera ture  and p r e s s u r e ,  expands through the  nozzle, Because 
F 

t h e  p re s su re  v e s s e l  and the nozzle a r e  designed to  d i r ec t  the ttprope12ant" in a -- * - 
we21-collin-1atec! s t r eam,  the in te rna l  sys tem h a s  a higher impulse efficiency (232) 

than the external  system.  The specific impulse i s  l imited,  however, to  about 

2500 s e c  because of l imits  to the temperature ,  p r e s s u r e ,  and neutron or  gsrnrna 

radiation that can be tolerated i n  the  chamber.  T h e  v2 +ious schemes  of fusion 

propulsion a r e  summarized i n  Table 17. 

In e i ther  the external  o r  the in te rna l  sys tem,  t h e  s ize  of t h e  pulse unit 

determines  the s i ze  of shock absorber  rcquired.  If a sma l l e r  pulse unit can  be 

used, the shock absorber ,  and hence thc Eotal vehicle rrlass, can be smal le r .  (2 3 2 1 

Thus a propulsion system with h igh  th rus t  a n d  low specific m a s s  i s  p o s s i b l ~  

through use of the pulsed fusion devlce. Fu r thc r  studies a r e  needed  t o  solve the 

ablation problem of the pusher plate or i t s  variations,  and to dcvclop a prac t ica l  

t r igger ing device. 
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Table 17. Summary of mos t  significant charac te r i s t ics  (projected) 
of thermonuclear  fusion propulsion schemes  

G. RESEAR GR AREAS OF SPACE FUSIOrJ PROPULSION APPLICATION 

Pultled High-Thrust  Systems 

I = ~ 1 0 , 0 0 0  s e c  

Many problems remain to be solved before fusicn power can be realized.  

In  the propulsion a?plication, the basic  physics and engineering ~ r o b l e r n s  a r e  

s i m i l a r  to those for the ground based application, wflich have bean discussed , 

previously. To conclude t h i s  study, the problems peculiar to the  s p a c e  propul -  

sion application, some of which have been mentioned, are summar ized  below: 

Steady-State Low- Thrus t Sys t e ~ n s  

n! < 1 kg/kW 
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Externa l  System 

Trigger ing devics 

Laser beam 

Relat ivis t ic  e lectron baam 

Atoinic bomb 

hlomentum conditioner 

+ Pneumatic  o r  other  mech- 
anical shock abso rbe r  plus 
pusher plate 

Rotating cable 

Magnetic m i r r o r  

In te rna l  Sys tern 

g Pressure vessel 

Relatively smal l  shock 
absorber  

High efficiency energy 
utilization 

+ Lower I 
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1) In the  appl ica t ion  of fusion e n e r g y  t o  s p a c e  propuls ion ,  the rnost 

i m p o r t a n t  factor t o  be cons ide red  is  m i n i m i z a t i o n  of tllp m a s s e s  of 

the s u b s y s t e m s .  The waste  h e a t  r a d i a t o r  and c ryogen ic  plant  arc  

usua l ly  v e r y  m a s s i v e .  I t  m a y  be worthwhile to  concluct a detai led 

and extensive s tudy  on c f f i c i c n t  hea t  r e m o v a l  me thods  in a near-zero 

g r a v i t y  env i ronment ,  to f ind t h e  l ightes t  heat r e m o v a l  sys tem.  11eat; 

r e m o v a l  s u b s y s t e m s  using hcl ium,  p o t a s s i u m ,  and l i th ium h a v e  b r ~  * 

s tud ied  for  ground-based fus ion pour r r  s y s t e m s ;  however ,  for  t h c ~  

s y s t e m s ,  the weight  of the s u b s y s t e m  i s  not v e r y  impor tan t .  T ~ P  

nuc lea te  boiling m e c h a n i s m ,  i n  which n u m r r o u s  tiny bubbles fo rm 

and leave  the heat % r a n s f e r  s u r f a c e ,  grca  t ly i n c r e a s e s  t h e  hra t  trans - 
f c r  r a t e .  I n  z e r o  gravi ty ,  however ,  t h e  buoyancy force no  longer- 

~ x i s t s  to remove the g a s  bubbles ,  '236) althougl* 'n a s t r o n g  magnet ic  

f ield env i ronment ,  o ther  k i n d s  of m e c h a n i s m s  such as p o n d e r o  - 

117otive, e l c c t r o s t r i c t i v e ,  and magne tos t r i c t ive  forces '242) may r r t a r d  

or help the m o v e m e n t  of the bubbles;  these  m e c h a n i s m s  need f u r t h c r  

s tudy,  Meat pipe r a d i a t o r s ,  magnr t i c  c a l o r i c  pumps, '! ( 243 ,244 )  

conventional  h e a t  r e m o v a l  methods  wi th  d i f f e r e n t  coo lan t s ,  or  a t h ~ r  

h e a t  r e m o v a l  m e t h o d s  may have signif icantly d i f ferent  c h a r a c t e r  - 
i s t i c s ,  with consequen t  i m p o r t a n t  system parameter  changes. 

2 )  Examination of the cxceptionally low spec i f i c  weight  (: 1 kg/kM') ( 2 3 3 )  

pro jec ted  fo r  a l o w - t h r u s t  fusion r o c k e t  may reveal s o m e  arcas  of 

difficulty to be o v e r c o m e :  

a) Thc zspect r a t i o  (major d i a n ~ e t e r / n ~ i n o r  diameter of the torus) 

i s  assumed t o  be 2, which i s  much s m a l l e r  than tho a v e r a g e  

value of 3 to 5 used fo r  thc ground powrJr rrpplication. A smal- 

l e r  a s p e c t  r a t i o  rneans a h igher  hea t  flux. At  t h e  sarrie t ime ,  

l e s s  s p a c e  is available f o r  cooling. 'Thus, i n  s p a c c  p r o p u l s i o n ,  

thc heat t r a n s f e r  p rob len i  i s  e v e n  m o r e  challenging. 

aThe basic ~ r i n c i p l e  involved is  that  t h e  a t t r a c t i v e  force between a magnetofluid 
and the r e g i o n s  of h igh  m a g n e t i c  f ie ld wi l l  dccrc-asc  with i n c r e a s i n g  ter r lpera ture  
and a p r e s s u r e  hcad wilt  r e s u l t  when the  fluid i s  heattad to high t e m p e r a t u r e  
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b)  The s p e c i f i c  weight of the r a d i a t o r  is a s s u m e d  t o  be 0. 015 

lcg/kW at 2000°K; for a nuc lea r  e l e c t r i c  propuls ion  s y s t e m ,  

the co r respond ing  values arc " 1 kg/kMr at 100O0K, Of c o u r s e ,  

for a h igher  r a d i a t o r  temperature, the weight  can  be g r e a t l y  

r educed ;  however ,  t h e  vacuum wal l  m u s t  operate at  an  even 

h igher  t e m p e r a t u r e  than t he  " 1000°K uaed fo r  the  ground 

power applicat ion,  At such a high t e ~ n p e r a t u r e ,  few m h t c r i a l s  

can s a t i s f y  s o m e  of the  basic r e q u i r e m e n t s  of a vacuum wal l ,  

such  a s  s t r e n g t h  and rad ia t ion  re f l ec t iv i ty ,  

c )  T h e  specific weight  of the  shaclow shield::' for a nuc lea r  e l e c t r i c  

propuls ion  s y s t e m  ranges f r o m  a  few kg/kW to ahout 10 kg-/kTlr, 

whcrcas for a fusion rocket ,  i t  is dssumed t o  be only n s m a l l  

Craction of 1 kg /kW. 

d) T h e s p e c i f i c w e i g h t o f ~ c h e l i u n ~ c r y ~ p l a n t ~ : ' i s a s s u m e d t o h c  

0.005 kg/kW, which  is s a i d  to be a f a c t o r  of five below that  of 

existing s y s t e m s .  Also ,  the c ryop lan t  is a s s u m e d  to  operate 

with a c u r r e n t  dens i ty  i n  the magne t  windings a s  high a s  10 CJ 

2 
amp/rn , in order t h a t  the  m a g n e t  h e a t  absorp t ion  is a t  a 

minimum.  Th i s  c u r r e n t  dens i ty  is abou t  a f ac to r  of 10 h i g h e r  

than what is p r a c t i c a l  i n  today ' s  superconduct iv i ty  nlagne ts. 

e )  The spccific weights  of sonic m a j o r  s u b s y s t e ~ m s ,  the concepts 

for  which are s t i l l  i n  a nebulous s t a g e ,  suc1.1 a s  e n e r g y  s t o r a g e ,  

t r i g g e r i n g  m c c h a n i s m ,  p l a s m a  heat ing ,  fucl de l iverv ,  ctc. 

arc a s s u m e d  t o  be negligible.  

3 
3 )  E v e n  if D-I le  fucl is used for fusion, side r eac t ions  can producc  

signif icant  neut ron flux. 
(166,233,245)  In a n  applicat ion to  unmanned 

spacec ra f t ,  t h e s e  neu t rons  need not be sh ie lded  con3pletely. T h e y  

can be r e f l ec ted  from the magne t i c  coi l s  and channeled t o  spactl. 

The neutron energy deposi ted  i n  the co i l s  can  be decreased bv making 

the m a t e r i a l s  th inner  and by choosing m a t e r i a l s  with  s m a l l e r  cross 

spctions.  Owing to a lack of neutron and garnilla ray  spcc t ra  fo r  a 

*A contradictory e s t i m a t e  of the specific wci h t  of the sh ie ld ing and rr ir igera-  
t ion p lant  of 3. 5 kg/kW has becn reported. { t i -4 )  
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fu s ion  system,  r i g o r o u s  shielding analysis has bc~en i n l p o s s i l l e  in  

the  past. A much  improved  s tudy on sll iclding p r o b l e n ~ s  is ut>c*dl*tf. 

4 )  Although s o m e  s t u d i e s  of the abla t ion  of p u s h e r  plates have been 

made, the p:oble:~~s a r e  not  y e t  solved.  Thr  des ign of the pusher  

p la te  and the shock condi t ioner  dctern-lines the u s e f u l  life and effi-  

ciency of the system. E x p o s u r e  distance between the p u l s ~  uni t  and 

the pusher plate, fat igue of the s t r u c t u r e s ,  and the abla t ion  ra te  of 

the p u s h e r  p la te  are  all in lpor tant  f ac to r s .  

5) The effec ts  on the plasma equ i l ib r ium due to thc d i v e r t e r  or m a g -  

netic nozzle need t o  be dcrnonst ra ted .  The d i v e r t e r ,  the j e t  mixing 

chal-l~bcr,  and the  ~ n a g n e t i c  nozzle technologies  need t o  b~ dcvclopcd.  

6 )  Eff ic ient  methods  f o r  r emoving  high e n e r g y  p a r t i c l e s  f r o m  the 

reactor and guiding them in to  a unidi rec t ional  beam should bc 

developed. 

7) V e r y  light,  highly re l i ab le ,  r epea tab le ,  and e f f i c i en t  s tar tup o r  

t r iggelb ing systems awai t  breal t through technology, 

8) h j o r e  detai led s y s t e n ~ s  s tud ies  a r e  needed to guidr the d i r e c t i o n  of 

development alllong the \*ar ious  concep t s .  Sonle concepts,  s u c h  as 

high beta theta pinch systetns and i nc r t i a l ly - induced  magne t i ca l ly -  

confined hybrid concep t s ,  have  not hrcn explorrd for  s p a c e  propul-  

s i o n  applicat ion.  

9) A nlare c a r e f u l  e s t i m a t e  of e n e r g y  balancr  oi the II- l lc3  fur lcd  

r e a c t o r  v o u l d  be valuable.  
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APPENDIX 

MATTER-ANTLMATTER ANNlITLATlON AS AN 
J. 

ENERGY SOURCE IN PROPULSION*" 

D. F, Dipprey 

In this appendix a f i r s t -order  analysis i s  presented to establish the amount 

of ant imatter  which must be stored on board a rocket  vehicle using matter- 

ant imatter  annihilation as an energy source.  The following simplifying assurnp- 

tions are made: 

1) The mass of 7 :!timatter used as the energy source is negligible as 

compared w i C ~  ?he mass of propellant. 

2) The mass of the rocket system used to contain the propellant and 

the ar.ff:ii~;~ zter and to convert  the annihilation energy into kinetic 

enrrgy oi the propellant i s  neglected as compared with the payload 

mass. CcnverseLy, this  system mass could be defined as part of 

payload mass. 

3 )  The energy conversion to propellant kinetic energy is 100% 

efficient. 

4) The rocket velocity and the propellant exhaust velocity a r e  both so 

much l e s s  than the speed of light that relativistic effects can be 

neglected. 

5 )  The rocket operates  in free space, far from accelerating fields. 

Nomenclature 

Ma 
= mass  of antimatter and matter converted to energy 

m = mass of propellant expelled 
P 

AV = rocket velocity increase  

V = exhaust velocity of propelLant with r e spec t  to the rocket 
e 

= payload mass. If assumption 2) is not used this a l so  includes 

the rocket  system mass 

c = the speed of 1i~l.t 

Subscript  m r e f e r s  to  the value that corresponds to minimum ma 
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The Problcm 

1 ) Given m and AV, find the minimum amount of annihi la t ion  mass FL 
(energy) that m u s t  be stored on board the rocket. 

2 )  C o m p a r e  this resul t  with that obtained when propellant m a s s  is 

ze ro  and the photons produced during mat ter  -antimatter annihilation 

are released as the propellant (photon rocket). 

3 )  A s  an example of the mass of antimatter needed for an energetic 

miss ion  within the solar system, find a value for m when AV is 
a 

about twice khe speed of .the ear th  around the sun (i. e . ,  AV = 
4 4 7 X 10 m/s)  and mpL = 10 Icg. 

Under the assumptions, rocket momentum conservation gives fo r  V e 
constant i n  time: 

With, assumptions 3) and 4), the energy conservation equation is 

Eliminating m between Eqs. ( I )  and (2) yields 
P 

Let Y - AV/V. 

Zc ma and p = -2 - 
( A )  m~~ 
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Then Eq. (3) can be written 

The first pa r t  of the problem i s  the11 to find if a minimum exists in this function. 

An extremum exists if 

By iteration of the transcendental equation, the solution point for the extremum 

i s  found to be 

Consideration of the second deriva.tive of the function in Eq, (A-4) indicates 

that the extremum at this point is indeed a minimum. Thus m is a minimum a 
when 

Fgr this condition 
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The above relation gives the minimum mass, ma, required for a given set  of 

values of mpL and AV and therefore constitutes the answer to the first  part of 

the problem. The propellant mass corresponding to minimum m can be a 
estimated by substituting the value Y (m) = 1. 6 into Eq. (1) 

m 
p(m) = exp {I. 6 )  - 1 

m~~ 

T o  deal with the second part of the problem we must negate assumption l), 

since the "propellant" mass as distinct f ron l  the antimatter mass goes to zero, 

and also assumption 4), since the exhaust velocity becomes the speed of light. 

The mass consumed, ma, wil l  be negligible with respect to the mpL, and the 

m o m e n t u m  equation can be written 

where p is the momentum of the departing photons. The average monlentum 

associated with the photons produced during the matter-antimatter annihilation 

of a total mass m is 
a 
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Comparing Eqs. ( 6 )  and ( lo ) ,  we obtain 

(A- 11) 

which i s  the answer to the second par t  of the problem. F o r  rockets  designed to 

t r ave l  within the solar system, c >> AV. One can then see f rom Eq. (A-10) 

tha t  a very la: ge penalty is incurred  if photons a r e  used f o r  the propellant 

instead of an optimum separz te  propellant m a s s .  

4 4 For AV = 7 x 10 m / s  and mpL = 10 kg, Eq. (A-6) gives 

(A- 12) 

which i s  the answer to the th i rd  part  of the problem. 

W e  have assumed that m is the total  m a s s  of the interacting ma t t e r  and a 
antimatter;  therefore, the m a s s  of ant imatter  needed would be half of this 

?mount. However, a s  a l ready discussed i n  the introduction, in a H-E in ter -  

action, about half of the annihiLation products appear a s  neutrinos which cannot 

be utilized. Thus the net effect is that about one-half gram of antiprotons would 

be needed for  the mission in the above example. 

Tvro additional observations can be m a d e  with r ega rd  to t h i s  example. 

First, the specific impulse (exhaust velocity) corresponding t o  rrlinimuln annihi- 

lation mass is ve ry  high. Using Eq. (A-5) we obtain 

r 4400 lbf - s/Lbm 
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2 
This shows that a very high energy density (V, /2)  must be imparted t o  the  

propellant mass. Difficulties in containing the energetic propellant and con- 

verting its energy content to kinetic energy may force consideration of using a 

larger, nonoptimum mass  of propellant and hence a l a rge r  mass crf antimatter.  

The second observation is that i f  one goes to t h e  other extreme of the photon 

rocket allowing t h e  photons produced to act  as propellant, a v e r y  large amount 

of antimatter i s  required: 

From Eq. (A- 11) 

and, using the result of Eq. (12) 
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