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SUMMARY

The paper reports the results of a series of computational experi-

ments aimed at studying the characteristics of time-dependent turbulent

boundary layers with embedded reversed-flow regions. A calculation method,

developed earlier by the authors and their co-workers, was extended to

boundary layers with reversed flows for this purpose.

The calculations were performed for an idealized family of external

velocity distributions, and covered a range of degrees of unsteadiness.

The results confirmed those of previous studies in demonstrating that the

point of flow reversal is non-singular in a time-dependent boundary layer.

However, a singularity was observed to develop downstream of reversal,

under certain conditions, accompanied by the breakdown of the boundary-layer

approximations. A tentative hypothesis is advanced in an attempt to predict

the appearance of the singularity, and is shown to be consistent with the

calculated results.
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I. INTRODUCTION

Theoretical methods for calculating the development of turbulent

boundary layers in incompressible, time-dependent flow have been under

active cultivation for the last several years. The method of Patel and Nash

established the basic framework for two-dimensional flows, and this-method

was improved and extended to infinite-yawed-cylinder flow by Singleton and
2

Nash . The latter method was used as the basis of a series of numerical
3

experiments, by Nash et al to determine the effects of time-dependence on

flow-reversal onset, and a modified form of the method has been used in a
k

study of flow reversal on pitching airfoils by Scruggs et al . Another

application has been to a study of the dynamics of hurricanes by Patel and

Nash5.

The work done up till now has been confined to flows either in

which flow reversal did not occur, or where the point of flow reversal was

moving upstream and the calculations were terminated at the reversal point.

Now, it is well-known that the point of flow reversal in an unsteady flow

is not a singular point. Hence, at least for flows in which reversal is
*

moving upstream , it is natural to try to calculate the development of the

boundary layer through the point of reversal, secure in the knowledge that

boundary-layer theory has an application to the flow in some region beyond that

point. In order to do so it is necessary to adopt a calculation method in

which the integration proceeds in the time-direction, so that the convection

of information in the upstream'direction (upstream, that is, relative to the

flow at infinity) can be handled in a proper manner. Attempts to calculate

reversed flows by means of forward-marching schemes(advancing in the space-

direction) either fail completely because of an essential instability problem,

or are forced into stability artificially by violating the momentum equation.

We have said that for a certain class of flows, the boundary-layer

equations remain valid in some region downstream of the point of flow-reversal;

but this does not mean that they apply throughout the whole of the flow.

In flows where the reversal point is moving downstream the boundary-layer
equations may break down ahead of reversal; such flows are not discussed
herein.



Extensive .work in the laminar case *'» '" has shown that a singularity exists

in the solution, forming a barrier beyond which the calculations cannot be

continued.

The major objectives of the present work were to search for the

appearance of a singularity in a family of time-dependent turbulent boundary

layers, and, if one could be found, to try to determine the circumstances

necessary for its appearance. To a large extent this objective has been

achieved. Another objective was to gain further general understanding of

the development of unsteady turbulent boundary layer, and this, too, has been

realized to a considerable extent.



II. NATURE OF THE FLOWS CONSIDERED

The present studies relate to incompressible time -dependent flow

over a two-dimensional surface which is flat or of large radius. Orthogonal

coordinates are erected on the surface, with y measured normal to it, and

x measured along the surface from some origin where the boundary layer is

.already turbulent and of known properties. The region of the surface, of

interest, extends from x = 0 to x = c, where c is some positive

reference length.

The velocity at the outer edge of the boundary layer is assumed to

vary in some prescribed manner with both x and time t. Specifically,

it is assumed that

U = U , f or t ̂  0 and all x (l)e o'

Ue = Uo •"• " U)tx/c ' for t > 0 , 0 ̂  x ̂  XQ , (2)

- cut (x - x/c, for t > 0 , X < x £ x, (3)

where U is some reference velocity and tu is a parameter with dimensions

t" describing the degree of unsteadiness in the motion; quasi-steady condi-

tions correspond to ou -* 0. . In all the flows considered, x and x_ were

chosen such that 0 < x < c-, and x. ̂  c. The velocity distribution

over the upstream part of the plate ("plate" is used as shorthand for the

portion of the surface: 0 ̂  x ̂  c) corresponds to Flow C of Reference 3-

For increasing positive times, an increasing retardation is

applied to the flow on the forward part of the plate (0 =* x ̂  x ) and a

recovering acceleration to the flow on the downstream part of (x ^ x ̂  c).

At some instant of time the wall shear stress, T , at a station close to
Vr

x , falls to zero. This event represents incipient reversal of the flow

in the immediate neighborhood of the surface. For larger values of. t,

an embedded region of reversed flow exists on the plate, with the extent of

this region increasing with time. For a range of values of x and x,

the region of reversed flow remains confined^to the plate either indefinitely,

or for some specified time interval from t = 0. The present calculations



cover a range of conditions which ensure closure of the reversed-flow region

ahead of the station x ="c; this stipulation is made so as to avoid the

situation in which a downstream "boundary condition would need to be imposed.

In the flows considered, the boundary-layer development is completely defined

by the initial conditions, along x = Ov and t = 0, by the specified external

velocity distribution, and by the Reynolds number.

At a time t = t , wheres

t = c/(x a) ,

the velocity, U , at the outer edge of the boundary layer reaches zero at

x = x , indicating stagnation of the external flow; the occurrence of this

event forms a natural upper limit, to the range of t of interest, and all

of the calculations were terminated at this point in time.



III. THE CA.LCUIATION METHOD

1. Governing Equations

The velocity components in the x -, y -, z - directions are

expressed in the form U + u, V + v, W + w, respectively, where U,V,¥

are defined as ensemble average velocities, with w = 0 for a two-dimensional

flow, and u, v, w are the residual fluctuating components about those

ensemble averages. The governing equations are similar to those used in
1 2 3earlier studies ' , namely, the momentum equation:

DU /— x A
(w)=0

the continuity equation:

and the empirically-modified turbulent kinetic-energy equation:

Sf) + f - 0. (7)

In Equations (5, 7) the convective derivative is defined by

, TT
Dt = 5t + U

(8)

In Equation (7) the empirical convective constant, a.. , and the empirical

functions of position through the boundary layer, a and L , are taken to

be the same .as those used in Reference 3; accordingly, the same cautionary

statements apply to -their continued use. Experimental substantiation of the

appropriateness of Equation (7) and of the empirical parameters in it — or



guidance as to how they should be modified or improved — are still urgently

needed and awaited. The quantity § in Equation (?) is the two-dimensional

equivalent of the functions $ , § in Reference 10, and is defined by

(9)

where F is some large number. The inclusion of this term has no effect

on the resultant shear stress, but serves to maintain directionality of the

shear-stress vector according to

uv = a q sgn (— > (10)

2
where q is the resultant mean-square velocity fluctuation. Equation (3D)

expresses an assumption which is implied in all the two-dimensional applica-

tions of Townsend's structural similarity hypothesis (see Ref. ID), on

which the present model is based.

2. Solution of the Equations

The solution of the governing equations follows the approach of

Reference 1, 2, 3- The flow is divided into an inner and an outer layer,

with the matching station between them lying at about y = 0.05 6. In the

outer layer the equations are integrated by an explicit, staggered-mesh

finite-difference scheme,_advancing in the positive x-direction. The

only aspect of the finite-difference scheme, worth mentioning here, concerns

the method of obtaining x-derivatives. In order to avoid violation of the

relevant zones of de pendence, derivatives with respect to x are formed

using two-point backward differences in region of positive U, and two-

point forward differences in region of reversed flow (U < 0). At stations

where the local flow direction is ambiguous: i.e. where the sign of U at

some node point (x,y,t) is different from that at the adjacent points:

(x - Ax, y, t) and (x + Ax, y, t), the x-derivatives are set equal to zero.

This refinement leads to improved smoothness of the solution at points'of

incipient flxw reversal. Little loss of accuracy results because- U , which



is multiplied by the x-derivative in the momentum equation, is inevitably

close to zero at such points. It should be stressed that du/dx is not

set equal to zero throughout the reversed-flow region, as has been done in

certain other analyses of flows with reversal; such a procedure clearly

leads to an invalid solution because typical values of Udu/dx are by no

means numerically small compared to the other terms in the momentum equation.

Further details of the numerical scheme, in the outer layer, can

be found in Reference 2, 10, 11, 12, and the reader is referred thereto.

In the inner layer, near the surface of the plate, the numerical

solution is again matched to an approximate solution based on the Law of the

Wall. The details of this inner solution have been modified, as compared

with the earlier work, in order to handle the transition from positive to

negative values of the wall shear stress. In the present work, the turbulent

kinetic-energy equation, for the inner layer, is written

where the dissipation length, L , has been equated, in the usual way, to

Hy . The function A, where

+ _L A (a

2a,uv Dt uv dy

represents the residual imbalance between production and dissipation of

turbulent kinetic energy which, near the wall, corresponds chiefly to con-

vective transport. In the inner layer A « |dU/dy| , and is replaced by

its value, A., at the matching point with the outer-solution domain. With

A now independent of y , we have, upon formal integration of Equation (ll)

U = - - + A S^ (w)dy. (13)



The integral is evaluated, following Townsend , by prescribing a linear

stress relationship

- uv = T/p + ay ,

where & is independent of y , and typically of the same order as

3p/dx. It is not difficult to perform the integration analytically; however

the resulting forms: one, if uv is of the same sign throughout the inner

layer, and two, if it changes sign, do not lend themselves readily to pro-

gramming for the computer. To avoid these problems, Equation (13) is

integrated by a simple iterative numerical scheme. With U and uv known

at the matching point, an approximate value of T is estimated from which

0! is determined; uv and U can then be found, as functions of y, for

0 < y < y • The value of T is adjusted, by means of a simple predictor-

corrector method, until the associated values of U merge smoothly into

those for the outer domain.

3. Integration Domain

The integration domain extended from x = 0 to x = c, and from

y = 0 to y = s(x) where s = 1.25 6> approximately. The collocation

points in the y-direction, 20 in number, were distributed, as in Reference 11,

to give increased density near the wall. The collocation points in the

x-direction were also distributed nonuniformly, so as to give increased

density in the center portion of the plate. Specifically, the 2k points

were distributed according to

- H Gft • (15)

with n = 2k and 0 ^ j ^ n. •



IK Boundary Conditions

For times t ̂  0, the flow corresponds to steady, constant-

pressure flow in the x-direction. The boundary layer is in constant-pressure

equilibrium, with a thickness, 6 , at x = 0 , of O.OOW* c. The Reynolds
rr

number: U c/v , is taken to lie 10 .

At x = 0 , the velocity and shear-stress profiles are maintained,

for all time, in the same form as at t .= 0 ; i.e., in steady constant-

pressure equilibrium with an external velocity of U and the Reynolds-

number conditions specified above.



IV. COMPUTATIONAL EXPERIMENTS

Two sets of computational experiments were conducted: designated

Series A and Series B. In Series A, the values

x =0.5c (16)

xl =

were used, yielding a symmetrical external velocity distribution, with

U recovering to U at x = c. A range of cou/U from 1 to ID was covered.

Analysis of the results from this first series, described in detail below,

suggested that x and x.. could profitably be increased — to improve

resolution of the most interesting part of the flow without increasing

computation times by adding more x-stations — and that the calculations

should be extended to smaller values of c(i)/U . A second series: Series B,

was then conducted, with x and y., increased in the ratio of 0.7;

1., i.e., with

(17)

x. = 1 .

and values of cou/U down to 0.175 were considered.' o
The external velocity distributions corresponding to Series A

and B are illustrated in Figure 1.

1. Series A

Distributions of wall shear and displacements thickness, from the

calculations in Series A, are shown in Figures 2,3. These results are.for

cou/U = 10 , and the data are plotted versus longitudinal position on the

plate, for discrete time levels up to t = t (with t = 0.2 c/U ). Thes s o
negative values of T in Figure 2 indicate reversed flow near the wall.

w

Incipient reversal occurs (for this value of u>) at about t =0.7ts, and,

as t increases further, the region of reversed flow increases in extent.

10



The transition from positive to negative values of T , and back again, is

seen to be smooth — almost uneventful for the flow — and the variation of

displacement thickness (Figure 3) is continuous in the vicinity of this

transition. The displacement thickness increases to a maximum at some
*

station between the point of flow reversal and the point of reattachment ,

and this maximum extends to infinity as t ~* t because of the vanishing ofs
U . At t = t the flow near the outer edge of the boundary layer becomes

6 S

singular at x = x ; however, velocity profiles close to x (discussed in

connection with the Series B calculations, below) indicate that the flow

over the greater part of the boundary-layer thickness does not break down,

even at this point. In particular, T appears to remain continuous through
Vi

x = x as t -* t , as is noted in Figure 2 and subsequent figures through-o s
out this report. As noted earlier, the external velocity distributions are

symmetrical about x = x ; (the point x is indicated by an arrow in

Figures 2, 3 and subsequent figures). The results of Figures 2, 3 exhibits
•*

substantial symmetry of T and 6 , about x , also. This is a consequence

of the relatively large value of to at which these results were obtained. At

large values of CD , the effects of time-dependence, represented by the time-

derivative term in the momentum equation, are dominant. Under such conditions,

the displacement thickness is well represented by a relation

Ug6* = f (x)

corresponding to the "high-frequency approximation" of Reference 3« It

will be seen that, if U is symmetrical about x , Equation (18) requires
y '

symmetry of 6 also.
y '

The term "reattachment" is strictly inappropriate, for the same reason that
"separation" is inappropriate for describing the phenomenon of flow reversal.
It is used here in the absence of a more suitable term, but it should be
interpreted as the complement of flow reversal, not the complement of
separation.

11



As cu decreases, the effects of spacial diffusion in the boundary

layer, represented by the spacial gradients in the momentum equation, become

more important. One result of this development is the deterioration of the

symmetry of the flow about x . Figures h, 5 show the distributions of
#.

T and o , versus x, for a range of values of cu. Reduction of co is

seen to be associated with an upstream movement of both the reversal point

and the reattachment point, and with a marked change in the shape of both

distributions. In particular, for ccu/U = 1.0, tnere is a substantial

increase in the level of displacement thickness around x = 0.3c, and a

corresponding forward movement of the point of minimum wall shear stress.

Moreover, there is a significant change in the level if this minimum as

cu>/U is decreased from 2.0 to 1.0.' o
The flow on the downstream region of the plate: 0.7 ̂  x/c ̂  1.0,

is relatively uninteresting, and it was decided to eliminate the region from

the integration domain in the calculations of Series B; the decision led to

the changes in the values of x and x_ mentioned above. Furthermore,

the interesting development of the flow, around ctu/U1 = 1, indicated that

Series B should concentrate on the smaller values of cu.

2. Series B

Distributions .of T and 6 , versus x, from the calculations of

Series B, are shown in Figures 6 through 11, for successively lower values of

cu. These results confirm and extend the observations from Series A,,concerning

the growing asymmetry of the reversed-flow region and its surrounding flow.

For ccu/U =0.7 (Figures 6,7), the forward movement of the point of minimum

wall shear stress is noticeable, and there is a marked "bulge" in the dis-

tribution of 6 versus x near x = 0.6c, i.e. substantially forward of

x (note that x = 0.7l4c, now). As ccu/U is reduced to 0.35 (Figures

8,9) these effects are greatly magnified. The point of minimum T , at

t = t is now only a short distance downstream of the reversal point,
s

resulting in a large gradient of T with respect to x. There is also a
VV

large gradient in the corresponding distribution of the displacement thick-

ness (Figure 9) > and 6 now has a second-maximum near x = 0.4c. Downstream

of these regions of large gradient there is some deterioration in the

quality of the numerical solution as evidenced by the waviness of the T -

distributions in Figure 8; however the solution did not break down and

12



results could be obtained throughout the reversed-flow region and downstream

of it.

At the lowest value of to considered (ccu/U = 0.175), steep gradients
•x- ^

in both T and 6 begin to occur, at times of around 0.65 t (Figures 10,
vf S

11). the region of steep gradients, in each distribution, forms and then

moves upstream, towards the point of flow reversal, with increasing time.

Above a time of 0.85 t the gradients become so large that the solution was
S

found to break down aft of the region in question and it was not possible to

obtain results.downstream of about O.̂ c.

The development of regions of locally high gradient is further

illustrated by Figures 12, 13, in which results are presented, for a range

of values of U), for time t = t . It is evident that a profound change in the
S

character of the flow occurs between values of cu)/U of 0.7 and 0.35.

Results for a value of 0.525 appear to be on the borderline.

In order to illustrate this change in flow character in more detail,

Figures 1̂ 4-, 15 show a reconstruction of the physical features of the flow.

Typical velocity profiles are plotted to scale, and the boundary of the

reversed-flow region (the locus U = 0) is drawn. The results correspond to

t = t , and the boundary U = 0 extends to the edge of the boundary layer
S

locally at x = x . However, as remarked earlier, the vanishing of Uo # e
causes no significant perturbation in the solution; 6 becomes infinite at

-* .
x = x and t -* t , but the product U 6 is found to remain continuouso s e
through x = x . Much more interesting than the development of the flow near

x = x , is its development a short distance downstream of the point of

reversal. The velocity profiles at x = O.kQkc, shown in Figures Ik, 15,

indicate the large increase in the reversed-flow velocities, and the large

increase in the thickness of the reversed-flow region, as ccu/U is reduced

from 0.7 to 0.35. The overlapping of the profiles at x = 0.266c and O.hQhc,

as they are drawn in Figure 15, is indicative of the substantial increase on

the velocity gradient; du/dx, compared with the conditions shown in Figure 1̂ .

The change in flow character is further illustrated by the

instantaneous streamline patterns plotted in Figures 16, 17. These have been

reconstructed to the extent possible from the calculated velocity profiles.

For cu)/u =0.7} Figure 16, the recirculatory flow has a fairly regular

appearance, and the slope of the streamlines, just downstream of reversal is

13



not excessive (note the expanded y-scale in the figure). At ccu/U = 0.35,

however (Figure 1?) the recirculatory flow has become grossly distorted, and

also there is bunching of the streamlines, which have acquired a steep slope

immediately downstream, of reversal.

More detailed velocity profiles, for the two cases: cou/U =0.7 and

0.35* are shown in Figures 18, 19. In each case, the transition from forward

to reversed flow is smooth and continuous. However, the flow at the smaller

value of cu is characteristized by large values of the derivative 3u/Bx,

and by rapid expansion of both-the boundary-layer thickness and the thick-

ness of the reversed-flow region already noted.

The rapid increase in boundary-layer thickness, and the steepening of

the gradients, observed for values of c*u/U below 0.35> causes doubts to

be cast on the continuing validity of the boundary-layer approximations. It

emerges that these doubts are well-founded. Figures 20, 21 present data on

the normal pressure gradients implied by the solutions. It has to be stressed

that the normal gradients have not been taken into account in the calculation;

however they can be computed in retrospect, and their largeness would then

indicate a serious inadequacy of the solution. Validity of the boundary-

layer approximations requires that the change in pressure across the boundary

layer be small enough that the assumption of constant dp/dx remain realistic.

Now, the change in pressure across the boundary layer is measured by a typical

value of 5Sp/Sy, the value at y = 6, say. Accordingly, it is appropriate

to compare the magnitudes of P and P , where

PIT y y=6o

for the boundary layer approximations to be valid, P must be small com-
<y

pared to P . Figure 20 indicates that, for ccu/U = 0 . 7 ? P <<: P every*
X Q j X

where (except possibly at the point where P vanishes), and the boundary-
X .

layer approximations evidently remain intact. This is true even though

the normal velocity, V , is not always small compared with U ; even at

y = 6, local values of V/U exceed O.U. At «u/U = 0.35, however,



(Figure 21) the normal pressure gradients, measured by the value of P ,

become large near x = O.h c; in fact P > P at one station. This is

ample evidence that the boundary-layer approximations are no longer valid in

this region of the flow, and it will be observed that this region corresponds,

approximately, to the region in which the gradients of T and 6 are

large.

The observation that, for small values of u> , there occur regions

within the flow in which steep gradients arise, accompanied by bunching and

sharp deflection of the streamlines, and the breakdown of.the boundary-

layer approximations, leads convincingly to the conclusion that singular-

or quasi-singular — behavior has been encountered in the solution. Because

of the coarseness of the integration mesh it is not possible to isolate a

mathematical singularity in either strength or position. However the rough

location of the singularity is readily determinable. To return to Figures

11, 13, for example, there appears to be justification for using the simple
*criterion 6 /c > 0.1 to indicate the approximate point of initiation, and

subsequent movement, of the singularity. No suggestion is being made that

such a criterion has general applicability, but it seems to be appropriate

here.

In the present context we are discussing only the position of the

singularity in the x-t plane. It is less easy to determine the position in

the y-direction, but it does not seem to occur at the point of maximum reversed-

flow velocity, i.e., where dU/dy = 0, as suggested by Sears and Telionis .

Indeed Figure 19 shows that the maximum levels of (- dU/dx), and hence also

the maximum levels of dV/dy, occur much further from the wall. The

difference in behavior between the present, turbulent case, and the laminar

case studied by Sears and Telionis, is evidently associated with the difference

in the relationship between the shear stress and the. velocity gradient,

Figure 22 shows a plot of the locus of the singularity, for the two

calculations where it was observed, compared with the loci of the reversal

and reattachment points. The singularity appears to form within the region

of x bracketed by these two points, and then to move upstream in pursuit,

as it were, of the reversal point.

Also shown in Figure 22, for each value of cu , is an arrow



indicating the direction followed by a particle moving in the maximum

negative velocity: (-U)MAV , say, reached anywhere in the reversed flowMAX
region during the time interval t ̂  t . At any particular time, the maximums
negative velocity (-U) , say, occurs some distance downstream of themax
reversal point, and its value increases almost linearly with time (see Figure

24, below) ; (-U)MflV is the value of (-U) corresponding to t = t .
max s

increases with the reduction of co; as cto/U is reduced from

1.4 to 0.35j it increases by a factor of around 2.3; In contrast, the rate

of forward movement of the point of flow reversal decreases with the reduc-

tion of co ; in fact it varies approximately as to f(x/c), over the range

0.175 ^ cuj/U ^ 1.4, a property which enables a "similarity" plot such as

Figure 23 to be constructed. ' The rate of forward movement of the reversal

point can conveniently be referred to as the penetration velocity, (-U) ,

signifying the penetration of the oncoming boundary layer by the reversed

flow.

To return to Figure 22, it ij[ interesting to note the relationship

between the direction representing (-U)...v and the slope of the reversal
MAA

locus which represents the penetration velocity. At the higher values of

co , where there is no singularity, (-U) is smaller than (-U) . At
MAX p

the low values of co , however, where there is a singularity, (-U)^,/^

exceeds (-U) . This observation suggests that a more careful examination

of the velocities in the reversed- flow region might yield useful insight

into the conditions necessary -for the development of the singularity.

Two possible lines of approach suggest themselves, in this regard:

one involving the transport of mass in the reversed-flow region, and the

other involving the convection of disturbances through the region. Both

depend on the definition and evaluation of a characteristic convection

velocity, (-U) , say, for the reversed-flow region. This convection

velocity will evidently be lower than (-U) , but -will be related to it.max
The argument involving mass transport focusses attention on the rapid

increase of the thickness of the reversed-flow region which occurs in the

neighborhood of the singularity (see Figure 15), and on the corresponding

displacement of the streamlines away from the wall (Figure 1?) . This

combination of events can take place only if there is a net inflow of fluid,

into the portion of the boundary layer in question, by way of convection in

16



the negative x-direction. The section of boundary layer is bounded, on the

upstream side by the reversal point which is traveling at the penetration

velocity, (-U) . Accordingly, the necessary mass inflow requires that the

convection velocity, (-U) , which characterizes the rate of mass transport
c

from downstream, must be greater than (-U) . If it is less than (-U) ,

then mass will'not enter the region, and the build-up of fluid accompanying

the development of this singularity, will not occur.

The argument involving the•convection of disturbances regards the

singularity as having some of the characteristics of a shock wave. According

to this argument the singularity can exist only if disturbances are being

convected towards the singularity. Hence, paying attention to signs, we

must require the convection velocity, as measured by an observer traveling

with the singularity, to be negative. It is evident, from Figure 22, that

after its inception the singularity moves at about the same velocity as the

reversal point, or, in other words, at the penetration velocity, (-U) .

Thus, finally, we require that the convection velocity (-U) , must be greater
C

than the penetration velocity for a singularity to be established, which

results in the same criterion as before.

The tentative hypothesis thus emerges that a singularity will form if,

and only if, (-U) > (-U) . In order to test the validity of this hypothesis

some value has to be attached to the convection velocity (-U) . Here, for
C

simplicity, a value of J (-U) is used. The variation of this velocitymax
with time, for a range of co , is shown in Figure 2k, and the penetration

velocity, (-U) , is plotted for comparison. According to the hypothesis,

the point of intersection of the curves representing (-U) and (-U)

corresponds to the point of inception of the singularity, and an inception

boundary, so defined, is plotted in Figure 25, as a function of co and

time. The region below and to the left of the boundary represents the

domain of non-singular flow, while the region above and to the right of the

boundary represents the domain of singular flow. The boundary crosses the

curve defined by t = t , indicating that a singularity should be expecteds
to appear, sometime during the motion, for values of c*u/U less than about

0.6.

The actual points of inception of the singularity,taken from the

calculations of cu)/U = 0.175 and 0.35, plot as points just inside the

domain of singular flow indicated by Figure 25; these results accordingly
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lend support to the correctness of the hypothesis. The point corresponding

to t = t and ctu/U = 0.7 lies just inside the domain of non-singular flow,s o
and the apparent absence of a singularity in that calculation provides

further support. The point corresponding to t = t and ccu/U = 0.525
S . O

falls in the singular domain, indicating the likelihood of a singularity in

the flow although none was observed in the calculation. This last result

is thus at variance with the hypothesis. However, the calculation for

cuJ/U = 0.525 was judged to be borderline, and the variance cannot be regarded

as a serious one. Indeed it must be remembered that the precise location of

the boundary drawn in Figure 25 -depends on only a rough estimate of the

appropriate value of the convection velocity, (-U) .
c

By and large, it could be claimed that the calculated results support

the hypothesis, crude as it is, and the arguments underlying it. The singular-

ity appears to have some of the characteristics of an explosive accumulation

of fluid, which erupts out into the external stream. It also appears to

have some of the characteristics of a shock wave, in the reversed-flow region,

with the convection velocity playing the role of the supersonic component

(U-a) of the flow approaching the shock. The analog between the two flows

should not, however, be pushed too far; it is most unlikely, for instance,

that the existence of the singularity in the present flow has anything to do

with the hyperbolic nature of the governing equations. After all, its counter-

part in laminar flow occurs in a setting where the equations are purely parabolic.
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V. CONCLUSIONS AND Iffi COMMENDATIONS

The work described herein has demonstrated the feasibility of per-

forming calculations for unsteady turbulent "boundary layers with embedded

reversed-flow regions, and has shed light on some of the basic properties of

such flows.

The results confirm the statements made in earlier work (a) that the

onset of flow reversal in a turbulent boundary layer, is delayed by the

effects of time-dependence, and (b) that the point of flow reversal is not

a singular point in a time-dependent boundary layer.

The present calculations were performed for a family of prescribed

external velocity distributions in which the relative importance of the

effects of time-dependence, compared to those of spacial diffusion, was

controlled by a parameter, uo , The external velocity distributions were

designed to impose a retardation on the boundary layer, starting at t = 0,

and progressing to the point in time, t = t , when stagnation of the externals
flow occurred at one longitudinal station. The distributions were chosen to

produce a closed region of reversed flow: confined within the domain of the

numerical solution, to avoid the necessity of furnishing a downstream

boundary condition.

The results show that, for sufficient large values of u) , the

calculation could be completed, up to t = t , before any breakdown of the
S

boundary-layer approximations occurred, and before any singularity occurred

in the solution. Over this range of conditions, corresponding to strong time-

dependence, the reversed-flow region, and its surrounding flow, exhibited

only minor effects of spacial diffusion. At smaller values of ou , a

singularity — or quasi-singularity — was observed to ,form: at a time later

than that for. incipient reversal and at a longitudinal position between the

reversal point and the end of the reversed-flow region. The inception of

this singularity was characterized by steepening longitudinal gradients,

sharp deflection of the streamlines away from the surface, and the local

breakdown of the boundary-layer equations. The singularity was observed

to form and then to move upstream towards the reversal point, eventually

maintaining a roughly constant distance from it.

The conditions necessary for appearance of a singularity appear to

involve the existence of an appropriate relationship between the dominant
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velocities in the reversed-flow region and the rate of forward movement of

the reversed point. Two simple, heuristic arguments, one focussing on mass

transport and the other focussing on the convection of disturbances, lead

to the formulation of the same tentative hypothesis: that a singularity

will exist in the flow if, and only if, the typical reversed-flow velocities

exceed the rate of penetration of the reversed flow into the oncoming

"boundary layer. The results of the present calculations lend support to the

correctness of this hypothesis.

The present calculations were restricted to a single family of

external velocity distributions, and they should "be extended to a wider range

of distributions in order to generalize the results. One important question,

which arises, is concerned with the effect of different downstream conditions

on the appearance and location of the singularity. The existence of the

reversed flow clearly provides a mechanism by which information can be

transmitted upstream into the neighborhood of the reversal point. On the

other hand, the rate of convection of this information — and the effect it

is likely to have — would appear to involve considerations similar to those

discussed in the context of the formation of the singularity. It is

possible that similar considerations determine both the appearance of a

singularity and the sensitivity to downstream conditions. This possibility

needs to be explored.

Another important extension of the present work should be to external

velocity distributions more typical of real aerodynamic situations. It should

be noted that throughout the range of conditions in which no singularity

exists, the boundary-layer approximations appear to remain valid. Accordingly,

the computed displacement thicknesses can be used to perturb the external

flow via some interactive model in which the boundary-layer and its environ-

ment are appropriately coupled. The applicability of such a model is

restricted — not by the occurrence of flow reversal — but by the occurrence

of a singularity. Useful ranges of conditions would appear to exist in

which the interaction calculations can proceed even though reversed flow

has already been established.
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