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PREFACE
The research describgd in this report forms the basis for
a Ph,D, dissertation, "The Motion of Interconnected Flexible
Bodies," by Arthur Stewart Hopkins., This dissertation serves
as Volume 3 of the Final Report for Contract NAS8-28358, Mod. 6,
aponsored by the NASA George C. Marshall Spaée Flight Center,
and completed under the direction of Peter Likins, Principal

Investigator,
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ABSTRACT

In this report the equations of motion for an arbitrarily inter-
connected collection of substructures ére derived. The substructures are
elastic bodies which may be idealized as finite element assemblies, The
substructures are subject to small deformations relative to a nominal
state. Interconnections between the elastic substructures permit large
relative translations and rotations between substructures, governed by
Pfaffian constraints describing the connections. Iﬁ the special case of
screw connections (permitting rotation about and translation along a
single axis), constraint forces are eliminated and medal coupling is
incorpqrated. |

This work is a generalization and extension of the recent literature
directed at the problem of flexible spacecraft simulation, It is an
extension of Hurtyfs "component mode" approach in that interconnected
elastic substructures are permitted large motions relative to each other
and relative to inertial space. It is more general than the "hybrid
coordinate'" methods advanced by Likins and otheré, in permitting all sub-
structures to be flexible (rather than only the terminal members of a
topological tree of substructures). The presentation here is further
distinguished from the spacecraft literature by its devequment of the

basic relationships of continuum mechanics, on which spacecraft simula-

tion models are based,
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, iNTRODUCTION

Prompted by increasing economic incentives for weight reduction
énd, in application to spacecraft, increasingly stringent pointing
requirements of scientific instruments, there has been a growing inter-
est in the dynamical behavior of flexible structures. Of course, the
basic equations govérning dynamical behavior were developed by-scien—
tists in the seventeenth and eighteenth centuries, principally by
Newton, Euler and Lagrange. However, direct application of these
equations to elastic continuum models is neither economically nor
computationally feasiﬁle. Research in recent years has been directed
toward obtainiﬁg efficient approximate techniques. Essentially two
independent approaches were developed.

The first approach was directed toward increasing computational
efficiency for the detailed models required to accurately portray the
small motion behavior of discretized models of flexible structures,
This method is known as component modal analysis, and is generally '
attributed to Hurty (1965). As originally developed, the method
applies to small motions of nenrotating structures.

The second approach, in recognition of the need to include large
relative motions between portions of the structure, was directed toward
efficient computation of ccllections of point. connected rigid bodies.
Early research -in this area was conducted by Hooker and Margulies (1965),
followed by Roberson and Wittenberg (1966) using what may be classified
as augmented body methods. A somewhat different approach to the same
problem was developéd by Velman.(1967) and Russell (1969), who used

what may be classified as nested body methods. As presented, both of



theée methods apply only to point connécted rigid bodies assembled in
a configuration described as a topological tree,

The failure of the rigid body methods to provide adequate defi-
nition of flexible behavior, and the failure of the component modes
methods to include large relative motions, led Likins (1967, 1968,
1970) to a marrilage of the two approaches. Using what he terms a
hybrid coordinate approach, he has developed a procedure for treating
the extremal bodies of a topological tree of point connected rigid
bodies as flexible. As currently conceived, the method employs the
Hooker-Margulies equations (as subsequently modified by Hooker (1970)
to reflect the constrain£ force elimination techniques developed by
Russell (1969)) for the central rigid bodies of the topological tree,
and techniques similar to Hurty's for adding flexible extremal bodies.

The present study consumates the union of the two approaches. In
this study all of the bodles may be flexible, the configuration is
a%bitrary (topologically) and general differential (Pfaffian) con-
straints are permitted. In addition to the general development, the
special case of screw connections is treated and the resulting simpli-
fications to the governing equations are detailed.

The study is presented in three sections. The first section
presents the theoretical' background and the derivation of the varia-
tional equations governing the behavior of a material continuum in a
rotating frame of reference. The second section applies the finite
element method to obtain the governing ordinary differential equations
for a substructure, These equations describe the small deformational

motions of a structure idealized as a collection of finite elements.



This section also includes a demonstratipn of the adequacy of linear
assumed displacement fields in the inherently quadratic Lagrangian for-
muiation. A procedure for linearizing the equations about arbitrary
frame motionsg is aléo presented, in conjunction with modal analysis
procedures. The third section details procedures for connecting the
substructures to form a structure, with the possibility of large rela-
tive motions between substructures. In addition to the equations for
general Pfaffian constraints, the results are specialized to the case
of screw connections (a rotation about and a translation along an axis).
In this special case (which includes most connections of practical use),
constraint forces are eliminated and the system equations are reduced
by modal coupling. The summarizing fourth section presents the analysis
procedure for aﬁ,arbitrary dynamical system, as a means of abstracting

the salient features of the study.



Section 1
MATERTAL CONTINUA

Newtonian mechanics provides an approximate description of a
portion bf the physical phenomena within man's experience. Specifi-
cally it accuraﬁely describes some of those phenomena for which
relativistic effects are negligible; and whose spatial and temporal
scales are large compared to atomic phenomena and small compared to
cosmological phenomena,

Physical phenomena are generally analyzed‘by means of the following'
procedure. First, a mathematical model is associated with the physical
phenomenon being studied. Next, results are obtained from the model by
purely mathematical methods. Finally, the mathematical déductions are
extrapolated to the physical phenomenon. Experience has shown that
these extrapolations accurately portray the physical phepomenon, if
the model 1s developed with sufficient care. | |

Since the second step in the procedure is mathematical, some
understanding of mathematics is necesgary. Mathematics consistg of
"mathematical objects" called "sets" (e.g. functions, numbers, geometri-
cal objects) and "relations'" between these objects (A,0). (To preserve
the continuity of the presentation, the definitions of mathematical terms
have been placed in Appendix A, When a term with a specific mathematical
meaning is first-uéed, it is set in quotation marks and followed by a
reference to the appropriate section in the aPpendix.) The most funda-
mental mathemati;al concepts cannot be defined and so are introduced, a

priori, as primitive notions., The most fundamental rules governing

FPRECEDING ¥AGE BLAYE WoT Py
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mathematics cannot be deduced, énd so are taken, a priori, as true
"axioms" (A.0).

Analogously, certain physical concepts will be accepted as primi-
tive; and certain rélatianships will be taken as axiomatic. Physical
concepts are, ultimately, high order abstraction of information obtained
through the senses; therefore description of primitives is most conven~
iently carried out in anthropomorphic térms. The purpose of this section
is to identify the relevant physical concepts, and to associate a math-
ematical model with them. Although a reasonably coherent development
is intended, a mathematically rigorous treatment lies outside the
scope of this study,

1.1 Space and Time
The concept of a physical system implicitly involves the notions

of space and time., Both will be taken as undefined primitives, For

the range of phenomena belng considered, space and time may be identi-
fied with the usual iIntuitive concepts. Some of the more relevant
characteristics of space and time will be listed.

Space is infinite, homogeheous and isotropic., 1t is independent

of time and physical phenomena. The concept of a point in space will

alsc be primitive. A distance can be associated with any two points

in space. An arbitrary reference distance (e.g. a meter) may be

selected as a unit. The number of reference distances comprising the

distance will be associated with the distance and the selected unit.
Time is infinite, homogeneous and independent of space and

physical phenomena. The concept of a point in time will be primitive.

Time is anisotropic; for any two points, one is before and the other



after. A dﬁratian can be associated with any two points., An arbitrarﬁ
reference duratioh {(e.z. a sezcond) may be selected as a unit. The
number of reference durations comprising the duration will be associated
‘with the duracivn and the_selected unit,

The determination of absolute pogitiorn in space or time is pre-
cluded by the infinite and homogeneous characteristics, Similarly,
isotropy precludes determination of absolute direction in space.

An anthropomorphic primitive, the observer, will be introduced to allow
the unique identification of points in space and time, The ohserver,
as a spatlally anisotropic collection of inhcmogeneous points iﬁ space
and time of finite e#tent, is able to unlquely identify the points of
space and time by ;elating them to himself,

The mathematlical model associated with any specific, uniquely
identified point in space will be a unique "mathemztical object" (A.0),
generically denotad by "s"; similarly, for any pmint in time, "t", The?
distinction between the physical znd mathamatical is customarily left
implicit and thé.mathematical vbjects, s and t, are also called a point
in space and a point in time. The model of space is the "set" (A.0) of
all spatial points?'which will te dencted "S",={s}, and called physical
space. The model of time is the set of all temporal points, which will

be denoted "T",= {t}, and called temporal space. It 1s convenient to

introduce the "ordered pairs" (A.1) of spatial and temporal points which
will be called events and denoted "e'",= (s,t). The set of all events,
denoted "E",={e}, is the "cartesian product™ (A.l) of spatial and

temporal points (E_% S X T) and will be called event space.



The mathematical models associated with distance and duration will
be "functions" (A.1), "oc": S x 5 + R and "T": T X T =+ R, assigning non-
negative real numbers to pairs of points in physical space or temporal
space. The functions, 0 and T, define "metrics" (A.2) on S and T. The
function, "Ep": EXE-~+R, p>1, defined by

el (15180, (85 p0) = (1008, 1% [1(ye,,0 1F )P, (1)

is a metric for E. Similarly, in the limit as p + m:‘
€,1(;8:18)5(;8,,0)] = max[o(;s,,s), T(;t,,0)] (1.1-2)

is also a metric. All of the Ep-metrics are "strongly equivalent" (A.2).
Physieal space, S, with 0, temporal space, T, with T, and event space,
E, with any of the ep’ are all "metric spaces" (4.2).

If the "open sets" (A.3) of S,T or E are defined as arbitrary
unions of "open balls" (A.2) the collections of all open sets are
"topologies" (A.3), specifically they are "metric topologies" (A.3);
and the sets, along with the topologies, define "topological spaces"
(A.3). The topology on E obtained from any of the sp—metrics is the
same as the "topological product" (A.3) of S and T,

1.2 Coordinates

The mathematical models of space and time will be related to the
real numbers to facilitate manipulation, The observer can establish
this relationship by constructing a coordinate system. He may
specialize an event as the origin, and certain spatial points as
dextfal, orthogonal, coordinate axes. The duration between an event
and the origin, and the distances between the event's geometric
projections on the axes and the origin, along with appropriate sign

conventions, establish the usual coordinate system.,




The mathematiﬁél model of é "eoordinate system” (A.4) is a
function from the topological space ontc a cartesian product of the
3
real numbers (e.g. Su. S+ R, T £

function as the only "chart" (A.4) in an "atlas" (A.4), physical,

p: T +~ R, or .Yz E + Ré). Taking this

temporal and event space become "¢” manifolds" (A.4). The product

L

topology, E, with the chart, B

u"', = (Su,Tu), is called the "produét
manifold" (A.4).

The manifold provides a mathematical model that transcends the
coordinate system._ Since a manifold, by definition, inciudes all
"admissible charts" (A.4), a change in coordinates does not change the
manifold. For physical space, origin translations and axes rotations
do not change the manifold; polar, spherical and the other‘customary
curvilinear coordinates (with minor restrictions) are all just épecial
cases of the admissible coordinates. |

The metrics, 01 S x § >+ Rand 1: T x T + R, have a simple fofm in
3 1.2 3

terms of the usual coordinates, Su:S + R, = (x,x",x"), and

™3 T—+R, = (x4); namely

' 1/2
018,59 = (Ix (9 - X' (1% G- Ko 1% 1P (- P (,91)
(1.2~1)
and
4 4
T((t,t) = | x (1) - x (E)) . 7 (1.2-2)
1.3 Matter

Certain evénta, called material events, are characterized by the

presence of matter, Matter will be taken as an undefined primitive
notion, some of the more important characteristics of which will be

listed.



Matter occurs as aggregates of spatial and temporal points, never
as an isolated point in space or time, Mathematically, material events
occur in "open sets" (A.3).  Only aggregates of finite spatial and
temporal extent will be treated, so the open sets will be "bounded" (4.2)
(and their closures will be compact). An aggregate of matter, over
which the physical characteristics vary smoothly, will be called a

material continuum and will be denoted "M", The characteristics are

called material properties and are determined by the constituent atoms.

Mathematically; the material properties are functions, and varying
smoothly corresponds to being a ne” Map" (A.4).
| Inertia is an important characteristic of matter that will be
taken as primitive. It can be measured by the material property mass
density. An arbitrary reference mass density (e.g. a kilogram/meter3)
may be selected as a unit., The number of reference mass densities
comprising_thelmass density will be associated with the mass density
and the selected unit. Mathematically, the mass density is the c
map "o": M + R assigning a non-negative real number to each point in a
material continuum.

Another important characteristic of matter is that it interacts
with other matter. This interaction ié called force, and may be
associated With the anthropomorphic notion of a push or pull. Force
will be taken as a primitive, even though it is intimately related to
inertia, Forces may generally be categorized as either long range
(remote or field) forces or as short range (contact) forces; depending
on whether the diétance between the interacting matter is very large

or very small in comparison to the dimension of the material continuum.
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Long range forces can be measured by body force densities. An

arbitrary reference body force density (e.g. a Newton/meterS) may be
selected as a unit. The number of reference body force densities com-
prising the bédy force density will be associated with the body force
density, and the selected unit, 1f the material properties are constant
over the material continuum, the long range forces vary slowly over ;he
continuum, Gravity is a primary example of a long range force,
Conversely, short range forces vary extremely rapidly over the
material continuum. If the interaction between matter exterior to and
interior to a material continuum is consiﬁered, the forces are extremely
high in the region of the "boundary" (A.3) and drop to negligible values
at an extremely short distance into the "interior" (A.3). It is custom-~
ary to treat the integral of these for;es, normal to the surface, as a

surface force density defined on the boundary. An arbitrary reference

surface force density (e.g. a Newton/metérz) may be seiected as a unit,
The number of referénce surface force densitles comprising the surfaée
force density will be assoclated with the surface force density and
the selected unit.'.Forces at the points of contact hetﬁeen bodies are
primary examples of sﬁort range forces. ,
Forces aré characterized by direction as well as magnitude, The
mathematical modél for the surface or body force density at a point.in
a material continuum is a "vector" (A.6) which is a member of a "vector
space” (A.6) at the point. The "tangent space”" (A.5) at a point in a
manifold is a natufél vector space to associate with_a ﬁanifold. The

forces at each event of a material continuum collectively form a

"yector fileld" (A;S).
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The final characteristic of matter to be described here is

traceability. Matter persists through time; exactly the same matter

is present at any point in time in a material continuum (i.e., matter
neither appears in nor disappears from a material continuum), For any
specified event in a material coantinuum, and any (possibly different)
given time, there is exactly one event in the material continuum which
cccurs at the éiven time and which may identified as being the identical
matter (i.e., consisting of the same atoms) as the previously specified
event.

The subset of the events in M for which the time "projection" (A.4)
is some reference time "to" will be called the time slice at £, It is
a "submanifold" (A.4) of M (which is an "open submanifold" (A.4) in E).
A "diffeomorphism" (A.4) may be selected from the time slice onto the
subset "S" of physical space. The mapping is usually just the-spatial

projection, but it may be used to establish a reference spatial state

of the material which does not occur in the time period being treated

(e.g., an undeformed state)., The image, S, is an open submanifold of 5,

and will be referred to as material space. The temporal projection of
M is an open submanifold of T, which will be denoted "T," and may be

referred to as the time range of the material continuum. The product

manifold, "ﬁ”, = § x T} will be called matexrial event space. It may be
noted that M and M are different and provide two different means of
identifying matter, The first, ﬁ; by its reference position and the
time (referred to as Lagrangian) and the second, M, by its actual -

position at the given time and the time (referred to as Eulerian),

12



The property_of traceability can now be formulated as the
diffeomorphism, Gﬁ“: M > M, which assipgns to each material point (i.e.,
the reference fosition of the matter), "s" € S, and to each time,

e g T, that is to each material event, "m" € M, the event in the
material continuﬁm, "m" € M, which representg the location at time t
of the matter occupying'E in the reference stéte. The event, m, will
be called the position of the matter. 1t may be noted that this
implicitly limits the material continua tb those subsets of event space
for which theré‘is a 1-1 correspondence between the spatial points in
any time sliceraﬂd the spatiél'points in the réference state.

The manner in which M is constructed implies certaiﬁ relationships
for I. The times ére the same (e.g., if (s,t) = H(E; ?), then t = t),
The diffeomorphism from the time slice to S is Just tﬁe restriction to
t=t of the inverse of I (e.g., (s, E;) -t (s,to)); The ﬁsual
coordinate sysfem, {Ei}, on M is the product of the restrictions of M
and oM to S and T, -In terms of the usual coordinates, the "coordinate
expression" (A.4) for Il is

xio I = Th(xY, %2, B2, 7 . (1.3-1)

1.4 Velocity

For any specific E'E'g, the position function assigns a point in
M to each time, t, € T. These points in M or M form a "differentiable
curve' {(A.5) parameterized by the usual time coordinate. These curves
represent the trajectory of the matter which occupies-g in the refer-
ence state. The "tangent vector" (A.5) to these cugves-at any event

has a physical intefpretation as the velocity at the event. The

collection of all such tangents is modeled as a "vector field" (A.5)
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called the velocity field and demnoted "V'" or "V". Each of the curves

is the "integral curve" (A.5) that passes through I (s, E;) or (s, E;),
respectively,
s " " -1 - =2~

An integral curve in M has the form "y(u)" = u “(x (s),x"(s),

;3(;),u); that is it is the fourth “coordinate curve" (A4.5). Its
— 3 - - -
tangent is "y (m}", = —-Z-(m). The velocity field, V, in M is thus
ax
3

— The tangent to the integral curve in M, [l o v (u}, is
ax

V=

obtained from the "differential™ of II (A.5) as

_ _ i - _
VII@] = T, [y, @1 = %‘;"4—“1 (@ %on(m). (L.4-1)
X X

Recalling the coordinate expression for [, (1.3-1), the velocity field

in M is
5 (x o 1T -1 3 art  — 13
ya2xel) g1 _om  yopti | (1.4-2)
—4 i 4 i
ox ox du \ 9x

It may be noted that since xao = §4 the component ofli—z is 1. (In
9x
the usual notation with xA = t, xl oll = rx, xzo I = ry, X oll = L

~§T = i, _§§-= 3, —§§-= ﬁ, this becomes
ox ax ox
ar. or or
S y 4, _z § 3 Vb
AT i+at I+ E*5 (1423

the spatial part of which 1s the usual definition of velocity.)

The velocity at any point, m, is algebraically a vector in the
vector space "Mm,” the "tangent space" (A.5) to the material continuum.
The "coordinate vector fields,”" (A.5) " EEI} ", form a "basis" (A.6)

X

for the space. Among all the bases, the coordinate vector fields

14



satisfy the additional relationship of the "usual tensor transform"
ety . i @ i o
(A.5). If "{y }'" are also coordinates, then V = a —3 {m) = b —3 {m)
1 3 i ' . ox ay
= bi _EE (m). The velocity at a point is, thus, a "tensor"
3y

of "eype (1,0}", a "contravariant vector" (A.7), belonging to the

implies a

"tensor space" Mh (a.7).
1.5 Reference Fpames

The notion of a reference frame is equivalent to the concept of

the event space of an observer. If there are two observers, they will
be, in general, inm motion relative to one another. The spatial points
that appear fixed to one observer appear to be moving relative to the

other observer (i.e., the observers' event spaces or frames of refer-—

ence are different). If at some point in time the two observers
mutually agree upﬁn the ddentification of points in space and time, and
upon a coordinate system, their temporal spaces and coordinates will
be the same.- ﬁowever, at any time other than the reference, their
physical spaces ﬁay differ (e.g. a point in space that they agreed waé
the same at to‘ the; will, in general, interpret as different points
at’ any other time). If they both select the reference time for the
time slice and the same reference state, material event space will be
the same for both observers.

The mathematical model of this relationship is a diffeomorphism,

A E' > ﬁ, (1.5-1)
which assigns to any event in the second observer's space, the event in
the firsf observer's space that they would mutually agrée is the
identical event'pﬁysically. Let the p' - M coordinate expression for

this relationship (1.5-1) be

15



L t ] 1
xi o= Ai(x 1, X 2, X 3, x 4)

1
for the usual coordinates, {xi} and {x i}, on E and E'.

(1.5-2)

‘$ince the distance and duration functions are assocociated with

space and time, and are not dependent on the observer, they should

appear the same in both observers' physical and temporal spaces. The

metrics are equivalent to "bilinear forms" (A.7) on the manifold. 1In

fact, 0 and T may be obtained as the "distance'" (A.7) between points

with respect to the bilinear forms {in terms of the usual coordinates)

" ax® ® dx®

and

d:v:4 & dx4

{The Greek postscripts indicate a range of 3, o,f = 1,2,3.

postscripts will be used when the range is 4.) These forms

"A-related”" (A.8) to the bilinear forms

u’ v B T -
3(?\ o i ) 3()\ 0‘]—‘ ) dx‘Y®dx'¢

5
af Y ax'd

and

50 o w804 0 un
4

ax' @ ax'®
ox' ox

For the bilinear forms to have the expressions on E',

. lu' |'B
6&8 dx'" & dx

and
dx'a(g}dx'h R
the Ki must satisfy

30% oy 3% op) _
axlB B}SI'Y BY
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(1.5-7)

(1.5~8)
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and

30 oy 304 oy
1'4 '4
9x ax

=1 . (1.5-10)

‘throughout E'. For these relationships to hold at every event in E',
the indicated partial derivatives must be constants, and consequently

the associated ki must be linear in the appropriate coordinates. The

u' ~ U coordinate expression must, therefore, have the form
xl o A= rl(x'é) + C'i (x'4) x'l + C'; (x'a) x'2 + c'% (x'A) x'3;
xz o A =_r2(x'4) + c'i (x'a) x'l { c'g (x'a) x'2 + c'g (x'a) x'3,
x3 o A = r3(x’4) + c'i (x'a) x'l + c'g (x'a) x'2 + c'g (x'&) x'3,
x4 o h = #,4 : | (1.5-11)

and satisfy the constraints

Wy L -
) = &g, - (1.5 12?

C'g (X'a) é'? (x
The arbitrary tfaﬁsiation in time coordinates has béen set to zero, so
the observers share the same time coordinate.

The coefficien;s of this expression have a physical interpretation.
The r terms represent the unprimed components of the displacement from
the unprimed to primed origin. The c'g terms represent the direction
cosines betweeq the x> and the x'B axes.

The transform is apparently determined by the twelve real valued
functions of timé!_r and c'; however, the constraints limit the number
of independent c' ;6 three. There are several alternaﬁive parameteri-

zations of the c¢' part of the transform. The Euler-Rodrigues parameters

are an example of a four parameter set, and the Euler angles are .an

17



example of a three parameter set. All three parameter sets have
singularities {(i.e., transforms that cannot be represented by the set).

The inverse map, A_l : E+E', has a § ~ u' coordinate expression

x'l o A—l = - r'l(xa) + ci(xa) xl + cé(xq) x2 + c;(xa) x3,

X.Z o ﬁ'l = = r'z(x4) + qi(xa} xl + ci(xa) x2 + ci(x4) x3,

x‘3 o Ahl = - r‘3(x4) + ci(xa) xl + cz(x4) x2 + cg(xa) x3
and

% o AL = b, (1.5-13)
subject to the constraints

&ty &ty s, . (1.5-14)

B Y By

Since the composition of A and A_l must be the identity map,

B

¥ (xé) xY]

x> = ru(xa) + c'g (x4) [- r'B(x4) +
= ra(xq) - c'g (xﬁ) r'ﬁ(xh) + c'g (xﬁ) c$ (x&)lxY . (1.5-15)

From this it may be concluded that r, r', ¢, and c¢' satisfy the relations

o (xd) r‘S 4

ity = e’y xh) (1.5-16)

and

B

s () = & . (1.5-17)

c'g (x4) c
Recalling the comstraints (1.5-12 and -14), it may be seen that

cg &Yy = 'S =% (1.5-18)

that 1s, that C is the transpose of C'. Since its transpose is its
inverse, C is an orthogonal matrix.
A contravariant vector field, V' :M' » TM', (e.g. velocity) has a

A~related vector field, V : M + TM, defined by
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| oy )
RN WA IR Rl RO SR R (1.5-19)
. 1

Ix ij

(for the usual coordinates). Recalling the coordinate expression for

‘A (1.5~11), this is

- 4
4 3¢ % (x? |
v (0B ety 4o [2Per® 2T )
c'q . ol s
rvhont 2 : (1.5-20)
ax4

. ' i :
where the v'" are the components of V' with respect to the usual coordi-

' nates. Note that V—"4 = v4 = 1 for veloeity, .

As an alternative procedure, the real valued functions on M,

x'i o Aﬁl

, may be taken as coordinates, {yi}, on M. The expression for

V under a change of coordinates is provided by the usual tensor

s k|
transformation V =V'i:§—I = v EEE- E—E . So
oy oy ox
o B, 4 ac'h ;
v o ctB (Y4) + v 4 |9z gy ) + 4& o
o 3y 3y 3>
- E_z i | (1.5-21)

9x

Thus reference frames may be considered either as special classes of
diffeomorphic mgnifﬁlds, or asg special classes of coordinatizations of
a manifold.

It remains tb be shown that the transform of the briméd observer's
velocity is actﬁaliy the velocity that the unprimed observer would
assign. If @' : M > M' is the mapping from material event space to the
primed material continuum, then I = A o ', since M is the same for both

observers. If the coordinate expression for II' is
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1

o = ﬂ,i -1 =2 =3 =4

(x7, x7, x7, x') , (1.5-22)

then the velocity in M' is

i'l - J — -
V,=8x"ﬁoﬂ oprt 2 LA

ox Bx'i Bu4

(1.5-22b)

. . i -
Substituting I = A o II' in xi ol=1"o 1 yields x oAholl' =1%o H.

Inserting the coordinate expression for A {1.5-11) yields

™ o u [ra(x'h) + c'g(x'4) x'B] oll'" and

= x""oq'". ' {(1.5-23)

3
o
|

The usual velocity in M is

1 i~ |
v ol gl 3 o= oW gt . (1.5-24)
ox ax Ix ox

Substituting (1.5-23) in (1.5-24) yields

—4
o4 Bc'u(x ) rB ' -1 9
V= Br_éx i + E4 (x'B o ") + c'g(;“) §S§~:E;L1L4L oIl 1 —
ox ox ax ax
3 ) _ :
A . (1.5-25)
ox
since x'" o II' = ;4. Noting that = onl x4 and II' o H_l -7t ,
' 4
o, 4 Bc'a(x )
v = [c'g(x4)][v'8 o A71) 4 22 L2 +[ B P o™l —3—a
‘ ax ox ox
8 '
+ =, {1.5-28)
a &
X

as was obtained before (1.5-20 or -21).
There is a class of reference frames which are preferred since the

laws of mechanics, when expressed in these frames, have a simple form.

They are called inertial reference frames. In practice no such frame

20



can be found; instéad a frame which is sufficiently inertial to
provide the degfee af accuracy required by the problem is selected.
Examples of éufficiently Inertial frames of increasing accuracy are:
1 = frame fixed on the surface of the earth; 2) a frame fixed at
the earth’s ceﬂter with an axis pointed at the sun; 3) a frame fixed
at the sun's center with an axis pointed at a nearby.star; 4) a
frame fixed in the "fixed stars.'” In what follows, a reference to an
inertial frame will mean a frame selected by a user as sufficiently
inertial for the problem being solved. Unlesslotherwise noted, the
unpriméd referéqce frame will be taken as inertial.

A physical interpretation of the transformation of velocity between
reference frames may be obtalned by considering just the components in
physical space. Fime is then viewed as a parameter and is not explicitly
in‘the manifold structure. Physical space is a submauifold of event
space, and thextangent space to physical space is a submanifold of the
tangent space to event space. Specifically, if M(t) is the submanifold
of the material céhtinuum at time t (i.e., the time slice at t), and
vV = ai 3 _ , 1 = 1;;..,4 is a tangent to M at m € M(t){ then the

ax%

assoclated tangent to M(t) is V = aa(t) Q?a (£}, o =1,2,3 and will
' %

be called a spatial vector; or the spatial part of V. The spatial

vectors are generally easler to work with and are more familiar,
however a contravariant vector (e.g. velocity) does not transform
properly when treated as spatial, and an artificial means must be

developed for treating them.
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The spatial position relative to the primed origin may be defined

as

N S - 2
P' = ﬁ'a(xl, xz, x3) o II' 1 il x> 3 (1.5-27)
ax' 9x

noting the coordinate expression for II' (1.5-22). Similarly

a1 —2 3 -1 3 o _9 (1.5-28)

is the spatial position relative to the unprimed origin. Adopting the

convention of using the same symbol for spatially related fields,

' 1 _ _ g \ 103
P' = AR = p.ﬂ(xl,XZ’ x3) o't o A 1 §i§-§—ﬂl— o A 1 —3
ox' x -
= p G, X XY oo al orB ot B
. 3P
=x%o0 A_l c'B o #71 2 . (1.5-29)
a B
9x
Recalling the coordinate expression for A (1.5-11) yields
P’ = (xB-,rBoA“l)—a—B=g__ ot 2
9% ax
=P -R, (1.5-30)
where R is defined by
R=1P ol _a_g : (1.5-31)
ax

The spatial field R may be recognized as the position of the primed
origin relative to the unprimed. In summary
P=R+7P'. {1.5-32)
As noted, velocity does not transform properly as a spatial vector

field. To circumvent this, differentiation with respect to a reference

frame will be defined. Differentiation is conceived of as acting on the
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8

Bxa

: 3
vector field as a whole; so 1f U = u? -E—‘, then ——(U) = E~(ua)
aXOl at ot
+ u® %E ( wga): The derivative of a basis 1in its own frame is
ox~
' ]
defined to be zero'(e.g.-g— 6—3—) =0 = §-( 9 ) but g—-( —} # )
- ot 3 o at Bx'u ot Bx'u

With this notation, the definitions of velocity become

- épa(;ii_gz, ;ﬁ) o H"l

3 ' 3
V=-—— (P
ot . ot axu
and
R LI LI Ll -l G50 I L
- at — : | ot Bx.a_
Inserting the At < related basis,
/N e ah 5y 8
L o o oA —3 =5 ’
ax 3x ax' ax'Y
into the spatial part of the velocity (1.5-26), vields
o Bg'a R .
1=-§%—_§E+'YC'EV'S a +C-Y athB a
% o ax'Y o ax'Y
- O ' Y 3 _ PO 'B 3
5 (R) + V' + a4 Bt (c B) p 3 R s

where iﬁ has been noted that

(1.5-33)

(1.5-34)

(1.5=35)

(1.5-36)

1 S v '
e'g ¢y 58 and V A, (VY

The term chE#.c'a = ¢of 9 cB is the component matrix of a "skew—
o dt B o gt o

symmetric' tensor (4.7) since

Y3 J3 (Y BY 3
‘e 3t (ca)'_ ot (cu €a ot ‘o

]
1
0
R
QJ‘Q)
rt
——
e
=<
S
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A skew—symmetric tensor of type (2,0) is naturally isomorphic to one
of type (1,0) (in a three dimensional vector space). If this isomor-
phism 1s denoted by the "Hodge star operator" (A.9), then the asso-

ciated contravariant vector field is

*YE_(S) : Y L I 5-
[ca e o) 7 ®8x'6 w ; Q. (1.5-38)

This vector field may be physically interpreted as, and will be called,

the angular velocity of the primed frame relative to the unprimed

frame., The components, W' , are determined by

S 1 8 yo {a ;
w' = -3 EYu c:B T (CB) . (1.5-39)

where Ei“ is the "Levi-Civita epsilon" (A.9). Conversely, a tensor of
type (1,0) is isomorphic to a skew symmetric tensor of type (2,0),
customarily denoted by a tilde, "~", over the symbol for the vector

field. Thus

] (E') = *(w'd -—.—@E. = o E;'G'B au ® 9
axf ¥

=-8, (1.5-40)

where

a*,oaB - EuB )

The double underline denotes a tenmsor of type (2,0). Combining the

two definitions yields

~of _ oBl_ 1l vy e3 (8
) €Y [ 3 S8 On 5e (cn')] . (1.5-41)

Noting the identity,

af Y _ {2 B _ a BY
€Y €t (6E 66 - 66 66) . (1.5-42)
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(1.5-41) becomes

w4 ] )

) 9 (cz)] - e
Recalling the skew-symmetry, (1.5-37),
~of _ o 3 (B);_ aB Y 5-4é
w can AT cn eY w . (1. )

in accord with the definition (1.5-40),
With this notation, the previously obtained expression for
velocity, (1.5-36}, becomes

m““B x'B-—ji—

= O 1
V= 4T+ —

- %E" ® +7' - 3B Y 1B ‘aa ) (1.5-45)
7 ¥ ax'
The last term may be recognlzed as the "cross product" (A.9) of the

vectors (' and P' at any point in the field. So

V= g—E R+V' +0" xP'. : o (1.5-46)

This may be written. in the more suggestive form
L@@+ @) g I (1.5-47)
at = ger = at — = = : '
On the other hand, (1.5-32) implies
(R) + - (") . (1.5-48)
Thus the correct transform for velocity is obtained by-setting

— (P ) = —— (P ) + Q' x P (1.5-49)

Actually no redéfinition is required since (1.5-49) holds for any

u'® 2 « Then in terms

ax'

vector field. To demonstrate this, let U’

of the A»relatedijSis,
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3 '
ot (&)

Returning to

recalling the

In summa
a
VEar
or
9
TS (P)

is obtained b

3 '
3% (u")

_ 3,0 3 03 g
"o W) gt at( '0‘)

9! ' o g_. By _9_ -
= WY r et (e ) : (1.5-50)

the primed basis yields

_ 9" ' %Y 3 B ]
=9¢ @)+’ egap (c )

Q axl‘y
=80 gy # TYE @ 3
at - BKI‘Y
- %é Uy +8' x U, (1.5-51)

previous definitions.

ry, the proper transformation of velocity,

(R) +¥V'+ 4" xp' (1.5-52)

-l + 2 @'Y +a' x?' (1.'5—53)
st =" = 8t — = =7

y the definition of differentiation,

=sr W)+ ' xU . (1.5-54)

1.6 Newton's Laws

Newton's laws form the basis for much of structural mechanics.

Although originally stated for a particle, the first and second laws

have been generalized to a continuum. TFor any point, m, in a material

continuum, M,

which is in an inertial reference frame, E,
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A -F=0, _ ' (1.6-1)
where F 1s a spatially contravariant body force density representing

the sum of all long and short range forces at the point; p is the mass

density; and A is the acceleration.

The acceleration will be defined as the spatially contravariant

vector
3 o 3% o=l =2 =3 13 '
A= (V) =—5px,x,x) ol — . (1.6-2)
= 3t = 2 : o
oot o9x
The acceleration in the primed reference frame,
13

2
A L Ll PR T B B - .
p o= =2 e R o .6y

ax '™

is related to A by

1

5 (o .
A 'gg[gg(ﬂ)"'.‘i"“ﬁ xz']

32 l'.a'- Y t ' o !‘- -'3'
—_— - 4 LA ) 4 1 2 '
2 ® +357 @) + 2" x '+ 57 @) x B+ x g @)

"

+ Q' .'x:(g_' w E')

2 , |
%-—2—<5>+5'+2_@' v+ L@y x 2+ x @ xR .
ot

(1.6-4)
Since Newtoﬂ'é;laWs hold at any event in a material continuum,
taking the "inner product" (A.7) with arbitrary spatial vector field,

§P, and "integrating" (A.10) does not affect the identity,

f’fﬁ{(t)ﬂp& - 6P) __/%ﬁ'l(t) *(F + §P) = 0 . (1.6-5)

The integratioﬁ-may be considered as an integral over a time slice
followed by integration with respect to the time parameter, or by

returning to a four dimensional model, as the integral over the
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material continuum expressed in iterated form in accord with
Fubini's theorem. This distinction will not be pursued since the

"associated Riemann integrals', (A.10), are essentially the same,

Qo o -1
ﬁlT(T)ﬁJS(M(t)) (pa” Gp7) o W 7 du, de

P -1 _ _
_ﬁT@)ﬁS(M(t)) (£7 8p) ouw ™ du, dt =0 . (1.6 e)

The first term is transformed to material event space to remove

the time dependence of the spatial region of integration,

: 8
— -1 ]
— b -—-(pau Gpa) olou det(LE—)
ﬁ*T(TZﬁ*s‘M) du’

The Jacobian determinant, det (BpB/BuY), may be interpreted as the

du3 de . (1.6-7)

ratio of an infinitesimal volume in M to one in M. Since the mass

density, p, may be interpreted as the ratio of the infinitesimal mass

B
det(ani)
BuY

mass density in M and will be denoted "B". The first term in (1.6-5)

may be interpreted as the

to its volume in M, the product poll

becomes

ffj§ * (55 -+ 8P) . (1.6-8)

Recalling that A = %E-X_, noting the identity

R S
W = (V8P - ¥ =5 (82 (1.6-9)

and performing the temporal integration (since the spatial region is

now independent of time) yields for the first term of (1.6-5)

Ia’ffE * By ® - f3fs s[oy - 5 @p), (1.6-10)

t

where 3T may be taken as meaning Recalling V = 9/3t(P), and

1

28



noting that

[ ®- <6P)] = o @+ @+ D)

- %E @ - (1.6-11)

the last term of (1.6-10) may be recognized as the ''variation of a

functional" (Aéll}. The first term of (1.6-5) may be written as
{1 A
—_ T . - —- - v -
nfs e buo o fifet 3oy
+5ff [ Y_-ggz)l - | (1.6-12)

The term In the inner parentheses of the last integral is constrained
to be zero, so the term L may be thought of as Lagrange multipliers for

the constraint.',The term-% 0 V ¢+ V is called the kipnetic energy density

and will be dend;eq ”%“. The process which yields the second two terms
of (1.6-12) from'tﬁ; last term of (1.6-10) may be recognized as a
Legendre transformétion.

The stationary conditions for the terms in (1.6-12) include
requiring the céefficients of the independent variables, ¢V and 6L, be
equal to zero (efg. V= Q"-P and L = 6£)° Eliminating L as an inde-

at —
pendent variable by substituting ﬁg yields

afsr G- - ofefer(3oy-y).
+6fj [pV . l""’P)l | (1.6-13)

for the first term in (1.6-5).

]

The previous results are associated with Newton's first and second

laws. Newton's third law states that the force on matter, due to its
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interaction with some other matter, is equal but opposite in sign to
the force on the other matter due to the first. If the force on the
matter at m, due to interaction with matter at m, is denoted ﬁ@(ml,mz)",
then

i(mznml) == _(P_(ml:mz) . (1.6_14)

At any point, m, in a spatial region, R, let the sum of all long
range forces be denoted "X", let the sum of all short range forces on
the matter at the point due to matter outgide the region be denoted
fé”, then the total force, F, at the point has components

o AQl
O!-=x

£ + 8 +j;<R) o%(m, 071y dxdydz . (1.6-15)

Integrating these component fields with respect to the usual coordi-

nates, find

o ~1 / o -1 f a -1
f =
./Z(R> o U~ dxdydz u(R)x o Y dxdydz + u(R)é o U “dxdydz

0, =1L A=1, A_A.A
+;/:(R) ﬁ(R)¢ (v ~,d T)dxdydz dxdydz .
(1.6-16)
The last integral vanishes; and the integral of short range external

forces is customarily replaced by the associated boundary integral,

yielding

o -1 0 -1 o , 1,2
f =
.[ll(R) o U dxdydz _/;(R) X 0o W~ dxdydz + u(BR)S dudu” , |
(1.6-17)

or on the manifold

ﬁ{*(ﬁ'ia)=ﬁ*(§';i—u)+ﬁg(§-%) : (1.6-18)
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1.7 S5tress

In the previous section (1.6) the integrals of the components of
the total force énd the body force vector fields over a region were
related to the infegral of the components of the surface force over the
boundary. In an appendix (B.l) this result is applied to a tetrahedron
with an apex at_an'arbitrary point, m, base normal to an arbitrary
vector, eN, anﬁ sides defined by the usual coordinate planes.

The form of the result suggests the definition of a stress tensor

field of type (2,0),

af 8 o 3 -
L=g0 5 ® g - (1.7-1)

Then a surface force on a surface with an outward pointing normal,

& ~§a-, 1s determined as
ox

§=X-1, (1.7-2)
where the "dot préduct" (A.7) in the usual coordinates is
n? %8 _ag (1.7-3)
3 _
X .

It may be noted that the surface force on the face with an outward

B

3
pointing normal, - 0 is - Ua _QE. in accord with the definition
ox 0x '

in the appendix..

it has been shown that there is a tensor field called Stress,
that when dot mﬁltiﬁlied by the unit outward pointing normal to a
surface, yields thg:surface force density; and that the force density
éo obtained is Coﬁsistent with (1.6-18)., However, this has only been
shown for the uéugl coordinates. In Appendix B.2 it is demonstrated

that the relations are true for arbitrary coordinate systems. Thus
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the relation, (1.6-18), may be written

foe ) ) S )

7-4)

The last integral can be converted to a volume integral by means

of "Stokes' theorem" (A.10),

. 9
St oz 2N foanfn-c
oR ( Bxa) R (

g}
-1 Q
Q
\-/

J
ﬂﬁ *(E-i -——-&'->' (l.
ox ,

Since the region of integration is arbitrary, the components, and

the vector fields, are related by

=X+V-* L | (1.

where "'mabla, V," with a dot denotes the "divergence" (A.12). 1In
usual coordinates, this 1is

@2 _,a® 3 g 3

f
) . O BxB axa

1.8 Virtual Work
Substituting (1.6-13) for the first term and (1.7-6) for the

second term of (1.6-5), yields as a consequence of Newton's Laws

Rl & fif oo (-5

* (v -

+ i )5

Srfuwr * @ Si fuor * [(_V. - z): 6.11]= 0. .

(1.

7-5)

thus

7-6)

the

7-7)

8-1)

Body forces generally depend on the amount of matter present, so

it 1s convenient to transform to material event space. The product
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a .
X [Det (éﬂg) 1s called the body force referred to the undeformed
- du
volume and is denoted "X " The body force integral may then be written

f,/b;(t) & - P - ‘/;—_/;- * (& o) . (1.8-2)

The body force may be separated into two parts, a conservative part

A AN
which may ‘be obtalned as a "gradient" (A.12), C__— - VW, and a non-

conservative part, gg. The body force integral (1.8-2) becomes

(1.8-3)
Noting that
A A A
- W - 6P = - W(E + 5B) + W) + o(|[se|l), (1.8-4)

the body force integral may be written

g A NA
'./.T./r.i(r:) e - ‘Sﬁﬁ* (W) 'f;—;fg* CX + 6B).(1.8-5)

A
The function W is called the potential energy density field. This

A
result may be generalized slightly by allowing W to be a non-
- A
conservative explicit function of time, in which case W is said to be

lamellar or irrotational.

The integral ‘involving the stress may be rewritten by noting the

identity

(2-;)-"6_P'=2-(;-6_P)—;=262- - (1.8-6)
The double dot ":" @eans contractions are to be performed on the first

indicies of both tensors and then on the second. In terms of the usual

coordinates this identity has the form

5 3
= (o"®y 6pP - (0 Py - 0% L

ox 9% Bx

p?) . (1.8-7)
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The stress integral in (1.8-1) may thus be written in two parts,

Sifuo [z 2) - S foorlz (2 - a2)
+f¥ﬁ1<:) *(;‘ ¥ 5?1) : | (1.8-8)

The first stress integral in (1.8-8) may be converted to a boundary

integral via the generalized Stokes' theorem (A.10), yielding

‘fffmm *[3 (é ‘ 53)] - [z fuco * (1*1, - L §£) . (1.8-9)

The boundary integral may be separated into two parts, the spatial

surface, aM(t) over which surface forces are prescribed, P§J and the

S?
surface, BM(t)P, over which positions are prescribed, gg. The condition
that actual positions equal the prescribed can be introduced with § as

a Lagrange multiplier. With these definitions (1.8-9) may be written

_ﬁﬁ“t)* {E (é . 62‘)] ) _j':fj;M(t); (P§ ' ‘53)
_j:fj;b’(t); (i GP—E)"./‘Tﬁm(t);G[—@ ‘ (L’. -_Pz)] . (1.8-10)

The second stress integral in (1.8-8) may be transformed to

material event space yielding
=y 4 = — . Q_R _
_/;'_/;l(t)*(g ¥ GE_) ij; *l(?__ : v cs_g)o Hldet(au) |] .(1.8-11)

The stress tensor may be expressed in terms of the usual basis for
material event space. However, the stress represents the magnitude of
the force on a unit area perpendicular to a unit normal in S, not M(t).
The rectangular parallelepiped with a base defining a unit area and
with a height determined by the unit normal becomes, in‘g, an oblique

parallelepiped with volume equal to the Jacobian determinant. To

34



obtain the force for a unit normal and unit area in g;_g can be

multiplied by the Jacobian determinant ldet(%%) |. The result is

called the astress referred to the dimensions of an element before

. A
deformation, and is denoted " L ".

The differentiation in the gradient may be converted to material

event space coordinates. In terms of the usual coordinates, this

becomes
éas'—aa(ﬁpBopol'[l)O]T“UQBOH“@_(SPBOUOH ou)ouoH
ax du
_ v 1 -
AcB (“Y“’n o 'l) (‘SPB)
= g nmj— ololll [—= o
o Y
du Ju
( =y =1 B —
AGB 5 (x oll ) 5 (6p ou)
= oll —= ol || —
| 9x 3"

Noting the identify

5
O T
%8s 7 a:B ol >
. (Eeoﬂ_lou-l) K (x olloy”™ ) = -
;;E ou ;E‘é' o\o
(worY Sam)
- ;i_s *e éﬁn o ot (1.8-13)

(1.8-12) may he written in the form
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([___H& o on} o 1 [M__)a(?: o 1 HD
ox 3x

a(x6 ol [BtéptS op) ]) . (1.8-14)
3%° ax"

where the first term in the product may be recognized as the related

stress 1in §; SYE. Alternatively, the expression for the related stress
in M{t},
A a
i (UYE 2 ® —_g) =
ax’ ox

o 1] ave  -1]5P -1 s 8
= QLE_Q_EZ_O 1 1 gYEO 1 1 ng:%;glo i —3 ()-—jg » (1.8-15)
‘ Ix gx Ix
could be directly substituted in (1.8-12) with the same result.
The second term in the product in (1.8-14) may be recognized as

the variation of the strains. The strains are determined from the

fundamental bilinear form (1.5-3). The li-related form in S is

3% 1) 3GPo ) —~y o =
b 3;3' 33?5 dx! @ dx~ . (1.8-16)

The strain tensor, "E", 1s defined to be 1/2 the difference between the

bilinear forms,

E =%_’- [1°(b) - B
SLaedom afem |y o gt (1.8-17)
o By 0% vep T .

the usual form can be obtained by noting

_ 3%

8 (1.8-18)
ACEP G
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The strain can then be written in the form

i} e

- a(x oH ~ X ) ij oll - x ) + GY B(X oll — x )
2 axY 3o 3%

: [o R —
o ox!

1 [a(x ol - ¥ , 3¢on - 5%
2

a}ﬁ ax'
[0} -
4 2670 - ¥ 3ol - 3% &' @ & . (1.8-19)
a-Y 3;6

In the customary notation, the difference in coordinates, xsoH - §ﬁ,

0 Y
is called the displacement, ua, the form-L [QE— + du_
; vl Rl

is just the
2
3x

: o
usual definition of the linear strains, and the term- du_ fu, is
2 [ .= =
90X~ 9x
just the correction to provide the geometrically nonlinear definition

3

of the strain. Now; noting that

§ — — - & —
a(p o u) B(Gpao B B(ﬁpdo u) 9lp o p)
Bx- - 3%’ ax ax!

- 8 = " m
= 26° + op%e 20> + 5% W 2% 1 2% Wy o] |se] |
=Y < =/

A% 3% 3%

leele 26 m
ox © ox" &Y

= § [2E€Y] E (1.8-20)

(1.8-14) may be written as

6 - .
__;__ [6\ 'Y] [a(P o U) d(dpo 1y ] . i (1.8-21)

ax !
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Since the stress tensor is symmetric, interchanging indices gives

l_[éye] [B(pao ) 8(6960 W + Qgpao W) 3(53§° E)]

z 3%E 0% 5% 5%t

o L Aye = Aye : _
=3 o] SFZE EY] g de e (1.8-22)

Thus the second stress integral (l.8—ll)lmay be written

Fehor (22 e) - fefs (20 ot v oo foe Bl - o],

(1.8-23)

where the term in the inner parentheses of the last term is constrained
to be zero, so the term;i may be thought of as a Lagrange multiplier,
The bar over nabla implies the associated expression in material event
space,

The stresses may be represented as the sum of non-conservative and
conservative parts. If the deformation is adiabatic or isothermal,

then the process is conservative and GYE de ve is a perfect differ-

ential (Washizu, 1968). This assures the existence of a strain energy

A
density function A. The second stress integral (1.8-23) may thus be

written as

./-;-‘/M-(t)*(i ; F.GE) = Gf,T__/é*(ﬁ) +5_/%f§*[§: (j_g_g)]
+./;E./‘;' * (Ni‘ ‘SE) , (1.8-24)

where the prescript '"N" denotes the non-comservative part of the stress.
In summary, Newton's laws have as a consequence (1.8-1), which

may be rewritten, inserting Equations (1.8-5,-8,-10 and -24), as
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cofefor i eofifirdorofifird
ol Rl
—./;fﬁﬂ(t);‘é[i (e - PB)] * |'a’fﬁ§ «(bu - o)
‘fsz;mct)s*(P—S- - o) ‘fT ,/;M(t)p*(g 6 ')

S b e s

In the absence of Inertial terms and non-linearities, and assuming the

prescribed surface forces and displacements are constant, this becomes

‘fg* @+ f ({})_+f§*[§_ (Te - E)”
‘ﬁn(t)P* 5[~ '(3 - PE)] Tﬁm(t)s" 5(P§ . B)]= 0, (1.8-26)

which may be recognized as the Hu-Washizu variational form.

=

1.9 Virtual Wdfk for an Arbitrary Reference Frame

The expression of the principle of virtual work in Equation
(1.8-25) was based on Newton's laws in an inertial reference frame
(1.6-1). The result may be transformed to an arbitrary reference frame
via the results of Section 1.5 (Equations (1.5-32, -46 and -54)). It
may be noted tﬁat gince the strain is defined in terms of bilinear
forms, and since bilinear forms are independent of reference frames,

the strains do not change. Proceeding term by term,
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1A
— - f— K~ .
fI.[‘S (2‘33 K)

lf\a ' [ |,a I L t
- == x| E A= + 0 P) (--R+v + Q xg)]
./’-I‘./'S*[Zp(atg—+l = 5 e =T T

--f5 /s *E (R RN U 2 (@' 2)

Rt A R UL B MR UL g'l)l. (1.9-1)

f 'ff%" *®

Noting the identities in Appendix A.13, this may be written

A 19 3 A 1 A T, 1
Jifsrd - ﬁ"l??féﬁ wrfor® e 1 frdr - w
+ i -jfs-—*(é[(_r;'- 2y -pe ) © g

a_...._ A' .g_ l.f_ Al |,j-_ A! 1
+at§fs*<pz>+at§xgz_ g ¥R + Q' f= x(op'x V],

(1.9-2)

where U is an idertity tensor (i.e., U - X = x). The potential energy

becomes

J oY ARGy - fofs + tha + )
' =_/;1‘-_/:S- * [{}'(Es P")] . (1.9-3)

The strain energy, as previously noted is independent of frame. The

constraint between velocity and position becomes
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a . a! A A gt ! A 5
-2 p. 2 f_ & vy _ f_ t. I & v
ot & pE-J§ MPED fs *(Dl atg) & fé (DP"‘ 3t 3)l°
| (1.9-4)

The next integral becomes
ff [ W - E] ff [ 5)] , (1.9~5)

since R is constant spatially, and since the stress and strain are
independent of reference frame.

The integrai on the temporal boundary becomes
|a§j‘;' *(Bv- 6p) Ian—g *[3(—§‘~g:ls+ v+ Qo E‘_')' (63 + 63')]
= |3T,a R 6R-/-§ *(D) +§2_'-j—;— x(pR' x §P')
+ 3 g-fg x(BeR') - ' x 6§-f§ x(fp")

+ Gg-f—g (P y_')+f-s- *(ﬁ v'- ') . (1.9-6)

I

The prescribed positions on the spatial boundary become

‘_/:T‘ ﬁm(t):[—q'(g - P-’i)] f .[M(t) (&+2- =T g')]

'f?(ﬁM(t)P* 8" 2h
'ﬁM(T)P *(g'- Pg')l . (1.9-7)
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The other remains unchanged. The prescribed forces on the spatial

boundary become

"./:TdﬁM(t);r (Pi' 5?-) = 'f'sz;M(t)S*[Pﬁ" (6R + 62‘)]
H-[Tl@. ./;M(t:);r (Pg') * ./B.M(t)s*(Pis-' '6—11')}

(1.9-8)

The non—conservativé body forces become

Jafo (o) - [ fo o [Nﬁ"wy o)
-~ fs I‘SR.[ b)+ f ('t GE')) L (1.9-9)

The non-conservative stress integral remains unchanged.

The dot products of R with vectors defined in the primed basis
introduces the direction cosines into the variational form. The
relationship between the direction cosines and the angular velocity

(1.5-39) may be introduced as a constraint

G 1l 6 oY 3_ u) 3
— %:H' Hw!' —— . .9-10
6,/.'1‘ ‘—~H [ 2 E;YOL Bt B ]} (1.9-10)
The Lagrange multiplier, H', may be interpréted as the angular

momentum.

Inserting Equations (1.9-2) through Equations (1.9-10), yields

for Equation (1.8-25)
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SECTION 2
SUBSTRUCTURES

A substructure will be defined as a finite collection of ﬁaterial

continua satisfying certain properties. The continua must all coexist
in the same region of time. They must have no interior points in com-
mon, however, each must have part of its boundary in common with

another. The shared boundaries of the continua will be called the

internal boundaries of the substructure, and any parts of the boundaries

of the continua which are not shared will be called external boundaries

of the substructure. The union of the closures of all the continua
must be comnected, and the boundar; of the union is the union of all
of the external boundaries. The position and stress are generally
required to be continuous at all internal boundaries.

The final requirement is that the positions deviate from a
reference spatial state by a small amount for some reference frame.
This last requi?ement forms the basis for an approximate solutiom,
which 1s the subject of this section.

2.1 Finite Elements

The variationél expression (1.9-11) has as known functions of

the coordinates and the other variables the potential energy, %’, the

. A A
strain energy, -A, the non-conservative body forces and stresses, NX

N & ;
and = L , and on the external boundaries, the prescribed positions,

. P
and surface forces, P and P§, The prescribed positions and surface
forces on the internal boundaries, P_I:_and ?g, the velocity, V', the
A ‘

position, P', the stress, Z , the strain, E , and the surface force,
_ 5 are all unknown functions of the coordinates.
p 1 ny :
REC&DR\(Q_@@GE |
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Direct solution of the governing equations is seldom possible.
Instead, the unknowns are represented as a series, and the least sig-
nificant terms are truncated. The domain of the expansion may be the
whole substructure, the material continuum or a mixed form invelving
both. Moreover, the domains for the various fields need not be the
same. When the domain of the expansion is the material cantinuum, it

is called a finite element. Since use of expansions for the other

domains is rare, only finite elements will be treated.

It may be noted rhat the series expansion pould be in the
temporal as well as spatial coordinates. In fact this has the advan-
tage of reducing thg partial differential equations to algebraic
equations, as opposed to the ordinary differential equations
obtained by expanding only in the spatial coordinates. However, the
temporal approaéh will not be pursued here, and the conventional
spatial expansion will be used.

The development of a finite element seems, at present, to be as
much art as sclence. The developer may arbitrarily select the geometry
of the elements, the fields to be approximated, the approximations
to be used, and the wvariational form to be applied. Aside from certain
mathematical and practical considerations, the worth of an element is
determined by the accuracy it provides for a given number of degrees of
freedom, and by its convenience in use. Although fhe development of "
finite elements lies outside the scope of this presentation, some of

the more pertinent aspects of the method will be included.
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Geometrically regular material continua are generally selected
because of their aﬁalytical convenience, and the ease with which they
_are assemﬁled; Parametric elements are a notable exception, where an
irregular spatial region is mapped into a regﬁlar region in a parametric
space.

The choice of which fields to approximate can be divided into
three categories: first assumed compatible displacement fields,
second assumed eqﬁilibrium stress fields, and third mixed partial
assumptions on the stresses and displacements. There are further .
choices within each category, For instance, with a displacement
assumed model, the strain could either be separately assumed, or
determined from the strain displacement relations. In fact, the dis-
placement fields could even be different depending on application
(e.g., one for étféins, another for the potential energy associated
with body forces).

The fact that any complete series expansion provides an exact
solution to the equations, makes them desirable cheoices. (However,
any series expansion may be acceptable.) Polynomials are frequently
used because of their coanvenience and since P (the set of all poly-
nomials to order =) is a complete function space for the class of
continucus functions (Weierstrass theorem)., Trigonometric expansions
are also used, especlally for the circumferential direction in
axisymmetric elements.

The variationai‘form used may be some variant of (1,9-11),
which is essentially of the Hu-Washizu form, or some variant of the

dual form obtained'by a Legendre transformation of the strain energy,
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yielding a complementary energy formulation. Generally, finite
elements are developed ignoring the kinetic energy terms, considering
only the strain.energy and sometimes the potential energy. When

the finite element developers do include kinetic energy, it is

usually in the simpler form of Equation (1.8-25) rather than Equation
(1.9-11), with the velocity field explicitly assumed to be the time
derivative of the position field. In this special case, the associated
terms are usually referred to as "consistent mass.”

To be of practical value, the finite element fleld approximations
must converge to the correct values for the field as the element size
decreases. A finite element generally must satisfy the following
criteria to be convergent. First, the approximation should be capable
of representing a constant value of the field or its derivatives up to
the highest order appearing in the functional. Secondly, the approxi-
mation should be continuous to one order less than the highest deriva-
tive apﬁearing in the function. Generally this is met by requiring
that the highest order derivative be continuous almost everywhere
{(i.e., except on a set of measure zero, e.g., plecewise continuous).

The finite elements are assembled by applying the variational
form to the whole substructure. The conditions at the interfaces are
just the previously mentioned continuity requirements. If these are
met, the internal boundary integrals cancel. However, the requirement
may be relaxed, 1f the discontinuity is at the boundary, by explicitly
retaining the internal boundary integrals. In practice, when using an
assumed displacement field, the satisfaction of compatibility reqﬁire~

ments is usually made automatic by transforming from coefficients of
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an approximate expansion to the displacements at nodes on the
boundary. If the displacement on a bou;dary surface depends only on
the displacements of the nodes defining the surface, compatibility
is established by requiring the displacements of those nodes be
identical for adjacent elements. This is the basis of the "direct
stiffness" method.

As an illustrative example, the derivation of a‘béam finite}
element based on an assumed displacement field is presented in
Appendix C.1. The derivation includes the effects of geometric non-
linearities.

2.2 Finite Element Dynamics

In this section, and in the material that follows, it will be
assumed that the assumed displacement finite element method is
being used and the assumed displacement field is kmown. Alternatively,
a mixed or stress assumed formulation may be used, provided that the
displacement field is known, or can be obtained in closed form. To
incorporate dynamics, the variational expression in Equation (1.9-11)
must be used instead of Equation (1.8-25). Taking the indicated

variations in Equation (1.9-11) and noting the definitions of vari-

ations of vectors in Appendix (A.14),
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=
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+ff_/;1~1(c)
_[ fM(t) *’—PS' SR - S' §'P'- ( p'YcB (SCY 9

a_ 3 A D 3 d
f ! R- 6R + 3'5“5 5'E'+D§gg'(p”’c&6c; ) + Pv'e 6R

I o

+ PVE'R+ SX'-(p'YCSGC; 9 )+ PR x B'* SR + PR'x P'6'P’

+ /asli x _P_' . ( Y SGCOL z 'B)] . (2.2-1)

Noting the derivative relationships,
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O p =2 (5. 8R) -
A- S R=5-(A-G6R) -5 A" CR,
3’ 5! o'
t o, | v 2 t t _ Y oAt 1 -
A vl 4 - A A T 5P (2.2-2}

and integrating by parts, yields

f—,{fg *[-g-;(ag—tg) S vy + 3 dxen + - [6(3‘— —ggz)]
NA} _/;M( p U2 }“*fm(c)s*l‘ Pﬁ'.\) - R

+|a7f( —é-*{— ’aé— R - PV'~ Q' x P+ 6‘(3‘ - ——3')+ )

: A
+ﬁ—j.§* !(aasq- 'aQ'SY(SgY(S— 3“18,}. NGOCB)SeO‘B}.’.ﬁ‘/.E* {(§E'" B); 6L }
A'G i 5 ' v et

: A 3 ' 3
+ﬁf§* [(69_')-: [9_' 4 E'] + pﬁ' X E-E_B-,'—ﬁﬂ' x _Y-' + ¥V '+—[ﬁ—é-ER}
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5t A - e - S e e g e R o
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Equation (2.,2-3) Continued

6.2 [(P"P)U—PP]-#A—%EB

| Ig=!

l_ /\Elle
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+ p(" x 2‘)Yp’8c&(})6c§. (2.2-3)

The stationary conditions of this form provide, in essence, the Lagrange
equations for the element. It has been assumed that all vectors except
R are expressed in the primed (body fixed) vector basis, and that R is
expressed in the unprimed (inertially fixed) vector basis.-

If the displacement and velocity fields are assumed to have the

form
_ _ M
— 39 =9 =3
2 =x‘g‘,c—-+)’w+z§—zT+ 2. ;2'ia and
i=1
N
LIS (2.2-4)
j=

some of the statioﬁary conditions may be immediately identified. The

coefficient of OR must vanish over the time domain, T,

2
a__ SRR Fs ) 1 T
M3t25+M3tﬂx(ol_ +i£ iq)+M§2_ xi_l_’- ;4

1 ? o P VIR B ¥ pr oA
+MQA x [0 x(£ +i§_iq)]+Mi}_iq+M&x P'.q

=f§ *[‘ R 4 *ﬁm(r)f,*[—s—'] *ﬁmms*[PE'] » (225
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where the repeated Latin subscript implies summation over the M q's,

and

' - -3  —3 .
M 2./‘-8_ * {6\}9 DE' =-/é *[S(X ax! + Y ay! + Z 82")] /M and
=1 _ f__ AN
iE _./:.:} * {pi‘g L

In addition, the coefficient of OR must vanish on the time boundary,

aT

>

N
V' op= P'3 . 2.2-6)
= S (

where

r

—— ‘. A '
i =f$ % {pjg Mo

The coefficients of the independent variations in 6'V' (i.e., the

Gjp) must vanish for all time,

N .
' V.p=,.6.4 (2.2-7)
i};l 13 4 kj K

where

il

Y A LI ' - A nr, gt
13V ‘fs *Apvie V', 6 ,/;*{pig P

A
,8'S', and the terms VW'.g'p",

[|e-3 >

The coefficients of dsas, §

: 8V P', S8'. §'P', and Pﬁ'-é'gf are the ferms assocciated

1>

A
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with the elasticity problem. It will now be assumed that the elasticity
problem has already been solved by the methods noted in Section 2.1,

Moreover, it will be assumed that the results are of the form

_a ‘ .

where the iQ are the generalized forces associated with the surface

and body forces, and the jq are the generalized (generally nodal)
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displacements with any constrained additional coordinates eliminated.
The coefficients are presumed to include the effects of preleoad
(geometric non-linearity), and any other effects, linearized for small
jq, so that they afe constant or at most known functions of time,

If additional displacement degrees of freedom were eliminated
during the solution of the elastic éroblem, those constraints are
modified by dynamics and the static coefficients are improper for the
dynamics problem. Properly, those extra coordinates should be retained
in the problem; however, the problem will be disregarded here by
selecting the field resulting from eliminating the constraints as the
initially assumed field. In this case, the previously noted terms can

be replaced
ff[g* [(aus+ aaBY‘SeYa- %8 N3a8)65a8+ Te-p: st +‘_i :67 P!
(b ) e Siho,” (Fer-2) - et 5 op
+ﬁﬁ4(c>5* s o

8] .

Returning now to the stationary conditions for Equation (2.2-3),
the coefficients of the independent variatioms in §'P' (i,e., the qu)
must vanish for all time, 1In the simplest dynamic case, ' and R both
zero, this gives

g
=Q+ ,.K.q+,.C.4 : -
4R iQ i3 jq ijc jq + ikG WP (2.2-10)

Solving Equation (2,2-7), assuming ijv is non-singular, or taking a

pseudo-inverse if it is, the stationary conditions are
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Mg+ .. C g+ . K. q=_.Q- .0, (2,2-11)

where |

This result is the usual dynamic model, If j[’ = i P', then the mass
is called consistent. If a piecewise continuous linear field is used
for the velocity field, the result is nodal masses. However, just the
assumption of this simplified field does not eliminate coupling beﬁween
the nodes. To eliminate coupling the constraints must be violated.
This procedure is justified if the resultant energy error vanishes as
the element size tends te zero. It may be noted that the assumed
velocity field appears nowhere else. Thus for what follows, the
question of prpﬁer velocity field is immaterial and will not be
further treated. Instead, it will be assumed that the array ijM is
available.

The mass terms associated with the displacement field could
conceivably be derived based on a different assumed displacement field
from that assumed for the elastic solution, with or without violation
of the constraints., This possibility will not be pursued here.
Returning to the general case, the stationary conditions of Equation
(2.2,-3) provide, instead of Equation (2.2.-1), as coefficients of

the independent variations in §'P' (i.e,, the ﬁiq)

2
_ a . a'
~ Qe T Q"= Q' . P2 1. &+ 2 qt
+ 2 gt 0 q+ .M G+ .04+ Kq=.9-"C%
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The remaining terms govern the rotational behavior of the element.

The coefficients of SH', must be zero so

$

6 _ L8 Yﬁ_u _
W' =~ e e (2.2-13)

This may be recognized as the nonlinear differential definition of 0'.

The coefficients of 6'Q" must also vanish,

1 1, R ' LR
FM P R4+ M P xR g+ .0 .4+ .0 .q .4
0= " 3t — i~ "3t =14 i i i~ 19 44
where
A
= J—- % : t. ' - ' r -
I f;, {o[(CP B U - B g2'1) . (2.2-14)

The Lagrange multiplier, H', may be recognized as the angular momentum

about the primed origin (i.e.,J/% *{6 P' x ¥Vh,

The variations, § ci are not independent; only three are, Instead
of reducing the generality by selecting a specific three parameter set
(e.g. a set of Euler angles), the three independent equations can be
obtained by noting the skew symmetry of cz GCS . The difference with

its transpose will contain only the three independent linear combinations

of variations,
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where the skew-symmetry has been noted. Adding these expressions,

noting appendix Equation (A.9-14) and interchanging indices,

2% § B =L [ho Y NB L . £
aB 8 ca 7 ﬂ%ﬁ o €Y ) GEC Cs 8 CG)]

n{iL_n ¢ -
b(egﬁcﬁcﬁ). (2.2-16)

It

The quantity in the parentheses represents the three independent

variations (n = 1,2,3), so the stationary conditions b = 0, can be

obtained by multiplying the coefficient of § CS by e?B c;.

B

The coefficient of & ¢, on the time boundary, after multiplication

)

by EnB et is
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which is the same as Equation (2,2-14) (i.e., H' is the angular

§ .n né)ey.
(665Y~<5,Y5 67 nt

N]t—'

% 6 P' x [%E_E + V' +Q X'Bj} , _ (2,2-17)

momentum about the primed origin on the time boundary as well as the
interior, t € T). The final stationary condition is that the

coefficient of & CE’ after multiplication by EEB CZ’ must vanish in
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the interior of the time domain,
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-Rearranging and multiplying by %;Tﬁ- gives
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This may be recognized as the identity
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where it may be noted that Bé = F. The expression can be converted
to a function of ', instead of H', by inserting Equation (2.2-14).

To linear order in q this is

L] "
L8+l o+ iy

-

i& + 0" x ('),

3! _ 32
. iq + i; . Q' iq + 9} X i£ . Q'iq + M 02} % __§ 5
at

= 3
) 1
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= 3 . —
. 1 1 o t 1
R4+ M@ % P x 5m R+ M@ x B') x =R q
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or rearranging,
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2.3 Finite Element Assembly

A substructure, as a collection of material continua, is itself
a material continuum. Therefore it must satisfy the same variational
principle as the finite elements. Each finite element deformation field
may be thought of as a pilecewise continuous deformation field for the
substructure, defined on the element and zero elsewhere. The wvaria-
tional form for ﬁhe entire substructure differs from the sum of the
forms for the finite elements by the presence of pairs of internal
boundary integrals in the léter. The displacements must be continuous
{compatible), and the stresses must be continuous (in equilibrium)
throughout the substructre., In particular these conditions must be
satisfied on the element boundaries, 1In this case, the pairs of
integrals cancel. Since the finite element method is only approximate,
there are generally violations (usually of equilibrium for the dis-
placement methqd)‘and the integrals do not vanish. However, under
appropriate conditions, it can be shown that the contribution of these
integrals goes to zero as the mesh size approaches zero (i.e., as the
number of elemehts in the model approaches infinity). The details of
these effects belong to the study of finite elements, and will not
be treated here, It will be assumed that an appropriate model has been
developed, and that the mesh (number of elements) is sufficiently
refined so that¢the contribution of the integrals is small enough
to be ignored.

The result of the application of the compatibility requirements
to the collection of finite elements is to assemble them into the

substructure by eliminating the dependent generalized displacements,
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In the case of nodal displacements, the assembly of the stiffness
terms is quite automatic and is called the direct stiffness method.

To generalize this procedure slightly, all the parameters associated
with a given finite element will be denoted by a pre-superscript index
o

Of_' will

defining the

assoclated Wiﬁh the element, For an élement, o, the vector
be divided into two parts, a constant portion, S%EY’
position of a local origin (used in developing element properties)
relative to the substructure, plus the position relative to the local
origin for the element, Egg'. Now if the variational forms (e.g.
(2.2-3)) are summed for all of the elements, assuming the internal
boundary integrals are negligible, the stationary conditions for the
frame variables are the sums of the element conditiomns. If the
compatibility requirements between eiements are expresSéd in terms

of N independent a in the form

h|
o} N O, A

they may be Incorporated in the form with Lagrange multipliers,
-

a)-;i ﬁ.?x(i‘q - ?.L‘jtr O, . (2.3-2)
where E is the number of elements. (In the case of direct stiffness,
the j@ are the podal displacements in global coordinates, the 3q are
the nodal displécements of the 0 element in local coordinates, and i?T
consists of direction cosines,) The stationary conditions on the
deformation variables are the same as for the elements individually,

except for the additiomal term ?A. The coefficients of Sgk just give
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Equation (2.3-1), and the coefficients of the variations of the global

E
o, o
coordinates, & jﬁ, are just 2: A

a=l i=1 * *

Summing Equation (2.2-5) over all elements provides the trans—

lational equation,

where double Latin subscripts imply summation i=1,,,,N and
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noting, however, that only the axternal boundary integrals are
retained in the force calculation. Similarly, the sum of the nominal

rotational Equations (2,2-~21) over all elements gives
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again noting that ohly external boundary integrals are retained in the
torque calculation,

As previously noted, the incorporation of the constraints via
Lagrange multipliers results in the appearance of the additional term
&, . th th . :
iA in the i~ equation for the o element, Solving these equations

for the ?A, the stationary conditions for the § @ are the sum

E M

3

s Y%= 0. 1In other words, the new stationary conditions are
=1 ij
=1 1=1 :
o

]

elements ¢, The elastic equations (2.2-12) become

obtained by premultiplying by 1 T and summing over all i 1in all
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again inecluding only external boundaries.

It may be seen from the above equations that the following

parameters are required for each finite element:
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The last two parameters, 1Kk and iQ, were calculated for a beam
element in Appendix C.l. The remaining terms are calculated for the

same element in Appendix C.2, as an illustrative example., The

gog', i?T, appearing in the preceding equation are

specifically associated with the assembly procedure. It should be

parameters,

noted that the positions are defined for a deformed state which may
require a geometrically nonlinear static analysis for their computation,
Finally, the generalized force parameters must be computed from an
assumed environmental model,
2.4 Quadratic Expansions

The development of the finite element as presented here, uses the
unknown coefficients of a series expansion as generalized coordinates.

However, an expansion in the form

M
| - ¥ ) -—
LA A 15_31 £ (2.4-1)

suggests the posesibility of extending the expansion 1n q's to include
higher orders (i.e., terms involving the square of q). Although the
approach adopted here does not prohibit such expansions, it does make
them seem rather unnatural. However, such is not the case when the
problem is approached from a physical rather than a mathematical view-
point, It is quite natural to interpret a linear displacement field on
a surface as a rotation of the surface, However, 1f rotations are taken
as generalized coofdinates, the displacement is not linear.

All of the remarks above would be largely academic if the linearized

equations resulting from a quadratic approximation were the same as
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those resulting from a linear expansion., However, the essentially
Lagrangian approach adopted here results in a different system of
equations when quadratic terms are included. The best that can be
hoped for is that the systems of equations resulting from the two
methods are mathematically equivalent, although non-identical. The
two systems are equivalent (i.e., have identical solutions) if each
equation of one set is an independent linear combination of equations
in the other set, 1If the equations are equivalent, then inclusion of
quadratic terms 1s optional, and, for convenlence, they may be
omitted, That the resulting equations are equivalent, has been
demonstrated both analytically and by example., Appendix D.l presents
an analytical éemonstration of the equivalence of the equations.
Appendix D.2 présents a particularly challenging example of a
gimbaied mass for which the nonlinear field is more natural, and for
which the nonlinear system of equations is more easily derived. It
is also noted that the samekresult holds for a sequence of rotations
about inertially fixed axes, as for the body fixed sequence in the
example, Based on these results, it may be concluded that'quadratic
terms may be omitted. Therefore only linear terms will be retained
in the rest of this presentation.
2.5 Substructure Modes

The motion of a substructure, isolated from all other substructures,
is governed by the three scalar second order equations in R (2.3-3),
by the three scalar first order equations in Q' (2.3-4), by the
three scalar first order equations in Cg (2.2-13), and by "N" scalar

second order equations in jQ (2,3-5). Unfortunately, "N'" is frequently
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large, sometimes hundreds or even thousands.. - Moreover, much of the
motion governed by these equations is of the uninteresting, small,
high frequency type. It is desirable to reduce the dimension of the
problem by eliminating the uninteresting motions and retaining only
the larger, usually lower frequency, motions. Modal analysis provides
a basis for this reduction by uncoupling the equations and providing
the frequencies assoclated with the degrees of freedom. The frequencies
provide one of several possible criteria for truncation. The uncoupled
nature of the equations guarantees that the solution of the remaining
equations is unaffécted by assumptions on the truncated modes, and
allows formal establishment of bounds on the truncation error,

Calculation of modes 1s possible only for constant coefficient
lineat equatiohsf The substructure equations are iﬂherently nonlinear,
and even if 1inearization about a nominal motion is possible, the
coefficients are not generally constant. However, the need to reduce
the problem is sufficiently overriding that the method is frequently
applied to problems for which it is not formally correct. In the
presence of good engineering judgment, this has béen quite successful,
Before pursuiné this tack (in 2.6), however, it will be helpful to
identify the class of problems for which the method is formally
correct,

The equations will be linearized by assuming that the ja represent

a small disturbance about the nominal motion (the rigid body motion

solution when all ja = 0)., (It should be noted that there are cases
for which the nominal solution is grossly different from the frame

motion in the actual solution.) Now, arbitrarily partitioning the
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force into a nominal force, qg, and a disturbance force, %E, the
nominal motion equations corresponding to Equations (2,3-3, -4 and =5)
are
SM—B-z-— + L arx 5B 4 andark SEl - 08 (2.5-1)
2= T TR e TR T A .
ot
s a! S S, Sz B 2 0s
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- T - G'+ "M P'"—R+ 0 —"= Q. (2.5-3)
I o 3

Similarly, the disturbed motion equations are
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b
Equation (2.5-3) may be written in integral form as
52 3t s s
* e ey
f P E":2 B+gp it P'+ﬂ'><(ﬂ'x0£‘)
= —*SP'-X+
3 %R X+ 0. (2.5-7)

Noting that in the limit as the mesh size approaches zero, the SP‘

become a complete function space, it may be concluded that the body
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force must satisfy

8t2 0

x= 3[3_5+_§—; Q' x gB' 2" x (2" x P')] POx ., (2.5-8)
where 95 is constant in time and equilibrates the initial and boundary
stresses., It may be noted that this body force also satisfies Equations
(2.5-1 and -2),

This iéadé.to the perhaps surprising conclusion that linearization
may be about an afbitrary time varying nominal motion, if the nominal
motion is driven by bady forces in the form of Equation (2.5-8). It
may'be noted that the prospects of finding a physical source for body
forces of the indicated form are rather dim. However, this result
suggests an analytical techniqug. Any forces applied to, the aub—
structure may be represented as the sum of the equivalent body force and
a'distufbance composed of the applied force and the negative of the
equivalent body force. This technique provides a formally éorrect
solution and reduces the structural equations to linear form (2.5-6).

There is one potentialldiffiéulty with the method, The linear
solution is predicated on the ja remaining small, For those problems
in which flexibility grossly alters the nominal motion, the gross
difference between the nominal and actual motion would appear in the
rigid body modes inherent in the jQ. {The rigid body modes are a con-
sequence of the-uncoﬁstrained, displacement method, finite element
formulacion adoéted here.) There are two ways in which this difficulﬁy
might be overComé. If this behavior is anticipated (e.g., by "energy

sink" analysis) or is detected during integration, a pair of body
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forces, a nominal force, and an equal but opposite disturbance force
(summing to no net force on the system), could be appliéd to transfer
the rigid body motion in the jﬁ to the reference frame variables and
maintain the smallness of the je' Alternatively, when the motion in
the rigid body modes exceeds some predetermined bound during inte-
gration, the motion in the rigid body modes could be transferred

to the reference frame, and the rigid body motion in the_jﬁ reset to
zero,

The presence of rigid body degrees of freedom in the jﬁ, is a
consequence of the displacement method. The method also results in
redundant Equations (2.5-4 and -5). Equation (2.5-6) is sufficient
to determine the jﬁ. Qualitatively, this is a system of ordinary
differential equations of the form

M+ C§+ Gy +Kqg+Jq+ Aq = Q . (2.5-9)
The terms have the following characteristics, The “masé" matrix, M,
is constant, real, symmetric, and positive definite (in some special
cases positive semi-definite). The "damping" matrix, C, is constant,
real, symmetric, and positive semi-definite, In the special case of
proportional damping, it is assumed that C can be expreséed in a Caughey
series, The "coriolis" matrix, G, is constant only if ?&' 1s, other-
wise it is a function of time, It is real but skew-symmetric, The '
"stiffness" matrix, K, is constant, real, symmetric, positive semi-
definite and consists of two parts, the elastic stiffness and the
"geometric" stiffness assoclated with the preload, (If the preload

depends on spin, then K is not constant unless %ﬁ‘ is,) It may be
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noted that in the case of structural instability (buckling) K
becomes indefihitg. Such cases aré excluded here. Sometimes K is
made complex to incorporate "'structural" damping. The "centripetal”
matrix, J, is constant only if‘?g' is, otherwise it is a function of
time, It is real, symmetric, and negative semi-definite. The

"spin-up" matrix, A, is null if the spin is constant, constant if

3'
at

formulations A is a function of spin;seé 2.5 and related appendices,

?&' is constant, and otherwise is a function of time. {(In some

The spin independeﬁce is a result of the Lagrangian formulation.)} It
is real but skew-symmetric,

The equations, in general, must be integrated numerically.
However, if the coefficients are almost constant, certain stability
results may be dérived, and if they are periodic, Floquet theory may
be used. Howe#ef, in order to calculate modes, they must be constant.
Consequently, the nominal angﬁlar velocity must be constant, In
addition to systems for which the spin is comstant, it is customéry
engineering practice to approximate a slowly varying system by time
sliées (i.e., assuming that the deviation from constant coefficients
is negligible over some period of time). This can be formalized by
selecting the nominal body forces to provide constant spin, and
absorbing the change in the disturbance equation for some period of
time. Although a large constant spin and a small constant rate of
change of spin might be assumed, for formally constant spin A vanishes,

;n general; second order equations must be converted to first

order to obtain modes. Appendix A.15 outlines the method., The
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special case of zero spin and proportional damping is an exception for
which eigen sclutions can be obtained directly from the second order
equations,

When a substructure must ultimately be connected to others, a
number of researchers have noted that "free" modes of the substructure
do not always provide the most rapid convergence during a process of
modal synthesis, A number of alternative procedures have Leen
suggested éhich may speed up convergence. These include constraining
certain degrees of freedom, adding masses and adding stiffnesses., A
comparative analysis 1s forgone here; it is merely noted that all such

*

methods result in a transformation of the variables, Q and ja’ to

]

a smaller dimension set of coordinates, n,

i = 1¢ ‘n] . (2.5-10)
410 \

and a reduced order set of equations

[a] {A} + [B] n} = {y} . (2.5~11)

The analyst's choice of method is based upon a number of factors
including: ease of calculating the modes, storage requirements for the
reduced equation, rate of convergence, and ease of coupling sub~
assemblies.

As an exampie of the modal analysis procedure, the component
mode method, generaily attributed to Hurty (i.e., constraining certain

degrees of freedom) is applied to a very simple substructure in

Appendix C.3. '
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2,6 Extended Modal Analysis

As noted in the previous Section (2.5), the benefits of modal
truncation are sufficlently important to justify application to
problems for which it is not formally correct, In such cases, even
though linearization is not formally possible, a nominal state or
perhaps severai nominal states are chosen to linearize about anyhow,
Similarly, constant coefficients are selected, and modal analysis
proceeds as before, The extended procedure now departs from the
method previouély outlined by relaxing all the assumptions and sub-
stituting back'into the governing equations, The Equatiqns (2.3-3

and -4} assume the form

2 -
SMa—-R+-§--Q' x P+ Q'x(ﬂ'x SF') +rl_:a ﬁ+TB n = SF
atZ— t — 0= = "\= 0= i3 B i | -
s, a' . S s.s= 3 R . =R S
I o780+ 0"x"1T « Q'+ ™M P'x—= R+ _a.N+ B .,n="T,
= t= = = - U= 3t2— N N | -

and after premultiplying by the transpose of the adjoint matrix,
Equation (2.3-5) becomes

9 g5y . 2

5 5, 5= M. .M s
ARG G L VL P I o LS T I R L O
Hys t E N R [ T S s LR U
(2.6-2)

If the complete set of modes is retained, there is no compromise in
the above equafiqns. They contain exactly the same informatiom as
their non-modal counterparts, The o and B coefficients are functions
of the variables B,ICE , and Q', and the equations are no easier to

solve than their predecessors,
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At this point engineering judgment is invoked. It is assumed
that the effect of the modes selected for truncation on Eguations
(2.6-1) is negligible. It is assumed (as in normal modal analysis)
that the response in the truncated modes is insignificant in the
result. And, it is assumed that the coupling in Equation (2.6-2)
between the trun#ated and retained modes has no significant effect on
the retained modes (and conversely that the retained modes do not make
the truncated modes important In the result), Under these assumptions,
the modes may be truncated and the reduced set of nonlinear equations
integrated. It should be noted that these assqmptions are frequently
reasonable and lead to good results, Some truncation can almost
certainly be justified since the highest modes are usually more a
reflection of the details of the finite element model than of the sub—
structure itself, The degree of truncation suitable for a given
problem is sometimes determined by repeating.the.simulation several
times, with differing degrees of truncation, and observing the rate of

convergence of the solution,
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Section 3

STRUCTURES

A structure will be defined as a finite collection of interconmec-—
ted substructures. The interconnection mechanisms will be classified
in three categories: those producing‘knbwn forces, those producing
known relative motions, and those with a known relationship between
forces and motions. The interconnections_produciﬁg known forces will
be treated as external forces on the system., The interconnections pro-
ducing known relative motions constrain not only the nominal motion of
the structure but the disturbed motion as well, The interconnections
yielding relationships will be assumed to be in the' special form of the
sum of a large known motion (i.e., constrained for nominal motion) plus
a linear force-displacement relationship for small disturbed motion.
Although arbitrarngonnections can be treated by direct numerical
integration of the connection relations and equations of motion, a
reduction of the equations is possible in certain cases, These reduc~
tions are the primary subject of this section.

3.1 Constraints

An interconnécfion relationship that prescribes some aspect of the
relative motion between two substructures is called a constraint, Con-
straints may bé broadly categorized as either equality or inequality
constraints, inéquality constraints will not be specifically treated;
rather it is recommended that they be treated as two separate problems,
unconstrained, and_equality constrained, with the integrator constructed

to detect the passage from one regime to ancther.
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There are some discrepancies in the literature as to whether or
not an inequality constraint may be classified as holonomic, However,
among the equality constraints, a constraint is classified as holonomic

if it may be expressed in integrated form

ote, 2, ..N, v =0, (3.1-1)

and non-holonomic if it must be expfessed in differential form

N
> lalt +ade =0, (3.1-2)
i=i

where the ig are generalized coordinates, and the coefficients «, ia
are functions of iE and t. The differential form of constraint

(Equation 3.1-2) is known as Pfaffian form. It should be noted that a

holonomic constraint in the form of Equation (3.1-1) can always be

written in Pfaffian form by setting 1u = Ei s O = %%-; but the converse

is not true. BiE

Constraints may be further classified as catastatic if oo = 0 and
acatastatic if a # 0., A coastraint is scleronomic if it is independent
of time, and rheonomic if it is explicitly dependent on time, Again
there are discrepancies in the literature as to whether this classifica-
tion can be applied to non-holonomic systems,
3.2 TInterconnections

The ﬁosition of any point in a substructure is defined by the
variables of C%, R, and jaﬁ Thus a non-holonomic (Pfaffian) constraint
between the s-th and t-th substructure may be expressed in the form

Sy Bc%gScB 4 t, ta0iteB

S S [
cd¢"+"B+d R+ "B *dRrR+ T4,
al Yo Ty af YO Ty T2 =7 2 31

+ Er d;& + Adt = 0 (3.2-1)
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The variational form governing the structure is the éum of the
forms for the substructu;es and terms géverniug the intercbnnections.
The constraints may be incorporated via Lagrange multipliers. If there
are "C" such constraints among the "S" substructures, then there are

"¢g" gubsidiary conditions of the form

cs K. St cs, ,d s csn _d éA c (3.2-2)
i::l(é 8 + "B g R jrdtjq""ﬂ‘:n) .

where ¢ = 1, **+, C and

cs

_ . eB s . d]s.0 ecs a
A= (E s CY[.CY AaB]) asx'e
=€YB{1CSA —-._a_‘._
aB 3% Y

In addition, the term

C 5 -
-f* > TS (CSA Sc® §5¢° + %5« 5% + °°r 5?3) (3.2-3)
T {c=l g=1 B Y ¥ - B J :

is incorporated in the variational form, This results in an additional

.

term in the translational Equations (2,3-3) for edch of the substruct-

tures
32 af a‘ .
s s s s 1 s S=, 8A s 5=, SA
M {7 R+ — "' x "P + — 7" x Yp' Tg + 270" x Tpt
el - 8t = 0= T3 = T g- 33T o= Tyl e
‘ . . C
+ 501 x (Sg' x Sﬁ') + 50 x (SQ' x S.ﬁ')‘f’cﬁ‘ + 5550 | = % + 3 CA%Sp
= - - - - - /37 3= e
(3.2-4)

The substructure rotational Equations (2.3-4) also gain an additiomal

term
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s a' s 5 s 8 @ s 8. 8 s 9 8," sA
s =N+ X TL e R+ = TR . + ¢ — "8
I T T L I T
8" s, 8A , 8 85" 8A , s 5 s ' v
+ "0 « 71 + 71 1] + 70 x(7Q" » J1)8Ah . 8 8y , 8q SA
= "=t T = =y ("2 j=)jq+8xj£, g 49
2 2 . .
5, 8='_ 9° =8 8y 85 2 S. 8A , 8. SA , 8a' 8 Sh
+ 5% 3% 'x —_ "R+ P'x R.q+ .0 .9+ 82 x-07q
0 at2 h| at2 -1 i= 3 -3
C c
=T +% x4 (3.2-5)
c=1

Finally, the deformation Equations (2.3-5) acquire an additional term
t t 1 t ] 2

s 8 8, = 9
-Sﬁ.'ji' 8?~§"ij= 0 zq'f'sM;g'—_z"sR-i-ZSQ"szza
2 R+28 0
L3 v 4 8 3' 8., A S sA
3 9ty 2 At jsz,qu”jsz, 9,‘1"'35&1(&‘1
c
C

In general, these equations or their counterparts in modal coordin-
ates (i.e., with n's instead of q's as in 2.6) with Equation (2.2-13)

after some action to eliminate the redundant rigid body modes, must be

numerically integrated for the ®)\ as well as the SCE, SE, sﬂ, ;a, since

CSE'CS Cj

are force deflection relationships, the forces become additional param-

T are, in general, functions of CS’ R, jq, and time. If there

eters and the relationships become additional equations.

The redundancy between the rigid body modes inherent in the Q's and
the frame variables permits the partitioning of each constraint into a
nominal and a disturbance constraint. The nominal constraint is deter~

mined by setting all ja ={ (i.e., the zeroth order term in 3) and the

h|

disturbance constraint is what remains (i.e., the first order terms
A

in jq). Although doubling the number of constraints is not usually

possible, the redundancy permits it here as long as the nominal
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constraints are not contradictory (e.g., no rotation between two
substructures about an axis and a prescribed rotation about a parallel
axis is not permitted), This is equivalent to not allowing the inter-
co&nection to enforce deformation, This may be relaxed, if the
enforced deformation iz sufficiently small, by including the incom-
patible term in the disturbance constraint instead of the nominal con-
straint, If the ja are thought of as the primary wvariables, and the
frame variables as redundant, and the distrubance constraints are
thought of as primary, the redundant nominal constraints can do no
more than eliminate some of the redundant frame variables, If the
constraints are not contradictory, any excess of nominal éonstraints
can be at most redundant,

The doubled set of constraints may be introduced via Lagrange
multipliers, as before, except there are now twice as many, and their
coefficients are either zeroth or first order in the ja' The analysis
proceeds by eliminating constraint forces; excess coordinates, and
redundant equations wherever possible, recomputing eigenvalues and
~ vectors for any constant coefficient portions of the equation, and
integrating, taking some action on any remalning redundancy between
frame variables and rigld body modes. The following sections outline
the procedure in more detail for a special class of constraints.

3.3 Rotational Constraints

Thé equations governing the behavior of a structure may be sim~
plified for sﬁecial classes of interconnections. The remainder of
this study will illustrate the procedure for one such class. Each

interconnection will allow only one translational and one rotational
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degree of relative motion along a single axis passing through and con-
nected to a single point, O, on a substructure, s, and a single point,
T, on a second substructure, t. (Any substructure may have several
such interconnections at several points.) Thus four degrees of free-—
dom are comple‘tely'constrained and the remaining degrees of freedom
may be eilther unconstrained, a known function of time, or a amall
motion satisfying a known force-deflection relationship. The restric-
tion to a translation and a rotatlon about a single axis (known as a
screw displacement) is not as restrictive as it might appear, since
trivial substructures (i.e., massless rigid bodies) may be introduced
to represent more complex interconnections,

Two substructures, point connected with one degree of rotational
freedom must have bases related by

1 o 0
3 ] a1 3 d 3 st st
[a,syl 552 asy3} l:atyl’aty?aty?o 0 cos "6 sin "76](3.3-1)

t
0 ~sin %% cos °70
Jd
d
whereby . is a dextral orthogonal basis in substructure s, and
3y
F:

< in substructure t, with both 2 and-—gﬂ— directed along the

I'Sten

axis of rotation from s to t. is then the rotation of t relative

to s in the gense indicated. Such a set of axes can always be defined
in terms of the deformed body axes by a set of direction cosines

depending only on the substructure geometry

254 0 o 35.8 (3.3-2)
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(The image of the material event space axes under the position mapping
provides such a set of coordinate axes which participate in the deforma-

tion.) The direction cosines between these axes, -—~§r— and the

Bsdx o ®
coordinate axes of the substructure, _gﬂﬁi , are given by
o x ™

2 __sdf_2 (3.3-3)

38, O o asdx'B
where s o “

d.P'"(0)
SdCB = & 4 _‘j:_‘_____ .‘?q

when the images of the material axes coincide with the physical axes
in the reference state (otherwise there is a constant matrix which may
be absorbed in the geometric, SgCE). And where the direction cosines
have this simple form because the elongations and sheafs have been
assumed small in comparison to one. Finally the substrﬁtture basis is

related to the inertial basis by

9 _s.B_9
G Ca Bsx's (3.3-4)
Combining these relationships provides
sg.B sdy s 8 _ stotg,e td.z tn 8
CY CS CE = CB CC Cn Ce 68 (3.3-5)

or rearranging

st.o _ sg.B sd.y s.6 t . td nn tg.a
Cg = "Cy . G5 Co G ¢, cn (3.3~6)

Expanding the deformations gives

1 8 ¢ c
P (0)° _, . 3,P'(1)
sth - sgCB 56 + i iq SCG tCC 6; 4 ta tgca
B YN YT gy e e\'n” ptn n

' (3.3-7)
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The nominal constraint {i.e., with a = 0) may be obtained from this

|

as

stOCa

B § 76

= 58cB scY tcE tgpa (3.3-8)
Y £ ‘
t.c 8.Y
This relatlonship may be used to determine either Cé or CG in terms
of the other and 96. The equation is not suitable for direct inclusion
as a constraint because the direction cosines have only three independ-
ent terms (i.e., Equation (3,3-8) represents three constraints) but

Equation (3.3-8) represents nine equations. The number of equations

may be reduced to three by writing the Pfaffian form

- ged, S0l 2 o0 (3.3-9)

Inserting Equation (3.3-1), it may be seen that the values of Equation

(3.3-9) are §

1, 03 ; 6 =2, 0; 8§ = 3, 0. Defining

stQ.' stQ » ?

2 = ® St (3.3-10)
y
where
3' - teB _2
oty @ o atO.yB

and inserting Equation (3.3-8) in (3.3-9) gives

st0.'¢ iﬁsgssetntgy
9] = e o E
ZY“[CE CC CC Cﬂ

sg-.B 9 s 6t Ktga K sg.Bs.B 3t Ktgo
[ Cogg ¢ ¢ "Gt ¢ C c C
(3.3-11)

Noting the identity, Cg Cg = GaY, and regrouping terms gives
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1.8 tgat}cspsﬁtcnthY)
)(‘2Eya Cc €1 B0 O S Ty

_(s.u 2 8.8\ 86 (t n_?;_tk) ts (3.3-12)
- ( ¢} 3t CA) Mg+ \ Oy ct‘ A _
which is in the form of Equation (3.2-1), The assoclated vector
coefficients (3.2-2) may be calculated as .
56 B sd 2
é_ = & A ——
ué L] 2%x B
p.eh 80, 8 _ | (3.3-13)

- . NK nK ath
Noting the identities in Equations (A,9-15 and -17) of Appendix A,

and using Equation (3.3-8) these formulae become

sﬁé GB ( 1'35 tgca tCk ScH SCG tcn thY ) ]

w7 2 Tya 'S S T A o n asx'B
- b 1 _6 sg.c st0.o st0.y sg.v 3
Eue (_ 2 eya_ Cp . Ce RV BSXlB
B8 sgesgVv|{ 1 _8& st0.o std y) sg.L @
= £ - - r————
u6 Cu Cq ( 2 ya Ce y Cg Bsoy'§
- z stl0.& gto v 1 .6 at0 n __g___
Fev. Ce C\J(— 2 EYOI. CC 4t0_ "N
¥
_ M ( 1.8 ) -3
= € -z € —
oy 2 Yo atoy n
a L]
= Tfo (3.3-14)
d v :

and
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tGA _ B (_ 1.8 gLy tgcu) 9
n K

! -
- nK 2 Yo 5 Ex g
_.B tgytgaf 1.6 \tg.e 9
"fme On 2 Yo “s T0 e
9 Y
_ € (__1_ R ) 3
o 2 yo a1:0y £
_ 3
- t0 'S (3.3-15)
9y

B

1l "B.le ¢
) A 7 sy w8 Aue

1
2 (Gﬁu 679 - S0 éyu)Aue
= AGY (3.3-16)

since the A are clearly skew-symmetric. Inserting this expression

in Equation (3,3-12) provides

to ¢!
B Q 6 e _ 88 . 561}. - tg . t5é (3.3_17)
B su'd 56 . s6'B
€ —
since 18 CA 3t CA and A " are both the betath component of
vectors expressed in the —élr basis., Noting Equations (3.3-14 and -15)
8 x
and rearranging
t 2 st0 8 J
3. = 2 + T8 .
- t0. 75 ~ t0 '§ - Tz
>y 20y 3t"
to . 8o .y st(}ﬂ v (3.3-18)

This provides either tﬂ or 39 in terms of the other and Btoé (much as
Equation (3.3-8) did for direction cosines).

Returning to Equation (3.3-7), the disturbance constraint
obtained from the Pfaffian form analogous to Equation (3.3—9) is (to

linear order)
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sg.B A 3 s AtV vitg.o
[ CK GK 3t Cu CU 5€ CE

tg o ” (3.3-19)

Since the nominal constraints must be gsatisfied, any linear combina-
tion of proﬂucté of the constraints with terms of linear or higher
order in S& may be added to the disturbance constraint, In particular

3

the second terms may be replaced by

1l_p /st0 ¥y 3 st0 a)tg.,p td.mtg b
2€Ya( cf 3 CB) cP el FBet

; é ‘[SgcB aé scﬁ tce 69 tgc}']
recdR e
sgCB 6)\ s l): _a';:Lth ‘SZ tgcg:”tgcp tdc'g tgcg
Aa] [t dr e e
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Using the reverse of the identities, this may be re-expanded to

_1.T [%g B gd € s L t 8 td ! tg. ¥
3 EY l C CC Cﬂ Cn Ce Cl]

c C

sg.B sdk 9 s A t.vtdfi tg o
[c cy 3¢, o oy By

At vtdf tg a]
C C C
| TORT N £

tdCG tg T tdcﬂ tgcﬁl
o g o i

1.6 [sg Bsde szt 0 tdl tg.y I
= — E
2 [ C CC Cn. c Ce C

sg. B sd Kk 3 s}tV td.f tg.o
[ C Cy ot CIJ Cu C, Cg

K 9 s A tvtdi tg a]
X 3t c, ¢, O Sl

(3.3~21)

This may be recognized as the negative of the middle part of the first

term in Equation (3.3~19). Defining

(3.3-22)

Equation (3.3-19), as modified by Equation (3.3-20) may be written as

stg'G _ st _Dﬂ'p tg.p tdm th(S
0 o

led |sg.B sd.e s.C t. 0 td btg vy
= - =€
2 yo [ ¢ CQ Cn Cn “a Cl]

[éch sw(c)k sA 8¢ ﬁ tCz tdcs tgCE

58 B sd .k sCA tcv t Vv tA tg
+ S8l 2%l fcl fo) fwnyy 13 cg]

s8,, 8A t8. tA
iF 14 + jF jq
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where '
' - 3% (@
aTx
which is in the form of Equation (3.,2-1), This may be expressed in

and summing

vector form by muitiplying by t35
- b4

T t
Stg _st0 QP tgcg tdcw tgcé d

o 'ITBtS
' y

§ [sg B sd.e s.0 t.0 td 1 tg Y]
E
C CC Cn Cn C8 Cl

C

[sgCB Sw(U)A s A 5q ﬁ t x tdci tgcE

BB sdk s £Vt vtﬂ tg ] 3
C O Gy v 3

+ ° ¢y S¢c —~—
6
25 y

_s8d K s A 8A 1.0 3
- % iw(O)K 19 (" 2 ECA) s To

3 x
tdit tA 1 )
RIO¥ q(w-— )“—7—
£ P 2 atx o
1 A A ‘
" -3 iw( 0, f4 - €5 vy a}- (3.3-24)

A .
The product Cyq may be recognized as ( for that direction cosine matrix,
However, since the rotation is zero to zeroth order in q, the angular

velocities are defined by

+ 10 spesh 10 2% ()
| %%
t‘P(T)O=' _le" tw( )t = _Lgo ?)tP("rfL 3
; BRI IO _j?;ii__ : (3.3-25)
3 x
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which are just the theory of elasticity definitions of the rotation
due to deformation. It may be noted that thegse are known constants
once the assumed deformation fields for the finite elements are estab-
lished (in the case where nodal rotations are selected as generalized
coordinates, and if the points of connection between substructures are
nedes, this 18 just a Boolean array, one for the 1 = tﬂe rotation at
the point, and otherwise zero.) Defining the vectors

8 8 G 3
©= W@ ——,

t t. o J
40 = V(D S50 (3.3-26)

Equation (3.3-24) becomes

Stoy | st.0p'

I [ TG R (3.3-27)

The terms I' in Equations (3.3-23 and 3.2-1) may now be recognized as

56 8 3

if == k(o) e

té _ t . _3d _
3T = jk —-—-atya . (3.3-28)

This disturbance constraint may be thought of as providing either some

A ' '
a in terms of the other and St@ and Sto@ .

of the ;é or the i
In summary, a one axls rotational constraint is incorporated via

Lagrange multipliers with constraint Equations (3.3-12 and -23). The

additional Equationé (3.3-18 and ~27) are incorporated in the system

of equations'with the definition in Equations (3,3-10 and ~-22) implicit,

The nominal rotation, Stoe, is either a known function of time
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(including zero) or unconstrained. In the latter case, the first

line of the constraint equation may be though of as introducing the

. | 11
new variable, Stoe. In this case the variations Ollﬁ StOB, - A SStOB,

11
and .} 6St°e, must be included. When stOe is unconstrained, Sty may
be selected in two ways, First, if it is desirable to include the

total (nominal and deformation) rotation in the frame state variable,

8t0 st st0

8, set = € = . 1In this case the first line of Equation (3.3-23)

constrailns the deformation rotations to be the same in each substruc~

st0

1.1 1lst '
ture, In this case, the variations - A § 0 and A ¢ 6 cancel, pro~

' 0.1
viding the staticnary conditon A = 0, Second, if the frame state
st st

variable, 0, only represents the nominal part of the rotation, 8,
is arbitrary., In this case the first line defines the new variable,
st ' 0.1 1.1 1.1

B, and there are stationary conditions A = A and A = 0. The
second method is pfeferable because the associated free boundary is
consistent with the physical system, and hence modal convergence may
be improved. (The first method does, however provide an opportunity
for modal synthesis).

When the nominal rotation, st0

B, is a known function of time
{including zero), the rotation due to deformation may be either known
or arbitrary. A known function may result from several situations. If
the nominal motion is a non-zero function of time then the deformatiom

SFQ‘- Stog, or the sum of

may be the correction for the deformed axis
such a term and a small known motion not included in the nominal, If

the nominal motion is zero, the deformation may result from a small

known prescribed motion (possibly incoppatible with other nominal
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constraints) or may be zero. Such cases can bé directly included,
However, the case of arbitrary motion requires special treatment,
Any arbitrary disturbance motion (in the presence of a known
noninal motion) muét be small. To maintain smallness there must be,
in general, a restoring force. If the force lies outside the system

being treated (e,g., a controller), the disturbance rotation,

stl ste

B = -Stoe,can be introduced via the first line of the constraint

and it may again be noted that lll = (., The restoring force 1s treated

as an external force on the gystem. If, on the other hand, the restor-
ing force machanism is included in the system, there is a known force

deflection relationship governing Stle and the Lagfange multiplier

(stl

does not vanish., If F = f B ) is the force on the mechanism then

the temm FSStIB must be included in the system variational expression

stl

to reflect the virtual work done on the mechanism., If FS§ B is a

perfect variation, the form 8V may be included instead {e.g., if

F = KStle, V= %-K(Stle)z). In either case, the coefficient of the
variation, GStle, is now lll + F with the statiomary condition lkl= -F.

The substitution —f(gtlﬁ) may be made for lkl in the equations, or
1,1 '
A" may be retained as a variable and the equation 1l1 =-f (Stle)

included in the system of equations. (With _EI directed from s to t,

Bys

lll is a clockwise torque applied to t and tly 15 a clockwise

deformational rotation as viewed from s.)
3.4 Translational Constraints

This section continues the subject of single degree of freedom
point constraints, introduced in the previous section, In this sec-

tion, however, the single degree of freedom will be taken to be
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translation along the axis M o, If Stg is the magnitude of

38 1 t 1°
y- 9y
the translation, then defining
st st, 9 | '
g =% 2 (3.4-1)
"y

The position of the connection point of t may be expressed in two

ways

st

] ]
® + "p(D) = *p(0) +

=]

£ (3.4-2)
or rearranging

st, _t t.! t 1 . th 8 s, ! s b . sA
E= R+ 48 (D + jg(r) 44~ R - oR(® - JB(0) Jq, (3.4-3)

The nominal part of this is

1 ]
% = R + {20 - R - Sp(®) . (3.4-4)
or rearranging
R S Sgkc) - gk (O (3.4-5)

This relationship may be used to determine either tB or SE in

terms of the other and Stog. This is not in Pfaffian form. The

Pfaffian form will now be obtained for inclusion in the system equa-

tions,
Taking the dotnproduct of Equation (3,4-3) with E 5 8ives
3y
st,o _ tg.o td.B t.y £.6  tg.o td.B t Y
£ Cg ~ Cy € R+ ey Y P (1)
_stosg.Bsdys.ds e st.osg.Bsdys
Cg C, Gy €. R Cg Cy C5 P (0
1
- tgcg td $ te Y RG + tgcg td B t p (t)Y
) 1

- "8l tdcs fcY %r® - "B tdc$ ‘e %5 %p @ (3.4-6)

where Equation (3.3-6) has been used.

91



Differentiating this gives

S3 8t o el tyenyf 54 ) =° + "Bl Sy gé ' ()Y

B j‘I’(T)Y tA to g thS g0 lb('r)Y bA t \(g SC§ SP'(U)E

tg.o td B9 ty t.,§ tg.o td.B3_ t.y sp0
+ CB CY_Bt CG R CB CY T C6 R
_tgotd B3 t.)ys.Es,', € tgaotdBtyd s s’
Cg C.thé Cs P (o) Cg  Cy Csap Cs © (@
tgotd Bty 3t d tgotdB ey 3 s.6
+ CB '_CY C(S 3t R CB CY C(S T R
tg.o td B t ' vy th  tg.a td.B t .y s.E s, (€ 8A
+ "Cg CyjP (M) 54 Cp Cy Cg Cg 4P (o) 9
(3.4-7)
The nominal c:on.straint may be determined from this, or by differentia-
ting the dot product of Equation (3.4-4) with tg v g 28
377y
_9_std tg.o 9 t.Bt. 8t 8t e tg.a dt.B bt sE
7T 2 Co 5 (:Y CY Cc R - “Coap CY Cy ¢, R
_tga 3 £ Bt dtds s Q_tgatBsGsﬁ__@sCSP'E
Cgge Cy Cy C¢ CC P (o Cg €y Cy € 3¢ Coo
tg.oo t.B 9 t )y tgot.B 3 sy
+ CB C'Y T R CB C.Yat R
_ s 8.8 3 8T\, t (ta ats)
B AGE ( Ce 36 Ce )+ Asg CY t CY
+ °B (——-3 SRY)+tB (____a RY | (3.4-8)
Y\ ot y\at *

This is in the form of Equation (3.2-~1) the associated vector co-

efficients (3.2-2) may be calculated as
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S0, nég éa ?
A=c¢ Ay, —
A 38, N
néz tg.o t.B 5.8 s %) ]
=g C, C° 7C_ P (0) i
( B8 vy yoO 35¢ G
_ _jtega t B s b 9 s ', L
( Cg GY CY e 't’5>x(0P @~ —3 ’C)
X
_ d s !
= R OE (o) (3.4-9)
8y
and
Lo, nék ta )
A= ¢ Asg AE T

o NéBltgo t b t e  tgo t. s.E
E(CBCER CBCER

I
1
o
o]
[}
™R
ol
(ad L7
»
™
~———
x
/—:\
[ap]
M
-+
=]
jul
m'
(n3
L (¥
o3}
\\_.-'/
+
T
39
0O
= &
<%
t
P £
V
>
e~
(4}
M O
13
=
[y}
=
-+
L K P
\._I_/'

- t ] s o s, -
Tt R S0 Ta R YR ToTor (@) (3.4-10)

Similarly, the other coefficients are

B = - tgcg tCB ]

Y 3x‘Y
e v . (3,4-11)

and

- (3.4-12)
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The nominal constraint in vectorial form may be obtained by multiply-

ing Equation (3.4-8) by —E%er
0

' 3
__93stla 9 _tgo 9t Bt 6t dte .
ot 2 atoy'a = %5t CY CY € R Btoy @
tg.o dtBt bt bse 3
- Ceae Oy Gy G R St0 T
y
_tgo 3 £ Bt Ot.6s L s L 3
g 3t CY CY Ce € oF (@ atOy‘a
_ tg.o tBs.5s8.8 8 s.Cs. T 3
% % %y e Ceof 9 Tm
y
tg.o t.8 9ty 9 tg ot B 9 sy 3
+ g CY 5t © Ttofa OB Cy 5t} .E0 'a
d y 9 'y
(3.4-13)
or
1
Bt0§=-t9xt1_’~+t5}><8§+t8xg£ (@)
! » L ]
- % x 5P (o) + "R - °R (3.4-14)

which may be recognized as the nominal part of Equation (3,4-2), dif-

ferentiated in the —E%—T reference frame. This may be rearranged
. a %
slightly to

t

- v . 1 .
=2 x R-Tax k- ax S @ + %R+ %2 x 5P (@) +

2
(3.4-15)

Noting Equations (3.3-18) and (3.4-5), this may also be written as
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s, -, 8.°' £ S, B, ‘)
+ "R+ (P (0)- P (1)- "R~ P (0)

+ sé-+ 59 y SE‘(U)+ stOé
- s33 x Stbg _ 59 N ;E'(T) + 59 . SE'(G) + Sé N stog N St0§
_ StOQ' N ;E‘(T) stOg (3.4-16)
This may be thought of as providing either'ti or SE in terms of the
other and stOg .

Returning to Equation (3.4-7), the disturbance constraint may be

obtained by first multiplying Equation (3.4-8) by tgcé tdcg tgcﬁ,
tg.1 td .6 tg.o stl.o
Ce Cn Cn R
_ tBol td B 3 tch t.d t.8 tpe
. 6 n ot Y Y €
tgl.tde'atntﬁtésr-:
- g e 5 © €y C R
tg,1td® 3 tnt.6t.6s. s, C
- C8 Cn T CY CY CE CE 0P (o)
tg.1 td6 t.ns.&s.8 09 s.C s, z
- Ce Cn CY CY CE e CE OP (o)
tg 1 td Ot n_3 ty tg.1td b tn_3 sy _
+ Cy _Cn cY 5T R 5 Cn CY--—~—3t R (3.4-17)

The first, second, fifth and sixth terms of (3.4-17) are the same as the
fifth, sixth, ninth and tenth terms of Equation (3.4-7), so subtracting

(3.4~17) from (3.4-7) provides the disturbance constraint,.
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AR TO M I e A N T R SR RO
- tgc% tdcf? %tcg tcg tcz 502 P @ ic’f

- B3 tdc$ fe} %cg °c; o °c; % (" %

+ tgcg tdc$ ;P'(T)Y ;3 - tgcg tdcg tcg Scg iP'(U i‘&

- ", (ch -3—2 *c ) + tO‘AEY ( fet %E tcg)

+ S‘;r( 23) +5T (;3) (3.4-18)

This is in the form of Equation (3.2-1). The associated vector

coefficients (3.2-2) may be calculated as

S0y ESEH a0, 9
- EN asx'e

]
= ¢%en (—tgcOt *6B oY 5cS % (o))" ia) e

B Y 5B, ]
_ _f[tB.a td Bty s 3 g, ;Nnsr 3
( CB CY Cs Cs asx'e)><(ip (@) 14 Bsx'n
e e 2 xS () 84 (3.4-19
- aty'u RN 1 19 +4-19)

and
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Similarly the other coefficients are

80, _ _tgotdBtyseEes
iP _ CB CY 06 CG iP (G)
~ -y .8y
"t i@
y

and

3 6
~ tho: tw( )’Y tCY 8,0 _ tg
tg.o td B t ', .y
+ "°Cg CY jP (1)
) [5‘2(” *(513 T NOTR

This can be expressed in wvectorial form by multiplying by

E- - - fumfdx R -y

[}
c” ¢ 3 S (o)

(tgcg tdCB 3J )><(tcg SCC s

tar _ tgcu tw( )Y tCY tRS + B Ew(T)E tP'(T)Y

C6 P (G)

R - S0 Hx (o + RIC jq x SR

(3.4-20)

t3.4-21)

(3.4-22)

atyﬂ

]

ot tA s! t s ! 8A s s_! S A
F P qax gR (o) + 7R x P (0)q - TQux P (0) [q

+ jP (T) €A
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where it has been noted that iw(o)g is skew-symmetric for small

deformations. This result may also be obtained by differentlating

Equation (3.4-3) in the ——jir— reference frame.

oy
3 st ks ot t, ¢ EA Lt t tA _t
S E= R~ xR~ jg(r) jq R ~ jQ(T) jq ® 0P (1)
+ §g (r);é - %R+ 0 x %r o+ ;g(r) ;é x "R - %0 x 82'(0)
+ % x % (o) + §y(r) jq x SBT(U) - 4 (o) ié - 5q

x

s,' sA , & s ' 8A
i£ (@ ja+ " x P (0) ;q (3.4-24)
and subtracting Equation (3.4-14), Noting Equations (3.3-18, -27 and

3.4=-5) , Equation (3.4-23) may be written as

£S5 = - v 4 w(r>§ﬁng (1)

b ; (stO

s 85" t,!
£+ "R+ 5P (=g (D)-

3=

t A ' ' £0.!
b Jax P (0 + (Sg + %570 )

IRTON Y B
1 1
x :2 (o) :a - 59 x ig (o) iq + jP (M jq - P (o) iq

t tA t0 t0.!
= - jw(T) 54 x 8 £+ s 2 x i— (0) iq + (T) jq

s ! 8 A
The terms in this expression may be identified by noting that the
identity

st0

st g - P @ 34 + p (1) 54

W
il

j (3.4-26)

differentiated in the —%— reference frame gives

9y
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L - (Stog B ;MT) ;3 X Stoé)‘ (iﬁ'(c) 4 - *%" x 2 (@ ia)

1
+ By 4§ : (3.4~27)
3= 3
This disturbance constraint may be thought of as providing some of
the ;a in terms of the ia and Sté.

In summary, a ;ingle axis translational constraint is incorporated
via Lagrange multipliers with constraint Equations (3.4-8 and -18).
The additional ﬁquations (3.4~5 and -26 or -25) are incorporated in
the system of Equations. The nominal translation, StDE is either a
known function of time (including zero) or unconstrained. In the

latter case, the first line of the constraint equation may be thought

of as introducing the new variable StDE. In such cases, the variations

0A165t0€,-1 168t05 and lleStg must also be included in the variatiomal

st0
form. When € is unconstrained, there are two ways to select st

E.

First, if it is desirable to include the total (nominal and deforma-

£ = stOg-

In this case, the first line of Equation (3.4-18) constrainas the deforma-

st0 st

tional) translatidn in the frame state variable £, set

tional translations to be the same in each substructure. The varia-

tions —1A163t0£ and lAIGStE cancel giving the stationary condition

0,1 _

by StOS

0, The second option is to let the frame state variable, ’

represent only the nominal part of the tramslation by making st

£

arbicrary. In this case the first line defines the new variable,stE.

There are stationary conditions‘llx = 0, and‘o?\1 = lkl so that

Oll = 0 also. The second method is preferable because the associated

free boundary is consistent with the physical system, and hence modal
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convergence may be improved. (The first method, however, does provide
an opportunity for modal synthesis.)

When the nominal translation, Stoﬁ, is a known function of time
(including zero), the translation due to deformation may be either koown
or arbitrary. A known f;nction may result from several situatioms. If
the nominal motion is a non-zero function of time, then the deformation
may be the correction for the deformed axis, St§ - Stog, or the sum of
guch a term and a small known motion not included in the nominal. TIf
the nominal motion is zero, the deformation may elther result from a
small known prescribed motion (possiﬁly incompatible with other nominal
constraints) or be zero. Such cases can be directly included. How-
ever, the case of arbitrary motion requires special treatment,

Any arbitrary disturbance motion (in the presence of a known
nominal motion) must be small, To maintain smallness, there must, in
general, be a restoring force, If the %orce lies outgide the system
being treated (e.g., a controller), the disturbance translation,

StlE = StE - Stog can be introduced via the first line of the cons-

traint; and it may agaln be noted that 1h1

= 0, The restoring force
would be treated as an external force on the system. If, on the
other hand, the restoring force mechanism is included in the system,
there is a known force deflection relationship governing StlE and the
Lagrange multiplier does not vanish, If F = f(StIE) is the force on

the mechanism, then the term FGStlE must be included in the system

variational expression to reflect the virtual work done in the mechan-

ism, If FSStlE is a perfect variation, the form OV may be included
2
instead (e.g., if F = KStlE, V = %—K (Stlg) }. . In either case the
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coefficient of the variation, SStlE, becomes Lt + F with the station-

ary condition ;Al = «F, The substitution —f(StlE) may be made for lkl

in the equations, or 1Al may be retained as a variable, and the equa-

’ 1.1 stl,_ ) . , . . 3

tion "AT = - f £) included in the system of equations, (With 1
: : i oy

directed from s to t, lkl is a positive force on t, and StlE is

a positive deformation displacement of t away from s.)

3.5 Elimination of Constraint Equations and Forces

Thus far, constraints between substructures have been incorporaﬁeq
via Lagrange mulﬁipliers. They may be interpretéd as forces ( and
torques) on the substructures, due to the constraints. The number of
system equations has been augmented by the C constraint equations, and
the number of wariables has been augmented by the C Lagrange multi-
pliers. In some cases, it is desirable to retain the A as explicit
variables., This practice may even be computatiomnally more efficient,
However, if the integration forces are not of interest, there is fre-
quently a computational advantage in reducing the dimensién of the-
system equations by eliminating them (and the associatea equations),
Even if the forces are desired, it may still be advantageous to elimin-
~ate them and subsequently recover them,

The nominal translational constraint (3.4-2) results in constraint
forces (see.EquatioﬁA(3.2—4)) on the s substructure (3.4—1l)

0,1 3 0,2 J 0,3 d

and on the t substructure (3.4-12)

0,1 3 0,2 39 0,3 3
T SR s A (3.5-2)
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and, in addition in constraint torques (see Equation (3.2-3))on the s

substructure (3.4-9).

0.1 2 5T 0.2 9 s ! 0.3 2 s '
e A G o T B L
a9 3y , 9y
(3.5-3)
and on the t substructure (3.4-10)
0,1 3 0.2 3 0.3 3 s s, t
(A wrat At t0'3)x(§+03(c)‘3—)
47y a Ty a7y
: (3.5-4)

The torques can be eliminated from the rotational equations by sub-

rracting the cross product of the s translational equation with

] .
82 (0) from the s rotational equation. And, similarly, subtracting
1
t
the cross product of the t translational equation with SB + gg (o)~ R

from the t rotational equation. The resulting equations replace the
rotational equations, but the translatlonal equations are retained
for no net change in the number of equations. (This effectively
translates the origins to the nominal attachment point on the s
substructure.)

The constraint forces can be eliminated from the translatiomal
equations by summing the equations for the two substructures. The sum
replaces the individual equations resulting in a reductiont by three

: ' st0
equations (and three A s). 1If £ is arbitrary, the constraint has
added St0£ to the system variableszs, so another equation is needed,

The required equation may be obtained as the dot product of the t

d

substructure translational equation with 0 1 ° This contains no
y -

2

constraint force since only Okl is inveolved, and it is zero for this

case.
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The nominal rotational constraint (3.3-12) results in constraint

torques (see Equation (3.2-5)) on the s substructure (Equation (3.3-14))

0.1 8 . 0.2 3 0.3 9
A —to-,—,l'l" A —"E'O—-";'i‘l' A —”{6""”,“3‘ (3.5-5)
and on the t substructure (3.3-15)
0,1 3 0.2 3 0,3 3-
- A 01 - w0z - M s (3.5-6)
-y 9y 3y

Summing the rotational equations for the s and t substructures results
in the cancelling of the constraint torques. The sum replaces the

individual equations in the system equations resulting in a reduction

’ ) a
by three equations {(and three A ). If btoe is arbitrary, the con-

straint has added st

§ to the system variables, so another equation is
neaded. The required equation may be obtained as the dot product of
the rotation equation of the t substructure with R This equation
. ' . o0 = 2 ¥ s

contains no constraint torque since only ~A is involved and it is zero
for this case. It may be noted that since the rotational eduations for
s and t are in different bases, constant coefficients for either may
not remain so after transforming to a common basis, In such cases,lit

may not be computationally advantageous to sacrifice constant coeffici-

: . . e Sto, . ; :
ents for reduced dimension, - However, if 7 70 is constant in time, or

9
t
atDy 1

if one of the substructures is symmetric about the -axis, con-
stant coefficients can be preserved,
The disturbance translational constraint (3.4-18), in addition to

forces on the disturbance equations, results in constraint torques

(see Equation (3.2-5)) on the s substructure {3.4-19)
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2
et e 2 2 R ) S ) (ausemd
t '1 t 2 t '3 1
dy 3y 0
and on the t substructure ¢3,4-20)
' .
Ll 2 h2_ 2 13 3 NS %4 (3.5-8)
t '1 t '2 £ '3 1- 1
37y 3y 3y

Since the lhl are forces on the deformational equations, they are first
order in q. Consequently, the constraint torques (3,5-7 and -8) are
second order in q and may be dropped from the rotational equations.

The elimination of constraint forces for the deformation equations
will be postponed to the following section on modal coupling. The
remainder of this section will be directed to eliminating the constraint
equations. The constraint equations may be eliminated by substituting
the right hand side of Equation (3.3-18) for each ;ppearance of t@,
and the right hand side of Equation (3.4-5) for each appearance of tg.
in addition, the direction cosine relation (2.2-13) for the t substruc-

stOQ'

ture may be deleted in favor of the implicit definition of
(3.3-10) and the fact that resolving the rotational equations in a

A st0 , '
common basis introduces 8, and makes the equation second order.

3.6 Modal Synthesis

B

The partitioning of constraints into nominal and disturbance parts,
leads to constraints between disturbance variables, 3, in addition to
those between frame variables, discussed in the previous section. As
in the previous section, it may, or may not, be computationally
advantageous to eliminate the coﬁstraint forces. 1In some cases, the

structure may be divided into substructures, primarily to obtain
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smaller, more tractable models. The constraints, in this case,

merely reassemble the pieces,‘eliminating-all six relaﬁive motions.

In such cases, it_is generally computationally advantageous to elimin-
ate the constraint forces. If the dimension of the substructure egqua-
tions has been reduced by modal truncation, the procedure is known as
modal coupling or modal synthesis,

Since the Single'degree of freedom point .connected constraints

are holondmic, it is more convenient to deal with their integrated

form, Noting Eduations (3,3~7 and -8)
st o sg . Bf.6 s § SA) sg.& st0 .6 tg . O0|/.0 .t L tA) tg. o
C, = C 5+ TY(o . C C C I X C
8 Y( NI 5 e S %yt Py d n
st o | sg € sA st o st0.§ tg g tA.
= . + - -
where
8,0 _ BB 8 g0
Vg =Bl v B
(i.e,, the rotations -resolved in the sg 7 OT basis). Recall-
: | 3"y 3y
ing Equation (3.3-1), this may be written as nine explicit equations
1o 0] 10 0] froo o[ o % %2
0 0 s8f|={o <P Lo+ o % Do Sp3 o Syt
0 -s0 <c6 0 -808 COB_ | 0 —508 COG_ -Swz s¢l 0
[0 +%° %% [1 o o]
[ t, 1 0 0
=g~ 0 +74 0 c¢“2 578 (3.6-2)
[+ Bt 0 ] [0 -s% <%
. 3 t 2 ' )
[ 1 _Sy34c0pty 345008y, ,Sw2+soﬁt¢i3-c06tw2
s,3 0,.s,2 t,3
- Y Pres"8YT-YT, c06+3065¢1-508t¢1,soe~0085w1+c08twl
=3 2 5 t F
—soest—c088w2+t¢ i -506+c08 wlucoe wl,c°e+s°esw1-soetw1J
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where the abbreviations are defined as

ch = cos(StG), s = sin(Ste), CDG - cos(StOB), 308 - sin(Stoe),

s.o 1 uB sg Yy sp to 1 aB kg Y tA

¥ = 5 &3 Bpi ) 16, B = g P o]
Noting the small angle approximations, cos £=1, sin e=e, and the
sum of angles formulae sin(xty) = sin x cos y + cos x sin y, and

cos {x+y) = cos X cOS y — sin x sin y, the (2,2) (2,3), (3,2) and (3,3)

elements all yield

]
sty _ stO _ sgw(O) sA t?w(T);a (3.6-3)
where
g _ 1 a gy
v 2 EB_Y IIJB

-,L n gt g-a
T2 Eéel% Cn
_ B N

The (1,2) and (1,3) equations may seem to be the linear combinations

_cos(sm_e) [(2,1)]+ sin(StOO)[(B,l)] and
—sin(StDB) [(2,1)}- cos(Stoe) ]:(3,1):' of the (2,1) and (3,1)

equations, Selecting these as the two independent equations provides

t§¢(T)3 tA cos(Stoﬁ)S§W(U)3 ?@ _ sin(StOB)Sﬁw(O)z SA

tflp(r)z tA cos(StO) (0?54 + 91n(5t08) Byo)’ 5 (3.6-4)

The translational constraint may be obtained by dot multiplying

Equation (3.4-26) by o
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sta=tgutd¢8'tgcé st0 “tgatdcﬁ tg stl sg.€ 8. ' (L sA
R S M S 3 % éSY ése €z P (97 59
tgo tdB t oLy EA
+ P (T ;
& G F
_ st0.a |, tg tﬂ st0 st0 a sg,, Sh
= £+ w(T) 4 é3 G 3P (of ;4
L}
+ t?p (¢t (3.6-5)
where
L L/
gp & _ 89? pB
This may be written as the three equations
stE Stog 0 t¢3 _th StDE 1 0 0 1 tP1
of=) of*t|-5%* o & o [“lo % <% 21y )52
0
0 ) C o2 —twl 0 -SOB COB 3 tP3
Stﬁg _sPl + tPl
- ‘_.st[)(g .th _ coe SP2 _ sOB SP3 + tPZ
stOp 2 4 Op Sp? _ g %p3 4 Fp3 (3.6-6)

where the abbreviations are defined by

5.0

pY = Sgp (0)

1 #
4 and p% = t?P N Ed.

constraints are

stE ~ stog _
('’

]

PR |
_5g ~1 sA
;P (007 g+
stO tg B)tn
- T
w( ) 34

(tgP'(T)B + stOE tgw( )Z)t

tg ' 1 tA
P (T .
3 (t) 59

st0. \sg,.', .3
P [cos( 8) iP (3
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1 ' 1 A
[COS(StOG)SiP (0)2 + sin(StOB)siP (0)3]iq

. (st0. \sg, ' s A
- sln( 9) iP () ]iq

(3.6~7)



The constralnts (3,6-3, ~4 and -7) are complicated by the
presence of the nonlinear nominal relative translation and rotation
terms, In genefal, the nonlinear constraint might not be eiiminated,
or might be eliminated each integration step. If the nominal rela-
tive translation and rotation are known functions of time, a non-
autonomous solutionrto the constraints might be fognd. "In either case
the calculation can be simplified by selecting the rotation and trans-—
lation at the conmection point as explicit degrees of freedom (e.g.,
boundary points in a Hurty component mode analysis). One possible
simplification is to apply a stronger constraint requiring the de-
formantional rotations and translations (normal to the axis) to be
zero in one substructure, This would be formally acceptable to the
extent that it eliminated still present redundant rigid body modes.
However, it would génerally be expected that there would be insuffici-
ent redundant variables to allow this for every constraint. This
might be an acceptable approximation if the constraint point was not
expected to participate significantly in the deformation. If the con-—
nection point is constrained on one substructure the constraint equa-
tions yield a similar constraint for the other substructure,

The greatest simplification occurs when there is no nominal rela-
tive translation or rotation. In this case the nonlinearities are
gone, and explicit solution is possible, It may be noted that the
constraints in Equatiom (3,6-3) and the first of Equations (3.6-7) are
always linear (although inhomogenocus) as noted earlier in this section,

The case of no nominal relative motion frequently occurs in modal
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coupling. The remainder of this section will be dedicated to the

treatment of this special case.

w

s

Without loss 6f generality, it may ‘be assumed that tOG and

BtOE are zero (either by changing the geometrical direction cosines

or linearly extrapolating the displacement field)., 1In this case the

constraints assume the simpler form.

_  Bg, 1 sﬁ tg 1
& = -"T¢(0)" jq + ij(T)

st th

jq

0=~ i+ Fyo? i
0= -S§¢<o>3 fa + tﬁw(rﬁ 3‘3
stg - fSEP'(O)l ia + t?P'(T)l ;a
0= -fgp'(o)z 4+ t?p'(r)z ;3
0 =A-s§P'(c)3 j& + t?P'(T)B' j“c? (3.6-8)

The union of the sets of ia and ;Q may be thought of as a vector
space. Similarly the relativelmotions on the left of Eq;ations
(3.6-8) may also be thought of as a vector space, The Equations
(3.6~8) may then be recognized as a linear function. This may be
written in abbreviated form as

{s} = 1] {q} (3.6-9)

Since the number of g 1s generally much greater than the number of s,
and prohibiting contradictory constraints, the linear function, T,

generally has a non-trivial null space (and the matrix has a rank

smaller than its larger dimension). The q can be represented in a
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new basis consisting of a basis for the null space and a set of

vectors whose images under T span the space of s.

{q} = [N} {&} + [B]{g} (3.6-10)
where

[T)(N] = [¢]

and

[T1[B]

[U]

B is sometimes réferred to as a pseudo-inverse. (Redundant con-

straints could lead to zeros in the identity matrix, however, this

ig of no concern here.) Substituting Equation {(3.6-~10 in -9) yields
{¢} = {s} (3.6-11)

It may be noted that a "B" basis vectorradded to any linear com~

bination of "N" basis vectors is still a "B" basis vector. The dis-

turbance equations have the generic form

[D1{q} = {Q} + [T1{A} (3.6-12)
where equations for both the s and t substructures have been
included (and D is thought of ag an operator including differenfiation
in time). Forming the linear combinations NT and BT, and noting

Equation (3.6-10)

T o1vIE) + T 1B} = T gy + (T [r16

H]

51T [D1INI{E} +[B]" [D][BI{z}

(3817 {q} + 81% [r1{a}  (3.6-13)

The term NTFh may be recognized as the virtual work done by the con-
straint force on a virtual displacement compatible with the constraint,

and 1is therefore zero. Thus the constraint forces do not appear in

the first equations, This is not true of the term BTFK. In fact,
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5, ;

th; second equations may be thought of as determining the A. If the
constraint forces are of no interest, the second set of equations may
be dropped, or 1f they are of interest, retained for subsequent re-
covery of the constraint forces, Only the first equations are re-
tained in the system equatioms, Noting Equatién (3.6-11), they may

now be written
T py1me} = )t fQ - [0)(B1{s}) (3. 6-14)

Since these equatlons already reflect the constraint (3.6-§), it may
be dropped from the system equations and if desired, Equaﬁion (3.6-10)
can be used for subsequent data recovery. Thus for each such con-
straint, there is typically a reduction by twelve equations, six A's,
and six ¢'s (in favor of £'s).

The use of-qne fully constrained connectioﬁ above is illustrative,
not restrictive., For instance, three substructures with four such
connections (as long as they are not contradictory) can be treated in
exactly the same manner by merely increasing the &imensions of the
indicated matrices. And, even if the connections are nﬁt fully con-
strained the two constraints, Equdtion (3.6-3) and the first of Equa-

tions (3.6-7), can always be treated in this manner. If either st

3

or 5ty 1g arbitrary, an additional equation is required. This is
obtained by adding'the appropriate (first or third) ﬁembet of the
second set of Equations (3.6-~13) to the system equations as previously

noted, the associated A is zero for this case, so the equations has no

- constraint forces.
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At this point the methods outlined in Section 2.5 can be applied
to the coupled substructures, 5o 1if constant coefficients can be
assumed, modes can be generated for the coupled system, If con-
strained modes are to be calculated for further coupling (e.g.,
Hurty's method) it may be desirable to defer the calculation of the
null space until after the static shapes have been calculated, since
phe calculation of static shapes is simplified by having the boundary
nodes as explicit degrees of freedom, and transforming to the null
space could result in variables involving linear combinations of

the boundary degrees of freedom,
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Section 4
SUMMARY
The purpose of this last section is to summarize the concepts and

o

procedures outlined in the previoué sections. As a vehicle for pre~
senting this summary, the procedure for analyzing a dynamical system
ﬁill Ee ocutlined. :

4.1 7Tsolation of Structural Elements

The first step in the analysis of any dynamic system is to define
the system undér consideration. The process involves two précedures:
defining the boundary, and defining tﬁe interaction across the bound-
ary. For instance} for a train on a track, the frack could be treated
as external to the system, providing a rolling constraint; or in.the
system, with the road bed external to the system providing an.elastic
foundation.

The second step is the division of the system into dynamical
subsystems of separate analytical types. For instance, in the train
example, some of the dynamical subsystems might be: the hydraulic
coupiing system, the pneumatic braké system, the turbqlent boundary
layer, the biolﬁgical engineert the electrical power system, in addi-
tion to the mechanical structure of the train itself. Each subsystem
might be separately analyzed, and in some cases equations géverning
the behavior éf the . subsystem might be obtained. In some cases a
trivial solution might be selected (e.g. constant tempefature for a
thermodynamic subsystem if it is not particularly relevant to the
system), or the subsystem might be excluded from the system. (This

latter case really falls under the first step, defining the system.)
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As in the firsf.steﬁ, the second step involves two procedures:
isolating the subsystem, and defining the interaction. For instance,
the acoustic subsystem loads the structure, and the structure displaces
the gas. The interactions now include not only interactions with
things outside the system, but also with different subsystems within
the system.

This study treats a subsystem identified as a structure. The
primary interactions between structure and other subsystems are dis-
placement and force (including body and surface forces). Although other
interactions are possible (e.g. thermal and chemical), they will not
be explicitly treaﬁéd. It will now be assumed that all of the dynam-
ical subsystems except the structure have been treated, and that their
interactions with the structure result in either displacements or
forces. Although the discussion in Section 1 has applicability to
general material systems, the primary thrust of this study is solid
materials. Therefore fluids and gases are included in the dynamical
subsystems assumed to be already analyzed; not in the structural
subsystem.,

4.2 Selection of Substructures

A structure may be divided into a number of substructures for
several reasons., Some subdivision may have‘already been made by ihe
removal of other dynamical subsystems (i.e. if the dynamical subsystem
joined the two substructures). If there are any joints in the struc-
ture which allow large relative motion, a subdivision should be made
across the joint so that no substructure includes large relative

motions internally. It may be desirable to select substructures to
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isolatg portioés of the structure of different types (e.g. to isolate
a visco-elastie méterial, or an orthotropic shell}. The étructure may
also be subdivided to distribute the burden of analysis among individ-
uals, or in some cases companies. Finally, and frequently most impor-
tanply, the structuré may be subdivided to realize the substantial
reductions in éomputationai costs available through modal synthesis
techniques. Sinﬁe the savings is dependent on the amount of inter-~
face a substructure has with others, when there is no other reason
for picking a given division, it should he selected to minimize the
amount of interface (e.g. a long slender structure should be divided
into two substructures by a cut perpendicular to the long axis rather
than parallel to it).
4.3 Substructure Dynamics

The next stép after dividing the structure into substructures
is to obtain the eqﬁgtions governing the behavior of each substructure.
Although there are NUMerous ways of obtaining these equations (e.g.
finite difference, closed form, etc.), one of the most popular and
powerful methods' is thé displacement formulation of the finite element.
This method is deveioped in detail in Sectioms 2.1 - 2.3, Whatever
method 1s used, ﬁhe'result should be a set of equations governing the
behavior of the suﬁstructure in the form of Equations (2.2-13), (2.3-3

-4, and -5) which are reproduced here for referénce
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Along with the governing equations, the equation for recovering
displacements on the interfaces {(e.g. Equation (2.4-1) must be available
P = " AR (4.3-5)
The class of substructures or dynamical subsystems treated may now
be expanded to include any resulting in equations of the above form.
4.4 BSubstructure Modes i
In many cases, substantial re&uctions in the dimensions can be
obtained by transforming from the generalized coordinates to meodal
coordinates. The ¢ircumstances under which this is permissible and
the procedure for obtaining modes are outlined in Sections 2.5 and 2.6,
Because of the substantial savings resulting from this procedure, it
should be carried out for all substructures for which it is possible.
The result of the transformation is to reduce the number of equa-

tions and to modify the numerical values in the governing equations.

However, the basic form is unaltered. (At least when rewritten in
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first order differeﬁtial equation fofmat.) It will therefore be
assumed that modal analysis has been performed for all substructures
for which it is possible, the governing equations now involve modal
variables, and the number of elastic equations has been appropriately
reduced. COnverSgly, if modal analysis is not possible for the sub-
structure, the eQuafions remain unaltered.

If the interconnection points are retained as degrees of freedom
(e.g. Hurty's methodj, then no back transformation is required to
apply the constraints as developed. If they are not retained, and the
substructure was treated as first order, the constraints must be modi-—
fied to reflect the contact transformation. It will be assumed that
the displacements at the interaction boundary are available as a linear
combinations of genéralized displacements (not velocities).

4.5 Substructure Caupling ‘

| At this point, there aré at least two distinct paths which might
be followed. It has been assumed, thus far, that the deformational
coordinates conféin all the rigid Body modes, so there is a redundancy
between them and the frame variables. The first path eliminates the
redundancy at this point in the development by constraining the defor-
mation and frame,Véfiables. For instance, a mean motion frame, or a
principal akis fréme, or a frame attached to the material at some point
of the substrucfﬁre. If this path is chosen, a constraint requiring
that the motion'bf some degree of freedom be the same on two substruc—
tures,.would be réflected by a single equation invelving both frame

and deformational variables.
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The second path defers the elimination of the redundancy between
deformational and frame variables. Consequently the physical inter-~
pretation of the frame motion {e.g. as mean motion) may be lost. Since
each constraint can be thought of as constraining frame as well as
deformational motion, each comstraint is partitioned intowa nominal
(zero order in deformation) and deformational (first order in deforma-
tions) part. Each pért is treated as an independent constraint, Focus-
ing on the nominal constraints for a moment,- it is clear that for sub-
structures with.numerous, redundant, connections, the number of nominal
constraints could easily outnumber the frame variables. As long as the
constraints are prohibited from being contradictory, the excess con-
straints are at most redundant. This procedure leaves as many frame
variables as there are rigld body degrees of freedom for the structure.

In this study the second path has been selected because it tends
to minimize the coupling between frame and deformational variables.
Since this method tends to place motion in the deformational variables
that the first péth would aséociate with the frame, the chances of
obtaining deformations large encugh to compromise the linearization are
increased. In such cases the model sﬁould allow relative frame motion
at some joint to reduce the deformations.

If the first‘path ig elected, the appropriate constraints may be
written; (including those defining the frame) and the resulting equa-
tions integrated. The following sections, however, are based on select-

ing the second path.
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4.6 Point Connections

As noted in Section 3.6, rigid connections provide-six linear
constraints, and single axis point connections provide at least two
linear constraints. All of the constraints of this type and all of
the associated deformatioﬁal equations may be gathered together. The
techniques of Section 3.6 may then be applied to any subset (including
all) of thusg constraints and reiterated as required. As noted, when
the coéfficient matriées can be approximated as constant, the techni-
ques outlined in Seétions 2.5 and 2.6 may be applied to obtain modes
of the coupled sﬁbSéructures.

The pfocedures outlines in Section 3.3 -~ 3.5 may be applied ro
incorporate the nominal constraiﬂts for all of the point connections.
As noted, it is geﬁerally possible to eliminate the constraint forces,
at the expense of complicating the equations. However for rigid con-
nections or for the variables along the axis in single axis connections,
it is generally dééirable to eliminate them. So, in general, some of
thé constraint forces will have been eliminated. In this event the
number of equations is reduced, the number of variables is reduced, the
constraint equations need not be retained, and the constraint forces
do not appear, Those constraint forces which are not eliminated are
treated in the next:section (4.7).

In the event‘the deformational comstraint motion is unknown and
governed by a férce—deflection relationship compatible with the form
of the equationé, the relative motion variable can be included in the
deforqation variables, and the governing relationship in the assembled

equations. Analysis may then proceed as above.
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4.7 Pfaffian Constraints

Those single axis connections for which‘an election was made not
to eliminate constraint forces, may be treated in the same way as
Pfaffian constrainté. The procedure is outlined in Section 3.2. The
effect of this class-of constraint is to augment the s&stem equations
by the constraint equations, and to augment the system variables by
the constraint forces (Lagrange multipliers). As noted, unknown motions
may be treated in a similar fashion.
4.8 Equations for Structure

After applying all these constraints, the number of frame variables
is equal to the number of rigid body degrees of freedom; Similariy
the number of rigid body modes remaining in the deformation equations
is the number of rigid body degrees of freedom unless the option to
reflect total relative motion in a frame variable (Sections 3.3 and 3.4)
was exercised. For each of these cases where the nominal wmotion is
arbitrary, but the relative deformation is constrained, thée number of
rigid body deformational modes is reduced by one. The rigid body A
deformational modes can now be eliminated by selecting a mean motion
or principal axis frame for the composite substructure, by fixing
some degrees of freedom, or they can be retained. The method outlined
in Section 2.5 can be used to integrate the coupled system in appro-
priate cases, if all of the rigid body degrees of freedom are retained
in the deformations.

At this point, any structural elements which do not fit the
procedure outlined above (e.g. non-Pfaffian constraints) can be incor-

porated in the equations governing the structure,
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4.9 S§stem Synthesis

The completé set of structural equations ﬁay now be combined with
the equations governing the behavior of the other dynamical subsystems.
To whatever e#gént-the equations for the other subsystems share the
form of the structufal equatidns, the same techniques may apply. 1In
particular, any sungt of constant coefficient linear equations may be
subjected to modal analysis.  The complete set of system equations is
now available for the intended analysis (e.g. numerical integration to

determining system behavior).
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APPENDIX A
MATHEMATICS
To preéerveﬁfhe cdntinuitylof the main body of this presentation,
the.mathematical definitions have been placed in this appendix, The
material in this appendix is not new, and has not been originated by
the author; ratherrit has been abstracted from the sources noted in
the. bibliography, particularly from Bishop and Goldberg's text "Tensor
Analysis on Manifolds." The material is reproduced here primarily to
establish the néménclature, and secondarily, to review some of the more
important results. For a more complete study, the noted sources are
recommended.
Throughout this appendix, the most fundamental aspects of math-

ematics are applied implicitly. Some of these fundamental concepts

and signs are noted below. Mathematiecs consists of mathematical

objects and relations. The term set is synonymous with mathematical

object. Mathematics is written in terms of complicated assemblies of

fundamental signs and letters. A letter represents a totally indeter-

minate mathematical object. The fundamental rules governing the use
of the fundamental signs and letters are called axioms. The true
relations which maylﬁe logically deduced from the axioms are called
theorems. Additional signs are introduced to abbreviate complex
assemblies, |

TP

~ The fundamental logical signs may be taken as "or" and "not". If

R and § are relations, the assemblies "R or 8" and "not R" are rela-

tions called the logical digiynction and negation. If at least one of

R and S is true, then "R or 8" is true. The negation of a true relation
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is false. The derived logical signs: "and", "=" and "&" yield

relations: "R and S", "R=»5" and "R<>S", called logical conjunction,

logical implication and logical equivalence; and defined to be '"not

[(not R) or (not S)I", "S or (not R)" and "(R=>S5) and (S=>R)",

respectively. If R is a relation, A is a mathematical object and x
is a letter, then "(Alx)R" is the relation obtained by substituting
A for x in R. 1If "(A|x)R” is true then A satisfies the relation R.
The derived logical signs: " 31" and "V " are called the existential

and universal quantifiers and are read "there exists" and "for all".

They yield relations: "(3 x)R" and "(V x)R"; the first is defined by
the axiom '

(A|x)R => (3 ©)R. (A.0-1)
The second abbreviates "not[(3 x) (not R)1".

The fundamental mathematiéal signs may be taken as: '=" and " €"

called the sign ofregualitz and the sign of membership. The rules
governing the sign of equality are

(¥x)(x = x),

(vx) (v ) [ (x=y) &> (y=x)1,

(Vx){(vy)(Y¥2)[(x=y and y=z)=>(x=2)] and

(u=v) => [ (u]x)R<>(v]x)R]. (A.0-2)
The rule governing the sign of membership is

(4=B) &> [(x € A) <>(x € B) 1. (4.0-3)
4.1 Set Theory

The fundamental concepts and symbols used in set theory are
outlined in the introduction to this appendix. The symbol "C", called

the inclusion sign, yields a relation "A C B" which is an abbreviation
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for "{¥x)[(x € A)::)(x € B)Y|". The relation.is read "A is a subset
of B" and is also written "B O A", The relation satisfies

[(AC B) and (BC C)]==>(A C (), -and

(A=B)&[(ACB) and (B C A)]. (A.1-1)

If R{x} is a relation with x a letter (variable), then for every
set, B, 1 a unigque A C B where

X € AS(x E B and R{x} is true). (A.1-2)
It is conventionallto indicate this set by"{xl R‘{x}}". The braces
conventionally indicate a set and the vertical bar may be read "such

that". 1In other uses, "such that" may be denoted " 3". The complement

of A in B (where AC B) or the set theoretic difference of B and A is

denoted
B- A= {x|(3 € B) and (x ¢ A)}. (A.1-3)

‘The set "P" = A - A is called the null or empty set. For any two sets,

A and B, the intersection and union of A and B are denoted "A M B" and

"A U B" and are defined as

AMB = {x|(x € A) and (x € B)] and
AUB = {x|(.x €A) or (x € B)] : (A.1-4)
} N. N
The notations " y A", " N Ai", "u Au" and " N Au" are used to
i=1 i=1 ‘€T 0€J

indicate unions and intersections of families of sets.
If x and y are mathematical objects, the mathematical object

"{(x, y)" 1s called anrbrdered pair. More generally, (xl,...,xn) is

called an ordered n-tuple. The ordered pair satisfies
[(,x) = (v,2) ] [(wey) and (x=z)]. , (A.1-5)

The cartesian product of two sets, A and B, is denoted "A x B" and

defined as
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AXB= [(x,y)l(x €1 and (y € B)} . (A.1-6)

More generally, "Al x Azx...xAN" 1s the set of ordered n-tuples. 1If

two adjacent sets are the same, exponential notation may be used (e.g.
AX AXB-= A2 x B)}.

A set consisting only of ordered pairs (i.é. a subset of a
cartesian product) 1s called a graph. A function, "f: A+ B", is a
set, A, called the domain, a set, B, called the range and a graph,
G,CA X B, satisfying ¥x € A, 3 exactly one y € B ¥ (x,y) € G. The
unique y associated with any x is denoted "f(x)". The image, "£{(A)",

1s defined by

£(4) {f(x)lx € A} . | | (A.1-7)

When £ (A)

B, the function is called onto, otherwise it is into. If
Yy é £(a), 3 only‘one (x € A)  (f(x) = y), the function is one to one;
which is abbreviated "1-1". The function £':C + B, CC 4, ? f'(x) =
£(x), Vx €C is called a restriction of f and is denoted "f[.". If

f: A+~ B and g:-C + D, then"g o f:E+ D" is the function obtained by
following f by g (i.e. g[f(x)]). The domain is E = {xi(x € A) and

(f(x) € C)]. The fﬁnction "g o f" i1s called the composition of g and

f. In the event E = @, the function is the null function @: $ > D.
If £f: A» B is 1-1 and onto, 3 a unique function called the inverse

of £, denoted "f_'l

: B>~ A", Blf—l o f(x) = x and £ o f-l(y) =y,
The algebraic development of the number system and its properties
will not be pursued here. Notationally, the natural numbers will be

denoted "N", the integer "I", the rational "Z", the real "R" and the

complex "'C".
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A.2 Metric Spaces

A. function, p: A X A~ R, is a metric if V¥x,y,2€A,

0 < px,y) <=,

0 & x=vy,

p(x,y) =
p(x,y) = ply,x) and |
p(x,¥) < plx,2) + p(z,y). | (A,2-1)

Two metrics, pl;_pz:' A x A > R, are strongly equivalent if 3 Cy» € > 0,

IVX,YyEA,
[pl(x;y) <c, oz(x,y)] and [pz(x,ﬂ <ey pl(x,y)] . (AL2-2)
Two metrics are equivalent if they give rise to the same "topology"

(A.3). A strongly equivalent metric is equivalent. A set with a metric

is called a metric space, The open ball centered at x with radlus r, is

defined by

B(x,r) - {y‘(yéA) and [p(x,y) < rl}. (A.2-3)

A bounded set is one which is contained in some open ball.
A.3 Topological Spaces
A collection, T, of subsets of a set, A, is a topology in A if

geET, A€T,

N
B,e¢T, i=l, .o., N = M B_€T and
i E 4=1 1
Bue’r, 0€ET => ) Bug"r {A.3-1)

€T
where J may be finite, countable, or uncountable. Any set, Bér, is
called an open sét, A set with a topology is called a topological

space. A topology constructed from a metric is called a metric topology.
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If A and B are ﬁopological spaces, the topology whose open sets are
cartesian producﬁs of open sets in A and B is called-the product
topology. The formal statement "A with T is a topological space" is
customarily abbreviated as "A 1s a topology."

A neighborhood of a point is defined as an open set containing the

point. A closed set is the complement of an open set. For any subset,
8, the union of gll open sets, Caﬁ:B, is called the interior of B and
is denoted "80"; the intersection of all closed sets, Cu’:)B is called
the closure of B and is denoted "B "; the set B~ - B° is called the
boundary of B and is denoted "9B". A topological space, A, is copnected
if @ and A are the only sets which are both open and closed. An open
connected set is called a region. A function, f: A -+ B, from a
topology, A, into a topology, B, is continuous if for every open
C C B, fbl(C) is open in A,

Two topologies, A and B, are homeomorphic, and a functiom, f: A »> B,

is a homeomorphiSm,.if f is 1-1, onto and both f: A + B and f—l} B+ A

are continuous, This is the natural notion of topological equivalence,
A.4 Manifolds

A chart at a point, p,€ A, a topological space, is a homeomorphism,
M: U *‘Rd, mapping U, a neighborhood of p, onto an open subset of Rd.

The dimension of the chart is d. The standard Cartesian chart on Rd is

the identity map, u_: Rd -+ Rd, which is defined by (ul(p), uz(p), vens

1
ud(p)),where p = (al, a2, cees ad) and ul(al, 32, caey éd) = ai. The
function ui: Rd - R is called the i~-th projection. A chart is also

called a coordinate map. The entries in the chart, p, are defined by
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uioruand are called the coordinate functions, usually denoted by

nogn N ' 1] 1 2 a."
‘X . Collectively the coordinate functions (x, x ,...,x ) are

called the coordinates or coordinate system at the point,

A function, £ : V - R, V open in Rd, is continuous to order

) " ol
infinity, denoted c , 1f £ has continuous partial derivatives of all

orders and types. A functiom, ¢ : V Re, isac. map if its entries,

d e

uiOq:, 1=1, ...; e are Cm. Two charts, ¥ 3+ U >R, and T 3 VR,

H

on a topclogical space, are ¢ —related if d = e and either UNYV = @

or both p o T_l and T o u—l are C maps. . A collection of charts,

{“oﬁ u, Rdla.é I, _ﬁQCA}, such that {Uu o €I} is a covering of the
topological space, A? (i.e., AC LJI Uu) 1s called an atlas. A_E?
atlas is one for. which every paira;i charts is GmL related. A chart is

o0 oo ’
admissible to a C atlas if it is C - related to every chart in the

atlas. A topological manifold is a separable Hausdorff space jf] a

d-dimensional chart at every point. The dimensjon of the manifold is
d., (A metric topoioéy is a Hausdorff space, and the metric topologies
‘in this presentatién are separable.,) A CDD manifold is a tcsological
manifold with all of the admissible charts to some c” atlas,

If M and N are manifolds of dimension d and e, then the product
manifold is the manifold of dimension d+e obtained from the ?roduct
topology with an atlas obtained from the Eroducts.of charts from the
atlases of M and N, -fhe product of charts, U: U0 =+ Rd and T ;

vV - Re, is (u,T)ﬁ' Uxv- Rd+e, where

[, )] (@,n) = [u(m), t(n)]. (A.4-1)
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The definition of a C map may be extended to include a function,
F : M + N, where M and N are COD manifolds, Let ul: U —+ Rd and

Mol v+ RS be Coo charts on M and N, - The ul - |, coordinate expression

2

for F is
-1 -1 e
HpoFop™: B oo F (V) ~ R, (A.4-2)

If all such expressions, for all admissible charts, Hy and Uy, are c
Cartesian maps, the map F is called a c map. (It is sufficient that
the coordinate expressions for one atlas in M and one in N are Cw.) A

diffeomorphism is a 1-1, onto, Cm map, F : M - N, such that the inverse

map, FloN- M, is also C ; M and N are called diffeomorphic. This is

the natural notion of equivalence between manifolds.
If there is a 1-1, c map, F : M > N, 3 at every m€M 3 a neighbor-

hood, U of m, and 3 a chart of N at F(m), u : vV ~» Re, U= (yl,..., )

I xi = yio'F|U, i=1l,..., d are coordinates on U for M, the map, ¥, is
called an imbedding.':A submanifold of N is a subset, F(M), where F:
M + N is an imbedding, provided with the manifold structure for which
F: M~ F(M) is a diffeomorphism. An open submanifold is an open sub-
set of a manifold, with the manifold structure obtained by restricting
the topology and tﬁe coordinate maps to the subset,
A.5 Tangents

A differentiable curve, y : [a,b] * M, is a map of an interval of

real numbers, [a,b], into a manifold, M, 33 an extension to an open
interval, vy : (a-c, bte) » M {(c > 0 and Y = ¥ on [a, b]), which is a
c map.

The set of all real valued C functions, F ; U -+ R, where U is a

" i)
neighborhood of a point, m,€ M, is denoted Fm(m) + A tangent at m is
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a derivation of Fw(m), which is a function, ¢ : Fw(m) -+ R, ?
Vi,g €Fm(m) and ¥a,b€R
t(af + bg) = at(f) + bt(g) and

t(fg) = t(£) gm) + £@m) c(g). (A.5-1)

If vy is a ¢ curve in M ? ¥(c) = m, then the tangent to Yy at c,

Y,(c) , is defined by, ¥f € F (m),

e 1) = 2L (o), (A.5-2)

The set of all tangents at a point, m, is called the tangent space

" "
at m and is dencted ‘Mm R

A real valued function at m, f, € Fw(m), has a coordinate expres-
1 d -1 d
sion, f = g(x, ..., x ), where g =f o U ": U~ R, Uopen in R, The

- partial derivate of f with respect to a coordinate, xi, is defined as

3 -1
Lo - L @on=2Eon ) oy, (A.5-3)
ax Ju du & A

n u )
The operators Blaxi ~are called the coordinate vector fields. If

application of-—gf is followed by evaluation at m, the result is a
ox ' .

1 [}
tangent at m, which is denoted

1
—éz{m) , defined by
ax

[-é-‘f’-f (:;1)] (£) = [-a% (f)] (m). (A-5-4>
: S X

* Specifically, it is the tangent to y, at w, where Y4 is the i-th

coordinate curve ﬁhrGUgh m defined by

=y, u,x ™t m, ..., 2],

Yi(u) = u—l[xl(m),..., %
) (A,5-35)

These tangents form a "basis™ (A.6) so that for any a € R, i=1, ..., d
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] |
= 2 at —‘% (m) (A.5-6)
i=1 ax

is a tangent. Conversely, for any tangent, t,fb%f 3 unique 31‘9 egqua-

tion {A.5-6) holds., These ai are called the components of t with

i
respect to the coordinates x

It is convenient to introduce an abbreviation for sums called the

Finstein summation convention. The appearance of an index exactly twice

in a product (usually once up and once down) implies summation over the
range of the index,. For example, if a~ and bﬁ are defined for i=1,...,
N, then %

a bi =1 bi' (A.5-7)

Thus the expression for any tangent may be written as

R (A.5-8)
Bxl .

The a’ may be determined by noting that

tGd) = al [ii (m>] ()

ox

= g - (A. 5-9)

The symbol "Gi" is called the Kronecker delta and is defined to be one

if i=j and zero if i # j, The contraction is
i1 2 3
83 = 8 + 83+ 63 =3, (A.5-10)
The tangents are algebraically "vectors" (A.6) and the set of

tangents at a point forms a "vector space' (A.6). in addition, the

components with respect to the coordinates satisfy the usual tensor
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trénsformation relations, If (xi) and (yi) are coordinates then the

tangent —EI (m) has an expression in terms of the xi,

dy

—9-1— (@ = ad 2 @), ' (A.5-11) .

dy I3
where

. 3 ' -

A= t6d) = 2 @) . (A.5-12)
So 1 .

_EI.(m) - QEI.(m) _j%§ (m). {A.5-13)

dy oy dx '

) 1
t=al —% (m) = bt —-% @ =>al = b3 Z_ @), . (A.5-14)
3x © 2 3
y y

which is the customary tensor transform,

The set of all tangent spaces at all points of a manifold,

M, 1is called the-tanggnt bundle, and is denoted "TM", If u: M — N is

a c map, then the tangents in M are mapped to the tangenfs,of N by

Mgt TM -+ TN, the differential of y. In terms of coordinates, xi;i=l;...,
d, at m and yu, o = 1, ee.y & at n = p(m), 1if p has a coordinate expres-

sion, yabu = fa(kl,'..., xd), then a tangent, t,éb%ﬁ t=a" _EI {m) is

, . ox
mapped to the tangent W, () € Nn’ (n=p{m)), where
Hy (E) = bq.—% (n) and b* = a [-a—l (oW | (). (A.5-15)
Jy x '

The array —EI (yaou) is called the Jacobian of p with respect to the
Ix '

coordinates ix} and 1y*}. In the special case of a real valued func-
tion, f: M -+ R,

£,(6) = £(0) 35 (o), where ¢ = £(m), (A.5-16)
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The compaonent, t(f), is redefined as

notation is changed to

[df)(t) = t(f).

1f {xi} are the coordinates on M,
]

i

9%

iof 3\ _ i
[dx™] (axj) 5

df = (f) dx*

and

the differential of f and the

(A.5~-17)

(A.5-18)

(A.5-19)

A vector field, X, on EC M is a function assigning to each m€E

a vector, X(m), € M.

it is C if the components of X with respect to

. i b .
every coordinate system, x, are C functions. A curve, Yy, is an inte-

gral curve of a vector field, X, defined on ECHM if thekrange cf v is

in E and for every s in the domain of v

Y4 (s) = Xlv(s)].

A.6 Vector Spaces

A commutative group is a set, X,

(x,y) — xt+y, Vx,y€X satisfying,
x4+ (y+2z)=({=x+y)+z,
4+ vy =9 +x,

A0?x 4+ 0 =0+ x = x and

3(-x) ¥ x + (~x) = (~x) + x =

~

(A.5-20)

with a law of composition,

VX,YQZt X,

0. (A.6~1)

A ring 1s a commutating group with a law of composition, (x,y) * xy,

¥x,y €X, satisfying, ¥ x,y,z€X,
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x(yz) = (xy)z,
3131x = x1 = x,

x(y + 2) = xy + xz and (x + y)z = xz + yz, (A.6~2)

A vector space 1s a set, V, whose elements are called vectors,

a ring, S, whose elements are called scalars, and two operations,

vector addition, (x,y) » x + vy, Vx,y€V and scalar rultiplication,

(A,x) » Ax, Vx €V, A¢5 such that V with addition is a commutative

group and Vx,y €V and A,p€s

Ax) = Ow)x,

(A + Wx = Ax + ux and

H

Ax + y) = Ax + Ay. ' (A.6-3)

The ring of scalars will be taken to be R, the real numbers, unless
explicitly noted otherwise.

i i .
A sum of products of scalars, a, and vectors, Vis i.e., a v, is
i

called a linear combimation. If all of the a~ = 0 it is trivial,

otherwise it is nont?1v1al. A finite set of vectors {vi} is linearly

dependent €3> 4 a nontrivial, null linear combination, alﬁi = 0; other-

wise the set is linearly independent. A non-empty subset, U, of vector
space is a subsgéée if it is E}gggglunder addition and scalar multi-
plication (e.g., 'V u,v€U,a€S5, u+ v€U and au €U), The minimal sub-
space containing a subset, T, is called the subspace spanned by T.

A linearly independent set of vectors, T, spanning a space, V, is
called a basis for V; It can be shown that every basis for a space

has the same number of elements, d, the dimension of the space.
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Any vector, v€V may be represented as a unique linear combination
1 .
of basis vectors for any basis {vi}, v=av,. If {ei} and {fi} are

two bases of V then each basis vector, ess has an expression in terms

of the {f },

3
e, = al f_. - (A.6-4)
i i7j ‘
Similarly,
= pJ -
£, bi ej. (A,6-5)
If the scalars, ai, are arranged in an array with j constant on rows

and i constant on columns, the array is called a matrix and is denoted
T + 1t
(ai) . Specifically, it is the matrix of change of basis from

{e.} to {f.}. Since
1 J
i .k
e, = ai by e (A.6-6)

it may be concluded that

j .k _ (k _
ay bj = 51. (A.6-7)
Similarly,
bl a2 = 6k, " (A.6-8)
i 73 i

Matrices, (ai) and (bi), satisfying these relationships are called

inverses,

A.,7 Tenscr Spaces
If V and W are vector spaces, £f: V > W and \/vl, vy € V and a € R,

f(vl + v2) = f(vl) + f(vz) and

f(a vl)_= a f(vl), (A.7-1)
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then £ is a linear function, The vector spaces V and W are isomorghic’

and the function f is an isomorphism if f is a 1-1, onto linear func-
tion, The set of points mapping into the zero of W, f—l(O), is called
the null space of f. The set of all linear f: V > W, {f|f: V > W and

f linear}, is called the space of linear functions from V into W and is

denoted "L(V,W)". Defining [f + gl(v) = f{v) + g(v) and [af]{(v) = a f
(v) as vector addition and scalar multiplication, L(V,W) is a vector
space,

Just as ﬁhe selection of a basis provides a coordinatization of a
vector space, seleétion of bases, {ei}, i=1, ..., dl on V and {EQ},
a=1, ..., 42 on. W (where d1 and d2 are the dimensions ofVV and W)
provides a coordiatization of 1ineaf functions as dl ><‘d2 matrices,

()

L ,
f(ei) = £ (eu). (4.7-2)

A basis for L(V,W) is {E%}, where

B) e, =8l %,. | (A.7-3)
For any f,

£ = ij B | (A.7-4)
The matrix of E% is'(éi 6@) .

The set of scalar-valued linear functions, L{V,R), is called the
dual space of V éﬁd is denoted "V*# " For any given basis of V, {ei},
% . .
there is a unique basis of V , {81}, such that'&:iej = 48T, {Ei} is

J
called the dual basis to {ei}. The dual basis to the coordinate

vector field, %_Egﬁ(m)} , is a basis for the gpace of differentials,
ax
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{dxi(m)} , (1.e. dxi 3, = 5;)- If {fi} is another basis of V and {¢1}

its dual, where fi = g, e , and e, = bi fj and (bi) is the inverse of

]
. *
(aJ) , then el = a; ¢ and ¢i = bl &), The dual space to V (i.e.

Lo e &y

i 3
* %
{V ) ) is naturally ismorphic to V. The two will not be distinguished

x &
and (V )} will be denoted V.
Ifv,, i=1, +.., r, and W are vector spaces, [: Vl X aae X Vr -+ W,
i

and Yv., v. € V., and Va, a€R,
1 1 1

f(vl,..., av, +'a ;i""’ Vr) = a f(vl,..., Viseres vr)

i

+ 5 f(vl,-..., \—ri’ LR Y Vr),

(A.7-5)

then f is a multi-linear, specifically an r-linear function., The

n
space of r-linear functions is denoted "L(Vl,..., Vs W) . The scalar

* ‘
valued multi-linear functions with variables all in V or V are called

tensors over V and the vector spaces they form are called tensor spaces

%
over V. The number of variables taken from V is called the contra-

variant degree, and from V the covariant depgree. The functions, f :

* * *
Vx ,.xV X Vx .o xV>R(V r times, V s times) form a tensor space

denoted "T:(V)",
T:(V)=.V®...®V® V*®...®v* (A.7-6)

(V r times, V* s times). They are called tensors of type (r,s) and have
contravariant degree r and covariant degree s.

A tensor of type (0,0) is called a scalar, Tg = R: of type (1, 0)
T][-) =V = LV ,R); of type (0,1) is
V* = L(V,R). The symbol, " (0",

is called a coutravariant vector,

0

called a covariant vector, Tl =

t
denotes the tensor product which assigns to tensors AETE and BETu
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stu

+
rtx(v) > R,

+
a tensor A@BéT;_E. The tensor, A@B : (V®)
is defined by

1 r+t
A@B (T ?,.--, T 1 vli"'! VS"HJ)

r+l r+t

r
s Viseees V) BT, L

- A(T, ..., T ).

» Vo412 Vet
(A.7-7)

Selection of a basis, {e }, and its dual, {Ei}, provides a coordina-

i

. r .
tization of a tensor, A,GTS, as a multi=dimensional array;

i...1 : .
a=at... T e, .. ® e, ®el1 ® ... ®els (A.7-8)
j 3 i i
L s 1 T
where
i IIIi
A Y T aafeh, L, e, e, e, el . (A.7-9)
jl"'Js j1 Jg

If the basis is éhanged to {fi} with an associated dual {?1}, where
fi = ai ej and ¢1 - b; EJ, then the coordinate expression for A in the

{fi} basis is

AP = b1 L b afll v ads Atpecciy (A.7-10)

N,...0 i1 T ng € Jl"'js
1°° s . ;

A tensor is called symmetric if it is both covariant and contra-
variant symmetric.r a. tensor is (co- or contra-) wvariant é?mmetric if
itris symmetric in efery pair of (co~ or contra-) variant indices., It
is symmetric in the‘p-th and q-th (co- or contra-) variant indices if
the components with respect to every basis are unchanged when the
indices are intefchanged. If the interchanging changes only the sign,

the tenser is skew—Symmetric in the p-th and q-th (co- or contra-)

variant indices. It can be shown that symmetry with respect to one

basis implies symmetry with respect to every basis.
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A tensor valued function of tensors is frequently discribed in
terms of the components with respect to a certain basis. If the result
is independent of the basis, the function is called an invariant, AV
contraction is an example of an invariant. A contraction assigns to a
tensor of type (r,s) another tensor of type (r-l, s-1). Formally, a
contraction in the‘p-th contravariant and g-th covariant index is
defined by

B%l"'?r-l==Ail"'1p—lk lp"'lr—l
-1

JlaoaJS jl...Jq"“lk jq...jS'-l . (A-?"ll)

The scalar product of a vector and a dual vector is an example of a

contraction, If v = viei and T = Tj 63 then
i k|
V®T=VTj ei®€ (A.7~12)

and the contraction is vkrk. There are several alternative inter-
pretations. Recalling V* = L{V,R) the scalar product may be thought of
as a function, T(V), or with V = L(V*, R) as a function V of T, or as a
bilinear function < , > : V x V* + R defined by

<v, 1> = T(v). (A.7-13)
An invariant may be linear or multi-linear. A linear invariant of the
p—fold tensor product of a variable with itself is called an invariant

of degree p.

A guadratic form on V is an invariant of degree 2 with variable

in V. A temsor of type (0,2) is called a bilinear form, b : V x V » R,

and has a coordinate expression

_ i i
b = bij e ®el, (A.7-14)
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For every quadratic form, q(v), there is an associated symmetric bi=-

linear form, b, defined by
by, W) = 3 |atw) - a@) - ch)] : (A.7-15)

Conversely for every symmetric bilinear form, b, there is an associated
quadratic form, q, defined by

g(v) = b{v, v). (A.7-16)

A bilinear form is non-degenerate if for every vé€V, v # 0, 3 w€VIDb

(v,w) # 0, or equivalently, if the matrix (bij) is non-singular, A

quadratic form is positive or negative semidefinitelif ¥Yv # 0, q(v)> 0
or q(v) < 0, respectively; if q(v) # 0 for v # 0 the form is {positive
or'negative) definite. A definite form is non--degenerate.

A non-degenerate symmetric form (usually positive definite) is

called an inner product. A vector space with a positive definite inmer

product is called a Hilbert space and implies a topological structure.

Two vectors, v,w, are orthogonal with respect to b if b(v,w) = 0, If

b(v,v) = 0 then v is called a null vector of b, A basis, {ei}, of Vv,
is orthonormal with respect to b if For i # i, b(ei, ej) = 0 and

b(e ea), no sum, is one of the values + 1, 0, — 1. The bases, Bi(m),

a?
in general, may not éven be orthogonal., However, an orthonormal basis
always exists. If the form is defimite, the Gram-Schmidt process
yields an orthonormal basis. If, as in the usual érthogonal curvi-
linear coordinateé, the basis is orthoéonal {and definite) but not

normal, the change of basis, e, = h_1 iaj(m), yields an orthonormal

basis. The hi are the Lamé coefficients defined by
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[oF)
w
Q2

3o/ 2 and w”
h1 a

(A.7-17)
o, 1

A metric on a manifold is a bilinear form, b, which is defined and
non-degenerate at every point of the manifold., For the usual coordin-
ates on E, S or T,

b= 8y, dxt @ dx (A.7-18)

(i,j=1, 2, 3, 4 for E, i, j =1, 2, 3 for S, and i, j =1 for T).
This metric is Reimanian (positive definite) and the pairr(M, b) is
called a Reimanian manifold. The inner product or dot product is
frequently-denoted by "<, > or " ",

b(v,w) = <v, W = v.w, (A.7-19)

The use of the dot product is extended to tensors (e.g. A * B) by
interpreting it as acting on the last contravariant index of the pre;
-ceding tensor, and the first of the following tensor., There are three
interpretations of the action of the fundamental bilinear form repres-
.ented by the dot: 1) lowering the last contravariant index of the pre-
- ceding tensor and contracting, 2) lowering the first contravariant
index of the following tensor and contracting, or 3) directly assign~-

ing a tensor of contravariant degree two less, As an example,

Yy _@ af 9 3
= n —————— - S [P —— ®-—-—-—-
( BXY> ( x> BXB)

s

1=
.

Hwa
|

=n

af 9 ] 3 8 £
688 BxY ®8xa @ BXB ®dx @ B

(A.7-20)

Using the first interpretation,
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& . BxB
- n ap 38 i (A.7-21)
ox
The length bf a tangeﬁt on a Riemanian manifold is
[vl] = <v,v5? | (A.7-22)

The angle between vectors is the value of 0, 0 < 8 < m, such that

cos(0) = <2 ¥2 (A.7-23)
vl |lwli

The length of a curve, vy : [a,b] » M, denoted "|Y|", is the integral

of the lengths of the tangent vectors,

v =f

a

b
[Ty |1 de. (A.7-24)
The distance betﬁeen points 1s the greatest lower bound of the
lengths of all curves. The Rieménian metric, b, is consistent with
the previous definitions of distance and duration, and straight lines
are minimum distanéé_curves.

The usual coordinates make E,S5 and T esseptially equivalent to
Ra, R3 and R, If Rd had been taken as the models of the physical
system, or if the‘metric is carried over to Rs, then b would be the

standard flat mefric and (Rd,b) would be ordinary Euclidean d-space.

A.8 Tensor Fields
For each type;"(f,s), of tensor, and each méM,M a manifold, there

r
is a corresponding tensor space "Mms' gver Mm’ the tangent space.

For any (r,s) the union of these tensor spaces VméM is called the
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bundle of tensors of type (r,s) over M, and is denoted "T;M." In par-

ticular the tangent bundle is TM = TéM, and the bundle of differentials

is TgM. A tensor field, T, of type (r,s) is a function, T : E ~ T;M

where E CM, In particular, X: E*TM is a vector field, and the dif-

ferential of a c’ function, £, df : E+T$M is a tensor field of type

(0,1). ’
A vector field is ng™n 4> for every coordinate system {xi}, the

i i oo
= X(x7), are C functions,

components of X with respect to the xl, X
The components of'T?ngM, with respect to the coordinates {xi}; are

the dr+S real valued functilons.

Til"°ir = T(éxil,..., dxir 3 eney ? ). (A.8-1)

» j ] J
jl...jS ox-1 Ix's

The tensor field, T, is ncY SF drs components are C functions. A

tensor field of type (0,1) that is C 1is called a 1-form (or Pfaffian

form).

If ¢ : M> N is a c” map, then vector flelds, X and ¥, on M and

N are (» related &> Vm in the domain of X

W*[X(m)] = Y[y @)]. (A.8-2)
The definition is extended to temsor prodqcts by

Py ABB) = [@, 0 W] & [w,, (B)]. (A.8-3)
Then two contravariant temsor fields, S, on M, and T, on N, are
¢ -related 1f VY m€ domain of S.

Caq [SM] = T[w @)]. (A,8-4)
For covariant tensors,

oy Tlom) = sm), (A.8-5)
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* % %
where1pm : N @m) »> M 1s defined by
* ‘
<(ﬁ0*m (V),T> = <V, (Pm (T)>- (A.B-—-ﬁ)
In terms of coordinates 1if

a o, 1 d
you =F (X ,.e04,X )
and

1
T = TuB(y,..., v dy“@ dyB.

Then

8
@ (T) = Tig (F ), 0er, Fo(x)) 2 BF . ® dxd . (A.8-7)

Bx 9%
A.,9 The Hodge Star Operator
The space af skew-symmetric tensors of type (r,o) is denoted
by a wedge, "A 'V," where V is the associated vector space. The dimen-
sion of ATV is the binomial coefficient "(g)" where d is the dimen-
sion of V. If jl,...; jr 1s a permutation of il,..., it; it may be
obtained in any of a number of ways by transposing pairs of indices,
The number of transpositions required for a permutation is odd or even
and the correspoﬁding sign of the Eermufation is -1 or 1, resectively,
For a permutation' m, this is denoted "SGN(mw)." The component of a
...1

tensor, Aj ceedps is the same as, or the negative of A 1 T if

SGN(jl...jr) is +1 or -1, respectively. The alternating operator,

A TZ -+ /\rV, assigns to each tensor, B, its skew-symmetric part,
%
denoted "B ", For 0....6 €V B is defined as
a 1l T a
\ 1
B (8 ,-..’ E SGN i ,u-o,i B 8. ,onc,e '
a 1°"" 1 r i i
.o (il,oo-,ir) l Tr
(A.9-1)

where the sum runs over all r! permutations of (1,...,r);. The
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exterior product, denoted by " A", is defined by
ANB=( & B, . (A.9-2)

where A and B are skew-symmetric. The treatment of covariant tensors
is analogous.

An orientation of V is given by a non-zero element, 0, of

AdV. For the usual coordinates on R3

5.2 A B A

Bxl 8x2 X

3 (A.9-3)

is taken, An ordered bais, (el,..., ed), is in the orientation given
by 6 if

e Aveafeg =08, a> 0. : (A.9-4)

Since the binomlal coefficients, (i;) and (g-r) are the same, the
spaces of skew-symmetric tensors, ATV and Ad_rV, have the same

dimension, The Hddge star operator is an isomorphism between the

two spaces. Let (el,..., ed) be an ordered orthonormal basis in the

orientation. A typical basis element of ATV 1s €; Aessheg . Let

1 r
Jyseres jd—r be chosen such that (il,..., i, jl,...jd_r) iz an even

permutation of (1,..., d). Then * is the linear transformation such

that

*(e A sess A B ) = g A s B, o (A.9—5)
il ir jl Ir

It may be noted that for an odd dimensional space (e.g., 3),* o * is the

identity, The dot product may also be expressed in terms of the *

operator,

a*b=*%* (*aab). (A.9-6)
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If a and b are vectors of dimension three, the vector or cross

product is defined to be

a x b= *(anb). (4.9-7)
: ¢ 3 o d
By definition, if a = a = and b = b >
9% %
arb = (a lé)b)a
= (aa bB 'E%; ® '*EE)
_ 9x 9x / a
= %—(aa bB - aB su)_J%; ® "EE‘
ox 9x
_ ( 2,3_ 3b2)—%"—-§~§+( 3,1 a]‘-bB)—-a-E"*-a—i-+(alb2-azb) alna
Ix~  Ix ax~  9x ax~ 9%

So in terms of components, a X b is

*(aAnb) = (azb3—33b2) —8—1- + (a3bl-a1b3) -2 + (albz—azbl) S

9xX sz Bx3

(A.9-9)

This may be abbreviated by use of the Levi-Civita epsilon,

Capy?
defined as: + 1 if (0,B,Y) is an even permutation of (1,2,3); -1 if

it 1is an odd permutation; and zero otherwise,

axh= ng aPpY ﬁa ) | (A.9-10)
' o0x

The Levi-Civita epsilon may be used to express the determinant of

a matrix of order_three.
DET (Aij.) = eijk ajy aZj ag

= f13k 211 252 *k3° (4.9-11)
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%p %iq %4r
a l a
%3p “3q "3

alcp akq qkr

The contraction on the first indices may be obtained by setting

A = Oy

€ijk Eiqr -

649 C

11 “1q 61r
8§,. 8. &
jl "jq jr

le 6kq 6kr

sz §

= F19k “pqr |al.

22 "2q 2r
jr

jq

k2 qu kr

The rule for row or column interchange may be expressed as

33 Y3q Yar

§. .06, &
j3 Tiq ir

k3 6kq dkr

(A.9-12)

(A.9-13)

For non-trivial cases, q # r and the first column will be identical

to the second or third in two of the arrays.

Eijk Eiqr

U

[}

§, &,
iq 3ir
_qu 6kr

6jq akr

A further contraction gives

i3k F1yr T

[}

%53 Skr 7 S4r

368

kr 8

kr

26kr.

A final contraction gives

€13k Eijk

ZGkkk

6.

- 6jr

6kq.

Bkj
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The results in Equations (A.9-11, - 12) yield some useful
identities for direction cosine matrices (whose determinants are one),
namely

gzljlc-= qur cip_ch ckr

£ (O N A,9-17
pqr pi qj Tkr (4.9-17)
A,10 Integration

. -
A differential p-form is a C » covariant, skew—symmetric tensor

field of degree p (type (0,p)). For the case of R3; the bases for

- forms are:

0 - forms: {1} (i.e. the real valued functions)
- 1 - forms: {dx, dy, dz} (i.e. the space of differentials (A.7))
2 -~ forms: {dy A dz, dz A dx, dx A dy}

3 ~ forms: {dx A dy A dz}.

The Hodge star operator (A.9) may be used as it was for contravariant

tensor fields,

The exterior derivative of a p~form, 8, is the p+l form

i i
a6 Adxl .., adx P, (A.10-1)

B de(ii.,;ip)
summed over all incféésing sets of indices.
As an example, pﬁ R3, if
B = fdxf% gdy + hdz,

then
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do

I

df A dx + dg A dy + dh A dz

It

(ﬁidx+9idy +£dz)ndx
x y

] a dz
'+(g§-dx+%§dy+%—g—dz)f\dy
+(§_1}%dx+-g—;—l-dy+g—}zldz)/\dz
_—,(g—;-—%%)dy/\ dz + (—g—g——%g)dzl\ dx+(%—§—%)dx/\ dy.

(A,.10-2)
Integration on a manifold is defined only for forms. Forms are
integrated over sums of oriented c” p—cubes. A c” p-cube is a map-

ping, a : U+ M from a rectilinear p-cube in RP, U, into the manifold,

M. A rectilineér p-cube in Rp, U, is, the set

U = {(ul,..., up)l biiuifbi+cl, i=1,..., pt. (A.10-=3)

The integration is performed by pulling back the differential form

to RP (i.e., a*(6)). A scalar valued function on R¥ is obtained by
defining an inner product on p-forms such that the orientation, w,

is unitary,

<@, wr, =1, (A.10-4)

P

and taking the inmner product with the orientation,

<a*(e)’ w)P . {A,10-5)

The integral of a p~form, 8, on an oriented (w) c p-cube, c: U + M,

is denoted

f 0, (A.10-6)
Ma,w) .
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and is defined to be the associated Riemannian integral

j(;’w)e =.__/;J < ak(@),w >y du (A.10-7)

The generalization of Stokes' theorem to forms is as follows:

let 0 be a (p-1)-form defined on a chain of p-cubes, C,(p>0), then

./(; dé = faa 6 . (4.10-8)

A.1l1 Variations

A real valued function of functions is called a functional,
(e.g.,-/”L1< v, Y > duM is a real valued function of the functions
M |
v.) The variation of a functional, J[yl,..., yN], is denoted

"ﬁJ[hl,...,hN]" and is defined as the principal linear part of the

increment.

AJ [hl,...,hN] = J[yl + hl,..., Yy + hNJ - J[ yl,...,yN]
| (A.11-1)
is the increment of the functional, J, corresponding to fhe incre-

ments

hi(xl,-i: xd) of the functions yi(xl,...,xd).

The increments are arbitrary members of the normed function space

: 3.1
appropriate to the associated functiom y. (e.g., u/t F *ELlLE- ,
R Bxléx F

etc., suggests the space of 3-times continuously differentiable func—

tions over R, Di(ﬁ).) If the increment can be expressed as
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A.I[hl,...,hn] = ¢[hl,...,hN} + e(]|u}]) (A.11-2)

£ > 0 as ||h|| > 0; and ¢ is a linear functional, then ¢ is called the

principal linear part and is thus, by definition, the variation of the

functional. A functiomal, ¢, is linear if ¢ is continuous and

¢lhyseer, an+ Bﬁi,...,hN] = ad)[hl,...,hi,...,hN] +

+ Bolhy,.ue,hy, 00 hy ] (A.11-3)

A natural norm for h is

|h|| = i); e (A.11~4)

and for an hi € DM(R) is

=1

R d
MAX 1

[ || = lh [+ e+ 3 = |. (A.11-5)

R . -l= JM R . P

Alternatively maximums could be used in place of sums. The term
e(||h|]), i1f € 0 as ||h]| + O, can be written using little — 0

notation as "o(||h||)," meaning

vy EWRID 4  (A.11-6)

[} >0 [fn]]

or with big ~ 0 notation as "O(||h!|2), meaning M 3

2
el |b]]| < M||n]|" . (A.11-7)
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A.12 Nabla

The aymbol "V, called _@l_a or del, is used to represent the
operation of the exterior derivative on differential forms (A.10).
The gradient is denoted "VE" and is defined as df. The ciivergence
is denoted "V - V" and is defined as * d * V, where "*" is the Hodge
star operator (A_-._Q). The curl is denoted "V X V" and is defined as
* d V. -

In terms of the usual coordinates on t;hree dimensional space,

these have the usual forms

O gy + 2L gy + 2L 4,

d(f) = ox . Oy dz ?

(A.12-1)

V.v==*4d * (Vldx1 + szflx2 + V3dx3)

]

2 3
av x _ v ., '
* -—dxl A dx2 Adx3+—2- dx2 A dx3 A dicl
1 _ 2 .
ox . . ox
v
+ —= dx3 A dxl A dx2
" 3
X

* d (V"ld'x2 A dx3 + v dx3 A dxl + v dxl A dxz)

1]
*
|
o
<
ol e
+
@
<
r
+
Q2
&
(%)
|
[(m
"
o
-
o
E
>
o
]
)

av Bv‘ v | .
[ i+ Z . 3] and (A.12-2)

ax 'sz‘__ ox”~

*d(vldxl+v

|=<a
x

|t
]

2 3
de +v3dx)

v, ov ov
k[~ dax® A dxt + —k dxd A dxt + —2 dxb A dx?

2. 3 1

ox X Ix

Equation (A,12-3) continued
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v v v

+ —= dx” A dx2 + — dxl A dx3 + — dx2 A dx3
3 1 2
3x ax JX
av av v av
= % __2_——E dx Adx2+ —-—g-—% dx2Adx3
% ox dx ox

(A.12-3)
A.13 Dot and Cross Product Identities
Some of the jdentities invoiving dot and cross products will be
listed here with proofs as needed. Since the dot product is defined
b} a symmetric bilinear form,
A-B=B.4A . (A.13-1)
Similarly, since the‘cross product is defined by the exterior product,
AxB=-3Bx4A, 7 (A.13-2)
Using the tilde symbol introduced in (1.5~40), the cross product may

also be written

o By

A =
AXB EBY a b e,

- [.5a B NN

[EB a ea®ed] [b ey]

=§a_B— - . (A.l3_3)

Similafly,
AxE:E.&:é.E:._E.'g:_'g.éa_ixé . (A_13-.4)

The vector tfiple product may be rewritten by applying Egquation

(A.13-3) as
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g

A+« (BXxC)=4- +C=(AxB)C. (A.13-5)
The twelve permutations of (A, B, C) may be obtained from the symmetry
properties, Equations (A.13-1 and -2) and from (A.13—5).' All even

permutations are equal, and all odd permutations are equal in magnitude

but of opposite sign., In terms of the tilde notation,

=2

ABxC=K-B-Cc=a.

g2

-E:é.g-

I3

, - (A.13-6)
where the parentheses have been dropped since there is only one

interpretation possible.
The parentheses must be retained in the iterated vector product

since there are two different forms. The iterated vector product may

be written

' _ o a B, v d €
A x (§:3 C) = EBY a (668 b~ ¢ )ea . : (A.13-7)

Neoting the expression for the .contraction of Levi—Ciﬁita epsilons

(A.9-14), this may'Be-written as

= (5% o B.& e
Ax (BxgC) = (66 GBE— GE 686) a b ¢ e
S (B €4, 0 . B 8, a
= (a GBE ¢ )b e (a 666 b )¢ ey
=4 -.-0B- (- B . (A.13-8)
From the anti-symmetry of the cross product
Ax (BXxCy=(CxPB) xA .  (A.13-9)

Finally it may be noted that

AX (BXQ +Bx(CxA +Cx(axB)

4+ OB - (ABC + B-AC - (B-OA + (C-B)A - (C-A)B

-0 . , (A.13-10)
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In terms of the tilde notation, this last result may be written

ey}

€ -»7-a=-F-C-0+T-E-», (A.13-11)

where the tilde outside the parentheses Implies the quantity inside is

to be operated on. This may be written in an operational form as
@~ =CF%-%cC. (A,13-12)

The four fold iterated vector product may be expressed in either

of two forms,

]

AxIBx(CxD)]=4Ax[®-DC- (B« OD

(B DAXC-(B-CAXD (A.13-13)
or as

AX (BX[CxD)=(s+-CxDB~(A-BCxD. (A.13-14)
A.l4 The Variation of a Vector

The use of the variational operator, ¢, in conjunction with vector
notation, in an inertial reference frame, has the interpretation

6a = (3a% L= . (A.14-1)
ox

This may be expressed in terms of the A_l related basis, (1.5-35), as

sa = (8a%) HFa
o ax'B
oo By 8 o By 3 -
§(a ca) ax'B (a Sca) ax'B . (A,14=2)

If the combinatiom, aacg , is denoted 'aB (noting that a'= c'g 'aB =

c$ 'aB), then Equation (A.14-2) becomes

162



sa = (5 'ab) Lo -al s o i
3x" o 3x'
=6 a-(al T B2 , (A.14-3)
= o o ' B
. ax
where the symbol &' is defined by
5" B = (6% X, (A.14-4)
T ax'%

It may be noted that the array, cg g cg , 1s skew symmetric since

0=080"8) = s5ee¥ By =5 of P+ oY 5P
o a o Qo o [

B saY = = &Y 5P -
= <, Gca Cy Gca . {A,14-5)

Thus in a dot product,

§(A - B) = 8a% p* + a® sp°

1

(ﬁ'as— 'aYCESCS)'bB+ 'aB(ﬁ'bB— 'bYc;6c2) 

8 'as'bB+ 'aBS'bB— 'aYb‘BcYﬁcB— 'aB'byéYSEB
oo o o

§ 'aB'bB + 'aB(S'bB
§ "(A - B) . (A.14-6)

In the case of mixed bases,

§ at]:i)___ . '-'bB ._______3 = & c13 "'bB
ax™ Sxt"

o b

il

d(a
= 8a%PP & 2% PB4 9 BB
¢4 o d

=6A - B+ aﬂ‘bﬂﬁcg 1A+ 8B, (A.14-7)
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£.15 Modes
An ordinary, second order constant coefficlent system of

differential eqﬁations in the form

Mi + C4 + G &+ (1+ai)kg = 0 (A.15-1)
must be converted to first order before modes can be calculated, The
matrices M, C, K, are real positive semi-definite, G 1is real skew-
symmetric, ;nd i ='J:E; First the g must be transformed into those
spanning M,lq,'and those spanning the null space of M,zq. Pre and

post multiplying by the transform gives

llMl 0 1q llC' 1ZC lq llG ,12G lc.1 ll ! 12K 1q
= T T izl o, s+ (ad) ] S "" ~Tr=10
0'o Zﬁ 21C‘ 22C 2El ZlG |ZZG 2(51 21 22K 2q
The equation may be written in first order form as
1 ' . [ 1 ~ - rq
Fo M 0 qu Lhy o . o (%4 0
-— -'- - - - - - - - bt - - -
ll ll 1 !
: llc. 2612 L+ | o ron Mk ey ki g b= o}
-~ - - - .._' _____ - - - - - -
01 21g?l 22G+220 2q 0 ﬁ1+ui)21K:(l+ai)22%J 2q LO
] u o o
(A.15~3)
If C is zero, then the first matrix is skew-symmetric., 1If G is zero
(and C 1is not), then reversing the sign on the first equation would
result in both coefficients being symmetric.
A first order differential equation of the form
AqQ+Baq=20 : (A.15-4)
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may be subjected to further reduction if A is of less than full rank.
Transforming q into those spanning A, 1q, and those spanning A's null

space, 2q, and then pre- and post multiplying by the transform gives

' + ST B SR VP S ‘ (A.15-~5)

The last of these equations is algebraic and can be solved for the

2lB 22 22

space sgpanning the partition B, If B is non-singular this is

simply

{2q’ _ [z-z_B]-l [21]3} {1q} ’ (3.15-6)

which when substituted in give

[llA] [l-q} + [11'13 _ 12y (222 213] [lq} =0. (A.15-7)
The singular case yields similar results. In either case, we are
returned to an equation of the form

D4 + Eq = 0 (A.15--8)
where D has full faﬁk.

The procedure for reducing the dimension of the equations
generaiizes a method applied Iin structural analysis known as static
condensation or Guyan reduction. Those methods were developed for the
.special case wheré moment of inertia terms are considered negligible
and dropped from the mass matrix, reducing its rank to about half,

In those applicatibﬁs the mass matrix is frequently diaéonal, there

is usually no damping or coriolis terms, and the resulting 22K is
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non-singular, allowing immediate identification of the null space and
solution in the form of Equation (A.15-6). In the more general pro-
cedure, finding a null space is not trivial. Eigen routines may be
used (if they can treat multiple zero ro&ts), some Choleski decompo-
sition routines; based on maximal pivots, provide the spaces, and
there are a class of elimination methods sometimes known as "structure
cutters" which do the job.

Returning to the Equation (A,15-8), if E has less than full rank,

transforming gives

]
o
=1
L]
) 0
=

= 4 _ (A.15-9)

and solving as in Equation (A,15-6) provides the rigid body modes and
leaves

Fq+Hg=0 |, (A.15-10)
The matrix H 1s symmetric and may be factored into lower, L, and

upper, LT, triangular matrices (which is a by-product of using a

Choleski routine on E), Pre- and post multiplying by L"1 and L—lT
provides

Jg+1q=0", (A.15-11)

. -1 =1T , .
where I is an identity, and J =L FL . Assuming an exponential
A
solution q = q e £/ provides the standard eigenvalue problem on the
dynamic matrix J
: A
[[J] + A[I]] {q} = {0} . (A4.15-12)
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The ffequencies of the system are 1/X so the usual procedure of
calculating highest‘eigenvalues first provides the desired lowest
frequencies‘firét (or, with a shift, in some low range).

It may be ﬂoted that in the absence of damping (C = 0, a = 0),
i[J] is hermitian,.so the eigenvalues, 1A, are real and the resulting
motion is sinusoidéi. In the general case, the adjoint problem must

also be solved

[ +2 ] 28 - 101 . ' (8.15-13)
The eigenvalues are the same, and occur in conjugate pairs or are
real, but the eigenvectors are different, After transforming the
vectors back to the original q's, premultiplying by the transpose
of the adjoint vectors and substituting the vectors times modal
amplitudes, [¢] {n}, into the first order equations (e.g., A,15-3)

diagonalizes the éyStem of equations.
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APPENDIX B
STRESS
The presentation of the relationship between Newton's Laws
and stress has beeﬁ removed to this appendix to preserve the

continuity of the text.
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B.1 Stress Transformations

Let m be an arbitrary point in a material continuum, N an
arbitrary spatia;ly contravariant vector of unit length, Let
(xl, xz,'x3) be Cartesian coordinates with origin at m, and such that

the point defined by €N lies in the first quadrant. The plane normal

to N through ¢N, and the coordinate planes define a tetrahedron with

vertices (0,0,0), (J%, 0,0), (0, J% ,0), (0,0, j%) where N = na-i—-.
n n n - ax™
e |
Ng
.3s
g 1
- —
2g
x3

The surface force densities on the planes normal to N and the coordi-
nate axes x> will be denoted gg and -~ éﬁ respectively, The volume

of the tetrahedrom is

E3

T3 (B.1-1)
nnn

2N

V =

and the areas of the faces are

(B.1-2)

and

. (B.1-3)
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From Section 1.6, Newton's laws imply
3 )
* Dé'-——) f *(_ . ——)
“/; ( ax” R 3x"
-/;{*5-1——)+/‘*(__-3—0—¢) . (B.1-4)
ax® R ox

Since the terms p, A , X remain constant as e varies (O(l» and the

integral varies as the cube (0(839 , and noting

S(m') = S(m) + 0(e) , (B.1-5)

the equation becomes

. o 2 2
¢, 1 n'e N, 1 € 3
277123 Y A3 0. (B.1-6)
nnn nnmn
Thus
Ysm') = n® %@ + o) |  (B.1-7)
In the limit as €~ 0 this gives
Ys(m) = n® %g(m) . - (B.1-8)

B.2 GeneralizedAStress Transformations

As in Appenéix B.1, let_m be an arbitrary point in a material
continuum, N an érbitrary spatially contravariant vector with unit
length., Let (xl,x2,x3) be an arbitrary coordinate system such that N

lies in the first quadrant, The plane normal to N and at distance €

from m, and the planes defined by the tangents to the coordinate curves

at m describe a tetrahedron.
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afaxt

The vectors from m to the apexes may be denoted
U=1u e (No Sum) . (B.2-1)

The product of the area of the triangle and a2 unit outward normal

vector is given by the cross products

Ly -

Lo
—
x

%y

|

3

" g

= A

I f
LT EE I D ST

c

x

[=

=
=
=B

(B.2-2)

For the face normal to N ,

(ZH x Ty 4 g x Tyt ZH) . (B.2-3)

As in Appendix B.1l, in the limit ase-~+ O

NA NsB + iA JLsB =0 . (B.2-4)

To demonstrate that this holds for
s -y - Z (B.2-5)

Equations (B.2-2 and -3) may be substituted yielding
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M=
s
=
x
w
=
+
w
=
b
+
X
[
c
g
fie
+
rol
p———
L
(=]
X
ro
=]
fle-

(8.2-6)

which is satisfied identically.
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APPENDIX C
BEAMS
The calculation_of numerical results for a beam finite
element are presented in this appendix., This material is placed

1in this appendlx to preserve continuity in the text,
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C.1 Beam Finite Element

The material continuum is a beam of length %, depth h, and width

W,
X2
a3 7 t a4
(‘*”‘h &’71 i e (—L—-qz
a5 X3 96
The position vector will be approximated by
' - - — 4, d — - -~ 0
E=lxtulx, 9] 5o+ Iy + v(®)] 3y + Lzl 52
where the displacements are
= .u + ux+ uy + uxy+ u E-EQ'“
T 0" T 10 ol" ¥ Tt XY T Rty x Y
- : -2 13
Vo= + vt VT X+ VE X - (C.1-1)

Surface forces will be prescribed as zero on the lateral surfaces of

the beam. Body forces will alsc be prescribed as zero. The prescribed

positions will be expressed in terms of nodes located at the center of
each end. They will be assumed to have the form

P -\ 3 - d -~ d
L3 x=0._(1q - 54 y) ox +(y t 3q)3y + (2) 9z

P 2 IR b 3
Rlmy, = [P“.*(zq "l 5)] o% +(y * aq) 3y

The element will be restricted to infinitessimal {(or at least

+ (z) g—; . (C.1-2)

sufficiently small) strains so that the strain energy density can be

approximated by a quadratic in the strains

A A A
K=R° 4 A% g 41 RoByS

af 2 E E

aB Zvs (C.1-3)
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The material 1s required to be homogeneous, so that the coefficients
are independent'of the coordinates. And, the material is required to
be isotropic so that the coefficients are determined by Young's modulus,

E, and Poisson's ratio, Vv

AIIII E ATTIT

A =TIyt A =,

A A

AIJJI = A;JIJ = G _ (No Sums) , (C.1-4)

where I # J, all other coefficients are zero, and X and G are Lamé's
constant and the shear modulus defined by

) VE _ B
MeaTFwa - v M6t Ty

Taking the variation indicated in Equation (1.8-26) gilves

0 =f-s- *[(ﬁaﬁ + KO‘BY(S EYG - g GB)SEQB]
+f§ * ([@B)af& - eaé]égas)
4{[5 *[/Z\ oB G@BGB]__/F;SP* [s“ (SPO;”
- fa Sj; [(Pu - Ppu) 55“] . (C.1-5)
The coeffictent of Sc g must be zero, so
P op _"ﬁo;s _ A9BYS

£ . (C.1-6)

ve
The beam will be taken to be in a state of uniaxial tension along the -

- AXX _ A
x—axis in the reference state. Thus A" = 0, and all others are zero.

The term "?B" may be calculated from Equation (1.8-19) as
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I

2 2 2
T, -2 2] 2
VP =—+35l=) *t (=} H=
By ox 2 [( 5% (ax) 5%

G- iy e seo s
12 5 8% 9x dy 9% 9y 9% 9y

2 2 2 .
@),y =+ 2 |2+ () +2) | (€.1-7)
—="22 - 2
oy ay dy oy

i

Inserting Equation (C.1-1) yields

— -— —— 1 — —\2
@811 = 10% *1a% *1% v *+ 3| {10* tuw +21“xy)

]

(v e T4y 25)
)+ 1v +2v X +3v E-x

Pl —

4-Gv + SV + 3V

o

= 1 = Ll
OBy, =§[(01“ Fpux fpu g ¥
4—Gﬂu +llu y +21u p:4 y) (Dlu + 11" ¥ + ik 37X )

= 1 - 1 -2 2
(YE)ZZ = E-Rglu +llu x + ,,u 3 X ) ] (C.1-8)

The coefficient of Gg ap in Equation (C.1-5) must be zero. Retaining
only linear terms, this gives

S BRI IR T L AP PLIE I

1 1-—2 = 1
512 = 2[§lu + 11u X + 2lu ) X + 1v + 2V X + 3V E'x ] (C.1-9)

|

Inserting this result in Equation (C.1-6) vields

g 22 _ Aljau+ S uy 4+, u Xy
10 11 21

A

33 : — -
X =

A 10% + 1yt 219 ¥ y)

N2 12 — 12
I G(Olu+llux+2lu-2—x +lv+2v x+3v—2-x) (C.1-10)
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The third iﬁtEgral in Equation (C.l¥5) may now be written as

Ifo B T uxT v + e
ﬁ. * [c +(1+\) + )\) .(lou +1Uy U X y)] [Glou + 4 eyt $ 919 XY

+(10u +1lu y +21u X y) QS 10" + 8 1y + 4 g4 XY )

+(10u+ llu vy + 21u X y‘)
. _ 1_2] [ | _ _
65 01" + 8 1Y X + Gzlu-i X ) + A(lou +1lu v +21u X ;)]

[(Olu +llu'§ +,,u %? ) ((‘501u + 611“; + 8,0 % X )]E | (C.1-11)

Collecting coefficients of the independent variations (i.e., & u,

10
§ 01%* 8 119 ) Zlu,'ﬁ N 8 N 8 3v), retaining only linear terms,

and defining

_ﬁ}“d? = A,./% dydz = 0, _/-372 dydz = 1, f}"" dydz = 20 42 1
J 2 3
— Lo~ 9t [~ g
.I;K = Q,J/;:dx = *E-,d/; dx = -3

Equation (C.1-11) becomes
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[8 AL +(-i§:_-— + J\)Aﬂ, o8t & ag lou]a LoY
22 23 2 3

+ [G A(R,Olu + 5 llu + e 21u + Sllv + ) 2v + 3 BV)]{SOlu |

+ [(1_% + )‘) I(’2“11“ + %’321“)*’ 4 I(‘Lu“ + %:2" 21“)+ ¢ A(Lz01“ + %’i 1"
+%i21“+%'2'1"+%32"+%i3") 6194

+ [(—1-3—\)-‘1% )\) 1(2—2 T -%-?—’21u)+ G I(%E- T %i 21u)+ G A(%i 01"
+'§i 11“+&'3'21“+R_31"+%i2"'+%'; 3"')]‘S 21"

+ [6‘ A(,Q,lv +~§‘i oV +—§3 3v) +G A(Q,Olu +~2’fGi 11u+%3 pU + BV
+-%E oV +-§i 3%ﬂ le

+[G *“‘("Jzéi 1V+g‘2“+§3")+c A(ém“*?‘u‘”’?’u“
+'§E1V+§'2V+"§i3")‘52"

* [3 A("jsi v %ﬁ 2V T '2%(57 3")+ ¢ A(g 01" * éillu * ':%(53 21"
+ %i N + %i 9V + %;— 3€H63v (C.1-12)

The two remaining integrals in Equation (C.1-5) are over the

deformed (physical space) ends of the beans.

A rectangular area

perpendicular to the ;-axis, with sides d;, dz in material gpace,

becomes, as a result of deformation, a parallelogram with sides

- A - A
(1 + Ez)dy i, (1 + E3)dz 23, where 1 + E2

/1 + 2E22 » and

A —
i3 is a unit vector tangent to the deformed x,‘axis., The ratio of
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-
the area after deformation to the area before is (1+E2)(1+E3) sin
A A A A
i = ) . i th
(12,13), where gps(lzl;3) 823/(1+E2)(1+E3) The Jacobian of e

transformation i1s equal to the ratio of the areas

2
E
J = (WE)(HE) [ - 232 ,
(14E.) “(1+E.)
2! TEs
_ 2 _
= J4l+2822)(l+2833) - 523 (C.1-13)

Noting Equation (C.1-9), to linear order J = 1. Transforming the

fourth integral in Equation (C.1-5) to material coordinates gives
f~*‘sxdu+6 ux+68 uy+6 uxy +& u-1-§2§'+
s | 0 10 01 11 21" 2

-2 1 —3
x° + 63v 3 X )]

o

y —
+ 8 GOV + 61v x + sz

[J]-}' \ o (Cu1-14)
Evaluating this integral at the two ends (1.e. x =0 and x = 4) and

introducing the symbols

./;Elx-o*{_sxm} R

% —
aglxﬂ;‘{s y[I1} = - (@
_ ¥

j;leo*{s a1}

X
d/;§|x=2*{5 [J1}

X = .
-/;-S—i}{:g,*{S:..y 31} = - 0

I
L
<

I
3K
Fo)

./B-E' *(s7(1) = 4Q (C.1-15)

x=L

ylelds for Equation (C.1-14)
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(lQ 8 ot = SQ 601u + 3Q Sov) + (2Q 6Ou + 2Q QGIOu - 6Q 601u
R? 22
- GQ Rﬁllu - GQ-EW 621u + 4Q 50v + AQ Rélv + 4Q-Eu 62v
23
+ 4Q e 63v) (C.1~16)

Summing Equation (C.1-12) and the negative of (C.1-16),

and setting

the coefficients of the independent variations equal to zero provides

the stationary conditions

Gou

8, .u :

10

21

- Q- ,0=0

5 AL + A2u+(1_'E_U+A)AILu—2Q =0

GA(% u + 2211 %Eél + % 1Y + %Eév + %3-3 ) 5Q +6Q =0

AI(R'n“ * 5;221 )+(I'E'J “ )1 (’2‘11u * ’;221 )

* A‘;(92"201 &311“ * %fizf‘ + %51" * %iz" + %;3")+ 62 =0
: 6\1(2 114 ;21“)+(1'-E?\7 + ") I(%Eu“ + £321“)

* A‘3(2301 24 n*+ "g;; 21"t %i v %j v T %’2’ 3")

+ Q %— -0

: - 3Q - 4Q = {
: GA(.Q,lv +—§'~3 2v+%-3 3V

+ AG (R,Olu + = 9'2 %—3- 2lu + E,lv + %_2_ 2v + —é’i BV)— 4QE=0

Equation (C.1-17) continued
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These

QA('E'Z' 1"*%22"*5: 37
* AG(%E 01" + %i n** %;i 21® %"?' A %‘E 2"*%1 3") ‘4.‘3 %i =0
: 31\(%3 lv+ %i oV + %’; BV)
+ AG(%E 01t * %i 1t %(57 n% Jé_j vt %i v ¥+ %;3")‘4‘%3 =0
(€.1-17)

nine relations may be solved for the six Q's and three constraints.

H

i}

10u + A

A E
-I}LQ-FAU (1+v
A 4 ad u+A(._E_

10 1+v
A A
- {E o

o

+ k) lOu

3
'8 AG
2v + -6—- 3v]+

L

’ 2
g
v + 2

2
21u+T1V+

23

3

24

o=
g 3")

Equation (C.1-18) continued

'ZV

with constraints -
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: E %
. . L L 32
5 Iyu+ ( + )\)IZlu AG(Olu = u

3 L &\
8 A(zv +5 3v)+ AG(llu S ,ut vt 3v)- 0

A 8 8 8
a A( 1 R.3v)+ AG(ll = 'Q'Zlu + 5V 4 G 2.3) 0 (C.1-18)

"the last two of these imply

A G
Uv+G(u+ v)=0,0r v=- o Y
2 11 2 2 G+G
A G
g v+ G( u + v)= 0, or v = = — _
3 21 3 3 G+G 21U (C.1-19)
and inserting these in the first of Equations (C.1-18) gives
1 A% & _abe 3
v, = + — u + G I,.u
A
1 01 AG[ 3+G 7 11" Ma 20 21 21
E
* (1+v M A) 21"
A
S S R St SR - S
A
0l 6+G 2 11 O+G'20 21 G A 21
2{1-v]\ 1
* ([1-2v]) A 21" | (C.1-20)

Substituting back in Equation (C.1-18) yields

_ A E

Q= - AD A8 1% - A(l_w + }\)
A E

Q= AG+ Y o+ A (l+v + )\)lou

Equation (C.1-21) continued

184



2 2 A2
% 6 3 61
2= AC’01“+A§;E S W T Vi R W S
_ A zaw) 1
-2v)| & 21
be 2 ada 322 A E
t A Ao 21t A 20 a1t T Ot ot (l+\> * A)I 21"
2 A2 2 A2
Q= -4 u-ad 2 N T <A S
4 o1 Ao 2 1l Ao 20 21 ¢ A 21
A 2(1—~v)] 1
+a [1-~2v A 21 ‘
A
a5c 1 aBc 3¢ A E
Re2n® A 30 % T O vt (1+v * }‘) ik
2 2
_ 10 2% L VAl
s 7 (“11 3 21“) * (1+v + )‘)(’L 1%tz
, Abs 22 adc 39> T __g__ﬂ)l_g .
TS E o Y 5| 2 1% - (T 2 21
_abe 22 a0 2>
A
Ao 6 11 T 772
2 2
|1 £ ) - L (B ) 22 )
=7 (’111u *3 21“) 7 (l—h) * )‘) BT P
abc 1 %G 32 Ao L E 2
+ == = + == - = - =
Ao & 1% TR %0 21t T 0T g gt (1+u * J‘)I 2 21"
_ade 2t abe d? . 1o
bag 3 1 Jp8 22 .

It will be assumed that the preload is very small compared to
the shear or elastic moduli (e.g., for steel G = 11000 ksi, E = 29000

ksi, and the yield stress 1s 36 ksi; so G < .0033G to be in the elastic
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range). It will also be assumed that the beam is slender (e.g, h << 2)
2

h .
s0 t:hat-lg-l << 1 (recall I = wh3/12, A = wh, so izl (—) ). Equation
2 7 =2
YY) AD
{C.1-21) can then be written
A A 1-v
14 =~ AT = AGjqu - AE [(1+v)(1—2v)] 10"
A A 1-v
2= A+ AT qu + AR [(1+v)(1-2v) ]10“
2
A AR 34 1-v
0= AGpu + AT 3 v+ A8 5 5 ju - EI [(1+u)(1—2v)]21u
2
A A R A 3R 1-y
4§37 = A W = AC 5 g - AG 55— pyu + EL [(l+v)(l—2v)]21u
2 3
AL AR 1-v
587 H ATy gt T AS TG et EI[(l+v)(l—2v) ] 11"
2 3
AL Al 1-Vv
6 = ~ A0 77 11U T AG g5 oqu - EI [k1+v)(1~2v)]llu
1-v |
- EI EﬁﬁxﬁTIZEBJQZl“ (C.1-22)

The above noted approximations along with the constraints {C.1-19

and~20) may be used to re~express the second of Equations (C,1-1)

X - _u Qﬁ;z_ e 132 133
20 11" 2% T ¥ F ¥

21

o) [a-

(C.1-23)
The final integral in Equation (C.1-5) when converted to material

event space assumes the form
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+( E _é..'qi uﬁgﬂ’_e'_ ug’f..
o To1" T 1%e2 " 21Y ¢ 20 11" 2
. ,
L ) %]
" 21% % T 49/98 J}
The stationary conditions are
x _
88 |;;0 Pt - qa=0
x_
8s y‘;;o o1 + 59 = 0
y--- -— =
§s |x=0 o¥ = 3¢ 0
88 |;;£ Pt t loul -,3=0
X~ ) o 22
8%y = 01" + 1lu2 + 214 5 + 64 = 0
2 3
Ve . v _ L A
0870 o 1™ T 1% 3 21% 6 430

Solving for the displacement coefficients

" < 19
1 1
10" T " T8ty
o1 T 7 54
.5 6 4 2
11" T T2 397 T 49T 9 g
2 %
u=-2 412 6 q-5% 4
21 33T T2 T T e
oV = 34
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Substituting this into Equation (C.1-22) the result may be expressed

in matrix form as

Q=Q;,+K,a+Kgq (€.1-27)
where
- T
Q= [, ,0, ,0, ,Q, Q, (@ ]

=[ - a8, 48, 0,0,0,0 17

. T
a= 119 59, 390 495 595 (9]

1! 1 : ‘
T T 0 | 0 , 0 p 0
JE O R, L o o - - . . o e - o o Do e e o -
1! 1! | 1 i
B Y [ 0 I 0 ! 0
el b Ml T m - = = = = = - e e
' I 3/8 - 9/50 1~ 3/ 4+ 9/50' ~ 142 - 9! 1 -~ .9
t 1 ! |
6, 0, [ I :
2 \ \ = 6/5% , = - 6/52, = 1/10 l= 1/10
G_ - rr--"7T-=-==-=-= Tr-=-=--=-= F- === - = ===
: = 3/ + 9/50, 3/ - 9/5% 1-2 + 9 ,_1 + .9
o ! O' 1 H
4 == 6/5% | = 6/5%, = - 1/10 (= - 1/10
) Lt a2 -2/5 - 1/2w 2l T /3 - s _'E/E -5
0 I
: . ; = 1/10 ! = - 1/10" = 28/15 '= - 2/30
- - = - - - = ITETR e e e e e, e e - T
0! g - /2 +3/5 1/2 - 3/5 |, -%/3 + 32/10. -2/6 + 3L/10
B : : = 1/10 : = - 1/10: = - 92/30 "' = 29/15
- -
-f-:u-%&: 0 : 0 : 0o ! 0
TR B EE ER EE s M Me em Em EN SE A e e e Em e R WE SR S ke e ey Iu—u———
AL Ar' ! ! ' T
_.i.._l TI 0 I 0 1 0 I 0
""E"I ——————————— = e e em e S, o = e e
K == 0 0, 12/9 - 12/0 6 6
G B O S A
_O_’L_O__l.____ﬁ___l” -6 \ 4% 1 2R
I 1 T T T T PO, oS, Ty T
- + 6 - - -
o1 o 6 12l 12 | 49 + 6L - 28 + 62
| i
I ! =5 : -6 : =2 :=_@_
= - 1-v
h E = .
where E ((1 F WL = 2v)

188



This result is identical to the geometrically nonlinear beaﬁ
finite element usuaily obtained by assuming a stress distributionm,
except for E'replacing E. This is due to the fact that the simplified
displacement.fiéld'used 1n this example allows no extension in the
lateral directioﬁ, and the associated stresses fail to vanish on the
lateral surfaces, This deficiency may be corrected by selecting a
more complete disblacement field, or merely by replacing E by E,
noting that E is the axial modulus for laterally restrained material,
and E for laterally free material. That is, E is the elastic coefficient

AIIII (C.1-4) giving the stress for unit strain with the other normal

strains zero., The inverse set of elastic constants BIIII =-% ,
1137 v ' . .
B =-3 provide the strains given the stresses, Thus for a unit
1 ITiI

stress with the other normal stresses zero, the strain is B B .
C.2 Beam Dynamic Pérameters

The purpose of this section 1is to develope the dynamic parameters
for the finite eiément described in the previous appendix (C.1). The
agsumed position field may be obtained by substituting the results of
Equations (c.1-1§-,-'20,-26) in Equation (C.1-1)

e YR
E= x+lq+x(-£lq+ﬂ,2q)+y(—5q)

—— (6 6 4 2
+"V(23q'£§4q+15q+16q)

+
ra| =
™ |
o
|
1
H
wito
[VFS]
e
l'—*
Lafra
I
0
|
[ p]
w
0
|
o2}
M
o
=)
e
[ —
cu,cu
"

+
o
&
—
]_l
[N
[
r=1
'—i
Wt
L~
s
+
o
X}
w
=)
+
o
[}
o
fa
[
——
QJ’QJ
et

Ty 3 —g— (C.2-1)
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From this, thé functions Eog', igf may be determined

Eog'=§—g;+§%;+;:%;

15'=(1"%)%§

23'“(%)%;

33'=(Z—2¥§—§-§_2 )g—; +(1-3:§+2§)%§
g=(~%;;+§§§2;)g;+(3§-2§)%;

poe (50375 -575) R (744757 %
62'=(%¥§-i3‘£2§)—§;+(—%§2+i-2-§3)§§ (C.2~2)

A
Assuming a uniform density p the dynamic parameters may be

computed as

M =fs— * {A} (C.2-3)
=B wh 2

The center of mass is

L
£0- fs * {p EOB'}/M
2
A £ 3 LA
(Bowi)s b

()

The shift in mass center due to generalized displacements are

190



ny o
x|

. | ( A.D.“.
13 il

(C.2-4)

L
Ll <O = pr———
—— o~y .
\;I_.nl....r +* 3 -, .
o2 e |en <Q [
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The moment of inertia is

p= S5 Bl s ) e - ot o)
e -] o
- Eok i3y o

= -—*A L t - Tt pt
2= S5 P [l 2 ) - goti2]

]
T
"
e N
=2
g g,
M‘zo

[
1
mlze
= w
T’
v
————_
@l
W
aqq)
=
OJ‘Q)
(o
wles
wjw
™
QI
™
e ——

(gl 3 u8
=M 6(ay®ay+az az)g

= —*1’\( v, ') - i Il
2L = J3 lp[EOE 2] Y- gt 2-?-]§

(C.2-5)

3
N R S TP S B S S T WY Al R
p[“’h 3 Bx®3x+3y®3y+az®82) ‘G”h 32)569%{]

Equation (C.2-6) continued
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(C.2-6)
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The first order moment terms are
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noted that these calculations are of the same form as some

terms and need not be separately computed. The second order

changes in moment of inertia are
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Equation (C.2-8) continued .
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where the remaining terms may be determined by the symmetry relation:

of 3 3 : Ba. 9 3
I I — R = I —_— () S (C.2-9)
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(e.g.s 45I = 53

Similarly, the second order moment terms are
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The elements with interchanged subscripts are obtained from

t ) = - . .
antisymmetry (abg bag) All other elements are zero The mass
matrix elements for a consistent formulation (i.e., assumed velocity

field the same as the assumed displacement field) are
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Equation (C.2-11) continued
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where the remalning elements are determined by symmetry (i.e.,
ijM = jiM). It may be noted that if the beam is slender (% << 1)}, then
the terms involving (h/R)2 are negligible. The mass matrix is then
ldentical to the consistent mass matrix for a slender beam as presented
in the literature.
C.3 Substructure Modes

In this section modes for a very simple substructure are calculated
using Hurty's method. The substructure selected for this example
consists of a single beam finite element in a stationary reference frame
(see Sections C.1 and C.2 of this appendix). It will be assumed that
the beam is attached to other substructures at 19 2% 34 and 9. Out
of plane deformations are not included and the preload is assumed to
be zero.

For this special case the equations of motion (2.3-5) become
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where M and K are obtained from Equations (C.,1-17) and (C.2-11),
respectiﬁely. Rearranging the rows and columns to 4,6,1,2,3,5 to
group internal (4,6) and boundary (1,2,3,5) nodes, the equations may

be partitioned

My Mg 9 Kyp! g I Q
- =1 - - -—— +_—-|—_.- —— ) = — - -
i 1. T!
Mgt Mgy | 9B K1p' Kpp g Qg (C.3-2)
The inverse of KII may be compuﬁed as
&E_[2/3 .1/2]
Er [1/2  1/% ' (C.3-3)
The static shapes are
— — l el
-1 | _£2 L/3r 1/2 EL 0 0 12/1' 6
“f Kt oot || s
CEL L1720y /R RTLO 00 ¢ 6 ot 2%
[o 01 1 9,]
= - - -1
0oloroi1 (C.3-4)

The modes of thé internal degrees of freedom satisfy

[KII‘l M - A u] [1¢}= 0. | (C.3-5)

where ih =l/iug, the inverse of the square of the frequency in radians
per second, and i¢ is the associated mode shape. This yields the

characteristic equation
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= DET _-EI-—-—R ____________ y T - -0 ="
EL - 139/210 - 117210 '-110/420 + 487420 = A'%
417620 = AU | - 49315
=DET | . _ _ _ _ _ oL L
i
2/15% (- 1/60 - AT
- iA'z - 17/210 )" - 41/25200 + 8/4725
- ix'z - 17/210A" + 1/15120 (C.3-6)
, _ EI |
where A' = =3 A. The roots are
M4,
(X' = .08013, and LA' = .0008254 _ (C.3-7)

with assoclated frequencles (radians/second)

& = 3.533 553 and = 34,81 Elg (C.3-8)
M, ML

It may be noted the first frequency is quite accurate (the exact

continuum mechanics solution is 3.52 Eig ). The second is much
MR
less accurate (exact 1s 22,4 EEE ). The associated mode shapes are
ML
.5875 L1301
l¢ = { and 2¢ =
.8092/4 (991572 (C.3-9)
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Now assuming only the lower frequency is of interest, or merely

noting that this single element model cannot accurately reflect

behavior for higher frequencies, the higher mode is discarded.

Thus

the original coordinates are related to a new set of coordinates by

Transforming the mass

08462

Similarly, transforming the stiffness matrix provides
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The reduced dimension mass and stiffness in an equation of the
form (C.3-1) provide a reduced dimension set of differential equations
in the modal amplitude, 1, and the four boundary coordinates which
describe the low frequency behavior. The reduction is not particularly
impressive in this example since there are more boundary than internal
nodes. However, in practice, the number of internal nodes is usually
much greater than the number of boundary nodes. Discarding half of

the modes in such cases results in substantial savings.
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APPENDIX D
QUADRATIC TERMS
This appendix demonstrates the adequacy of a linear expansion.
The unimportance of quadratic terms is demonstrated both analytically
and by example, This material has been removed to this appendix in

an effort to preserve the continuity of the text.
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D.1 Quadratic Terms in Lagrangian

The purpose of this section is to analytically demonstrate
that in a ﬁagrangian formulation truncation of an assumed quadratic
expansion of the displacement field to linear order results in
equivalent (although not identical) linearized equations. Let the

assumed displacement field be of the form

(D.1-1})

where the repeated Latin subscripts imply summation over all the
generalized coordinates. Similarly, body and surface forces may be

expressed in terms of the generalized coordinates as

X=X+ ,X .9, and
S=p8+ 5849 (D.1-2)

The generalized forces may be computed.
= —— * L] * L] |
4Q 8.4 fs {x - ép} +ﬁM(t) {s - ép!

9P 3p
% PR - * P
[5 . 51q] +,/;M(t) IE 3,0 qu]

- )3 . SB_ -
= ;9 -fs *l_}g . Biq} +./;M(t)*l§ aiq’ . (D.1-3)

Selecting an inertial frame of reference (to avoid the detail of a

$

quasi-coordinate formulation) the velocity and acceleration are

i - ) 4+ 3

= . » and
aiq i at
2 2 2
5 _ S . 9P . s 7P 3P
P = q + .9 + 2 4+ =, (D.1-4)
9;a 17 ° 29,9959 i'] 9,99t 1t T 4.2
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The kinetic energy may be calculated as
Lo fdale L., 2 . m __
T"zf?l_p[aiq 3,4 1qjq"2:aq‘ £ 19750 T ] ¢ @19

Lagrange's equation (including all potential energy terms in the

generalized force),

d (9T aT
Q=5 7= -7~ - (D.1-86)
i dt (aiq) 31q
provides
2
Jafd 32 3R ., 9P P p e .,
Q =f—. * p — —— . q + - ST - L] = q q
1 5 l dt 19,4 349 ] 9,4 t 19959 dq ik
2’ op g- . 2% -
- a ' —_ . [ e . Y
qu t BJq j t Biqajq i 8iq3t ot
=/_*3§£;_d£ g+ 5%p ‘ici+2 LR L
8 99 93437 T da B5qdq 3% 9,99, 4 3.9 3k
2 P 2
+_a£_.a-2 '+__£.._a -BL.‘_!I.FBE E . 82 ,82
959 3;99t 37 " 3iadc 3.q 3 T 9 95.q B 14 T gar 5
J i
NI SIS B S SN
qu BJth i ;14 8t2 Biqa q qu ik
2 : 2 , 2
_.@_Lo_a*P—_. q__‘gaag' . é_ R .-8—2. . (D l_?)
Biqat Jq j ot aiqajq i J.qot at :

Noting the cancellation of the third and tenth, fifth and eleventh,

.sixth and twelfth, and seventh and thirteenth terms, this becomes
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2 2 2
' s . d d s P

S 9,9 qu 3 49 quakqj 3,4 quat 3T 9a .2
2 2 2
f AR P . 3P - 9P ., 9°P
= —_— p i — SR P q + .q q + 2 q +
S ! 14 [jq i quakq 'k quat k| 31:2]]

AR P -
_-/; *lp iq 2} N (D.l 8)

Substituting the expansions in Equations (D.1 -~ 1 and ~ 2) into
Equations (D.1-3 and -8) and combining these two provides to linear

order

N 3.P 5" B a2 p
= — % I » ]
./:s o Pt (ij£+ jiP)jq jBydt 25 at 2o 2 7 4
t at
(D.1-9)

or

3.P 32 P 3% p
= ) P - P q + ‘—J: % . O—- » —_0__
./:c, e L A L T L at2+(ij3+313) atzj

32 p
+ 2 — 4
§ NERE

Equation (D.1-10) continued
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A 0— 0= i- .
= [ R + . .
./-S *1e iE Bt2 +(1JE+ Ji—) 2 jc1 P P q +2 P at jq
2
3~ .p
+ . p - — 4|t - (D.1-10)
= at? 1

The zerc order term is

J/_ 8202‘

— % . * . =fJ— = . —_— -

5 {0E 13]+.[8,M(t) {&S— 13}./; b2 2] (0.1-11)
Now either by requiring the iP be a complete function space, noting
the region 1s arbitrary, or merely recognizing the above as iz times
Newton's law, it may be seen that

./é *{o)—‘ . (ijg + ji_lz)-jq].+_/E;M(t)*{0§ (i.'l“‘ Jl!i) j-q}
2
=‘/'§ * p( 2 +jiP) %ﬂﬁ 44 (D.1-12)

must also be satisfied. Subtracting this from the linear term in

Equation (D.1-10} gives

Ssrx e j_q:+ﬁmt)*{j§ © R e

I\'.l i . EJE szz

at

which is the equation obtained by retaining only linear terms. Thus
the retention of quadratic terms adds the terms in Equation (D.1-12)
which are redundant with the zero order term (D.1-11) and thus may be

eliminated.
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D.2 Quadratiec Terms in Gimbal System

The purpose of this section is to demonstrate, by example,
that it 1s sufficient to retain only linear terms in an assumed
quadratic expansion of the displacement field. To provide a reason-
able test of the hypothesis, a system was selected for which rotations
are the natural coordinates. The base of the illustrated gimbal
system 1s experiencing a steady inertial spin, . The equilibrium
state is Ba = 0, in which steady state torques Ta are carried through

clocksprings.

A
13

i
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The linear equations governing smadll motions about the steady state
equilibrihm will be obtained in three ways: first in the natural,
Eulerian fashion, second retaining quadratic terms in a Lagrangian.
formulation, and finally retaining only linear terms in a Lagrangian
formulation., It will then be shown that the equations are all
equivalent.

This prﬁblem is ﬁot entirely academic. Structures are frequently
represented by finite elements whose generalized displacgments are
three transiations and tﬁree rotations at connecting nodes. Kinetic
energy is sometimes associated with these models in the simplest
possible way, by assuming all the mass is concenérated in infinitessi-
mal rigid bodies at the nodes {which, however, also have rotary
inertia). The gimbal system may be thought of as a mechanization of
such a nodal body; In this case the rotations are a 1-2-3 set about
the body fixed axes. An alternative mechanization that has been
suggested by other researchers is a 1-2-3 set about axes fixed in the
gubstructure reference frame. It can be shown that such a set is
equivalent to a 3-2-1 set about the body fixed axes, so the example
covers both types of mechanizations., (Of course, the question of
mechanization is academic, since it is about to be demonstrated that
linear terms are éufficient, and since it is only the quadratic terms
that are affected by wmechanization.)

Before proceeding with the development of equations; it will be
convenient to expressg some of the relationships common to all of the

derivationa, It may be noted that the customary letter with a caret
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A
(e.g., e) notation has been used for unit vectors in place of the more

cumbersom 9 . The basis vectors are related by the direction cosine

Bxi
matrices
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b! s0 0 cb al
%3 %2 2| (%]
r .-
a rroo o fa)
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A, _ A
Li3_1 I 0 sel c81- _53_.
A A )
b c8, cez' 88, ! ~c8, 86, gi
I 1
A A
. . 1 1 .
{b,t-=|-c8, 56, co,! 86, s0.f {201 ,
b g6, ' 0 ' o al
-l 2 I 2 =3
A -
i\l:li c82'38 sel - sez cel _%J
I 1
1] . 1 | f
-4%2 0 : Cﬁl ; SBl r §_2L , and
' I ) A
u.23_ 80 : b, seli c82 cBl L§_3
(4 7 | I (]
by c83c82,SGBCGl + selc63s@2 \ 583881— c63382c81 2
A 1 I A
1t = -c82583ic63061 - 561582563 ' cE‘r3sBl+ 592883261 N
n 1 } A
LE3 582 ;- selcez | C92 cE)l L_g_3-
(D.2-1)
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where the abbreviations 'ceu and sBa have been used for cos(Ba) qu

sin (Gu). The angular velbcity of the body is

W = QT Q+48 b

Ay Ayooa -
a 4 8, +a', 8, +b' 8, , | (D.2-2)

2 72 373

where the absence of subscripts in the first term implies the complete
array treated as a métrix, and the juxtaposition of the two terms
implies the matrix pfoduct. Making use of the direction cosine

relationships (D.2-1) this may be written

2 : T a7
@, + 6 + 0, 8, 1" [4
7 [ » N
w= 10, + 0,6, - b, s0,0,F 48,1 .
. . A
hﬂ3 + 38182 + cez celqu -23 | (D.2-3)

Linearizing this result gives

“ r -~
r N T A
ﬂl'f'el - _a_lr
» T cT
w= 1% +8,F {8+ =@ +6) 4
: A
| B3 +.85 ] =) | (D.2-4)
In the body fixed basis this is
- 1o fr -
.« T A
Ql + 81 + 9283 - 9382 El
w= do, +b -006 +006 b 451
= /G R R W 25 | -2
- A
Qg+ 65+ 08, - 0,6, £y
: . ~ A
= @+ T b
AT - i~
= b +8+Q0) . (D.2-5)
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The angular acceleration is

-

. AP = ~ o, . L
G=b(B+ud) =8B+ . (D.2-6)
The components of the torque are

T8

Tl - Klel s

. M -
I - 4 T2 K282 , and

A

] M = — a . —
T EB T3 K383 ) (D.2-7)

Expressing T 1in the g_basis .

Tl = Tl_ Klel »
b, T, + 88 Ty = T,m Kzez » and
86, Ty + By 88, T, + ch, b T, = T~ K 8, . (D.2-8)

Multiplying the second equation by ch s8. and adding cel times the

1
third equation gives

cﬂzsel(Tz— K262) + cal(T3- K383) - celsez(Tl- Klel) = c82T3.
(D.2-9)
Linearizing this result provides
Ty = T3 - K363 + 81 'I‘2 - 92 Tl , and
T, =T, -K. 6, -6, T,. (D.2-10)

2 2 272 173
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S0 the torque may be expressed as

i 7 - T
0 0 0 [0 T, T,
t=8Ta-ke+ |-, 0 oo =bTr-xe+ [0 0 -1, 8.
T,- T, 0 0 0 0
) - i (D.2-11)

Before proceeding with the Eulerian derivation it will be
demonstrated that a 1-2-3 rotation about axes fixed in the g_basis is
the same as a 3-2-1 about body fixed axes. A set of three unit vectors,

AG ‘ A . A A,

u initially parallel to the 3 basis vectors, u = U a (where U is
a ? : - a -,

‘an identity matrix), after a rotation Bl about the_éi axis have an

expression in the‘g basis

A A
gt = U C(el) a . {D.2-12)

A
A subsequent rotation, 82, about the gﬁ axis yields unit vectors, b,g,

with an expression in the.g basis

A A _
pra=vu C(Bl) c(ez) a . (D.2-13)
A final rotation,‘ea, about the‘ga axis yields unit vectors, bﬁ’ with
an expression in the'g_basis
A N
pi = UC(8,) c(8,) c(8y) & . (D.2-14)
It may now be recognized that the product direction cosine matrix is

the same as that for a 3-2-1 rotation about body fixed axes.
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The equétions of motion will now be developed fellowing the

usual Eulerian formulation. The rotational equation is

P x P} . (D.2-15)

P=uwxp+ux (w OE)’ (D.2-16)

so that

|-

ji]
=~
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o>
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e
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——
Tro
|

=L o+wx]

AT A '
where ; =b I band I

1

e

x
———

=N
T=

el

e

(D.2-17)

le

is the array of moments and products of

A
inertia. Writing this result in the b basis and noting Equations

(D.2-5,6, and -11)

T-K0+ |0 0 -T lo=1@+TH+ @@+6+00) 1 @+6+09).

(D.2-18)

Retaining only terms to linear order
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S -
0 -1, T,

T-K6+ |0 0 -1 l0=16 + L0 + 010 + 1 + (1o
o o 0

+ 010 + (@0~ 10 . (D.2-19)
The steady state and deviational equations are

T = IR, and

0-1, T,
B+ (I0+01- a)™d+ DO +K - ay 6-lo o - T |61 =0.
0 0 §]
| _
(D.2-20)

These equations may also be written in the é basis. The inertia

dyadic becomes

[

1= @@ 1 E-D2=4T1+%r - 154, (0.2-21)

where the linear approximation to the direction cosine matrix (E - 33

has been used. The governing equations are

[0 o o
T-K8+‘-‘1‘3 0 0f6=(r+381-18)G+ 00
T, - T, 0J

+ @+ HT @ +P- 1B @+ b

(]
=
[av]
+
-
=2
fmn]
+
=2
[l
9
+
02
¥
[l
©

(D.2-22)

The steady state and deviational equations are
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T = ﬁiI 2, and

F 0 0o o]
16 +[I0 + 01 - (ID™E + D10 + x - Taw™ - |- T, 0 o0fle=o0,
T, -1, O
N i
(D, 2-23)

It may be noted that Equations (D.2-20 and -23) are equivalent although

not identical since subtracting gives

1] - T3 T2
[- ™0 +T am”™ - T, 0 -1, {18=0
-T, T 0
L -
(D.2-24)
or
~ ~ ~ ’ ~p
T =0 (I0) - (I &
= (@1, (D, 2-25)

(where use has been made of the identity (A.13-12)) and this is merely
a restatement of the steady state torque relation.

The equations will now be derived using Lagrange's equations
retaining all quédratic terms, The notation is taken from Reberson
and Likin's "The Quadratic Approximation in Rotational Dynamical

Equations'". With this notation the direction cosine matrix is

A ~ —
b= (@W-8+1%8+200t?

) (D.2-26)

jow =

where

218



81 0 0 0 1 1
=10 6 o, vt*¥- -1 o 1
2 .
Lo' 0 6, -1 -1 0
“ A
The relative angular velocity, W, 1s expressed in the b basis as
}-\ o~ — A N l ' :
S L (L $T+3T88) 0, (D.2-27)
where
K ) i |
0 63 82 1 0 0
A =123 _
9 83‘ D. : Bl s U = |0 ~1 O
82 81 0 _P 0 -{J

A ~ ~ _— — A
=_1,_T(u-e+%ee+52-‘-eu123 e)sﬂfw

~ o~ — — . N-. i A
=ET(Q-GQ+%'989+%—BU12389+B~—%68+%U12386).

(D.2-28)

The generalized forces may be computed as follows. Noting that

T ‘T

AT
=1 c (D.2-29)

o>

0_P-l=

i

and that _g is a function only of time

T
AT 3C° -
§ DP i -ag 5qa DP s (D.2-30)
therefore

219



Q 84y =j;M(t) *AS g8

T
T . A AT 3C
= % . —— . -
./B.M(t) [s cd-E g 6q,, (D.2-31)

Now noting that C is not an explicit function of time so that

T
h ac [
¢ =28 ¢ (D.2-32)

and recalling that

T

ccC = s (D.2-33)

et

the generalized forces become

+ T
) T, o
Qa_ﬁM(t)*lS ¢ 3 oPl

L T ' (D.2-34)

Now w may be written as

* A 7 » A - A .
w=Lg+8 a +0,a,+6, b, (D.2-35)
S50 '

G

s = 3

36,

d A,
ooa=2a',

a8,

3 _ A
T b=b, . (D.2-36)
36, :
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Thus the generalized forces are

3 1~ 5%
= ' . = -
Q =8, 1=T,~K0,
= n" A _
Q= h'y T =T, - K0, (D.2-37)

and the potential energy is
v=-To+20 K8, : (D.2-38)

which is just the sum of the strain energies in the three springs.

The kinetic energy is

“1.,.1.
T = w1 ‘E
A
=5 w I w
. . R oA —- ] — —
=2 (@ + 8T+ 38T T+ 8T U 0 - 36T - L oTul2%)
2 2 2 ) 2 |
- . — r\b Lo B Pttt —
1(a+6-286+30 6+ --1-esze+laul‘?3§e)
) 2 ) 2
where 1t has been noted that x y=vx. So
T=%QT 190 + 67 m+—§-éT Ié—%éT (m)”e+-]2'-éT3i1‘123 0
+ 8T 0 - 6™ - "W 1 0+ 2 0T B e - 3 "W )
(D.2-40)

_ A
Now noting x y = § X, the elements of Lagrange's equations may be

obtained
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3T L 104+ 16 - 2 L 10y~6 + 180 6 + = (Ulmmﬂe

56

.d_.(BT) I8 + [m -— ™ +— T 231 ] B
36

oT 1 ~ 123 Ale e
5 [2 (I0) m+2( m)]e msz+[ )

+ %?z‘ an™ + 3 a~ T - 2 Bam™ +3 an” U123§]e :
(D.2-41)
Lagrange's equations may now be written
T-—KB =01+ 180 +[I0+ D1 - ™ +(H 1 §
- @™ + a™ + @ Pan” - aw” I I
(D.2-42)

Thus the steady state and deviational equations are
=010
16 + [IR + Q1 - (I)™8 + [‘Ez‘ I8 +K- % {'s‘z‘(m)” + (m)ﬂ
s oPan” - an” U123§}]6 = 0. (D.2-43)
Some of terms in the stiffness matrix can be identified by noting

- 3 Gaa™ + cm)"“'}

- % 8™ [a™ @™

Lard

- Ban™+ = @ 1)

o~ o~ ~
- I +=>T . (D.2-44)

M= R

Subtracting the g basis Eulerian equations (D.2~-23) yields
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[0 -1 T, 0 0 0
EY 0 -T,l+|-T 0 0+ l-[ﬁ'UHB(IQ)" - (I~ U123§] 8 =0
2 3 1 3 2 \

- T. T 0 T, - T. 0

| 2 12 i O R (D.2-45)
ar

¢ -1, T,
-1, 0 -1 | = o™ i3 - ﬁblzB(Iﬂ)" .
| T 0 (D.2-46)

Thus if this equation is satisfied Euler's equations and Lagrange's
equations retaihing quadratic terms are equivalent. That this equation

is true, may be verified by direct expansion. From the steady state

equation
TC! = EU-BY QB I'Y(S 96 H]
Ty = 8y Iyp 8y = 8y Iy, 8y o
Ty = 93 Lo B = % Iy 9 s
Ty =8y Doy By = 8y I 9y (D.2-47)
So
-0 -T T-| r 0 18,1, 8 -1, 8 18I 8 ~00.1 91
3 72 . 27l o 1 2o : 3710’ 130 a
Ty 0 T Tt gy 0 :9312as1a- Bl3oy
- |
T, =Ty 0 | U108y oy 1 U3T568 T35 0
. L : -
(D.2-48)
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The elements of the other terms are

- 123= 123
= d
{(z) v Q}aB IGY QY UQB QB (no sum o,B), an
= ..123 ™ 123
= U .
Qv (I }aB ﬂu oy IYBQB (no sum «,R)
(D.2-49)
Thus they produce matrices
0 vy af - 13at10%
- 123=
(ID U0 = ey 4L, 8 0 | u2383T06% |, and
I I
3150 1 B2t 1 0]
0 VLY : U139 130%,
= 123 -
R e P I 9230307
i i
[j§19311aﬂu sttty 1 O
N (D.2-50)
The difference between the twe arrays, noting that U;§3= - UéiB gives

0 b @0, R- QlIZGQa): up3 (L - 3T, 2)
I .
U018 T8 0 LUy (T, 8= 1, 801
— I Ay
:iIB(QSIlaﬂa 913080 | 43, 00~ BT, 8) 0
(D, 2-51)

Recalling that u u

12 13 = Uy = 1, it can be seen that the arrays in

Equations (D.2-48 and -51) are identical, so Equation (D.2-46) is
satisfied and the Eulerfan and quadratic Lagrangian equations are
equivalent. It may be noted, however, that the stiffness matrix in

the Lagrangian formulation is symmetric and its elements are order of

rotation dependent,
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L]

The equations of motion will now be obtained using Lagranges

equations, but retaining only linear terms in the displacement field.

So in this case the position is

- & & +B) P

The generalized forces are computed by noting that

- &7 56 p

§ 0

2
20

% 98, * fagr* 6 2+

. T o~
= 66 /;M(t)* {OP S}

The velocity is

=6 x P+Qax (Og + 8 x B)

ot o=

= @+8) x P+0x(8x P

ot

so the kinetic energy is

H
i

5

1

?

S

QXX B 2% (@ x B}

W

+Q (8% B x[Qx (8 X.OE)]}

tedarh  praxex prigsd -

(D.2-52)

(D.2-53)

(D.2-54)

(D.2-55)

2+ 8 x@ x 1}

i@+ D x 2 @rhx @r2@ed x 2 - 2% x D)

Lfstbta+d - gx 1@+ Bl + 2@ + B+ B x[@x(8 x 2]

Equation (D.2-56) continued
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]

bof
[
.
(15
|z
+

=13

1 . . .
1-8+3hc 1 b+ @+ b frhipea @

+

ra| =

— *{B[R -(8 x P) x (@ x (8 x PN}
fS - = 0= @ x (8 % gB))] (D.2-56)

Now

A - A . - R .
Sor Bl x8 @@ =[5 *BIE <(2r (R U ~ 2oP)-R -7 2R DOXAI}

(D.2-57)
where TR(I) denotes the trace of the array. Inserting Equation (D.2-57)

in (D.2-56) and expressing the regult in the _g basis yilelds

8T14 +% @+ BT (6 + 016 + JIR)

—-l .}_
T=50 In+6 IR+ 3
f * { [52 'l P" P} (D.2-58)

Applying Lagrange's equatiocns

- s s 1o+ i85 ~L ™
ﬁM(t){oPS} dt[m+19+2198+ QI8 2(m) 8]

1
2w

—-3—6 %f x (Bre” Psz'ﬁ’ F o}

po

e
ol

1w 1 o 1o 1o
-5 I08 E(m)a- szm-zmsuz(m)sz]

i

DI+ 18+ (10 + T - ™8 fs (N[ ?Ns Po1}

0
(D.2-59)

Now

226



0 0 of %o of) % g
A FFor @Rp~Fe 1@ T o
=0 B T+ (ﬁﬁop)”o?e -REF P+ TR Fo
= - (PO p + B(FAF - B P+ F e
= - (O’Ee?"ﬁﬁ oF + Qe Bar B- FGENT+ BB e
= = (FOS p + Q- [FoFe1+ B o . (D.2-60)

Inserting this in Equation (D.2-59) yields

ﬁM(t)*{O? S} = RIN + 16 + [Iﬁf 01 - (™16

A Lo T Carl L VI Y S ) P s el P
+f§ * .{p[(OPG) fy's) of t R(OPOPQ) g - QOPOP 8]} (D.2-61)

or rearranging
f *{ ¥ s} .f-'*{S[( Boy 2 P1} =T 10 + 18 +[10+ D1 - (I0)™]P
sM{t) "0 5 0 0

~

- Fa™e + ¥ 106 (D.2-62)

¥
. Lol .
Now recognizing that to zero order S .= Q Q OP this can be written

./B.M(t)*{(OP - 0?9)”3} =010+ 18 + [N + O - ap™sb

+ @ 1T-T a™Me (D.2-63)
Recalling that .
AT ~ AT r~
03 E-(OP - 0PB_) = a (OP + 0Pe) (D.2—64)
noting that

z =ﬁn(t)*{&’i x s}
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and recalling Equation (D.2-11), the steady and deviational equations

become

9+ [I8+81- (I 8

- -
0o 0 0

+RIQ+KR-0 I - -1, 0 0l]8=0
LT2_T10

(D.2-65)

which is identical to the Euletrian formulation in the g basis,
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