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TECHNICAL MEMORANDUM X- 64920

GRAVITATIONAL CLOCK: A PROPOSED EXPERIMENT
FOR THE MEASUREMENT OF THE GRAVITATIONAL

CONSTANT G

I. INTRODUCTION

Historically, the gravitational constant, G, was the first fundamental

constant measured. Yet, today, it is the least accurately known of all funda-

mental constants. This strange fact, until now, has been the result of two

reinforcing circumstances: (1) the gravitational force is relatively very small,

and (2) the gravitational constant is not necessary (important) in most prac-

tical physical problems; e. g., in electronics, or in planetary physics where G

is not needed, and G M which can be measured astronomically very accurately is

used. The irony of this situation is that since gravitational forces are small

and purely mechanical, measurement of G is possible, in principle, to even

greater accuracy than those constants that graze the domain of the quantum.

Nevertheless, experimental obstacles have kept the accuracy of G to 1 part in

103. However, through the use of space-age technology and satellite-borne

experiments, most of these difficulties may be overcome, but this is not

enough. All this would not be important except that the physical importance of

knowing G very accurately has grown significantly in the last few years. The

impetus for this knowledge is twofold: (1) the desire to test competing gravita-

tional theories, and (2) experimental evidence of Van Flandern that G is

changing with time [ 1].

Based on new and old observational data, Van Flandern concludes that

from anomalous secular acceleration of the moon's mean longitude, the

fractional rate change of G is

= -(8 - 5) x 10 - "/year (1)
G



Two alternate, but much less probable, explanations are a uniform expansion
of all space or a solar system mass loss (presumably from the sun). The
latter possibility is not consistent with actual solar mass losses, whereas a
uniform expansion is ruled out (tentatively) since this implies a continuous
increase in angular momentum; e.g., of the earth which is also not observed.
Thus, the manifestly non-Einsteinian general relativistic result that G * 0
remains. However, it is a character of the Brans-Dicke-Jordan scalar-tensor
theories that G can be nonzero [2,31. The same is true in the Vector-metric
[41 or two-tensor metric theories [51 in which G is related to the second field.

-However, Van- Flandern indicates -[1] that his value of G [equation (1) 1-is more
closely related to the cosmologies of Hoyle and Narlika [6) or that of Dirac
[71 than with the Brans-Dicke theory. Van Flandern' s contention about Brans-
Dicke theories does not seem to be correct, since the value of G predicted by
any scalar-tensor theory is strongly dependent on the value of poorly measured
cosmological parameters such as the universe mass density and the decelera-
tion parameter [81. We must also contend with the possibility that there may
be spatial variations in G such as occur, for example, in the scalar-tensor
theories [91 or in Ni's new theory [101. In general, this second type of varia-
tion of G can be. summarized using the parameterized post-Newtonian (PPN)
formalism [111 as indications of preferred frame effects or possible noncon-
servation of total four-momentum [91. Preferred frame effects seem to be
ruled out on the basis of experiment [9]. However, the experimental limits on
some aspects of nonconservative theories in the PPN approximation have not
been established, since these effects seem to be at or beyond our present
experimental capabilities [91.

In the new PPN parameters, the spatial variation of G can be written as

G = 1 - (43 - - 3 - 2)U , (2)

where U is the gravitational potential, and y are e classical Rertso

parameters (both equal to one in Einstein general relativity), and '2 is one of
four PPN parameters that indicates a possible nonconservative theory if non-
zero [91. In general, '2 indicates a breakdown of the equivalence principle
(Mpassiv e  M ). [Possible preferred frame effects have been neglected

passive active
in equation (2). ] In the Brans-Dicke theory [9, 121, f = 1, y = (w + 1)/(w + 2),
where w is the usual Brans-Dicke coupling parameter and C2 = 0 so that

(49 -y - 3 - '2) = 1/(c + 2) , (3)
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which then leads to spatial variations in G. However, these variations are still
three or four orders of magnitude smaller than the best experimental accuracy
of G [13, 141. Recently Smalley 1 has shown that nonconservative theories, in

particular theories for which TA v * 0, are possible; i.e., consistent with

the field equations (Bianchi identities), gauge conditions on the metric, and the
Newtonian limit of the conservation laws. One such theory, which is a modifica-
tion of the Brans-Dicke theory, predicts the same PPN parameters with the

exception that

8(2 3) (4)

where a is a coupling constant in the expression for the nonzero divergence
of the energy-momentum tensor

v;A' 87r V ;V

and 0 is the scalar field. 'This theory agrees in all aspects, except for t2 f 0,
with the usual Brans-Dicke theory. It should be contrasted with the original
nonconservative scalar-tensor theory of Jordan [151 but does not, however,
suffer from the criticisms of Fierz [161 or Bondi [171, at least at the level of
PPN approximation. By comparing equations (3) and (4), it is possible that in
a nonconservative Brans-Dicke theory the spatial variations in G could dis-
appear; i.e., for the right choice of o-, G = 1 in equation (2). Thus, the viola-
tion of the strong principle of equivalence can be masked if the theory is also
nonconservative, at least on the level of the PPN approximation. Thus we note
that there are two competing effects which lead to variations in G - spatial and
temporal variations - and, according to our discussion above, it is not certain
whether a clear separation of the effects can be made.

Suppose we have a detector in orbit about the earth and we attempt to
measure G. Since the gravitational force is small, we know, a priori, that the
experiment will be long term, perhaps lasting for months or a year. However,

1. Smalley, L. L.: Gravitational Theories with Nonzero Divergence of the
Energy-Momentum-Tensor. To be published in The Physical Review.
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the eccentricity of the earth's orbit about the sun will produce a 1 percent
modulation of the solar gravitational potential U at the position of the earth,
which could then produce a yearly spatial amplitude variation in G of 2

AG - 3 x 10 -
. (6)G

This variation is of the same order of magnitude as the temporal variation of
G reported by Van Flandern. Therefore, any experiment that can determine
G at the level of accuracy of 1 part in 1011 must contend carefully with these
competing effects. One possibility is a solar satellite with nearly zero eccen-
tricity so that the temporal variations dominate or vice versa.

Finally, one last effect must be discussed. It has been tacitly assumed
in this discussion that the Newtonian force law is an inverse square law.
Although this may appear to be the same problem, it is not, but depends on the
level at which general relativistic corrections become important. However,
this test suffers identical experimental problems of accuracies of 1 part in 104

on the earth primarily because of errors in location of test masses [14, 181.
Until recently it was thought that the best test of the inverse square law came
from the astronomical observations of the advance of the perihelion of Mercury.
Long and Ogden have shown [191 that by using a double-ring source, very uni-
form gravitational fields can be produced in the laboratory. This means that if

they consider the historic inverse-square-law failure in the form r-2 + 0 , the
advance of the perihelion of Mercury yields the limit, 0 < 4 x 10- 9, whereas the
use of their uniform laboratory fields could conceivably give a limit of € - 3 x
10- 12. This stronger limit is, of course, directly related to the relatively
lowered importance of positional accuracies for the test masses because of the
highly uniform laboratory field.

Thus, it seems that an inverse-square-law failure could mask a spatial
variation in G. Experimentally three intertwined effects remain that could con-
ceivably introduce effects at the same order of magnitude. However, these
three effects combine to enhance the theoretical importance of measuring G to
higher accuracy if we hope to establish the correct gravitational theory. Most
likely, these are questions we must answer before we can solve the important
problems of initial data, quantum gravity, or unified field theory.

2. Weiss, R.: MIT internal report.
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In Section II, recent attempts or proposed experiments for the deter-
mination of G are reviewed. However, recent work on null-experiments is
omitted; i.e., Eitv6s experiments that test the equivalence principle, except
experiments that could conceivably be used to measure G directly. A satellite-
borne gravitational clock experiment from which G can be obtained directly is
proposed in Section III, and conclusions and some of the prospects for direct
measurement of G are described in Section IV.

II. PRESENT STATE OF THE ART FOR OBSERVATIONS OF G

It is one thing to say that G has been measured to 1 part in 1010, and it
is entirely another to say that 6/G is known to the same value. The latter does
not imply the former, not only because the value is model dependent, as in Van
Flandern's work, but because a known variation in G never implies a knowledge
of the magnitude of G. This becomes even more apparent when we recall that
G is known at best to 1 part in 104 after several centuries of experimental and
theoretical research [131.

Basically there are two ways to measure gravitational forces (following
the outline of Weiss, previously cited in footnote 2): (1) by use of static
mechanical or electrical forces such as springs, fibers, or electromagnetic
devices; or (2) by gravitational inertia reaction forces. In the first category
are the classical torsion balances of Cavendish and E5tv6s and their modern
improvements [20,211 as well as assorted electromechanical devices such as
gravimeters, accelerometers, and gradiometers. The latter type of experi-
ments can be generally classified as free-fall experiments, with the exception
of the Beams' balance experiment [14, 221 or the proposed rotating flat-plate
experiment of Berman [231. The primary difficulty with inertia experiments
on the earth is suspension in the earth's gravitational field, which tends to
overwhelm the dynamical effects.

Examples of free-fall inertia reaction experiments that have been pro-
posed to measure G are:

1. Measuring the period of synchronously orbiting spheres by Berman
and Forward [241 or Chapman (from the work previously cited in footnote 2).

2. Measuring the period of oscillation of a test mass through a bored
hole in a larger spherical mass by Berman and Forward (from the work
previously cited in footnote 2) and Berman [251, by a modification of the

5



proposed Worden and Everitt3 Eotvos experiment, or by the flat-plate spherical
mass oscillator proposed here.

3. Tangential acceleration balance by Blood (from the work previously
cited in footnote 2), which is essentially a modification of the Beams' balance
method. Weiss (see footnote 2) proposes to use the same experimental......
arrangement in a "clock" mode.

4. Centrifugal balance systems by Wilk (from the work previously
cited in footnote 2), or through a modification of the rotating E6tv6s force-
balance proposed by Chapman [26,271].

We will touch, without mathematical details, on most of these experiments,
stating briefly their methods, advantages, and disadvantages as well as their
ultimate expectations.

As far as this author knows, there appear to be at present only two
ongoing experiments to measure G: the ordinary, but supposedly improved
sensitivity and experimentally isolated, torsion experiment of Cook and
Marussi [20,211 and the constant angular acceleration experiment of Beams
[14, 221. Also included here should be the active proposal of Worden and
Everitt (see footnote 3) on which work on subsystem instrumentation is pro-
ceeding. However, this experiment is designed as an E6tvis experiment and
would require modification along the lines of Weiss' modification, discussed
below, of Blood's modified Beams' balance experiment (see footnote 2).

The standard torsion experiment (e.g., see Reference 18) seems to be
limited by mechanical noise to accuracies somewhat less than 1 part in 106,
which Cook quotes as the limitation of their measurements of masses, lengths,
and time. The Beams inertia reaction experiment (Fig. 1) features a rotating
table acelerating with a constan t anguolar acceleration. On the table are two
large masses in a dumbbell arrangement which, when rotated about an axis
perpendicular to their line of centers, produce a torque (T) on a small cylin-
drical bar. The experimental procedure is to compare the measured torque
produced on the small cylinder with and without the large masses on the
angularly accelerated table. The difference between these two torques allows
one to calculate G directly. In their initial experiment, the small cylindrical
mass was suspended by a quartz fiber, and ordinary bearings were used for
the accelerating table [14, 221. Thus far, mechanical noise has limited the
experiment to accuracies of about 1 part in 104. The limiting accuracy seems

3. Worden, P. W.; and Everitt, C. W. F.: Test of the Equivalence of
Gravitational and Inertial Mass Based on Cryogenic Techniques. Preprint,
Stanford University, Jan. 1973.
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Figure 1. Beams' balance configuration (two large masses are constrained
to accelerate with angular acceleration, a , about a small cylinder; from

the torque, T, sensed through the twisting of a quartz fiber about the
vertical, the gravitational constant, G, can be calculated).

to be related to the certainty in the
location of the center of mass of the

QUARTZ FIBER
two large spheres of about 5 parts
in 105. This then results in an ulti-
mate. design capability of 1 part in

10 , which they believe they can
achieve providing they use magnetic
suspension systems and/or air
bearings.

A novel example of a pro-
posed experiment for determining G
is the rotating flat plate [231 de-
picted in Figure 2. In this experi-
ment two optically flat and parallel
rectangular solids are arranged so
that one is suspended from a quartz
fiber and is, therefore, free to
oscillate with amplitude 0 about the Figure 2. An optically flat plate rotates
vertical. The other plate is then below another flat plate that is sus-
driven with a uniform angular pended by a quartz fiber (the gravi-
velocity about the same axis. The tational constant can be obtained
suspended plate then resonates from the period of oscillation

of the suspended plate about
the vertical).
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with some period from which G can be mathematically extracted providing
anharmonics can be eliminated. By careful design, the fourth-order terms in

0 can be removed from the potential, but the forces (i. e., torques) are very
small; and since the excitation mechanism depends on the second harmonic of
the gravitational field, the sixth-order terms are important. Although physical
dimensions can be fixed extremely accurately because of the nice optical prop..
erties of the plates, and since the system would be highly evacuated, it is

-purely-a mechanical system and, therefore, mechanical noise limited. Thus,
because the forces are so small, the accuracy of the system is limited by
anharmonics and noise. Berman [231 estimates ultimate accuracies of about
1 part in 105. Although not discussed by Berman, it is obvious that this
experiment could operate in the constant angular acceleration mode similar to
that of the Beams' balance. We have not as yet analyzed this possibility, but
its simplicity is appealing.

In the first category of inertia reaction experiments are the miniature
orbital systems such as, for example, that proposed by Berman and Forward
[241 of two identical spherical masses, M, of radius r, in close orbit a dis-
tance R Z, 2r apart as shown in Figure 3. A realistic period that depends on
the density of the spheres and R is about 100 minutes. Although this system
allows one to calculate G directly from the elementary centripetal equation

S22 2GM (7)

by measuring the orbital frequency, 2, the orbital radius, R, would be poorly
determined and would be a major source of error limiting precision to about
that of the older mechanical systems. Serious sources of error and limitation,
not discussed for this particular experiment by Berman and Forward, are
gravity and centrifugal gradients (with their own periods) that will tend to
distort, nontrivially, the orbital motion of the spheres and their periods of
rotation depending on the orientation of the orbital plane of the spheres with
respect to the orbital plane of the satellite housing the experiment. We
conclude, as they do, that this is not yet a practical laboratory experiment .

The second category of inertia experiments is the standard physics
textbook problem, shown in Figure 4, of a test mass in free fall through a
tunnel bored in a much larger sphere of uniform density. Such a free-fall
system has also been investigated in detail by Berman and Forward [241, and
there is even a modification by Berman [251, shown in Figure 5, that could be
done on the surface of the earth by using a levered beam balance. However,

8
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Figure 3. Two spheres of mass M and radius r mutually
orbit each other at a radius R Z 2r.
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Berman concludes that the earth-
based experiment would not improve
on the accuracy of G over the usual
mechanical systems primarily
because of gravity gradients and very
serious alignment problems that

'I *I \ would alter the period of oscillation
. -.. - I \ significantly. However, the free-fall

system of a test mass oscillating in a
tunnel bored through a larger sphere
bears more promise.

Again, this gives a direct
measure of G from the period of
oscillation of the test mass. How-

ever, because of nonspherical
symmetry (after the tunnel is bored),
the mathematics is no longer the

Figure 5. An earth-based version of simple theoretical problem originally

the test mass oscillating in a tunnel proposed. In fact, the once obvious

of a larger sphere (the acceleration advantage of spherical symmetry is
of gravity, g, is compensated for lost. Another limitation is the

by a fulcrumed balance so that two requirement for large amplitudes;

small test masses can oscillate otherwise there is no physical need

inside tunnels bored through in the first place for a tunnel

the larger sphere). through a large sphere. However,
large amplitudes exacerbate gravity

gradients. The experimenters thus conclude that the only allowable orientation
for the experiment is perpendicular to the orbital plane of the satellite along

which axis the gradient forces are constant. Even so, the accuracy of the
system is ultimately limited by determination of the radius and density
variation of the larger sphere to about 1 part in 106.

Worden and Everitt (see footnote 3) have proposed a free-fall EStv6s
experiment in which a small cylinder is centered and parallel inside a larger
cylinder, as shown in Figure 6. The acceleration which tends to decenter the
masses would be a measure, among other possibilities, of a violation of the
equivalence principle. Experimentally, no violation has been observed [28,291
down to an Eitv6s ratio of 1 part in 10"1 . However, their system, which is to
be cryogenic and magnetically suspended and centered by superconducting
coils, is theoretically capable of detecting an E6tv6s ratio of 1 part in 10' 9 but
is experimentally limited at present by helium management to about 1 part in

10



Figure 6. A small cylindrical test mass is free to oscillate along

the axis of a larger but hollow cylinder.

1014, although they hope to improve this significantly in the near future by a

better design of this subsystem. It is important to note that their system
could be utilized in the oscillatory mode instead of using the acceleration sig-

nal in a feedback loop to a magnetic controller that continually centers the two
masses. In fact, the controller system is a source of error since it introduces

an oscillation about the null which then constitutes the minimum detectable

reading. Fortunately, this error will be two or three orders of magnitude

less than thermal noise. All other sources of error - such as gravity gradi-
ents, orbital eccentricity, differences in homogeneity of masses that cause a

noncentering of the geometrical center with the center of mass (CM), non-

coincidence of CM with the center of gravity (CG), asymmetrical satellite

masses, residual drag-free satellite oscillations, magnetic forces, and
residual gases -,they claim, can be detected and controlled so that thermal
noise becomes the limiting source of error. However, an orbital eccentricity
does not produce a driving harmonic oscillation of their system since such

accelerations are proportional to amplitude in the same way that gradient
forces are proportional to amplitude. Thus, looking at the Fourier component
of the acceleration at orbital frequency as a source of error as in an Eatvas

experiment will not work for the clock mode of operations. It is shown in the

next section, in a discussion of the flat-plate spherical oscillator, that the
system is essentially equivalent to a periodic Mathieus' equation instead of a

driven harmonic oscillator. However, this is only a mathematical detail.

Nevertheless, their experiment is well developed and has the immediate advan-
tage of being able to perform two experiments, although the oscillator experi-
ment has geometrical limitations which will be discussed later.

11



The third type of free-fall inertia experiment is a proposal by Weiss
to modify Blood's tangential acceleration balance (see footnote 2) to a clock
mode instead of uniformly accelerating one set of masses with respect to the
other set (as in the Beams' balance). The tangential balance clock is basically
a double cruciform structure (Fig. 7) with the central three masses, called
the rotor, oscillating through tunnels bored in three larger exterior stator
masses. Amplitude anharmonics can be reduced by design below the detection
thresholdfor a proposed laser interferometer detection system capable of
measuring fractional periods to 10- . Although thermal noise is considered the
fundamental limit to precision, Weiss claims that suspension problems limit
the experiment to an ultimate measurement of G to 1 part in 108.

The fourth and final category of inertia reaction experiments is the
rotating Ebtv6s centrifugal force-balance system of Wilk (from the work
previously cited in footnote 2) or Chapman [26,271, which could also be

STATOR MASSES

ROTOR MASSES

Figure 7. In the double cruciform structure the rotor masses oscillate
through tunnels bored in stator masses.

12



operated in the clock mode for direct determination of G. In this type of
satellite E6tv6s experiment, a small proof mass is constrained to oscillate
about the null position either mechanically or electromagnetically, as shown
in Figure 8. In the clock mode this constraint is removed so that the small
mass is free to oscillate along the accelerometer's sensitive axis under the
mutual gravitational force between it and the larger mass. The right angular
velocity of rotation of the larger disc mass and gravitational forces between
the masses and cyclic gravity gradients then combine to restore the proof
mass periodically toward the null position. The immediate advantage of this
rotating system is that it attempts to compensate for gravity gradients through

tLOCAL
VERTICAL

ACCELEROMETER
/ SENSITIVE AXIS

ROTATING MASS

ORBITAL
PLANE

PROOF MASS

Figure 8. The proof mass oscillates along an axis of a slot cut from a
larger disc mass which itself rotates about an axis perpendicular

to the orbital plane that is in the plane of the paper.

13



centrifugal forces. The system is then described by a Mathieus' equation [301
of the form

d2x
= + (a - 2q cos 2 )x = 0 , (8)

where a , 0, and q Z 0 (see Section III). Unfortunately, its solution is only
marginally stable since for small but negative a and q 0 , it is near the
border of the first instability region for the Mathieus' equation. If the system
can be successfully operated in a stability region, the system is inherently as
accurate as that of the double cylinder system of Worden and Everitt, provided
cryogenic techniques and electromagnetic suspension are used. It should be
understood that one does not neglect gravity gradient in the double cylinder
experiment but that the system is easily operated in a stable mode, as will
become obvious in the discussion of the flat-plate spherical mass oscillator in
Section III. Another disadvantage of the rotating system is the method by
which the system is rotated. This requires that the system be attached to a
very stable, directionally oriented platform, whereas the cylindrical system
or the flat-plate system is automatically stabilized along its own inertial axis
and, thus, can fly "free" inside a larger "drag-free" satellite.

SII. FLAT-PLATE SPHERICAL MASS OSCILLATOR

Consider a cylindrically symmetric flat plate of radius c and height
27 with a circular hole of radius b < c bored along an axis perpendicular to
and centered on the flat ends of the cylinder. We then allow a spherically
symmetric mass of radius b' ! b to oscillate along this axis as shown in
Figure 9. With the exception of the orbital mass systems, the combination of
cylindrical and spherical symmetry is the simplest mathematical configuration
that includes the effects of gravity and centrifugal gradients which can be used
experimentally. Unfortunately, the more highly symmetric orbital system
has severe experimental problems in determining the orbital radius, so that
we are forced to consider a less symmetric system. Even the tunneled sphere
problem depicted in Figure 4 is less symmetric because the tunnel destroys
the useful spherical symmetry of the larger spherical mass. The cylindrical
oscillator of Figure 6 has yet a lower symmetry, which implies a more
untractable mathematical problem. However, these last two systems suffer
experimental limitations that are somewhat circumvented by the inherent

14



geometry of the orbital, flat-plate,
spherical mass system. In the

I case of the totally cylindrical
I CYLINDI oscillator (Fig. 6), the gravita-

tional restoring force tends to be
smaller. This can be understood
by noting that for a small displace-

b' AXIS ment 6 x from the equilibrium
OSC N position shown in Figure 10, the

Sz restoring force comes primarily
from a slab of thickness 26x at
the opposite end of the outer cylinder
which then produces a relatively
weaker restoring force. In the
(ideal) large spherical system, the
restoring force, as is well known,
is due to the mass contained inside
the mathematical sphere whose
radius equals the test mass dis-

Figure 9. Side view of a flat-plate, placement from the center of the
spherical mass oscillator (the sphere along the tunnel. One, thus,
sphere of radius b' oscillates has large excursions, which in-
through a tunnel of radius b creases the relative importance of
bored through a tunnel in the centrifugal and gravity gradients

flat-plate cylinder of that increase with the radius and
radius c). also are modulated by a time-

dependent periodic function at
twice the orbital frequency for circular orbits. If the symmetry were exactly
spherical, this would cause no problems, provided a stable mode is possible,
since then the gravitational restoring force would also increase with radius.
However, a tunnel of finite radius produces anharmonic amplitude effects
which then require small amplitudes, and this implies a smaller attractive
mass than for the flat-plate spherical mass oscillator. That is, for the flat-
plate for an amplitude Z < 1, the attractive mass decreases as z, whereas
for the sphere, it decreases as z3. Thus, there appear to be both theoretical
and experimental advantages for the flat-plate spherical mass oscillator over
the other two oscillators described. However, this statement must be qualified
to the point that the amplitude of oscillation remains small, but this results in
another advantage.
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Figure 10. For a displacement of 6x of the small interior cylinder, the
restoring force comes from a small slab of the outer cylinder of

thickness 26x a distance L-6x away from the center of
mass of the small cylinder.

To demonstrate the mathematical simplicity of the flat-plate spherical
mass oscillator, consider first Figure 11 which depicts a spherically sym-
metric mass of uniform density and radius r constrained to move along the
axis of symmetry (z axis) of a thin hoop of radius p and surface density X.
The mass elements for the hoop are then

dMh = Xpdpda , (9)

where a is the angle of the differential of mass, dMh , around the hoop, and
the differential of mass for the sphere is given by

dMs = j/r 2 dr sin 0d d , (10)
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D dM = pr2 sinOdOdrdo

r
a 0

z z

SPHERE

HOOP

Figure 11. Geometry for calculating the gravitational potential between a
thin hoop and a spherical mass on the axis of the hoop.

where 0 is the azimuthal angle measured from the line of length 6, and 0
is the angle of rotation about this axis. We have then

62 = p2 + 2  ()

where z is the distance between the centers of mass and the distance D
between mass elements is described by

D2 = 62 + r 2 - 26r cos 0 (12)

The differential gravitational potential experienced by dMh is then given by

d = -dMh G pr 2 sin Od 0d Odr GM sdM h
sphere

17



That is, we can treat the sphere as a point particle of mass Ms as long as

the sphere is external to the hoop or to the generalization of the hoop into a

short, hollow, right circular cylinder (Fig. 12) of height 27, centered at

z = 0, and which has external radius c and internal radius b > b' where b'

is the radius of the sphere. In this case, the potential at z becomes

S(z) = -GM f 27Xpdpd(
s 6 (14)
cyl

where X is now a uniform volume density and 5 is the variable of integration

along the z direction and

62 = (z -) 2 + p2  . (15)

After the integration over p, we obtain

O(z) = 27rXGM (c 2  2 - Fb2  x2  dx . (16)
z+T

Mh

Figure 12. Geometry for calculating the gravitational potential between
a cylinder and a point mass on the axis of the cylinder.
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The force on M is then given by
S

F (z) = = -d-
s dz z

= 27XGM c + (z -7)2 - Jb2 + (z-)2

- 2 + (z+ )2 + b2 + (z+T)2

S27rXGM 2 (- z71
s 0 + b +7 2=e +

c2 b3 (17)

S(c 2 + T2)/2 (b 2 + T} /2

where we have expanded for small z. To compare the effect of the z3 term, we
consider the case where 1027 = 10b = c which yields the ratio of the third-order
term to the second-order term,

' 5 x 10 - 3 z 2  . (18)

Thus, to reduce anharmonics (in this example) to an effect on the force of less

than 1 part in 1011, we must keep amplitudes z ; 10- 4 cm. Although this
amplitude is small, capacitive or magnetic-inductive tracking (see footnote 3)
appears sensitive and accurate to 0. 05 A so that small amplitude oscillations,
we will find, permit a convenient mode of operation. Thus, we propose to
operate the clock with the amplitudes that allow us to neglect the third-order
term.

Define the quantity f , which is the ratio in equation (17) of the first-
order term to z, c

f = 41XG M 7 . (19)c19
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In terms of the mass of the plate

M = 271rX (c2 - b2) (20)

then

2GM M

c (c -b b1 +r2 2 (21)

In the two-body central force problem, the frequency is related to the reduced
mass i = MpMs /(M + M ) so that

f 2G(M + M )
p s ( 1 1'- (22)(c'- b) b 2  d C2

For large c and X = p = 16 g/cm3 , Cw2  47pG; this implies a period of
approximately 29 minutes.

Consider now the same oscillator in orbit with its axis of oscillation in
the plane of the orbit. The total force on the two masses is due to three
things: (1) the force due to each other, (2) the force due to the earth, and (3)
gradient force due to centrifugal forces. This latter force, although a fictitious
force, must be considered since we are in actiu-a'lity dealing with an orbital
problem for which the centripetal acceleration is given by

a = R2 2  (23)

where R is orbital radius and 02 is orbital angular velocity. This implies
that for small separation z. from the center of mass, the ith particle of mass1

m. will experience a repulsive centrifugal gradient force,

F. = m.z.22  (24)
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in the plane of the orbit. In the case of circular orbits

GM (25)

where M is the mass of the earth. The total force on each part of the

oscillator becomes

GM M

M 1  fc(z2-Zl) + R cos a + MlZl 2
1

(26)

GM M

M2 2  fc(zl- z2) + cos + M2z222

where we have used the geometrical quantities defined in Figure 13, and the

subscripts 1 and 2 refer, respectively, to the flat-plate and the spherical

mass. In terms of the central force problem defined by the coordinate
z = z 1 - z 2 and the reduced mass j = M1M2/(M 1 + M2), we find that the

central force problem can be described by the single equation

gz = -f z + GM( -2Cs + z2 2  . (27)

1 2

Expanding R 1 and R 2 in terms of zl/R and z2/R, respectively, we obtain,

after dropping higher order terms,

3GyM
z = -f z +G z cos 2 O2t

c R

/ 3GMiI 3GiM

fc - z + z cos2 2t (28)
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Z2  

Z1

Figure 13. Geometry for calculating the central force equation between two
masses, M1 and M2 , in the presence of an earth of mass M with orbital.

angular velocity 0 (all three masses lie in the orbital plane).

Letting t = ~ , we then obtain the equation

d2 + -( 2 3 cos2 z = 0 (29)

which can be compared with the general Mathieus' equation given in equation
(8) with

fR 3
c 3 o2 3

a = GM - = - 2

(30)
3

q=
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Because the driving force in a Mathieus' oscillator is itself proportional to

amplitude, it is not stable for arbitrary values of a and q as is the ordinary
driven harmonic oscillator. For q = 3/4, stability requires that

-0.27 5 a - 0.18 (31)

for the first region of stability. The second region of stability begins at about
a t 1.72 which represents an upper bound (as if the boundary could be repre-
sented by a straight line). From equation (30), we find

2
1.23 :5 1.68

> 3.22 (32)

and so forth. For a given set of masses (and geometry), the stability regions
depend on the orbital radius through ~; these regions then oscillate with
altitude. We now note the unusual consequence of the Mathieus' equation:
stable operation requires that the oscillator frequency be greater than the
orbital frequency; i.e., the character of the solution is very much different
from that of a driven harmonic oscillator. However, within the stable ranges,
it is possible to extract G from knowledge of both the period and the amplitude
of oscillation.

Another mode of operation occurs when the oscillator axis is perpen-
dicular to the orbital plane as depicted in Figure 14. In this case

f GM+ + Z = 0 (33)
( P I(33)

is an ordinary harmonic oscillator with frequency wl given by

f
o 2  GM 2 2 .(34)
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ORBITAL PLANE

Figure 14. The masses oscillate perpendicular to the orbital plane
as opposed to being in the plane as in Figure 13.

Since the quantity 92 can be accurately determined from orbital tracking data,
G can be easily extracted from equation (34) after measuring wo . On the

other hand, if the experiment is operated at several different altitudes,
knowledge of wl (R) allows one to extract both G and M from the data.

Thus, if we include this mode of operation along with that of the oscillator axis
in the orbital plane, there are three independent ways to extract G from the
data.

It should be pointed out that the above calculations assume perfectly
circular orbits. Noncircular orbits introduce orbital frequency harmonic and
subharmonic terms into the force described by equation (28). The largest
perturbation is at orbital frequency instead of the twice orbital effect given in
equation (28) but is proportional to the orbital eccentricity, E. Thus, for
circular orbits with E < 10- 6, we can neglect these effects on frequency and
amplitude measurements for the oscillator.

Because of geometrical considerations, the radius of the sphere will
not be known as accurately as the dimension of the flat plate, which can be
fabricated more accurately. However, the uncertainty in the radius of the
sphere (i.e., the mass of the sphere) because of spherical symmetry can be
transferred into an uncertainty in z. For a small uncertainty of about 1 part
in 106, which seems feasible, this contribution to the period is negligible. In
principle, the period is simply related to the total masses and the overall
geometry. Nonuniform density does, however, produce an uncertainty in the
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position of the CM of the sphere and flat plate which tends to produce a torque
because of the nonuniformity of the gravitational potential of the flat plate over
the volume of the sphere. This torque then produces a periodic rotation of the
sphere with respect to the plate which is a direct determination of the inhomo-
geneity of the sphere. Very accurate determination of these rotations is
possible through the detection of the London moment produced by a rotating
superconductor.

To monitor the oscillations of the sphere, we propose to enclose the
spherical mass inside a thin spherical shell rigidly attached to the flat plate.
Because of the spherical symmetry of the shell, the shell does not affect the
motion of the spherical mass. The oscillator will then be constrained to move
along one dimension by using a capacitance controller attached to the shell
that can also record the amplitude and frequency of oscillations along the active
axis. Superconducting loops can also then be attached to the shell, and by use
of Josephson bridges, the rotation of the sphere can be measured.

The measuring system introduces so-called tracking errors which, for
instance, in an Eitv6s null system would produce a feedback oscillation that
would then represent the minimum detectable motion of the system. Worden
and Everitt (see footnote 3) have discussed this type of error and conclude
that it is much less than amplitudes expected from thermal noise which can be
approximated by

<Ax> kT (35)

where k is the Boltzmann constant and T is temperature. For a period of
1 hour, M = 10 kg, T = 3k, then <Ax> - 10 - 7 cm. The minuteness of the
thermal errors compared with a signal of 10- 4 cm is, of course, partially due
to the fact that the clock is a dynamical experiment and that both components
of the clock are relatively large compared with, for example, the small rod
in Beams' experiment; i. e., small components are not necessary.

Another potential source of error is due to the mode of operation - free
active axis for the clock as opposed to null centering in the E6tv6s experiment.
As a result, the capacitance controller will tend to produce cross-talk between
the passive axes and the active axis of the system when the sphere moves off
the equilibrium position along the active axis. These forces arise when the
sphere moves out of its equilibrium position and hence its symmetry position
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with respect to the capacitors, thus giving rise to a restoring force. However,
this type of force, although much larger than the gravitational force, can be
compensated for electronically at the same level of measurement accuracy of
the controller itself and, therefore, will not affect the gravitational restoring..
force and its clock mode of operation.

The main source of error in the experiment comes not from the deter-
-mination-of-the-period -of-oscillation but from the -accurate determination- of f -

c
given in equation (21). If we assume the conservative estimates of others, all
quantities such as mass, density, and dimension can be obtained to accuracies
of about 1 part in 106.

IV. CONCLUSIONS

The flat-plate spherical mass oscillator was considered as a method
for obtaining G for the following reasons:

1. It is mathematically the simplest system.

2. Internal gravitational forces were relatively large.

3. The control and measurement systems are relatively simple because
one member of the oscillator is spherical.

To this list we could add that the dimensions of the flat plate can alsobe
fabricated more accurately than for spheres. Thus, for a given accuracy of
measuring lengths, one has an inherently more accurate determination of G.
The -ffcts of density variations can be measured and be ultimately compen-
sated for in calculations of G.

Since the experiment is relatively simple, the experiment can be dup-
licated with different substances (change p), and different masses (change c,
b, b', T). One then obtains parametric curves W2 (G, p, c, b, b', T) from
which G can be extracted with a higher degree of confidence than from any
individual experiment.

When one has confidence in a more accurately known G, one can per-
form Kreuzer-type experiments [311 that can experimentally determine the
equivalence of active and passive gravitational mass by simply constructing the
two parts of the oscillator out of different substances. (Compare this with the
E6tv6s experiment that compares inertial versus gravitational mass.)
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Finally, even without using experimental techniques comparable to
those necessary in the satellite superconducting gyroscope experiment or that
proposed in the E6tv6s experiment of Worden and Everitt, accuracies of 1 part
in 106 would easily be obtained without concern for more than fabrication
accuracies and measurement of the period of oscillation. However, measuring
density fluctuations and correcting for their effects on the periods of oscilla-
tions, taking the orbital eccentricity into account, using large components, low
temperature, and superconductivity, and integrating observations over long
periods by use of stable atomic clocks would increase the accuracy conserva-
tively by at least two or three orders of magnitude.

At the level of accuracy of 1 part in 108 or better, it then becomes
important to consider spatial variations in G or failures in inverse square law.
To disentangle these effects may require the use of orbits of high eccentricity,
solar satellites, or both. At any rate, a second independent experimental
determination of variations of G, presumably by accurately determining the
magnitude of G as a function of both space and time, is of fundamental
importance to science.
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