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ABSTRACT

The propagation of plane wave and higher order acoustic

modes in both hard-walled and absorbent cylindrical ducts has

been studied at moderate sound intensities where the linear wave

equation is valid and at high intensities where nonlinear effects

can be observed. The experiments were conducted with an anechoically

terminated-twelve-inch inside-diameter transite pipe. Various types

of sound sources were mounted at one end of the duct to generate the

desired acoustic fields within the duct. Arrays of conventional

loudspeakers were used to generate plane waves and higher order

acoustic modes at moderate intensities and an array of four high

intensity electro-pneumatic sound sources were used for the experiments

in the nonlinear region.

The attenuation of absorbent liners made of several different

materials was obtained at moderate intensities for both plane waves

and higher order modes and it was found that the characteristics of the

liners studied did not change appreciably at high intensities.

High intensity plane waves for the hard-walled case exhibited the

familiar wave steepening effect in agreement with the Bessel-Fubini

solution to the nonlinear plane wave equation. The harmonic

frequencies of the sawtooth waves remained plane despite the fact

that their frequencies were above the cutoff frequencies of many higher

order modes. Wave steepening did not occur for higher order modes

up to the maximum sound pressure level available of 175 dB re 0.0002

p bar. The wave steepening is prevented by the dispersive nature of

higher order mode propagation.
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CHAPTER I

INTRODUCTION

The radiation of undesirable acoustic energy from ducts is a

frequently encountered noise control problem. Typical examples are the

noise emitted from air conditioning ducts and from jet engine inlet

and exhaust ducts. A frequent solution to these problems is to install

acoustically absorbent liners in the ducts in order to attenuate the

sound before it is radiated from the duct outlet.

The basic objective of this project is to study the attenuation

characteristics of absorbent duct liners at moderate sound intensities

where linear behavior can be expected and at high amplitudes where

departures from linearity can occur. The initial phase of the research

was to study the characteristics of absorbing materials suitable for

use as duct liners. This included extensive measurements of a variety

of materials using the impedance tube method to obtain normal incidence

behavior and by a free-field method to obtain oblique incidence

characteristics. A significant portion of the measurements included

fiber metal materials suitable for jet engine noise control applications

since the early phases of the project were sponsored by the National

Aeronautics and Space Administration. These studies of the basic

characteristics of sound absorbing materials were considerably

extended by Kilmer and Wyerman and their results are reported in their

Master's theses in References 1 and 2.

Much of the research on sound absorbing materials is applicable

to such areas as architectural acoustics and machinery noise control;
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however, the basic effort has been directed towards the use of these

materials as duct liners. The most obvious applications are in air

conditioning ducts, the intake and exhaust ducts of jet engines and

in dissipative mufflers.

The analysis of the behavior of sound waves confined in a duct

can present some challenging problems. The simplest case, that of an

infinite, rigid-walled frictionless duct of uniform cross-section and

diameter small compared to the wavelength has a solution familiar to

everyonein the acoustics field. The result is the plane wave which

travels at the velocity of sound with constant amplitude. We can

add fluid losses (viscosity, heat conduction,molecular relaxation,

and wall friction) and easily obtain a solution which predicts a

plane wave with an additional exponential damping term. We can

eliminate the long wavelength assumption and again relatively easily

get an analytic solution which predicts plane wave and higher order

mode propagation. We can eliminate the basic assumption of small

amplitudes used in deriving the linear plane wave equation and,

although somewhat complicated, can obtain approximate solutions to

predict the nonlinear behavior of plane sound waves in a duct

(assuming, of course, that the wavelength is long compared to the

duct diameter). It is also relatively easy to analyze the propagation

of sound in ducts of variable cross-sectional area provided that the

area varies in certain specific ways; that is, exponential, square, and

catenoidal area variation with distance down the duct. In this case,

long wavelength and small amplitude assumptions are necessary.

Serious theoretical complications arise if any of the following

situations exist:
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1. When the wall has a finite impedance (a duct lined with

absorbing material).

2. When the amplitude is high and the wavelength is of the

order of the duct diameter or smaller.

3. If there are variations in duct cross-sectional area

other than the simple cases mentioned above.

4. When there are bends or other discontinuities in the duct,

5. In the presence of flow in the duct.

The situation is further complicated if two or more of the

above situations exist simultaneously. For the case of a jet engine

inlet or exhaust duct with acoustic treatment,we are faced with all

of the complications. The aircraft ndustry has conducted numerous

research projects which attempt to combine all of these effects and

the interpretation of the results is understandably difficult, We

have taken the opposite approach in that we are studying each effect

separately. The effort of the research reported in this thesis is

directed toward the first two complications; that is,the effects of

finite wall impedance and high amplitudes in the presence of higher

order modes. The two phenomena have also been studied in combination.

The effects of variable geometry (items 3 and 4 above) are being

studied extensively by another member of the Noise Control Laboratory

Staff (Roger Richards). It is hoped that the effects of flow will be

the subject of a future research project,

In the following sections of this thesis, we will present the

theory necessary to understand acoustic wave propagation in cylindrical

ducts of finite wall impedance, examine in detail the theoretical

aspects of high amplitude sound wave propagation and then discuss the



properties of sound absorbing materials. The experimental results of

this study will then be presented and will include measurements in

hard walled and lined ducts for plane waves and higher order modes in

both the linear and nonlinear regions.

The research topic presented in this introduction is broad in

scope and, as stated above, is the subject of several other thesis

research efforts at this University. The topic has also been

extensively explored by many other research organizations. It is

therefore appropriate at this point to state the specific experimental

goals of this thesis effort as follows:

1. The development of a method for determining the attenuation

of duct liners which includes a realistic comparison with

theoretical treatment.

2. The design and construction of a facility for generation

of high amplitude acoustic waves in large cylindrical

ducts.

3. The extension of both of the above experimental techniques

to higher order duct modes.

4. The verification of plane wave finite amplitude theory

for large ducts.

5. An investigation into the behavior of higher order

modes at high intensities.

6. An experimental determination of the behavior of several

duct liners at high intensities for both plane waves

and higher order modes.



CHAPTER II

LINEAR WAVEGUIDE THEORY

It is well known that higher order acoustic modes exist in
hollow ducts above certain frequencies (known as cut-off frequencies)

and that these frequencies are a function of the cross-sectional

dimensions of the duct. These higher order modes can be obtained

from the results of the solution of the three-dimensional wave

equation in the particular coordinate system appropriate to the duct

geometry. This study is restricted to constant diameter cylindrical

ducts and we will use cylindrical polar coordinates as shown in

Figure 1. ,

z

Figure 1 Cylindrical Coordinate System

In our case,the z-axis will be the axis of the cylinder. The
three-dimensional wave equation in cylindrical polar coordinates is
as follows:
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2 2 2 2
p + 1 a + r 1 (2-1)
2 r 3r 2 2 2 2 2 r r 3 az c at

where p is the sound pressure, r, # and z are the coordinates defined

in Figure 1 and t is time. This equation is readily solved by the

method of separation of variables (see Reference 3, page 429) yielding

a solution of the form

p = R(r) Z(z) #() T(t) , (2-2)

where the functions R, Z, D, and T are determined from the following

partial differential equations:

2 -.
ST 2

t 2 w T , (2-3)
at

a - k 2Z (2-4)
z2  z9z

a2D 2
22' _mJ (2-5)

and 2
1 2R 1 R 2 m+ + k 2 = 0 (2-6)
R1r2 r 3r r 2r r

where w = angular frequency, and

m = a constant.

The constants k and k are wave numbers related as follows:
z r

2
2 w 2 2

k =- = k + k , (2-7)
2 z r

where c is the velocity of sound.

Equations (2-3)-(2-5) are all forms of the Helmholtz equation

and for a single progressive wave have solutions of the form
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T = ejW , (2-8)

-jkz
Z = Be (2-9)

and

S= C ejm  . (2-10)

A, B, and C are constants and the bar denotes that they may be

complex.

Equation (2-6) is Bessel's equation. Solutions to Bessel's

equation (see Reference 4, Chapter XII) are the Bessel functions of

,the first, second and third kinds which are also called Bessel

functions, Neumann functions and Hankel functions, respectively.

The functions are defined by infinite series resulting from solutions

to Bessel's equation by the method of infinite series. These functions

are extensively tabulated in mathematical handbooks. Solutions can,

of course,also be linear combinations of any of the three kinds of

Bessel functions. The choice of the kind of function in any

particular problem is based on physical arguments. We can easily

show that, for our case, the Bessel function of the first kind, Jm'

is the proper choice. The Bessel function of the second kind, (or

Neumann function) Nm, is excluded since it is infinite at the origin.

It could not be excluded if, for example, we had an annular duct.

(1) (2)The two types of Hankel functions H and H are excluded form m

the same reason since

H = Jm - jNm (2-11)

and

Hm = m + jNm (2-12)
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It is interesting to note that the same solution, Equation

(2-2), applies to the sound field exterior to a rigid infinite

cylinder; however, in this case,the solution is given by Hankel

functions since the origin is excluded and these functions have the

proper behavior for large argument.

The solution appropriate for our problem can now be written

from Equations (2-2), (2-8), (2-9) and (2-10) as follows:

j(wt - k z + m) (2-13)
p = Pm Jm(krr) e

We will see later that Equation (2-13) must be in the form of a double

infinite series.

There is no requirement in ,the solution to Bessel's equation

that m be of integer value or even real; however, we can argue on

physical grounds that this must be the case here. The value of p

must be the same for successive 3600 rotations in 4 if r and z are

fixed. This must be true since in each case we are returning to the

same point in space. The variable m must therefore be an integer

number. For the same reason, m must also be real.

The quantities r, , z and t must, of course, be real but there

is no such restriction on pm, kr or kz and we will see later that

these quantities can be complex and that Jm can therefore have a

complex argument. The variable m can have any integer value from

zero to infinity so that Equation (2-13) becomes:

oo j(wt - k z + m4)
p = P J (k r) e (2-14)

0m m rm=0

We can show that kr and,hence,k z also have an infinite number

of values by applying the boundary condition of a rigid duct wall.



9

Under this condition,the normal component of the sound particle

velocity at the wall is zero. The relationship between sound pressure

and sound particle velocity is

v = Vp , (2-15)
kpc

where v = sound particle velocity,

k = w/c,

p = density,

c =,velocity of sound

and V = gradientoperator.

The normal component for our case is given by

v= -- p (2-16)
n kpc ar

From Equation (2-13) and our boundary condition,

-Jm(krr) =0 , (2-17)
r=r

where r is the duct radius.
0

The properties of several of the Bessel functions are shown in

Figure 2.

For each function,there is a series of oscillations about the

kr axis and Equation (2-17) is satisfied at each point where the slope

of J is zero. A value for k therefore exists at each of thesem r

zero slope points for each J o It is therefore appropriate to
m

introduce another integer running index, n, to specify which of the

succeeding slope points is taken and to change k to km. Since therer mn

are an infinite number of zero slope points, Equation (2-14) is

actually a double infinite series and becomes:



+1.0
(kr)

(kr)

+0.4 2 (kr)

+0.2

kr
1 2 3 5 6 8 10

-0.2

-0.4

Figure 2 Properties of Several Bessel Functions of the First Kind



S= Pmn J (k mnr) e z (2-18)

Each integer pair mn defines a particular mode of the solution. The

m determines which of the J functions is specified and the n determines
m

which of the succeeding zero slope points is specified; thus,

determining what k will be. Sincemn

k = k - k 2 (2-19)
z mn

both k and k are uniquely determined, for a given r , by m and n.-z mn o

From Figure 2,J has zero slope and a finite value at the

origin and therefore represents a solution. In this case,k r = 0
mn o

and therefore k = 0. This is the m=0, n=O mode. In this case,k = kmn z

and the solution is

j(wt - k )
p = P e

which is the familiar plane wave. This is the only solution for

k mnro = 0 since J1 has finite slope at the origin and although Jm

for m=2, 3,..., =, have zero slope at the origin, the values of the

functions there are zero and represent trivial solutions (i.e., p=O).

This means that there are no higher modes without a radial amplitude

dependence.

There is some confusion in the literature concerning the

labeling of modes for n=0 and n=l. Often n is specified as zero for

the first non-trivial solution. The various modes are easier to

visualize if we specify n=l for the first mode in each case with

radial amplitude dependence. This means that the m=l, n=0 mode does
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not exist and that the m=2, 3,..., , n=0 modes are trivial solutions.

In this way,the value of n will be equal to the number of nodes

between r=0O and r=r . Several mode shapes (sound pressure amplitude

-as a function of r for fixed z, c, t) are shown in Figure 3.

P P

I I r

t -r

r Ir
0 1 o

-I

m=0, n=O m=O, n=l

P P

r r
0 I

m=l, n=l m=l, n=2

Figure 3 Mode Shapes of Several Higher Order Cylindrical
Modes
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It can be seen from the solution, Equation (2-18), and the

characteristics of the Bessel functions in Figure 2 that there are

three distinct types of modes. First,there is the plane wave case

(and there is, of course, only one mode of this type [m=0, n=01) which

has no radial or circumferential dependence. Then,there are all of

the modes for which m=O and n=l, ..., -. All of these modes have a

maximum at r=O and one or more node lines between r=0 and r=r.

These modes have no circumferential phase dependence. The third

type of modes are where m=l, 2,..., = and n=l, 2, ..., e. They always

have a node at r=r and n-1 nodes in the region 0 < r < r . They

also have a circumferential phase dependence (see Equation [2-18]) , and

are frequently called "spinning" or spiral modes. All of the modes,

except for the plane wave, are referred to as higher order modes.

The wavenumber kz determines the nature of propagation in the

z direction. From Equation (2-19),

2 2
k - kmn (2-20)
z 2 mnc

For a given k and for sufficiently small w, k will be
mn z

imaginary and,from Equation (2-18),the wave will be exponentially
2 2

< 2 w 2
damped. This is the region where < k When -- = k2 mn 2 mn'

c c
kz = 0, and the wave has no z dependence. The frequency at which this

occurs is called the cut-off frequency f and is given by

cck

f =c mn . (2-21)
c 21 2r

Each mode has an associated cut-off frequency. Each cut-off

frequency is a function of the duct diameter and the value of m and n.

The cut-off frequency increases with increasing values of m and n.
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For a given mode, k is real above f and there is undampedz C

wave propagation. The propagation is, however, dispersive; that is,

the phase and group velocities in the z direction are frequency

dependent. This can be seen from Equation (2-20). The phase

velocity c which is the velocity at which points of constant phase

travel in the z direction is given by

c = W (2-22)
p k 2z W k

-k
V2 mn

C

At cut-off, the phase velocity is infinite and if we re-arrange

Equation (2-22)

c =  1 , (2-23)

1 kmn
2 2

c W

it can be seen that as w '- , c approaches the ordinary sound velocity

c. Infinite phase velocity does not imply that we are violating the

laws of relativity since it does not describe the velocity of energy

transport. This is described (see Reference 5, page 110) by the group

velocity c where

S= (2-24)g = ak
z

If we rearrange Equation (2-22), perform the derivative

indicated in Equation (2-24), and do some algebraic manipulation,

we obtain an expression for the group velocity as follows:

c 2
c c 1 - km (2-25)g 2 an
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From Equation (2-25), we can see that at cut-off where k =0 orZ
k =- the group velocity is zero and from Equation (2-25) that asmn c

- o, c approaches c. The behavior of the phase and group

velocities is shown in Figure 4.

Cg, C

cp

c

c

Figure 4 Dispersion of a Higher Order Mode

At cut-off,there is no net transport of energy and the waves

remain in the duct in the form of a standing wave. Without dissipative

effects the acoustic energy is pure reactive. Intuitively, it is

obvious that high energy absorption will occur at cut-off if the duct

walls are absorptive.
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Many modes can exist simultaneously and the modal distribution

is a function of the duct diameter and the frequency and spacial

phase and amplitude of the source exciting the sound wave in the duct.

As an example, Figure 5 illustrates the frequency regions in which

several modes can propagate in a 12-inch diameter rigid walled duct.

It can be seen from Figure 5 that there are frequency regions

where only a few modes can exist and other regions where many modes

can exist simultaneously.

All of the above discussion following Equation (2-14) pertains

to a rigid walled duct; however, Equation (2-14) and the development

preceding it are valid without regard to specification of the nature

of the wall impedance. If a duct is.,lined with absorbing material,we

cannot use the simple boundary condition that the normal components

of the particle velocity is zero at the wall. The problem of finding

the wave-numbers now becomes considerably more complicated. At this

point,we no longer have the clear proof that n is an integer but it

will be assumed for now that this is still true. This implies that

we still have discrete solutions for the wavenumbers. It is clear

that m must still be an integer. Another important assumption will

be made; that is, that the absorptive lining is locally reacting.

This means that the behavior of the material is completely determined

from its normal impedance, Zn, where Zn is defined by

Z - (2-26)n vn

where Z = R + jX,

R the resistive component of Zn, and

X = the reactive component of Z, andn
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From Equations (2-14) and (2-15),the new boundary conditions is

kpc J (k r)m mn (2-27)

n j n Jm(kmn
r )

r=r
o

Derivatives of the Bessel Function J have the following propertym

(see Reference 6, page 188) for integer m:

d 1(2-28)dx Jax = - [J m-(ax) - Jm (ax)]  (2-28)
2a m-1 m+1

Equation (2-28) can be simplified by the use of the relation

below:

J (x) + J (x) =m J (x) (2-29)
m-l m+l x m

Combining Equations (2-28) and (2-29),

d 1
d J (ax) m- J (ax) - J (ax) . (2-30)
dx m a ax mm+

The above expression can be substituted into Equation (2-27) yielding

the boundary condition

kkmnpc Jm (kmn r = z (2-31)
j[ m J (kr J (k r )

k r m mn o n- l(kmnro)]
mn

For a given k, p, c, r , and Z k is the only unknown in
o n mn

Equation (2-31) and represents the eigenvalues of the problem. Since

Z is, in general complex, km and J will be complex. The major
n mn m

consequence of Jm being complex is that the mode shape, the

dependence of p on r, will be different from the hard walled case.

The fact that k is complex has an additional important consequencemn
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since k is a function of k and will therefore be complex asz mn

z = k + ja z  (2-32)

where k = complex longitudinal wave number

k = real part of kz

a = imaginary part of k z

Since p has the following z dependence

p(z) = Ae (2-33)

az represents a damping term and must always have a negative sign to

provide an exponentially decreasing rather than increasing value of p

with increasing z. It is obvious that a represents the liner

attenuation. This is the quantity with which we are most.concerned

and can be found by solving Equation (2-31). This equation has no

exact solution and approximate solutions to this boundary value

problem will be the subject of a later study.



CHAPTER III

NONLINEAR ACOUSTICS

Wave equations used in acoustics are derived from three

equations from Fluid Mechanics and Thermodynamics and all of these

equations are usually nonlinear. The three equations required are:

1. An equation of motion.

2. A continuity equation.

3. An equation which describes the proper relationship

between pressure and density applicable to the problem.

The arguments used in elementary textbooks in acoustics to linearize

these equations is quite familiar and will be briefly discussed later.

There are many situations where these equations cannot be linearized

and this gives rise to three distinct nonlinear acoustic phenomena:

1. Cavitation.

2. Acoustic Streaming.

3. Finite Amplitude Waves.

Acoustic cavitation is a phenomena restricted to liquids and

occurs when the intensity of the acoustic wave is sufficiently high

to cause stresses which exceed the liquid's tensile strength. The

liquid ruptures forming cavities filled with the fluid in its

gaseous state. These cavities continuously form and collapse with

the oscillations of the acoustic wave. Cavitation is of no concern

in the present study since we are restricted to air as our acoustic

medium. It has, however, been the subject of extensive research

primarily in the ultrasonic region (see, for example, Reference 7).
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Streaming can occur in liquids and gases and is often observed

with high intensity sound waves. It is characterized by a net flow

of the fluid in the direction of wave propagation. The resulting

flow velocities are small and are of little importance in this study

since our ultimate application is towards liners for situations where

the mean flow is much greater than the flow due to streaming.

This interesting subject has also been extensively studied and an

excellent summary is contained in Reference 8.

The third phenomenon,finite amplitude waves, is of significant

importance in this research since sound levels are encountered 
in

situations such as a jet engine inlet and internal combustion engine

exhaust where the effect can be quite pronounced. The term finite

amplitude is used to denote acoustic waves of sufficiently high

amplitude where a certain nonlinear effect occurs as opposed to

infinitesimal waves where linear behavior is observed.

A thorough summary of plane lossless finite amplitude waves

is given by Blackstock in Reference 9. In this paper, Blackstock

points out that, although the subject has been given relatively

little attention in modern times, the theoretical foundation which

explains the phenomena was discovered early in the nineteenth

century by Poisson, Stokes and others.

Finite amplitude waves result from the following fact: An

initially sinusoidal plane progressive sound wave of any intensity

will not retain its sinusoidal shape in a dissipationless medium.

This can be shown by a purely physical argument with the aid of

Figure 6.
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V

Ac' = c+u

B ' = c

C ' =-u

Figure 6 Distorti6n of a Finite Amplitude Wave

c' = instantaneous phase velocity

c = velocity of sound

u = peak velocity of a piston source x=O,

The sound velocity in a fluid is given by the relation

c 2 =P (3-1)

where p = pressure,

p = density,

and S = entropy.

For an isentropic process in an ideal gas,the pressure density

relationship

Po (3-2)
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is nonlinear and cl therefore varies with the instantaneous amplitude

of the wave. The constant y is the ratio of specific heats and po and

po are the equilibrium values of the pressure and density. The

exact manner in which c varies is found by substituting Equation (3-2)

into Equation (3-1) yielding,

c2 py- (3-3)

p

Since y is always greater than unity the sound speed at constant

temperature always increases with increasing density and pressure.

This means that the peak of a sound wave travels faster than the

trough resulting in a progressive distortion and steepening of

the waveform.

There is also an additional distortion mechanism. The initial

particle velocity, u, causes the peak of the wave to move faster

than the mean sound velocity and the trough to move slower. This

can be considered as a convection effect but should not be confused

with streaming since there is no net motion of the fluid. Lighthill

(Reference 10) has somewhat incorrectly referred to the combined

effect (the nonlinear p, p relationship and the convection effect)

as "convection of sound."

Referring to Figure 6, the peak of the wave (point A) is

accelerated since c' is increased due to an increase in c and the

addition of u. At the trough (point C) the wave is retarded since

2 2 YPo
c decreases and u is subtracted. In region B, p=po and c = c =

which is the ordinary infinitesimal sound speed. The group velocity

of the wave is therefore c
o
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The distortion process is cumulative; that is, the wave becomes

more and more distorted with each cycle. We could continue the

argument to a point where the wave becomes multivalued as shown in

Figure 7 but this is physically impossible.

p or v

x

Figure 7 Multi-Valued Distortion

Solutions to the exact dissipationless plane wave equation

also yield physically impossible solutions at large distances. In

order to predict the correct behavior at large distances,the

dissipationless assumption must be discarded and losses in the fluid

due to viscosity, heat conduction and molecular relaxation must be

taken into account. There are many regions of interest, however,

where the dissipationless assumption is valid.

In order to obtain solutions which theoretically predict the

behavior of finite amplitude waves,one must derive wave equations

from the hydrodynamic equations in their original non-linearized

form. The exact plane wave equation for an ideal gas can be easily

derived (see Reference 11) from the continuity equation,
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Pax (3-4)

Euler's equation

a2 + 1 p = 0 (3-5)
8t 2  ax

and the adiabatic pressure-density relationship

P P (3-2)

where 5 = particle displacement, and

x = spacial coordinate.

First substitute Equation (3-4) into Equation (3-2):

or

axP = Po 1+ ax " (3-6)

Next substitute Equation (3-6) into Equation (3-5),

S2 - 2 -I-1av 2  I + = p 1 + a
Sx o 2 axat ax I

2 _ oRearranging and substituting c = - results in the exact plane
o p0

wave equation for an ideal gas,

2 Y+1
S= ax (3-7)

ax c at

If we substitute
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2

c2 = 02 (3-8)

1 + 9-
I ax

Equation (2-7) becomes:

2 2
- (3-9)2 2 2 (ax c at

which has the same form as the ordinary linear plane wave equation

except that c,in this,case is varying in time and space. This is in

keeping with our earlier physical argument that the instantaneous

phase velocity is varying over the cycle resulting in progressive

distortion. Solutions to Equation (3-7) predict progressive

distortion up to a value of x where the solution is discontinuous.

This distance is known as the discontinuity distance x and corresponds

to the point in our physical argument where the wave becomes multi-

valued. The value of x is a function of the initial amplitude and

frequency of the wave. The solution is invalid beyond the

discontinuity distance.

A good physical analogy to a finite amplitude wave is a water

wave propagating towards a shallow beach. Due to the proximity of

the bottom,the trough of the wave travels with a lower velocity than

the crest. In this case,the shape of the wave actually becomes

double valued, overtakes itself and forms a "breaker." In the case

of a distorting sound wave,a shock wave eventually forms. This

occurs at the discontinuity distance. At this point,the wave has a

sawtooth or N shape. Dissipative effects exactly balance the

distortion producing mechanism and the wave travels as a stable



27

sawtooth. Beyond this region the sawtooth shape eventually decays

to a sine wave at reduced amplitude.

As stated before, Equation (3-7) will not predict the behavior

beyond x and a more complicated equation must be used which accounts

for dissipative effects.

Equation (3-7) predicts progressive distortion regardless of

initial amplitude provided that the distance from the source is

sufficiently great. Recall that x increases linearly with decreasing

initial amplitude. It therefore, appears at first that for a large

enough x, the linear wave equation

a2 = 1 a2 (3-10)
2 2 2

ax c at

is never correct for large distances even at very small amplitudes.

Dissipative effect (present in all real fluids), however, gets us out

of this difficulty. These effects are due to viscosity, heat conduction

and molecular relaxation. The subject is discussed in detail in

Chapters 9 and 12 of Reference 5 by Lindsay. The dissipative effects

result in an exponential damping of the sound wave with distance and

result from the fact that our original assumptions in deriving

lossless wave equations is slightly incorrect. These assumptions

are:

1. That the thermodynamic process is adiabatic.

2. That there are no shear forces.

3. That the sound wave is not affected by the molecular

structure of the fluid.

If we assume that we have a viscous, heat conducting medium

and have measured these properties,then we can modify the thermodynamic
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process equation,Euler's equation, for example,Equations (3-5) and

(3-6), and obtain a wave equation which takes these factors into

account. The equations can be linearized and a linear solution which

is exponentially damped with distance results. The damping constant

or "absorption coefficient" is a function of the shear viscosity,

the heat conduction coefficient, and the square of the frequency.

The solution is in agreement with measurements for a few fluids but

predicts a coefficient much too small for the majority of fluids.

The excess absorption is not due, in this case, to nonlinear effects

but to the above mentioned molecular relaxation. This additional

absorption mechanism can be accounted for by adding a "bulk viscosity'!

term but must usually be determined by measurement of actual absorption

coefficients versus frequency for the fluid of interest. The absorption

due to viscosity and heat conduction are known as "classical absorption"

and the effect of molecular relaxation is to increase the actual

absorption coefficient at all frequencies near or below the relaxation

frequency of the particular molecular process. Above the relaxation

frequency,the absorption coefficient returns to the classical

absorption value. At sufficiently low amplitudes,sound waves obey

the modified linear wave equation which accounts for dissipation and

no indication of progressive distortion occurs regardless of propagation

distance. For sufficiently small amplitudes and long propagating

distances,the absorption of the harmonics produced by finite amplitude

effects counterbalances their growth and the harmonics cannot be

observed. Since the absorption coefficient is proportional to (W2x),

the medium acts like a low-pass filter and the wave remains sinusoidal.

At high amplitudes,the growth of the harmonics is so rapid with
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distance that the absorption mechanism which is proportional to

distance cannot act on the wave to prevent the sawtooth formation.

The role of absorption for the high amplitude case is, as stated

before, to act in the shock region (beyond x=x) to provide a stable

decoying sawtooth in the region where solutions to the exact

dissipationless wave equation are invalid. It is apparent from the above

discussion that the usual justification of the linearizing of Equation

(3-7) by assuming -small is only valid if we add the stipulationax

that x << x. In summary of the above discussion,we can say that

solutions to Equation (3-7) predict high amplitude behavior in the

region where x < x, that dissipative effects account for the stable

sawtooth behavior beyond x = x where' (3-7) is invalid, that the

usual linear wave equationis only valid at relatively short distances

and low amplitudes (where the majority of past problems of practical

interest lie) and that the linear dissipative wave equation is valid

at low amplitudes regardless of propagation distance.

In any problem with nonlinearities,we must determine the range

of values of various parameters for which a linear approximation can

be used and the range over which a nonlinear analyses must be

undertaken. Some difficulties involved in nonlinear analysis are

discussed later in this chapter. In a typical problem with a term

S Y+1
1 + 5x such as appears in Equation (3-7) one would assume that

if a is "small" compared to unity that the term could be neglected.

For example,we could state that if

ac < 10
5x
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the linearized equation would result. We have, however, previously

pointed out that it is improper to linearize Equation (3-7) in this

manner due to the cumulative distortion effect. We can prove our

point with the following example:

We can assume that close to the origin 5 has the form

So ej(wt-kx) (3-11)

and

= - jk . (3-12)

Also

V= jA (3-13)at

Combining Equations (3-12) and (3-13),

v= (3-14)
ax c

The initial magnitude of Lis equal to the magnitude of the

particle velocity divided by the speed of sound which we will call

the acoustic Mach number MA,

Vv
M = - , (3-15)A c

0

where v = v e(wt-kx) near the origin.
o

As our example, consider an initial sound pressure level of

150 dB re 2 x 10-4 dynes/cm 2 in air. This corresponds to a peak

sound pressure of 104 dynes/cm2 . The corresponding sound particle

velocity amplitude is 2.41 x 102 cm/sec and the resulting acoustic
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Mach number is 0.7 x 10-2, a "small" number compared to unity. In

spite of this fact,strong nonlinear effects are observed at levels of

1500 dB. Examples similar to that given above are presented by Beyer

in Reference 12.

The following question is therefore frequently asked: When

is a wave finite? The answer is that a wave can be considered a

finite amplitude wave when the frequency, initial amplitude and

propagation distance are such that progressive distortion or finite

amplitude effects can be observed.

The first explicit solution to Equation (3-7) appearing in the

literature of acoustics was obtained by Fubini in 1935 (Reference 13).

Blackstock points out in Reference 9"'that a mathematically identical

solution was obtained by Bessel in his analysis of Kepler's second

law of planetary motion. Blackstock has therefore aptly referred to

the analysis as the Bessel-Fubini solution. The solution is in the

form of a Fourier series and can be expressed in terms of the sound

pressure (ignoring phase factors of the harmonics) as follows:

p(x, t) = - P enj (t-kx) (3-16)
n=l

where n = an integer

w = angular frequency of initially sinusoidal wave,

k = w/co'

and Pn = RMS amplitude of the nth harmonic.

It would be appropriate here to clarify what is meant by the

nth harmonic since this is frequently a confusing issue. If we define

0
f = - as the fundamental or the frequency of the initially

sinusoidal wave,then the frequency of the nth harmonic is defined as
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n f . This is a widely accepted convention and the confusion arises

from the also widely accepted convention in expressing harmonics in

terms of "overtones" usually used in connection with music. The

first overtone is two times the fundamental. The first harmonic

is therefore equal to fo; however, the first overtone is equal to 2fo.

We will avoid use of the term "overtone" here and use our definition

above for the various harmonics.

The Fourier coefficients P are functions of the initialn

amplitude and frequency of the wave, the propagation distance, and

the properties of the gas. They are given in terms of the ratios of

Bessel functions as follows:

Jn (no)
P = P , (3-17)n on J(a)

where

(y+l) 0 P x
a = = , (3-18)

x y2p c0

and po = initial RMS amplitude of the fundamental,

J = nth order; Bessel function of the first kind-

and x = discontinuity or shock formation distance.

It is immediately apparent that the solution is an approx.imation

since it predicts that P1 = P for any x while the harmonics are

growing in intensity with distance. The fundamental P1 actually

decreases in intensity in accord with the total increase in intensity

of the harmonics and this could be accounted for separately if

necessary. The behavior of the solution at the origin is proper

since, although Jl(a) = 0 at a = 0,
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J (na)
lim n = 0 (3-19)
U 0 Jl (0)

The solution becomes infinite at other successive zeros of

the function Jl(a) but this always occurs in the region where a > 1

and the solution is invalid there for other previously stated reasons;

that is, x exceeds the shock formation distance.

The solution can be simplified for small a with the aid of the

power series expansion of J (a) of integer order where

S2j+n

J (0 ) = (3-20)
n j= j! (n+j)! (

Expressions can be obtained for Jl(a) and Jn(na) from Equation

(3-20) as follows:

2 4

J1(-) = [1 - -- + - ]  (3-21)
1'' 2 8 192

2 2 4

J 2
(2 ) = [1 - --+ 2- "" , and (3-22)

3 2 490 9a2 81a 4

J 3 (3a) = 9 [1 - +  640 - • (3-23)
3 16 16 640

We can express Equation (3-17) in terms of the ratios of the

various harmonics to the fundamental as follows:

P J (na)
n n (3-24)
Po n J1 (o)

We can substitute Equations (3-21), (3-22), and (3-23) into

Equation (3-24) and perform the indicated division (since all of the

series are absolutely convergent for a < 1) and obtain expressions

for the ratios of the second and third harmonics to the fundamental

where
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2 a 50 aS[1 - 22+ ] (3-25)P 2 24 96
o

and

P3 302  72 (3-26)
[ + ] (3-26)P 8 16 15 ...

o

It can be determined by inspection that Equations (3-25) and

(3-26) are rapidly convergent for sufficiently small a and that for

many cases the first term is sufficient. For a = 0.6, the first term

determines P2/Po within 7 percent and P3 /Po within 15 percent of the

correct value. The percentage error decreases rapidly from these

values for a smaller than 0.6. A computer program has been written

for use in this study which takes into account the first three

terms and is sufficient for all practical regions of interest where

a < 1.

For sufficiently small o,Equations (3-25) and (3-26) reduce to

2 a
P 2

and
P 2
3 3a2

P 8

Substituting Equation (3-18) into these expressions yields:

P2 (+l) P3-27)
3(3-27)

o 22p c3

3 J(3-28)
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Thuras, Jenkins and O'Neil and Black (References 14 and 15),

who were unaware of Fubini's work, obtained Equations (3-27) and

(3-28) as approximate solutions to the problem by entirely different

methods from that used in the Bessel-Fubini solution. Reference

14 contains the first published experimental measurements of finite

amplitude distortion and their data agree with theory within 3 dB.

The value of x for which o=1, that is, the discontinuity

distance is a good measure of the importance of finite amplitude

effects in a given situation. If, for example,the discontinuity

distance is of the order of a kilometer, then observation of nonlinear

effects is in most cases unlikely. We can set o=1 in Equation (3-18)

and rearrange it solving for x:

S-(po Co) c 2
x = x = o (3-29)

(y+l) 2ir f Po o

and since, in this case, we are concerned with air, we can add the

following constants in CGS units:

y = 1.4

PoC° = 41.5 cgs RAYLS,

and c = 3.43 x 104 cm/sec.

Substituting these into Equation (3-29) yields

4.75 x 10 (3-30)
f P

o o

For a frequency of 1 kHz,

= 4.75 x 10 (3-31)

0

Ni/
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Equation (3-31) was used to obtain the graph shown in Figure

8. This is a plot of discontinuity distance versus sound pressure

level in dB re 0.0002 dynes/cm for a frequency of 1 kHz. Since x is

inversely proportional to frequency,the overall level of the curve

would drop 6 dB for a doubling of frequency and would rise 6 dB if

the frequency were halved. Since sound waves are rarely confined to

ducts of longer than 10-20 meters in most practical situations, we

can see from Figure 8 that nonlinear effects in the middle audio

frequency range are usually of importance only above about 140 dB.

This gives us a crude answer to the question posed earlier as to

when a sound wave becomes nonlinear. A level of 140 dB corresponds

-3to an acoustic Mach number of about .2 x 10-3 . Typical sound pressure

levels in the inlets of jet engines and large stationary gas turbines

are frequently 150 to 160 dB which is well into the nonlinear region.

The discussion has been limited so far to plane finite amplitude

waves; however, there are many situations where other types of waves

of large amplitudes are encountered. Examples are high amplitude

higher order modes propagating in ducts which is of most interest

to us here and high amplitude spherically diverging waves which are

of interest for underwater sonar applications. An exact solution

for the case of higher order mode propagation would require that the

equation of motion, continuity equation and pressure-density

relationship be used to obtain a three-dimensional wave equation,

in this case,in cylindrical coordinates, and that the resulting wave

equation be exactly solved by some method. This appears to be

impossible. It would therefore be desirable if the Bessel-Fubini
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solution could be modified or utilized in some way to approximately

predict the nonlinear behavior of waves other than plane waves.

This was done by the author in Reference 16 to determine the

second and third harmonics for a one-dimensional spherically

spreading wave (by one-dimensional,we mean in this case that there is

only an r dependence on the wave's behavior). The method correctly

predicts the second harmonic but is incorrect for the third and higher

harmonics, even though a plausible mathematical proof was given

(Reference 17) to justify the method. The results for the second

harmonic are

P2 (K+) ( Pr r
S0 0 in () (3-32)

1 2V2/ p co3 o

where r = radius of the source,

P = RMS sound pressure at ro,

r = radial spacial coordinate,

and K = nonlinearity parameter = y for a gas.

We use P1 instead of Po on the left-hand side of Equation (3-32)

since P1 in this case is approximately a spherically diverging

quantity as a function of r. Most of the nonlinear behavior for

spherical waves occurs close to the source since the amplitudes

diminish rapidly with r due to spherical spreading.

The setup shown in Figure 9 was used to experimentally verify

Equation (3-32). The medium in this case was water. A piezoceramic

line projector was used as a source and fixed and movable hydrophones

were used to measure the spherically diverging sound fields. Tone

burst at 30 kHz, deliberately designed to be rich in second harmonic
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distortion, were produced by a distorted-pulse generator. These

signals were passed through a phase shifter and amplified to drive

the source. A separate 60 kHz second harmonic signal was obtained by

filtering and was separately mixed with the original signal before

final amplification to the source. In this manner, through phase and

amplitude adjustments, complete control is obtained over the second

harmonic content of the signal feeding the source. Initially, the

controls were adjusted for minimum second harmonic distortion close

to the source as measured by the fixed hydrophone. This is equivalent

to an initially sinusoidal source and cancels the second harmonic

distortion generated by the source itself. The progressive distortion

was measured as a function of distance by the movable hydrophone

and the results are shown in Figure 10. The solid line is computed

'from Equation (3-32) and the data substantially verify that this

expression is correct at large distances. The controls were then

adjusted such that a minimum in the second harmonic appeared in the

far field with the results shown in Figure 11. This illustrates that,

at least in this case, finite amplitude distortion can be minimized

by control of the wave shape at the source. It should be pointed

out that, due to the rapidly diminishing amplitude of the fundamental

resulting from spherical spreading, no shock formation or wave

steepening could be detected in this experiment. The waves were

therefore very weakly nonlinear and the second harmonic cancellation

of Figure 11 is not surprising,based on linear arguments where

superposition of waveforms is allowed. In our recent experiments

with plane waves in air at very high amplitudes,a scheme of this sort

to control harmonics appears to be hopeless since the N shaped shock
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waves appear regardless of the initial waveform. The results of

these experiments will be reported in a later chapter. In the above

described spherical experiments in water,attempts to verify the

third harmonic behavior failed since the third harmonic analysis

is incorrect in Reference 16.

Solutions for one-dimensional spherical and cylindrical finite

amplitude waves which are probably correct for higher order harmonics

are given in Reference 18. Although the experiments would be difficult,

it would be satisfying to see the results of Reference 18 verified

for the third and higher order harmonics. The incorrect results

obtained in Reference 16 through what appears to be a logical method

points out one of the pitfalls of analyzing nonlinear problems.

Many solutions can be generated, especially today with the aid of

high speed computers, but the real task lies in identifying the

correct ones. A theoretician can stay on the right path if he has

access to at least some experimental results.

Our present problem, that of higher order modes at high

amplitudes in a cylindrical duct,has been analyzed by Keller and

Millman in Reference 19. Their analysis predicts that k and therefore
z

the phase velocity is amplitude dependent. This would also indicate

that the cut-off frequency is amplitude dependent. Our experiments

show that this is not the case since no variations in phase velocity

or cut-off frequency with amplitude were observed up to 175 dB.

Their analysis does predict an absence of shock formation which was

observed but the explanation for this can be argued on much simpler

physical grounds.
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In a private communication with Professor David Blackstock,

it was mutually agreed upon that it may be possible to describe the

z dependence of a finite amplitude higher order mode with a modified

form of the Bessel-Fubini solution. The z dependence of higher

order modes has a dependence

-k z
p(z) = A e z (3-33)

which is identical to that of a plane wave with the exception that

k is frequency dependent. Equation (3-18) would therefore be modified

as follows:

(7+l) k P z
T = 0 (3-34)

o o

and C' would be used in place of a to calculate the distortion. It

will be seen later that Equation (3-34) exactly predicts the behavior

at the cut-off frequency but has some problems at frequencies above

cut-off.

There is one important difference between progressive distortion

for a plane wave and for higher order modes which results from

dispersion. If harmonics can be generated with a higher order mode

the various harmonics will travel with different phase speeds and it

is unlikely that a sawtooth or any stable non-sinusoidal waveshape

will develop. It will be seen later, after the presentation of

experimental results,that the dispersion has other more far reaching

consequences.



CHAPTER IV

BASIC PROPERTIES OF SOUND ABSORBING MATERIALS

Sound absorbing materials, as the name implies, are used to

absorb sound waves through conversion of a portion of the acoustic

energy into heat. When a sound wave impinges upon the surface of a

sound absorbing material, a part of its energy is dissipated within

the material and the remaining portion is reflected. The fraction of

the total energy absorbed represents the absorption coefficient of

the material.

Absorbing materials are widely used to control the reverberant

characteristics of rooms and enclosures, and as liners to attenuate

sound propagating in ducts. In this,study we are primarily interested

in duct liner applications.

Absorbing materials are generally of a porous nature and the more

common types are constructed from organic or inorganic fibers held

together with a binder and from open cell plastic foams. Arrays of

Helmholtz radiators are also used as sound absorbers and can be

constructed using perforated sheet metal. Foamed glass and woven and

sintered metals are also used for special applications. The woven

and sintered materials are of great interest here since they can

withstand the environment in gas turbine inlet and exhaust ducts.

The voids or pores of an absorbing material are filled with

the fluid in which the sound wave is travelling and, in most applications,

the fluid is air. The primary energy dissipation mechanism is

hydrodynamic loss (viscosity, heat conduction, and molecular
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relaxation) due to motion of the fluid filling the pores of the

material. The mechanism is not well understood for most materials

and attempts to theoretically predict absorption properties from

physical characteristics of the materials has met with only limited

success.

The absorption properties of a given material can be described

by several different quantities which are:

1. The normal incidence absorption coefficient, .N'

2. The statistical or random incidence absorption coefficient

ST'

3. The normal surface impedance, ZN.
4. The obliqud incidence impedance, Z6.

5. The complex bulk modulus, 8.

The definition of these quantities can be visualized with the

aid of Figure 12.

ir Air

Absorbing #

Refracted Wave

Figure 12 Reflection and Refraction from an Absorbing Surface
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A plane sound wave, pi, is impinging on the surface of a sound

absorbing material at incident angle 0. A portion of the wave is

absorbed by the material and the remainder is reflected as pr. The

sound absorption coefficient is defined as the fraction of the total

energy of the wave absorbed by the material. Since the energy is

proportional to the sound pressure squared, it can be easily shown

(see Reference 20, page 5) that the absorption coefficient a is given

by

= I - . (4-1)
Pil

It is always a real number between zero and unity. Its value is zero

for perfect reflection and unity for complete absorption.

The normal incidence absorption coefficient, cN, is obtained

when 0=0, and is the easiest to measure experimentally. The

statistical or random incidence coefficient, aST' obtained when the

incident sound energy is impinging simultaneously from a large number

of different incident angles that is, the incident energy is uniformly

distributed over all incident angles of 0=0 to 8 = +900. This

quantity is of great importance in architectural acoustics and

considerable research is currently being conducted into methods of

measuring it. It is only of minor importance in the present study.

The normal surface impedance, ZN, contains more information

on the material's behavior than aN or C ST and is defined as the ratio

of the total sound pressure to the total sound particle velocity with

6=0. It is given by the following equation:

Z p. Pi + p
Z vi + r (4-2)N v vi + v r
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where v. = incident particle velocity, and
1

v = reflected particle velocity.

The quantity ZN is usually a complex number. It is, like N' a

quantity which can be measured experimentally with little difficulty.

It is shown in Reference 20 that aN and ZN are related by

1 _ZN - o (43)
'N Z=  + p c

The oblique incidence impedance Z0 is defined in an identical

manner to that of ZN except that 00 < 0 < 90
0 . The difficulties of

measuring Z0 can be appreciated from the work of Wyerman reported in

Reference 2.

Use of the concept of a complex bulk modulus, 3, to describe

the wave propagation and losses in an absorbing material are restricted

to the assumption that the material is homogeneous and isotropic,

at least from a macroscopic point of view. Few materials used in

air can be considered homogeneous and many are non-isotropic. In

spite of this, these materials have been studied with some success

using the bulk modulus concept (see, for example,Pyett's work in

Reference 21). A complex wavenumber can be determined from with the

real part representing the ordinary wavenumber and the imaginary part

accounting for the energy losses.

It should be emphasized at this point that is a fundamental

physical property of a material but that none of the other quantities

aN' aST' ZN or Z are fundamental properties. Take,for example,the

two configurations shown in Figure 13.
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Figure 13 Two Absorber Configurations

Since the same material is used is the same in both cases.

The other quantities are quite diffe-rent between case a and case b

due to the air space in case a. These quantities are also dependent

upon the thickness of the material. If the material can be represented

by a complex bulk modulus, then for any configuration such as a) or

b) for example, ON, CST' ZN or Z0 can be determined by solving a

boundary value problem.

There are two important simplifying assumptions with regard

to the behavior of plane sound waves at the boundary between air and

an absorbing material. The first is that the reflection at the

boundary is purely specular. This means that the waves can be

represented in terms of ray paths as shown in Figure 12, that the angle

of incidence equals the angle of reflection and that local reaction

or Snell's law applies to the wave refracted into the material. It

is obvious that this is an important assumption since our definitions

of normal absorption coefficient, normal surface impedance, and

oblique incidence impedance would be meaningless without it. Specular
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reflection implies that there are no surface waves present which

could radiate sound and that is no scattering of the reflected wave.

Since most materials have surface irregularities,some scattering must

occur; however, it is hopefully negligible. The second simplifying

assumption, which sometimes cannot be made, is that the material

is locally reacting. This means that the material's behavior can

be described completely in terms of the normal component of the velocity

at the surface. This is often justified on the basis of high damping

in the material or on grounds that the velocity of sound cM in the

material is considerably less than in air. The first argument is

plausible since, for sufficient damping, the motion at one point in

the material does not greatly affect--the motion at other points.

The second argument can only be justified by examining the behavior of

the wave refracted into the material. If this wave has a predominantly

normal component,then local reaction can be assumed. For the case of

specular reflection,the incident, reflected and refracted waves are

described by Snell's law (see Reference 22, page 76) as follows:

c

sin OM = C sin , (4-4)
SCM

where e is the angle of the incident and reflected waves and 6M is the

angle of the wave refracted into the material as previously shown in

Figure 12. As 0 is varied from normal incidence,it is apparent from

Equation (4-4) that OM must vary more rapidly than e if cM is less

than c and that the wave is even more oblique in the material than

is the incident wave. This means that low sound velocity in the

material does not justify local reaction and we are, at this point,

contradicting the statements on page 166 of Reference 20 where this
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argument is put forth. If we were to consider the absorbing material

to have infinite depth with cM less than c ,the absorption coefficient

would increase with increasing 0 to an angle where there is complete

penetration of the wave corresponding to an absorption coefficient of

unity. Beyond this angle, called the angle of intromission, the

absorption coefficient decreases and becomes zero at grazing incidence.

It is apparent that under these circumstances local reaction can

only be justified on the basis of high damping.

If we again consider a material of infinite depth in this

case with cM greater than co, the refracted wave is bent towards

the normal. There is an angle, called the critical angle,at which

the absorption coefficient becomes zero and remains zero from this

angle to grazing incidence. The critical angle is given by

e = sin- (4-5)
cCM

For sufficiently large cM, the critical angle is small and the only

allowed wave motion in the material is at or near the normal direction.

Under these circumstances with the sound velocity greater in the

material than in air,local reaction could be justified. It is believed

that an incorrect interpretation of Snell's law has led to justification

of local reaction in the past for the opposite case where the sound

velocity in the medium is less than in air. Officer shows in Reference

22 that local reaction is a violation of Snell's law and is equivalent

to a boundary condition of continuity of acoustic impedance. The

absorption coefficient obtained under this condition is completely

different from that observed in experiments in optics and in underwater

acoustics but,in these cases,the reflecting medium has very little
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damping. Final resolution of the question of local reaction can be

made only after a number of oblique incidence absorption measurements

are available.

It is shown in Reference 20 that if local reaction can be

assumed,then the relationship between ZN and Ze is

Z = ZN cos O , (4-6)

and,from Equation (4-3) ,

ZN cos 1 - (4-7)

N Cos o

It should also be noted that the assumption of local reaction is

necessary when applying the boundary-conditions in Equation (1-27)

for a duct of finite wall impedance.

The majority of the work in the investigation of the properties

of sound absorbing materials has been based on a phenomenological

approach using several experimentally determined quantities (for

example, see References 20 and 23). These macroscopic properties

are the flow resistance, the porosity and the structure factor. The

flow resistance can be readily measured (see Reference 1) by passing

air through a sample of the material and measuring the flow rate and

pressure drop across it. The porosity is easily determined since it

is the ratio of the volume of the voids in the material to the total

volume. The structure factor, however, must be determined by first

measuring the acoustic impedance of the material and working backwards

to obtain this quantity. In other words, with the phenomenological

method, a theoretical model is developed with certain parameters which

must be determined experimentally. This is not an ideal approach
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since we are, in'a sense, making the data fit the theory,but it has

provided some insight in the past into the effects of varying

various parameters in the construction of sound absorbing materials.

There is one class of materials (see Kilmer, Reference 1, Chapters

III and VIII), thin fiber metal with an air backing and rigid

termination, where the acoustical behavior is determined from the

flow resistance alone and the normal impedance and absorption

coefficient can be determined theoretically with good accuracy from

the flow resistance and depth of the air cavity.

Modern approaches to the problem, notably those of Pyett and

Attenborough, (References 21, 24 and 25) are attempts to determine the

complex bulk modulus discussed earlier. This quantity would give

a complete description of the material including oblique incidence

behavior for the cases where the locally reacting assumption may not

be valid. Pyett measured the normal impedance of a material for

different thicknesses and from these data deduced the complex bulk

modulus. His measurements were based on the impedance tube method.

He then developed a theory from which oblique incidence behavior could

be obtained.

Attenborough's method is completely theoretical in nature and

has the distinct advantage over all previous approaches in that the

absorptive properties of a material, under proper conditions, can be

completely determined from its microstructure. For most materials the

microstructure is determined from easily measurable physical

properties. For the case of the widely used glass fiber absorbing

materials,the fiber radius and fiber concentration are the only

required quantities in Attenborough's theory.
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Attenborough's approach was to use scattering theory to predict

the properties of fibrous absorbing materials. The fibers of the

material are modelled as a three-dimensional array of scatterers.

The degree of success of the method depends, of course, upon how

close the theoretical model is to the actual model. Attenborough's

first model consisted of an array of parallel rigid (or elastic)

cylindrical fibers in air with equal diameters and equal spacing.

His agreement of theory with measurements using a British product

called Rocksil was poor and would appear at first to be discouraging.

He does get better agreement using more complicated models with

random scatterer diameter and orientation and this is an encouraging

sign since Rocksil has a large variaion in fiber diameter and

orientation. Measurements in our laboratory using Owens Corning

Type 705 Fiberglas are more encouraging. This material has relatively

constant diameter fibers with fairly uniform spacing and generally

parallel fiber arrangement. This indicates that this material is

more representative of Attenborough's parallel freely suspended

identical fibers, constant spacing prediction, his measurements of

Rocksil and our measurements of Owens Corning 705 are shown in Figure

14. The reasonably good agreement of our measurements with theory

lends considerably support to Attenborough's theoretical work.

Additional experimental verification of his theory as applied to

oblique incidence behavior of absorbing materials has been made by

Sides and Mulholland (Reference 26).
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Our Measurements

1.0 (Owens Corning 705)
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.7 Attenborough's Theory
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.3 Attenborough's
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Figure 14 A Comparison of Measurements with Attenborough's Theory

Attenborough's postulate that the properties of absorbing

materials can be explained in terms of scattering theory immediately

brings to mind the possibility that the reflection of the wave at the

surface of the material will be non-specular. This would result in

the dire consequences mentioned earlier in this chapter; that is, that

our definitions of normal absorption coefficient, etc., would be

meaningless. Fortunately, this is not the case since one of the

important assumptions in Attenborough's work is that only specular

reflections occur. This is based on the argument that the dimensions
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of the individual scatterers are small compared to a wavelength and

this is clearly a valid assumption for common fibrous materials in the

audio frequency range. This brings up the point of a criticism

of Attenborough's work which is completely invalid. It has been

argued that scattering can only be a significant problem when the

dimensions of the scatterer are of the order of a wavelength or

larger; therefore, since it is inherent in Attenborough's analysis

that the scatterers be small compared to a wavelength that scattering

cannot be an important mechanism. This erroneous conclusion can

be reached by considering the scattered field from single rigid

infinite cylinders with radii small and large compared to a wavelength.

It is shown on page 99 of Reference 5 that.the scattered power per

unit length for the two cases is given approximately as follows:

32 3
W = ~- a(ka) I (4-8)S 4 o

for ka < < 1 (radius small compared to a wavelength)

W = 4a I 0 (4-9)
S o

for ka > > 1 (radius large compared to a wavelength)

where WS = scattered power per unit length of cylinder,

a = cylinder radius,

Io = intensity of plane sound wave incident on cylinder,

k = ordinary wave number, and

w 2r

where X = wavelength.

It is obvious that the scattered power is extremely small when

ka < <1 since it is a function of (ka)3 . Attenborough's work, however,
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uses multiple scattering theory (based in large on earlier work by

Twersky in Reference 27) in which the interaction of a large array of

many scatterers is considered. We can visualize the scattering from

an array of cylinders with the aid of Figure 15. One approach to this

problem has been to assume that each scatterer sees only the incoming

plane wave. The scattered field solution for a single cylinder is

used for each element of the array and the total scattered field is a

summation of the fields from all of the elements of the array. This

is, however, still single scattering theory and does not adequately

describe the problem since each scatterer also sees the scattered

waves from all the other scatterers. Multiple scattering theory as

used by Twersky and Attenborough take this factor into account and

is formulated as follows: each scatterer sees the incoming plane

wave minus the wave removed by previous scatterers plus the waves

reflected back by forward scatterers. This formulation results in a

complicated integral equation. Attenborough simplifies this equation

by assuming specular reflection from the surface and that the far-

field approximation for the scattered field from each fiber is

approximately correct. This reduces the integral equation to the

Helmholtz equation with the complex bulk modulus as one of the

parameters. In this case,the complex bulk modulus is a function only

of the microstructure of the material. The actual energy dissipation

mechanism in the theoretical model results from thermal losses from

the fluid motion around all of the scatterers.
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Figure 15 Array of Cylindrical Scatterers

The significance of Attenborough's work is that a plausible

model based on a physical description of the microstructure of the

material is used with a multiple scattering theory analysis to predict

absorption characteristics which are in reasonable agreement with

laboratory measurements. A remarkable feature of the outcome of this

work is that scattering is the significant mechanism in explaining

the absorptive properties of the material and at the same time a

specular surface reflection can be assumed.

It is apparent at this point that any future theoretical work

on the properties of fibrous absorbing materials should be based to a

large extent on the theoretical foundation proposed by Attenborough

even though some of his simplifying assumptions may have to be

discarded. As we have stated earlier, the fiber metal materials can

be treated in a simple manner as demonstrated by Kilmer in Reference 1.
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For the case of open cell plastic foam materials it is not clear

that any satisfactory scattering theory model could be devised and

Pyett's approach may be the practical one. A number of foam materials

are now commercially available and further research in this area is

warranted.

The various methods for measuring the sound absorption

characteristics of materials and the many problems associated with

these measurements is not discussed here since the subject is treated

in detail by Kilmer and Weyerman in References 1 and 2 with extensive

references to previous work. It is sufficient here to recognize

that there are many discrepancies between the various methods used

to measure the impedance and absorption coefficient of sound absorbing

materials and also that there is no completely satisfactory theory to

describe their behavior. In the portions of this study concerned

with lined ducts (that is, ducts with finite wall impedance),we will

assume that our liners are made of approximately locally reacting

materials and that we can measure their surface impedance with

sufficient accuracy for our purpose. We have deliberately chosen

liner materials where discrepancies between measurement methods is

minimum and where local reaction is a reasonable approximation.



CHAPTER V

THE EVALUATION OF ABSORPTIVE LINERS AT LOW ACOUSTIC AMPLITUDES

The first experimental phase of this thesis project was to

evaluate the performance of several absorptive duct liners constructed

of a porous glass fiber material. The liners were commercially

available pipe insulating material manufactured by Owens Corning

Corporation and were identical except for length. They were hollow

cylinders formed from the glass fiber material with an outside

diameter of 12 inches and a one-inch wall thickness. The outside was

wrapped with a thin vinyl protective coating and they could readily

be inserted into a 12-inch inside diameter pipe to act as absorptive

liners.

Most previous studies to evaluate liner performance have

attempted to assign a single number to the characteristics of a liner

in terms of so many decibels of attenuation per length of liner

treatment. This number would, of course, be a function of frequency.

Typical examples of this approach are given in References 28 and 29.

The method assumes that only a single progressive plane wave exists

in the duct. In most practical situations; however, both standing

waves and higher order modes can be present. In fact, Morse has

shown theoretically in Chapter VII of Reference 6 that a plane

wave cannot exist in a duct with finite wall impedance. It is also

obvious that, for a locally reacting wall, a plane wave would

experience no attenuation since there would be no normal component

of the particle velocity. Studies conducted in the aircraft industry
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have side-stepped the problem by using the test setup shown in

Figure 16 (see, for example, Reference 30). Reverberant chamber I

is excited with a broad band noise source and sound pressure level

measurements are made with lined and hard wall test sections. By

filtering the microphone signals into various frequency bands, the

insertion loss of the lined test section can be determined. The use

of noise as a sound source and the reverberant terminations together

obscure the effects of standing waves and of higher order modes.

The method does, however, provide a means for crudely evaluating

various liners on a comparative basis and was a sound solution to an

urgent problem facing the aircraft industry, that is, reducing the

radiated noise from jet aircraft. "'

The physical situation existing in general in a duct with a

finite length liner is shown schematically in Figure 17.

An incident sound wave (Wave A) is produced by the sound source

and propagates towards the liner. This is the wave which we want

to attenuate by adding the liner. Since Wave A sees an impedance.

discontinuity as it enters the liner there will be a reflected wave

at this point (Wave B). Wave C is the forward travelling wave

within the liner and will be exponentially damped. This wave sees

an impedance discontinuity at the end of the liner and there will be

an additional reflection resulting in Wave D which will also be

exponentially damped. Wave E represents the forward traveling wave

leaving the liner and Wave F represents a reflection due to any

impedance discontinuity at the downstream end of the duct. In all three

regions (upstream, in the liner section, and downstream), the forward

travelling and reflected waves will form interference patterns as
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Figure 16 Test Setup Used Previously for Liner
Evaluation
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Figure 17 Various Waves in a Lined Duct
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standing waves. In view of the situation shown in Figure 17, it is

difficult to imagine that the test setup shown in Figure 16 could

yield data that would reveal the true attenuation of a liner. In

fact, it is difficult to even define the attenuation of a liner of

finite length. In most practical duct noise control problems, we have

a duct outlet which is radiating undesirable noise. We can measure

the total sound power output from the outlet, install an absorbing

liner in the duct, and measure the sound power output after this

treatment. The insertion loss of the liner can then be defined as

the difference in radiated sound power level in decibels between

the untreated and treated case. It is obvious from the situation

shown in Figure 17 that, for a given'liner length, the insertion

loss can be influenced by the length of the unlined upstream and

downstream lengths of the duct and from the nature of the downstream

termination. The insertion loss can therefore only be accurately

determined for a specified test configuration and as stated earlier

the reverberant chamber method shown in Figure 16 provides a method

for comparing various liner configurations.

Liner attenuation can only be rigorously defined in terms of

an infinite lined duct in the presence of a single progressive wave.

The sound field inside of such a duct, in terms of a particular m, n

mode is given by Equation (2-18) as

j (wt- z + m@)
p = P J (k r) e , (5-1)

mn mn m mn

where k and k can be complex due to the presence of the liner. For
mn z

a fixed 6 and r, the z dependence of the sound field is
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j (Wt- k z)
p(z) = A e (5-2)

where A is a complex amplitude constant. This quantity is complex

since the argument of Jm(kmnr) is complex.

Substituting Equation (2-32) into Equation (5-2),

j(wt-k z) -a z
p(z) = X e e (5-3)

and a as stated in Chapter II represents the liner attenuation forz

the m, n mode. There is a particular value of a for each mode for
z

a given liner and a is also a function of frequency. The liner

attenuation is the fundamental physical quantity which we wish to

determine to describe the performance of a given liner. This quantity

can in no way be deduced from the method shown in Figure 16.

Our experimental approach has been to devise the simplest

possible test setup in order to gain insight into the nature of waves

propagating in a duct with a finite length liner. The experimental

procedure is shown in Figure 18.

It is consisted of a 12-inch inside diameter duct with one

inch thick cement walls. The duct was a commercially available pipe

known as "transite." Various sound sources were located at one end

of the duct and the other end was anechoically terminated.

Preliminary measurements of plane waves using the standing

wave method indicated that the termination was better than 90 percent

absorptive down to 250 Hz. In subsequent measurements with plane

waves and higher order modes, the uniformity of amplitudes and mode

shapes at several locations downstream of the liner were indications

of good anechoic termination. The termination consisted of a glass
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cloth reinforced polyester plastic conical shell filled with glass

fiber absorbing material. The center portion of the termination was

a hollow 12-inch diameter cylindrical section. This termination

essentially eliminates reflections from the far end of the duct. In

other words, Wave F in Figure 17 is not present. A view of the far

end of the duct and termination are shown in Figure 19. Probe

microphones were available to explore the internal sound field and

could be placed at a number of measurement stations down the length of

the duct. Several of the probe microphones were mechanized so that

automatic plots of sound pressure level versus radial position could

be obtained. Two planar arrays of loudspeakers were available as

sound sources. The first consistedof eight one-inch diameter

speakers located at 450 intervals near the duct wall. Separate

phase and amplitude control was available for each speaker and plane

waves and higher order modes could be generated using the method

described by Seiner in Reference 31. The second array consisted of

four loudspeakers located at 900 intervals near the wall of the duct

all driven in phase with an additional loudspeaker at the axis of

the duct driven out-of-phase by 1800. Using these arrays coupled to

the duct in the absence of a liner, we could generate a number of

modes individually with a high degree of modal "purity"; that is,

with a very low content of other modes. The eight driven array was

used to generate the "spinning" higher order modes (where m=l, ... o)

and the five speaker array was used for the "non-spinning" higher order

modes (where m=0).
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The first phase of these experiments was to generate higher

order modes without liners and measure the radial dependence of the

sound pressure at fixed positions of p and z to determine the degree

of modal purity that could be obtained. The first requirement for

generating higher order modes is that the frequency of the sound

source be at or above the cutoff frequency of the desired mode. The

second is that the radial amplitude dependence and circumferential

phase dependence of the source be matched as close as possible to

that of the mode itself. For example, for the m=O, n=l mode the

sound pressure has the form from Equation (5-1) of

j (t-k z)

P01 = P01 J (k 0 1 r) e . (5-4)

The sound pressure has a Bessel function radial dependence and no

circumferential phase dependence. The cutoff frequency and wave

numbers are found from the boundary condition of Equation (2-17)

where

-- (kolr) = J '(k 0  r) i  = 0 (5-5)

In order to determine kO,1, we need to know the argument of J ' for the

first instance of increasing argument from zero in which the value of

J ' is zero. The relationship between J and its first derivative
o o

is (for example, see Reference 5) as follows:

J'(x) = [J (X - J (X)] . (5-6)
It2 m-is also shown in Reference 5 thatm+

It is also shown in Reference 5 that
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Jm() = (-1)m Jm() , (5-7)

and from Equations (5-6) and (5-7),

Jo'(x) = - J(X) , (5-8)

and the boundary condition becomes

J1 (k01 r) = 0 . (5-9)
lr=ro

The first value for the argument at which J (x) is zero is x = 3.8

and for the m=O, n=l mode

3.8k -- (5-10)
01 r

o

and if r0 is given in feet, kO, 1 is 7.6 for our 12-inch diameter duct.

From Equation (5-10) the cutoff frequency for co = 1130 ft/sec is 1370

Hz. Cutoff frequencies for a 12-inch diameter duct for this and

several other modes, as noted earlier, are indicated in Figure 5.

The shape of this mode is illustrated in Figure 3. It has a maximum

at r=O, a single node between r=0 and r=ro and another peak at r=r .

There is a reversal in sign, indicating a 1800 phase shift at the node

point. It is clear that it would be extremely difficult to construct

a sound source which exactly matches this mode shape, but it was

found that the m=O, n=l mode could be excited to a high degree of

purity using the five speaker array with the center speaker driven

1800 out of phase with the four outer speakers. A typical mode shape

is shown in Figure 20. The array was operated at the mode cutoff

frequency. Figure 20 is a plot of relative sound pressure level in

decibels versus normalized radial distance r/r for a fixed C and z.
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The equivalent theoretically predicted mode shape can be found from

the expression

L = 20 log J (3.8 r (5-11)

where L is the relative radial sound pressure level in decibels.

Figure 21 is a theoretical mode shape calculated from Equation (5-11).

The shape of the two curves agree closely, but the location of the

measured node line (the null point in the curve of Figure 20) differs

slightly from theory. This is attributed to dimensional irregularities

in the duct and slight inaccuracies in the determination of the

radial position of the probe.

The depth of the node point iA Figure 20 is an indication of

the degree of modal purity or lack of contamination from other modes.

The node depth in this case is 50 dB below the maximum level at the

center of the duct and is also approximately the dynamic range of

the instrumentation. Figure 22 shows a mode shape with only the

four outer speakers of the array in operation and the node depth in

this case is only 30 dB. This illustrates that the out-of-phase

center speaker greatly enhances the modal purity.

The reason for the enhancement of modal purity in this case

can be seen from the mode shape shown in Figure 3 for m=0O, n=l.

The phase of the sound pressure undergoes a 1800 phase shift in

crossing the mode line and the presence of the center out-of-phase

speaker provides a much better match to the actual mode shape than

the outer speakers alone. This is analogous to the vibration of

mechanical structures where the forcing function matches the mode
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shape. In this case also, the mode is strongly excited with an

absence of other modes.

When the array is excited at the-cutoff frequency of the

second non-spinning higher order mode (m=0, n=2), the mode shape of

Figure 23 is obtained. The cutoff frequency of this mode is 2520 Hz.

The corresponding theoretical mode shape is shown in Figure 24.

Our convention for specifying n discussed in Chapter II can be

appreciated from the mode shapes presented in Figures 20-24 since

n can be determined by counting the number of nodes. The nodal

purity for n=2 is not as good as for n=l and this is to be expected

since the source is much less closely matched to mode shape for this

case. For the case here of a circumferentially symmetric source,

the primary modal contamination is a residual plane wave. Any

non-symmetry circumferentially will allow contamination from the

spinning higher order modes.

With the eight speaker array, the source is deliberately

excited in a non-symmetrical manner in order to generate the spinning

modes. The speakers are driven with identical amplitudes but are

phased in a manner to match the circumferential phase dependence

of the desired spinning mode. For example, the first spinning mode

(where m=l, n=l) has the form from Equation (5-1) of

j(wt-k + )
P11 = P11 Jl(k1 1 r) e zz . (5-12)

For a 27 variation in P, the phase of the sound pressure field for a

fixed r and z must also go through a 2f variation. For an m=2 mode,

this would be a 4f variation. The array is most closely matched to

the m=l, n=l mode when the eight speakers are sequentially phased in
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450 increments from 0O to 1800. Using this phasing scheme and exciting

the source at the cutoff frequency of the m=l, n=l mode (660 Hz),

the mode shape of Figure 25 was obtained. The corresponding theoretical

mode shape is shown in Figure 26. In this case, the agreement

between theory and measurements is within the accuracy of the available

instrumentation and is much better than for the case of the non-

spinning mode shapes shown in Figures 20-24.

The close agreement between theory and measurements for the m=l,

n=l mode can be attributed to the nature of the sound source used to

generate this mode. Each diagonally opposite pair of sound sources

in the eight element array is operating in anti-phase and are spaced

less than a wavelength apart."' Each of the pairs can be considered

as a dipole which is an inefficient radiator of plane waves or one

could also consider that each member of each pair cancels the other

member's sound field. As a result of the circumferential phase

dependence of the sound source, little or no plane wave component

can be generated. Also, at the cutoff frequency of the m=l, n=l

mode, none of the other higher order modes are allowed as can be

seen From Figure 5. These factors provide a situation for generating

a m=l, n=l mode with a high degree of purity and therefore the

resulting close agreement between theory and measurement. The dipole

or cancellation effect can be readily observed by first operating the

array below the cutoff frequency and then sweeping the frequency

through cutoff. A 40 to 50 dB rise in sound pressure level in the

duct can be observed as the frequency approaches and passes through

cutoff. A good illustration of this is shown in Figure 69 of Chapter

VI. At or above cutoff, the various elements of the array are no
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longer cancelling one another but are circumferentially phase and

amplitude matched to the m=l and n=l mode and a strong spinning wave

is propagated. A multi-element array can usually be phased in such

a manner as to "cancel" a particular mode. What is really happening,

in effect, is that the array is phased for another mode at some higher

cutoff frequency and, if the frequency is adjusted sufficiently

upward, the cancellation effect will no longer be observed.

The next phase of the study was to investigate the sound fieldwith

use of absorptive liners installed in the duct. The setup shown in Figure

27 was used for the measurements with measurement stations (probe

microphone locations) and liner location indicated. The signal

processing system used to obtain the-data and also the previous mode

shapes presented is shown in Figure 28. The first series of tests

were made using a two-foot length liner. Mode shapes were obtained

at the four measurement stations indicated. Two upstream stations

were used since any deviations between the mode shapes at these

two positions would indicate the presence of standing waves in this

region.

The plane wave case was investigated first using the eight

element array with all speakers driven in phase. For a circumferentially

symmetrical sound source, one could expect to generate reasonable

plane waves up to the cutoff frequency of the first non-spinning

higher order mode; that is, where m=O and n=l corresponding to a

cutoff frequency of 1370 Hz. Any lack of circumferential symmetry

would result in deviations from plane wave behavior above 660 Hz, the

cutoff frequency of the first spinning mode (m=l, n=l). In this

region, the results were uninteresting horizontal straight lines with
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moderate attenuation increasing with frequency and reaching a maximum

of about 6 dB. The levels at stations 1 and 2 were almost identical

indicating no standing waves in that region. The results shown in

Figure 29 were obtained at 670 Hz (slightly above m=l, n=l cutoff).

The results are very close to plane wave behavior indicating that the

m=l, n=l mode is considerably suppressed due to the source symmetry.

At 900 Hz, the attenuation is still rising and has a value of 12 dB.

Mode shapes at this frequency are shown in Figure 30. At this point,

the mode shape inside the liner (station 3) is deviating slightly

from plane wave behavior. This is to be expected since a strictly

plane wave cannot exist when any appreciable absorption is taking

place. A similar pattern exists up-to 1100 Hz with the absorption

still increasing.

Mode shapes at 1200 Hz are shown in Figure 31. The deviations

between stations 1 and 2 indicate that there is now an appreciable

standing wave in the upstream region but approximate liner attenuation

can still be estimated. The mode shapes of Figure 32 were taken at

1300 Hz which is slightly below the 1370 Hz cutoff frequency of the

non-spinning m=0, n=l mode. The results at station 1 indicate that

there is an m=0, n=l modal component near the source (station 1 is

only 4 1/2 inches from the source) but this component is rapidly

damped and the plane wave indicated at station 2 is the only one

entering the liner. It was found that it was impossible to generate

plane waves above the m=0, n=l mode cutoff frequency since this mode

was strongly excited by the array. The plane wave case is not of

great importance at high frequencies since higher order modes are

usually predominant in most practical situations. A typical set of
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mode shapes above m=O, n=l cutoff are shown in Figure 33. There is

appreciable non-uniformity in upstream mode shape in terms of amplitude

and location of the node as indicated by measurements at stations 1

and 2. Essentially plane wave conditions exist downstream. In

general, at a given frequency, liner attenuation for higher order

modes is much greater than for plane waves and for the case shown

in Figure 33 the m=O, n=l mode has been attenuated by the liner to

such a degree that only the plane waves component can be detected

downstream. These data do suggest a method for generating plane

waves at high frequencies. A supplementary liner could be placed in

the upstream region to remove the higher order modes and the high

frequency plane wave attenuation of-the liner under study could then

be measured. This is precisely the one practical situation where it

would be desirable to know the high frequency plane wave attenuation

of a liner. Suppose that in a given noise control problem a liner

has been installed which sufficiently attenuates the higher order

modes but that an objectionable plane wave exists in the duct. It

would then be desirable to know the optimum additional liner

configuration to install for maximum attenuation of the remaining

plane wave.

It is obvious that the m=O, n=l mode attenuation cannot be

determined from Figure 33 since its downstream amplitude is obscured

by the plane wave. It was found in later tests with shorter liners

that this problem could in some cases be overcome since, in this

case, the attenuation of the desired mode is considerably less. In

addition, the irregularities in the upstream sound field are less

with shorter liners. It was also found that the five element

I
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array previously, described produced better results for the case of

non-spinning higher order modes.

The next step in the program was to examine the behavior of

the two-foot liner for the first spinning mode (where m=l, n=l). The

eight element array was used and phased as previously described for

this mode. The identical test setup shown in Figures 27 and 28 was

used. Mode shapes at the cutoff frequency for this mode (660 Hz) are

shown in Figure 34. In this case, the mode shapes are all quite

similar, the upstream field is reasonably uniform and this mode

shape is preserved in the downstream section. At this frequency, the

liner attenuation for this mode is low enough such that it does not

become obscured by any residual plani wave present as was the case

in Figure 33. The attenuation of the liner is, however, considerably

higher than for the plane wave case at the same frequency as can be

seen by comparing Figures 34 and 29 (17 dB versus 6 dB). The

irregularities in the curves at small values r/ro are unimportant

in determining the liner attenuation since, based on cross-sectional

area considerations, over 90 percent of the energy is propagated in

the region between r/r = 0.3 and r/ro = 1.0. A reasonable estimate

can be made of the liner attenuation by first obtaining an average of

curves 1 and 2 and then taking the difference between this average

and value of curve 4. The resulting number will be approximately the

same for any value of r/r above 0.30 for the data shown in Figure 34.

Similar results were obtained up to 1300 Hz with the liner attenuation

increasing with increasing frequency. Deviations from ideal mode

shapes occurred at 1400 Hz and above and this would be expected

since this frequency is above the 1370 cutoff frequency of the m=O, n=l1
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mode and we are in a region where two higher order modes are allowed.

The mode shapes at 1400 Hz are shown in Figure 35. The station 1

data are omitted since they agree within better than + 1 dB at

all positions. The downstream curve indicates almost plane wave

behavior giving rise to a situation like that of Figure 33. There

is no indication at this point from Figure 35 that there is

contamination from the m=O, n=l mode. It should also be noted from

the upstream mode shape that the modal purity is not particularly

high. At 1500 Hz, contamination from the m=0, n=l mode can be seen

in the downstream mode shape as shown in Figure 36. Although precise

attenuation figures cannot be obtained from Figures 35 and 36, an

estimate of the minimum attenuation-to be expected for the m=l,

n=l mode can be determined. Similar data are obtained up to 1800 Hz.

The results shown in Figure 37 were obtained at 1930 Hz which is the

cutoff frequency of the m=l, n=2 mode. Station 1 measurements are

omitted for the reasons stated earlier. The upstream and downstream

mode shapes show a similar pattern with the necessary 2 nodes for

n=2 and the attenuation is high (approximately 30 dB). Station 3 has

a mode shape which does not resemble any mode predicted by hard-walled

theory but this is not surprising since this station is in the center

of the liner and appreciable absorption is taking place. A solution

to the boundary value problem with a finite wall impedance is necessary

to predict the mode shape in the liner region. No attempt was made to

extend these measurements beyond 1930 Hz since upstream mode shapes

were not satisfactory above this frequency.

The chatacteristics of the shorter one-foot liner were

investigated next. The results for the plane wave case at frequencies
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below m=O, n=l mode cutoff frequency (1370 Hz) were similar to those

of the two-foot liner except for a correspondingly smaller attenuation.

Mode shapes at 1370 were as shown in Figure 38. The upstream

conditions are more uniform than the corresponding measurements for

the two-foot liner shown in Figure 33 but again the actual attenuation

of the liner is masked by an essentially plane wave downstream mode

shape and only the minimum expected liner attenuation can be obtained

for m=0, n=l mode. At 1400 Hz, the mode shape is preserved downstream

as shown in Figure 39 and the actual attenuation can be estimated.

In this case, only the station 2 and 4 mode shapes are presented.

The next step was to study the one-foot liner for the spinning

mode case. The results were similar to those described above for

the two-foot liner except that the upstream mode shapes were more

uniform and contamination from the m=O, n=l mode did not occur

until 1600 Hz. Mode shapes were measured above this frequency and

the interesting results shown in Figure 40 were obtained at 1700 Hz.

The m=l, n=l mode is excited in the upstream region (admittedly

with poor modal purity) and a mode shape appears in the center of the

liner which is very similar to the m=0, n=l mode for the hard-walled

case except that it is a mirror image in terms of r/ro and also the

slope is not zero at r/ro = 0. Plane wave conditions exist in the

downstream region. The frequency and upstream conditions were such

that a mode which would be predicted from the solution to the

boundary conditions for a finite wall impedance was strongly excited.

There is a similar but weaker indication of the same condition in

Figure 37 although the position of the node is different. The
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absence of this mode in the downstream region in Figure 40 is

understandable since this mode is not an allowed solution for the

hard-walled case.

The results of these liner tests are summarized by the

attenuation curves shown in Figures 41-44. These curves were obtained

by taking the difference between the average upstream sound pressure

level and the downstream sound pressure level at r/ro = 1 in the

frequency range where the modes shapes in both regions were similar

enough where such a method is reasonable. Figures 41 and 42

represent attenuation curves for the one-foot liner for the plane

wave and spinning wave cases, respectively, and Figures 43 and 44 are

similar data for the two-foot liner. For both liners, the attenuation

is considerably higher for the spinning mode than for the plane wave.

For the plane wave case, a doubling of length of treatment between

the one-foot and two-foot liners resulted in an approximate doubling

of attenuation as can be seen from a comparison of Figures 41 and 43.

A comparison of Figures 42 and 44 indicate that the attenuation is

less than doubled for spinning modes. This indicates that attenuation

for spinning modes cannot be specified in terms of so many decibels

per unit distance, at least for the case of finite liner length.

The increased attenuation for spinning modes over plane waves for a

given liner at the same frequency is not surprising since the group

velocity for any higher mode is always less than c0 and the "dwell

time" in the liner is always longer than for a plane wave. Attenuation

curves for the first non-spinning higher order mode were not obtained

due to the downstream plane wave contamination previously mentioned

and the limited frequency range over which the mode could be generated.
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The data obtained for this mode indicate that, in all cases, the

attenuation is in excess of 30 dB.



CHAPTER VI

THE BEHAVIOR OF PLANE WAVES AND HIGHER ORDER DUCT MODES
AT HIGH ACOUSTIC INTENSITIES

In this experimental phase of the project, we examined the

behavior of finite amplitude waves for both a hard-walled and lined

duct. Measurements were first made with plane waves and then

extended to the case of higher order modes, an area which has not

been previously explored experimentally. The basic objective of this

series of experiments was to first verify that we could produce the

wave steepening effect described in Chapter III and observed by

others (see, for example, Reference 14) with plane waves, then to

determine the behavior of higher order modes at high intensities, and

finally to study the behavior of absorptive liners at high intensities

for both the plane wave and higher order mode cases.

The transite duct previously described in Chapter V was used

for all of the high intensity experiments with some modifications

which will be described below.

Ling Model EPT 94 air modulator loudspeakers (electro-pneumatic

transducers) were used as sound sources for all of the high intensity

tests. This source consists of an electromagnetic valve which

modulates an air stream in accordance with an electrical signal

supplied to it. The device is capable of generating several thousand

acoustic watts for a 50-watt electrical modulating signal when a

sufficient amount of air is supplied to it from a compressed air

source. The electro-pneumatic to acoustic conversion efficiency is

in the order of ten percent so that for a 2000-watt acoustic output,
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pneumatic power of about 20,000 watts must be available to operate

the device. It was found that the compressed air supply available

in the College of Engineering was capable of supplying one loudspeaker

for continuous operation and could operate four sources for

approximately ten minutes on a "blow-down" basis; that is, until a

large storage tank was exhausted. The design and performance of the

Ling EPT 94 loudspeaker are described in detail by Fiala and

Hilliard in Reference 32. Maximum power output can be obtained up to

500-700 Hz and low frequency limiations are based on the method of

coupling the drivers to the medium. For example, an exponential

horn with a cutoff frequency of 100 Hz would provide constant

acoustical output down to that frequency.

The initial plane wave studied were made using a single source

coupled to the duct with an exponential horn. A diagram of the test

setup is shown in Figure 45 with the location of measurement stations

indicated. The anechoic termination shown previously in Figure 19

was used for these tests. The Ling source, exponential horn and

upstream section of the duct are shown in Figure 46. Probe microphones

can be seen at several measurement stations. The experiments were

conducted in the anechoic chamber in order to take advantage of the

chamber's high acoustic isolation which was necessary for safety and

annoyance requirements. No one was permitted in the chamber when the

sound source was in operation.

The hard-walled case was investigated first. Figures 47

through 51 show the sound pressure wave forms at various stations for

an initial sound pressure level of 161 dB re 2 x 10- 4 dynes/cm 2 at 450

Hz. The high frequency random noise present is due to the-
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aerodynamically-originated self noise of the acoustic source. The

wavefront steepening and sawtooth shape, due to finite amplitude

effects, are well-illustrated in these photographs. It was discovered

after these data were obtained that a 1800 phase shift existed in the

microphone and preamplifier system and that the actual waveforms, for

time increasing to the right on the horizontal axis, are the mirror

image of those shown in Figures 47 through 51. This situation was

corrected in the later series of measurements involving higher

order modes so that the waveforms could be viewed in the more

conventioned manner.

From Equation (2-30), the shock formation distance is 571 cm

or 15.4 feet so that the measurements do not include the shock

region even at station 5 (Figure 51) which is 9.5 feet from the source.

The duct was later extended in length to include the x=x case.

Harmonic spectra for each station are shown in Figures 52

through 56, and the harmonic growth with distance is as would be

expected from the Bessel-Fubini solution.

From Chapter III, the second and third harmonics are given

approximately by Equations (3-27) and (3-28) as

P2 (y+l) w Pox

o 2= - 3 (3-27)
o 2 P0 p c

o o

and

P3 3 [(^+l) WP x- = . (3-28)
S C3

so that the rate of growth of the second harmonic is proportional

to the distance of propagation x and the growth of the third harmonic
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is proportional to x2. It can be shown in general that the rate of

n-i
growth of the nth harmonic, Pn, is proportional to x . As stated

earlier, a computer program has been utilized to determine the

theoretical values of the second and third harmonic from the Bessel-

Fubini solution. It uses the more exact form of the solution based on

the first three terms of the power series expansion of Equations

(3-25) and (3-26):

P 2 4
S1- 5 + (6.1)

P 2 24 96
0

and

P3  302 7o 0. 3. . 2 . (6-2)
P 8 16 15.
0

The output of the program is in terms of

P
D = 20 logl 0  2 (6-3)

o

and

P

D = 20 log , (6-4)
0

and D2 and D3 therefore represent how many decibels the second and

third harmonics are below the fundamental. These quantities can be

easily read from the harmonic spectra reported later in this chapter.

The computer program can be run over any desired range of frequency,

amplitude and propagation distance. A message "x exceeds shock

formation distance" appears in the output when the range of validity

of the Bessel Fubini solution is exceeded. In order to properly

compare the measurements with theory, the distortion which occurs within
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the exponential horn must be taken into account. The sound pressure

level at the throat of the horn is extremely high and exponentially

decreases to the constant value at the mouth and throughout the duct.

As a result of the higher levels within the horn, the wave distorts

more rapidly than in the plane wave in the duct as if it had

traveled a much longer distance than the actual horn length. From

a distortion measurement near the mouth of the horn (such as at

station 1), a correction distance for propagation within the horn

can be determined from Equations (3-27) or (3-28). This correction

is then added to the measurement distances. A comparison between

the Bessel-Fubini solution and the measurements of Figures 52-56

for the second and third harmonics is shown in Figure 57. The

agreement between theory and measurements is within the experimental

error inherent in acoustic measurements.

The next step was to install a one-inch thick fiberglass

liner (Owens Corning Type 704) at the anechoically-terminated end of

the duct. Stations 1 through 3 were in the hard-walled section of

the duct, station 4 was at the beginning of the liner and station 5

was in the middle of the liner section. The frequency for these tests

was 350 Hz, and the initial fundamental sound pressure level was 160

dB. Figures 58 through 62 show the waveforms observed during these

tests. The waveform steepens as would be expected from station 1 to

station 3; however, at station 4 (which is at the beginning of the

liner), the waveform suddenly tends towards a triangular shape with

a "ringing" effect present indicating the sudden appearance of a

very high order harmonic. At station 5, the "ringing" has disappeared

and the familiar sawtooth shape has re-appeared. The ringing effect
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inspired a more detailed look at the high frequency end of the

waveform spectra which are shown in Figures 63 through 66 for

stations 1 through 4. The initial spectrum is not quite as uniform

as for the unlined case, but the harmonic growth from stations 1

through 3 behaves nicely. The spectrum at station 4 is drastically

altered as would be expected from the waveform observation. A

strong band of frequencies appears around 7 to 8 KHz which corresponds

to the "ringing" frequency. A comparison between the spectra of

stations 3 and 4 reveal that some of the odd harmonics are suppressed.

This would account for the tendency of the waveform to revert from a

sawtooth to a triangular waveform (even functions lack odd harmonics).

The ringing effect is probably due to a nonlinear interaction

between the intense sound wave and the liner at the impedance

discontinuity when the wave just enters the liner. The effect is

more of a curiosity than anything else since it is completely absent

downstream of the liner as can be seen from Figure 62.

In the final phase of the study, a four-element array of Ling

EDT 94 high intensity sound sources were connected to the duct

through short conical matching sections, and this installation is

shown in Figures 67 and 68. The same previously-described transite

duct was used for these tests, and an additional 6-foot section was

installed between the downstream end of the duct and the termination.

This 6-foot extension was added so that the shock formation region

could be observed.

Separate phase and amplitude control of the four sound

sources was available, and the sources could be operated in phase to

produce a plane wave and in a 00, 900, 1800, 2700 sequence to produce
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the m=l, n=l spinning mode. The high intensity higher order mode

study was restricted almost entirely to this mode since maximum acoustic

intensity could be obtained at and near the cut-off frequency of this

mode. The frequency and amplitude limitations of the source for

plane wave and m=l, n=l phasing can be seen from the sweep frequency

response curves shown in Figure 69. These curves were made without

a liner with the microphone located halfway down the duct and 2

inches inside the duct wall. The sound sources were driven at about

4 dB below their maximum output power. The below cut-off cancellation

effect can be seen in the spinning modecurve, and it is also evident

that maximum intensity is obtained at 660 Hz, the cut-off frequency

of this mode. It was also found that, with careful phasing, up to

160 dB could be obtained for the m=2, n=l mode at its cut-off

frequency of 1080 Hz.

The hard-walled plane wave case was investigated first, and

the results were similar to those with a single driven and exponential

horn described earlier, with the exception that initial wave forms

near the source were more distorted and that steeper wavefronts were

observed at the downstream end of the duct. The higher distortion

results from less perfect acoustical matching of the sources to the

duct and to less than optimum air pressure supplied to the sources.

This lower pressure is due to pressure drop in the air filtering

system. The higher distortion did have a beneficial effect in that

we were able to observe that the sawtooth wave shape formed in almost

all cases regardless of the initial wave shape. A typical illustration
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of this is shown in Figure 70. The upper trace is the waveform one

foot from the source, and the lower is measured one foot from the

termination. The initial waveform varied considerably with frequency,

amplitude and minor adjustments in phasing; but, in most cases, the

sawtooth N-shaped wave appeared downstream. One exception to this was

when the array was driven at very high amplitudes and adjusted such

that the initial second harmonic distortion was comparable to that

of the fundamental. In this case, a double shock forms downstream

as shown in Figure 71.

The spectrum of this waveform is shown in Figure 72, and it

can be seen that the second harmonic is actually higher than the

fundamental. In this case, the frequency was 465 Hz, and the

initial R.M.S. sound pressure level was 163 dB.

The steeper wavefronts observed in these tests as opposed

to the single driver tests result from the extended length of the duct

which allowed us to observe the waveform beyond the shock formation

distance. A typical such measurement is shown in Figure 73 which

was taken at 443 Hz at 162 dB one foot from the termination. The

extremely steep slope is obvious in the photograph.

The next step was to investigate the behavior of higher order

modes at high intensities for the hard-walled case. The array was

phased for the m=l, n=l mode and initially operated at the mode

cut-off frequency of 660 Hz. The results were, at first, surprising

to us in that no progressive distortion or wave steepening effect

was observed. At 160 dB, the waveform at all measurement stations

appeared sinusoidal from oscilloscope observations, and a typical

spectrum is shown in Figure 74. There is some second and third
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harmonic content, but this is a result of distortion inherent in the

course. Spectra were obtained at 160 dB up to 805 Hz (22% above the

cut-off frequency) with similar results. The harmonic levels were

frequently even lower than shown in Figure 74. It was mentioned in

Chapter III that a modified form of the Bessel-Fubini solution given

by Equation (3-34) correctly predicts the behavior at cut-off;

that is, that no harmonics are generated due to finite amplitude

effects, and this is precisely what we have observed here. We also

argued in Chapter III that the dispersive nature of higher order

mode propagation would prevent the formation of a sawtooth or any

stable waveshape. Our experiments have demonstrated that this

is true and that, in addition, the dispersion prevents any progressive

distortion in the frequency region of our observations.

The Bessel-Fubini Solution which is a Fourier series

representation of the acoustic waveform can be written from Equation

(3-16) as

j(wt - klx) 2j(w - k2 x)
p(x, t) = P1 e + P2 e

3j(wt - k 3x)
+ P3 e + o.o (6-5)

and the Pn's are given by Equation (3-17). In the limit as x-x the

series represents a sawtooth wave. This can only be true if

kI = k2 = k3 = k = w/C, We have shown that this is not the case

for higher order modes since the wavenumbers of the harmonics have the

form

2
2 0 2

k 2 W k (6-6)z 2 rC
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and are frequency dependent. The dispersion therefore prevents the

formation of a sawtooth or any form of cumulative distortion. The

distortion process described with the aid of Figure 6 in Chapter III

cannot take place unless the wavenumber of each harmonic are proper

integer multiples of the fundamental or very nearly so. It would be

expected that at very high frequencies where the dispersion is small

that finite amplitudes could again be observed, but there is a region

where modal purity is difficult, if not impossible, to obtain and is

beyond the frequency limitations of any available phase coherent

high intensity sound sources.

A non-progressive type of distortion was observed for the m=l,

n=l mode at extremely high amplitudes, and this is illustrated by

the waveforms shown in Figures 75 and 76 with corresponding spectra

in Figures 77 and 78. The sound pressure levels are 170 and 175

dB, respectively. This distortion is attributed to inherent

distortion in the source and to the fact that at 175 dB, we were

modulating the air at an amplitude of +0.1 atmosphere where the

nonlinearity of the pressure-density relationship is quite pronounced.

An additional nonlinear effect was observed for the m=l, n=l

mode at 680 Hz which is about 3% above the cut-off frequency. The

waveform had an amplitude-modulated appearance with a spectrum shown

in Figure 79. The sound pressure level was 166 dB (the maximum

obtainable at that frequency) and a one-half order subharmonic can

be seen in the spectrum. Fractional harmonics of order 2-1/2 and

4-1/2 are also visible. Subharmonics and fractional harmonics have

previously been observed at high intensities in the ultrasonic

region in liquids (see, for example, References 33 and 34).
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Subharmonic generation is of no importance to the practical

applications of this study due to their low amplitudes and are

pointed out here for interest only. The phenomenon could possibly

be of interest at much higher amplitudes associated with instabilities

in rocket engines and other combustion processes. Subharmonics of

blade passage frequency have also been observed in gas turbine engines

with supersonic rotor blade tips. This phenomenon has been labeled

by the aircraft engine industry as "multiple pure tone" or "buzzsaw"

and may bear some relationship to our subharmonic observations.

Fractional harmonics have also been frequently observed in large

sonar systems (see, for example, Figure 1 of Reference 16), but this

has been attributed to nonlinear bubble oscillations due to

cavitation. It was shown by Shalis in Reference 35 that the sudden

appearance of fractional harmonics and rapid growth of harmonic

distortion was a sensitive indication of the presence of ultrasonic

cavitation. These and other observations have brought up the question

as to whether or not the results reported by McCluney in Reference 34

were a result of cavitation (his studies were in a liquid medium).

The fact that we have produced subharmonics in an acoustic waveguide

in a gaseous medium would tend to support the premise that McCluney's

subharmonics were not cavitation-induced and that we were both

observing the same nonlinear phenomenon.

In the concluding phase of this study, we examined the behavior

of two 30-inch liners made from glass fiber and woven sintered metal.

The glass fiber liner was made from one-inch thick Ownes Corning Type

705 "Fiberglas," the same type of liner studied in the linear 'region

and reported in Chapter V. The metal liner consisted of a 10-inch
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diameter cylindrical shell formed from "Feltmetal" manufactured by

the Brunswick Corporation. This material was an experimental type

denoted by the manufacturer as "7 mesh wire B wool, 35 Rayl." It was

supported in the duct by three outer rings forming a liner material

consisting of the thin layer of Feltmetal and a one-inch air gap in

front of the wall.

Overall sound pressure level measurements and spectra were

taken upstream and downstream of both liners for the plane wave case

and for the m=l, n=l mode. Over the limited frequency range (350-550

Hz) that plane waves could be generated at high intensities, the

attenuation of both liners was low (less than 6 dB) and did not

vary with intensity up to 162 dB indicating that the liner materials

were behaving in a linear manner. The waveform and corresponding

harmonic spectra are, however, considerably altered in passing

through the liner as was observed in the earlier plane wave tests

reported in this chapter. Typical upstream and downstream waveforms

are shown in Figures 80 and 81 for the fiberglass liner at 443 Hz.

The downstream waveform has lost its sawtooth shape, but a portion

of the steep wavefront remains.

Greatly enhanced attenuation was obtained for both liners

for the spinning mode case as was observed earlier in Chapter V.for

low amplitudes. Attenuation versus frequency for the fiberglass

and feltmetal liners at 160 dB upstream sound pressure level for the

m=l, n=1 mode are shown in Figures 82 and 83. The performance of

the fiberglass liner is better than the feltmetal; however,

environmental considerations rule out the use of fiberglass in many

duct liner applications. The attenuation for the fiberglass liner
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Figure 80 Typical Waveform Upstream of LinerIi!
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OP YFigure 81 Typical Waveform Downstream of Liner
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is similar to that obtained for the 24-inch liner at low amplitudes

shown in Figure 43. Linearity of the feltmetal liner was checked by

measuring the attenuation at 650, 660 and 670 Hz at upstream sound

pressure levels of 140, 150, 160 and 170 dB. The maximum variation

in attenuation with amplitude at any frequency was 2-1/2 dB indicating

linear behavior of the liner materials.

It had been speculated prior to these experiments that for the

plane wave case, the various harmonics generated by the cumulative

distortion process would possibly couple to higher order modes when

the harmonic frequencies are above the associated mode cutoff

frequencies. This would lead to the dispersion phenomena disrupting

the sawtooth formation, even for the plane wave case. This possibility

was substantiated by the difficulties encountered in generating plane

waves above the various mode cut-off frequencies. Previous studies

of finite amplitude effects have been restricted to ducts of

considerably smaller diameter where coupling of the harmonics to

higher order modes is unlikely (see, for example, Reference 14).

The observations of sawtooth waveforms with steep wavefronts reported

in this chapter indicate that coupling of the harmonics to higher order

modes does not take place to any significant degree. To further

substantiate this, we measured mode shapes (radial amplitude plots

like those presented in Chapter V for several of the harmonics in

the plane wave high intensity propagation experiments). A typical set

of mode shapes is shown in Figure 84. These measurements were taken

upstream of the 30-inch fiberglass liner at 408 Hz at a sound

pressure level of 161 dB. It can be seen from the curves that the

fundamental, second harmonic and third harmonic are essentially
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plane waves but that there is some higher order content in the fourth

harmonic. This small degree of coupling to higher order modes is not

serious enough to prevent the observation of plane wave finite

amplitude effects but probably accounts for the slightly less than

perfect sawtooth waveshapes illustrated throughout this chapter.

The same measurements were also performed for the m=l, n=l higher

order mode case, and a typical set of mode shapes is shown in Figure 85.

The frequency was 646 Hz, and the sound pressure level was 170 dB.

It should first be noted that the levels of the harmonics are much

lower than the fundamental at most values of r/ro, and this would be

expected since we have already seen that no progressive distortion

occurs for higher order modes. It should also be noted that, in this

case, the harmonics mode shapes bear no resemblance to that of the

fundamental. This is also to be expected since there is no reason

to believe that the phase and amplitude characteristics of these

harmonics are in any way related to those of the fundamental as

opposed to the plane wave case where the harmonics are actually

generated due to the presence of the high amplitude fundamental wave

and are largely plane and amplitude coherent with the fundamental.
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CHAPTER VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The basic objective of this project has been to study the

characteristics of acoustic wave propagation in cylindrical ducts

with particular emphasis on the addition of acoustically absorbent

duct liners. The direction in which the research was pursued was

dictated by the ultimate applications of the results; that is, the

use of absorptive duct liners to reduce radiated noise from jet

engines, other large air moving systems and exhaust systems for

internal combustion engines. This research topic is extremely

broad since it involves the presence and interaction of a number of

complicated physical phenomena. It has been the subject of a number

of other research efforts at The Pennsylvania State University and

at many other research organizations, notably within the aircraft

industry and the National Aeronautics and-Space Adminstration.

The work reported in this thesis should, therefore, be considered a

contribution, but not the ultimate answer, to a complicated problem.

We have stated earlier that, in a real situation, complications

result from the presence of higher order modes, finite wall impedance,

variations in duct geometry, high intensity nonlinear effects, and

the presence of flow. The present study has necessarily been

restricted to constant diameter cylindrical ducts without flow so

that we could isolate and understand separately the effects of plane

waves and higher order modes at low and high amplitudes; first, for the

hard-walled case and then in the presence of a finite wall impedance.
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The thesis begins with a largely tutorial chapter on linear

wave guide theory in order to give the reader an easy understanding

of this topic which is very difficult to obtain from available

textbooks. This treatment as well as the experiments reported later

are restricted to hollow cylindrical ducts or wave guides.

Rectangular waveguides could be treated using the same theoretical

methods; however, this geometry has also been given considerably

more attention in the literature in both acoustics and electromagnetics

and is not discussed here. The dispersive nature of higher order

mode propagation is then discussed in detail since it is essential

in understanding the experimental results for higher order modes at

high amplitudes. The chapter.concludes with a formulation of the

eigenvalue problem for a cylindrical duct with finite wall impedance.

The next chapter (III) is a largely theoretical discussion of

the aspects of nonlinear acoustics which are applicable to the high

intensity duct experiments reported later. An experiment performed

with spherical waves in water is described which illustrates that

nonlinear effects can sometimes be deliberately controlled and that

theoretical nonlinear analyses can sometimes produce incorrect

answers.

A brief description of the basic properties of sound absorbing

materials is presented next in Chapter IV with adequate references

for the reader who wishes to pursue this topic in more detail. The

problems associated with a proper theoretical formulation of the

characteristics of absorbing materials and even of measuring these

characteristics are discussed. The question of the validity of the

local reaction assumption is also discussed. It is pointed out
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that misconceptions in the past on this subject are probably

due to an incorrect interpretation of Snell's law. It is also pointed

out that the local reaction assumption is, in itself, a violation of

Snell's law. It is, however, highly desirable that sound absorbing

materials used for duct liners be locally reacting since most of the

theoretical work to date is based on that assumption. If further

research indicates that this assumption is incorrect, then the

theoretical formulation must include extended reaction behavior.

It can be readily concluded from Chapter IV that rigorous theoretical

work on the properties of sound absorbing materials is in its infancy

and that much work remains to be done. It is anticipated that

activity in this area will continue in our own.laboratory and in

many other organizations. The more general consideration of the

absorption and reflection of sound waves at the boundary between two

media with different acoustical properties is a subject of interest

to a group of researchers much larger than the people to which this

thesis is directed. In underwater acoustics, the absorptive

properties of the bottom of the ocean are of great importance in many

propagation problems. In seismic exploration, the acoustical properties

of the layers forming the earth's crust are the subject of extensive

research and in investigations of sound propagation in air over the

surface of the earth, sound attenuation due to ground absorption is

an important factor. Additional studies of our present topic can

possibly be aided from knowledge learned in these other related

fields.

In the next chapter, our experimental program to evaluate the

performance of absorptive liners at low acoustic amplitudes is
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described. From both a physical description of the sound field and

the experimental results, it can be concluded that a downstream

anechoic termination is highly desirable, or even necessary, in a

test setup to evaluate duct liners. It is demonstrated first in this

chapter that several higher order modes can be generated with a high

degree of modal purity for the hard-wall case using a spinning mode

synthesizer. Measured mode shapes agreed well with those predicted

from the theory of Chapter II.

Liner performance was then studied by measuring the sound

field upstream and downstream of the liners and also within the liners

themselves for plane waves and higher order modes. It was found that,

in some cases, higher order mode attenuation was so great that

downstream mode shapes were masked by residual plane wave content

and only minimum attenuations could be estimated. A good set of

attenuation curves were, however, obtained for one- and two-foot

liners for the plane wave and first spinning mode (m=l, n=l). It

can be concluded from these data that for the liner materials used,

the spinning mode is attenuated much more rapidly than the plane

wave, and that there is approximately linear relationship between

liner length and attenuation for the plane wave but not for the

spinning wave. It was also observed that mode shapes within the

liner could be considerably different from those allowed for the

hard-wall case. This is not surprising since the boundary conditions

are quite different for the two cases.

It can also be concluded that a lined duct in a real situation,

for example, in a jet aircraft engine, air conditioning system and
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exhaust systems for internal combustion engines, can behave quite

differently from the usual textbook prediction based on plane wave

theory.

The high intensity experiments reported in Chapter VI

represent the most unique aspects of this study. Plane waves were

generated up to 162 dB and spinning modes were generated up to 175

dB in a 12-inch diameter duct for both the hard-wall and lined

cases. The uniqueness of the plane wave experiments is the scale

on which they were performed. Previous experiments were done with

considerably smaller diameter tubes where the possibility of coupling

of the harmonics to higher order modes was slight. In our case, all

of the harmonics were above allowed mode cutoff frequencies but,

nevertheless, remained in a plane wave state coherent in phase

velocity with the fundamental. The wave steepening effect was

observed as predicted by the Bessel-Fubini solution.

The results for high intensity spinning modes were surprising

at first, since no wave steepening or progressive distortion occurred

and the wave remained sinusoidal up to 170 dB throughout the duct.

It later became obvious that this is the proper result since the

dispersion prevents progressive distortion. The only distortion

observed was non-progressive and was only obvious at 175 dB.

The results for the lined case were also surprising since no

nonlinearity in liner behavior could be detected up to the maximum

obtainable levels. Flow resistance measurements of the types of

materials used (see Filmer, Reference 1) indicate that nonlinear

behavior should be expected at the sound pressure levels which were

generated. Nonlinear flow resistance apparently does not have a
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significant effect on absorption coefficient versus amplitude, at

least for the materials tested here.

It should, however, be noted that there is still a significant

nonlinear effect taking place when a finite amplitude plane wave

propagates in a lined duct. Our studies show that, at a given

frequency, the liner attenuation is independent of amplitude. The

acoustic wave is, however, experiencing progressive distortion which

causes a continual shift of energy into the higher harmonics where

the liner has different absorption characteristics than at the original

fundamental frequency. The high amplitude liner attenuation will

then be increased over the low amplitude value if the plane wave

attenuation is an increasing function of frequency. The reverse

will be true if the attenuation is a decreasing function. This effect

is qualitatively apparent in the high intensity plane wave experiments

with liners presented in the last chapter. The harmonic spectra are

altered drastically in the presence of a liner from those expected

and observed for the hard-walled case. A quantitative evaluation of

the behavior of the harmonics in propagating through the liner section

would require knowledge of the high frequency plane wave absorption

characteristics of the liner since the harmonics remain plane, even

though their frequencies are above various higher order mode cut-off

frequencies. The difficulties of determining high frequency plane

wave attenuation characteristics of lined ducts experimentally, are

obvious from the work reported in Chapter V; however, these

characteristics could be determined theoretically from the lowest

order solution to the boundary value problem for a lined duct which

was described in Chapter II. The logical approach to a further study
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of this particular nonlinear effect would therefore be to study the

decay of the various harmonics in propagating through a liner and to

compare this with theoretically determined high frequency liner

attenuation. It is highly possible that liners deliberately

designed to have special high frequency plane wave absorption

characteristics could be utilized to exploit the frequency conversion

of finite amplitude effects to best advantage. No attempt

was made to do this in our present study and the excess absorption

due to this effect was slight in this case. The effect will be much

more pronounced at amplitudes higher than employed in the present

study and it should be pointed out that, although the sound pressure

levels generated in this program are impressively high (160-175 dB re

0.0002 lbar), there are practical situations where much larger

amplitudes are encountered. A notible example is the exhaust system

of internal combustion engines. Fortunately, laboratory simulation

of these conditions with our present facilities could be accomplished

since, although sound pressure levels are much higher, the total

sound power required is no greater since duct diameters are much

smaller for the internal combustion engine exhaust.

Our present capability of generating up to approximately

10,000 watts of acoustic power is adequate to generate the moderate

sound pressure levels required for jet engine duct studies (160-175

dB) as well as the much larger levels (over 180 dB) necessary to

study large amplitude wave behavior in internal combustion engines

with correspondingly smaller duct diameters.

The results of the work reported here have also inspired

several other recommendations for future study. The most urgent
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in terms of providing practical design criteria to both the aircraft

and air conditioning industries is an extension of the work on the

evaluation of liners in the linear region. This should include the

measurement of a much larger variety of liner materials and refinement

of the measurement techniques. Emphasis should be placed on comparison

of measurements with theory and modification of the theory, if

necessary, to account for extented reaction. The recent theoretical

work of Zorumski and Mason (Reference 36) is a firm starting point

in this regard. An accurate theoretical method for predicting the

performance of duct liners would be extremely valuable to noise

control engineers. Anyone who has attempted to use presently

available prediction methods (see, for example, Reference 29) and

checked his results experimentally will appreciate the possibility of

having an accurate prediction method at his disposal. It should be

noted that the present methods are restricted to plane waves.

A further restriction in present theoretical treatments of

lined ducts is that the duct has an infinite longitudinal dimension.

In practical duct treatments, liner length is severely restricted

and the impedance discontinuities at the duct walls between the

treated and untreated sections could result in a discrepancy between

theory and experiment. The effects of finite liner length should,

therefore, be an important area of investigation.

In most practical situations, ducts are not anechoically

terminated and it is obvious that this aspect of the problem is

another logical extension of the present work. The radiation from a

duct abruptly terminated into a free field has been the subject of

several theoretical studies (References 37, 38 and 39) and includes
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the plane wave case and extensions to higher order modes. These

theoretical treatments are all restricted to the linear region.

Our laboratory is at present uniquely equipped to study experimentally

the free field radiation from an unflanged cylindrical duct in both

the linear and nonlinear regions and this is recommended as an

important extension of the work reported here. The results of

the recommended work of duct radiation in the linear region will

hopefully verify the past theoretical work or inspire further

analytical work on this subject. The recommended nonlinear studies

of the radiation of high intensity plane waves and higher order

modes from an unflanged circular duct will have results which cannot

be anticipated from present knowledge. In both the plane wave and

higher order mode cases, the wave will abruptly encounter a situation

where it is no longer in a wave guide situation but will be spherically

diverging. For the plane wave case, it will be in the shock

condition which is difficult if not impossible to achieve for a

spherically diverging, initially sinusoidal source. This shock

condition can be produced by an explosive spherical source but the

spectrum is broad-band and unrelated to the problem which we are

investigating. The question is directed to how this acoustically

produced shock wave will behave as it spherically diverges.

For the higher order mode case, the situation is even more

speculative. The wave progresses down the duct without distortion

but at very high amplitude. It will encounter a condition at the

exist where the linear wave equation does not even allow its existence.

It also suddenly encounters a condition where there is no

longer any dispersion and progressive distortion is again demanded
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by the medium. There will also be a backward reflection, as in the

linear case, which will limit the amount of energy which penetrates

into the radiated field from the unflanged duct, but this should not

prevent a substantial amount of radiated acoustic energy. If, in

fact, substantially high transmission of higher order modes do not

contribute to the radiation from aircraft ducts, then the work of

many researchers in the field is of no avail.

The behavior of high intensity acoustic waves, for both the

plane wave and higher order mode cases, radiating from an unflanged

circular duct, are the most interesting extensions of this project

for future study. The many unanswered questions with regard to

propagation of sound in lined ducts in the linear region should,

however, be given considerable future attention.
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