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* 
ASSTRACT 

The theories, experiments and issues on he l icopter  r o t o r  noise 

a r e  reviewed. The features o f  12 ex i s t i ng  k.inO tunnels involved i n  noise 

studies are discussed. ihe acoust ic cha rac te r i s t i cs  o f  the MIT low noisc 

open j e t  wind tunnel have been obtained by eiioloying two d i f f e r e n t  ca l i b ra -  

t i o n  t e ~ h ~ i i q u e s .  One technique i s  t o  measure the decay of sound pressure 

w i t h  distance i n  the f a r  f i e l d .  The other  technique i s  t o  u t i l i z e  a soeaker, 

which was cal ibrated,  as a sound source. T n e  sound pressure l eve l  (SPL) 

versus frequency was obtained i n  the wind tunnel chamber and conpared w i t h  

the corresponding ca l  ib ra ted  values. The r e s u l t s  o f  two d i f f e r e n t  techniques 

agree w i t h  each other. F iberg las board-block u n i t s  were i n s t a l l e a  an the  

cnan~oer i n t e r i o r .  The f r e e  f i e l d  was increased s i g n i f i c a n t l y  d f  t e r  t h i  s 

treatment and the chamber cut-off frequency was reduced t o  ;60 Hz from the 

o r i g i n a l  decfgnei! 250 Hz. The f l ow  f i e l d  cha rac te r i s t i cs  o f  the ro to r -  

t ~ n n e l  conf igura t ion  were studied by using f l ow  v isua l  i z a t i o n  techniques. 

The in f luence o f  open-jet shear l aye r  on the sound transmission were studied 

by using an Aeol ian tone c s  the  sound source. This  in f luence i s  n e g l i g i b l e  

i n  our tunnel operat ion range. A dynamometer system which was designed t o  

m ssure the steady and low harmonics o f  the r o t o r  t h r u s t  was developed. A 

theore t ica l  Mach number scal i ng  formula was developed which can be used t o  

scale the  r o t a t i o n a l  noise and blade s lap noise data o f  model r o t o r s  t o  f u l l  

scale he1 icopter  ro to rs .  
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I .  INTRODUCTION 

Inherent in the operation of VTOL systems i s  the generation of 

noise due to unsteady aerodynamic events which occur as an unwanted conse- 

quence of the product 1 i f t  and thrust. There have been many studies of 

helicopter noise and quieter vehicles have actually been built ,  but  i t  i s  

f a i r  to say that the principle noise reduction technique i s  to reduce the 

rotor t i p  speed. One's abi!ity to develop purely theoretical methods of 

noise prediction and control i s  hampered by a lack of theoretical methods 

for the predjction of unsteady aerodynamic forces on rotcrs -- especially 

for those aerodynamic phenomena which are particularly important for noise 

generation such as unsteady blade-vortex interaction. 

jlhi 1 e aerodynamic developments to predict the higher hamonic 

contsnt of these unsteady aerodynamic forces on the blades may yet be 

f ru i t fu l ,  a t  th i s  time, i t  would not be profitable to attempt a purely theo- 

retical analysis t o  predict VTOL noise. Existing noise prediction methods 

can be classed as semi-empirical. On the other hand, our ab i l i ty  to under- 

stand, predict and control VTOL noise has heen hampered by lack of experi- 

mentai data on the aerodynamics and noise generation of a VTOL rotor in 

forward f l ight  -- until now, th is  data was available largely from f l ight  

tests.  1 

'some acoustic data has been obtained in the hard-walled 40' x 80' tunnel 
a t  Ames Research Center b u t  due to  tunnel noise and wall reflection, i t  i s  
d i f f icu l t  to interpret. (See for example, Ref. 1)  I t  i s ,  however, useful 
to assess the effect of design chznges. 
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Because of t h i s  s i t u a t i o n ,  we begdrl in 1969 to nodify an exis t ing  

conventional low-speed w ,nd tunr?l a t  MIT t o  develop a V/STOL noise f z c i l  i ty  

cons is t ing  of an open j e t  tunnel operating within an anechoic chamber. This 

f a c i l i t y  began f u l l  operation i n  december, 1971, and has already been 

s ~ c c e s s f u l l y  used in  sever21 aerodynamic noise s tudies .  Begifining in  June, 

1973, under t he  support of AAWDL/NASA Contract NAS2-7684, fu r the r  develop- 

ment and ca l ib ra t ion  have been done t o  ensure accurate  reproduction simul- 

taveously of the essent ia l  f ea tu re s  of both the aerodynamics and acous t ics  of 

VrOL systems. A dynamometer system has been developed t o  measure the steady 

th rus t  and some 1ca harmonics of i t  f o r  t he  model ro to r  system. A Mach 

number scal  ing formula has oeen derived f o r  scal ing the  model r o t o r  data  t o  

the  rea l  hel icopter  ro to r  s i t ua t ion .  

11. STATE 3F THE ART 

i )  A Review of Helicopter hoise -- Theory, Experiments and Issues 

Aerodynamic noise from main ro to r s  i s  usual ly grouped i n t o  th ree  

c l a s s i f i ca t ions :  ro ta t iona l  noise,  vortex noise,  and blade s l ap .2s3  Rota- 

t ional  noise can be defined a s  t h e  noise a main ro to r  would produce in  an 

inviscid f l u i d ,  including a1 1 harmonic orders  of unsteady poten t ia l  flow 

a i r loads .  Vortex noise i s  o f ten  consi2ered t o  be the  addi t ional  noise 

radiated due t o  the turbulent  flow on t h e  blade sec t ions  and i n  t he  ro to r  

plane (boundary-layer separat ion,  vortex shedding and the  cperat ion of 

a i r f o i l s  i n  a turbulent  wake). A more prec ise  de f in i t i on  would iden t i fy  

vortex noise a s  due to  random vortex shedding from t he  a i r f o i l s  and use the 

wore general term broadband noise t o  descr ibe noise due t o  operation in  a 

turbulent  inflow. We make t h i s  d i s t i n c t i o n  here f o r  reasons t h a t  wil l  
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become apparent. Blade slap i s  a cha rac te r i s t i c  impulsive sound which i s  

produced when strong i n t e r a c t i o n  occurs between a blade and a t r a i l i n g  

vor tex o r  when a blade t i p  experiences strong compress ib i l i t y  e f fec ts .  

Obviously, there  i s  a smooth t r a n s i t i o n  from ro ta t i ona l  noise i n t o  the 

blade-slap condit ion, bu t  the  d i s t i n c t i o n  i s  usua l ly  made. When blade 

;lap occurs, i t  dominates a l l  o ther  noise sources. 

There are several theore t ica l  and experimental t o  model 

an3 p red i c t  the blade-slao phenomena which can be i so la ted  as due to  blade 

vortex i n t e r a c t i o n  or  due t o  compress ib i l i t y  e f fec ts  on the advancing blade. 

I n  addit ion, several de ta i l ed  experimental studies o f  the causes o f  vor tex 

noise on f i x e d  a i r f o i l  sect ions have been reported. 10-12 

Theoret ical  studies o f  r o t o r  naise13-l7 begin by i d e n t i f y i n g  the 

primary cause of noise as the unsteady l i f t  (and drag) f l uc tua t i ons  which 

a c t  cver the r o t o r  d isk.  The pure ly  theore t ica l  approach breaks down f o r  

we do not  know the unsteady l i f t  f l uc tua t i ons  nor do we  ye^ have any hope 

o f  being able t o  p red i c t  them i n  the  frequency range o f  i n t e r e s t  f o r  h e l i -  

copter noise, t y p i c a l l y  above the 30th harmonic o f  the  blade passage frequency. 

A t  t h i s  point ,  most he1 icopter  no1 se theor ies employ e x i s t i n g  experimental 

data t o  develop a semi-empirical p red i c t i on  scheme. The development o f  

semi-empirical p red i c t i on  methods t o  p red i c t  noise as a func t ion  o f  th rus t ,  

number o f  blades, advance r a t i o ,  s o l i d i t y ,  t i l t  angle o f  the r o t o r  d i sk  and 

other  parameters i s  hampered by our lack  o f  experimental data over 2 wide 

range o f  r a t o r  geometry and operat ing condi t ions and our lack  o f  understanding 

about the aerodynamic deta i  1 s o f  the  noise generation mechanisms. 

The most complete data on r o t o r  noise i s  cu r ren t l y  obtained from 

wh i r l  tower tes ts  which, o f  course, do not  simulate h igh speed forward f l i g h t .  



Up t o  t h i s  time, the experimental data about the e f f e c t  o f  forward speed 

upon r o t o r  noise on which cur ren t  noise p red i c t i on  methods are based i s  

obtained l a rge l y  from f l i g h t  tests .  The d i f f i c u l t i e s  i n  obta in ing vbl  i d  

noise data from f l i g h t  t es t s  which would add t o  our basic understanding o f  

r o t o r  noise mechanisms are considerable. For ex~mple, background noise, 

acoustic transmission, absorpt ion and r e f l e c t i o n  charac ter is t i cs  o f  the 

t e s t  s ight ,  and wind gusts make meaningful acoust ic data d i f f i c u l t  t o  obtain. 

I n  addi t ion,  i t  i s  d i f f i c u l t  t o  measure the  aerodynamic events cn the vehic le 

~ imul taneous ly  w i th  the noise they rad ia te .  The .iime varying character o f  

the s ignal  i t r  a  f l y -over  makes i n t e r p r e t a t i o n  o f  the signal d i f f i c u l t .  

d i r e c t i v i t y  information i s  seldom obtained. Even i f  mea~ingfu l  acoust ic data 

on a known veh ic le  conf igura t ion  and operat ing cond i t ion  could be obtained, 

the cons t ra in ts  o f  f l i g h t  t es t s  make the v a r i a t i o n  o f  parameters over a wide 

range impossible. The range o f  RPM's over which the main r o t o r  can be 

tested i s  very 1 i m i  ted. It i s  no t  possible t o  t u r n  o f f  e i t h e r  the t a i l  

r o t o r  o r  the eng i~ le  t o  assess t h e i r  e f f e c t  separately and maintain a simula- 

t i o n  o f  powered f l i g h t .  The expense o f  f l i g h t  t es t s  reduces our a b i l i t y  t o  

inake design char and determine t h e i r  e f f e c t  on system performance and 

rad ia ted  noise. I f  t h i s  s i t u a t i o n  ex is ted i n  the design and operat ion o f  

f l i g h t  vehicles, i t  would be analogous t o  being unable t o  measure the 

aerodynamic charac ter is t i cs  o f  a  veh ic le  u n t i l  a f t e r  i t  was b u i l t  and flown; 

the e f f e c t  o f  a l l  design mod i f i ca t ion  would be studied d i r e c t l y  by f l i g h t  

t es t s  on the f u l l  scale vehicle. 

To obta in  an understanding o f  the basic mechanisms o f  noise from 

V/STOL conf igurat ions, simultaneous aerodynamic and acoust ic measirrements 

i n  a cont ro i  l ed  environment are essent ial  . One obvious so lu t i on  t o  these 
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problen~s i s  proper s imulat ion o f  the veh ic le  and the important aerodynamic 

and acoust ic in te rac t ions  i n  a wind tunnel. Wind tunnel t es t i ng  for perform- 

ance and aerodynamic cha rac te r i s t i cs  i s  a valuable and standard technique 

i n  a i r c r a f t  design. Wind tunnel s imulat ion and proper measurement o f  acoust ic 

phenomena r e s u l t i n g  from unsteady aerodynamic i n te rac t i on  i s  a more recent  

development . 
A question which has Seen repeatedly discussed a t  technical meetings 

on he l icopter  noise and i n  the l i t e r a t u r e 1 8  i s  the r e l a t i v e  cont r ibu t ions  o f  

vortex and ro ta t i ona l  noise t o  the t o t a l  noise o f  the r o t o r  system i n  forward 

f l i g h t .  While t h i s  question can eas i l y  be ans~ered  w i t h  proper experiments 

an3 data reduct ion techniques, i t  cannot e a s i l y  be invest igated using f l i g h t  

t e s t  measurements due t o  the non-stat ionar i  t y  o f  the acoust ic signal from 

the he l icopter  as the veh ic le  f l i a  past the microphone. Whirl towers g ive  

no information about t h i s  quest ion since they cannot simujate forward f l i g h t .  

Such questions ind ica te  a need f o r  data from wel l  -cont ro l led  experiments on 

which to  base theore t ica l  models. 

Under a previous ARO program, we ran a pre l iminary se t  of experiments 

on ro ta t i ona l  noise to  explore these questions as we1 1 as t o  de f in?  the 

experimental techniques and t o  gain experience w i t h  the new model r o t o r  

system. The r e s u l t s  of t h i s  pre l iminary se t  o f  experiments were presented 

i n  a paper, "Experimental Studies o f  Rotat ional Noise i n  Forward Fl ight , "  a t  

the AHS Mid-East ~ y m ~ o s i u m , ~ ~  Essington, Pennsylvania, October, 1972, and 

communicated i n  an ora l  presentat icn a t  the Acoustical Society ~ e e t i n ~ ' ~  i n  

rliami, F lor ida,  December, 1972. 

I n  these experiments, we were abls  t o  ex t rac t  the repeated t rans ien t  

wave for^^^ from the t o t a l  s ignal . I n  addi t ion,  several i n te res t i nq  features 

o f  the broadband noise were observed as w i  11 be discussed helow. 

I n  tha t  experi~nent, we used two blades on our model r o t o r  w i t h  the 



angle o f  a t tack  equal t o  5" ( a t  the t i p ) .  The r o t o r  shaf t  was v e r t i c a l  o r  

t i  1 ted forward, and the blades were f ree  t o  f l a p .  Runs were made i n  hover, 

and a t  tunnel speeds o f  15, 30 and 40 mph. Spectra o f  the  acoust ic signal 

were taken f o r  both the t o t a l  s ignal  and the repeated t rans ien t  signal 

( ro ta t i ona l  noise).  The time waveform o f  these two s ignals were photographed 

on an o s c i l  loscope. 

Several separate noise mechanisms were i d e n t i f i e d  i n  t h a t  experi 

mental invest igat ion:  

1. Lcw harmonic unsteady loading 

2. High harmonic ro ta t i ona l  noise due t o  blade-vortex 

i n te rac t i on  

3. Vortex noise 

4. Broadband noise 

The experimental resu l t s  t h a t  we obtained i n  the hover cond i t ion  

demonstrated +he d i f f i c u l t y  o f  obta in ing v a l i d  noise data i n  hover as con- 

t rasted w i t h  forward f l i g h t  where we were abie t o  obta in meaningful (repeat- 

able, understandable) data. I t  i s  we1 1 known t h a t  the aerodynamic f l ow  

f i e l d  o f  a r o t o r  i n  hover i s  d i f f i c u l t  t o  p red i c t  a n a l y t i c a l l v  arid tha t ,  

i n  t h i s  condit ion, the r o t o r  wake i s  very unsteady and a c t u a l l y  unstable. 19 

For the r o t o r  i n  hover, a high broadband noise content would be 

expected due t o  turbulence and unsteadiness i n  rhe wake. Also, i n  the 

experimental s i tua t ion ,  hiqh broadband noise would be caused by re inges t ion  

due t o  the prox imi ty  o f  the f l o o r  and wa l ls  o f  the t e s t  section. This high 

level  o f  broadband noise was c l e a r l y  v i s i b l e  i n  a l l  o f  the hover spectra. 

With forward speed, the 1 eve1 dropped s i g n i f i c a n t l y .  
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For the  r o t o r  i n  forward f l i g h t ,  one o f  the  most s t r i k i n g  fea tu res  

o f  the  t r a n s i e n t  s igna ls  was t he  repeated occurrence o f  an impu ls ive  noise,  

most 1 i k e l y  due t o  b l  ade-vortex i n t e r a c t  ion.  Whenever a s t rong  impul s i v e  

s ignature was obtained, t he  h igher  harmonic content  o f  t he  t o t a l  s igna l  was 

determined by the  h igher  harmonic ;ontent o f  the  r o t a t i o n a l  no ise  spectrum. 

I n  t i iese cases, t h e  reducti'on o f  h e l i c o p t e r  no ise  requ i res  an understanding, 

modeling and c o n t r o l  o f  t he  d i s c r e t e  unsteady aerodynamic i n t e r a c t i o n s  which, 

as i nd i ca ted  by t he  t r a n s i e n t  s igna l ,  occur a t  var ious azimuth l o c a t i o n s  arocnd 

the r o t o r  d i sk .  I n  o ther  cases, t he  broadband no ise  determined t he  l e v e l s  

i n  t h i s  range o f  f requencies.  

I n  general, our r e s u l t s  showed t h a t  w i t h  inc reas ing  t i 1  t o f  t h e  

r o t o r  d isk ,  the higher-harmonic content  o f  t h e  r o t a t i o n a l  no ise  spectrum 

decreased, most l i k e l y  due t o  t he  f a c t  t h a t  t he re  i s  l ess  i n t e r a c t i o n  between 

the  blades and t he  vor tex  wake as t h e  d i s k  i s  t i l t e d  forward. 

The r o t a t i o n a l  no ise  a t  t h e  low harmonics o f  t he  blade-oassaqe 

frequency was the  same f o r  both t o t a l  and averaged s ignal  i n d i c a t i n g  s t rong  

r e p e a t a b i i i t y  o f  t he  s igna l  from each b ldde :)assage i n  forward f l i g h t  as 

cont rasted t o  hover. A s  woula be expected, t he  l e v e l  o f  the low harmonics 

increased w i t h  inc reas ing  forward speed due t o  an inc reas ing  asymnetry and 

unsteadiness i n  load ing.  

A d i s t i n c t i v e  f ea tu re  o f  the  broadband no ise  (we c a l l  i t  vc r t ex  

no ise)  was the  peak due t o  laminar vo r tex  shedding near the  b lade t i n  ( w i t h  

perhaps some compl icat ions due t o  t he  three-dimensional na tu re  o f  the  f l o w  

near the t i p ) .  Th is  peak increased, n o t  e n t i r e l y  monotor, ical ly, w i t h  i n -  

c reas ing forward speed and s h i f t e d  s l i g h t l y  t o  h igher  f requencies.  
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The d e t a i l s  o f  t h e  unsteady aerodynamic mechanisms o f  t h e  observed 

broadband no ise  generat ion i n  forward f 1 i g h t  a t  somewhat lower f requenc ies 

a re  no t  completely understood. An examination of t he  t o t a l  t ime wavefnr; 

o f  t he  acous t i c  s i gna l s  revealed "burs ts "  of broadband f l u c t u a t i o n s  . . i ch  

repeat a t  t he  same l o c a t i o n  o f  each blade passage. Th is  may be due t o  l o c d l  

s t a l l  caused by a r a p i d  change of i n f l o w  cond i t i ons  w i t h  azimuth, o r  t o  

s t a l l  on t he  re t r ea t i ng -b l ade  s ide.  With increas ing t i l t o f  t he  r o t o r  d i s k  

forward, t h e  mid-range broadband no ise decreases somewhat a l though t he  

e f f e c t  i s  no t  as pronounced as f o r  the  r o t a t i o n a l  noise. Again, t he  cause 

i s  l i k e l y  t o  be l e s s  i n t e r a c t i o n  o f  t he  blades w i t h  t he  unsteady wake. The 

"vo r tex "  no ise  peak i s  no' s i g n i f i c a n t l y  a f f e c t e d  by r o t o r  d i s k  tilt. 

Although the  r e s u l t s  3 f  t h i s  study r a i s e  many quest ions t h a t  

cannot be answered p resen t l y ,  we be1 i eve  t h a t  these p r e l  im inary  r esu i  t s  

demonstrate the u t i l i t y  o f  t he  experimental techniques t o  i n t e r p r e t  and 

diagnose many o f  the  aerodynamic mechanisms respons ib le  fo;- r o t o r  noise.  

i i )  Review o f  Some E x i s t i n g  F a c i l i t i e s  f o r  Noise Stud ies 

There e x i s t s  several wind tunnel  f a c i l i t i e s  wh'ch can be exo lo i t ed  

i n  no ise s tud ies.  Somc a re  designed s o e c i f i c a l l y  f o r  no ise st1 dy, others  a re  

converted frorn convent ional  tunnels,  and o thers  a re  c n l  y convent ional  tunne, s. 

The top speed, s i ze ,  background no ise and c u t - o f f  f r e q u e n ~ y  a re  a l l  d i f f e r e n t .  

A b r i e f  review on these f a c i l i t i e s  i s  o u t l i n e d  as fo l lows :  

( 1 )  M I T  Acoust ics and V i b r a t i o n  Laboratory  Anechoic Wind Tunnel 

The f a c i l i t y  i s  designed s p e c i f i c a l l y  f o r  acouscic s tud ies.  I t  

has an open c i r c u i t  w i t h  an open/clz~sed t e s t  sect ion.  The upstream s e t t l i n g  

chamber has a honeycomb sec t ion  and several se ts  o f  screens. The t e s t  sec t ion  
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i s  15" x  15" i n  dimension. The turbu lence l e v e l  i n  t he  t e s t  sec t ion  i s  low. 

The top  speed i s  180 fps.  The SPL o f  background no ise  i s  l e s s  than 85 db 

a t  f requencies above 200 Hz w i t h  150 f ps  wind speed. The cu t -o f f  frequency 

i s  about 500 Hz. 

( 2 )  NSRDC Anechoic Wind l unne l  

Th is  t e s t  f a c i l i t y  i s  designed f o r  exoeriments on nc .se.  The 

t e s t  sec t ion  i s  8 '  x  8 ' .  I t has a  c losed c i r c u i t  w i t h  an open t e s t  sect ion.  

The t e s t  sec t ion  i s  enclosed w i t h i n  an anecho'. chamber. It can a lso  be 

cperated i n  a c losed t e s t  sec t ion  made w i t h  t he  w a l l s  acoustical1.y t rea ted .  

The maximum speed i s  200 f ~ s .  The background no ise  SPL (1  dz bandwidth) 

i s  l e s s  than 62 db below about 400 Hz and l e s s  than 35 db a t  10 KHz a t  

200 f p s  top  speed. 

(3 )  BBN Avechoic Wind Tunnels 

There a re  two acous t i c  wind tunnels  a t  Bol t Beranek and New,31 

Inc .  (BBN). 

a )  High speed wind tunnel  

There a re  two nozzles a v a i l a b l e  f o r  t h i s  open- je t  tunnel  ; 4 '  x 4 '  nozz le  

and 28" x  40" nozzle.  The  to^ speed o f  the f r e e  j e t  f o r  t he  l a r q e  and 

the  small nozzle i s  140 f ps  and 240 fps,  r espec t i ve l y .  I t  may operate 

i n  a c losed loop o r  open i n  r e t u r n  f l ow  path.  The l enq th  o f  the  t e s t  

sec t ion  i s  30 f e e t .  The o v e r a l l  SPL o f  background no ise i s  80 db a t  

140 f ps  f o r  l a r q e  j e t  and over  90 db a t  240 f p s  f o r  small . jet .  I n t e r -  

chanqeable acoust ic  modes (anechoic o r  reverberant,) a re  ava i l ab l e .  The 

w a l l s  and f l o o r  o f  the  anechoic chamber a re  covered w i t h  2 inch  foarn w i t h  

c a v i t i e s  on the back. The c u t - o f f  frequency o f  t h i s  f a c i l i t y  i s  under 

i n v e s t i g a t i o n  p resen t l y .  
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b )  Low speed wind tunnel  

There a re  two open t e s t  sect ions ava i lab le ;  a  16" x 16" cross sec t i on  

and 18 i n c h  diameter round sect ion.  It has an open c ' r c u i t  w i t h  a  120 

f p s  top speed. Th is  f a c i l i t y  has an a c o u s t i c a l l y  t r ea ted  i n l e t  and 

o u t l e t  and a plywood chamber w;th co t t on  ba t t i ng .  The chamber c u t - o f f  

frequency i s  180 Hz. 

( 4 )  Uni ted A i r c r a f t  Acoust ic Research Tunnel 

Two open t e s t  sec t ions  a re  ava i l ab l e ;  one w i t h  a  c i r c u l a r  nozz le  -- 

e x i t  area 10 f t e2  and 9 t o  1 con t rac t i on  r a t i o ,  t he  o the r  one w i t h  square 

nozzle -- e x i t  area 4.5 ft.2 and 17 t o  1  con t rac t i on  r a t i o .  The tunnel  i s  

o f  t he  open c i r c u i t  type w i t h  a  honeycomb sec t ion  and several  screens w i t h  

vo r tex  generators f i t t e d  around the  nozz le  per iphery .  The t op  speed i s  690 

fps .  The chamber c u t - o f f  frequency i s  250 Hz. 

( 5 )  HIT Department o f  Aeronaut ics and As t ronau t i cs  W-idld Tunnel 

Th is  wind tunnel  i s  o f  t h e  c losed r e t u r n  t ype  and o r i g i n a l l y  had 

5 '  x 7 1/2 '  t e s t  sect ion.  It was converted t o  operate as an open- je t  

tunnel  .20 The t e s t  sec t ion  i s  enclosed w i t h i n  a  v i  bra t i o n - i s o l a t e d  anechoic 

chamber. Fiber g las  wedges nave been i n s t a l l e d  a t  t he  twc v e r t i c a l  wa l l  s o f  

t u rn i ng  and r e t d r n  sect ions.  The t u rn i ng  vanes were a! so acous t i ca l  l y  t rea ted .  

Fur ther  development on t h i s  f a c i l i t y  w i l l  be discussed i n  t he  next  sectior:.  

(6) Pennsylvania S t ~ t e  Department o f  Aerospace Engineer ing Tunnel 

I t i s  o f  t he  c losed c i r c u i t  t ype .  The t e s t  sec t ion  can be chanqed 

from open type t o  c losed type or  v ice-versa. The top speed i s  150 f ~ s .  

The 4 '  x 5 '  t e s t  sec t ion  i s  enclosed i n  an anechoic chamber. The endwalls 

a re  x o u s t i c a l  l y  t rea ted .  
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( 7 )  RAE Low-Speed Wind Tunnel (England) 

This f a c i l i t y  has an open-jet t e s t  sect ion w i t h  c i r c u l a r  nozzle 

of  24 f e e t  diameter which has spo i le rs  f i t t e d  around i t s  periphery. It i s  

o f  closed re tu rn  c i r c u i t  type and 165 fps  i s  the top speed. The t e s t  

sect ion i s  enclosed i n  an acoust ica l ly  t reated chamber. The background 

noise i s  between 105 db and 80 db a t  freauency belob 6W Yz a t  120 fos. The 

chamber cu t -o f f  frequency i s  2 Khz. 

(8) DFVLR Subsonic Wind Tunnel (Germany) 

This tunnel has an cpen-jet t e s t  sect ion w i t h  a rectangular nozzle 

of area 75 f te2 It i s  o f  the closed c i r c u i t  type and 260 fps i s  the top 

speed. The f i r s t  d i f fuser  and corner (upstream r C  the .:an) a re  acoust ica i ly  

treated and are a lso f i t t e d  w i t h  a sound-absorbing s p l i t t e r .  Thc backqround 

noise SPL i s  100 dbA a t  260 fps. 

(9) AWR3L (Ames) Uind Tunnel 

It i s  o f  the closed c i r c u i t  type. The open t e s t  sect ion i s  7 '  x 

10 ' .  A i l  walls, except the f a r  wal l  o f  the anechoic chamber, are covered 

w i t h  Scot f e l t  10' x 3 '  x 2 '  panels which are made o f  h igh density foam. No 

acoustic cal  i bra t ion  has been done a t  present. I n  recent blade-slap studies, 

i t  was observed tha t  the f i r s t  r e f l e c t i o n  from the w a l l  occurred a t  about 10 db 

iower than the incidence waves. It i s  believed t h a t  tne anechoic treatment 

absorbs most of the high frequency components o f  the incidence sound. This 

faci  1 i t y  i s  adeqliate for blade-slap study. 

( 1  3)  NASA Lacgley Wind Tunnel 

This tannel i s  no t  i n  f u l l  operat ion a t  present. The f u l l  ca l i b ra -  

t ions  are expected to be f in ished i n  5 t o  6 r+lonths. I t  has a closed c i r c u i t  



16 

w i t h  an open t e s t  section. There are  two v e r t i c a l  open j e t  t e s t  sections 

avai jahle: a 4 ft. diameter round j e t  w i t h  a 125 fps  top speed and a 1 ' x 2 '  

rectangular cross sect ion j e t  w i t h  a top speed o f  210 fps. The hor izonta l  

t e s t  sect ion i s  a lso avazlable. The length  o f  t e s t  sect ion i s  35 feet. The 

acoustic treatment o f  the anechoic chamber around the t e s t  sect ion consists 

of  3 f o o t  wedges. The cu t -o f f  frequency c f  the anechoical ly-treated t e s t  

sect ion i s  designed t o  be 100 Hz. The actual value i s  not  ye t  determined. 

(1 1 ) NASA Ames 40' x 83' Wind Tunnel 

This i s  the wor ld 's  la rges t  subsonic wind tunre1 . It i s  o f  the 

closed c i r c u i t  type and i t  has a closed t e s t  sect ion w i t t i  a 310 fos ton  

speed. Thic f a c i l i t y  i s  acoust ica l ly  untreated and requires cor rec t ion  f o r  

reverberat ion e f fec ts .  The background noise SPL a t  170 fos  i s  less  than 100 

db a t  frequencies above 300 Hz. 

(12) ONERA Large Subsonic/Sonic Wind Tunnel {France) 

This tunnel has a closed c i r c u l a r  t e s t  sect ion o f  26 f e e t  diameter 

and a closed re tu rn  sect ioc. The maxiia.um wind speed i s  1.02 Mach number. 

The background nois2 ins ide  the s e t t l i n q  chamber o f  80 inches diameter i s  

100 db, a t  low frequencies f a l l i n g  t o  80 db a t  2 KHz a t  a t e s t  sect ion speed 

o f  about 330 fps. 

The f a c l l  : t i es  (11 ) and (12) are mainly f o r  aerodynamic studies, 

but  s4:me noise studies have been conducted i n  these f a c i l i t i e s .  The reverbera- 

t i o n  e f f e c t s  are severe i n  most cases. Some correct ions are usual ly  necessary. 



111. Determination of the Acoustic and Flow Characterist ics o f  the FDL, NIT 
Mind Tunnel 

A photograph o f  the model r o to r  i n  the open-jet t es t  section i s  

shown i n  Fig. 1. The dimensions o f  the t e s t  sec t~on  are 5 '  x 7 1/2'; the 

top speed i s  75 mph. The open-jet t es t  section runs throuah an anechoic 

chamber o f  dimensions 24' x 12' x 12'. Kodif icat ions t o  the tunnel include 

muff lers t o  quiet  the tunnel fan i n  the frequency range of interest." The 

background noise i n  the t es t  section measured wi th  the tunnel running a t  toe 

speed a t  severa: stages during the modif icat ion i s  shown i n  Fiq. 2. The lowest 

curve, obtained wi th  addit ional f iberglas block treatment i n  the anechoic 

chamber , i s the present background noise. 

For studies of aerodynamic noise, there are several advantages to  

a large open j e t  operating w i th in  an anechoic chamber as compared wi th  a 

conventional hard-walled wind tunnel. Noise measurements can be made i n  

th?  low-velocity region beyond the j e t  which reduces the problem of micro- 

phone "self-generated" wind noise. The absence o f  wall r e f l ec t i on  i n  the 

anec.h i c  environment makes possible detai led studies o f  the d i r ec t  ; v i  t v  a f  

the sound f i e l d .  This, coir@bined w i th  the a b i l i t y  t o  simulate the aerodynamics 

of the ro to r  i n  forward f l i g h t ,  makes i t  possible t o  obtain the d i r e c t i v i t y  

of ro tor  noise as a function o f  f l i g h t  conditions. 

There are also several disadvantages t o  c~ .)pen-jet tunnel. Although, 

on balance, we be1 ieve that  these e f fec ts  are $lot a prcsblem i n  our f a c i l  i t y ,  

t h i s  would have t o  be ver i f ied i n  tke course o f  the current develooment. 

The presence o f  the turbulent shear layer a t  the edge o f  the j e t  can give 

r i s e  t o  several problems. One i s  basic i n s t a b i l i t y  of the tunnel flow i t s e l f ;  

i n  our tunnel, the j e t  was s tab i l ized by means q f  a s lo t ted cowl. The exact 
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suppression mechanirm and the l oca l  flow pat te rn  around the cowl were under 

i nves t i ga t i on  i n  the cur ren t  program. Another problem i s  t h a t  the f l oo r  o f  

the background noise i s  se t  by noise radiated from the f r e e - j e t  shear layer;  

a t  our tunnel Mach numbers, t h i s  noise f l o o r  should be q u i t e  low. The presence 

o f  turbulence and non-uniform f l ow  near the  j e t  boundary w i l l  sca t te r  and 

r e f r a c t  the sound f i e l d  from a source i n  the f r e e  stream. This e f f e c t  has 

heen studied by using an Aeol I an  tone as the  sound source. 

i )  Acoustic Measurements 

The acoust ic cha rac te r i s t i cs  o f  the anechoic chamber o f  the FDL, 

MIT low noise open j e t  wind tunnel have been obtained. Tw d i f f e r e n t  tech- 

niques o f  c a l i b r a t i o n  were employed and the r e s u l t s  were compiired. 

The f i r s t  technique i s  t o  measure the  decay o f  sound pressure 

w i t h  distance i n  f a r  f i e l d .  I f  the f r e e  f i e l d  condi t ions nre  obtained, the 

l eve l  o f  acoust ic f i e l d  decays 6 db per doubling distance. Any 2 f lec t ions  

from surfaces would be shown up as departures from " f r c e  f i e l d " .  

Both white noise and pulsed s ignals were used i n  u t i l i z i n g  the 

omni-direct ional speaker. The whi te noise source was used t o  measure the 

decay o f  the sound f i e l d  i n  narrow frequency bands i n  a l l  d i rec t i ons  away 

from the source. The pulsed signals were used t o  i d e n t i f y  any r e f l e c t i n q  

surfaces by nieans o f  t ime-unt i l -any-return-pulse measurements. The compari- 

son o f  the r e s u l t s  o f  the whi te noise tes t i nq  w i t h  the r e s u l t s  o f  the oulsed 

signal t es t i ng  can be used t o  substant iate each other.  O f  p a r t i c u l a r  in tet -ect  

are r e f l e c t i o n s  from i n t e r i o r  tunnel wa l ls  since these are  more d i f f i c u l t  

t o  t r ea t .  The speaker was mounted a t  f i v e  d i f f e r e n t  locat ions;  one a t  the  

r o t o r  shaf t  t i p  and the other  four  a t  the end o f  the blade t i p  o f  our model 

r o t o r  w i t h  the r o t o r  blade a t  0° ,  90°, 18d0, 270' azimuth pos i t i ons  measured 
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from a f t  of the center l ine i n  the tunnel. The micro~hone was mounted a t  3 

su f f i c ien t  number of locations t o  adequately map out the acoustical propert ies 

o f  the r~pen tunnel. The t es t  configurat ion and instrumentation set-up are 

shown <n Fig. 3 and 4. Some typ ica l  resu l ts  o f  the white noise tes t ing are 

shown i n  Figs. 5 and 9. The abscissa h i s  the distance between the speaker 

and riicrophone. Some typical  pulse-testing resu l ts  are shown i n  Fig. 10. 

The horizontal scale i s  time axis, each g r i d  represents 2 milliseconds. The 

ve-t ical scale i s  the voltage axis. The lower trace i s  the pulse input t o  

t ' le spejker and the upper trace i s  the signal received by the microphone. 

The f i r s t  spike i s  the incoming pulse signal. The time taken by the ref lected 

signal t o  reach the microphone can be calculated and marked, as an arrow under 

each picture. 

The other technique f o r  ca l ib ra t ing  the chamber o f  the wind tunnel 

was t o  u t i l i z e  the speaker, which was cal ibrated i n  another anechoic chamber 

wi th  known characterist ics, as a s~und  source. The sound pressure versus 

f r c  lency as then obtained i n  the wind tunnel chamber and comp~red wi th  the 

corresponding cal ibrated values a t  chosen azimuths, elevations and distances. 

The anechoic chamber i n  the Department o f  E lec t r ica l  Engineering, MIT, was 

x e d  as a reference f o r  t h i s  tes t .  A l l  surfaces o f  tha t  anechoic chamber 

are I rc.ated wi th  acoustic f iberglas wedges wi th  a depth o f  ctpproximately three 

f: .t. A wire mesh suspension was provided f o r  access t o  the chamber, permit- 

t i n g  the f l oo r  t o  be s im i la r l y  treated. The background noise of tha t  chamber 

was observed t o  be extremely low. The measure noise t o t a l  SPL was 48 db. 

The hiekcst SPL i n  the noise spectrum was 43 db a t  about 25 Hz. 

The acoustic character ist ics o f  the Department o f  E lec t r ica l  

Engineering, M I T ,  (EE) anechoic chamber were obtained by the white noise 
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t e s t i n g  technique. The r e s u l t s  a re  shown i n  Fig. 11. A t  distances greater  

than 2 ft. from the edge o f  the f i be rg las  wedge, the  acoustfc data a re  seen 

t o  be reverberat ion-free. The picrophone was mounted a t  var ious pos i t ions  

a: ~ n g  a 1 i ne  normal t o  the surface o f  the speaker and through i t s  center.  

The nearest microphone loca t i on  was 2 f e e t  from the plane o f  the speaker. 

Tt-aces o f  SPL us frequency were obtained a t  70 microphone locat ions.  

Measurements o f  SPL vs frequency wzre then made i n  the chamber of the wind 

tunnel a t  various azimuths, e levat ions and distances, and were cc-pared w i t h  

those obtained f n  the EE anechoic chamber. T y ~ i c a l  examples of the t e s t  

resu l t s  above 250 Hz ar.  shed:; i n  Figs. 12 and 13. We not  t ha t  the r e s u l t s  

shown i n  Fig. 12 a re  favorable and those shown i n  Fig. 13 are  not  favorable. 

The r e s u l t s  o f  the comparison f o r  var ious pos i t ions  are  shown i n  Fig. 14. 

The coordinates used are  shown i n  Fig. 15. The c i r c l e  under the r column 

means near per fec t  agreement was obtained above 250 Hz a t  t ha t  microphone 

locat ion.  The cross means the agreement i s  not  good above 250 Hz. 

Before the extensive anechoic treatment, the regions i n  the FDL, 

MIT f a c i l i t y  su i tab le  f o r  t es t i ng  f o r  the frequency ranqes above 250 Hz were 

as shown i n  Figs. 16, 17 and 18. From these resu l ts ,  we know t h a t  the re f lec-  

t i on - f ree  space i n  our chamber was 1 imi ted and t h a t  f u r t h e r  anechoic treatment 

was required. Various modi f icat ions have been made t o  improve the anechoic 

property o f  the surface. The most e f f e c t i v e  one i s  the f i be rg las  board-block 

combination known as Crener' s t e ~ k n i ~ u e . ~ ~  This combination consis ts  o f  

two layers o f  f i be rg las  board, one l aye r  of la rge  f i be rg las  blocks and one 

layer  o f  small blocks. The anechoic chamber was covered w i th  these f iberg las 

b l o c k  un i ts .  Each u n i t  coosis ts  o f  two 2 '  x 4 '  x 2", 3 I b .  #I000 spun ?lass 

boards, on top o f  which one layer  o f  4" x 4" x 3" u l t ra -acoust ic  blocks and 
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and thereon 9ne layer  of 2" x 2" x 3" blocks have been glued. Each u n i t  was 

wrapped w i t h  a su i tab le  non-flamnable c l o t h  ( f o r  heal th and safety reasons) 

and was attached t o  the chamber ce i l i ng ,  wa l ls  and f l o o r .  A t o t a l  o f  70 u n i t s  

have been made and i ns ta l l ed .  Fig. 19 shows the anechoic chamber a f te r  t h i s  

treatment. The t reated areas are  shown i n  Figs. 20, 21 and 22. The anechoic 

property o f  tne chamber a f t e r  treatment i s  shown i n  r i g s .  23 to  27. We can 

see tha t  the f ree  f i e l d  extends t o  a much la rge r  region than t h a t  before the 

treatment. The three-dimensional view o f  the f r e e  f i e l d  i s  shown i n  Figs. 28, 

29 and 30. The accurate acoust ic measurement i n  the chamber i s  thus ensured 

f ree  o f  the r e f l e c t i o n s  from the chamber surface. The lowest frequency above 

which the f ree  f i e l d  cond i t ion  i s  obtained i s  reduced from the designed 25a Hz 

down t o  160 Hz. The f i be rg las  block u n i t s    roved t o  be very e f f e c t i v e  fo r  

the anechoic treatment o f  the FDL, M I T  tunnel. 

i i )  Flow V isua l iza t ion  i n  the Anechoic Chamber 

The f low f i e l d  o f  FDL, MIT's 5 '  x 7 112' open j e t  wind tunnel was 

studied by applying f low v i sua l i za t i on  techniques. A smoke probe was posi -  

t ioned a t  various locat ions t o  make an extensive survey o f  the f low f i e l d  

a t  a 15 mph tunnel speed. The survey a t  other  v e l o c i t i e s  shewed the same 

general f low pat tern.  The f l ow  pat te rn  observed i s  sketched i n  Figs. 31 and 

32. The main j e t  f low i s  uniform and steady. As shown, the f low between 

the shear layer  and c e i l i n g  i s  essen t i a l l y  one la rqe  eddy and two small ones. 

Near the f loor ,  an eddy e x i s t s  i n  f r o n t  o f  the f i be rq las  box and one behind 

i t .  About h a l f  o f  the f low impinging on the cowl s p i l l e d  out.  The s p i l l e d  

f low adjacent t o  the cowl c i r cu la tes  t o  the back o f  i t  and i s  sucked i n i o  the 

d i f fuser  sect ion through the s l o t  between the cowl and the i n l e t  of the 

d i f f u s e r  section. 
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About 2/3 o f  the flab' above the top p a r t  o f  the cowl tends t o  

c i r c u l a t e  towards the r i g h t  ( looking upstream) 3nd then i n t o  the cowl s l o t .  

About 1/3 of the f low tends (not  as strona) t o  c i r c u l a t e  towards the l e f t  

a r i  eventual ly i n t o  the s l o t .  As showr~ i n  Fiqs. 31 and 32, the f low close 

t~ the l e f t  ~ s r t  o f  the cowl tends t o  c i r cg l t t t e  an@ flows i n t o  the s l q t .  The 

f l , ~ : : l  fur-the). from the cowl c i r cu la tes  as a ";I eddy and back i n t o  the main 

J C ~  f low. 

The cowl i s  bas i ca l l y  a rectangular- r i n g  w i t h  a h a l f  c i r c l e  cross 

sect ion. Three layers o f  mater ia l  are used i n  c o n s t r u c t i ~ g  it. The facing 

mater ia l  i s  18 x 16 (number o f  wires per sauare inch)  anodized aluminum window 

screen. A l aye r  o f  f e l t  i s  i n  back o f  the window screen. Behind the f e l t ,  

1 x 1 mesh wires were used as shape supporting mater ia l .  

Based on t h i s  smoke stud"#, i t  i s  bel ieved t h a t  the suckinq e f f e c t  

o f  the cowl s l o t  tends t o  release the l oca l  pressure generated around the 

cowl which cu ts  the pressure reinforcement cyc le  and i n  t u r n  the i n s t a b i l i t y  

o f  the tunnel f low. The porous surface w i t h  f e l t  as backinq mater ia l  of the 

cowl i s  e f fec t i ve  i n  avoiding edge tone. The disturbance which i s  qenerated 

a t  the nozzle t i p  reaches the porous cowl and i s  randomized ;nd attenuated. 

Consequently, the feed back loop cannot be closed and the edge tone i s  

avoided. 

i i i )  Flow Reingestion Considerations 

Becduse o f  the f i n i t e  s ize  of the wind tunnel, re ingest ion i s  always 

a problem i n  hover o r  a t  low forward f l i g h t  speeds. This problem a1 so ex i s t s  

f o r  a hard-walled tunnel, bu t  the actual d e t a i l s  and the condi t ions f o r  which 

i t  w i l l  occur are, i n  general, d i f f e r e n t .  I t  i s  po5sible tha t  ce r ta in  
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modi f icat ions w i  11 postpone problems o f  re inges t ion  i n  an open-jet tunnel 

( f o r  example, a  d i f f u s e r  system mounted on the f l o o r  o r  a  c l o t h  c u r t a i n  

mounted somewhere between the r o t o r  p lan and the f l o o r .  ) This problem may 

be invest igated using f low v i sua l i za t i on  t o  i d e n t i f y  operat ing condi t ions 

f o r  which the wake i s  smoothly convected i n t o  the d i f f u s e r .  As an example, 

we used t h i s  technique t o  study re inges t ion  problems w i t h  our two-bladed 

ro:or a t  a  t i p  angle o f  at tack o f  !i0. Under these condit ions, we found 

t h a t  there was a  minimum advance r a t i o  below which the re ingest ion could 

occur and meaningful experimental r e w l  t s  might be d i f f i c u l t  t o  obtain. 

Some t yp i ca l  examples o f  smoke p ic tu res  are  shown i n  Fiq. 33. The wake o f  

the r o t o r  was washed i n t o  the cowl f o r  advance r a t i o  l a rge r  than .057. 

Tb,e conf igurat ions o f  3, 4, 6, 8-bla6 r o t o r  were a lso studied. 

The blade t i p  angle of a t tack  o f  each blade was set  t o  be 5". The e f f e c t  

o f  r o t o r  blade number on the minimum advance r a t i o  without re inges t ion  i s  

shown i n  Fig. 34. The sha f t  was t i l t e d  forward 5' and 10" f o r  a  2 and 4  

bladed ro to r ,  respect ive ly .  Fig. 35 shows the e f f e ~ t  of shaft t i lt angle 

on the minimum advance r a t i o  wi thout  re ingest ion.  Therefore, f o r  each r o t o r  

conf igurat ion a b ~ e  the minimum advance r a t i o ,  re ingest ion d i d  no t  i n t e r f e r e  

w i t h  the proper simulat ion o f  the r o t o r  flow f i e l d .  The r o t o r ' s  wake anqle 

r e l a t i v e  t o  the f ree  stream v e l o c i t y  can be approximated by the expression 

ct/u2. F i g .  36 shows the wake angle vs advance r a t i o .  Fig. 37 shows the 

wake angle vs the minimum advance r a t i o  wi thout  re ingest ion f o r  d i f f e r e n t  

number o f  blades. 

The f low through the r o t o r  d isk  was studied usinq f l ow  v isua l iza-  

t i o n  techniques f o r  var ious r o t o r  conf igurat ions.  Some i n t e r e s t i n g  vortex 

systems can be seen i n  the p ic tu res  taken. For example, Fig. 38 shows the 
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f low of a  2-bladed r o t o r  o f  5" blade t i p  s e t t i n g  f o r  d i f f e r e n t  s h a f t  t i l t 

a w l e s .  The vor tex  system i s  more d i s t i n c t  f o r  i nc reas ing  s h a f t  t i 1  t angle. 

Th is  i s  because o f  t he  g rea te r  vo r tex  s t r eng th  and l e s s  d i s s i p a t i o n  due t o  

l e s s  blade-vortex i n t e r a c t i o n  f o r  t he  l a r g e r  s h a f t  t i l t  angle used i n  these 

s tud ies.  Th is  may exp la i n  why t h e  h igher  harmonic content  o f  t he  r o t a t i o n a l  

no ise spectrum decreases as t h e  d i s k  i s  t i 1  ted  forward.21 The he1 i x  vo r tex  

system a t  d i f f e r e n t  stages a f t e r  i t s  s h ~ d d i n q  from the  r o t o r  blade can be 

c l e a r l y  seen i n  these p i c t u res ,  e s p e c i a l l y  i n  the t h i r d  p i c t u r e  o f  F i g .  38. 

i v )  Shear Layer E f f e c t  on T ransmi t t i ng  Sound 

The presence o f  turbu lence and non-uniform f l o w  near t he  j e t  boundary 

w i l l  s ca t t e r  and r e f r a c t  t h e  sound f i e l d  from a source i n  t he  f r e e  stream. 

Th is  e f f e c t  has been s tud ied  by us ing  Aeol ian tones as t he  sound source. 

Three cy l i nde rs  o f  diameter 0.375, 0.18, and 0.09 inches were suspended h o r i -  

z o n t a l l y  i n  the  midd le  p lane o f  t h e  wind tunnel  t e s t  sec t ion  t o  generate pure 

tones o f  frequency 550 Hz, 1.1 kHz and 2.3 kliz, respec t i ve ]  y,  a t  50 mph tunnel  

speed. A 112 i nch  I3 & K condenser microphone was m u n t e d  on a  frame and a t  

a  d is tance  of 56 inches from t h e  cy l i nde rs .  The microphone along w i t h  the  

frame transverses an arc  i n  t he  midd le  v e r t i c a l  plane. The measured r e s u l t s  

i n  comparison w i t h  t he  t h e o r e t i c a l  d i r e c t i v i t y  p a t t e r n  o f  s t a t i o n a r y  d i p o l e  

and convect ion d i p o l e  w i t hou t  shear l a y e r  e f f e c t  a re  shown i n  F i gs .  39, 40 

and 41. The r e s u l t s  show t h a t  a t  t h e  running Mach number (.067, 50 m ~ h )  and 

microphone angular loca t ion ,  t h e  e f f e c t  o f  t he  shear l a y e r  on sound transmi t- 

t i n g  through i t  i s  i n s i g n i f i c a n t .  The a n a l y t i c a l  s tud ies  by ~ m i e t ' ~  support  

our measured r e s u l t s .  I n  general, t h e  e f f e c t  of shear l a y e r  i s  be l ieved  t o  

be s i g n i f i c a n t  f o r  h i gh  Mach number and l a r g e  microphone angular l o c a t i o n .  
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I V .  MACH NUMBER SCALING FORMULA 

The he1 icopter  r o t o r  ( r o t a t i o n a l  ) no ise  i s  s t r o n g l y  dependent on 

the  blade t i p  Mach number i n  a d d i t i o n  t o  the  o ther  parameters. Most model 

r o t o r  systems ( i n c l u d i n g  t h e  FDL, MIT system) cannot s'mulate t he  t i p  Mach 

numbers o f  r e a l  he l i cop te rs .  A  t h e a r e t i c a l  Mach number scd! ing formula i s ,  

therefore,  necessary i n  order  t o  app ly  m a e l  r o t o r  no ise  data t o  a  f d l  1  sca le  

he1 i cop te r .  A Mach number sca l i ng  formula has been deveioped and w i l l  be 

discussed as fo l lows .  The d e t a i l  d e r i v a t i o n  can be found i n  Appendix A. The 

sca l i ng  formula der ived may o n l y  be app l ied  below t he  c r i t i c a l  t i p  Mach 

number ( i .e., the  f l ow  f i e l d  i s  subsonic everywhere) whicn i s  the  opera t ion  

range o f  most he1 i c o p t e r  r o t o r s .  

Our approach i s  based on t h e  e x i s t i n g  t h e o r e t i c a l  r o t o r  no ise  

work.13 The I ~ l l o w i n g  assumptions a re  invo l :  d i n  our de r i va t i on :  

(1)  A l i m i t e d  range o f  a  load ing  harmonic a c t i n g  on t he  r 3 t o r  c o n t r i b u t e  

s i g n i f i c a n t l y  t o  each sound harmonjc. 

( 2 )  C.,mparing the r e l a t i v e  magnitudes o f  the  Bessel func t ions  occur r ing  

i n  the t h e o r e t i c a l  r o t o r  no ise  expression, t h e  Jn + A (nM f) terms can 

be neglected i n  respect  t o  Jn - A (n l l  f) terms. 

( 3 )  The thrus; dominates the  a i r  l oad ing  over the  drag and r a d i a l  compo- 

nents f o r  a  t y p i c a l  h e l i c o p t e r  r o t o r .  

( 4 )  The unsteady blade l i f t  c o e f f i c i e n t  i s  a  f u n c t i o n  o f  advance r a t i o ,  

Strouhal  frequency, blade geometry, the  incidence and the  normal ized 

r a d i a l  l o c a t i o n  from the  r o t o r  hub. 

The Mach number scal  i ng  formula i s  der i ved  a s  



under t he  cond i t i on  t h a t  Mtl cosul = Mt2 coso2, i n  a d d i t i o n  t h a t  advance r a t i o ,  

t he  observing azimuthal angle, b lade geometry ( i n c l u d i n g  number o f  b lades),  

and the  incidences a re  the  same i n  both cases, where 
-t 

P(x2, n, Mt2) i s  t he  n t h  harmonic sound power a t  t i p  Mach number Mt2 

and cbserved a t  l o c a t i o n  Z2(F2, a2, @2) 

p(gl, n, Mtl) i s  the n t h  harmonic sound power a t  t i p  Mach number Mtl 

and observed a t  l o c a t i o n  Zl (;l, ul , 

Mt i s  the  b lade t i p  Mach number 

n i s  the harmonic number. n = mB. B i s  the number o f  

blades m = 1, 2, 3 . . .  

c i s  the chord o f  the  b lade 

, A ,  ; a r e  the  coordinates o f  the observer l o c a t i o n  and r e f e r  

t o  F igure  42. 

Subscr ipts 1, 2 r e f e r  t o  the r o t o r ' s  ooera t ion  a t  t i p  Mach number 

Yt,  , Mt2 and observer l o c a t i o n  x 1 ' x2, r espec t i ve l y  

P(;., , n, Mtl ) can be measured by us ing our  model r o t o r  f a c i l i t y .  The Mach 

number sca l i ng  formula can then be used t o  sca le  the  measured model r o t o r  no ise 

data t o  t h a t  o f  the  r ea l  he l i cop te r  r o t o r ,  P(x2, n, Mt2) under the cond i t i ons  

out1 ined under the sca l i ng  formula. The harmonic number n o f  the  measured 

model r o t o r  no ise  data and t h r  scaled h e l i c o p t e r  r o t o r  data a re  i d e n t i c a l ,  bu t  

the  f requencies a re  no t  t h e  same because o f  t he  d i f f e r e n t  angular v e l o c i t y  i n  

doth cases. The der i ved  expression i s ,  i n  general, n o t  r a l i d  a t  near t ransonic  

Mach numbers. The upper Mach number range a t  which t h i s  sca l i ng  formula may 

apply  requ i res  a d d i t i o n a l  e x p ~ r i m e n t a l  study and v e r i f i c a t i o n .  
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V .  DEVELOPMENT OF THE DYNAMOMETER 

i )  Design o f  t h e  Dynamometer 

A dynamometer which was designed t o  measure t he  steady and low 

harmonics o f  the  r o t o r  t h r u s t  was developed. F i g .  44 shows t he  p a r t s  and 

the  assenbly o f  the  dynamometer. The r o t o r  hub f l o a t s  on two se ts  o f  f l exures  

o f  1 /6  inch  t+ ickness.  Th is  f l o a t i n g  r o t o r  hub can take any number o f  blades 

up t o  8. Each f l e x u r e  cons i s t s  o f  f o u r  spokes and bs th  f1ax:lres can be pre-  

loaded by t i g n t e n i n y  the  nu ts  a t  the  end o f  each spoke. 

When no pre- load ing i s  app l ied  t o  the  f lexures ,  ' ~ i l g i  tudina; 

na tu ra l  frequency o f  the  system i s  expected t o  be 300 cps or- h i cher .  Sipce 

bending and t o r s i ona l  modes a re  h igher  than t he  l o n g i t u d i n a l  na tu ra l  frequency, 

these modes do no t  en te r  i n t o  t h e  cons idera t ion  o f  the s t a b i l i t y  c f  the  system. 

When t he  model r o t o r  i s  operated w i t h  e i g h t  blades a t  1000 rpm, t he  fundamental 

b lade passage frequency i s  133 cps. Thfs frequency i s  much lower than t he  

lowest na tu ra l  frequency o f  the  system. I n  add i t i on ,  t he  na tu ra l  frequetlcy 

o f  the  system can be increased by pre- load ing the  f lexures ,  Thus, i t  i s  

expected t h a t  t h e  system w i l l  be f r e e  o f  resonance. 

Four semi-conductor s t r a i n  gages were mounted on the lower f l exure ,  

two gages on each o f  two oppos i te  spokes. These f o u r  gages form a  temperdture 

compensating br idge.  BLH SPB 3-20-35 semi-conductor s t r a i n  gages a re  used. 

The nominal res is tance  o f  one gage i s  350 ohms and the  nominal gage f a c t o r  

i s  118. The choice o f  t h i s  k i n d  o f  gage i s  based on t he  f o l l ow ing  t h ree  

cons iderat ions:  

( 1 )  The t o t a l  res is tance  o f  the  gaqe b r idqe  should be kept  as low as poss ib le .  

I f  the  res is tance  o f  the b r idge  i s  h igh,  then the w i res  connect ing the  

b r idge  output  termind l  and read-out ins t rument  w i l l  p i c k  up the ex te rna l  
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no ise  e a s i l y  un less a  very  carefu l  sh i e l d i ng  i s  appl ied.  

(2 )  The ou tpu t  s igna l  vo l tage  i s  p ropo r t i ona l  t o  t n e  i n p u t  e x c i t a t i o n  

vo l tage.  I n  o rder  t o  have a  h igher  s igna l  , one needs a  h igher  exc i  t a -  

t i o n  vol tage, the  gage res is tance  should be h igh  i n  order  t o  keep the 

Joule  heat ing low so t h a t  t h e  gage w i l l  no t  be overheated. A t  250 

m i l l i w a t t s ,  maximum power should d i s s i p a t e  from the  gage mounted on 

a  good heat s i nk  as i s  recommended by BLH. The designed power d i ss i pa -  

t i o n  o f  our system i s  113 o f  the  maximum l i m i t .  

( 3 )  The yage f i l amen t  l eng th  should be so long  t h a t  a  small de fec t  on the  

f l exu re  surface w i l l  no t  be sensed, wh i l e  sho r t  enough t h a t  i t  w i l l  

tit i n  the  l i m i t e d  space. 

These cons iderat ions l e d  us t o  choose BLH SPB 3-20-35 semi-conductor s t r a i n  

gages and an e x c i t a t i o n  vo l tage o f  6 v o l t s .  The s t r a i n  gage mounting method 

and t he  s t r a i n  gage balance system i s  i l l u s t r a t e d  i n  F ig .  45 where V i s  the  

e x c i t a t i o n  vo l tage of the  b r idge  and A 5  i s  the s igna l  vo l tage.  I f  the  

t h r u s t  produced by the r o t o r  i s  48 l b .  ( t h i s  i s  the  maximum t h e o r e t i c a l  

t h r u s t  expected i n  t he  proposed work), the  s t ress  on the  sect ions o f  the 

f l exure  spokes on which the  s t r a i n  qages a re  mounted i s  ca l cu l a ted  t o  be 

3 13.8 x  10 ps ia .  The y i e l d  p ~ i n t  o f  the metal used (17-4 PH s t ee l  ) i s  180 x  l o 3  

p s i .  The maximum dynamometer opera t ing  s t r ess  i s ,  the re fo re ,  l e sz  than o r  

equal +,o 7 .7% of  the  mate r ia l  y i e l d  po in t .  Even i f  t he  f l exu res  a r c  pre- 

locadcd w i t h  100 l b s  o f  tension, the  system i s  s t i l l  operat ing a t  o r  l e ss  than 

9.5% o f  the y i e l d  po in t .  Hysteres is  o f  the  s t ee l  used i s  expected t u  be 

n e g l i g i b l e .  

The dynamc~eter  was designed t o  mount on t he  top of t he  sha f t  o f  t he  

ex i  s t i n g  l~iodel r o t o r  system. The measurement system b lock diagream i s  shown 

i n  F igure  46. 



29 

i i )  Measurement o f  Naturi i l  Frequency 

The natura l  frequency o f  the dynamometer was determined experimental 1 y . 
Fig. 47 shows the arrangement f o r  the ncasurement. The dyndmometer was mounted 

on an aluminuin bar which was bo l ted  d3m t o  the leads o f  two e l e c t r i c  magnetic 

shakers, wnich were connected t o  an o s c i l l a t o r .  A br idge balancinq u n i t  was 

used t o  adjust  the s t r a i n  gage balance e x c i t i n g  voltage t o  6 v DC and t o  

balance the gage bridse. The output of the dynamometer was connected t o  an 

o s c i l l ~ s c o p e .  By slowly scanning the frequency outpbt o f  the  o s c i l l a t o r  and 

observing the dynamo me::^ output  shown on the  oscil loscope, the natura l  f r e -  

quen,j c f  the dynamometer could be determined by no t i c i ng  tha t  when the  shakincj 

frequency approaches the na turc l  frequency, the signal amp1 i tude on the  osci  1 - 
loscope increases d ras t i ca l l y .  

The observed fundamental natura l  frequency was measured as 365 Hz. 

The f i r s t  and second harmonics a re  50G HZ and 655 Hz, respect ive ly .  The 

measured value o f  the  f i r s t  natura l  frequency (365 Hz) i s  close t o  and b e t t e r  

than the designed value o f  300 Hz. For 3 2-bladed r o t o r  a t  1000 rpm, the 

fundamental blade passage frequency i s  33 Hz. The dynamometer can measure 

the th rus t  up t o  the 10th hannonic s i t h o u t  the d i f f i c u l t y  o; resonance. 

While f o r  an 8-bladed r o t o r  a t  1000 rpm, up t o  2nd t h r u s t  harmonic can tle 

measured. 

iii ) S t a t i c  Ca l ib ra t ion  o f  the Dynamometer 

The dynamometer was mounted on a t e s t  stand and the c i r c u s t  f o r  the 

s t r a i n  gage br idge was passed through the s l i p r i n g s  i n  order t o  best approxi- 

mate the operat ing conf igurat ion. The apparatus f o r  th? ca l  i b r a t i o n  i s  shown 

i n  Figure 48. The e x c i t a t i ~ l  ~ o l t a g e  t o  the < t r a i n  qage br idge was adjusted 

t o  6 v DC. J t  was found tha t  since the semi-conductor s t r a i n  gages used are 

very 1 i g h t  sensi t;ve, the dynamometer had t o  be wrapped w i t h  black paper i n  
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order that  no 1 i j h t  could reach the s t r a i n  gage. The dynamometer was loaded 

w i th  a dead weight whicn was increased i n  un i t s  of 5 lbs. t o  40 lbs. af ter  

which i t  was unloaded i n  un i t s  o f  5 lbs. i n  order to check f o r  hysteresis. 

The s t r a i n  gage output was read i n  m i l l i v o l t s  from a d i g i t a l  voltmeter a t  

every 5 lbs. increment. The system had t o  b: loaded and unloaded several 

times u n t i l  the system was "worked in "  so that  hysteresis e f fec ts  became 

negl ig ib le.  Figure 49 shows the var ia t ion of the s t r a i n  gage bridge output 

w i th  weight when hysteresis was considered negl i g i  ble. The average slope for 

the t es t  runs was found t o  be -557 mvllh. These runs were made a t  a tempera- 

ture  o f  85°F. Runs were also made a t  higher temperaturzs. This was done by 

covering the t es t  stand wi th  f iberglas blankets and placing a heat lamp under 

the dynamometer. The temperature was regulated by changing the distance o f  

the lamp t o  the dynamometer. Runs were made a t  90°F and 101°F and i t  was 

found tha t  the slope o f  the p lo ts  (mv/l b) remained constant w i th in  the tmpera 

ture  ranae tested (as should be e x ~ e ~ t e d  since the bridge was designed to be 

temperature compensating ) . 
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V I I . CONCLUSIONS 

The low-noise, open-jet anechoic wind tunnel i s  essential for the 

study of nelicopter rotor noise. The free f ie ld of our . nechoic chamber was 

extended substantially by fiberglas block treatment and the cut-off frequeSic; 

i s  reduced to 160 Hz. This fiberg'.as block treatment i s  effective and i.;, 

therefore, recomnended for anechoic chamber treatment. Ttle Mach number 

scaling formula derived i s  necessary for extrapolating the mode! rotor 

rotational noise data to  the full  s ize  helicopter. The dynamometer system 

developed i n  th i s  program i s  useful i n  measurina the important steady and 

unsteady thrusts. The effects of turbulence and velocity shear near the 

j e t  boundary en acoustic wave propagation has been determined for our operat- 

ing conditions. Flow f i e l d  patterns i n  the anechoic chamher have been mapped. 

In conclusion, our f ac i l i t i e s  and equipment are unique and very suitable for 

helicopter rotor noise study i n  which aerodynamic events and acouytic radia- 

tion are measured simultaneously. 



Tne i l e r i va t i on  o f  Mach Number Scal ing Formula f o r  Rotor Noise 

The scal ing formula derived may on ly  be appl ied below the c r i t i c a l  t i p  Mac11 

nilinber ( i  .e. , the f low f i e l d  i s  subsonic eve)-vwhere) which i s  the cperat ion 

range f o r  most hel icopters.  

. - 
I he expression o f  the r .mplex Four ier  c o e f f i c i e n t  o f  sound r . d d i ~  . ioi i  

C r  i n  the f a r  f i e l d  due t o  a r o t a t i n g  f l u c t u a t i o n  p o i n t  fo rce  ac t ing  a t  a 

(1 3)  d:ctance R from the r o t o r  hub i s  

The argument o f  the Bessel funct ions i n  Eq.( l )  i s  n v  . The coordinates 

are shown i n  Fig. 42 where 

a ~ ~ s  b~~ 
= the Four ier  coe f f i c i en ts  o f  the t h r u s t  o f  harmonic h 

aAD, bhD = the Fourier coe f f i c i en ts  o f  the drag o f  harmonic A 

a ~ ~ '  bXc = the Four ier  coe f f i c i en ts  o f  the r a d i a l  force, o f  

harmonic A 

Jn-A' Jn+A 
= the Bessel funct ion o f  order n-A, n+A respect ive ly ,  

m the argument i s  

J '  ' = the der iva t ives  o f  and Jn+A, respect ive ly  n - i ,  J n + ~  
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= speed o f  sound 

n = the  harmonic number o f  sound n = m8, m = 1 , 2, . . . 
B = the  number o f  blades 

I n  Eq. ( I ) ,  there are two basic terms, Jn+X and Jn-X. The t yp i ca l  value 

of m, B, M and f are 4, 4, .S and.5, respect ive ly .  The t yp i ca l  value o f  

rill f i s  4. The t yp i ca l  values o f  n and A are much la rge r  than cne except 

for  the steady and low harmonic loading, i - e . ,  X = 0 or  small in teger .  

It w i l l  be shown l a t e r  t h a t  the range o f  a i r  loading f o r  which X contr ibutes 

s i g n i f i c a n t l y  t o  the sound r a d i a t i o n  i s  n(1 - K M f) < . < n(1 + K M $) 

where K > 1 , typ i ca l  l y  K = 1.36. Therefore, tbe values o f  n and X are 

much la rger  than one t y p i c a l l y .  Thus, Jn+A << Jn-A and Jn+A terms c i n  be 

neglected. 

Only a l i m i t e d  range o f  a i r  loading harmonics X contr ibutes s i g n i -  

f i c a n t l y  t o  each sound harmonic n. This can be understood by examin?ng 

tne behavior o f  the Bessel func t ion  JnaA. As the X increases, the order 

o f  the Bessel funct ion n-X w i  11 decrease, e v c t u a l  l y  becoming negative. 

Since jJ j = I J  1 if p i s  integer,  the con t r i bu t i on  o f  each harmonic 
P - P 

loading h t o  the nth sound harmonic i s  symnetrical about A = n. A i  the 

argument o f  the Besse! funct ion, nM 5 , i s  decreasing, the range of 1 n-1~ 1 

i n  which the magnitude o f  Jn-A d i f f e r s  from zero i s  reduced. 

When 1 n-A 1 > z  1, 

enM f 
I f  - - < 1 then Jn-A(nM f) 0 as In-X 1 - large. 

i?!n-XI 



i .e., 
enM 2 

- 1  > E KnM f - 

where 

The above argument i s  no t  appl icable when 1 n-A] i s  not  much l a rge r  

than one. I n  Fig. 43, we p l o t  the curve i n -A /  = f(nM f). d i v i d i n g  the 

~.iagni tude o f  Jn-A(nM f) l a rge r  than 0.00 from t h a t  smaller than 0.06. 

Tne 1 ine of n-A = KnM y i s  a lso shown i n  Fig. 41 . It i s  obvious t h a t  the r 

expression Knll 5 i s  a good approximation fo r  f(nM f). Consequently, the 

range o f  the loading harmonic h which contr ioutes s i g n i f i c a n t l y  t o  the 

sound n a r m ~ ~ ~ i c  n can be w r i t t e n  as. 

The t yp i ca l  propor t ion o f  the force components o f  a t yp i ca l  h e l i -  

copter r o t o r  i s  10 : 1 : 1. By examining Eq. ( I ) ,  i t  i s  observed tha t  

i n  the i n e f f i c i e n t  region o f  rad ia t i on  ( i - e . ,  ou t  o f  the range n - KnH f < A 

< n +KnM f the e f fec ts  af  a l l  three components are about equal. However, 

over the e f f i c i e n t  r a d i a t i o n  range, the th rus t  term dominates. For most 

p rac t ica l  purposes, i t  would appear t o  be a good approximation t o  consiaer 

the th rus t  t e n  only. Some numerical ca lcu la t ions  -on tbe noise rad ia t i on  

due t o  each force cdmponent can be found i n  Ref. (13) and support t h i s  

s i ~ n p l i f i c a t i o n .  

Based on the above discussion, f o r  p rac t i ca l  purposes, Eq. ( 1 )  can 



be s i m p l i f i e d  a s  

I f  we want t o  c a l c u l a t e  the sound r a d i a t i o n  by using Eq. ( I ) o r  

Eq. ( L ) ,  we need more d e t a i l e d  information on t h e  loading :larmonics which 

is  not  known up t o  t h i s  point .  In t h e  s c a l i n g  fo rnu la  der ived below, we 

do not have t o  know t h i s  information.  I t  i s  reasonable  t o  assume t h a t  t h e  

unsteady blade l i f t  c o e f f i c i e n t  is a func t ion  o f  advance r a t i o  c, Strouhal 

frequency b ,  blade georietry G ,  inc idence and t h e  normalized r a d i a l  

l o c a t i o n  t wher2 t h e  unsteady blade 1 i f t  a c t s .  

In t h e  case  of a h e l i c o p t e r  r o t o r ,  t h e  observed sound i s  t h e  r e s u l t  o f  

t h e  continuous d i s t r i b u t e d  loading along t h e  blade ins tead  o f  t h e  p o i n t  

loading.  Therefore ,  t h e  power s p e c t r a l  d e n s i t y  of t h e  sound ~ ( x ,  n)  

observed a t  l o c a t i o n  is  

wtiere C E  i s  t h e  complex conjugate  of C n .  

The r a d i a l  distarice T-I can be normal ized a s  3 = # , where b i s  t h e  

span of the  blade.  

The a i r  loading i n  Eq. ( 2 )  i s  



where C i s  the chord o f  the blade 

Suost i tu t ing  Eq. (2 )  and (5 )  i n t o  Eq. ( 4 ) ,  we have 

i [ Q A i  s t  I I - yT(p. A: G, a, f ' )  e Jn-h (nM t t L)J r n-h ( n ~ ~ f  '+)d l  d f  ' 

where Mt i s  the blade t i p  Mach number. 
iNAt - $ A ' ~ l l  

The phase e i s  independent o f  the t i p  Mach number 

PI and the sound observing loca t ion .  t 

I n  Eq .  (6), the upper and lower range o f  sumnation and the quan t i t i es  

behind i t  depend on n and Mt f i n  add i t ion  t o  u, G, a. Le t  P(;~, n, Vt , )  

be the nth harmonic sound power measured a t  t i p  Mach number Mt and a t  loca- 
+ 

t i o n  xl . Using the measured p(P1, n, Mt , we want t o  p red i c t  the sound 

power P(;~, n, Mt2) a t  t i p  Mach number M t p  and l o c a t i o n  ;2. I f  M~~(:), = 

(1) , the fac to r  mu1 t i p l y i n g  [pb2;?~]2 i n  Eq. ( 6 )  are i den t i ca l  a t  ' " t ~  r z 
d i f f e ren t  Mach numbers and ~ b s e r v i n g  locat ions.  Using Eq.  (6), we have 



provid ing ~ ~ ~ ( f ) ,  = M ~ ~ ( F ) ~  and u, G ,  a are the same i n  both cases (not ing 

s ina  = - , cosa = f ). r 
Eq. (7) i s  appl icable f o r  the hovering he1 icopter .  For the forward 

f l i g h t  case, r i n  Eq. (6 )  should be replaced by r ( 1  - Mor) as s q ~ e s t e d  

i n  Ref. (13), where Mor i s  the component of the forward f l i g h t  Yach numbei 

Mo i n  tne d i r e c t i o n  o f  observer: 

X The factors 7 and MI f i n  Eq. (7)  should be replaced by 
r 

X - - s ina 3 => 
r r 2 ( 1  t dt C O S ~  cow)'  r ( 1  + uMt cosa C O S ~  

2 

Mt M~ cosa Mt f => - - 
r ( l  + uMt cos4 C O S ~ )  r ( l  + uMt cosa cosm) 

Using Eq. (9), Eq. (6) becomes 

nMMt s ina 
P ( Z ,  n) = ' 1 ' 1' 2 2 

[ P  a0 Mt C 1  ' ;i(l + cosa cos+)2 
Mt cosa 

A, A '  = n + f ( n  1 

C C l+pMt Cora Cosm 

M, cosa 
A ,  A '  = n -  f ( n -  

ltpMt cosa cosm 
1 

0 0 

nMt cosa t nMt CoSa I' 
( I ( ) d i d t '  (10) 

Jn-h 1 +uMt cosa cos, ) J n - h  l+,,Mt cos, cos@ 
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Examining Eq. ( l o ) ,  the same Kach number formula f o r  the  forward f l i g h t  

case i s  obtained as Eq. (7 )  f o r  the hovering case, prov id ing Mtl cosal = 

Mt2 cola2, the sound harmonic number, the azumuthal angle (, the advance 

r a t i o  p, the blade geometry G ( i nc lud ing  the number o f  blades) and the  i n -  

cidence angle are the same i n  both cases. I n  addi t ion,  the f l u i d s  nust be 

s imi la r .  
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Figure  1 V i e w  of t e s t  section in low noise acoustlr wind t u n n e l .  
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Fig. 3 The configuration for the testing of 

the acoustic property of the anechoic 

chamber 
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Fig. 4 Instrumentation set-up 
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F i g .  5 Acoustic  property o f  t h e  anechoic chamber c e i l i n g  

The n o i s e  source i s  mounted a t  t h e  r o t o r  s h a f t  

t i p  l o c a t i o n  beforc: f i t , e r g l a s s  b l o c k s  t reatment 



note:  250, 400, 700 hz curves have 
been shifted down 10 db for 
easy examination 

v 1 wall ,:::: 
3 0 I I I I I 'L 
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Fig .  6 Acoustic property of the anechoic chamber 

near-side w a l l .  The no i se  source i s  mounted a t  

the  rotor  sha f t  t i p  l oca t ion  (before f iberg las s  

b locks  t reatment)  
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f i g .  7 Acoustic property of the far s ideLwall  

The noise  source i s  mounted a t  the rotor shaft  t i p  location 

( b e f o r e  f iberg lass  b l o c k s  t reatment)  
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Fig. 8 Acoustic property of the nozzle section 

The noise source is mounted a t  the rotor shaft t i p  location 

(before  f i b e r g l a s s  blocks t rea tment )  
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Pig.  3 Acoustic property of the diffuser section 

The noise source is  mounted a t  the rotor shaft t i p  location 

(before f ibcrq l  ass blocks t r e a t r e n t  ) 
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0: nearly perfect 

x: Off above 2 5 0  hz 

F i g .  1 4  comparison of r e s u l t s  o t t a i n e d  i n  M.I .T .  E . E .  a n e c h o i c  

chamber w i t h  t h o s e  i n  t u n n e l  chamber 



c e n t e r  l i n e  o f  tunnel  

down stream d i r e c t i o n  

The speaker i s  mounted a t  r o t o r  shaft t i p  l o c a t i o n  

Fiu. 1 5  coord inate  system 

near 

s i d e  

w a l l  
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Fin, 19 V i e w  of test secti~n in lnw qojse a c o u s t i c  w i r d  

tunnel after f i t e r a l a s s  t l c c k s  t r e a t r e n t  
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F i y .  23  Pcoustit  property of the chanbers 
c e i l i n g .  The noise  source i s  c.ounte2 
a t  the rotor hub locat ion.  pleasurerents 
ma2.e i n  tlre trca tee ch,-mher . 
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F i g .  2 4  Acous t i c  p r o p e r t y  o f  t h e  n e a r  s i d e  wall of t h e  t r e a t v d  

chamber. The  n o i s e  s o u r c e  is mounted a t  t h e  y c t o r  h l ~ b  

l o c a t i o n .  
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