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ABSTRACT

“The objective of this thesis is the refinement of a method for
evaluating the pressure-distribution on a body surface of arbitrary
shape in incompressible flow. |

The §olution to the problem is obtained in terms of the velocity
- potential. However, the formulatior for the potential cannot be
solved in closed form with the exception of a few special cases.
. Hence, the solution must be obtained through numerica1 approximations
which require the use of a high speed digital computer.

" Two different numerical formulations are considered here. In
the first method, the box method, the body surface is approximated by
N small elements, :Z: . Within these elements or boxes, the value of
‘the potential, Q ., is considered constant and equal to the value at
the center of the element, @4 . This results in a system of N linear,
algebraic equations in N unknowns. | |
| The other method is the collocation method in which the unknown
function is approximated by a linear combination of N prescribed
functions which satisfy the boundary conditions of the problem and
N unknown coefficients resulting in a system of linear, algebraic
equations. The specific approach applied here is called the modal

method.

In this thesis, both of these methods are applied to a very thin, .

rectangular wing in incompressible, steady flow. Of the two methods,

- iii -



the box method is moire practical as it is applicabie‘to more general
geome*ries (the modal method requires a new set of functions for each
geometry) and requires less computer time (fifty percent of that

required by the modal method for the same problem).

- iy =




CONTENTS

Section .

/:l, ~ THEORETICAL FORMULATION
o 1. 'Introduction
1.2 Statement of the Problem
1.3 Formulation of the Problem
1.4 The Wake Contributicn
1.5 Methods of Selution
2. THE BOX METHOD
2.1 Geometry of the Problem
2.2 The Box Method
2.3 Definition of Boxes
2.4 Comments
3. THE MODAL METHOD
- 3.1 Introduction
3.2 Theory |
3.3 Formulation
3.4 Least-Square Modal Method
4, ’ NUMERICAL EVALUATION OF THE COEFFICIENTS
4.1 jlntroduction | |
4.2 ,Theory.
4.3 Numerical Solution of the Potential Equation

,._?,,,,,___,,.___,......_r,v...” JE PN . U e e i e

- Page -

[« - BN - ] + ~n

"

-
13

15

18

20
20
20

- 26

29
33
33
33

37




- CONTENTS CONTINUED

Section

5.  HUMERICAL-ANALYTIC EVALUATION OF THE COEFFICIENTS

5.1 Introduction
‘5.2 Theory
6.  RESULTS AND CONCLUSIONS

| 6.1 Introduction
6.2 Modal Method Results 7

' 6.3 Analytic-Numerica] ResultSMﬁ
6.4 'Suggestions for Further Study
REFERENCES | o
FIGURES

 APPENDICES

A DERIVATION OF THE INTEGRAL POTENTIAL EQUATIOHN

ON THE BODY SURFACE
B WAKE FORMULATION
C  DIFFERENCE INTEGRAL FORMULATION
D  MODAL METHOD DERIVATIONS
'FIGURES

-yl -

74

81
86
92
100




7 UFig.
- Fig..

Figure

Fig.
2 _Fig.
Fig.

“Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
" Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

o e W W

10

n

15
16

LIST OF FIGURES

- Boundary conditions

Method development flow chart

Geometry of the problem

Rectangular wing and coordinates
Leading edge and tip emphasis diagram
Symmetrical éomponent of potential
Anti-symmgtrical component of potential

Shape of pressure distribution

Body sub-elements

Comparison of box and mode methods, chordwise
Comparison of bo: and mode methods, spanwise

Potentia] (modal) convergence WRT number of

 surface points, chordwise

Potential (modal) convergence WRT number of
surface points, spanwise
Potential (modal) convergence WRT body thickness

ratio, chordwise

-Potential (modal) convergence WRT body thickness

ratio, spanwise

Pressure distribution, chordwise direction

- Potential (analytical-numerical) convergence WRT

number of surface points, chordwise

- vii{ -

Page

54

55
56
57

58
59

60
61
62
63
64
65

66

68

69
70

ot st £ emgs i 2o wims




Figure
Fig. 17

Fig. 18

Fig. 19

Fig. C1

Fig. C2
Fig. C3

Potential (analytical-numerical) convergence

" WRT mumber of surface points, spanwise
~Potential (analytical-numerical) convergence

 WRT bod; thickness, chordwise

Potential (analytical-numerical) convergence
WRT body thickness, spanwise

Behavior of doublets in neighborhood of the
singularity

Radius of curvature

~ Integration scheme

- viii -

72

73

101

102
103

Ve e 1 e




[

o pmras

H
[ RO

* LIST OF SYMBOLS -

speed of sound

Oy - [6;1 - Dyl

span

coefficient of source distribution
) | ibig

chord ‘

coefficient of doublet distribution
coefficient of doublec distribution in modal method
coefficient of pressure

coefficient of x modes in modal method

coefficient of y modes in modal methcd

ui (Pk)

minimum of the sum of the errors for the modal potential
equétion vhen satisfied in the least square sense

ﬁ Ui(R) & (‘%;)d z

thickness ratio, i.e., ratio of maximum body thickness
to chord .

maximum thickness ratio

integral of doublets

integral of sources

wake contribution integral

- iX -




wake coefficient

number of wing boxes in X direction
number of wing boxes in Y direction
2 ° NX - NY |
pressure

(A T [y

potential mode shape function

body control points

dummy integration points

limit as body approaches body surface

grid mesh size

velocity potential

perturbation potential

unknown coefficients in modal methoa, 7(x,y)
symmetric perturbation potential
rectangular wing coovdinates

wing thickness, percent of chord
Kroneker delta |
intermediate coordinate transformations
(g22)"/? |

differ2nce in potential on wake

solid angie representation of wake
constants in tangent plane‘method

body surface




wake contribution
SUBSCRIPTS

plus

minus _

dummy point of integration
point of evaluation

wake contribution

index along trailing edge boxes
. SUPERSCRIPTS

center

coordinates in nonuniform box definiticn

- x{ -



1. THEORETICAL FORMULATION

1.1 Introduction

The problem of evaluating the pressure distribution on a wing -
immersad in a fluid has, in the past, and is presently attracting a

great deal of attention. 7nc most common method applied is that of
1ifting surface theories using the veJocity potential. The principal
equation used i5 an integral equation which relates the pressure-
difference distribution over the body surface with the downwash pro-

duced by the body surface. This integral equation may be expressed as];

wcxw')=ﬁ@iApcs,“)K( xCynM) dgdq B

where ‘he pressure difference, b“? , is the unknown, and K(x‘g;‘\/‘q‘m)
is the sc-callea Kernel function.

There are twc major objections to this type of approach. The first
of these is that the nurerical solution of this equation is quite
cpmplicated. The difficulties arise from the rather complicated Kernel
function and the numerical integration of improper integrals. The second
objection is that lifting-surface theories are not easily generalized to
include more complicated geometries. Similar objections hold for the
problem of oscillating wings. An excellent analvsis of the status of art

i{s given in Ref. 2.



In order to circumvent these problems, a general method has been
developed in Ref. 3. This method is valid for beth compressible and
incompressible potential flows around bodies of arbitrary shape in
arbitrary motion. The formulation is based on Green's formula for the
equation of unsteady compressibie potential aerodynamic flow.

Although theoretical formulation given in Ref. 3 is very general, the
application of the method is limited to thin wings in steady subsonic
flow. The objective of this thesis is to explore further the applica-
bility of the method mentioned above. However, this analysis is
liiiited, for simplicity, to steady, incompressible flow. In the rest
of this section, the method developed in Ref. 3 is summarized for the
particular case of steady, incompressible flow.

1.2 Statement of the Problem

The equation for steady incompressible potential aerodynamic flow

is given by the well known Laplace's eq’uation1

Va‘/@/==0 1.2

where‘ga'is the velocity potential. Let the surface of the body, 3

be given by the equation

Sg(x,\/,z): O -



- 1
Then the tangency boundary conditions are given by

aﬂ’

- ¥\‘3‘<C£J C 1.4

where ¥ is the normal to the surface .. Finally the boundary condi-

tion at .o is given by
Z = UgX | 1.5
By introducing the perturbation potential, @ » such that

@ =Ugix + @ 16

equations 1.2, 1.4, and 1.5 yield Eqs. 1.7, 1.8, and 1.9 respectively

which are given as:

<?*@o= 0 1.7
and

o2 _ _ 41 oSe 1.8

o [FSal 0X

on the surface S , and finally

B



¢=0 1.9

at infinity. The problem is to determine the solution cf Eq. 1.7 using
the boundary conditions given by Eqs. 1.8 and 1.9, Finally the pressure

1
coefficient may be obtained from the linearized Bernoulli Theorem as

A ¢
and the pressure coefficient is given by
Co==tPx__ _, 00 1.1

1 2
ZQCD Ua)

1.3 Formulation of the Problem

The basis for the formulation of the problem is Green's formula for

the Laplace equation. Green's formula can be expressed as]

Q (7,2} = $L (% VZ,) sor dE

rfF 2%y, ) 2 () d




with

Nl

=[x+ (v -l (2-2] ] 113

where (x, y, z) is the control point and (x], Yy z]) is the dummy
point of integration on the surface 2. The surface 2. surrounds the
body and the wake.

From Eq. 1.13 it can be seen that the poiential is given by an
integral representation composed of sources, T/4UWn, of intensity
(2% /0w ) and of doublets, 0/3wn (14X ), of intensity @ . The
values of a@/dt\ are known from the boundary conditions as shown by
Fig. 1. A1l that remains to be determined is the vaiue of & which is
unknown on the body surface.

In order to evaluate @ on the surface S let the control point
approach a point on the surface Z . As shown in Appendix A this

yields

«3@
e(x,y,z)= ﬁé (XY, 2 e zrrr dg .

z(p Xl)Y|Z)ah 2‘.-1_(‘ )dz



Note that Eq. 1.14 differs from Eq. 1.13 by the factor 1/2% instead of
174 . 1n addition the control point (x, y, z) is on the surface
instead of outside. If @¢&n is known everywhere on ¥ , Eq. 1.14 is a
Freedholm integral equation of second kind, whose solution exists and is
unique (exterior Von iewman's problem of Laplace's equafion3). However,

the surface T. surrounds not only the body but also the wake. The procedure
for treating the contribution of the wake is discussed in the next Sub-
section, where the integral equation given by Eq. 1.15 is obtained and

the methods of solution are outlined in Subsection 1.5.

1.4 The Wake Contribution

As mentioned abovgr the surface 2 in Eq. 1.14 is composed of two
branches; the firsi,frg,tsurrounds the body and the second,y \., Surrounds
the wake. The treatment of the wake introduced in Ref. 3 is used here.

The wake is assumed to be composed of straight vortex-lines emanating from
the trailing edge of the body. Under this assumption. Eq. 1.14 becomes

(see Appendix B)

4

@(x,y,2) = - "'ch,y,c)zwd‘;

+j§lci“(>‘» ) 5l m*)di + Tw

i, C‘!

].]5

with the wake integral, Iw’ given by

O L P )
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Iw"Jj}:\i (pu—v‘(’j} (\i ( ;m{r)dz 1.16

where Zw is the upper side of the surface of the wake. I.: the precblem
cunsidered in the following, the trailing edge is on the plane Z =0

and thus Eq. 1.16 reduces to
+b/p

where b is the span of the wing and JW is given by

- Z
J-W CY-v4)* 4 22 ‘..1 -

Xte — X Y
{( X:g =X + ( 2 V) it Z"} &

Note that the wake formulation is based on bodies having sharp trailing

edge otherwise it is not possible to know where the wake leaves the

body.



1.5 Methods.of Solutjon

The necessary relation for evaluation cp on the body surface
is given in Subsection 1.4 as shown in Eq. 1.15. It may be noted that,
with the exception of a few special cases; it cannot be solved in
closed form. Hence the solution must be obtained through numerical
approxiizate methods, which generally require the use of a high speed
digital computer.

Several methods can be used. The one used in Ref. 3, which will
be called box method, is summarized here. The surface 26 is divided
into N small elements {boxes) EE;{ . The value of Q is assumedto be
constant within each element and equal to the value @ ¢ at the center
of the element. By satisfying Eq. 1.15 at the centers of the elements

:Eai’ one obtains a system of N linear algebraic equations with N
unknowns, @, , which can be easily solved on a computer. A more
detailed description of the box method is given in Section 2.

However, one of the most successful methods for 1ifting surface
theories is the collocation method in which the unknown function is
approximated by a linear combination of N prescribed functions with N
unknown coefficients. The prescribed functions satisfy the boundary
conditions of the problem whose N unknown coefficients are determined
by solving at W given points (collocation points). Thus before
proceeding into a more elaborated problem, the lecitimate question of

which of the two methods is more convenient for this problem must be

o et A e



answered. A method equivalent to the collocation method (called modal
method) is described in Section 3. The advantage to this method is that
it gives a smooth curve solution rather than a solution at discrete
_points. Howevgr, it is limited in that it requires a different set of
functions for each particular gecmetry with increasing difficulty in
guessing appropriate functions with more complex geometries, e.g., wing-
body interference. Alsc, this method requires large amounts of computer
time, nearly twice the amount required by the other methods explored.
Thus it was decided to continue the analysis of the problem by
using the box method. Next it should be noted that in Ref. 3 the
coefficient of the equations of the box method are evaluated analytically
by assuming that each surface element can be replaced by its tangent
plane at the center of the element. This hypothesis is adequate for very
thin wings (thiciness ratio 7Y < 1%). However, even for moderately thick
wings (7Y =10%) the condition that, in each equation, the sum of the
coefficients be equal to one is only poorly satisfied3. Thus another
legitimate question must be answerad: can the convergence of the solution
be improved by using the correct surface element and evaluating the
coefficients numerically (instead of analytically)? This method is
described in detail in Section 4. The results obtained in Section 6,
however, indicate that the condition that in each equation the sum of
the coefficients be equal one is fairly well satisfied for thick wings,

but poorly satisfied for thin wings.



Hence, a third approach for the evaluation of the coefficients
was explored. The coefficients are first evaluated analytically with
the tangent plane hypothesis. Then they are corrected by adding the
integral of the difference (between correct-element integrand and
tangent-plane integrard) evaluated numerically. The details of this
procedure are given in Section 5. The results (Section 6) indicate
that this procedure (numerical-analytic evaluation of coefficients) is
better than the purely analytic and the purely numerical procedure.

A diagram outlining the development of the above methods is given in

Fig. 2.

- 10 -



2. THE BOX METHOD

2.1 Geometry of the Problem

The body used for studying the relative efficiency of the
differert methods is the same as that used in Ref. 3, i.e., a rec-

tangular, thin wing in steady flow. For this particular problem,

 alternate numerical solutions (lifting surface theory, Ref. 4) as well

as experimental results (Ref. 5) are available.

The wihg used has a symmetric profile with thickness i given by

h=7034%-74-€‘1'§)'11-;\1 2.1 .

The tnickness ratio (i.e., the ratio of the maximum body thickness to

the chord) is given by
2.2

Rearranging Eq. 2.1 gives the geometry of the wing at zero angle of

attack in terms of i’; and ’v’l as

-1 -



X=cg
7= 2§

3 2 o X
Z=1t7c 3———?‘\_{?\1&@) i..'r{ 2.3

and plus (minus) is for the upper (lower) side in Eq. 2.6.

For angle of attack, of , different from zero, the following

coordinate transformation is used

X = X CoS&k + Z Sin

7- 2.4
-~ X SinX + Z teS§

W~
W



2 T @ o o A ST % e

i

e

For purposes of comparison with the methods presented here and other

methods, all results are evaluated at an augle of attack of 5° (Fig. 3)
2.2 The Box !ethod

The box methoa is used to evaluate the ccefficients of the source,

doublet and wake contributions. First consider the body surface, ) B’
as divided into elements

dZ:i. With this assumption, Eq. 1.15 can
be written as
27 QP) = € L4y, +
N g 2.5
> f(?ga;\(j;—)dzx+1w
A= 5,

Applying the Mean Value Theorem and assuming that the potential can be

approximated by the value at the center of the element yields

2.6

-13 -



where the index ff applies to the trailing edge boxes only for wake
considerations. Fi--1ly, satisfying Eq. 2.8 at P(k), the centers of

the elements yield

@ = b, + 2-Cy; CP.'L*ZWKI @

2.7
The coefficients bk’ Cpis and wy; are defined by
\
by =& L L 45
K an X’ © 2.8

and »

- 14 -



Wy = +[J} dy, 2.10

AY

Rearrangment givesthe final form as

. L — = 2.1

with

QA :Sr\,{“cki - Wi, 2.12

where 8 ki is the usual Kronecker Delta.

2.3 Definition of Boxes

§ } In defining the boxes on the body surface, first consider the

classical transformations.

- 15 -



X
il
(o)
A%
O
N
<my
AN
——

2.13
n -1 & & #1

~
1)
wio~

This reduces the wing to one with chord equal to one and span equal to

two (Fig. 4). iivte that 83 /oSx%q , and OS /9y4 are infinite at the
leading edge and tip of the wing, respectively. This suggests a modifi-
cation of the body surface boxes that gives a better description of the
leading edge and the tip. This is best accomplished by using a non-
uniform mesh for the definition of the boxes which is expressed mathe-

matically by the transformation,

O £ % £1

v@]
)}
bq

2:.14

i =1—(1->7ﬂ-§; 12y <

-

This causes the boxes at the leading edge and the tip to be smaller
than those not aleng the leading edge and Lin Fig. 5). Boxes of

constant size A X, &Y in the plane X, i yiven by

- 16 -
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ax = 1/NX
Ay = 1/ NY

2.15

are used where NX and NY are the number of boxes in direction X and ?,
respectively. - In other words, the center of the box, (m, n) is given by

(see Fig. 5),

=€) _ 1 =
Xm - (Y\‘\——l—)AX Y‘ﬂ"-‘-")...)NX
2.16
S© 1VAY e
Yoo = (0= 3J2Y wm=1,,.. Ny
whereas, its boundaries are given by,
R - {0
Xy £ X £ Xy
(m) s 2.17
~{m - (P
<
tf‘\ - 7{ - L e

with

-17 -



'42=‘f?— %g#(m-ﬂai

:?2 ;S3~F-%; = wmaX

Tamde s E Tnened o,
I = ”:f)-*- %:‘ =AY

Note that, for each set of values m and n, there are two boxes, one.
on the upper and one on the lower side of the wing; hence, the total

number of boxes on the right hand part of the wing is

N = 20 NX-NY 2.19

2.4 Comments

The results obtained in Ref. 3 indicate that the method is both

fast and accurate for very small thicknesses. However, the condition

-18 -



N
.2 Ci =1 2.20
A=1

(which should be satisfied by the coefficient&,cki, Ref. 3, Eq. 7.22) is
satisfied within a 4% tolerance for thickness ratio ‘T~ = 1% while for
T-= 10%, the condition i 7nly satisfied within a 24% tolerance. In

order to improve this condition, twc approaches are available: trying

a different method or improving the evaluation of the coefficients in

the box method. Both approaches are explores in Section 3 and Section 4

respectively.

-19 -



3. THE MODAL METHQOD

3.1 Introduction

The so-called modal method is a method for determining the
pressure distribution on a body surface by approximating the shape of
the aerodynamic potential with a series of mode shapes iﬁ the spanwise
and chordwise directions. Once the shape of the potential has been
determined, the pressure distribution can be obtained by differentiating
according to Eq. 1.11. The results obtained from this method are in
very close agreement with those obtained with the box method.

Although a straight forward, fairly uncomplicated method that
gives good results in a wide range of thickness ratios, this method
has one undesirable quality. It is quite good for relatively simple geome-
tries but assuming the series representation of the potential for more
involved geometries is quite difficult. One of the main interests in
evaluating the pressure distribution is for wing-body interference and
for this method, estimating a potential shape such as this would be
quite difficult. Also, this method requires large computer time, up to
twice as much as the box method.
3.2 Theory

As mentioned in Section 1, an alternate method, the modal method,
is explored before attackfng the oroblem of thick wings. The modal metnod
approach is to approximate the shape of the potential by a series of mode

shapes in the chordwise and spanwise directions. This results in a

- 20 -



system of N mode equations with N unknown coefficients. Once the
potential distribution has been determined, the pressure distribution
can be determined using £q. 1.11.

The medes of (¢ are chosen as follows: The function @ can be
separated into symmetric and anti-symmetric components with respect to

the midplane of the wing (Fig. 6a & b) as,

The symmetric part is given by (Fig. 6a),
356
= U LXIY) 3.2
€ 1 ?‘ €% P9

where

S _ P 28
UW(X,Y) = X Y 3.3

-21 -




For the anti-symmetric part (Fig. 6b) the modes \J

follows:

coefficient for 1ifting problems

Cp = —2 5x

N
=%3: K, o (-x" 1-y*y"

mzoNnN=o

. are chosen as

consider the classical modal expansion for the pressure

3.4

which satisfies the Kutta condition at the trailing edge as well as the

general behavior shown in Fig. 7.

one obtains (Appendix D) a modal expansion for @ given by

Q@ = Ei’ (XY)

where ¢ . is related to K = by the relation

a

[]
3
= m+=)—m mMm=-0..M
Kmn @mﬂln( 2") §W\n‘\ L

-22 -

By integration with respect to x,

3.5

3.6



. i A : .
(with @ o 0) and U\, o 2re the desired modes for the expansion

for @ . The expansion for Um“is given by

i
U:“ (X¥) == [—W (1-x""* &

3.7
-1 |_Z<_ {2 y®
Sm,o Taw =x |Vl=Yy~ Y
where the plus (minus) sign holds for the upper (lower) surface of
the wing and
3.8

S-mjo -0 ‘S"O!‘ A3} i o

is the welt known Kronecker Delta.

Combining Eqs. 3.1, 3.2, and 3.5 one obtains

- 23 -



> 8°
@= % eV

pq Vpg 9
™ A
s 3.9
+ ;i{ @mn Una (X.Y)
Equation 3.9 may be rewritten as
PQ+MN
Q= 12@)\ U, Ky) 3.10
where
S
@j:é?q A':“,c..JPQ
N
UA.(X‘\/)- U %(X,\/) A= 1,...,°Q

- 24 -



with

and
A Y
é . = é A :PQ+1 J see
A mn
., (PQ+ N
A .
UA, Ooy) = U (xy) A= P+, , .,
oo, (PQEAN)
with

A =2PQrm +M(n-1)

- 25 -
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3.3 Formulation

Consider the equation for the potential on the body surfa:ce as

given by Eq. 1.16 and repeated here for convenience

3.15

In the inodal method, the unknown 4 is assumed to be a linear
combination of M known functions, \U¢(P), (modes) with M unknown

coefficients 45 i Mathematically, this is given by Eq. 3.10 or

@ =2 q),; Ui (P) 3.16

Substitution of £q. 3.16 into Eq. 3.15 yields

- 26 -



reZduw = $92Ldy

3.17

TR ANCEICIEP A
Ze

with a@/c)‘n given by the boundary conditions. Satisfying Eq. 3.17 at

M control points Pk yields

ZDM@= bK + 2 Eki @A. 3.18

+ 2 Wi b,

where

! - 27 -



where Ji is defined in Appendix B and is the wake contribution

Equation 3.18 can be rewritten as

4583 =0

- 28 -
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where the matrix Aki is given by

[Axi] - [ij] - [[ KJ - [W“;I 3.21

Once the unknown coefficients @ . have been determined, (¢ can be

evaluated from Eq. 3.16. The coefficient by can now be evaluated as

oQ ,;Br\ is known from the boundary cond{tions. lote tha* once the values
of d; i-are known, the 1ifting component of the pressure coefficient can
be evaluated using £q. 3.4 with Kmn given by Eq. 3.6.

5; : - 3.4 Least-Square Modal Method

In the form thus far developed, the modal method can be used but
is limited to a small number of collocation points, since for more than
a few collocation points computer times are very large (18 minutes is
required for 4 collocation points). However, four collocation points
é EE does not guarantee that the solution is close to the correct one. For
| this reason, a method which aliows few modes (4 was found to be sufficient)
and many collocation points (36 per surface in 18 minutes of computer
time) is developed here.

To begin, consider %q. 3.20 in the following form

T T TR o RO T s SN gy 5 on s s et s s e e

-



EA (b ~ b =0 3.22

Q...

~ If the number of collocation points,or equations (i), is equal to the
number of unknowns of modes (j), then Eq. 3.22 can be satisfied
exactly. However, for the case when iy j, this equation cannot be
satisfied exactly, but, rather in the least-square sense. Using the

method of least-squares, Eq. 3.22 is replaced by

A PO S LS

.4 1

where E is the sum of the minimum errors. Note :ore that N .
points
# Mnodes' Next, in order to minimize the error E, set the derivatives

of the error with respect to é?k equal to zero:
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2_ i?* (?A,&)JB)‘ - b4)

[%%*(A‘J ¢ - bx))]}-: o

Using Eq. 3.26 and expanding Eq. 3.25 yields

A

gzp\m% d; = 2 Aicbi =0

SinceA[Aik] = [Aki]T and rewriting £q. 3.27 gives

ff\m] LAG188 8 - [Ani] J{bg=o
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Finally, for convenience, write Eq. 3.28 as

Tao]igd -fad

Q] = FAM]T[AA‘)‘]
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4. NUMERICAL EVALUATION OF THE COEFFICIENTS

4.1 Introduction

The purely analytic method, Ref. 3, is limited in that its reliability
is not assessed for wings of thickness ratios in excess of 1%. This
"1s true because of the nature of the method but, on the other hand, a
purely numerical approach seems well su’.ed to the problem of thick
237gs. The final results of the purely numerical method shows that
although well suited for thick wings, the thicknesses that can effective-
1y be evaluated are too great to be practical. Considering the results
of both methods, the reasonable solution is a combination of the two
methods, which is considered in Section 5.
4.2 Theory

First consider the surface 2. divided into elements dii as

shown in Fig. 8. For this case, Eq. 1.15 is rewritten as

Zean r
“L 5 ] 4.1
23 ffedbyar + 1,
A=t y. x

where Iw is the contribution of the wake as discussed in Appendix B.

The mean value theorem gives
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Jedtinn=af sher ..

P

i

where Fei is the appropriate value in the element Xi. In other

words,'(:a ; can be approximated by the value of Qi at the center of

the box. With this in mind, Eq. 4.1 can be written as

on B
Zy
" 4.3
+Z_Qxf§—’n(1{-)di ‘1"2‘?1"\/1

The 1 in the last term covers only the trailing edge for the cocntribu-

tion of the wake with

Wy = if Je dy1 4.4

Ayx
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where the plus (minus) sign is used for the upper {lower) side of the
wake and Jw is as defined in Appendix B. Finally, by satisfying this

equation at P(k), the center of the box, one obtains
@k = by 120G+ 2V 4.5

where

ds 4.6

and

em;szgg(‘a;dzi .
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The value of Tk is the distance from the dummy point of integration to

the center of the element or

re =(¥) = [p(w —p | .8
Tp=plK)

Finally W . is given by

ki

Wi = [W,i ] 4.9
| P=PK)

for the boxes along the trailing edge. Boxes other than on the trailing

edge for wake contribution are given by

The final form for the solution of this problem is given by
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A

with

Qi = §i— Cui — Wi

where & ki is the usual Kronecker Delta, viz.

Swi =1 K =4

Swi =0 K# 4

4.3 Humerical Solution of the Fotential Equation

4.1

4.12

The potential integral, as given by Eq. 4.1, contains a singularity

in the ratio 1/r. As the point being evaluated, x, y, z, is approached

by the dummy point of integration, Xys Yo 215 ¥ tends to zero and the

integral becomes singular. This problem can be eliminated by the intro-

duction of polar coordinatas
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dxdy =gdrde

with the Jacobian given by

_ | d(X,Y)
-~ | d(r,e)

4.13

Also to be considered are the singularities formed by the leading
edge ( %;;z = 0o ) and the tip ( §§ = 00 ), These sinjularities are
eliminated using the transformation given by Eq. 2.14. A method for
eliminating both types of singularities simultaneously is showr in

Appendix C.

Finally, Eq. 4.6 must be put into numerical form and the Gaussian

parameters introduced. First consider the source coefficient, bk

—[[ 1 32 , 4.14
b“ _Jfl“lfr on d{»t
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with the upper surface given by the following:

S=2-%2,(xy) =0

Rewriting Eq. 4.14 yields

_ 1 S /Ox

Introducing £q. 4.15 gives

— 1 Y4
by = ﬂzm" 5% dX1dyq

-39 -
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<p i Vg,

*
Using Eqs. 2.13 and 2.14, Eq. 4.17 yields

0Zu o b AX(1 Vdwd Y
by =fj A e ¢ B4R _y)axdY

For convenience, rewrite Eq. 4.18 as

b“-_-ﬂ H(X,Y) dxd¥

and finally, in suitable numerical form as

bk 22“"’1)’ F“ 52.() y))

L TN .
Note that the Jacobian of the combined transformation is given
¢Raxy
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where wyij, X& and 75 are the Gaussian quadrature weights and abscissas.

In a similar manner, consider the doublet coefficients

1
KJ j/ o TT——) dz 4.21

which can be rewritten as

csz-ﬂ S VT 4% L2

[vs

Since using Eq. 4.15, f%%a = dxy dyq, the above equation can be rewritten

as

CKj [ VS ©dxdy, 4.23

using Eqs. 2.13 and 2.14, ‘'one has
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4.24
4% (1~¥ )| ckdy
which, for convenience, can be written as
. _ = A d’-
Cyj ..f H(x,¥ ) dxdy 4.25
| Finally, Eq. 4.25 can be approximated in numerical form as
Cj ’rjzwa) H (%i,9;) 4.26
!} .

- 42 -



Finally, t.> system given by Eq. 4.11 can be evaluated to form a
systen of N linear, simultaneous equations in N unknowns. For a
high speed digital computer, the generation of this system is limited
in the number N hv tne available comouter storace. Tae solution can
be obtained using Gaussian elimination with pivoting. Gaussian
elimination is quite suitable to the solution of this system as there
is the possibility of the matrix becoming sinyular. The subroutine
used to apply the Gaussian method fs not particular to the program
devised but is the IBM subroutine "GELG".

Finally, the solution of the pressure distribution is obtained

by taking the derivative of ¢ with respect to x as shown in Eq. 1.11.
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5. NUMERICAL-ANALYTIC EVALUATION OF THE COEFFICIENTS

5.1 Introduction

The purely analytic method gives good results but only for thin
wings. On the other hand, the purely numerical methud gives goed
results but only for thick wings. A good method for evéluating
moderately thick wings (i.e., wings of thicknesses in the range of
those in practical use) should incorporate both methods. Tais
combination is outlined in this Section.

5.2 Theory

Tﬁis method is based on evaluating the surface both numerically
and analytically to get the proper results. To begin, the body is
approximated by tangent planes. To do this, first consider a tangent

plane element in x, y, z so that z, is given by3

Zoe=Z —%X —=RY

with the surface, S, given by

S=Z-ax-Qy -2,=0
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The exact expression for the doubiet contribution is given by

<3= ] VS VO 4y dy 53

The expression for the doublet contribution in the tangent plane m:thod

is given by a similar expression as

(ij).r:“j(j(vs'—r%_vrr)dhd‘lﬂ 5.4

with the subscript T indicating a "tangent plant" evaluation; in

particular

VS =4-% 5.5
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The combination of these integrals, the difference integral, becomes

Al = S - (CKJ')T

AAXRAY VSre VP,
_]/( ——‘:—:3—— — —F—Jd)qd)’i
T

This integral is evaluated numerically using the method indicated in

5.6

Section 4. In a similar manner, the correction to the source contribu-

tion is considered as

1 (97 :
“ by f/zﬁr iy -ZTTFT(aTu)T dx dy, >

also to be evaluated numerically. These differences will be added to
the tangent plane approximation to yield a better estimate of the
coefficieats Cy; and bg. It may be noted that higher numerical ervors
can now be tolerated since “errors on the correction" have small effect

on the coefficients.
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6. RESULTS AND CONCLUSIONS

6.1 Introduction

The three methods proposed, the modal method, the numerical ‘
method, and the analytical-numerical method, were proarammed on a digitai
computer. Comparisons are made against experimenta]4 and ana!ytica75
results. The body surface used is a symmetrical wing at a 5° angle ¢
attack (see Subsection 2.1). )

6.2 Modal Method Results

The modal method yields good results but is limited in apolication
with respect to the complexity of the body geometry involved. MNumerical
results obtained by using this method ﬁere very satisfaciory for a good
range of body thickness ratios. Comparison of the modal method is made
with the analytical method using tke same problem considered in Ref. 3.
The problem is a rectangular wing in steady subsonic flow (Subsection 2.1).
The number of modes used for the solution is four.

First, consider comparison with the box method3. Figures 9 and
10 show the comparison between the two methods in the chordwise and
spanwise directions, respectively. Note that the slope of the diagrams
for the box method and modal method compare favorably. Remember that
the pressure distribution is the derivative of the potential so that
the importance of the slope agreement can de brought into perspective.

Next, consider the convergence of the mcdal method in terms of the
number of evaluation points. Figures 11 and 12 depict the convergence

in terms of the number of points of evaluation on the body surface in the
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chordwise and spanwise directicns, respectively. Agreement hera is
extremely good. It may be noted that the solution using this metnod is a
smooth curve and not discrete points. Points between the solution
for six points show excellent agreement for five, four and even three
points. Also, it is observed that fewer points describe the curve
with less accuracy, but even for few points the agraement is still
reasonably good.

Finally, the effect of the thickness ratio is considered. 1In
Figs. 13 and 14 the convergence for hody thickness ratios of .1, .01,
and .001 is shown in the chordwise and spanwise directions, respective-
ly. The results here are typical of those for the box method3. Again,
the behavior here is what is expected as discussed in Subsection 6.2

Results for the modal method show it to be a reliable method
for varying thickness ratins but, unfortunately !imited in its use due
to the difficulty in "quessing" the shapes of the potential, and thus
the modes, for complex geometries (i.e., wing-body interference).
Furthermore, the computer time is much longer than for the box method.
Hence, as menticned above, the box method is considered to be superior
and was investigated more deeply.

6.3 Analytic-Numerical Rasults

The analytical-numerical method provides very satisfactory results

in a varying range of thickness ratios. It is the varying range of
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applicanility with respact to body thicknesses that makes this metnod
s¢ desirable.

The ¢~al tice-nuinerical method is cempared here with experiments
;hﬁ;also with the purely analytical method in order to evaluate
- the imorovement. Furthermore, the convergence of the method ard the
thxckness effecis are also exémined.

Figure 15 shows a comparison of the analytical method, the analytical-
numerical method and experiments using the wing in Subsection 2.1 at
an anadle of attack of 5° and athickness ratio of 1%. Results here show
that the analytical-numerical method provides a good description of the
pressure distribution with respect to experiments and therefore, the
1ift, the area under the pressure diagram, is also described well. Ncte
also that both the analytical and the analytical-numerical methods compare
favorably.

Next consider the convergence with respect to the number of points
of solution on the body surface. Since the solution is a solution of
discrete points it is necessary o check that when liic number of
points of evaluation is changed, the solution converges to the same
curve. This is shown in Figs. 16 and 17 for various numbers of points
in the spanwise and chordwise directions, respectively. For a wing with
six points of evaluation connected by a smooth curve it is evident
from Figs. 16 and 17 that the solution based on 3, 4 and § points lies

satisfactorily on the same curve.
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Finally, consider the influence of body thickness on the results,
Here the potential is plotted in tue spanwise and chordwise directions
in Figs. 18 and 19, respec;ively. The thickness ratio is varied in
these figures frm .001 to .1. The behavior is as expected. lote
that at the tip and leading edge, the variation is <mall, while at the
root and trailing edge the variation is larger.

In summary. it is evident that the analytical-numerical method
provides good “esults for a large range of thickness ratios. Note
that a body thickness ratio of .1 is a wing with maximum body thickness
to wing chord ratio of 10%, well within practical body thickness ratios.
Since the method is also convergent, it has proven to be quite a re-
liable and accurate method. |

6.4 Suggestions for Further Study

The geometry evaluated in this thesis are of the most simple
case, a symmetrical wing at a small angle ot attack. Obviously, this
geometry was chosen for its simplicity in testing the methods as it
is easier to program and debug. It is also quite obvious that the most
advantageous quality of this method is the evaluation of complicated
geometries to include the problem of wing-body interference. It is
therefore suggested that a study of complicated geometries be made using

the analytical-numerical mettod.
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v

Because of the nature of the formulation of the problem, it is by
no means restricted to steady, incompressible flow as considered by this
thesis. It is suggested that the numerical formulation be extended to

include unsteady compressible {subsonic and supersonic) flow-fields.

- 5] -



3.

REFERENCES

Ashley, H., and Landihl, M. T., Aerodynamics of Wings and

Bodies, Addison-tlesley Publ. Co., 1965.
Achley, H., and Rodden, W. P., "Hing Body Aerodynamic
Interaction," Annual Review of Fluid Mechanics, Vol. 4, 1972,

pp. 431-472.

Morino, L., "Unsteady Compressible Potential flow Around
Lifting Bodies Having Arbitrary Shapes and Motions," TR-72-01,
Department of Aerospace Engineering, Boston University, 1972.
Cunningham, A. M. Jr., "An Efficient, Steady Subsonic
Collocation Method for Solving Lifting-Surface Problems,”

J. Aircraft, Vol. 8, No. 3, March 1971, pp. 168-176.
Lessing, H. C., Troutman, J. C. and Menees, G. P.,
“"Experimental Cccermination of the Pressure Distripution

on a Rectangular {ing Oscillating in the First Bending Mode
for Mach Mumbers from 0.24 to 1.30," NASA TH D-344, 1960.
Abramowitz, M., and Stequn, I. A., "Handbook of Mathematical

Functions," vover Publ. Co., 1965, pp. 916-919.

-5 -



FIGURES

~ 683 -



VELOCITY
AT
Pa
PERTURBATION
VELOCITY
1y -
Uco

BOUNDARY CONDITIONS
FIGURE 1

"NORMAL COMPONENT

OF
PERTURBATION
VELOCITY

/



- - - ] T et e g W Ak, Ay, W

£y LR [T

o THECRY
<E (REF.3)
£
- | oo
METHOD (SEC 3
ANALYTIC NUMERICAL
EVALUATION EVALUATION
OF OF
COEFFICIENTS COEFFICIENTS
(SEC 5) (SEC 4)
ANALYTIC - NUMERICAL
EVALUATION
OF
COEFFICIENTS
(SEC 5)

METHOD DEVELOPMENT FLOW CHART

e i

FIGURE 2 R



GEOMETRY OF THE PROBLEM
FIGURE 3




TR TR T RPN TR ROV TR T TR VKT AR T T IR
& e oca

g e
Voo f

=
-‘M

oy b

N -

-
Y

Jo
=
=y

1.J-

urs | =}
- ) -

IVNiDR0

a

TTFI?JP’?P
= V0 TNy
LY \,0}:1 "}’O

v e
Ni LAY
s \"l u‘.

Pt

RECTANGULAR WING AND
FIGURE 4

COORDINATES



W+ + + +
W—+ + + +
75"’ + + + +
Vol—+ + + +
T T T R X
K % 1 2 3 4
(c
y
(c
A3
(c
L
7=(c)
Y
g gl gl g(c) &
1 *2 3 4

LEADING EDGE AND TIP EMPHASIS DIAGRAM
FIGURE 5



- TR

A #
§2
I )
SE /
Sx ~ |
£5 | |
e / |
/" POTENTIAL
/" ~2_ WING PLANE
| - -%
S
—-—————i ——————
!
/7

SYMMETRICAL COMPONENT OF POTENTIAL
FIGURE 6a



~ ANTI-SYMMETRICAL COMPONENT OF THE POTENTIAL
| FIGURE 6b



ORIGINAL PAGE IS
OF POOR QUALITY

RIGHT HALF OF WING Pl_AL\lE;

e R, G, S——— Gt—

ANt

m.nulhuﬂan‘Il ———
\ |
N\
'Ill\\\‘\ h _
|

FIGURE 7

SHAPE OF PRESSURE DISTRIBUTION




BODY SUB -ELEMENTS
FIGURE 8




w ﬁ |
S8
37 gs
58
= |
EE |
Se l
|
BOXES !
+
9. MODES |
|
|
|
|
|
|
314 I
|
%
n
l.
|
|
, , |
4 - : [
LE. .25 50 75 C

COMPARISON OF BOX AND MODE METHODS, CHORDWISE
FIGURE 9



+ BOXES
3l +  MODES
24
1+
‘ : : :
ROOT 25 50 75

COMPARISON OF BOX AND MCDAL METHODS, SPANWISE
| FIGURE 10 |

b
2

_.g



. M
L - ~ ——— Pr : T L e S RS A L e e e ek T ML e 4 e Al A B e e o et e el TEpeR CT g SRRAG MR e | T e MR esTA Ay
. ¢ 3 3 B [ . . N < - ' ' . . ¢
£ . 3 =3 . . ‘ s . . . i
3 -

-

:2 -4

L]

6 BY 6 POINTS

+  5BYS POINTS
X  4BY4 POINTS
o  3BY3POINTS
14
LE.I 25 50 75 C ¢

POTENTIAL (MODAL) CONVERGENCE WRT NUMBER OF SURFACE POINTS, CHORDWISE
FIGURE 11

-



: SR cen e s a1 < ot = A 3y Ry o P e s ety S e g 91 w; . T; e il *m;
A# i :
3T 6 BY 6 POINTS
+  5BYS5POINTS
X 4BY4 POINTS
©  3BY3POINTS
2+ SJ g
SE
> &~
EE
Se
14
ROOT 25 50 75 b/2

POTENTIAL (MODAL) CONVERGENCE WRT NUMBER OF SURFACE POINTS, SPANWISE
FIGURE 12 |



T e o T L ] D N e A O, A T T O+ S R

» b

‘\\‘_» PR
i
T=A1
T =.01
T =.001
: / y J 4 $ o g
L.kl .25 50 75 C
',v POTENTIAL (MODAL) CONVERGENCE WRT BODY THICKNESS RATIO

FIGURE 13



I T T - B S e e S g c f wee s sl R FA T R YR SR W AR A WS WSV b e
o B . A
T <k ‘ . u

oQ =
32

ROOT 25 50 75 'b/p —n

POTENTIAL (MODAL) CONVERGENCE WRT BODY THICKNESS RATIO B

FIGURE 14

M e I At



B aCHMrA LS ks St Mde & R A PR A

Ce f
ANALYTIC -NUMERICAL METHOD
+ PURELY ANALYTIC METHOD
o EXFERIMENTS
+ =01
o= §°
L.E. .25 50 75 C

PRESSURE DISTRIBUTION, CHORDWISE DIRECTION
FIGURE 15



AP

6 BY 6 POINTS
5 BY 5 POINTS
4 BY 4 POINTS
3 BY 3 POINTS
LE. 25 50 75 C =n

PCTENTIAL (ANAL-NUM) CONVFRGENCE WRT NUMBER OF SURFACE POINTS, CHORDWISE
FIGURE 16



+

3t
6 BY6 POINTS
5 BY 5 POINTS
4 BY & POINTS
3 BY 3 POINTS

24

14

ROOT | 25 50 75 b ¢

POTENTIAL (ANAL-NUM) CONVERGENCE WRT NUMBER OF SURFACE POINTS, SPANWISE
FIGURE 17

et e e e e nm cesal v mEe AT gAY N A



ROOT 25 50 75 b/

1 1 1
) T

=N

PCTCNTIAL (ANAL-NUM) CONVERGENCE WRT BODY THICKNESS, SPANWISE
| | FIGURE 18



T Ty bt w T anna

“Ag

T, TR TR § AT YR Uty e R

S A A N A L

Q
/

— T =
+ T = .0t
=y O T =.001
oo
::
Er
B
£8
2 g

-&

L.E.

.25
POTENTIAL (ANAL-NUM) CONVERGENCE WRT BODY THICKNESS, CHORDWISE

' 50 75 C

FIGURE 19

R L VIS TR L SO Iy



APPENDIX A
DERIVATION OF THE INTEGRAL POTENTIAL EQUATION ON THE BODY SURFACE

For the sak2 of completeness in this appendix, the derivation
of Eq. 1.12 (Ref. 3) is summarized. For convenience, Eq. 1.12 is

given here as:

_ 3@ LY
@(X,Y,Z}:—ﬁ ‘E(XM\A :21)4§ﬁ'_d‘>"
_ o Al

1 .
+ﬁ( RUX4 %, ) e dl
z

where

7 A.2
'y ::[(X-'X1)2+ (‘/-Yq)z =~ {(Z- 21)2] g

When the point P is allowed to approach the point P,, as shown in

Fig. Al, the integrands of Eq. A.1 become singular. In order to per-
form the limit it is convenient to isolate a neighborhood about P,
having area ¢- and radius £ . With this in mind, rewrite Eq. A.}

as:
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With obvious definitions of Ig, Ig and 1)

First consider the doublat integral
! 7]

L = +
D ID Iv

Consider a local coordinate system E. » N\ s 5 as shown in Fig. A2

in order to evaluate ID . Assume the area < to be circular having

radius € , so small that ¢ can be replaced by its tangent plane.

Rewriting ID in the new variables yields:
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and

o ( 1 _ 1 an

5@(47”‘) 2 gwes
= - Q

4T3

Combining yields

S { S5 31 1
5—51(7) Q&% (W) i
= =C

| =
:

Using A.6, Eq. A.4 becomes

an &

= ‘Sff Q aQ 4.n,r)dgc\u | . A.7-
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For very small £ , ¢ is nearly constant and can be replaced under

this assumption by its value at the point X«, Yai, Zx @S

@;‘. - @LX)“) Y)t‘ ) Z*)

Equation A.7 now becomes

'S
u o o { X
ID - ”Sw*aq‘fa_?'(———ﬁr)dQ
(e Q':é‘
{
R=0
= _E(Zié( 1 - S )
A \lg:‘sfsﬁ
As ;? goes to zero, i.e., X, y, z approaches Xx, Y, 2x, Eq. A.8
becomes
'} 73 [—
Ll'm 10 - ’,],m L . v —~]:E?T+'¥:'
(X)Y‘Z)') (Xx ,Y){)z-’) 20 ‘ -
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[ivo ID = T2
(X,Y,2) = (X, 7x,2Zx)

Combining Eqs. A.3 and A.9 and applying the limit as P-» ?, yields

||T“-I = =X ! ' .§L_ 1
PR 2 T Ig_-':o @ oy 47rg)df A.10
2%

with

' 2 2 Y2
= [ Xx=XV + (V=) + (2,-21}1]
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Similar treatment of the sources yields no special contribution from

the neighborhood of P *.3 Equation A,1 can now be written as:

e(P) =-df 22 (1 )ds

d 1 - @)
+ﬁ @an‘(z\.?ﬂ')dz-‘- 2‘

After combining terms, the form of Eq. A.1 on the body surface is given

as

AN

where the second integral is obtained as a limiting case for&->0,
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AFPENDIX B
WAKE FORMULATION

for completeness, the formulation of the wake given in Ref. 3 is
summarized here. According to the linearized Bernoulli Equation,
Eq. 1.15, for steady flow, there can be no pressure jump through the

wake so that on the wake

%‘(Qu—(pj) =0 B.1

For Eq. 1.15, the expression for I, is written as

_ 9 (1 B.2
Iw "’j( ( ((',u_“Qg ) on (";.") dZ

7/

zw
where Zwis the upper surface of the wake and M is understood to be
the upper normal. The surface Zw is shown in Fig. B1. HNote that the
surface of thz wake is not known and Eq. 1.14, which is satisfied on the
body, must be completed by the equation on the wake. From Eq. 1.15,
the velocity or. the wake is tangent to the surface of the wake. What
results is two counled equations, one on the body with 0Q@/On  known
and Q unkncwn and the second on the wake with (f‘-Q /9w unknown and

AQ(=Q,- ®¢) constant along the x - direction on the wake and
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equal to the value of A@ at the trailing euge. The geometry of the
wake s determined given the condition that the velocity is tangent to
the wake by knowing the velocity on the wake, 2Q/On .

To simplify the above procedure, consider the following. First

note that

B.3

where

dY =n.5dL =dfcesinn
n i ©
and d54is the solid ary'e shown in Fig. 26 as
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b e L e N A e v

)
_ a2
dn= S5 .

flext, consider the wake integral as a sum of strips of width dy in the
x direction as shown in Fig. B2. Applying the mean value theorem to

£q. B.2 combined with B.3 yields

Iwz—//_\?(y) g
T

B.5
_ T
'-ZA@(Y)I" dD—
J
<.
J
By noting that the integral is the s0l11d arjie Q.. for each slement
Zj one obtains
Iw - - EAQ(\/,‘)A_Q_)' B.6

(Note that Aq 1is a function of y only)

From Eq. B.6, it can be seen that the wake contribution is &

function of the solid angle so that a reasonable geometry for the
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~ wake is one in which the solid angles &.0 remain fairly constant. This

suggests the possibility of approxinating the wake by straight vortex
lines, parallel to the direction of flow, emanating from the trailing
edge of the wing since geometrical considerationé show that the solid
angles change only slinhtly3 With this assumption, the wake equation
simplifies considerably and its contribution reduces to a line integral.

Assuming the trailing edge to be given by
X = XgelY)
Z = Zig(v)

the equation of the wake surface becomes

Sw = 21 -Zu¥) =0

and

:—ﬂac{:(vs r) 3 dx(dy4

//A@[ 2 (44-Y) + Zulh) b 5.7

b
:i}(;k(P :]:v ‘3‘71
-Y2
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where b is the span of the wing and

T :[z,-z—‘fy“* '—-\/)]f 59y
w L

Xre
B.8

[Ly ‘z) AYTC (\11 ﬂ "1 X=X

(V-4 (z-2)*| v

Kre

with Z1 = ZN(Y)' If the trailing edge is in the plane Z= 0,

Eq. B.8 reduces to

J = —*2 K
w T (71_\/)2*22 L.

—

é(&e—‘ﬁz&(‘ﬂ—‘/)z v 22 }W'

Note that the above discussion is for bodies with a sharp trailing
edge only as it depends upon the known location of the stagnation point
from which the wake emanates. For bodies without a sharp edge, €.5.,

a rotating cylinder, this formulation is not applicable.

- 85 -




APPENDIX C

As mentioned in Subsection 5.2, the coefficients

_ o d { e c.1
CKA _//aTi( thaRK)d ‘('
T

are evaluated by approximating the surface element Z:j with its tangent
plane at the centroid of the element. This value can eventually be
corrected by adding the integral of the difference between the original
integrand and the (tangent-element) approximate integrand. This
integral can be evaluated numerically by usina standard Gaussian
quadrature fermuias. However, in the case of k = i (effect of the
element on itself) the tangent plane contribution is equal to zero.
Furthermore, the integrand becomes infinite when Rk = 0. Hence, a
special integration scheme must be used. In this appendix an analysis

of the type of singularity of the integrand of Eq. C.1 (when k = i)
| is given. Then a transformation that eliminates the singularity is
presented.

First consider the behavior of the doublets in the neighbornood

of the singularity. For simplicity, the analysis of the behavior of the
doublet in the neighborhood R = J is performed with a frame of reference

such that origin is at the centroid of the element and the z axis is

directed as the normal n. Then the equation of the element can be
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written as

Z - FIxyy=0 C.2

withz =0 forx=y =0 (Fig. C.1) and Eq. C.1 for k = i reduces
to

Ckr = .[/ % dx,dy, c.3
Zx

where

h == 35 (0= (4-1)+ (2-2) c.4

is the distance along the normal 5] of the origin from the point X,,
Yy 2 (Fig. C.2). If R goes to zero the distance h goes also to zero.

More precisely, as R goes to zero

ORIGINAL PAGE IS " ¥ -
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he~ QR? .5

where Q = 1/;3( is the curvature of the cross section indicated in the
figure (Q . 1is the radius of curvature). Thus, in a neighborhood of

R =0, Eq. C.3 reduces to

Q
Cyx ~ --ffR— dx4 dy, ¢-6

It should be noted that Q is the curvature of the cross section and
thus Q depends upon the angle Y of the cross section. Thus, in
order to evaluate Eq. C.3, it is convenient to use polar coordinates
since this eliminates the singularity as well as the sharp variations
(in the plane, X{s y]) of the integrand due to the dependence of Q
upon W

Next consider the integration scheme. As shown above, the
integration of Eq. C.1 (with k = i) in the neighborhood of the
centroid of the elemenc can be performed using standard quadrature
techniques (Gaussian quadrature in particular) in polar coordinates.
However, the domain of fntegration is not simply defined with these

variables. ience, a more suitable technique (fully correspondent
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to integration in polar coordinate) is described here.
As mentioned in Subsection Z.3, the boundary of the element in

the plane are given by

¢
C.7
—_ - - 4= —
Ye —aY 2 v £¥ +aY
Note that the use of x, } variables
_ =2
=X _ C
- Y .3
= 1-(4-Y)* —
n="L ] G
has the advantage of eliminating the square roo* singularity at the
leading 2dge and the tip*. On the other hand, a singularity of the
type R'] in the plane X1s Ny yields a singularity of the type ﬁ-]
in the plane i, ;. Thus the integral to be evaluated is of the type
(X,¥) -
CKK = f.z = d)? dy
1 X7+94
)
Yot3aY  Xetfax c.9

=Jar [ $E0-as

21
‘7(:"'%57 % - ax

toim

*This singularity is due to the factorivsjindZ = l&%ll de‘/{
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where f(x, y) is a finite but discontinuous function of % and ¥ (the
discontinuity being due to the “cross-section-curvature effect") but
continuous in polar coordinates.

In order to analyze Eq. C.7, it is convenient to separate the
contributions of D, + D, and D, + D4 (Fig. C.3) as

/
Ckk = Ckx + Cr .10

with
C:uc =Jj )((?,7) dx dy | c.11
D, + D,
and
C:K =jf§(5i.~7) dxdy €12
b+ D,

Using the transformation

--=—x— +-£_.._ - L £
x ¢ z M t=us+ C.13
?.—.;c-o- é%—vu —1 £v < ¢
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Equation C.11 reduces to

4+t 41
Crx = A“(AA‘// S(u,v)lulducj*\f C.14
-1 -1

Note that f{u, vju is a regular function of u and v since the factor

u compensates for the (22 + &2)-]/2 singularity and the “"cross-
section-curvature effect" disappears in the u, v plane (which is similar
tc polar coordinate plane). Hence, Eq. C.14 can be evaluated by Gaussian
quadrature. A similar transformation can be used in Eq. C.12,

This procedure was used to evaluate not only the effect Crk of

the element on itself but alse for the effect of an element on the
opposite element {e.qg., leading edge root boxes on opposite surfaces).

A similar technique is also used for the evaluation of

b\( = Z b/

N
_ 1
= Q;, — d2
Zﬂ L dF
2y
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APPENDIX D
MODAL METHOD DERIVATIONS

This Appendix gives the derivations of the mode shapes for the
symmetrical and anti-symmetrical modes and the expression for the

pressure coefficient, First, consider the symmetrical modes as given by

S s S
@5 =28 UtV () o

From Fig. 6A, the symmetric components of the potential can be approxima-

ted in the chordwise direction by

S
Un X)) = X" n=0,1,7,... D.2

and the spanwise direction by

s 2m
VmV” =Y mw=0,1,2,... D.3

Next to be considered is the anti-symmetrical modes as shown in
Fig. 6B. Here not only the shape of the potential, but also the shape
of its derivative which has the form of the well known pressure distri-
bution curve must also be derived. Note that the curve is infinite at

the leading edge and drops to zero as the square root of x, the distance
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from the trailing edge. Consequently, a function satisfying all these

conditions is necessary. A functinn such as this is classically given

by

,Cp = - 2@1

= £ {ZX D Caly) t1- A" -

“here (@x represents the derivative of Cp with respect to x. Examination
of Eq. D.4 shcws that it gives the required conditions at the leading
edge, where x = 0, and is singular (i.e., C =00 ) and also that as x
approaches 1, near the trailirg edge, it begaves as the square root

of the distance from the trailing edge, 1-x. Since Eq. D.4 satisfies

all the necessary conditions, it can be integrated to obtain @ or
¢
Q= i-(jiy [:1!1‘)‘ Cm (1-X) dx D.5
X
o
o

where the limits are from the leading edge to the trailing edge, c.

Integration of this equation is shown in the following:
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where

Cen = Pt m o+ %‘) “m¢m
with N
¢N*1 =0

which becomes

- | ™ }
:[ = m:o¢m+1 l;% (1 ~X) (m+32—)
"N
= ' 01"
m=0
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with Fop= O MNext

N
T= 26204t
n=4

N
1 1 1-x »
-4 (D= - %, 5 -
n=0

where n = m + 1. Combining the first and third terms yields

Next, integrating

- N
C(' = I d)( :tLZ ¢)n ux(1 “‘7\) (1—-)(\“
o

— & Tan’ \[11_:]
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Finally, consider the formu]aﬁion for the pressure distribution.
From £q. 1.11, the expression relating Cp with the potential invclves
a derivative with respect to x, the direction of the flow. From this
relation, it is seen that the expression for the modes is an analytical
differentiation with respect to x.

Begin by considering the symmetric component of the potential

in the chordwise direction only. From Section 3 this is given by

Uy (0 = X"

The pressure coefficient mode shape resulting from this component

is given by

"aéx' [uf, (x)] = %(Q)

or

3 S n-1
5; [uh (X) ] =nX 0.1

Next, the anti-symmetric component is considered. Care must bhe
taken as the arc-tangent term is considered only n = 0, the first mode.

The upper-surface component is given as
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@ = (g Wi 1)

N =0

D.12

=1
- ¢o To.n “>’<—

1—-X

First, consider the evaluation of pressure coefficient. Eq. 1.11,

for the kth mode, Uk’ Eq. D.12.

!

_ k-3
uK -

{
12
ZX (1 -»
D.13
2

| .
X U= ftk-1y(-1)

which becomes
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TR E o TR TR TR T S

b 44 t—:; K~1 o

=2 (
-0 @~ 1) ]
and finally

K-2
U/ =5 |2 G- [(t-x)
D.14

_(:_‘{-1)]

It should be noted that an arc-tangent term appears in the first mode

(see Eq. D.12). Difvarentiating the first mode yields

Note that the last term contains the arc-tangent contribution. Combining

terms gives



or

\J~1 = 3%—' ‘llllf D.16

Equations D.14 and D.12 give the relations for the pressure coefficient

for the first through Kth modes.
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