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ABSTRACT

i

The objective of this thesis is - the refinement of a method for

evaluating the pressure distribution on a body surface of arbitrary.

shape in incompressible flow.

The solution to the problem is obtained in terms of the velocity

potential. However,.the formulatior for the potential cannot be

solved in closed form with the exception of a few special cases.

Hence, the solution must be obtained through numerical approximations

which require the use of a high speed digital computer.

Two different numerical formulations are considered here. Tn

the first method, the box method, the body surface is approximated by

N small elements, L	 Vithin these elements or boxes, the value of

the potential, Q , is considered constant and equal to the value at

the center of the element, (e,{ . This results in a system of N linear,

algebraic equations in N unknowns.

The other, method is the collocation method in which the unknown

function is approximated by a linear combination of N prescribed

functions which satisfy the boundary conditions of the problem and

N unknown coefficients resulting in a system of linear, algebraic

equations. The specific approach applied here is called the modal

method.

In this thesis, both of these methods are applied to a very thin,.

rectangular wing in incompressible, steady flow. Of the two methods,

- iii -
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- the box method is more practical as it is applicable to more general

geometries (the modal method requires a new set of functions for each

geometry) and requires.less computer time (fifty percent of that

required by the modal method for the same problem).
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1. THEORETICAL FORMULATION

1.1 Introduction

The problem of evaluating the pressure distribution on a wing

immersad in a fluid has, in the past, and is presently attracting a

great deal of attention. The most common method applied is that of

lifting surface theories using the velocity potential. The principal

equation used is an integral equation which relates the pressure-

difference distribution over the body surface with the downwash pro-

duced by the body surface. This integral equation may be expressed asl:

wtX,Y^ = 4e^m 4p^ ,^i^ K x ,y n,M^ 8^6^	 , .l

s
where Lhe pressure difference, &? , is the unknown, and K(X,V,yAM)
is the se-called Kernel function.

There are two major objections to this type of approach. The first

of these is that the nu ►;1erical solution of this equation is quite

complicated. The difficulties arise from the rather complicated Kernel

function and the numerical integration of improper integrals. The second

objection is that lifting -surface theories are not easily generalized to

include more complicated geometries. Similar objections hold for the

problem of oscillating wings. An excellent analysis of the status of art

is given in Ref. 2.

l

- 1 -
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In order to circumvent these problems, a general method has been

developed in Ref. 3. This method is valid for both compressible and

incompressible potential flows around bodies of arbitrary shape in

arbitrary motion. The formulation is based on Green's formula for the

equation of unsteady compressible potential aerodynamic flow.

Although theoretical formulation given in Ref. 3 is very general, the

application of the method is limited to thin wings in steady subsonic

flow. The objective of this thesis is to explore further the applica-

bility of the method mentioned above. However, this analysis is

li,r;ited, for simplicity, to steady, incompressible flow. In the rest

of this section, the method developed in Ref. 3 is summarized for the

particular case of steady, incompressible flow.

1.2 Statement of the Problem

The equation for steady incompressible potential aerodynamic flow

is given by the well known Laplace`s equationl

Pâ  = O	 1.2

where 0 is the velocity potential. Let the surface of the body,

be given by the equation

SB (x,y, ^^ 0
1.3



.0 U OO X 1.5

}

I

Then the tangency boundary conditions are given by

o^^-^sQ,r	 1.4
'	 n

where n is the normal to the surface `. Finally the boundary condi-

tion at Cj:) is given by

By introducing the perturbation potential, tia, such that

= Vim. (h + Q^
	

1.6

I

equations 1.2, 1.4, and 1.5 yield Eqs. 1.7, 1 . 8, and 1.9 respectively

which are given as:

O	 1.7

E	
and

^^	 1 0c_ —	 l.s

on the surface "57' 	 and finally

f



i

f

E

i

E

F

at infinity. The problem is to determine the solution of Eq. 1.7 using
1

the boundary conditions given by Eqs. 1.8 and 1.9. Finally the pressure

E	 1
coefficient may be obtained from the linearized Bernoulli Theorem as

P -P = -eCO Um 
C)

and the pressure coefficient is given by

C P _ ^ ̂-PM W _2 ^4?
U^	 a

1.3 Formulation of the Problem

The basis for the formulation of the problem is Green's formula for

the Laplace equation. Green's formula can be expressed asl

1.12

r) d Y-
a
P

I

1.10

1.11

-4



with

, (-Y -Y) + 
I	 2 R

) I
	

1.13

where (x, y, z) is the control point and (x1 , yl , zl ) is the dummy

point of integration on the surface .. The surface	 surrounds the

body and the wake.

From Eq. 1.13 it can be seen that the poit:tial is given by an

integral representation composed of sources,' /4-1f r, of intensity

(aW /6Y% and of doublets, c)/a n 0/4W V-),  of intensity (	 The

values of a q/cd n are known from the boundary conditions as shown by

Fig.]. A11 that remains to be determined is the value of q) which is

unknown on the body surface.

In order to evaluate 	 on the surface	 let the control point

approach a point on the surface 	 As shown in Appendix A this

yields

n	 27F	
1.14

+	 q)(xi Y^	
a (	 CIE

-5-
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Note that Eq. 1.14 differs from Eq. 1.13 by the factor 1121Y instead of

1/4 Tt'	 In addition the control point (x, y, z) is on the surface

instead of outside. If	 n is known everywhere on 	 Eq. 1.14 is a

Freedholm integral equation of second kind, whose solution exists and is

unique (exterior Von ietirman's problem of Laplace's equation 3 ). However,
the surface '^l surrounds not only the body but also the wake. The procedure

for treating the contribution of the wake is discussed in the next Sub-

section, where the integral equation given by Eq. 1.15 is obtained and

-ke he methods of solution are outlined in Subsection 1.5.
1.4 The Wake Contribution	 x

As mentioned ahot-A, the surface	 in Eq. 1.14 is composed of two

branches; the first-, L	 surrounds the body and the second,'F,, i,, surrounds

the wake. The treatment of the wake introduced in Ref. 3 is used here.

The wake is assumed to be composed of straight vortex-lines emanating from

the trailing edge of the body. Under , Lhis assumption. Eq. 1.14 becomes

(see Appendix S)

^ (X.Y; Z) = -	
6  

IX,Y, c) 
.1 

<1z6
f3

F-g

with the wake integral, I w , given by

- 6 -
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e

c

i
r .

W 55r	 td ^,^ ^ an ^L% r J
i _	 W

F

t
i

i	 where-L vi is the upper side of the surface of the wake. Ia the problem

cunsidered in the following, the trailing edge is on the plane Z = 0

and thus Eq. 1.16 reduces to

:.	 +b6.

T^,	 Tw Y,

_6!2

where b is the span of the wing and Jw is given by

T	 z
`^ W _aCY —Y,1 + z

X-r r X

f( XTC. -) + ( Yf --Y) +

Note that the wake formulation is based on bodies having sharp trailing

edge otherwise it is not possible to know where the wake leaves the

body.

1.16

71

ii

-7-
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1.5 Methods.of Solution

The necessary relation for evaluation
	

on the body surface

is given in Subsection 1.4 as shown in Eq. 1.15. It may be noted that,

with the exception of a few special cases, it cannot be solved in

closed form. Hence the solution must be obtained through numerical

approxim,;ate methods, which generally require the use of a high speed

digital computer.

Several methods can be used. The one used in Ref. 3, which will

be called box method, is summarized here. The surface 7.e is divided

into N small elements (boxes) Y .,^ . The value of q is assumedto be

constant within each element and equal to the value ( ^ at the center

of the element. By satisfying Eq. 1.15 at the centers of the elements

Y,^ , one obtains a system of N linear algebraic equations with N

unknowns, T, , which can be easily solved on a computer. A more

detailed description of the box method is given in Section 2.

However, one of the most successful methods for lifting surface

theories is the collocation method in which the unknown function is

approximated by a linear combination of N prescribed functions with N

unknown coefficients. The prescribed functions satisfy the boundary

conditions of the problem whose N unknown coefficients are determined

by solving at N given points (collocation points). Thus before

proceeding into a more elaborated problem, the legitimate question of

f	 which of the two methods is more convenient for this problem must be

T

F

z	 ^-

z



rir

2

-t

j

Y

answered. A method equivalent to the collocation method (called modal

method) is described in Section 3. The advantage to this method is that

it gives a smooth curve solution rather than a solution at discrete

points. However, it is limited in that it requires a different set of

functions for each particular geometry with increasing difficulty in

guessing appropriate functions with more complex geometries, e.g., wing-

body interference. Also, this method requires large amounts of computer

time, nearly twice the amount required by the other methods explored.

Thus it was decided to continue the analysis of the problem by

using the box method. Next it should be noted that in Ref. 3 the

coefficient of the equations of the box method are evaluated analytically

by assuming that each surface element can be replaced by its tangent

plane at the center of the element. This hypothesis is adequate for very

thin wings(thicr:ness ratio ly 6 1%). However, even for moderately thick

wings (''Y'=10°x) the condition that, in each equation, the sum of the

coefficients be equal to one is only poorly satisfied 3 . Thus another

legitimate question must be answered: can the convergence of the solution

be improved by using the correct surface element and evaluating the

coefficients numerically (instead of analytically)? This method is

described in detail in Section 4. The results obtained in Section o,

however, indicate that the condition that in each equation the sum of

the coefficients be equal one is fairly well satisfied for thick wings,

but poorly satisfied for thin wings.

F
- 9 -
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Hence, a third approach for the evaluation of the coefficients

was explored. The coefficients are first evaluated analytically with

the tangent plane hypothesis. Then they are corrected by adding the

integral of the difference (between correct-element integrand and

tangent-plane integrand) evaluated numerically. The details of this

procedure are given in Section 5. The results (Section b) indicate

that this procedure (numerical-analytic evaluation of coefficients) is

better than the purely analytic and the purely numerical procedure.

A diagram outlining the development of the above methods is given in

Fig. 2.

t
t
4

jl

r	 ._

i
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2. THE BOX METHOD

2.1 Geometry of the Problem

The body used for studying the relative efficiency of the

different methods is the same as that used in Ref. 3, i.e., a rec-

tangular, thin wing in steady flow. For this particular problem,

alternate numerical solutions ( lifting surface theory, Ref. 4) as well

as experimental results ( Ref. 5) are available.

The wing used has a symmetric profile with thickness h given by

The thickness ratio (i.e., the ratio of the maximum body thickness to

the chord) is given by

IIN	 11C-3	 2.2

—o

Rearranging Eq. 2.1 gives the geometry of the wing at zero angle of

attack in terms of f and as

11

2.1 .



E

is
F	 R

^	 ` t

E	 `

t

0

t

i	
.

t.

^ ^. -,,^.-,^. ^? ^•	 -.R^^,ow^i -.1R:wx^•°,,^R . ^..-,^wa^!r' `^^'p^' 	 .. rte°

X --

t3 4 -- 4T ki 	 41	 2.3

with f and irk given by

C

^	 b

and plus (minus) is for the upper (lower) side in Eq. 2.6.

For angle of attack, o{ , different from zero, the following

coordinate transformation is used

X =	 Cosa + ^ sin x

y= y
	

2.4

7R =	 k St h ISI C + Z Ca$ c<

- 12-
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R	 -

4r
[

L r

6F

For purposes of comparison with the methods presented here and other

methods, all results are evaluated at an angle of attack of 5° (Fig. 3).

s 2.2 The Box Method

{
r

The box method is used to evaluate the coefficients of the source,

doublet and wake contributions. First consider the body surface, 	 B,

as divided into elements 	 d l: i . :dith this assumption, Eq. 1.15 can

be written as

_	 d Q= 1

t	
2	 Q ^ E'^ ^^	 ^i^ r' c^^^ Jr

2.5

Applying the Mean Value Theorem and assuming that the potential can be

approximated by the value at the center of the element yields

a

C—' 1

L3
E

C)

2.6

- 13



where the index, 4 applies to the trailing edge boxes only for wake

considerations. Fi- , lly, satisfying Eq. 2.8 at P(k), the centers of

the elements yield

2.7

The coefficients b  cki , and wki are defined by

^ 	 ^K	 e	 2.8

ye

C k	 c3 ( r ) d Tj,	2.9
^n	 K

and

- la -

f

t^

r

i



where ^ ki is the usual Kronecker Delta.

2.3 Definition of Boxes

In defining the boxes on the body surface, first consider the

classical transformations.

- 15

CL 2.12

2.10

aY^

Rearrangment gives the final form as

10 K
	 2.11

with

i



This reduces the wing to one with chord equal to one and span equal to

two (Fig. 4). i+,te that CAS / aXj , and 65, /c)yl are infinite at the

leading edge and tip of the wing, respectively. This suggests a modifi-

cation of the body surface boxes that gives a better description of the

leading edge and the tip. This is best accomplished by using a non-

uniforr: mesh for the definition of the boxes which is expressed mathe-

matically by the transformation,

_2
X	 p ^- X L -^

2:14

This causes the boxes at the leading edge and the tip to be smaller

than those not along the leading edge and tin Fig. 5). Boxes of

constant size A X, La Y in the plane X, given by

- 16 -
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i

F

f

i

r

a

L

a X - VNX
2.15

oY = ^^Ny

are used where NX and DIY are the number of boxes in direction X and Y,

respectively. In other words, the center of the box, (m, n) is given by

(see Fig. 5),

WX
2.16

c0)

whereas, its boundaries are given by,

— (ry°,)	 —	 ( P)
X m	

%/1	 X ^,^,

2.17

tmJ ^	 y
Y ^	 ^ P3

Yn	 n

with

— 17 —

t



{	 S

f tryX ^ CC)X `_ ax t m _^	 ^, ^<
m ran ^-

(P)
X
	
_

X
_ m a X

Yn =y am

lCC` /l` V
V

d	 I
--	 z	 - fh-^) ©r

-tP)^r _yam
-^^^ a++ ^ -	 v^ Y

2.18

1

i

Note that, for each set of values m and n, there are two boxes, one.

on the upper and one on the lower side of the wing; hence, the total

number os boxes on the right hand part of the wing is

N -^,=NX•Ny
	

2.19

2.4 Comments

The results obtained in Ref. 3 indicate that the method is both

fast and accurate for very small thicknesses. However, the condition

- 18 -
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(which should be satisfied by the coefficients . cki , Ref. 3, Eq. 7.22) is

satisfied within a 4% tolerance for thickness .ratio ` r = 1% while for

i

	
`r = 10%, the condition i.- only satisfied within a 24% tolerance. In

order to improve this condition, two approaches are available: trying

a different method or improving the evaluation of the coefficients in

the box method. Both approaches are explores in Section 3 and Section 4

respectively.
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_3. THE MODAL. METHOD

3.1 Introduction

The so-called modal method is a method for determining the

pressure distribution on a body surface by approximating the shape of

the aerodynamic potential with a series of mode shapes in the spanwise

and chordwise directions. Once the shape of the potential has been

determined, the pressure distribution can be obtained by differentiating

according to Eq. 1.11. The results obtained from this method are in

very close agreement with those obtained with the box method.

Although a straight forward, fairly uncomplicated method that

gives good results in a wide range of thickness ratios, this method

has one undesirable quality. It is quite good for relatively simple geome-

tries but assuming the series representation of the potential for more

involved geometries is quite difficult. One of the main interests in

evaluating the pressure distribution is for wing-body interference and

for this method, estimating a potential shape such as this would be

quite difficult. Also, this method requires large computer time, up to

twice as much as the box method.

3.2 Theory

As mentioned in Section 1, an alternate method, the modal method,

is explored before attacking the problem of thick wings. The modal method

t
approach is to approximate the shape of the potential by a series of mode

shapes in the chordwise and spanwise directions. This results in a

i
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system of N mode equations with N unkno%n coefficients. Once the

potential distribution has been determined, the pressure distribution

can be determined using Eq. 1.11.

The modes of C7 are chosen as follows: The function	 can be

separated into symmetric and anti-symmetric components with respect to

the midplane of the wing (Fig. 6a & b) as,

V _ CPS -I- q)A
	 3.1

The symmetric part is given by (Fig. 6a),

P Q	 $

U	 x,10	 3.2

where

us. c x,Y) = x^ y
z
^

.p^4	
3.3
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For the anti-symmetric part (Fig. bb) the modes L	 are chosen as

follows: consider the classical modal expansion for the pressure

coefficient for lifting problems

a^
P _ z ax

N
	

3.4

to r
m=o n=o

which satisfies the Kutta condition at the trailing edge as well as the

general behavior shown in Fig. 7. By integration with respect to x,

one obtains (Appendix D) a modal expansion for tQ given by

A	 q
(e = I ^ U Mh NY)	 3.5

rn h

where I mn is related to Kmn by the relation

AA

K hn h	
(1nn + T) -- 1M I rn n	

m ^ o,.,c, M	 3.6
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(with ( t4+l = 0) and U.. n are the desired modes for the expansion

A
for 41^ . The expansion for U rnR is given by

1
UA, ^ X s^) _ 4- r ^X ^1 _ ^,R,f2. +

16m0 tai'--,	 -^ —Y^ YUt
1

where the plus (minus) sign holds for the upper (lower) surface of

the wing and

Sy" o = I ior  VNI = o

^ m o = c Tor *vn * ai

is the well known Kronecker Delta.

Combining Eqs. 3.1, 3.2, and 3.5 one obtains

3.7

3.8
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1	 -P C6 TA

M	 A	 S	 3.s

'1	 t

Equation 3.9 may be rewritten as

IPQ+.MN

^t,1 Uj o( ,Y)	 3.10

where

I R

Ui f x ,y^ = U S KY)
	

Q
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with

-, = --p }. F, (I 13	 3.12

A

^.i — ^ rnr	
^ ^PQ+ 1 ^ ...

•^^^Q+ t'qN)
3.13

A

.., t PQ+c^N^

PQ +%)m +M (h- 1 .)	 3.14

and

with

^{ =

- 25 -



^	 f

it

3.3 Formulation

Consider the equation for the potential on the body surfa:e as

given by Eq. 1.16 and repeated here for convenience

r

E

r	
..

9

f

i

i

I

i

4	 ,

t

aq ,
can r` d ^e 4 -

3.15r^ d 2:
fff fa

In the modal method, the unknown T is assumed to be a linear

combination of M known functions, Vk M, (modes) with M unknown

coefficients ^ i . Mathematically, this is given by Eq. 3.10 or

= 2^ I, ui( p 3	 3.16

Substitution of Eq. 3.16 into Eq. 3.15 yields

- 26 -
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Z C>KA= 6K + ^ E K, 3 3.18

'g

ff-r a

^. .t 	 Ux (P) C) 	 c^ ^g + 1 w	 3.17

^a

wit'a 4/&n given by the boundary conditions. Satisfying Eq. 3.17 at

M control points P k yields

f	 ..

f

f

f

r

where

it
- 27 -



DKj . f Ui ( Pk)

a^	 dZ6 K =	 a n r^^	 $
^g

K;	 K	 3.19

WKI	 j^ v,^ c PK^ C Y,

where Jt is defined in Appendix B and is the wake contribution.

Equation 3.18 can be rewritten as

[ AKil^^3 = J6,3	 3.20
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where the matrix 
Aki 

is given by

	

•	 _	 --
3.21

CAKE	 pk^1 ^E t - NVK^
hj

	G	 Once the unknown coefficients 	 have been determined, (p can be

evaluated from Eq. 3.16. The coefficient b K can now be evaluated as

^r% is known from the boundary conditions. dote tha'- once the values

of	 -are known, the lifting component of the pressure coefficient can
i

	t	 be evaluated using Eq. 3.4 with Kmn given by Eq. 3.6.

3.4 Least-Square Modal 'Nethod

In the form thus far developed, the modal method can be used but

is limited to a small number of colloca tion points, since for more than

a few collocation points computer times are very large (18 minutes is

required for 4 collocation points). However, four collocation points

does not guarantee that the solution is close to the correct one. For

this reason, a method which allows few modes ( 4 was found to be sufficient)

and many collocation points (36 per surface in 18 minutes of computer

time) is developed here.

	

{	 To begin, consider Eq. 3.?0 in the following form

f

t

-29-
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ZA - ^ . --	 3.22

If the number of collocation points,or equations (i), is equal to the

number of unknowns of modes (j), then Eq. 3.22 can be satisfied

exactly. Howeve-, for the case when i> j, this equation cannot be

satisfied exactly, but, rather in the least-square sense. Using the

method of least-squares, Eq. 3.22 is replaced by

i

i

N tn^S Mm`des	 2,	
Z

A-, ^j —6J	
_^EK_ E = min	 3.23

 K

where E is the sum of the minimum errors. Note ::=re that Npoints

modes* Next, in order to minimize the error E, set the derivatives

of the error with respect to T k equal to zero:

L - 30 -
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T	 3.24

6,

t

Using Eq. 3.26 and expanding Eq. 3.25 yields

i ..	 A, Ajj	 A; K 6A —^	 3.21
}	 A

E

Since CAR] = [Aki ]T and rewriting Eq. 3.21 gives

a	
_

T	 _p	 3.28
A K^ A^	 AKA bA
_	 1	 ^

I

rEr
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Finally, for convenience, write Eq. 3.28 as

[Q K^7^^3 =tgK3
	

3.29

6

	 where

l
	

IQ Ki I = LAKj^T CA^i^

and

B,3 = [Hvk.]TIbi^
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4. NUMERICAL EVALUATION OF THE COEFFICIENTS

s
	

4.1 Introduction

i

	 The purely analytic method, Ref. 3, is limited in that its reliability

is not assessed for wings of thickness ratios in excess of ln. This

is true because of the nature of the method but, on the other hand, a

purely numerical approach seems well su4,.ed 16o the problem of thick

:r4 ,gs. The final results of the purely numerical method shows that

i
	 -although well suited for thick wings, the thicknesses that can effective-

ly be evaluated are too great to be practical. Considering the results

of both methods, the reasonable solution is a combination of the two

methods, which is considered in Section 5.

4.2 Theory

First consider the surface 7 divided into elements d Y. i as

shown in Fig. 3. For this case, Eq. 1.15 is rewritten as

^^ @tP^ =	
aop 

1 
8 

^ a nr, r	 a

ff 1P C

e

A

where I  is the contribution of the Make as discussed in Appendix B.

The mean value theorem gives

4.1



R

i

b - 
I )4E	 ^^fj( ') (' dY.	

4.2

A

where { i is the appropriate value in the element 	 E i . In other
words, Q i can be approximated by the value of q  at the center of
the box. With this in mind, Eq. 4.1 can be written as

^'t4 Q C ^^ _ 	 ^ n fi d ^ ^

4.3

N 

Q, - C1)aT ^Iq)',wv

f
	

The i in the last term covers only the trailing edge for the contribu-

i
	

tion of the wake with

w^ = t f JR dy,	 4.4

may.!

t ^^
	 - 34 -
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where the plus (minus) sign is used for the upper (loner) side of the

wake and J  is as defined in Appen^ix B. Finally, by satisfying this

equation at P(k), the center of the box, one obtains

bK +4ZC KA (Pt +

where

b^ 1=1
ah r d ^. gca	

4.6

^a

and

C V'! _
ff an (  L 

I
	

4.7

Y- I
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4.5

G

Y }1^



4.10

r	 j
X

1f

y i

The value of r  is the distance from the dummy point of integration to

4

the canter of the element or

t '"
t

E

r ;
	 P^p(VO

Finally 
Wki 

is given by

t

t

W Ki -- 1n^,^	 4.9

E

L

for the boxes along the trailing edge. Boxes other than on the trailing

edge for crake contribution are given by

I -.	 The final form for the solution of this problem is given by
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Ki qA = b K 	4.11

A

wi th

a Ki '" 1tA ' C K4 +	 K.c	 4.12

where S ki is the usual Kronecker Delta, viz.

= O	 K ^t

4.3 Numerical Solution of the Potential Equation

The potential integral, as given by Eq. 4.1, contains a singularity

in the ratio 1/r. As the point being evaluated, x, y, z, is approached

by the dummy point of integration, x l , yl , z l , r tends to zero and the

integral becomes singular. This problem can be eliminated by the intro-

duction of polar coordinates

- 37 -
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4

(.	 8xdy	 dr de

with the Jacobian given by

T	 d(r, e)

d c X,Y)
4.13

4

Also to be considered are the singularities formed by the leading

i
	

edge ( aX = co ) and the tip ( oy = ca ). These singularities are

eliminated using the transformation given by Eq. 2,14. A method for

i
	 eliminating both types of singularities simultaneously is shown. in

Appendix C.

Finally,.Eq. 4.6 must be put into numerical form and the Gaussian



..,•,•,q,,•r,- -. .,.^-sty,•.,,-n, a ., ..-..,.^vm _.:..,mss.--. :^,-.o_,..^e..^-mr.-x.+.,^-. y• ..air-•.

with the upper surface given by the following:

4.15

k

i

1

Rewriting Eq. 4.14 yields

t

ff 	 S^	 4.16

Introducing Eq. 4.15 gives

^7K = ff r a dx, d y ,	 4.17z
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Using Eqs. 2.13 and 2.14, Eq. 4.17 yields
:i

o

b_ 
'

1 any c b 4)( ( 1- y) &Xd YK	 znt r ax	 z

For convenience, rewrite Eq. 4.18 as

b  =ff F^ (X ) y) dXdY

and finally,in suitable numerical form as

4.18

4.19

bk	Wi} R (% i , }

Note  that the Jacobian of the combined transformation is given by

eh
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whr;re wig, I . and T . are the Gaussian quadrature weights and abscissas.

In a similar manner, consider the doublet coefficients

C=if a	
d N

-	 4.21

which can be rewritten as

Vr dY-	 4.22(^S1r3

Since using Eq. 4.15, AI = dx 1 dyl , the above equation can be rewritten

as

K^	 r 3	 y'
	

4.23

using Eqs. 2.13 and 2.14,'one has
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is

Finally, t1.2 sys t em given by Eq. 4.11 can be evaluated to form a

syster, of N linear, simultaneous equations in N unknowns. For a

high speed digital computer, the generation of this system is limited
i`

in the number N by the available computer stnraae. TO solution can

be obtained using Gaussian elimination with pivoting. Gaussian

elimination is quite suitable to the solution of this system as there

is the possibility of the matrix becoming singular. The subroutine

used to apply the Gaussian method is not particular to the program

devised but is the IBM subroutine "GELG".

Finally, the solution of the pressure distribution is obtained

by taking the derivative of 	 with respect to x as shown in Eq. 1.11.

r

i

Y
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5. NUMERICAL-AtiALYTIC EVALUATION OF THE COEFFICIENTS

5.1 Introduction

The purely analytic method gives good results but only for thin

wings. On the other hand, the purely numerical met;iod gives goc+d

results but only for thick wings. A good method for evaluating
c

moderately thick wings (i.e., wings of thicknesses in the range of

those in practical use) should incorporate both methods. This
t
E

combination is outlined in this Section.

5.2 Theory

`	 This method is based on evaluating the surface both numerically

and analytically to get the proper results. To begin,the body is

approximated by tangent planes. To do this, first consider a tangent

plane element in x, y, z so that z  is given by3

o = — «x — r^y
	

5.1

with the surface, S, given by

5= —01X— Qy —'a—d
	

5.2
f

f

1
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The exact expression for the doublet contribution is given by

t7S - yr

	

C t' ! =	 3
Y

The expression for the doublet contribution in the tangent plane m.,!thod

is given by a similar expression as

	

— — i( 
75	 V r^- 

AY 1 AY,	 5.4CK^)_	 1	 3

	

^ ^	 rT

with the subscript T indicating a "tangent plant" evaluation; in

particular

v

	QS T _ _ Q
	 5.5

1
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The combination of these integrals, the difference integral, becomes

C 
K, 

_ K^ — c K j )T

5.6

	

_	 VS • yr _ V ST 6 -V r-r

3	 3	 dxldy,
r.T

This integral is evaluated numerically using the method indicated in

Section 4. In a similar manner, the correction to the source contribu-

tion is considered as

a

	

	 _	
c)7
	 5.7u

	

K _
	

21r r c^k	 ziY rT d X T d x^ yf

E

also to be evaluated numerically. These differences wi l l be added to

the tangent plane approximation to yield a better estimate of the

coefficients 
Ckj 

and bk. It may be noted that higher numerical errors

can now be tolerated since "errors on the correction" have small effect

'	 on the coefficients.
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6. RESULTS AND CONCLUSIONS

6.1 Introduction

The three methods pro posed, the modal method, the numerical

method, and the analytical -numerical method, were pro graamned on a digca.l

computer. Comparisons are made a gainst experimental  and analytical

results. The body surface used is a symmetrical wing at a 50 angle r'

attack (see Subsection 2.1).

6.2 Modal Method Results

The modal method yields good results but is limited in application

with respect to the complexity of the body geometry involved. Numerical

results obtained by using this method were very satisfactory for a good

range of body thickness ratios. Comparison of the modal method is made

with the analytical method using the same problem considered in Ref. 3.

The problem is a rectangular wing in steady subsonic flow (Subsection 2.1).

The number of raodes used for the solution is four.

First, consider comparison with the box method. Figures q and

10 show the comparison between the two methods in the chordwise and

spanwise directions, respectively. !Vote that the slope of the diagrams

for the box method and modal method compare favorably. Rememher that

the pressure distribution is the derivative of the potential so that

the importance of the slope agreement can be !sought into perspective.

Next, consider the convergence of the imodal method in terms or the

number of evaluation points. Figures 11 acid 12 depict the convergence

in terms of the number of points of evaluation on the body surface in the

- 47 -
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chordwise and spanwise directicns, respectively. Agreement here is

extremely good. It may be noted that the solution using this method is a

smooth curve and not discrete points. Points between the solution

for six points show excellent agreement for five, four and even three

points. Also, it is observed that fewer points describe the curve

with less accuracy, but even for few points the agreement is still

reasonably good.

Finally, the effect of the thickness ratio is considered. In

Figs. 13 and 14 the convergence for hody thickness ratios of .1, .01,

and .001 is shown in the chordwise and spanwise directions, respective-

ly. The results here are typical of those for the box method 3. Again,

the behavior here is what is expected as discussed in Subsection 6.2

Results for the modal method show it to be a reliable method

for varying thickness ratios but, unfortunately limited in its use due

to the difficulty in "guessing" the shapes of the potential, and thus

the modes, for complex geometries (i.e., wing-body interference).

Furthermore, the computer time is much longer than for the box method.

Hence, as mentioned above, the box method is considered to be superior

and was investigated more deeply.

6.3 Analytic-Numerical Results

The analytical-numerical method provides verj satisfactory results

in a varying range of thickness ratios. It is the varying range of
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applicitoility with respec-c to body thicknesses that makes this method

sc. desirable.

The	 a'. , icy.' numerical method is compared here with experiments

;Aa also with the purely analytical method in order to evaluate

the improvement. Furthermore, the convergence of the method and the

th­.kness effects are also examined.

Figure 15 shows a comparison of the analytical method, the analytical-

numerical method and experiments using the wing in Subsection 2.1 at

O

an ariale of attack of 5 and a thickness ratio of 1%. Results here show

that thL analytical-numerical method provides a good description of the

pressure distribution with res pect to experiments and therefore, the

lift, the area under the pressure diaqram, is also described veil. Note

also that both the analytical and the analytical-numerical methods compare

favorably.

Next consider the convergence with res pect to the numher of points

of solution on the body surface. Since the solution is a solution of

discrete points it is necessary io check that when tic number of

points of evaluation is changed, the solution converges to the same

curve. This is shown in Figs. 16 and 17 for various numbers of points

in the spanwise and chordwise directions, respectively. For a wing with

six points of evaluation connected by a smooth curve it is evident

from Figs. 16 and 17 that the solution based on 3, 4 and 5 points lies

satisfactorily on the same curve.
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Finally, consider the influence of body thickness on the results,

Here the potential is plotted in toe spanviise and chordwisP directions

in Figs. 18 and 19, respectively. The thickness ratio is varied in

i
	

these figures fr-.m .001 to .1. The behavior is as expected. Note

I
	

that at the tip and leading edge, the variation is tmall,while at the

root and trailing edge the variation is larger..

In summary. it is evident that the analytical-numerical method

provides good results for a large range of thickness ratios. Note

that a body thickness ratio of .l is a wing with maximum body thickness

to wing chord ratio of 10%, well within practical body thickness ratios.

Since the method is also convergent, it has proven to be quite a re-

liable and accurate method.

6.4 Suggestions for Further Study

The geometry evaluated in this thesis are of the most simple

case, a symmetrical wing at a small angle of attack. Obviously, this

geometry was chosen for its simplicity in testing the methods as it

is easier to program and debug. It is also quite obvious that the most

r
advantageous quality of this method is the evaluation of complicated

geometries to include the problem of wing-body interference. It is

therefore suggested that a study of complicated geometries be made using

the analytical-numerical met`-^d.

t
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Because of the nature of the formulation of the problem, it is by

no means restricted to steady, incompressible flow as considered by this

thesis. It is suggested that the numerical formulation be extended to

include unsteady compressible (subsonic and supersonic)-flow-fields.
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APPENDIX A

t	 DERIVATION OF THE INTEGRAL POTENTIAL EQUATION ON THE BODY SURFACE

For the sake of completeness in this appendix, the derivation

of Eq. 1,12 (RcJ. 3) is summarized. For convenience, Eq. 1.12 is

given here as:

X 
jY j —	 C) h 

(X,)yy I ZI) 4w 
r d—

+-	 QtX	 4%r d ^

where

F(X _ Xi)2+ ( _y _,yi ) 2 -,1--(Z- Z	
1/

+^z^ z

When the point P is allowed to approach the point P * , as shown in

Fig. Al, the integrands of Eq. A.1 become singular. In order to per-

form the limit it is convenient to isolate a neighborhood about P*

having area O` and radius	 With this in mind, rewrite Eq. A.i

as:

A.I

A.2

F	 _.

f
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a

i

F 	 •	 :;
1

F

(X'34,7)
^

a

o r q^t-

= IS ^ I S -^ I o ^- I o
With obvious definitions of I S , IS and I^.

First consider the doublet integral

A.3Io

Consider a local coordinate system	 as shown in Fig. A2

in order to evaluate I D	 Assume the area cr to be circular having

radius E	 so small that fl- can be replaced by its tangent plane.

Rewriting Ip in the new variables yields:
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o Ja

	

-;here e	 = j 1 + rj1 and < is shown in Fig.. A3. Note that

ar — t x} - X ^ °+ ty, — y^x ^- cam, -^ja

+	 + C	 ~	
A.5

O

Qa + r
(i _^^a

Next consider

o ^ 1Yr^/^	 —.-- -

	

'^	 a	 -IT r
^S^ =o

w	
4'r^r3

F	 ..

AA
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and

ti Q	 '?7 ^' )	 a`f ^ 34

e

Combining yields

a	 1	 ^__^ a( 1
4-rr t-.

Using A.6, Eq. A.4 becomes

/i	 '21

ID = -^	 e a ^ ^ d ^1^4?(r
00

fc

r.

t
r

A.6

A.7

f
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For very small F , qp is nearly constant and can be replaced under

this assumption by its value at the point x * , y*, z* as

^(kX^y^^

Equation A.7 now becomes

Z

F

-	
a	 1	 d
6R 4vr

	

o	 e^^

—a^	 A.8
_ 4^r

Q- o

a	 a .^ t:

As	 goes to zero, i.e., x, y, z approaches x * , y* , z* , Eq. A.8

becomes

-
r

cx ,yj -Z	 (xx ,y'4,-Z;,)	 ^ Cs
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Combining Eqs. A.3 and A.9 and applying the limit as P-+ P* yields

i' T —	 ii	 a	 1

with

F

F

	 -7
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Similar treatment of the sources yields no special contribution from

the neighborhood of P* . 3 Equation 4.1 can now be written as:

J^
Oni 

+  	 a ^ 1	 d ^ ^ ^ tp^^

C3 	 4'f r)	 2

After combining terms, the form of Eq. A.1 on the body surface is given

as

C), w 1 8 z +
a V-% j zTf.

A.11

F
) df

where the second integral is obtained as a limiting case for E-^ 0.
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}	 APPENDIX B

r	 WAKE FORMULATION4
r . .

r
r

For completeness, the formulation of the wake given in Ref. 3 is

t	 summarized here. According to the linearized Bernoulli Equation,

Eq. 1.15, for steady flow, there can be no pressure jump through the

wake so that on the wake

d	 ^u	 } = O	 B•1axi

For Eq. 1.15, the expression for I W is written as
i

I _ t ^u	 1 a ^' d^	 B^z

^w

where Fµ,is the upper surface of the wake and n l is understood to be

the upper normal. The surface 	 is shown in Fig. B1. lote that the

surface of th r, wake is not known and Eq. 1.14, which is satisfied on the

body, must be completed by the equation on the wake. From Eq. 1.15,

the velocity or. the :lake is tangent to the surface of the wake. What

results is two coupled equations, one on the body with c @/ c) r known

and Q unknown and the second on the wake with	 h unknown and
r

/^cQ (_^^- i ) constant along the x	 - direction on the wake and

a

{.

r	 .

y



Y

QL

^l

equal to the value of n (p at the trailing e^ge. The geometry of the

wake 's determined given the condition that the velocity is tangent to

the wake by knowing the velocity on the wake, aT / d n

To simplify the above procedure, consider the following. First

note that

rr
jj	 3

r r
6.3

ff r2

ffd n

where

rcl^. =^.cc^s ch,r)

and d sV is the solid a, '.^ shown in Fig. 26 as

- 82 -
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f
+r

k

F

li

4

r

dam= a „r	 6.4

Next, consider the wake integral as a sum of strips of width dy in the

x direction as shown in Fig. B2. Applying the mean value theorem to

Eq. B.2 combined with B.3 yields

^w ^- L\ T(Y) SL

W
	 B.5

d

By noting that the integral is the solid anglo 	 -fnr each element

Y j one obtains

B.6
w

(Note that pct is a function of y only)

From Eq. B.6, it can be seen that the wake contribution is a

function of the solid angle so that a reasonable geometry for , the

83



wake is one in which the solid angles p.C^; remain fairly constant. This

suggests the possibility of approxi.nating the wake by straight vortex

lines, parallel to the direction of flow, emanating from the trailing

edge of the wing since geometrical considerations show that the solid

angles change only sli^htly3 With this assumption, the wake equation

simplifies considerably and its contribution reduces to a line integral.

Assuming the trailing edge to be given by

X = X.VE ky)
= Z -T r"(Y)

the equation of the wake surface becomes

Sw = 71 _ 7-TV ( Y) - O

and

I-	 o t s' ^) r ^ d X i dY4
W

8.7

+blz

E

F
	 - 84 -
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where b is the span of the wing and

D

` -- ETC Cy! -- yl	
L 

d Xi
TW -	 d y 1

xT^
B.8

CO

dy ty1- 7) 
(Y-	 Cz- z1f	 r

`'TE

with Z 	 = ZW (Y). If the trailing edge is in the plane Z 1 = 0,

Eq. B.8 reduces to

jW	 F1

X
S	 rr

	 1

Note that the above discussion is for bodies with a sharp trailing

edge only as it depends upon the known location of the stagnation point

from which the wake emanates. For bodies without a sharp edge, E.;.,

a rotating cylinder, this formulation is not applicable.
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APPENDIX C

As mentioned in Subsection 5.2, the coefficients

C K; _
ff ( 

1	 I z	
C.1

an, Ar Rt ^

are evaluated by approximating the surface element ^ ,^ with its tangent

plane at the centroid of the element. This value can eventually be

corrected by adding the integral of the difference between the original

integrand and the (tangent -element) approximate integrand. This

integral can be evaluated numerically by using standard Gaussian

quadrature fermuia-z,. However, in the case of k = i (effect of the

element on itself) the tangent plane contribution is equal to zero.

Furthermore, the integrand becomes infinite when R  = 0. Hence, a

special integration scheme must be used. In this appendix an analysis

of the type of singularity of the integrand of Eq. C.1 (when k = i)

is given. Then a transformation that eliminates the singularity is

presented.

First consider the behavior of the doublets in the neighbornood

of the singularity. For simplicity, the analysis of the behavior of the

doublet in the neighborhood R - 0 is performed with a frame of reference

such that origin is at the centroid of the element and the z axis is

directed as the normal n. Then the equation of the element can be

-85-
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f

f
f

r

written as

2 - F (x,Y) - O	 C.2

c.

i

with z = 0 for x = y = 0 (Fig. C.1) and Eq. C.l for k = i reduces

to

CKK = -
ff	

R3 
Ix,, C1 ,	 C.3

27K

where

h = --aX ( X^ X) -- - ( 
Yl 

Y) + t ^^-- 	
C .4

1

is the distance along the normal n l of the origin from the point xl,

yl , z l , (Fig. C.2). If R goes to zero the distance h goes also to zero.

More precisely, as R goes to zero

ORIGINAL PAGE, IS	
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1

r

Y

b

ln^	 2QR	 C.5

where Q = 1/ 
^.0 

is the curvature of the cross section indicated in the

figure (Q 
r 

is the radius of curvature). Thus, in a neighborhood of

R = 0, Eq. C.3 reduces to

KKK 'i —
	 "^' dXi dy,

R

It should be noted that Q is the curvature of the cross section and

thus Q depends upon the angle Y of the cross section. Thus, in

order to evaluate Eq. C.3, it is convenient to use polar coordinates

since this eliminates the singularity as well as the sharp variations

(in the plane, x l , yl ) of the integrand due to the dependence of Q

upon %L

Next consider the integration scheme. As shown above, the

integration of Eq. C.1 (with k = i) in the neighborhood of the

centroid of the element can be performed using standard quadrature

techniques (Gaussian quadrature in particular) in polar coordinates.

However, the domain of integration is not simply defined with these

variables. lience, a more suitable technique (fully correspondent

- 88 -
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T	 ^.

i

1

i

to integration in polar coordinate) is described here.

As mentioned in Subsection 2.3, the boundary of the element in

the plane are given by

X- ^xL xLXc^o x
C

y^ - oy ^ y ^ ^^ + ©y

Note that the use of x, y variables

'le = X ^

1^ = r1-t1 -Y)z^ y ,
has the advantage of eliminating the square root singularity at the

leading edge and the tip * . On the other hand, a singularity of the

tyre R1	 in the plane x l , yl yields a singularity of the type R- 1

in the plane x, y. Thus the integral to be evaluated is of the type

f 0	 C1 x

c	 f t "̂ ,y
^ d^ dy

d

y^ t z QY Xc+z az

7o+' 2 Cry	 - ? z X

*This singularity is due to the factor 1v51 in dE f 
1.1 1 dx,dy,

C.7

C.3

C.9

- 89 -

1



where f(x, y) is a finite but discontinuous function of z and y (the

discontinuity being due to the "crass-section-curvature effect") but

continuous in polar coordinates.

In order to analyze Eq. C.7= it is convenient to separate the

contributions of D l + D3 and D2 + D
4
 (fig. C.3) as

	

C
kK C K K ^" KKK
	 C.10

wi th

CKK =(X, Y^ dX dY
	

C.11

D, + D3

and

CKK =
	 f X, Y) dx dy
	

C.12

b+ D4

Using the transformation

X = Xr +-	 u	 ..^ L U +1	
C.13

y	 y^ + a2 
^ru -- + L ,^- t

t
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Equation C.11 reduces to

ti ^1

1iXny t(u j ^r)iuIdud v'	 C.14
^K A 

if
—1 -1

Note that f(u, .'M is a regular function of u and v since the factor

u compensates for the (x2 + y2)-1I2 singularity and the "cross-

section-curvature effect" disappears in the u, v plane (which is similar

U, polar coordinate plane). Hence, Eq. C.14 can be evaluated by Gaussian

quadrature. A similar transformation can be used in Eq. C.12.

This procedure was used to evaluate not only the effect c kk of

the element on itself but also for the effect of an element on the

opposite element (e.g., leading edge root boxes on opposite surfaces).

A similar technique is also used for the evaluation of

Kit

N

•t -1	 tc

T_A.
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APPENDIX D

MODAL METHOD DERIVATIONS

This Appendix gives the derivations of the mode shapes for the

symmetrical and anti-symmetrical modes and the expression for the

pressure coefficient. First, consider the symmetrical modes as given by

S S	 S

CAS =10m " U h (x) V, ty1

From Fig. 6A, the symmetric components of the potential can be approxima-

ted in the chordwise direction by

U n Cx^ = X"
	

h =Q ) 1 7.j...	 D.2

D.l

and the spanwise direction by

VmCy) =^zm
m=Q,1,Z,C..	 0.3

Next to be considered is the anti-symmetrical modes as shown in

Fig. 66. Here not only the shape of the potential, but also the shape

i

	 of its derivative which has the form of the well known pressure distri-

i
	

bution curve must also be derived. Note that the curve is infinite at

the leading edge and drops to zero as the square root of x, the distance
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by

Y	 '

r
ffx.

0.4

`rt

r

P
r

from the trailing edge. Consequently, a function satisfying all these

P

conditions is necessary. A function such as this is classically given

't'here T., represents the derivative of C
p 
with respect to x. Examination

of Eq. D.4 shGws that it gives the required conditions at the leading

edge, where x = 0, and is singular (i.e., C = Do } and also that as x
p

approaches 1, near the trailing edge, it behaves as the square root

of the distance from the trailing edge, 1-x. Since Eq. D.4 satisfies

all the necessary conditions, it can be integrated to obtain 4 or

e

4-1,! ['FL--X 1
C?n(1-X)

'dx
 

0	
1

O

where the limits are from the leading edge to the trailing edge, c.

Integration of this equation is shown in the following:

- 93 -
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I	 x

L LO M + ^rn t y
m=o

0']
Xx { 1 x,m

wlipre

C- m '- }^kn I I \ m +	 — hi m

with

N+1 O

which becomes

-1

I=	 xrn to 
M+1

N

rn %o -,r-x

D.6

D.1
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X

ar

Y

i

r

i

with ^n+^ w p . Next

N

I	 x	 z ^
n =1

0.8
l )	 -x

t	 o 2 -1^X t t- x)	 n	 X

where n = m + 1. Combining the first and third terms yields

N 

p^

FX—
ff^" ni ^h 

-1
rl-x)	 [^ #-p 	L)

D.9

( I -X^ -

Next, integrating

qI
Y-	 -

- N

T d- Y, =t
O

^f	
_t	

X-- o To h
X

D.ld
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Finally, consider the formulation for the pressure distribution.

From '.q. 1.11, the expression relating C p with the potential involves

a derivative with respect to x, the direction of the flow. From this

relation, it is seen that the expression for the modes is an analytical

i

	 differentiation with respect to x.

Begin by considering the symmetric component of the potential

f	

in the chordwise direction only. From Section 3 this is given by

a

S (x) x^

The pressure coefficient mode shape resulting from this component

i	 is given by

x [U' C x)1	
I ((P)

or

[us Cx^ ^ = n x 	
D.11

Next, the anti-symmetric component is considered. Care must be

take..^. as the arc-tangent term is considered only n = 0, the first mode.

The upper-surface component is given as

a
a
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-x)
n=o

_1	
X 0.12

-- 00.n	 ,_X

First, consider the evaluation of pressure coefficient. Eq. 1.11,

for the kth mode, U k , Eq. D.12.

1	 ^

K	 Z

K-^
+ 	 i^C -1)

which becomes
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f

i

r

I

'FE:XL[^1 _ x -I
K	 z	 x

i^—Z	
1

and finally

►̂  - 2

UK = z -^ ^ 1 — X )	 (i -- X)
0.14

It should be noted that an arc-tangent term appears in the first mode

(see Eq. D.12). Dif ^!rentiating the first mode yields

	

uI 	 ! ^' t-X ^1 -x)-
i -^

	

^	 L	 x

D. 15

i
	

Nate that the last term contains the arc-tangent contribution. Combining

terms gives

t	 - 98 -
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U1 -- (± 2 1 X( 1—X)

D.16

,2	 X

Equations D.14 and 0.12 give the relations for the pressure coefficient

;
	

for the first through Kth modes.
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