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ABSTRACT

The problem of small perturbétion potential supersonic flow
around complex configurations is considered. This problem requires
the solution of an integral equation relating the values of the
potential on the surface of the body to the values of the normal
derivative, which is known from the small perturbation boundary
conditions. The surface of the body is divided into small (hyper-
boioidal quadrilateral) surface elements, 3, , which are described
in terms of the Cartesian components of the four corner points.
The values of the potential (and its normal derivative) within
each element is assumed to be constant and equal to its value
at the centroid of the element. This yields a set of linear
algebraic equations. The coefficients of the equation are given
by source and doublet integrals over the surface elements, P P

Closed form evaluations of the integrals are presented.



bt N
FGREWORD

~This research is supported by a NASA Grant NGR 22-004-030.
Dr. E. Carson Yates, Jr. of NASA Langley Research Center acted
as technical advisor. The author wishes to express his appre-
ciation to Dr. Yates for the stimulating discussions and in-
valuable suggegtions made in connection with this work. He
also wishes to thank Miss Beverly Wright for her patience in

editing and typing this report.



i1l

TABLE OF CONTENTS

ABSTRACT

FOREWARD

SECTION I: FORMULATION OF THE PROBLEM
SECTION IXI: SOURCE ELEMENT

SECTION III: DOUBLET ELEMENT

SECTION IV: METHOD OF SOLUTION
SECTION V: CONCLUDING REMARKS
REFERENCES

TABLES OF FIGURES

APPENDIX A: SUPERALGEBRA

APPENDIX B: BASIC INTEGRALS

~APPENDIX C: TWO USEFUL FORMULAE
APPENDIX D: DERIVATIVES OF Ip AND Igj
APPENDIX E: SUPERSONIC OSCILLATORY FLOW

APPENDIX F: SUPER-SOLID ANGLE

PAGE NO.
i
il
1-
.13
42
56
62
63
65
75
81
90
95
101
107



-1l-
SECTION I

FORMULATION OF THE PROBLEM

1.1 Introduction

.A general theory for compressible unsteady potential
aerodynamic flow around lifting bodies having arbitrary shapes
and motions is given in Refs. 1 and 2. Applications to wings
in subsonic flows are given in Refs. 3, 4 and S. A finite
element formulation for complex configurations in subsonic
flows is given in Ref. 6. Here the formulation is extended
to steady supersonic flows.

The equation of the aerodynamic potential is given by

3 » >
LS GRS AR ¢
-M - =
(' ..)ax‘ * 2y LR A ° (1.1)
with boundary conditions ( ﬁ. is the outwardly directed normal

to the surface of the body, ¢, )
29

— = « N (0!\ 6)
2 X d (1.2)

The Green function for Eq. (1.1) is , for M > |

G .t HXx-8lyy )y er)

(1.3)
27 Y
where H is the Heaviside function and
= JGx)- B*((y-4,)+(z-2,)) (1.4)

B =, /M| A ~(1L.5)
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-The Green theorem for Eq. {1.1l) is (Ref. 1)

25 of _ 23 3¥ 2s a¢
E (xe.y.,2 )SP(de ) 5((” )x 2x 37 24 :E aa] § Tosi lvsl

2S 2G¢ 2S5 a& 2S 2@
';g(( ") ox ox DT azae][flvs,
(1.6)

where SG,'is the gradient in the Physical Space variables
(x,v,2), § is a suitable surface (see Section 2), defined by

the equation

S (xy,2) =0 (1.7)
and the function E is given by
E = © inside
E = | ovtside G (1.8)

Introducing the supersonic Prandtl-Glauert nondimensional

variables (£ is a characteristic length of the body)

Xegpr o YoF Z-——, p= ghus
yields

|\ ds _ | dxd¢ _ 1 dXdY _ | d%
r lu,sl  r |?2%hzl = R [25/52z] = R |95

(1.10)

where Y is the gradient in the Prandtl-Glauert variables, J

is the surface of the space (X,Y,2) defined by the equaticn

S(BX,Y.Z) =0 (1.11)



and

R = ,](x—xo)‘- (v-v)'-(z-2) (1.12)

Combining Eqs. (1.6) and (1.10) yields

e - -G(-22 22, 2220 22 ap) H o ds

2X 2x 2Y 3Y 2% 22/ R |lvsl
_25 2 ( 25 2 ?S 2 7/ H )](P
+ 2% . X 7+ 2Y ?Y * 3z 22 |95
£ (1.13)
Note that
- VS (1.14)
jos|

is the normal to the deformed surface £ . 1In order to use
compact vector notations, it is usual (see, for instance, Ref.

7) to introduce the concept of the conormal

-

‘ 7 - -
N™ = Ned - Nyj- Ng K (1.15)
and the cogradient
v¢. 27 27 B -
v ‘,x‘-—;y-i-—-x (1.16)

With this notation, Eq. {1.13) reduces to

e - g(k W ¢ 2lh)) de (1.17)

where the conormal derivative is given by

,;’w = N¢ =N-7¢ (1.18)

Equation (l1.16) is in agreement with Eg. (6.89) of Ref. 7,
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where the opposite convention oa the direction of the normal
is used (here the normal § is directed from the region E = 0
to 1_:he region E = 1).

On the other hand, the boundary conditions on .the surface

of the body, 25 , can be written as

Fe 2S5 2% 35 a3 2S. 3@ 25
Vs-vf= (m( 2% +17 3}’32 az) tUox ’

U.(l 251 2¢ _ 2520 05.34’) T
J QB ax X 2Y 2Y  2Z 2% B 2X

_ Us(_2%2¢ 25 vd . 25 a0 [ 25 20 125
- Q ( 2X 2Y ' oY 2Y MEY AT *(5‘*') 2X oX Bax]

= O (1.19)

T or

—Q--—-N (14 all ﬂ)

2 N° ﬁ?‘ ? % (1.20)
Neglecting terms of the same order of magnitude as those
neglected in linearizing the equation of the aerodynamic
potential yields

li.-_ N x on the body (1.21)

IN®
Finally, note that the linearized Bernoulli theorem for
potential flow yields -

“_.29
C, ==& 35 (1.22)
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or, in Prandtl Glauert variables,

C,wg-z 2% (1.23)
M*-| 2X

It may be worth noting that the exact boundary conditions

may be rewritten as

a9y I mre® (1.24)
?N"— bNx(/ 2 M Cf )

1.2 Supersonic Vector Algebra

The use of the conormal and the cogradient was found to
be quite cumbersome for the extension of the subsonic finite-
element formulation to supersonic flow. The algebraic mani-
pulations become much simplified if a special vector algebra
is introduced. This algebra is called here, supersonic vector

algebra or super-algebra. The sum, dot product and cross

product are defined in the usual way. In addition, it is

convenient to introduce the supersonic dot product or super-

product as
B0 b = Abe-ayby - arb, (1.25)

With this notation,

R J‘x-x.)'—(%i.)‘-(z-i)’ = J;ai (1.26)

"

where
-\ X
F =y (-141- P_". (1.27)
z t.



Similarly

2 - -
—_— 1.28
one = Nev (h.28)
Furthermore, in addition to the usual norm of a vector

lal = JG-a | (1.29)
it is convenient to use the supersonic norm or supernorm

1al =Jaeal (1.30)
Note that

3

a,

L]}
o
'~y
NV
o
AV

. 3
Qy + & (1.31)
that is, 2o a4 >o(éoa <0 ; 505=O) if the angle between
the vector a and the x-axis is less than (greater than; equal

© to) 45°, which implies that the vector a is pointed inside
(outside; on) the Mach cone (see Fig. 1). Further development

of the superalgebra is given in Appendix A, where the first

super-rule
(515)0(5'3)‘(505)(503)'(5"3)(3"5) (1.32)

and the second super-rule
(z0a)((3:2)0(F.2))-(a-5+2)
= (Goc)((Bxé)o(Br )]+ (do})((xd)o(Era))

(1.33)
and the third super-rule

(3e30BxC)(a-F+§)+ (arFobsE)@-Jed)s (Gngebel)(axd F)-0 (1.34)

are derived. ORIGINAL PAGE IS
OF POOR QUALITY
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with this notation, Eq. (1.13) may be rewritten as¥*
2TME$ - g(ﬁeﬁsb _H . No§(____ﬂ_)¢]dz (1.35)
A 7o} d30]

1.3 Finite Element Formulation

Assume that the surface Z is divided into N small finite
elements 2, and consider the simplest finite element repre-
sentation, that is, assume ? and

) ? -
¢ - a—%‘,-wqu) (1.36)

constant within each element. Equation (l1.35) then reduces to

E.9, - .42' cP‘W)zn SE',;_“;?AZ; —A%I'cp %mvﬂifdz

z - Z ¢(~)5 - Z ¢ D,

“‘ ‘,:I 4 (1. 37)

where Si and Di are the source integral

S - ZL"gJ_i‘_';_____z_dz (1.38)

and the doublet integral

D. -Z-H—SSNoVJﬁT ds 1.39)

Z

*Note the analogy with the subsonic Green Theorem

4TEp, - g (A v%f_———i—- -R a(ﬁ—;—f)wdz



evaluated on the ith element, Z; .
In Sections 2 and 3, the evaluation of S and D is derived
for a hyperboloidal element (see next subsection). Note that

for a planar element®

3-2—|ﬂ§§N°Vf;—g—_gdz - f’-g,r;e— s No@ 3  (1.40)

This relation is extremely useful since it is possible to
evaluate D (which in general would involve the use of the
finite part of the integral) as the conormal derivative of S

(which does not contain infinite part).

1,4 Hyperboloidal Element

Cousider the equations
x '1: *X,{*ﬂ.?*?‘;}'?

Y=g 1997977
} » }'c*}:"*S-?*},}'? (1.41)

or, in vector notations

a—

P s ?c * Pa?* 1% P;'gj (1.42)
This represents a hyperboloid. The lines /)= const and 3=

const are clearly straight lines. Consider the hyperboloidal

element (Fig. 2) defined by the above eguation with

(1.43)

*Note that V‘F(’ P):-v-f(p-{. where {7 is the gradient for

the variables (%,,Y,, ).) .
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The centroid of the element is Bc(1'= 7 = 0). The corner

points of this element are

+
o

P+ 1A ($=-1, Pz )
?' -‘?a (? *',7:-!)

i_;_'* ?"P; (7 "")7=f’)
- = P - P - P o« P’ (‘;;.__‘) 7:_') (1.44)

The inverse relation is

1T T
1 L
L] 1]
;@ I
s 9
]

;"QI

"

-+

1]
I;ﬁl
]

A
)

Pc ='7‘;(-,-.*'-,_-'--:,+-__)
Pos (Per B - B )
P =T(f’ Por B B.)
Poed (P - e i)

Note that the four boundaries of the element ( $:+) , 7=2])

are straight lines given by

P= ('—c"'-l)" (-‘-’73)7

- - - - - ORIGINAL PAGE IS

P - ?g-P.)' (h-8)) OF POOR QUALITY
F’(—c*i’n)" (—:"}5;)5

Pel(p-R)e (p-D)3 (1.46)

Next, assume that the surface of the aircraft is divided
into curved quadrilateral elements with four corner points §++,
P,_r P_,, b__. Then, as already mentioned, these elements can
be replaced by the hyperboloidal element (described above)
determined by the four corner points §++, §+_, §_+, 5__ (see
Fig. 2). It may be noted that the surface is continuous since
adjacent elements have in common the straight line connecting

the two common corner points. It may be noted also that the
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Pc is the centroid of the hyperboloidal element 2, and hence

it will be indicated as

- — (4) . (1.47)
P

Pc =

1.5 sSurface Geometry for Hyperboloidal Elements:

Next note that the geometry of the hyperboloidal element
is a particular case of the genzral equation for a surface in

a three-dimensional Euclidean space, which is given by

P = 7(5.9) (1.48)

where g and 7 are the generalized curvilinear coordinates.

Then the two base _vectors 4,4 are given by (Fig. 3)
q, = 2f . P4*7}-7;

(3
- 27 - - (1.49)
a& ® ?5— = P; 41 7’
. The unit normal to the surface is given by
7e 4% (1.50)
Iﬂ,‘ a;‘
and is directed according to the right-hand rule (Fig. 3).
The surface element d% is given by (Fig. 3)
ds - | Gd%x 4, 4] =&+2[dfdy (1.51)
1.6 Expressions for bhk and dhk for Hyperboloidal Element
Combining Eqs. (1.10), (1.50) and (1.51) yields
1
21r_“’ /’i'
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Similarly, combining Egs. (1.8), (1.13) and (1l.14)

yields _
D - b ff i‘xaz ﬁ __‘i_) Jé:lvz (1.53)
2n g
ZK g

These expressions are evaluated under the hypothesis
that the surface element is a portion of a hyperboloid,

in Sections 2 and 3, respectively.

1.7 Trapezoidal Planar Element

In order to facilitate the evaluation of the co-~
efficients, the integrals are first evaluated for
tranezoidal planar element (the results are then
verified to be valid for a general hyperbocloidal
element). The trapezoidal planar element is a particular

use of the hyperboloidal element and is obtained from

this last one by assuming that the two edges £ = 2 l

are parallel.: This implies that
P ” (1.54)
Py =y u (1.55)

where  is the unit vector in the direction of A or e
wa:p2/|a] (1.56)
Note that this implieé that

(1.57)

A= lef>e



Furthermore in order to avoid crossing of the element

boundaries, one must have

IRy

(1.58)

where the equality sign corresponds to triangular element.

It may be worth noting that
‘.‘- n - ':/ 0 05
4z pegps = (A40p) (1.59)
which implies

(1.60)

\
Py
Nl
H
“+
-~
=<
AV
O

ORIGINAL PAGE IS
OF POOR QUALITY
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SECTION 2

SOURCE ELEMENT

2.1 The Case uou =1

Consider the source integral, Eg. (1.38), for a trape-
zoidal planar element (5a455ecéior\i-7)/ -

ams = gﬁtg%—— dz:{{rp—é—;liﬂazld?d?

1!
= I u Xiil {I‘la;" J;§=£1:§:7¢L51i7
o FO#

(2.1)
For simplicity, it is assumed that w = i]fmﬂﬂ 18 such that
Qe u =1 (2.2)
" The case u@gu = -1 is discussed in Subsections 2.4 and 2.5.
Note that
Qn IJ fog + Z.o I
| Frdo g
- z - - b4 - - - —
= ';Z';‘(lﬂ“z_o rfoidl-F (- xiae gxu)]
jod  _ _
= + Q,ou| + 0
Jae j-jou \iFel
(2.3)

- | iG'E;‘+ "01"J?;§ -
Wf}'o& ’i"-{
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Note also that, according to the first superrule, if J??T?'::o
(that is, on the Mach cone),

(2.4)
Hence,

po Abef < g
- gJ 7] a»ia

[~}

(2.5)

along the portion of the contour on the Mach cone ({(curves Ml

and M, in Fig. 4). Thus, no contribution comes from the
portions Mi: hence

l

1 Fets - (Hu e e ga )"

T
since H = 0 on the portion N of the lines 3= ! 1. Hence,
{ N \
S = 37 [,Ls(l) - bs(-l)] (2.7)
with
t -
~ - s W[dFef + Bod
LA(g) = [ux f/—l!?n £ d
‘51) f Pa-l Ny ” ?KU” 7 (2.8)
where H = 0 outside the Mach forecone. It may be worth noting
that
- - - S - - - -
(0 §)(Goa)-(gou) = gruogrd <o 2.9)

For)a x U is pointed outside the Mach cone,since § is pointed

inside it. Hence, Jioi < ]io (:4‘

and thus,



Ji"i’ + Joud Z 0 for joi 20 (2.10)
2.2 Indefinite Integration Along ?
Consider
I - fnnlmhioal
13-at )} (2.11)

Integrating by parts yields

I-(7-9) in“f-oi + fou /
- F

;xao

L -

(V] -

~1¢r- | 104 7001 'l tiieiia
((7 7’)[”_"?*?""‘ (“—7 A ) 3 "ixa",(z; A u)]d;

(2.12)
Noting that
(7- 7§) é—z = 3-"' ia (2.13)
with
Fo = CPrgp)e e (pe2py) (2.14)

yields, applying the first super-rule,




S jol.-fou jou 9 +S jo} fou - joud fog. d7

-1gay” -igean 130}
iréiC)}’xu
f uixuU‘ 7

ORIGINAL PAGE IS

OF POOR QUALITY (2.15)
Next set
g i v -
5'0 = ;1 + ;‘ u (2.16)
with }‘,“ "super-orthogonal” to u and ’a'z, that is,
- N -
35 ou =o

N -
1,048, »0 (2.17)
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This yields
(a-.f' 7«5,—‘5-:(4)06( =0

(Gg+Mel-fru)oa, =0 (2.18)
or _ ._
%‘T a@u - 7* 03000 = O,QU
T Ued, - T« b,048, = 8,04, (2.19)
which is a system of two equations with two unknowns, with
solution
?‘T _ d,eu 4,04, -7,04, 4,00 _ O3, 000, ) frd,0ax4d,
a@a —‘0 ,-(:40-‘ -:Ou a:ﬁ,oaxi, _ﬂa:ﬂll"'
7 E.Oa GG-;’ 5.053 uod D, xU0d1U
& = _ I - — p— - = - - — — -
-5,oU Uod,+ 0,04, uou url,ourg,

(2.20)

Note that

[7&]'('&,)]‘&@5“‘] ;laoa_j‘a
7 -~ e = - = —
Gedio uxd, -jaxa,l

(2.21)

Combining Egs. (2.15) and (2.16) yields

1, (RS ReR D by
‘ wpear iy
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(2.22)

since (see Eq. C.%4)
¥ =N - - _ - -
;' ] ; B k 0[3—‘4"(?'7{)a, + gfr MJ s ;,”a ;’” (2.23)

As shown in Appendix B, by integrating Eq. (2.22), one obtains

(Egs. B.14, B.15, B.l1l6 and B.29)

T ;r'l@ i" -1 -itﬁ@i:
1, - # F()" — tM( ~ - ) (2.24)
= hFO [ §-d4a] 5o} 154 54l
where i )
F(p) - 1, fed faoi +fod Foi s
4,00, I § X al 25
= _:L_G;:_ 6;06; =0
7 034,
' - ! S“";l i:ae-‘ 63051<O

aoa, Ifxal (2.25)



=19~
On the other hand, as shown in Appendix C

|i '&;' &al
-"R—,u 5:"’

(2.26)

Z‘: ® ;od =

Hence, combining Egs. (2.11), (2.15), (2.20), (2.21), (2.24),
and (2.25) yields.

I_(7_7.) Q,‘."i'“"'ie‘-' !
l;_xaﬁ

s - - -1--1(70—:(-,
- }-a-a hﬂp(? e } (2.27)
'}l Z-‘“Xa:
, -/
where the principal value, fm P , of the function X ’

is defined as

-1
-T < twn,(x) £ -g— | (2.27a)



=20~

2.3 Source Integral

Combining Eqs. (2.8) and (2.9) yields

Le(2) = I,(g,l)- ) (—g,-l) (2.28)

where, (note that IG-P.l =la.'a4l/{a.l) if H = l(that is if

the corner point is inside the Mach forecone)

|§,t U;l

I,(5,9) = R RTAL

LA |[FeTEed « fod
"{““"”"‘“‘)m L'l {5l

+(§xd04:a) FO)

?
Al

oﬁ.ni& ul\-' -i-‘a-’,ai.._‘d: )}
PNt} f-414,

ORIGINAL pp

OF POOR QUaLry

(2.29)

with F(7) given by Eq. (2.25).

On the other hand, if H = 0, this means that the corner
point is outside the Mach cone and there are two possibilities:
the whole segment -l £/ £ ] is outside the Mach foreccne or a
portion of the segment is inside it. In the first case, i‘fﬁio
and hence it is legitimate to set

I, =0

In the second case, the integration must be restricted to the

portion of the segment with H = 1. Hence, the value of Is must



be evaluated at this extreme of integration, which corresponds
to the point where §eq = 0. As mentioned above, for 3 = 0,
the first logarithmic term is equal to zero. 1In the second

term, F(# ) assumes the value

F(W = o .94 30
=-i-;_u,4&fﬂ(ieﬁ,)‘—z- a,04d, <o
(2.30)

It may be noted that for Geg = 0
- - -t o - - -
;Oaa.";‘a& ’-I;" N“aa
- —‘/ 5 €
where N, is the inward unit normal 7 | ¥ , to the Mach

forecone (see Fig. 5 ). Hence, noting that &, is in any case

directed from 7 = -1 to 7 = 1, it turns out that

jJoa >o (2.31)

if 52 is directed inside the Mach cone, i.e., for lower extreme
of integration and viceversa; hence,

g O, 0 § ® - () =-9 (2.32)
with 7.-.—! (7:01) for the lower (upper) limit of integration.

Finally, the last term assumes the value
-li“.-‘aal%F"f"('(f'a-"i“’*” (2.33)

However, according to the first super-rule for geog = 0,

~frd 054 . joa fod, (239
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On the other hand
- - o
$oda > (2.35)
if 31 is directed inside the Mach cone (and viceversa). This

is true if the x-component of Q, L is negative (positive)

(Fig. 5) since Ao by assumption. Hence,
s1gn (pods) = - sign (ux) (2.36)

Finally, combining Egs. (2.30) through (2.36), one obtains,
for the case in which portion of the segment is inside the

Mach forecone, but the corner is outside it,

GG (5 = = ~
'Is 61;7) =»:%iijriiﬁr j’;—*éﬁ @ Qd F.{7)

- l;.é,.d,l s‘iin(jUx)-Fi-}

(2.37a)
where - -
F.(np) = © @048, 20
= Tla—i ..Tzl. n Q,04, co  (2.37b)
In summary, according to Eq. (2.7)
' LY L)
S =z (is)- isC-1)] (2.38a)
where, according to Eg. (2.28)
Ls(E) = 1,(2,1) - 1s(3.-1) (2.38b)

In Eq. (2.38b)
I,¢(z.n7)=0 (2.39)
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if the segment —| £ 7'5 | is completely outside the Macn cone.
On the other hand, if aAportion of the segment is inside the
Mach cone, then two cases are possible: a) the corner 7 =! (
is inside the Mach forecone (H = 1) or, b) the corner 4 = % |
is not inside the Mach forecone (H = 0). 1In the first case

d ®q >0 and according to Eq. (2.29),

1,(5.9)- 18241 (5 2 5z 7 o |IF10G1+Fod.
S f 7) -“a-'*a-‘"; Z. a @a; a'"al, Ll " ixa-'"

+ (frdiod~a)FQ)

' -‘A_l -J
" ’ ; ’ (2.40)
. with (see Eg. 2.25)
| 3L+ fod, | -
() = Lr _
F 7) aa’“ l 'ita—‘u a,ad, >0
_ 1§ i
?, (0] a; 0,@ —: =0
l o f Zoa -
AR (T;Lﬁ:,—) a,04, <o
(2.41)
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On the other hand, in the second case, which corresponds to

qoJ £0, according to Eq. (2.37a)

- |av‘ azl 7 « 71 'x‘;
1,(%5.9) - _——-————M‘a‘“,ﬁ_ 4,0 44 F,k(9)

| fran ) aige (1 u,)'-—’zr—}

(2.42)
where
Fo(p) = o 2,08, 20
L . 2,04, <0
TN IRE 7 2,04, (2.43)

2.4 Planar Quadrilateral Element Internal to Mach Cone

In this Subsection, it is shown how the results obtained
thus far can be extended to quadrilateral planar elements. 1In
order to do this it will be shown that the second mixed de-

rivative of the function

L(<.9)- —‘fii‘_-{;.czoa‘a FEs7)

’” é-. x é, ”

+ iﬂ a o 5."5; Fs (f,7)

)

- §.dd fan)(Bedofd )
podon PUir §-4.2 7

(2.44)
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is proportional to the integrand of the source integral.

In Eq. (2.44),

= (7,7) 1 In 1§10 Han + 3o a

” a,ll ﬂi;t all
- 'K
¥oa,
-1 s py \
s - '. gin (?’0“" )
Ial 1§ < af
F, ({7) ,ﬂ}nnuﬁo&
ﬁixa;ﬂ
Y
* Fod

I &, /];,‘4,117

f S* ;430 J

@2 >0

4o a <0

(2.43)

ao a6 <O

(2.46)
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Note that Egs. (2.44), (2.45) and (2.46) reduce to the formu-
lation derived in the preceeding Subsection) if Ele 5.1 > 0.

Equation (2.44) may be rewritten as

Is(:f:7)"‘ {0—.::-&7,’; {3’ 4 0 i F (5.7)

) _"é:‘aa."

+ Jro 22 F(5)

s axa - "/-;14.0& a, )

B } IE"‘@I {”i” ;40"@;

= { ; Q()f’ F 6?'7) -+ x Q;O n fi ff SL)

~Ini®

—-i‘l_‘i M;(—ixi,oixﬂ: J>
PUrgn j-a-a /

(2.47)
L 5:.
! 51 ] 53,

=0
|

since

(2.48)



Note also that,

independent of ¥ and )

Ty
273 - 27
Hence
fD g - -—
5—%-(};( ,on)
and '

;%r ( i:x é,@ 5)
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'Next consider the second mixed derivative of Eq. (2.47).

Note that
> ¥ = ai ’ 2 F = TL (2.49)
2% 27
"a, - bq» =0 (2.50)
3 2

and
24 24 -}; (2.51)
37 b—g’ 3

for a planar element, the unit normal n is

) (2.52)
= (51‘ 5‘ @F)) = 0 (2.53)
= {(ax«Q o n)z o (2.54)

Furthermore, as shown in Appendix B (see Eg. B.5, B.1l0 and B.1l2)

I’ Jé,,o é‘ +§-Ob-a

Afo]

? f

o0 Mzub1
: 9 A fo i

2] jea

[ = - \
] \4,@ 4, >0,

I i X 5;”
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or
oF. 1
21 bl

Similarly, interchanging indices
DF; - !
2% hgi

Hence |

25 29

(for

(@0 & <0/

(‘FO( a'a E, % O)

o {;‘a.@h F65.9) |

ORIGINAL PAGE IS
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(2.55)

(2.56)

(2.57)

(2.58)
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and similarly, interchanging indices

4@ :qon ‘ix ﬁ<>5

TR Y A (fo §)%

(2.59)
Finally, as shown in Appendix D,
s |- M,(-fxz.o;_,a,)
—————— .n - g —_.
@$D7 ; P //i” Z,'ac’d»
S
=} ;
B
(2.60)

Finally, combining Egs. (2.47), (2.58), (2.59) and (2.60)
yields (note that fiill =-Aen )

'D*Is |

2421 noen

A

Gxq,on TxPon - - _ teua
—(" d +}‘P9n-;‘q'on , ‘)

131 1§ TR

+ ("'“’:‘” . 3"_”’°"~;',xa"oa—3——°_q;)
N



= - - - |
= =7 2!Q,xa,}nen7l—i—” +
| = = e e = =T e = o = -
+ m(;xa,on }00";‘ Lon j.o ,-j.n } o,x@)}

On the other hand, according to Eq. (A.l§),

- - —-— -—

—[E.‘(?,I(;xa,on j04.- Jca,0n Z—_a = 3o ZA.Z,.Z;,)

- o araoari
- _ _ _ - I
= ;o; nen fa,xﬁ;’
(2.62)
Hence

or
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Hence, according to Eg. (2.1), the source integral is given

by (note that for elements internal to the Mach cone, H = 1)

INS = la.iQ;l 4/3.‘37 J‘ 2 I, Jg“’?

4y / W"’? " (2.65)

or

(1,1)=1,(1,-1) - 1,(-11)+ Is(-1.~1

zns ) 2.6

with 11 given by Eq. (2.44).

2.5 General Quadrilateral Planar Element

In order to extend the results to a planar quadrilateral
element intersected by the Mach forecone, it is convenient to
use the theory of distribution by Schwartz { Reference 8),

. For, note that, according to Egs. (2.61l) and (2.64)

|Ev“-a-:f _ { [E,:E,Oh' j’}”,o}-) - = - ;oa-‘]
i3 Ten | UTugn C Tagr CFA Ty

a:d,on 2 Phen - . - 904
(n;n - ng; ';‘“""—&]

(2.67)
But while the left-hand side has an integrable singularity, each

one of the three terms in brackets on the right-hand side is
nonintegrable within the framework of the theory of real func-

tion. However, if the right-hand side is treated as generalized
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function (or distribution), then-the integral of the right-
hand side (in the sense of the theory of distributions) equals
the desired integral of the left-hand side (in the sense of the
theory of real functions).

It is obvious that if the element is fully within the Mach
forecone, then the results described here reduce to the one
given in the pfeceding subsection. Also, if the element is
completely outside the Mach forecone, the value of the integral
is zero. Therefore, the results presented here complete the
formulation for a general quadrilateral planar element.

In order to simplify the derivation of the results, consider
each of the three terms in the brackets in Eg. (2.67) independently.

This yields, according to Eqg. (2.1)

2MS = 5{ H a5l dgdy (5,+S+ 5) (2.68)

-f -}

where, according to Eq. (2.67)

- - EI"EIQE 9:Den - _ _9 A
P;fnon "i” + ;';’:n-;xd,ol! ;o

H a,ia‘@- —r o
S FYE- TR

S, - - Ff{;ﬁ_[;,’, -2'5.-:3]&}-&7 (2.71)
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;E where Pfs'indicates the finite part (partie finie de Hadamard),
of the integral in agreement with the theory of distributions
e (Ref. 7, p. 38-43). Note in particular that (Ref. 7, Eq. I1I,
2; 26 withm = - 3/2and ¢ = 0 for x > Q)

ot [t pwsn- o ( f

3 3
"G (x)dx + ¢lo) ] (2.72)

Hence, one obtains for Sﬂ z X 9'_

pf f a2 ox - fff( b

\"\

dx

Ja (2.73)

In other words, the singular contribution disappears and should
not be taken into account. It may be worth noting that the use
of the distribution theory, in particular the finite part of
the integrals, is fully legitimate, because the sum of the three
integrals considered in the following is a regular integral.
Hence, the three singular contributions (which are not taken

into account in the theory of distribution) would cancel each
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other in the theory of regular function, if the integral is
evaluated in the limit (starting from a region of integration
without singularity in it and letting the region approach the
one under consideration here). The use of theory of distribution
however is preferable since it yields the same results with much
less complication.

Hence, in order to evaluate S, consider first Sy Integrating
with respect to 9 over the portion of the element with H=1

(Mach precone) one obtains (see Eq. 2.58)

S =

| !
Sag g (Geaon+§s o7)jod-Jeaon Fod] ,,;,,,47

= - = 5 {H xa,on
ne

i
gl

!
1
= - ﬁoﬁ"{(;;a.an m] s

(2.74)
where, according to Eq. (2.73),
H= 0 outside the Mach forecone
= 1 inside the Mach forecone (2.75)

In other words, the portions along the intersection of the element
with the Mach forecone (lines M in Fig. 3) yield no contribu-
tions to the integral in agreement with Eq. (2.73). It may be
worth noting that

IR0 =X (9-2) 2.6
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where /) is the value of 7 for which li‘l =0, and X is a
suitable constant. This justifies the use of Eq. (2.73) in

Eq. (2.74).

| In order to discuss the integration along‘fg , it is con-
venient to rewrite Eq. (2.74) as

S, -5 - s 2.77)
1] ’
with

S’

"

,,)”_“]7—“55 (2.78)

|
| - (2.79)
- = ﬁgﬁ;x q,0 n) Il;ll]?"’

Next, consider the two following possibilities. First

-

=

H.5) ]7.‘ 0 -l £% < (2.80)

is completely outside the Mach forecone. 1In this case,

4 (2.81)
fS‘ t O

&
In the second case, introduce the abscissas ¥, and 1:' such

H, (4, 1)

that

° -rzy=73
U AL 2PF A

0 s AR SE I (2.82)

In particular, §'°=-| ) -3’: : 4 if the corner <=-1, n:1; (=1, 9= 1)
is inside the Mach forecone. Using Eq. (2.82), Eq. (2.78) may

‘ be written as (see also Eq. 2.53).



. _ 4 - - . 4
S, = Fon ;xa‘.onl}‘ u—i—ldg (2.83)
10
or, according to Eq. (2.58)
S, = - ﬁ:m {i.ioﬁ[ﬁ “£..7)-F (,710,7)J}7=, (2.84)
= 1"(|, ')"’ Is,("l'l)
where
4 - = +
= - ] (2.85)
15 (1) Aon [;,xa,onJ%,F, (3. . )
I €, 1) = — E::ﬁ [j,', 5,071]7" F (5 l) (2.86)

Note that if -5 % 1 (i.e., if the cornmer(l,1)is inside the Mach
forecone), then*;’:is the value of ‘g at which M, becomes equal
to zero, i.e., the edge 7: { crosses the surface of the Hach

forecone. Hence
“?:ﬂzo for g.—;‘;”,7:4 (2.87)

This implies, according to the first superrule, {ioé'l.-. n ;, a

and therefore, according to Eq. (2.45)

FI(3' 1) =0

o

v

(0

-
-

\ . - - -
:-‘-‘—a-.-n“—;;‘,in(;oa,) 704 <o (2.88)

*
Here, it is assumed that ?". xa, ¥ 0, that is the centroid of

any element is not contained in the line 7 =] (-~ <-§ < ® ).
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Similarly

Fo(37,1)

u

) 4a0a zo

' (2.89)
LT e (705) Fes
=-l-a—‘-"-—2-§:/n(;eﬂ,) a,@ 0,<O

if ";: = =1 . 1In order to obtain the expression for sign
(Eoil) the same reasoning used in deriving Egq. (2.32) may be
employed. For,. note that, if q® q = 0, the vector § is tangent
to the Mach forecone (Figs. 1 and 5). Therefore -qc (see Eg. A.S5)
is directed like the inward normal to the surface of the Mach
forecone at P. Hence

i—o g = .T' a, >o (2.90)
is inwardly directed and vice versa. Note that the case J @ a,= 0
implies that 31 is not tangent to the Mach forecone (see Fig. 1l).
On the other hand, &; is necessarily directed from ¥ = -1 to

“$ = +1 since along 7 =1

4, = p+ B =5 (p-7) (2.91)
Therefore, if '{‘.—; -1, 31 is inwardly directed at ?‘,’ (lower
limit of integration, see Fig. 6), while, if - & -1, 'a'l is
outwardly directed at 'f,"(upper limit of integration). In other

words

1 at §=%"% -1
"1 “"{“f:*’*‘

g’ofﬂ [i—@at)

1L}

(2.92)
Similar results may be obtained for SI. In summary, it is
possible to rewrite the results in a more compact form, as follows:

S, = 15 (1.1) =1, (4=1) =35 (1, 1)+ Ig, (-1,-1
1 5:( ) q S ) S ) (2.93)

ORIGINAL PAGE I8
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where

1
o

1,, (1. 1) - I, (-1 ) (2.94)

r Y -
o 1 (1,-1) - I (-1,-1) = 0 (2.95)

if the edge ‘9 =1, or '7 = -1, respectively, is completely

outside the Mach forecone. Otherwise

I
I, (s, 1) =- e [Z,x 0'0”}7,2 Fo(s.5) (Sﬁf"s'a’”)(z.%)

if the corner ’g = S;, ] =S, is inside the Mach forecone, while

(see Egs. 2.88, 2.89, and 2.92)

Iy (s.5) = © 4,04 20

i - =
(}‘40”]“‘,2]3.‘5: 4o 4<o (5 9

if the corner is outside the Mach forecone, i.e., if

;O?L_SV < © (2.98)

In writing Egq. (2.97), Eg. (2.92) has been modified to read
S'zfn(ioa,)=+1 For S, oo

2.99
:.-—1 ’fof S, =+ | ¢ )

Next, consider the second contribution, Sz, to the source

non

integral. This is given by Eg. (2.70). 1Interchanging the order
of integration and repeating the procedure used for Sl' one

obtains (see Eq. 2.59)

S, = = P\f d7{[{drd,on*; ﬁon);ﬁ}-}rﬂ@n ;MJ”i”’ i
4 NGNS,
== P‘,i#gﬁ% fra0n = )J}'

|

‘I

1

<
\/\
,"“"'\-
ol
RN}

o

30

-.:‘1

(2.100)
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where
HO =0 outside the Mach forecone
=1 inside the Mach forecone
(2.101)
or .
H, (t1,7)=0 -1 29 292
4 ten ¢t
= 7t <7 < y;
- 2 (2.102)
0 7,0 ¢ <1
Hence, Eg. (2.100) may be rewritten as
= + - 2.103
Sa— - S; - S; ( )
where
+
he
+ ' [— = - 1 A]
S = = a, o n —_— 7
X = £:a f: ) (2.104)
nen 3, ng,ﬂ Tt
Note that
o
S5, £ 0 (2.105)

if Hy = 0 along the edge 7=121, i.e., if the edge /=11 is

completely outside the Mach forecone. Otherwise, (see Eq. 2.59)

5.: = 1;, (1"’)° I;'(ll,—l) (2.106)

where

\_

I (x1,1) = = (3«Z05] “a(u,ﬁ)

no -/;r:
Is, (111) === (Fraon Loy B0 2,

(2.107)



Note that if 4, x 1 (or 9t w-1),

15‘,.(5.,3.&) = O' @07;2
.50 I (2.108)
—m;th,On”; 2 S'z/n (},oa) 4044<o
where
Sigr (Jo&) = -5 =+ | S, = -1

= -1 C Sh=eel (2.109)

In summary, it is possible to rewrite the results in a more compact

form as follows

S, = 1, (1.1) =15, (1,~1)- 1,‘(-1,')-r1:‘(-f,~r) (2.110)

where
15"_(';‘)'15‘ (‘,");—'_ o)
or (2.111)
- - - -1 E-O
s (-1,1) - e (-1.71)
“if the edge 1; = 1 or 1§ = -1, respectively, is completely outside

the Mach forecone. Otherwise,

_ ! - - - S. = \
If‘_ (4,, 5&) '77-0;)- }ia,on/L‘s; Fa. (5.:,5.:.) (sf , Y (2.112)

if the corner ';= Sl' '7= S2 is inside the Mach forecone, while
IS‘L(S.:,S‘;) = O é;_@é_?'o

| m _ -
[ZG,O’) — 2 3% 204<0

55,180 (2.113)

if the corner is out51de the Mach forecone.
Next consider the last contribution, S3, to the source inte-

gral. This is given by Eq. (2.70). Note that for planar elements
Jon o= const (2.114)



Therefore

S, - -

3\ 3\

P-FffH a”d‘ dzdn

= _;Lo';_ 21D (2.115)
n

with D as the doublet integral given by Eq. (3.28). The evaluation

of D is discussed in Subsection 3.4 under the less restrictive
hypothesis of hyperbolcidal (nonnecessarily planar) element. The

results obtained there are applicable here and this, according to

Eq. (3.39)

__ 3 1)1, (11)-1o (-1, 1) 2 1 (~1,-1)
Sa - ﬁeﬁ(l’“') - { ' J (2.116)

where ID(Sl, 52) is given by Egs. (3.40) to (3.43).

In conclusion 5y  combining Egs. (2.68), (2.93), (2.110),

and (2.116), one obtains

27S = I; (i l}— I;(l,—})_ Is(-1, ,]_, Is(- ,'__,) (217"
with ]
n L
15 (5.5.) = 15 (5.,5)¢ I,;(S,,S)-_ETL (5.5.) 2
I Gus)is

where .I%(SUS;is given by Egs. (2.94), to (2.97),

given by Egs. (2.111) to (2.113) and  J,(5.5:) is given by Egs.

(3.40) to (3.43).
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SECTION 3

DOUBLET ELEMENT

3.1 Introduction

Consider the doubletintegral, Eq. (1.39)

.-.%gﬁev(l&?)dz (3.1)

As mentioned in Section 1, in order to avoid evaluation of

finite parts of integrals, it is convenient to use Eg. (1.40)

D:—% :lev.{flr%_—%—idz;"’aozls (3.2)

Hence, according to Eq. (2.38)

—-:---—-[A. (1) - Lol- J)J (3.3)
with

K, (5) = + Now 4s(5)

(3.4)

or, according to Eq. (2.38)

Lo(5) - L(3,1)- L (%.-1) (3.5)
where

Io(%.9) = +(Nevw)Is(5.9) 5.6

with Is given by Egs. (2.40) to (2.43).



-43-

3.2 Evaluation of ID

Consider first Eq. (2.40). In order to evaluate ID’ it
is convenient to use the definition of the unit normal N
al"aa

N = —
'a,xa;l

(3.7)

and recast Eq. (2.40) as

LD T -1 = | [ni!}ﬂﬁ.ll+§oi,|
f; a'o”ua.uﬂ"l T

(3.8)

Note that.?o appears only in § = P - 50, (Eq. 1.27). Hence

- - Xe Ny _

3.9
(4 ’”‘ )
where N® is the conormal, Eq. (l1.15). Note that N is orthogonal

to 51 and Sé (Eq. 3.7). Thus

N¢od, = N+G =o0
- = . (3.10)
N o4 = N:4 =0
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Nov (jxdoN)=-NsBoN - - N*d: 0

- (N0, fod - N0l 5,03,)/18r&] 2o
(3.11)
and
Nov({-A=-N“N.-NoN 5.12)

On the other hand, for 5'10 31 > 0,

Klev.(ul' fn (Wlﬁ;a"ﬂ}f’ﬂ}]

=T?;",T N e V,{Qn {,/?.—o?, E,oi,+Z.Oio)-;"fn(—;xf?-.@ixil,)}

_ | _ 1 20-¥%r
_"mu{']ﬁﬁ:ﬁ‘-»;oi, (Jie_ d2,03, +N aa) d _z;:/;::‘i 7

— J m&lav ﬂ, ;"‘76*-*/0?/, - h—l ii j
BT ; of Aok -(foi) A3ef ohr -1 §s



- Ajaed A §ed [aed Ffded j
Way ) -ugear -Wfral J3eg -t1§«ar

- - Jou, 1
- VN OTar e
"'“Z-* a:u ;01
(3.13)
Furt:.hermore, by setting
Su = sign (§-N) (3.14)

one obtains

-1 ..Z,xa-,o ixa‘
N Tas (u%uli-&.:&l)

Y|
({.;ﬁ,e il ﬁ,)&
;ai (i-&“é,)‘

=Sn

?
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,{m‘xa',oixa..g,a.oao. 2)§o] jré-d

_;‘5'0%5‘[;,‘,? 3828, + 50 f NSd ZJ}

QRIGINAL PAGE I8 ' (3.15)
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order to obtain a simpler expression, note that according
(3.10),

In

to the first and second super-rules and Eq.
(El"..a'.c i.xﬁ;* %xﬁ.ooﬁ‘rﬁ.) 3«0 i’(i‘ﬁc’é:)
- (Q‘Oi g‘i,ﬂ&;f ;oz' ;‘—°a—l‘2))(§—l EQOEJ‘Z))

il
~~
&\
Qo
o o
Eo
.1
]
&0
©
19
@!
_h!
Q
al
.\'

34+, +30§ Ne.ax4,)(§0F d07,)
on. g« - ay ’4,4- s,o; N¢s 2 xa‘)(z.ad, z,eﬂ)
‘N i) 303 (F-ard)-(fof) (3,64,) (N 4 a,)

i
-
ey
z
_.ﬁl
(-
[ 7]

‘a a 3,0;.(0,}' a‘, oﬂ,x d;)(x- ﬂ: i-oi, i@ag



g é-,oi‘q- i@i, ;Gﬂ-,)

a)({,o} 4,04, . ;aa, ;,o a,)

.'.(z,aﬂ,) (;04’;)2102& -(iai,) 4—,03, ;Oi&',oaa'(io‘?‘ ’&-&eﬂ-‘ ioa—a

+ §od f04 §0i(q0 a)+(fo %) (foi) 404 }

= _{;oa,( (fod dod,-foa 2,04)j0fa,0a-(f0d,)]

+* ;-04;[(;04/ a,oa }04: ql"“’)(i’"i aloal (;Qal)l

= (ra0d)(Foa)if-at’- (3 LoN)fo S)1F- a1

Furthermore, as shown in Appendix C (Eq. C.1l4)

a1
Q
b 1|
-~
‘!‘N
&t
\4

s (k0

“'
&l
\a
1
oty
»
Ny
wpa)

Hence, combining Egs. (3.15), (3.16) and (3.17), yields

Nov,ta.n"( -§:d0%-a ) =
[F11§aa]

Va_lﬁaa—'(i‘é'”" 2,)(ixd-,aivd;)+ iai,(iri,oﬁ,:a:)(itﬂ',oi:é,)}
1* 4

(3.16)

(3.17)



;xa,l n;xa, 131

15 | f ‘}-’ a
(3.18)

Next, it is shown that for any value of ‘a‘2 o) 'a‘.'2
NoZF(p) - N-§ Fod J (3.19)

NF-ar Jjog
where F is given by Eq. (2.41). For, if a, 0 a, > 0, repeating

the same derivation as shown in Eq. (3.13),

_ P
Vo aF = oo (g7 fn Y fed))

- %204
N i /

= PN O5oar ey

(3.20)
Similarly, if 52 o 52 = 0, then -(ied,)‘z ixﬁ,aixﬁ,z -”}:ﬂ,u’
and - - - - 9
. NoGF =~ev.(l.’°? )
Z_ 0 4
—IVca? | - = 02;)

=~ et 7o% ipen

- , ;aa |
N NI ITIA
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» Rt

§ T ——

I"‘K‘oﬁls‘-

'y [ ay
- | ‘ A7‘O ¢ = 3. =
= - 2)(-N%d,0 §x 4q,)
i &1 4 \ [' ¢ x ’.}' ;} g xa -
- (g 7 Fear
-1 'l-l an ;,@ h - - _
Vb FLZoga-Gor) [ 134, (No} diod-itod, i"i‘))
{ ;o N

S rar W ifear b A0h

04

= ~9.4
4 =, 0> g

*l Y]

1

(3.22)

Finally, combining Egs. (3.8), (3.1l), (3.1l2), k3.l3), (3.18),
and (3.19) yields

f (;'R.GM)MOV( Qnﬂﬁll?.lf;oa,]]

NoR | 1j«al

+(§«aoN) Nef.F - Sn (;.n)&opfan"(—i:z,e;,@
’iﬂli‘d.,n 4;[

- Sa(No?(f ¥ Ia.n"('i’”—'o F*d
15113 @+al




(3.23)

3.3 Direct Integration (for elements completely inside the

Mach cone)

3.3 Quadrilateral Element Internal to Mach Cone

Consider Eq. (3.1) for elements internal to the Mach forecone.

In this case, H= 1 and Eq. (3.1) reduces to



(3.24)

since V(Z—oi)-’ 2?: Consider the function

1, & 0) = T -$1407 4
o 5 7) P i 7.4 (3.25)

As shown in Appendix D (se2 Eg. D.17)

Q’Ip - i‘&-’xE,

042] ﬂ?"p (3.26)
Therefore, combining Egs. (3.24) and (3.26), one obtains
' (N
-2MD = S o1 d?dy
B @1@7
= I, (1, 1) = 1, (-1, 1)- I,(/,—/)«» 1,,{-1,—1) (3.27)

3.4 General Quadrilateral Element

In order to extend the above results to elements partially
inside the Mach forecone, it is necessary to use the methods of

theory of distributions, which were introduced in Section 2. For,
the conormal derivative of F} is not integrable in the theory

of regular functions. The interpretation of this fact is given
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in Ref. 1, Appendix H, where the doublet integral is obtained

in the limit (by replacing i%j_ with a suitable continuous func-
tion and then taking the limit as the continuous function approaches
the original function).

In the case of a planar element, the problem can be circum-
vented in the way used in Subsection 3.2, that is, by replacing
the integral of the r ~rmal derivative with the normal derivative
of the integral. On the other hand, in the case of general
hyperboloidal guadrilateral element, it is still possible to
evaluate the integral, however only by using the methods of the
theory of distributions. Consider therefore, Eq. (3.1) which

for an element inside the Mach forecone, may be written as

(see Eq. 3.24)

2TD - §§ NoF ‘%) dz

el =)

=F{SK:4 UOE("L;,) d=
—pf [ 0t

) ',

i
_‘JJ
ige 37
(3.28)

Using Eq. (D.17), one obtains

e ]|
oy
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>
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\
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V]
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-2TD = S‘ u‘”;; (j{o
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where HO’ defined by Eq. (2.75), is used in order to take into
account the fact that the contributions of the intersection of
the element with the surface of the Mach forecone is equal to

zero (in agreement with Eq. 2.73). This is the same procedure
used in Eq. (2.74).

¢+ - -
Next, introduce the abscissas 7' /A 7, » and 4,

such that
Hel(t7) =0 -1=2727%*
= | 2 by
7,37-‘-7:
= O 71‘74’ (3.30)
’ —-— -—
Note that 7L* = +| if the point (1,1, is inside the Mach forecone.

Similar possibilities hold for QL: yf, 9;. Using Egq. (3.39),

Eq. (3.29) may be rewritten as

/N
y - -
-2T P = §? [”Z‘a'” "g_u (;- ; 0’ 41*?’ ;Oﬂ, 3»4: @44&7

1 ’Oﬂ—a-—,x—_—- —_.-’x"
5 ,,;,a,, ,,;,,(} ] 1-41p,- %04, 14 6)1;:_4 47
(3.31)

or, by using Eq. (D.15)

7‘1»
—zwv&f | 4y - f J:
+ 07 d7
= 19 (11 7:*)'19(1, 7,')"Ip{"’/ 7[}" Ir(”;7,') (3.32)

It should be emphacized that if H, (21, 7/5 0, then Zi z 7'3’ and thus

I,(i 1, 7;1) - I, (14, 7,1) £ O (3.33)
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Note that, if ’3’.* % 0., then l?.ll = 0 and hence, —?xi,o iui: 'iaé i_oé

and therefore

ID (i; 73“): S.I’f" [}02' ?QEJ)
\ 7' -q-txzi ]
= fl/"(?,oﬂ,) S.;f"(i.o 2:;) g'/"(i‘ﬁl‘az) (3.34)
with sign ( 'geb; ) given by Eq. (2.109). 1In orde:r to find

the values of the other terms, note that, for f= 1, %' and "}‘—

are the roots of
JoL =Chri)to(pr )
= (s 1)oChr 3)+2) (irb)o 7w B )1 J (Bl Jo B )= © (4 )
and thus, at 7= 1l and 7;7"

;05,=f(ﬁ.+p,)+y;(ﬁ,~@)1o[/3,+y;},—,) 3.36)

‘while
7_-.2':?’: [/p—o"ﬁ)* 7;/,2"/35)]'[5’7:P;JX[P:*P—!) (3.37)

Finally, it may be noted that 705, = ic’ 4 =0 (or, 76’3; =
—f- Z, =0 ) at 7: 7‘* implies that 31 (32 respectively) is tangent
to the surface of the Mach forecone. Hence, one can conclude that
70 Z= 0 and —Z-,o 5; = 0 cannot occur simultaneously, otherwise
the element is tangent to the Mach forecone, contrary to the
hypothesis of small perturbation. Therefore, if }'07; = 0,
the configuration is as shown in Fig. 6 and it is evident that
a more convenient way ﬁo evaluate D is by interchanging the

order of integration, which yields

~2Mp = L (370 1)- L 65,*,1)- L, (4,-1)+ 1.6‘,",-') (3.38)
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Obviously Eq. (3.38) is equivalent to Eq. (3.32).
In summary, it is possible to rewrite the results in a

more compact form, as follows,

c2wD = L (L 1)L, (1,=1)-Ll-1.1)+ I, (-1,-1)

(3.39)
where . :
L (1,1) — I, (-1,+1) =0 (3.40)
or
L (1,-1) =L (-1,-1) =0
(3.41)

if the edge 7==].or 7 = -1, respectively, is completely outside
the Mach forecone. Otherwise

-l — 970637
(5, 5) = Tan, baold
PUgig.a«g (3.42)

.if the corner'f:— S, 7: S.: is inside the Mach forecone, otherwise

I, (5.5) = Tsin [(foé}(joi,)(i-ﬂ—,x z)) (3.43)

where the term in brackets is evaluated as indicated by Egs.

(3.34) to (3.38).
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SECTION 4

METHOD OF SOLUTION

4.1 Introduction

In the preceding Sections, the problem has been
formulated and the expressions for the source and doublet
integrals obtained. The method of solution is
outlined in this Section. This requires a discussion
of the value of E on the surface 2. and an analysis
of the role of the diaphragms. These are presented
in the following £ upsections. Then, the general
method of solution is presented. For simplicity, super-
sonic trailing edges are considered so that the contri-
bution of the wake need not be considered. For subsonic
leading edges the wake may be included by following the

same procedure used in Ref. 6.

4,2 Value of E on Z,

Consider Egs. (1.6) and (1.8). 1In order to evaluate
the value of E on the surface, z , it is convenient to

obtain the limit value, as the control point, P

)+ approaches

the surface,1ZJ, of the body. Following the same proce-
dure used in Appendix C of Ref. 1, consider a small

neighborhood Z. of the point P, on the body (Fig. 7).

£

Equation (l1.6) may be rewritten as

P firob H P 2 CH >Ja. 219,
SRS 5 <au- 131 T Vg’ ToE (4.1)




where

AT Rt -

Assume that the surface 2; is a small quad;ilateral element,
as shown in Fig. 8. If : is sufficiently small} the
surface may be replaced by a quadrilateral planar element.
Then, if P, approaches the point B, , the value of 7., ¥

7
tends to zero; and, neglecting higher order terms in ¢

é

(wiish includes, in particular, the first integral in
Eq. 4.2) in analogy with the results of Appendix C of
Ref. 1, one obtains (se¢ Eq. 3.29)

- S - e 2/ H Y us
é.::';" 2n 1 4),( ?’:‘;* i#z 2”‘( )

[}
]
gty
.
' =
| Simmen |

- e e o = - - _ T-y
3 . - g N &
b P §axP- g gnen Ty

FP - i It ¢ xeuif* 2
! 7x4 7 %7,
= é Lim {*‘M "{K »o"]x_:«\ 7 7‘
« Pl P i.:"'"/ 7 2, Xé':';‘ /v‘z=-‘ -
Tttt > 7
+
- - ﬂ
< (4.3)

—

where the upper sign hold if P is outside tie surface >

(region E = 1) and vice versa. Hence, for infinitessimal

values of £ , combining Egs. (4.1) and (4.3), yields, for

P, on Z , |
4 A3 K \ysT (4.4)
ﬂE ¢> i}a(af/cul/ ¢«’WT_)V{L
< 1
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where

il
"

E* y .- - |

1
Q
+

[}

'

(?': 1ASiie Z) (4‘5)

. . s . ot s
in both caces P, inside or outsile L), in correspondence

= O ¢

4
-

}‘)\ -

with Eq. (C.13) of Ref. 1. Note that Eg. (4.4) may be
included as a particular case of Eq.(l.l17) by extending

the definition of E as

E=1 Outside &
=1/2 On =
=0 Inside - .

(4.6)
Finally, it may be noted that Eg. (4.4) is an inte-

gral expression relating the value of $ at one point P

-

oy P N4
of the surface S to the values of <> and oga/JAJ on

<) T .
the surface .. . The values of %" are unknown, while the

values of Tf/fﬁijc are known from the boundary condition,
Eq. (1.21. (except for terms of the same order of magni-
tude as the ones neglected in the process of linearizing
the differential equation for the supersonic potential

flow).

4.3 Numerical Procedure

As mentioned above only wings with a supersonic

trailing edge are considered here. 1In this case, the

wake does not affect the wing and, thus, it can be




R ™ B A

ignored.* Consider first a wing with subsonic leading
edge. In this case Eg. (4.4) is the desired integral
equation and can be solved as follows: divide zZ into
small quadrilateral elements, assume + and a& JoN®
constant within the elements. Then, Eg. (4.4) (writ-

ten at the centroid, Py, of the element EA) yields

[JAK - Cks:{'gq’;"j i [bhh]i%‘gj (4.7)

where

(4.8)

L3 /oNC
@L = La“/)/'/mi?:&
is given by the boundary conditions Egq. (1.21), while,

approximating the element with a quadrilateral hyper-

boloidal element, cpx and by, are given by

~

¢ +fsfi LRzl o1 D] (4.9)

A L7 ‘I R \H?:’I ‘JP:P, < - 4::21';3’-%:&

bosLf] B d?.g:( -2 8] (4.10)
LAY gl g 2 2:3 3P= P,

with D and S given by Egs. (3.38) and (2.117) respectively.

Next, consider a wing with supersonic leading edge.

In this case, Eq. (4.7) should not be used since the system
may have a determinant equal to zero. In order to show
this, consider the case shown in Fig. 9. For simplicity

assume that the elements are such that the Mach forecones,

* The contribution of the wake may be included in the
same way used in Ref. 6 for subsonic flows.

", _ B
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Ci, and C, with v;rticeé in P, and gl respectively,'intersect
only the elements Z; , and 2 . Assuming that the element

iii is planar, then
- Ly = (4011)
C“ <0 (n- I &)

since ? v, X A, 2 O on X

according to Eq. (F.7) (or Eq. (F.l13) with E = 1/2),

. Furthermore note that

S ¢ 2 D7 )42 1 EAR - k12)
h h 7 J/ .«N" //f” 7 JZ,.
on the other hand,
G 7 h= 2
L) h=3 4 ...

(4.13)

since all the elements except Z.i and 2, are outside

rA
the Mach forecone C;. Equations (4.11, 4.12 and 4.13) are

equivalent to

C‘h.: -‘i. jﬂ:2
= O h{2
(4.14)
Similarly
G - h=|
: O ‘1fl
(4.15)

Therefore the first two equations in Eq. (4.7) are

v gb?_\b,.‘_‘{, 3
Ei RS

O.-.~ -" (4016)

LYoy
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which shows clearly that the determinant of the system
in Eq. (4.7) is equal to zero. Therefore in order to
solve the problem a different procedure is used..

Consider the Green theorem for the function E
as defined in Fig. 10. This yields a systems of
equations similar to Eg. 4.7 where the summation how-
ever is limited to the upper surface of the wing.
Similarly for points on the lower surface the summation
is limited to the elements on the lower side of the
wing.

For wings with subsonic leading edges the deter-
minant is close to zero if the edges are near sonic. 1In
this case as well as for wings with leading edge; par-
tially subsonic and partially supersonic, the solution
may be obtained by using a diaphragm to separate upper
and lower sides of the aircraft. For the elements on
the diaphragm, both © and 29 /JN® are unknown,
while two different equations are obtained by writing
Eq. (4.7) for the upper and lower side, respectively.
The solution of the problem is obtained from the system
derived by writing Eq. (4.7) for the upper and lower
sides of the body and the diaphragm.

The method described in this section was used

to obtain the numerical results presented in Ref. 9.
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SECTION 5

CONCLUDING REMARKS

A general method for solving steady supersonic
flows around complex aircraft configurations has bcen
presented. The extension (- oscillatory flows is
presented in Appendix E. Numerical results for steady
flows around wing kody configurations and for oscilla~
tory flows around finite thickness wings are presented
in Ref. 9, and indicate that the method, besides being

intrinsically general and flexible is also accurate

and fast.
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APPENDIX A

t SUPERALGEBRA

A.l1 Super-product

As mentioned in Section 1, in order to simplify the algebraic
manipulation for the supersonic flow theory, it is convenient to
introduce a special algebra, called supersonic vector algebra

or super-algebra. In addition to the rules of the ordinary

vector algebra, the super-algebra includes a supersonic dot

product or super-product

QOob = b - a4 - A b, (A.1)

The additive and distributive rules are obviously valid for

the super-product. Note that aea is

aed Z o for 4, Z ’a,*, ag (A.2)

that is for a pointed, respectively, inside, on, outside the
Mach cone (Fig. 1l). Hence, in addition to the ordinary norm

of a vector (or dot-norm) .
lal = Jz.a (A.3)

it is convenient to introduce the supersonic norm (or super-

fal -'-,]liioﬁl . 4)

Finally, it is convenient to introduce the concept of covector

norm)

" - A (A.5)
. a = _a’
- - a,

‘ - _— — . \
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- With these notations, it is immediately verified that

i aoeb =4a°.b = 3. b° (A.6)
It may be worth noting that

Gebac =A% Dbsé = @olb xC¢-205xcS (a.6a)

A.2 First Super-rule

Throughout the subsonic finite-element formulation (Ref. 6)

the following rule is used
(+5)e(exd) = (2-8)(5.d)-(a:3)(5-E) (a.7)

The corresponding supersonic rule, called for convenience,

first super-rule, is also valid

(a-’s)@(c?xd-) = (EO E)(EGJ)-(Q-OJ)(BOE)

(A.8)

For

(a«B)o(Txd)
= (07 by - 4, by) (C, ds -C, dy)
-(d. bx" ax bc)(Cedx- Cx dé)

=(ax by - & bx)(cxdy —Cydx)

= a] b‘ C]di "'a?. b]C;J’ - a,b.. ng”' 04 b] CI dl
- a& b; C‘d.j - Qy b; C;d;* aa.bgc.gdg + dx b,CedA

- G« b} C.dy -a; bx C,d‘r Qx b,C,dnd,b,C..d, (A.9)

-

e

4




while
(d9e)(bo0d)-(aod)(bo E)
= (0 Cx-QyCr - Qe Co)( badx - by dy - bg de)
- (axd,-. a,d,-acde)(bxcx- bye, - beai) :
/
= QxCx (/erx- bydy - btde)
- a,C, (bxdx- b )’bedi‘)

- 05 C, (bxd,-b,d,y'(,)

- O« dx (/bi«:x- b,C,-— beCe)
+ Gy dy (beCa 741»&)

+ aadz (btch' - blc)'?({)

= 0, be Cy d; + 4, b}C;d}’ ay b!C;d}' Qe b]C,dt

’ai b’ c! dl - G thﬁdl « Qe bxcxd; + axbgC;d‘

- b, ¢ d, ~a,b,c’d1-¢ Qe by G dx + @y b,C,d’

(A.10)




A.3 Second Super-rule

A second rule of the super-algebira is
- - -\
(Zoa)(bsc)o(bsi)-(a-5:8)
— G0t (Fsc)o(bxa)+
E@E(Z;E)O (C—xa)
(A.11)

Note that the dot product appears in the triple product. 1In

orxder to prove Eg. (A.ll), consider the regular vector algebra

rule ) _
7 c = -o- — (-o
Ge(b22) =t (3.8)-¢c (2.B) 5.12)
This yields, for the covector ac , (see Eg. A.6)
2« (b«C) =58 (as<¢)-c(a" 1)
- b (qec)-c (d0}) (A.13)

On the other hand, according to Egs. (A.6) and (A.8)
@ac.(bsc)o a‘«(bs2)
-— — a
= ZF¢o d¢ (§xc)o (bxC)-(a‘e (b«C)]
= a ©oa (F‘Z)O (F]’E)"(Eo;la)&

while, according to Egs. (A.6) and (A.8)
(F(aee)-2(aes)) e (Fraoc)-c(aos))
= bob(3oc)-250F 40C aob « Cel (Eob)‘

= do&(bxtobx8).Gol(isboia)

(A.14)
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Combining Egs. (A.12), (A.13) and (A.1l4) yields
Zod (b«2)o (bxt)-(Z-5x2)
= ( Z‘x(ExE)]o (5‘: (bx Z)}
= (B (aec)-2(20b)]O(B(a0E)-C(a0B)]

- ot (bsiob«d)+ Tob (ExBol&xa)

(A.15)
that is the second super-rule, Eg. (A.ll). 1In particular,
for 3=z9, b = a;s & = &,, one obtains
- - - A
g03% 444,048, - [§-4+0,]
Fol aslioirf.foi (4:G04-]) . 16)

A.4 Third Supersonic Rule

A third useful formula, called the third supersonic rule,

is Gidobsl a-F4J +2cfohbec 2-3-4
.,55 o b s ’&':3-?:0 (A.17)

The proof of this rule follows

(2edob<c)(a-fxj)-(axjotsc)(i-F:3)

-+
a1

= (40} ¢od - 20¢ bod) ax

L)

©

o\

Y|

"

~
= sy
] L}
ot Ot
1] )
QR (DY
ENY) Dy
x -
ae UG
(] ol
S N
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= 3-%° (%3 a.f-§-2%§a-f.7)
-a-c(b%d asf-§-14%3 a,¥.4)
= - (e (af))dsd-g.e°(be (asfl] dri
s G-be((EF)(@-3:3)- (E9a)(F-d-§)]
~geec((bs f)(a-d«g)- (ba)(F-d-9)]
= (Z-b°ceF-a-2°b%%)a .3
: (Zof Eof -aoZ bof) = (a«fob«C)a-ds]
(A,18)
In particular, for a=b =g, c=f = 'a_z, d = '§3, g = El'
the third superrule reduces to
(3 Ao58)3-aea)-(eaoi i 5)
(A.19)

-(fracfa)i-nra)
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APPENDIX B

BASIC INTEGRALS

B.l1 Integral Il

As mentioned in Section 2, in order to_obtain Eq. (2.24)

from Eq. (2,.,22) is necessary to evaluate the two integrals

I, :j—-——r__'—-d7 (B.1)

Fo?
4_2 ou |
L= )iar s ¥ (2-2)

The integral I2 is evaluated in the next subsection.

In order to obtain the integral in Egq. (B.1l), it is

convenient to c.reat independently the three cases 52 o 52 Z 0.
Consider first, a, o a, > 0. Note that
2 — — — — - -
@9 W(lFoF J7od + foi)
1 jod. - -
= [T Tanoi \ o7 1o » God)
_ Jﬁ,o a,
Nioi (B.3)

37 (i" ‘0;‘5‘) %(F- 1F/) (F+?f5)]o((i,¢'??/) (F"Sf;)]
0

(B.4®

Hence

__?__( Qm Ji? iﬁhj)oaz "ioa) = Na,0 4, (B.5)
29 TR Tros
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Note that

Jzoi Jﬁ,eﬁ‘ - io a,
Qn 'i‘ ﬁ;"

lnl(ioﬁ@ozy4joaf ] [
[f0f 4,02, - j0i, | | {4l

ij« 2|

ln = —
Afoj G04d -foa

it

ORIGINAL PAGE IS
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Hence, it is possible to write

I, = S'i;n(;oa',) Qn

Jiei 4,04, *'ioaail
|

ﬂf_x 5,1’

Note that

Sinh™x o Ln (ke 50T )
Coa/;t-,x = ln(xn/x‘—/) ,

(B.6)

(08, >0) (BT

(B.8)
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Hence

QMJ}GFG; 0d, | $04)
1§ «al

= 2"/1(70@)?;&0,0;;‘0 + ,ZGQ,

';"aaq
= 1§ 0 4.]\* A
lnﬂ«%ﬁ?ﬂ) -3
ook 10
hg+al

and

Qn /[}OZ azoa; +I;Od,}

In oni 4o d, + ,Iio;’ 4,08,-{:4,0§:3,
//f,x a; |l

//JZO; 4,04, + / foi d,04, )\
ﬂ;:&;” ,a‘”/*j
SvnA‘I/iO? 4,0 a4,
1fxa1

i
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Next, consider the case 52 (o) 32 = 0. In this case
D (G 7 ] - - -\ =
oy (§0 &) = 55 ((Pespesa)od]

“ 55 ((prgi)o(Re3p)] =0

(B.9)
Hence
2 i@i ! }oa, /
0') ;0% ]’;ea’, Jiei io; (B.10)
Thus
- 4297 :
! ; Oa; (B..Ll)

Finally, consider the case az o éz < 0. Note that in this case

2 571;,< ] C>é?) = 1 2,08
77 hjal (Eel Y 13-4
’/1 (lziuzl/ ’
— I3 (- -

J-ix@eix@-@b@f Y x4l

(B.12;

Eence

_— Sin —f— 7 ed (3.1
r_—-—a‘od‘ [ ,;!a‘I/ ) 301(0



In summary

I, = Sip(f0a) L 2§10 na0 +| §oal)
ha, 1 3<a, |

. Smliod) 7 3081

(N I §ral|

. Sip(Bed) 0 1ENIAL 404, >0

21 RN ¢
(B.14)
K _ _
Il = g g;_ », aa (0] a) =0
F : (B.15)

T X-Y - -
I’ = - ! g;“li_o__:_ , 4,04, <0 (B.16)
I 0;" ”ZX a‘”

ORIGINAL PAGE IS
OF POOR QUALITY

B.2 1Integral I2

Next consider Eg. (B.2). Setting

-

j = 4 -194 (B.17)

one obtains for ted = 1

jod =asby (. 18)

;‘; = ol-rz‘97,.r7" (B.19)
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' feuogxu =;eiaoa-(;ea)‘--«---«

J‘.— a’fl{é—ﬂb)71-((r—-b‘)'7"

(B.20)

= C «+ zd.]+e_7’
;j with
2 A = Q, o4
b = g o0a
L = a, o a,
= aq08
= a04
C: ok-@". 4,04,-(Go0d) =2 do0lrd
d: p-.ab. go8-4d,00800=4a,:0060«u

e = r- bL = 5;0&;-(6’?,0&)‘= ﬁ;‘aaaa‘a

Combining Egs. (B.2), (B.18), (B.19) and (B.20) (see Eg. A.l

of Ref. 6)

Ia 3; afb7 / J
Cr;—dy'e?*'}ozfzﬁy*ry: 7

_ 1 Za.n" (Ae—bJ)%(ad-bc) |
./cc— d* ‘/e_c— d* ;Jjei

Note that

(de.—-bd)y «(ad-be)

= a(eyj.d)-b(dp+e)

I -

(B.22)



6 [((-F)7<(g-ab)] - b ((g-ab) 7+ (4-a’)]

a(xp~p)-bgr+d)

R -—

Q06 (8.7 2,)04. - a,0a (E,7+ a,)e u

= 5,0 &‘Zﬁe :b— i.ei; i¢92;
- _ - - - - - (B.23)
= -frdoa-a s -frde §xa,
Furthermore,

ec-d®. fof (Gs4)e(axd)+§oa (5§ doia.7)

s Jrul(frd08:a)
For

(B.24)

- b §
ec-4" = (dyxid0d,d)(doeiio Buei)- (4, xii0durit)

= ((4,03)(G0a)-(20 &) }((Z-0a)d0d)- (4,0 u)]
- ((&0a,)(ded)-d,o @ Tou)”

= (3.03.N8.24,)-2.93, (7.0 @)~ 4,0, (3,04)+ (Z00) (40¢
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2 U« Q. —"aa]
= ((&+95)0(4.-74,)) (4« & O_M !
f[(a’.+9ﬂ:)04’¢][(§,~7@)xbio(u-x j))
((d,+9&)e a]((a+94)+ 6,0 (&0

? Ur@,0 x4

(a. 0% +>) 2,04,+ ) (020 dxds)
= 1

+(a, oae76’;°a)(0"“°“'a)
«(a,

(B.26)

ORIGINAL pAGy g
OF POOR QUALL TY
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On the other hand, applying the second super-ruvle, Eq. (A.1l1l)

£1

(with =3, b = » € = 3,)

(§:d48) = §of(d-dioasd)- §oi (Adoirf)

- -, - R (B.27)
- ;-0 u ('441 uo QJ:;)
Thus, comparing Egs. (B.24) and (B.27)
. - o .2
ec-4" = (- urgq) (B.28)
Hence, finally combining Egs. (B.22), (B.23) and (B.28)
{ -t -{sno0fx«a
I, = tan k ped (B.29)
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APPENDIX C
TWO USEFUL FORMULAE

N s N
C.l1 An expression for}, e Z’a

In this Appendix, it is proved that

-— - _ 2 _ _
j-:o Fllas-qn = ~(j.a,- a,) c.1)
Note that
i:' - ;—‘. = (7' 7*) a-z (C.2)
and
- = " , -
5’* : Z’n *& “ (Cc.3)
Hence

;a” = 3’,"' f;ﬁ = ;'5—7-7‘,)42- }: u (C.4)

or, according to Egs.( 2.20 ) and (2.31)

i_o/'= ; g.xa,oa'.a,a._’;'.ao@.;, 5
# - = — Y
-1 d <G -l dx 4, :

(80 Ge0,) zz} c.5)

Hence

- - - - - - - - .'.. - - - - - ’-— -
= ;0 ; Iasx aa”“" (}‘ a, e q,x d:) 4, ¢ 4, « (;IJ‘OQ‘J ﬂ‘)ﬂ,oa‘-f-
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UL (o5 a) fod
82N (Fed,0415) Fod

.,(f.xcf,oaxé,}fixa",ozi;xa",)ﬂﬂfa} (C.6)

On the other hand, according to the second super-rule

(;.5“0:)‘. ;o 1 (5', 4, 0 4+ E;)

- io 2, ix 4, o 5"0') (C.7)
Hence |

14,307 (870 30 1ax d0% + (§-4:4) )

= Fo el s (Frti0drd) God +(f.doled)io0d
+/ua',,z,u‘{( fidodrd) fodys(ei0dpi) i}
+ 2(§:@ea-a)(§ra,04x3) 404,

+ua,xaﬂ/;o;(e.a,oa,.a,) foa (i 5 d,)

~fo /5‘. 5,)}

\

| AL P
01' AG
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=(3’_.@@5,,5,)’5,05.*(;'xb‘.oé;xa‘.)aaloti
D8] (f h0 8 ) Fodo(fuiodea) o 4
ca(fr@odnd)(}80a:2)T°8

= i, 0 Qx 5(; 2,6 G, a, a,oa”z_xa,oaga. a.°a

+l/5,r5)llj:oa',) + iri,aaix (i 4,0 4,:4, 4,940,

+ frhodnd T od « 15251 F00,)

= O
(c.8)
since*
20 0! 0,;&,(0 Q’xax — iu d-,o a_;sé‘ 0.’051
-+ ix ﬁgﬁ é‘l éx &.'°5l
(£: ho « 1Kol (C.9)

For

*
For ordinary algebra, this corresponds to the well known re-

lation between tensor components 9L = 4., ik



S

raa
S

§

S

and
i:" 5‘9 ﬁ,l dx 15,66—2, + 7,: 5,0 ﬁg: 51 é}oa,
g 3—.0 a—! éxoc—lx 520 a—" - i.oa., 5;0 E! alo 5,
- - = - = - = = = -\
+ ;oa‘ alﬂ al a,@ax - ieO, (ale al)

= Jo i (G0 dc Byody-(ayoly)’)
(C.11)

Equation (C.8) is the desired proof of E,.. (C.1).

C.2 A Second Useful Formula

In subsonic theory, it was shown that

3’ g‘(; a "az) (Z—"ac ;xa,) IZ.xa,] ] *Raf (C.13)

~q

" Here it is shown that for supersonic Zlow

Lo §(§-axa)+(Jrd0§ed) = 1§20 I §2a) (C.14)
For, according to the second super-rule (seé also Eg. B.27)

i..auxéh)‘¢.('z_x(§,0 iJra;):
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-— ™ s e . e

+(Je§)(a08)-2§0}d08 Fod Jo4 - (foi fog,)

13 -a,0 1§-ay (C.15)



APPENDIX D

DERIVATIVES OF ID AND IS3

D.l1 Introduction

In this Appendix, it will be shown that for any hyper-
boloidal guadrilateral element, the second mixed derivative

of

IDS‘ ;‘» :‘ ﬁ'ﬂ 5—10|021a ) M-’/_ Z,xﬂ,O}xd;) (D.l)
l}- Al

is given by _
?‘lp _ Zr‘ar"a&

010'7 - I } ”3 (D.2)

while, for any planar quadrilateral element, the second mixed

derivative of I

I, - (Al e (FE2 0 E- 4 ). 257, —_L_"’”) .3

n§lfg-a,+«a ? 1715214 y
is given by
9’1;; g = ; . 50 £ aa.
—_— % .en o4
vz b g0 (0-4)
Note that
2 5/ - 2 Z) e o (D.5)
24 79
? a - 54, . N .
27 = > = P (D.6)
and
2} p (D.7)
L4 -
(D.8)

dig
N \
\
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_0 -) {D.9)
1¢%)
s - _En

T = Sign(§-5) (D.10)

D.2 Derivative of ID

Consider Eg. (D.l), or

1,-5, fan
5. [ ERS

it

ln
"\‘I"[
Qt

%4

where

The derivative of I, with respect to 7 is given by

2& _ ; EO’IJ.,
0’} T2 S Zan ');0 S"(Z axﬂz
: ]
= “(Sn) — — X

na,oxa,ao;——--_-—-----
zim ;) o7 Forarlpep(aar-g rs'&)]]
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T ej(ja
{(a,zo; G+ i Pojeq)foi jF-ara
~3:403:4(%0f §. 4.0 +F0] 7 ;,,5,)}
= -1 {
ix8 ) (feG032) I30]

Next note, as shown in Appendix C, Eq. (C.1l4),

20 344) = 1J:q0 1§41 ©.12)
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Moreover, note that (see Eg. A.l9)

\

[( EX ;G]- (;xd,o;vﬂ)ao}]}a,

+((Jehofea)(}ard)-(Fa,0§:3)(f-7v3)) §of

= ((a./e,.;:\f;ia, - %0% 40j) fo}
-(3ojra0t- oo oa) o}) §-4-4
-((Graofra) f-a<p) 3o}

(-Fet dea -(foa)](Fodj axg)
r(fraefd) G4 p) fog

1]
)
»
PI
"7
-
9a
o
)
L Y
D)
>,
@l
t
oQual
Q
A Y
S
)
™
w9
\J

(D.13)

since
Jo} aca-(fod)=jaofiz-ljcan’ 0.14)
Finally, combining Egs. (D.1l1l), (D.12) and (D.13), yields

?I’ 2, 1.3+<a

21 1§40 Ilj,xa,ll u;n

{ -

) *I;x an u;u (foﬁ i a4, - ; ii. ,:") (D.15)
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Next, consider the second mixed derivative, noting that
..;:;-(ixa,)=;%;((ﬁ,wﬁ)x(ﬁ,*yf,)]=_-o (D.16)
one obtains

2479  1j-a,l* o

2 L, L 7 (f@i j,-c?,.p,-;ea;g.w)

{ i _ s o
B ﬂir a,l‘u;a’[(;"@)’}ag 4,0 O,J ;- ara,

— -—

f-a+a (D.17)
pgu? |
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D.3 Derivative of IS3

Note that for a quadrilateral planar element g.n is

constant. For
> s = - _— i .
0—;(;'11)" a,'n -'0 (D.18)

? - - - -
Ty (Z-"’) = 4&n =0 (D.19)

Therefore, using Egs. (D.l) and (D.1l7)

0l g 5 2 -F 40 §a
‘0‘;07— '071"7% i —-0,:!4:)

S
S

> - -
L } da, x

?’7?;—*; i

(D.20)

in agreement with Eq. (D.4).
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APPENDIX E

SUPERSONIC OSCILLATORY FLOW

E.l Integral Equation

In this Appendix it is shown how the results obtained
in the main body of this report can be extended to super-

sonic oscillatory flow. Introducing the variables

x:_{:_ Y-’- _E:’:. Z-‘-::- T: @3_—3_& .Q:‘i).i
B2 4 4 ) Ba, (E.1)
A
and the complex potential ¢ such that
c(T-MX)

p (egzb)e UL & (KY2)e

(E.2)

the integral equation for the subsonic oscillatory flow is

given by
A A
IS O L S ey ;+¢2(_+i m,,,,)) iz
‘ ﬁzl_aN‘ 1 oN*\n
(E.3)
where 2, surrounds body and wake,
C.2 Boundary Condition
The boundary condition is given by
-~ <
PR Lo 28y e
AL ¢ J £ (E.4)
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or
B 23,123 M‘_’S.?f#_.-.o
0,500, P+t ST E X T X 3K
‘ (E.5)
where ¢ and ¢ are such that
A / \
$- Uxty = ({’z(/sX-f‘#}
(E.6)

Next assume that the motion of the surface consists of small

harmonic oscillations around a rest configuration, that is

o T
S: 3(XY.Z)+ S, 7 2)e
(E.7)
Then, setting
: " . ART
- (VR . J 7
¢-?a(x,‘,4)+ ?(X,«,‘/e E.8)
one obtains
2 - \ AT
2V, S0V 8 = TareB 0 Y ® + T So 7, P e
4 Y IZﬁ-T g T
- \ 17 fob) B
(szsOV”z " )C 4 LJ’Z'S €
M
S AT
E )
BDlox K
/-\,N -~ [ I»{l
M as 24, a8 28 25 AT
BE[ox oX | oX oX  ox 2x |
?‘g_ 24 c.mr?_
-~ —::K
2% J (E.9)
RKHNAL
P
POop AGE
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Assume that the surface is given in the form

-+[z za(x¥)_ 7. (xvje T o

SE‘LZ-"'(,V(V} Z
with

Zu( (x, v - O

or, in general by Eq. (E.7) with

and

OhVCT\AL ‘(‘r‘ Iq
UL 0’\/\/.‘_ \L\‘Lllk

(Upper surface)

(Lower surface)
(E.10)

(E.11)

(E.12)

(E.13)
(E.14)

(E.15)

(E.16)

(E.17)
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Assume also

- 00) (E.18)

@ = O] (E.19)
N N
¢ = O(C ’,} (E.zo)
(AT
Neglecting the terms which contain ¢ (which are of order

¢
€ ) and separating the steady from the oscillatory terms, one

obtains

|
-szs’OVxﬂ% + B ";( o X 2X
4 (E.21)
;3 r 2 A& / 93‘ *
-~ 17 - A 2 _
’?wzs'ohr’!¢ erzs‘thV¢ o*f_ RS *B X
o ~ ,
+ M? (::5, 2b . 2 241 _ o (E.22)
5= Lox ex " ax ox)
A
Introducing f‘such that
~ A Linmx
b - ¢ e
(E.23)
Equation (E.22) reduces to
A .dﬂﬁlx P A -I‘-R.MX (\J -
- ‘V:S’O xv¢¢ ¢ + lﬂ"?%t—l-.;“ - HZQQ)‘"#ZQ
~ "" - ‘) .—-2 " - .”x
M R SR - AMe et
M & XK prlox \ix
L2526, 5
IK ox [T (E.24)
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' (N
Finally, neglecting terms of order ¢ in Eq. (E.21) and terms

3
of order ¢ in Eq. (E.24), one obtains

; P25
-VN“SJD«;}& 2'33}2
(E.25)
‘ AT SR M
—V‘J‘%OV;VE ¢ :-(1__/_‘,7_ ‘5 E‘X [
(E.26)
In particular, for
T wi
s:t- "9-2(("‘4 “i\) z""»”C’ 17
N y
(E.27)

(where the upper[lower] sign holds on the upper[lower] surface),

one obtains

- 2 ?' [3 Sut '/x’/“)ll (E.28)
3 - . ;_1 'Sz.t(;"if; (E.29)
TR
and
2"3 AT °V‘:?._$_ N <; K3, 57| A
oN* /uz / ¢ “</ (E.31)

where

<
]
Tt
t
{
L}
(&
\~

(E.32)

AN
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C.3 Pressure Coefficient

The pressure coefficient can be evaluated by using the

linearized Bernoulli theorem, as

s -2 /2 2f
C%' 7k LA Y =L )

JE ® ox /
- - \
- _2 (B 2 L. ?-é) (E.33)
j\/’ 5} /1 ‘.5 (/X/-

For oscillatory flow, setting

~ar A ;n('r_Mx)
- ¢ - <
55 SD ¢ (E.34)
c ~ dRT
P p ¢ (E.35)
one obtains
~ ﬂ’\J\
Y _2(3 ad 4l 280
C% ] s =) X/
. A .
/ S AMX
) N
_lmfromg 4 ;./-%7‘3
L BB 09X
A
- A lﬂnx
2fad. 22 | e
B ] JX
7 X /M A LAX/M T L ARMX
3__2;_[€I /_.9_(¢)€ //]eJ
-n/ZBzX/;"f A : !
o ,.fJ?IY M
T - 3% € 22 (’ I € 4 J
o eX
L KBX .
- 2 5 y] .-fLX'IB
on =5 % (CP ¢ /) (E.36)
2 -
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APPENDIX F.

SUPER~-SOLID ANGLE

In this Appendix the concept of supersonic solid angle

or supersolid-angle, dﬂ), is introduced and it is shown that

A= ?dﬂ' = J (P oubtide Z)
\42 |
= 2n (?l n 2.)
. ‘ .
. = 47 [Po Skl 2 )
’ (F.1)
Note that (see, for instance, Ref. 1, Eq. 6.6)
NN L - I
z NSl T g
17 " ~ ) -
:J/l,fH/,//3 27 de o T g 42
$ i VA ¥ A
f ! = [
= //H/at f‘_’lf: /] /.,Z //4/ sz
Z sl
z .’/?// /f/ < g
{ / { }
: - AJ¢
oy
(F.2)

where the finite parts of the integrals are understood, ./J¢

is the usual solid angle, while

=3
A5 = R H {?/ A2
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is the analogous one for the supersonic flow and is called here

supersonic solid angle or super-solid-angle. Note that

/‘/: / 7/1”/ (F.4)

depends upon the direction of f but not upon its magnitude.

Therefore if P is outside the closed surface ‘5/ then (following

the same reasoning used for the usual solid angles)

5 42’ o (P owtside T)  (E.5)
v

)

Furthermore note if P, approaches P_ on 2 , one obtains,

according to Eq. (4.3) and F.5)

t‘.,“ /.'f’r\ ast' \ = Ao ( dst' - ” .&:’ ": z{l]
p..qP,( b / t-rO PPy i-I, 3 iﬂ) / (F.6)
= (# a > - 22 =0

b P.:P“

Therefore

4? 4’ - 27 (P, m2) (F.7)
T

Similarly, P if P is inside 2, the supersolid-angle is the
k]
one intersected by the Mach forecone on an arbitrary surface,

for instance the plane X - X, =-& (T—.‘a'. Folj



Ni-

"
S
]

[Na—

n
[}
x
NS
]
<
N
~
[}
O
~
1]
Uy
| X9
N
N
.
1

= 2 (F.8)
Equations (F.5, F.6 and F.8) are equivalent to Eq. {F.1l.

It may be noted that according to Egs. (4.6) and{F.l1;

E: |- ;l; b At/ (F.9)

It shouid be noted that Eg. {F.) and {4.6} are valid only if
the surface, 2z , has a unique tangent plane on P, ,
while Eqg. (F.9) is valid even without this restriction. The
proof of this statement is not of interest here, bqt could
be obtained by following the procedure used to derive
Eq. (4.6) by using Eq. (F.5 in order to evaluate J; in
Eq. (4.3).

It is worth noting that the analogous of Eq. (F.9) for

subsonic flow is
f{
S ._\_. G4 (;LAQ (F-lo)
E “+jl z?

The proof of this equation is similar to Eq. (F.9)and is
not given here. As for Eq. (F.9), Eq. (F.10) is valid
even if ( does not have a unique tangent plane in P_ .

Equation (F.9) implies that

- - L2 oy -
T (2¢ - - jf z .=
< (ZC- dhk - Cn“) s &« QO J v)A,c 2 < (Foll)
K i ¥ [[;//

HGINAL PAGE IS
JY' POUR QUALITY
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that is the sum of the coefficients of Eg. (4.7), where

E = 1/2, is always equal to two. Note that this result

is valid even if the surface does not have a unique tangent
plane in P, = P, since in this case Eq. (4.7) must be
modified as

[25‘&& " Cax J é ﬁb : ‘l"m }2 ‘h; (F.12)

LN} L
Equation F.ll may be used to evaluate E for

points with slopes discontinuities (such as corners

of quadrilateral elements or the apex of a cone) as

E = 2:_ c o+ 1 (F.13)

hK

J
s

The above results are valid for subsonic flow as well.
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