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FLUIDIZED BED REGENERATORS FOR BRAYTON CYCLES

by Lester D. Nichols

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, [Ohio 44135

SUMMARY

A recuperator consisting of two fluidized bed re-
generators with circulating solid particles Is consid-

ered for use in a Brayton cycle. These fluidized beds

offer the possibility of high temperature operation if

ceramic particles are used.

Calculations of the efficiency and size of flu-

idized bed regenerators for typical values of operating

parameters have been made and compared to a shell and
tube recuperator. The calculations indicate that the

fluidized beds will be more compact than the shell and

tube as well as offering a high temperature operating
capability.

INTRODUCTION

The efficiency of a Brayton cycle depends among

other things upon the turbine inlet temperature and

how much of the heat in the turbine outlet gas stream

can be recirculated to the gas from the compressor out-

let. P.: the turbine inlet temperature increases so

does the operating temperature of the heat exchanger
used to recover the exhaust heat. '11w size of the heat

exchanger to transfer this heat must .ilso be kept small

in order to keep costs low. Since fluidized beds using

ceramic solid particles can operate at very high tem-

perature and have a large amount of heat transfer sur-

face area in a given heat exchanger volume, they make

likely candidates for high efficiency low cost Brayton

cycle application. This concept was first introduced

as air preheaters for KID cycles.1,2

A schematic diagram of the Brayton cycle using

fluidized beds is shown in Fig. 1. The turbine exhaust

flows into the upper of two fluidized beds with a ve-

locity larger than the minimum fluidization velocity.

The particles at the bottom of that bed will become

heated. Their temperature will approach the turbine

outlet temperature if they remain in contact with the

gas long enough. Also, the gas will cool as it trans-

fers its heat to the particles. The hot particles are

removed from the bottom of the bed and cold particles

are placed on the top of the bed to maintain a constant

bed height. The gas leaving the fluidized bed will

approach the temperature of the cold particles, if they

remain in contact with the gas long enough.

The net effect of the operati.n of this heat ex-

changer is to transfer the heat in the outlet gas from

the turbine to a it-tam of solid particles. The solid

particles are flowing in a direction opposite to that

of the gas.

The heat in this stream of solid particles can,

in turn, be transferred back to a gas stream in another

fluidized bed. This second bed is the lower bed in

Fig. 1. Again, the outlet gas from the compressor

flows into a bed at a velocity greater than the mini-

mum fluidization velocity. The gas is to be heated by

the solid particles to as high a temperature as possi-

ble, so the hottest particles are put on top of the

bed. Thev flow down the bed, giving; their heat to the
gas until they reach the bottom of the bed where their

temperature approaches the temperature of the compres-

sor outlet temperature again if they remain in contact

with the gas long enough. They are then removed from
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the lower bed an,' sent to the upper bed to be reheated.

The combination of the two fluidized beds and the
circulating solid particles constitutes the recuperator

for the Bravton cycle. The solids from the upper bed

could flow by gravity into the lower bed. However, the

lower bed is at a higher pressure (nominally the com-

pressor outlet pressure). But the height of the hot

particle transfer tube can be designed so as to provide
a static "head" of solid particles equal to the pres-

	

sure in the vessel	 Then the solids will flow Into the

lower bed. The solid particles can be returned to the

upper bed by pneumatic transport, i.e. "dragging" the

particles back by a high velocity stream of air.

The efficiency of this Brayton cycle depends upon

the amount of air required to transport the solids from

the lower to the upper beds as well as the amount of

air which "leaks" through th q tube which is transport-
ing the solids from the upper bed to the lower bed.

The size of the two beds for a specified power

level of the cycle depends upon the velocity of the gas

through the beds and the height of the bed. Since the

pressure drop of thr air flowing through the beds is

rroportional to the height of the bed there is a trade
off between bed size and cycle efficiency.

This paper calculates the effect of particle di-

ameter and bed pressure drop (proportional to bed

height) on the size of the recuperator and the effi-

ciency of the cycle. Optimum values of compressor out-

let pressure and pressure drop across the beds are

found.

CYCLE EFFICIENCY

Fluidized Bed Regenerators

The Brayton cycle which will be analyzed is shown

in Fig. 2. 4lhile cycle performance can be Improved by

using turbine reheat and compressor Intercooling, it is

not important for the comparisons between different

types of heat exchangers. The only difference between

this cycle and the usual cycle IN that the mass flow

through the compressor (state points 1 to 2) is greater

than through the turbine. The difference in mass flow

either "blows" the particles from the lower to the

higher, or "leaks" from the high pressure to the low

pressure.

The efficiency can be written as Ref. 3:
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(Symbols are defined in Appendix A).

The recuperator effectiveness can be calculated
from the heat transfer processes in the regenerators.
Equations for gas to gas recuperators have been formu-
lated and solved by Hausen 4 (pp. 202-213). His results
can be used by consid p ring (in either regenerator) the
gas to be one fluid and the solids to be a counterflow
fluid.

Then llauaen's equation for the lower bed becomes
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since the area of the spheres in a unit volume of bed
1s 6(1 -L (Ref. 4, p. 333). The equations for
the upper bed are:

(1-T )F,
T 5 - T 6 e	 u u - 1	
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The solid mass flow must be equal in the two beds
and tw( transfer tubes:

hs Dh - G isD9 - Cus D^ - GcsD^G 	 (11)

The gas mass flow is equal the same in both beds so
that: T u - T Q - T.

The heat transfer coefficients are related to bed
conditions by (Ref.S, p.215): h pDp = (1/10)(pguoCp/Pr)
Also, if there is no heat to-t in the transfer tubes
T2s ` T6s and T3s - T5s• Equations (5) and (8) can
be solved for T2 s and T3s:

dtT2 
+ g, (1 - gR)TS

T2s	 1 - (1 - gu ) ( 1 - gR)	 (12)

guT,. + g 9 (1 - gu)72
T 3s	 1 - (1 - gu ) (1 - x 

Equation (9) with T 6 - T 2 can be solved for:

TS - T 6	 gtsuTu

T5 - T 2 	 (1 • g d (1 - P,u)

and Eq. (6) becomes

T 3 - 1 1 2 	gegu`e
T 5 - T 2	 1 - (1 - g p) 5 - gu)

The recuperator effectiveness can be determined fro
Eqb. (14) and (4):

RRgur

n rec	 1 - (1 - g ,)(1 - gu)

The maximum valueof r i 	occurs when	 1. This
can be seen on physical rgrounds by noting that this
matches the temperatures in the solids to that of the
g 7is. This is equivalent to a counterflow gas to gas
recuperator with negligible temperature drop across
the separating wall. In this case:

F
C	 u	 (17)8R 1 +^C eu 1+{u

and

1

nrec	 1 + 1/C u + 1/r,R	 (18)

The recuperator effectiveness can approach 1 if ER
and C u ( i.e. H t and Hu ) are large enough.

The bed heights and the length of the hot parti-
cle transfer line are related to the pressure drops by
the momemtum equation (Ref. 5, p. 72):

Ap R - (P s - P g d (1 - Ud gH R 	(19)

rpu - (P S - P gu )(1 - cu)I,ilu	 (20)

P2 - Ap t - p i - 4. - (P S - -,g h)(1 - c h ) gL	 (21)

We must evaluate the mass flow required to "blow"
the cold particles from the lower bed to the upper bed.
The momemtum equationl (Ref. 5, pp. 389-391) is:

p 2 - P 1 - (lies + t	 I g (L + Hu + Hi)
s	 R /

/	 \	
1

f
+	 0 0	 +

G cs 1	 n	 rpc^l z Gcs^
P cgos 1\ G /I 	 1 + 8 f  1̀ c s J	 C

2p U2
cZ o fg (L + H u + 11	 (22)
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x 10 5 ) - 7.5(Re c x 16-5)

1	 + 3.2- x 10-4

f  - .0791 Re c 4	 (23)

It is negligibly small for all cases of interest and
will be neglected.

All of the terms in the efficiency equation can be
calculated. The iluidized bed volume required can also
be determined:

VD 	 + FBL ) + D2Hu (I + FB1;)1	 (24)

where FBL and FBL, are the terms representing the
free board volume. This is the open volume above the
bed to minimize particle carryover. We will arbitra-
ily make the free board volume equal to the bed volume.

The power output, P. is:

P a 
m turb

CPT4 {
E
 - (1 + mom+ , I I T1 I C^	 (25)

\	 turh \ 4

The specific volume will be eeffe^.d ar 	 - fluidizeu

bed volume, V, divided by tk'_ Pure',

Shell and TubeSfea t Exchanger

The performance of the fluidized bed regenerator
can be coi.,.ered to a shell and tube heat exchanger.
Equation. (1) holds for the efficiency by setting ci
and inh equal to zero. The recuperator efiectiveniss
is given in Jakob (Ref. 4, Fqs. 34-37 and 34-11,

3

p. 208) with & cp.C1^C11 as

n	
(26)

rec	 1d,C 

us

WeWe will assume that

(A u ) sI, - (Pu) t - ou	 (27)

and that the tlow area on the shell side Is equal to
the flow area inside the tubes.

If h  ho-h-  
	
and the tube length is L t , then

_ 1	 _	 1
n rec	 :ucppt	 RetUcp	 (28)

1	 2hl.t	 1 + 2hLt

The heat transfer coefficient (Ref. 6, p. 547) is:

LC
hD t a --1' (.027)R e8

The length of the tubes can br related to the pressure

	

drop (Ref. 6, Eqs. 21-37, p. 	 33):

Al!	 .3164 Y M2 1t	 (29)
"	 1 2 t n

p1+2	
R4	

t

e

M2	
2Ut

t	 Y1Z T4 (1 - E)(2 - n rec ) + nrecT1(1 + C)

(30)

The mass flow rate is:

m	 punD2	8 Re t 	(31)

where Dsh is the overall outside diameter of the re-
cuperator.

The power output is obtained from Eq. (25) again
with 4, and f°c = 0. The specific volume for the
shell and tube recuperator is:

V	 4 Dshl t̂	 2Dtt.t

P	 S'	 Cpi.RetT4(E - T1/T4r)	
(32)

SPECIFICATION OF PAR METERS

We willexamine the effects of varying certain
parameters with respoct to flu,.iized bed performance
on the efficiency of the cycle and the size of the
recuperators. To do this we will specify certain of
the parameters with v p lues typical of Brayton cycle
systems burning a NO and using the combustion pro-
ducts as working fluid.

We will choose air as a typical working fluid and
boron nitride as a typical high .omperature ceramic.
The void fraction for the transport of the cold par-
ticles can be found for boron nitride (density is
2100 kg/m 3 ) in Ref. 5, p. 386. Typical turbine and

It expresses the pressure required for the mass flow
Gcs. A sensitive parameter in +'.his equation is the
void fraction, cc, in the tube. We choose the curve in
Kunii and Levenspicl (Ref. 5, Fir,. 17, p, 386). 	

and

The "leakage" of mass thrlugl the downflow line is
(Ref. 5, p. 67):

IP 2 - ef t + p l + f.p u lDptfl [P 2 - Ap Il - p l - :.pu]r,ph

mt'	 600 R (T 3 + T 5 ) (1 - c11)



cow . .-„sor efficiencies and pressure drop across the
the heat source will be chosen. They are speclfieu an
follows:

n	 - .88comp

culate the specific volume of the beds by dividing the
power output by the total recuperator volume. We have
4 parameters left to vary; particle diameter, fraction-
al pressure drop, the compressor outlet pressure, and
the turbine inlet temperature.

n turb - .90

Ap3
.04

P2

The inlet conditions are T 1 - 330 K, p l - 10 N/cm2
The gas is assumed to be air and the properties are
evaluated at 900' K:

P - 4.1x10
-5 

kg/m sec

R - 280 /kg 'K

c p - 1 kJ/kg 'K

Pr - .7

r - 1.4

Fluidized Bed Regenerators

The solid will be taken as boron nitride with

P s - 2100 kg/m3

cs - 1.6 k,)/kg OK

E - .973

The void fraction in the down tube is chcaen as .4 and
in both fluidized beds as .45. This corresponds to
dense and normal packing of particles with sphericity
of .8 (Ref. 4, p. 66). The fractional pressure drops
will be made equal [("Pi/Pd - ("Pu/pl)) and the
height of the low pressure will be set equal to the
diameter, H u - Du for the calculation of output
power. If the bed height is .ess than the diameter it
may be unstable and a "channeling" might occur through
which most of the flow may pass. If the height gets
much greater than the diameter then the bed may get
unstable and "slugging" might occur (Ref. 5, p. 75).

A parameter associated with bed performance is
the superficial velocity (actual velocity divided by
the void fraction). This must be higher than the min-
imum fluidization velocity, but not so high that sig-
nificant bubbling occurs. higher velocity allows more
heat to be transferred and reduces equipment size.
However, as gas velocity increases there will be mix-
ing in the vertical direction because of an increased
number of bubbles forming and rising due to their
bouyancy. This mixing can reduce the effectiveness of
the heat exhchanger by bringing the inlet and outlet
gas temperatures closer Lugether. Bubbles appear in
gas-solid fluidized beds because of the large density
ratio (Ref. 5, Eqs. (22) and (32) in Chapter 3).
However, if the superficial velocity is two times the
minimum fluidization velocity (ref. 5, p. 134) then
less than 10% of the bed volume will contain bubbles
and mixing should be minimized. We assume teat ve-
locity ratio in our calculations.

In order to calculate the volume of the beds we
specify that the diameter of the pipe carrying the
solids to the upper bed is 10 cm. This is important
only in calculating the frictional pressure drop for
the gas-tube interaction and is unimportant compared
to the gas-particle interactions. Therefore, we cal-

ORIGINAL PAGI; IS
OF' P!)OR (QUALITY

Specifying these parameters in the upward solids
transport line equation (Eq. (22)) determines the mass
flow rates of both the gas and the solids. This, in
turn, can he used to calculate bed heights and recu-
perator effectiveness and finally, to calculate effi-
cier.V.

The system power level can be calculated by spec-
ifying a fluidized bed diameter, rather than the cold
particle transfer tube diameter. This will be done by
setting the diateter of the upper (lower pressure) di-
a^jeter equal to its height.

Shell and Tube Recuper ator

The same component efficiencies and fluid proper-
ties will be chose;, as before. However, the tube di-
ameter will replace the particle diameter. Also, the
Mach number will be varied in addition to the pressure
drop and compressor outlet pressure.

RESULTS

First, a turbine inlet temperature of 1250' K is
selected. Then Ap/p and Dp are selected and com-
pressor outlet pressure varied. As the pressure in-
creases the specific volume decreases and efficiency
increases. At a certain pressure the efficiency
reaches a maximum and then decreases along with the
specific volume as the pressure continues to increase.
This is characteristic of all recuperated Brayton
cycles. We will set the pressure at the value corre-
sponding Lo the optimum efficiency. In this fashion
the diameter of the particle and the fractional pres-
sure drop are sufficient to specify the specific vol-
ume and the efficiency. The results are shown in
Fig. 3(a) for turbine inlet temperature of 1250' K and
Fig. 3(b) for turbine inlet temperature 1150' K.

The cycle efficiency is sensitive to turbine inlet
temperature. A comparison of Figs. 3(a) and (b) shows
that the efficiency increases about four percentage
points when the turbine inlet temperature is increased
100 K from 1150 to 1250.

At a given fractional pressure drop the efficiency
decreases with increasing particle diameter because the
surface area available for heat transfer decreases.
This, in turn, lowers the recuperator effectiveness
and, ultimately, the cycle efficiency.

Generally, the efficiency Improves with decreas-
ing particle size. Also for a given particle size
efficiency improves with increasing fractional pres-
sure drop up to a point. In this range, the recuper-
ator effectiveness was increasing rapidly enough to
offset the increased compressor power required to make
up for that drop. After that point, the recuperator
effectiveness increase is not sufficient to overcome
the increased losses.

The fractional pressure drop at this turning
point is a function of the particle diameter and is
plotted in Fig. 4 for both 1150 K and 1250 K. The
optimum value increases with particle diameter. The
efficiency value increases with increasing particle
diameter, while the specific volume decreases slightly.
At the larger particle diameters, however, the power
output is higher. The fluid velocity, and hence mass,
flow, Increases as the size of the particle increases

j



because of the target entrainment velocity. 	 M	 Mach number

For the shell and tube recuperator with a spec!-	
Pr	 Prandtl number

fled fractional pressure drop, tube diameter and flow	 p	 pressure
Mach number it.are is a compressor outlet pressure which

also maxlulzes the efficiency. Again we choose that
	

hp	 pressure drops

pressure as our operating point. The results can be	 q	 parameters defined In Eq. ( 5) and (8)
seen In Fig. 5 for a fixed fractional pressure drop of
.04. The recuperator specific volume increases with	

F	 Kan constant

increasing tube diameter for any Mach number and In-	 Re	 Reynolds number
creases with decreasing Mach number for any tube di- 	

S	 surface area defined in Het. 4
ameter. The performance is similar for other pressure
drops, with the specific volume increasing with I n-	 T	 temperature
creasing pressure drop for any tube diameter and Mach	

U	 heat transfer coefficient in Ref. 4
numbs..

V	 heat exchanger volume

On the other hand, efficiency doesn't change .+ith
increasing tube diameter at a fixed Mach number and 	 Y	 ratio of specific heats

pressure drop, it increases with de,^reasing Mach number 	 t	 void fraction
t	 for a fixed tube diameter and pressure drop, and it hab 	

n
	 efficiency

a maximum for a fixed Mach number and tube diameter a--,
the pressure drop Increases. When the pressure drop is	 y	 gas viscosity
too low the heat transfer is too low and not enough
heat in the turbine exhaust is recovered. When the 	 E	 parameters defined in Eq. (7) and (10)

pressure drop is too high the compressor work :e too 	 p	 density
large and the increased heat recovery cannot compen-

T	 parameters defined in Eq. (7) and (10)
sate.

Generally, comparing Figs. 3 and 5 one can see 	
Subscripts

that for comparable efficiency the fluidized bed re- 	
c	 cold particle transfer line

generators are more compact. This is the result of the
more favorable surface to volume ratio of _'te particles	 comp	 compressor
(6/Dp) compared to the tubes (2/Dt). g	 gas

CONCLUSIONS	 h	 hot particle transfer line

The high operating temperature capability of flu- 	
hs	 Beat source

idized bed regenerLtors makes them an attractive con- 	 I	 lower bed
cept for :advanced cycle application.

o	 superficial velocity

Calculations comparing these fluidized bed regen- 	 rec	 recuperator
erators to shell and tube heat exchangers at the same 	

s	 solid
conditions with solid density 2 . 1 grams / cm 3 and gas
velocity of twice the minimum fluidization velocity 	 sh	 shell
have been made. These calculations show that the total 	

t	 tube
volume of the shell and tube heat exchangers is two
to three times the total volume of the fluidized beds. 	 to	 terminal
However, the total amount of power which can be han- 	

curb	 turbine
dled by each of these fluidized beds is limited to
probably less than a megawatt unless very shalluw beds 	 u	 upper bed
are considered. The power may be increased by consid-
ering rotating beds where the acceleration on the 	 REFERENCES

solids can be increased above 1 gram (9.8 m/sec2)7.8.
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Figure 5, - The effect of tuba diameter and gas flow Mach
number on the recuperator specific volume and the over-
all thermodynamic cycle efficiency for shell and tube re-
cuperator.
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