General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
INSTITUTE OF GAS TECHNOLOGY

HYDROGEN PRODUCTION FROM COAL

Interim Report
Project 8963

Based on
"Study of Conversion of Coal to Hydrogen, Methane, and Liquid Fuels for Aircraft"

for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER
Contract NAS1-13620

Presented at
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Marshall Space Flight Center, Alabama

April 24, 1975
MONTANA SUBBITUMINOUS COAL

PROXIMATE ANALYSIS wt %

<table>
<thead>
<tr>
<th></th>
<th>wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE</td>
<td>22.0</td>
</tr>
<tr>
<td>VOLATILE MATTER</td>
<td>29.4</td>
</tr>
<tr>
<td>FIXED CARBON</td>
<td>42.6</td>
</tr>
<tr>
<td>ASH</td>
<td>6.0</td>
</tr>
</tbody>
</table>

TOTAL 100.0

ULTIMATE ANALYSIS (Dry)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON</td>
<td>67.70</td>
</tr>
<tr>
<td>HYDROGEN</td>
<td>4.61</td>
</tr>
<tr>
<td>NITROGEN</td>
<td>0.85</td>
</tr>
<tr>
<td>OXYGEN</td>
<td>18.46</td>
</tr>
<tr>
<td>SULFUR</td>
<td>0.66</td>
</tr>
<tr>
<td>ASH</td>
<td>7.72</td>
</tr>
</tbody>
</table>

TOTAL 100.00

DRY HEATING VALUE, Btu/lb 11,290
MONTANA SUBBITUMINOUS COAL

Typical of Western coals (subbituminous and lignite) in contrast to Eastern bituminous:

- High moisture
- Low sulfur
- High oxygen
- Low-heating value

Low sulfur allows burning under boiler without exceeding 1.2 lb SO_2/million Btu.
GASIFICATION

coal + water \rightarrow hydrogen + carbon dioxide

$\text{CH}_0.8 + 2\text{H}_2\text{O} \rightarrow 2.4\text{H}_2 + \text{CO}_2 - \text{heat}$

$\text{CH}_0.8 + 1.2\text{O}_2 \rightarrow 0.4\text{H}_2\text{O} + \text{CO}_2 + \text{heat}$

SHIFT

$\text{CO} + \text{H}_2\text{O} \rightarrow \text{H}_2 + \text{CO}_2 + \text{heat}$

METHANATION

$\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O} + \text{heat}$
GASIFICATION REACTIONS

- Most of H_2 produced comes from H_2O
- C of coal used to remove the O of H_2O as CO_2
- H_2 production requires heat
- Heat required comes from burning coal
 O$_2$ for combustion from air
 N$_2$ from air cannot be tolerated in product H_2
- CO formed along with CO$_2$
 Shift converts CO to H_2 and CO$_2$
- Methanation removes CO to safe level
TYPES OF GASIFIERS

- SUSPENSION (Entrained) COMBUSTION
 KOPPERS-TOTZEK

- FLUIDIZED BED
 U-GAS™

- MOVING BED
 LURGI
TYPES OF GASIFIERS

- Classify according to method of contacting coal with gasification agent
- Temperature and pressure important
KOPPERS-TOTZEK GASIFICATION FOR HYDROGEN

PULVERIZED COAL

OXYGEN

STEAM

GASIFIER

ASH

2730°F

WASTE-HEAT RECOVERY

WATER SCRUBBER

ELECTROSTATIC PRECIPITATOR

H₂S REMOVAL

SHIFT

CO₂ REMOVAL

METHANATION

DRYER

STEAM
KOPPERS-TOTZEK PROCESS

- Coal entrained in oxygen to burner
- Low pressure
- High temperature
- Ash removed as slag
U-GAS™ GASIFIER FOR HYDROGEN

CRUSHED COAL

1900°F

WASTE-HEAT RECOVERY

DUST REMOVAL

H₂S REMOVAL

SHIFT

CO₂ REMOVAL

METHANATION

DRYER

STEAM

ASH
U-GAS™ PROCESS

- Coal fluidized by steam and ox/gen mix
- Medium pressure (350 psig)
- Moderate temperature
- Ash removal as agglomerates
LOCK HOPPER FEED SYSTEM

ATM

CLOSED

OPEN

350 psi

OPEN

CLOSED

350 psi

A75040759
LOCK HOPPER FEED SYSTEM

- Moves coal from low pressure to high pressure
- Not commercialized over 350 psi
- Alternate is pumped slurry feed
STEAM-IRON REACTIONS

OXIDIZER: \(3\text{FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2\)

REDUCTOR: \(\text{Fe}_3\text{O}_4 + \text{H}_2 \rightarrow 3\text{FeO} + \text{H}_2\text{O}\)

PRODUCER: \(\text{C} + \text{H}_2\text{O} \rightarrow \text{CO} + \text{H}_2 - \text{HEAT}\)
\(\text{C} + \text{O}_2 + \text{N}_2 \rightarrow \text{CO} + \text{N}_2 + \text{HEAT}\)
\(\text{AIR}\)
STEAM-IRON REACTIONS

- Makes very pure H_2
- No need for separating N_2 from O_2
STEAM-IRON PROCESS

- Medium pressure
- Moderate temperature
- Simplified raw gas treating (no shift)
- Spent producer gas utilized for power generation
RAW GAS COMPOSITIONS

mol % (Dry Basis)

<table>
<thead>
<tr>
<th></th>
<th>K-T</th>
<th>U-GASTM</th>
<th>STEAM-IRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>58.3</td>
<td>50.1</td>
<td>1.4</td>
</tr>
<tr>
<td>CO₂</td>
<td>10.0</td>
<td>11.5</td>
<td>0.2</td>
</tr>
<tr>
<td>H₂</td>
<td>30.4</td>
<td>35.3</td>
<td>95.9</td>
</tr>
<tr>
<td>CH₄</td>
<td>—</td>
<td>2.1</td>
<td>—</td>
</tr>
<tr>
<td>N₂ + Ar</td>
<td>1.0</td>
<td>0.7</td>
<td>2.5</td>
</tr>
<tr>
<td>H₂S + COS</td>
<td>0.3</td>
<td>0.3</td>
<td>—</td>
</tr>
</tbody>
</table>

| PRESSURE, psia | 15 | 350 | 350 |

A75040772
RAW GAS COMPOSITIONS

- K-T and U-GAS™ require extensive shift
- Very low sulfur in steam-iron gas
<table>
<thead>
<tr>
<th></th>
<th>K-T</th>
<th>U-GAS™</th>
<th>STEAM-IRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CO₂</td>
<td><50 ppm</td>
<td><50 ppm</td>
<td>0.1</td>
</tr>
<tr>
<td>H₂</td>
<td>93.1</td>
<td>94.3</td>
<td>95.7</td>
</tr>
<tr>
<td>CH₄</td>
<td>5.5</td>
<td>4.8</td>
<td>1.5</td>
</tr>
<tr>
<td>N₂ + Ar</td>
<td>1.3</td>
<td>0.8</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
PRODUCT GAS COMPOSITIONS

- All CO reduced to 0.1%
- CO₂ for K-T and U-GAS™ reduced to <50 ppm during acid-gas removal
- CO₂ for steam-iron reduced to 0.1% by methanation
<table>
<thead>
<tr>
<th></th>
<th>K-T</th>
<th>U-GAS™</th>
<th>STEAM-IRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>COAL, lb/hr (Dry Basis)</td>
<td>1,276,454</td>
<td>1,124,128</td>
<td>2,070,426</td>
</tr>
<tr>
<td>STEAM, lb/hr</td>
<td>270,164</td>
<td>375,776</td>
<td>4,599,209</td>
</tr>
<tr>
<td>OXYGEN, tons/day</td>
<td>12,092</td>
<td>8,631</td>
<td>17,368*</td>
</tr>
</tbody>
</table>

STEAM TO SHIFT

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/hr</td>
<td>80',585</td>
<td>790,758</td>
<td>—</td>
</tr>
</tbody>
</table>

A75040749
GASIFIER FEED QUANTITIES

- Coal, steam, and oxygen to steam-iron higher than to K-T or U-GAS™
- But steam-iron does not require air separation plant. Also no shift steam
PROCESS EFFICIENCY

<table>
<thead>
<tr>
<th></th>
<th>K-T</th>
<th>U-GASM</th>
<th>STEAM-IRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>REACTOR COAL, lb/hr (Dry Basis)</td>
<td>1,276,454</td>
<td>1,124,128</td>
<td>2,070,426</td>
</tr>
<tr>
<td>BOILER COAL, lb/hr (Dry Basis)</td>
<td>340,314</td>
<td>269,634</td>
<td>—</td>
</tr>
<tr>
<td>TOTAL COAL, lb/hr (Dry Basis)</td>
<td>1,616,768</td>
<td>1,393,762</td>
<td>2,070,426</td>
</tr>
<tr>
<td>HHV TOTAL COAL, 10^6 Btu/hr*</td>
<td>18,253</td>
<td>15,736</td>
<td>23,375</td>
</tr>
<tr>
<td>HHV PRODUCT GAS, 10^6 Btu/hr†</td>
<td>10,416</td>
<td>10,416</td>
<td>10,416</td>
</tr>
<tr>
<td>% CONVERTED TO PRODUCT GAS</td>
<td>57.1</td>
<td>66.2</td>
<td>44.6</td>
</tr>
<tr>
<td>BY-PRODUCT POWER, kW</td>
<td>—</td>
<td>—</td>
<td>980,000</td>
</tr>
</tbody>
</table>

* At 11,290 Btu/lb.
† At 250 billion Btu/day.
PROCESS EFFICIENCY

- K-T boiler coal higher than U-GAS because of higher oxygen, higher gasification temperature, and more shift

- High total coal for steam-iron because of heat in spent reductor gas
PROCESS EFFICIENCY

<table>
<thead>
<tr>
<th></th>
<th>K-T</th>
<th>U-GAS™</th>
<th>STEAM-IRON</th>
<th>METHANE BY HYGAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REACTOR COAL, lb/hr (Dry Basis)</td>
<td>1,276,454</td>
<td>1,124,128</td>
<td>2,070,426</td>
<td>1,108,198</td>
</tr>
<tr>
<td>BOILER COAL, lb/hr (Dry Basis)</td>
<td>340,314</td>
<td>269,634</td>
<td>—</td>
<td>206,407</td>
</tr>
<tr>
<td>TOTAL COAL, lb/hr (Dry Basis)</td>
<td>1,616,768</td>
<td>1,393,762</td>
<td>2,070,426</td>
<td>1,314,605</td>
</tr>
<tr>
<td>HHV TOTAL COAL, 10^6 Btu/hr*</td>
<td>18,253</td>
<td>15,736</td>
<td>23,375</td>
<td>14,842</td>
</tr>
<tr>
<td>HHV PRODUCT GAS, 10^6 Btu/hr†</td>
<td>10,416</td>
<td>10,416</td>
<td>10,416</td>
<td>10,416</td>
</tr>
<tr>
<td>% CONVERTED TO PRODUCT GAS</td>
<td>57.1</td>
<td>66.2</td>
<td>44.6</td>
<td>70.2</td>
</tr>
<tr>
<td>BY-PRODUCT POWER, kW</td>
<td>—</td>
<td>—</td>
<td>980,000</td>
<td>—</td>
</tr>
</tbody>
</table>

* At 11,290 Btu/lb.
† At 250 billion Btu/day.
PROCESS EFFICIENCY

- Methane production by HYGAS® Process has higher efficiency than hydrogen production processes
STEAM-IRON PROCESS FOR HYDROGEN
VALUATION OF BY-PRODUCT POWER

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY-PRODUCT POWER, kW</td>
<td>980,000</td>
</tr>
<tr>
<td>EQUIVALENT Btu AT 7300 Btu/kWhr, 10^6 Btu/hr</td>
<td>7154</td>
</tr>
<tr>
<td>HHV PRODUCT GAS, 10^6 Btu/hr</td>
<td>10416</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17,570</td>
</tr>
<tr>
<td>HHV COAL, 10^6 Btu/hr</td>
<td>23,375</td>
</tr>
<tr>
<td>OVERALL EFFICIENCY, %</td>
<td>75.2</td>
</tr>
</tbody>
</table>

A75040758
STEAM-IRON PROCESS -
VALUATION OF BY-PRODUCT POWER

- Power valued at 7300 Btu/kWhr added to gas values raises overall efficiency of steam-iron to 75.2%
POWER FOR HYDROGEN LIQUEFACTION

QUANTITY OF HYDROGEN

733 \times 10^6 \text{ SCF/day} (161,000 \text{ lb/hr})

POWER REQUIRED FOR LIQUEFACTION at 5 \text{kWhr/lb}^*
805,000 \text{kW}

POWER TO COMPRESS \text{H}_2 \text{ 1 atm TO 800 psi}
220,000

NET TO LIQUEFY 800 \text{psi GAS}
585,000

BY-PRODUCT POWER
980,000 \text{kW}

*From \text{H}_2 \text{ at 1 atm.}
POWER FOR HYDROGEN LIQUEFACTION

- By-product power from steam-iron (980,000 kW) is more than enough to liquefy hydrogen produced.