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ABSTRACT

Horizontal wind components, potential temperature, and mixing

ratio fields associated with a severe storm environment in the south

central U.S. were objectively analyzed from synoptic upper air observa-

tions with a non-homogeneous, anisotropic weighting function. The grid

dimensions of the area of study were near 125 kilometers horizontally

and 50 millibars vertically at 1 g pressure levels. Each data field was

filtered with variational optimization analysis techniques. The vertical

motion field was then analyzed using variational optimization analysis to

insure that the three-component wind field satisfied mass continuity.

The local time change of potential temperature and mixing ratio was de-

termined in order to correlate the temperature and moisture advection

patterns with severe storm development. A variational optimization anal-

ysis model containing the four dimensional advection equation was used to

produce advective forecasts of the potential temperature and mixing ratio

fields.

For the data base of 26/12002 May 1973, several major findings

emerged. The dry intrusion is characterized by warm air, the advection

of which produces a well defined upward motion pattern. A corresponding

downward motion pattern apparently comprising a deep vertical circulation

in the warm air sector of the associated low pressure system was detected.

Another major result was the alignment of the axes of maximum dry and warm

advection with the axis of the tornado producing squall line that subse-

quently developed.
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VARIATIONAL O! MIZATION ANALYSIS

OF TEMPERATURE AND MOISTURE ADVECTION IN A SEVERE STORM ENVIRONMENT

CHAPTER I

INTRODUCTION

The environment of the severe thunderstorm has been subjected

to intense study in recent years in an effort to understand the pro-

cesses occurring within the severe thunderstorm that produce high sur-

face winds, large hail, flood-producing heavy rains, and tornadoes. As

the knowledge of these processes increases, so does the ability of

meteorologists to accurately predict and perhaps eventually modify the

occurrence and severity of these damaging phenomena.

Empirical research, most notably by Miller (1972), provides very

important relationships between synoptic and meso-scale features and the

processes occurring on the individual thunderstorm scale. The basic

reason for this is that the larger scale phenomena are continuous spa-

tially and temporally and are subject to adequate measurement by a vari-

ety of techniques; processes occurring on the scale of the thunderstorm

are very difficult to measure. Since the thunderstorm's primary source

of energy appears to be the buoyancy generated by latent heat release in

a conditionally unstable atmosphere, studies of the moisture transport in

a severe storm environment have been very encouraging (McGinley, 1973;

Sasaki, 1973; Lewis, 1971; Sasaki and Lewis, 1970; and Hylton, 1972).

These studies emphasize the high correlation between moisture convergence

in the lower atmosphere and the occurrence and development of severe

storms.

1
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The determination of moisture, expressed as precipitable water

(water mass per unit area) and the time change of moisture, which can

be correlated with precipitation (Palmen, 1967) have also been used

with success in the analysis of thunderstorm occurrence and precipita-

tion amounts with the storms.

Temperature advection studies should prove equally valuable.

In addition to identifying the environmental stability changes produced

by differential temperature advection, important clues to the dynamics

of squall line developmer<0. should result. Miller (1972) stresses the

presence of a lower level warm air intrusion as a locator for severe

storm development. The dynamic reasoning for this appears to be linked

to the strong upward motions, produced by warm air advection, that are

conducive to severe storm occurrence. Pfeffer (1962) suggests that

thermal advection in the lower troposphere dominates over the vorticity

advection in determining vertical motion fields for smaller scale phenom-

ena. Morris (1972) also cites the predominance of thermal advection over

vorticity advection in producing vertical motions.

The relationship between vertical motion, vorticity advection,

and thickness, or thermal, advection is best described by the omega

equation developed from the primitive equations of meteorology. The

omega equation is a diagnostic expression for the vertical wind com-

ponent, w, that is not reliant upon accurate measurements of the hori-

zontal winds. Although the "w-equation" is based on the geostrophic

wind approximation and the lower atmosphere has non-geostrophic com-

ponents, an examination of she w-equation will provide insight into the

processes which produce vertical motion. In vector form, the w-equation
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simplified (from Holton, 1972) is

wKCl P [V 3^1^ Cg ^V v®

where	 w - vertical motion, downward motion is positive

V - horizontal vector wind

_V = horizontal difference operator, a vector

C1 , C2 - positive constants when evaluated at constant
pressure

- absolute vorticity, the sum of relative vorticity and
Coriolis acceleration

B - potential temperature

The first term on the right hand side is the differential vor-

ticity advection term, a term which normally predominates in the atmo-

sphere. The second term is the thickness advection term. Upward verti-

cal motion results from an increase with height of positive vorticity

advection, a condition normally found from a trough axis to the down-

stream ridge axis. This requires that the winds increase with height

due to the ( 
ap 

V ) tern; if the winds are invariant with height, then

there is no contribution to vertical motion from differential vorticity

advection.

The thickness advection term produces upward vertical motion

for warm air advection ( V - 4 9 is negative for warm air advection).

This term is ordinarily small in the atmosphere because the isotherms

parallel the wind streamlines (or height contours), but in developing

baroclinic systems, the temperature advection term is substantial.

The synoptic situations formed by the severe thunderstorm in the

Great Plains all include a developing ba%oclinic low pressure system

i
i
i
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with ponounced thermal advection patterns (Miller, 1972). Many of

these systems initially develop as a warm-core dynamic low pressure

center as a result of cyclogenesis in the lee trough, a warm core

trough formed from a combination of southerly warm flow, subsiding air

across the Rocky Mountains and horizontal warm advection from t"ae higher

terrain to the west. The latter two mechanisms indicate that the warm

air is very dry in the lower layers. This warm air is then advected

eastward and northward as the low pressure center continues to develop,

This is illustrated in Figures 1 and 2 at the 850 mb level and the 700 mb

level for one of the investigative case studies of this paper.

From the author's synoptic experience, the wind profile in ne

southeast sector of cyclogenesis in the lee trough is largely invariant

with height through the lower and middle levels (occasionally to the 500

mb level) coincident with the thermal ridge in the low levels. This sug-

gests that the environmental vertical motion field may be largely

determined by the thickness advection, which can be determined by eval-

uation of temperature advection. One example of the magnitude of the

warm air advection is shown in Figure 3. The soundings are for Tinker

AFB, Oklahoma on 26/OOZ and 26/12Z, May 1973. A tornado pl:oducing squall

line occurred in eastern Oklahoma later on in the day.

In severe storm environments, the source for much of the heat

energy appears to be radiational heating of the higher terrain of

eastern New Mexico, the High Plains of Texas and western Oklahoma. In

severe storm synoptic situations, the cloud-free dry air to the west of

the surface location of a maximum dew-point temperature gradient heats

rapidly. Since the lower portions of this air mass have a near dry-
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	 The 700 mb analyses for 25/1200Z, 26/12002, and
27/1200Z May 1973. The synoptic patterns illus-
trate the pronounced warm-core nature of cyclo-
genesis and frontogenesis in the lee of the
mountains trough, which is especially evident in
Figure lb. During; the transition from the warm
core low to the cold core low in Figure lc, warm
advection is pronounced to the east of the trough
axis. This is followed by the pronounced cold
advection to the west as the low changes to a
cold core structure.
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`+`^ ŷ0] 51 t^4
	 -^3°774^f°736	

lu i^ 
\ 

1120013
"N

as	 a 033

9

	

2	 out	 La	
as

21 DAS
15	 to qq	 058	 2

rr	

3
120OZ SAT 26 MAY 1973
NO&.. KvC 70" ANALYSIS	 092 a
rUNX,,O 2t24 FOOIC. 1166
RATIUK.AL UMTHER SERVICE	 1 11 1911	 a

Figure lb,

4
P-1

4aR

0	
a	

-04
G 0318

	

lk"	 q

-63 IQZ	 a
035 I

	

. 0	1	 3
?

if	 06 '0 q
9 451	

rid 9
i f

Is
za `5r  "-93	

8	

an
rl	 a	

"

is	 -.4 r 
N	

—

	

as	 03	 -n	I 	 `tz A I
15	

95

'15 130
23 Z2 124\
	;8z	 pr 

2 is
L--!i.	 0

SUN 2	 Y 9 312DOZ	 CUNI
Has.. NMMC 70QMB ANALYSIS
Kn:A?g 2*06 F031C. N0 6
NATIONAL HEATHER SERVICE, is 07 .1

ol

Figure 1c.

uR7MK',"asps PAU, IS

OF POOR kCLIALITY



7

i	 \	 .	 ^ 	 /	
OC4,^ .24 	 ns	

qa
lq̂ ,•i57	 02Y4%1 	 .diZL	 /♦

378\	 n:.,	 J 2^

	 C

Ij	 _ `	 ti OY1^	 p ^, ^'	 375	 8 3	 e

	

09 Tlq	 G

^30 ,r .	 ` 
°1 r•I II 1119 1,

 cq t	 + ^8 ^., .` ^I°S

12 126- `	
4 423	

1,	 V

is 91D

	

ti T74 1J'C g^4} . •	 lzp 	 ^ ^	 r\,'"

	

_d9
	 1438	 9^TZ	 ,p_-'S	 \

17 159	 16 TS
^\	 A YZ<'	 \	 20 740 1` 60 O:e

	

I ^\ 1z7̂e C..,,	 Y 430 n°`y!3i

	

Y _	 3q	 3^, T	 1 41200Z ERI 25 MAY 1973	 t

1179.	 IOtt SSC 13 ANALYSIS
AJIRA.-a 1#27	 ti79.	

is
APOO

`	 ..'q 33	 ^4 TS
NATIONAL WEATHER SERVICE	 3 T¢2 

.x ttt^^^_	 1

Figure 2a.

Figure 2a-2e.

	

	 The 850 mb analyses for 25/120OZ to 27/12002 May
1973 at 12-hour intervals. This series illustrates
the warm core nature of the trough in the lee of
the mountains. As the system develops, the thermal
ridge, which is initially coincident with the trough
line, is advected eastward producing strong warm
air advection. This is evident in Figures 2b to 2d.
The source of the warm air appears to be a combina-
tion of radiational heating from the high level
terrain of the mountains (Figure 2a), southerly flow,
subsiding air over the mountains, and remnants of the
warm air of a subsiding ridge (not indicated in
these figures). The strong cold air advection to
the west of the developing low is associated with
frontogenesis.
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adiabatic lapse rate and strong winds, the vertical and horizontal

transport of this temperature is facilitated.

Thus, the analysis of temperature and moisture advection in

severe atom environments is a very fruitful area of severe atom re-

search. Studies to date have been hampered by several factors. One

factor is the lack of measurements on the meso-scale; another is the

accurate computation of the vertical component of motion needed for

three dimensional analysis of the advection. It is emphasized that

temperature and moisture advection, whether calculated or inferred from

the synoptic situation, is a short-range forecast tool. Although ad-

vection has a subamntial role in the atmosphere (as evidenced by the

advection terms in the dynamic models), it cannot describe or account

for all the processes which occur. For example, local temperature

(thickness) advection will produce accelerations to the wind compon-

ents as a result of the height gradient changes. This wind change

would then affect the advection calculations. Due to these interact-

ions, advection models are short range forecast models. The time

span is limited to the order of several hours, the time scale of the

thunderstorm and squall line.

The advent of satellite-borne remote sensing offers, through

profile inversion techniques based on thermal infrared measurements,

the temperature and humidity profiles on scales even smaller than the

meso-scale. Two residual problems are that wind measurements still

must be derived from other sources and that measurements are contingent

upon the availability of the satellite sensors; hence these observations

must be time weighted before inclusion in an advection model.

t

.
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The wind components must, at least for the near future, be

derived from the synoptic scale upper air observation network operated

by the National Weather Service. The measurement sites are irregularly

spaced and the measurements include all scales of motion and contain

considerable noise, especially at higher levels and wind speeds (O'Brien,

1970). This noise and the non-resolvable wave lengths in the measure-

ments must be selectively eliminated from the data.

This research is oriented toward the development of an advec-

tion model capable of assimilating remotely sensed temperature and

moisture profiles (when available) with the temperature, moisture, and

wind component data currently available from conventional observations.

These data are objectively analyzed using an anisotropic, non-homogeneous

weight function designed to minimize errors in the computation of the

vertical component of motion. The data are filtered using Sasaki's

variational optimization analysis technique to selectively suppress the

non-resolvable wavelengths both horizontally and vertically. These

assigned data fields are incorporated in a second variational optimize-

tion analysis scheme to insure that the advection quantities are contin-

uous within the grid. The final analysis is the correlation of the

observed fields and the linear advection of these fields with observed

severe thunderstorm environments. This analysis model is a variational

optimization analysis model incorporating the time disension in addition

to the three space dimensions. The variational formalism includes

filters in the four dimensions to suppress computational error and non-

resolvable data field wavelengths introduced at times later than the

initialization time.
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The severe thunderstorm situation selected for study occurred

on 26 May 1973. A prefrontal squall line developed in association with

a developing surface low pressure center in southern Kansas. The

squall line developed from the Kansas-Oklahoma border southward through

eastern Oklahoma. Several tornadoes were reported with this squall

line in Kansas and Oklahoma; one tornado in east central Oklahoma

claimed five lives in the small town of Keefeton. From Figures 1, 2,

and 3, the temperature and moisture advection patterns with the develop-

ing system were extensive and pronounced; this research will correlate

temperature and advection fields derived from variational optimization

analysis methods with the squall line development.

An independent data set was used to develop and verify the nu-

merical models, but the results are not included as a case study. This

data set iu 11 June 1973; an areal coverage of moderate thunderstorms

developed along the Texas-Oklahoma border.



CHAPTER II

DATA OBJECTIVE ANALYSIS

The numeric models of the investigation required an objective

analysis to assign values of wind, temperature, and moisture to regu-

larly spaced grid points from the irregularly spaced observation points.

The objective analysis method used assigned a grid point value as the

weighted average of the surrounding observations; the physical shape of

the data fields determines the method of weighting the observed values.

The weight function must be carefully selected to avoid unnecessary

smoothing of the data fields and to avoid the introduction of frequen-

cies resolvable by the grid network but actually non-resolvable from

the observation point network. This may occur when the grid spacing is

finer than the average observation point spacing. Filters may be subse-

quently used to suppress, but not eliminate, the amplitude of non-

resolvable wavelengths, as explainlu in Appendix B. This implies that

the assigned data fields be as accurate as possible to avoid the intro-

duction of error into all later numeric aspects of the investigation.

Ll	 When data to be assigned to regularly spaced grid points from

;i	
irregularly spaced measurement points are isotropic and homogeneous,

the weight functions may be circular and distance dependent. The radius

of influence may be determined from the correlation function or from

scale considerations if the analytic spectral response of the weight

function is known.

14
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However, the horizontal wind components and variables advected

by the wind have anisotropic and non-homogeneous correlation functions.

A correlation function, as used by Gandin (1965) 0 is the relationship

between the correlation coefficients of a data field and distance.

The anisotropy stems from a greater correlation parallel to the wind

than crosswind. The non-homogeneity arisas because the correlations

are functions of the wind speed, which varies throughout the grid area.

When an isotropic, homogeneous weight function, such as the well-known

Creasman function, is used for the objective analysis, errors are intro-

duced into the computations. An example of this is contained as Appendix

A, Comparison of Creasman and Anisotropic Exponential Weighting Functions

An anisotropic, non-homogeneous weighting function was developed

for this study. The weight function, W, is defined as

W = -Iexp( -(x2 + v2 ) 2	}
k(1 + cos 

where V = absolute value of the wind speed at the observation point

V* = defined as a scale maximum wind

X2 + y2= distance squared from the observation point to the
grid point

k = the filter parameter

= the anisotropic parameter

angle between the wind directional angle and the direc-
tional angle from the grid point to the observation point

This weight function was designed by combining the best features

of Inman's anisotropic weight function (Inman, 1970) and Barnes' expo-

nential weight function (Barnes, 1973). The exponential form is pre-

ferred over the basic Cressman form due to the following desirable
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features cited by Barnes;

1, The weight function characteristics can be chosen prior to

the analysis so that pattern scales supported by the data distribution

will be revealed.

2. Because the weight function approaches zero asymptotically,

the influence of data can be extended any distance without changing the

weight function and, therefore, the response characteristics, This

feature, when compared to the Creasman weight function which has a

relatively sharp cut-off at the specified maximum influence radius, is

very desirable from a spectral response standrw'int because it reduces

the high frequencies ausociated with any weight function or data window,

3. Small scale irreguiarities are adequately suppressed, so

further smoothing is often not necessary.

4. The resolution after one iteration is comparable to four

or more iterations in the Creasman successive correction method.

In Byrnes' paper, an analytic response function of the exponen-

tial weight function showed k to be a low-pass filter parameter. A

small value of k allows high frequencies in the data; a larger value of

k suppresses these frequencies, The parameter $ allows a greater weight

to upwind/downwind observations than for crosswind observations. The

characteristics of the weight function for selected values of k and 9

are contained in Figure 4. For the objective analysis of this investi-

gation, k was assigned a value of 0.5 and d was assigned a value of

4,0 after visual examination of the frequencies present in the analyzed

wind, temperature, and moisture fields.
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1.0

W exp{ - (x
2 + v2)

	0.8	 K(1 + S cost 0)

K - 0.5
4.0

	

, 0.6	
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0.4	 c	 45'
d	 30'
e	 0'
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a
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DISTANCE (MAP INCH)

Figure 4.	 Weight assigned to station observation as a
function of distance r, where r2 = x2 + y2,
and direction vector, ^. For the advection
investigations, the grid spacing was k inch.
Note that a family of curves is generated
for each set of K and d selected, which
governs the degree of anisotropy and scale
smoothing.
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CHAPTER III

THE VARIATIONAL FILTER

The assigned fields of temperature, moisture, and horizontal

wind components require additional filtering to suppress non-resolvable

spatial frequencies. The major requirement for filtering arises from

the three dimensional nature of the investigation; the initialized data

fields have been smoothed implicitly by the weighted average of the

observed data points in the horizontal only, and this smoothing has

not been uniform due to the anisotropy and inhomogeneity of the weight-

ing function.

Since the upper air reporting network has an average spacing

of apprzo-imately 400 km over the r 'ea of the study, the minimum resolv-

able wavelength is 800 km under optimal conditions. In the vertical

however, wind, temperature, and moisture data are available every 50 mb,

the vertical minimum resolvable wavelength is 100 mb. With a computa-

tional grid spacing of 125 km horizontally and 50 mb vertically, wave-

lengths of less than seven horizontal grid units and two vertical grid

units should be suppressed.

A filter based on Sasaki's variational optimization analysis

technique (Sasaki, 1970x, 1970b, 1971x; Wagner, 1971) is used because

the filter characteristics may be specified individually in the hori-

zontal and vertical and applied simultaneously. The variational formal-

ism is

18
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bJ = 0 = b JJJ(a C(u-a) 2 + (v-v) 2 ]+ af[(ax) 2+ (aY)2+ (avx)2

+ (ay) 2 ] + ap C(ap) 2 + (ap) 2 ]? dp dx dY	 (1)

where J is the functional; or, or., and ap are the specified weak con-

straint weights applied to the observational terms and to the first

derivative filter terms horizontally and vertically.

The Euler-Lagrange equations derived from equation (1) are:

2	 2	 2

a	
Zx

(u-u) - crf( a + 6'aY2 ) - ap aP 2 = 0	 (2a)

2	 2

ar(v-v) - ci aX2 + A ) - ap 
a2p2 = o	 (2b)

These partial differential equations are elliptic and are solved in

finite difference form by relaxation techniques. The use of variational

optimization analysis in filtering and the derivation of the Euler-

Lagrange equations, the solution technique, and the filter response

characteristics are contained in Appendix B.

Because sharp gradients on the boundary will introduce error

into the interior grids with relaxation techniques, with a resultant

decreased convergence rate, the six boundary faces of the three-

dimensional grids were filtered before the filtering pass on the inte-

rior. The boundary face filtering was accomplished with a two-dimensional

variational filter with weak constraint weighting consistent with the

weighting used in the interior.

The amount of change in the fields over the 15 x 14 x 18 grid

used, expressed as root mean square error (RMSE), for the two investi-

gations is contained in Table 1. As shown, the filtering produced an
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average change of less than five percent over the grid network; the

maximum changes oec+irred in the vicinity of sharp gradient changes in

the data.

DATE

11/12Z JUN 73

26/122 MAY 73

DATA FIELD

u m see -1 v m see

.4215 .3793

.4629 .5633

de K	 w(gms kg 11

.4046	 .0994

.3976	 .1825

TABLE 1.	 Root mean square error (interior points only) for the three

dimensional variational filtering adjustment of the two investigation

case studies. The temperature is expressed as potential temperature,

0, and the moisture is expressed as mixing ratio, w.
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CAAPTER 1V

VERTICAL MOTION COMPUTATION'

The variational approach will be also used to calculate the

vertical motion and to adjust the entire wind field so that the equa-

tion of mass continuity, necessary for advection calculations, is

satisfied. The variational method is uniquely able to combine the

dynamic constraint of mass continuity with the observational constraint

to adjust the wind field such that conservation of advection quantities

is assured. This method has been used with success by O'Brien (1970)

and McGinley (1973), both based on Sasaki's variational optimization

approach. The variational formalism is, in non-dimensional form,

6J=0=6 ^..^ to^(u-u)2 + (v-V) 2 ] + ^,(aX + aY + P)}dp dy dx	 (3)

The resulting Euler-Lagrange equations, derived by carrying out the

indicated variations in discrete form and allowing the first variation

to be arbitrary in the interior, are

2a (u u) - ax = 0

2a (v--) -A& = 0

- ax— = 0
ap

a +aY+ap =0

(4a)

(4b)

(4c)

(4d)

21
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Equations (4a) and (4b) rearranged show that the analyzed fields u and

v are derived by adjusting the assigned fields by the gradients of the

Lagrange multiplier, X. As a consequence of equation (4c), A is inde-

pendent of pressure.

The Lagrange multiplier field may be determined by the elimina-

tion of u and v from equation (4d) by substituion of equation (4a)

operated on by ax and equation (4b) operated on by ay 
to produce

1 (^+^) 	 Lu + ay ) - ap	 N5)
Za ax	 by

This equation may be integrated over pressure to eliminate the term

containing w, since the values of w may be assigned at the boundaries

of the atmosphere. Physically, the vertical motion at the top of the

atmosphere is zero; a terrain induced vertical motion may be added at

the base (McGinley, 1973). The Lagrange multiplier, X, is independent

of pressure, and the divergence of the observed wind component is

known, so X is calculated from

r
P  ( 2	

P o

2 ) 	- f	 ( u	 ) dp	 (6)
201 ax	 by	 o	 bx	 73Y

where Po = scaled pressure at base of model. This equation is an ellip-

tic partial differential equation which can be solved for 1 by the re-

laxation technique described in Appendix S. In discrete form, equations

(5) and (6) are

2y(pxu + pyv) + VXa + yX + ppw = G	 (7)

Pa (X^ + y	 + oyv)	 (8)a) = P (oxu 
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In a physical sense, the curvature of the Lagrange multiplier

field is proportional to the deviation, or error, from mass continuity

of the assigned wind fields. The resulting gradient of X is then used

to adjust the assigned fields of u and v to obtain the analyzed fields

as shown by rearranging equations (4a) and (4b) to produce

	

u = u + 2a px	 (9a)

	

v - v +p	 (9b)
2a,	 Y

These analyzed u and v fields may then be used to obtain the

analyzed vertical motion field by summation over pressure of equation

(4d). The vertical motion, w, at a specified level, p, is obtained

through application of the trapezoidal rule to produce

WP = mP+AP + 2 1(oxu + pyv) p + (pxu + pyv) p+AP ]	 (90

Several interesting results are obtained if mass continuity

is treated as a weak constraint rather than a strong constraint, Al-

though mass continuity must still be satisfied in flux calculations,

the conversion from continuous to discrete form, the use of a vertical

grid axis not necessarily parallel to the pressure axis (of signifi-

cance with sloping pressure patterns), and the nbn-exact nature of the

boundary conditions for omega will serve to introduce deviations from

the calculated mass continuity. Thus, the formalism in discrete form

is

	bJ = 0 = E E ^(u-u)2 +	 (Y (v- •v) 2 + P(pxu + Dyv + Cpw) 2	(10)
xy p

23
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The guler-Lagrange equations are

a(u u) - Ovx (pxu + pyv + pp w) = 0	 (ila)

a(v-v) - dpy (VxU + pyv + ppm) = 0	 (lib)

^pp ( pXu + pyv + ppw) - 0	 (llc)

From equation (llc), the deviation from zero of mass-continuity is not

a function of the pressure.

hIf equation (lla) is operated on by 
v  

and equation (llb) is

operated on bypX and then subtracted from equation (lla), the following

C

I

`	 result is obtained

jl	 17y(u-u) - Vx (v -v)	 0

I
or, rearranged

tl	 _

pxv-p,u=7X
v-pu	 (12)y

or (the same result is readily obtained from equations (9a) and (9b)),

6 = f	 (13)

N
Thus, the relative vorticity, ^, of the analyzed field is identi-

cal to the relative vorticity of the initial field, C, which implies that

corrections made to the initial wind fields are applied only to the

divergent component; the rotational component remains unchanged. This

was *verified in both case study investigations. With the 500 mb rela-

tive vorticity values scaled by multiplying by 10 5 , the root mean square

errors were of the order 10 -5 . Printouts of the relative vorticity

fields before adjustment and after adjustment at ten levels for both

case study investigations confirmed this. This very . desirable feature

is ordinarily assumed as a consequence of the orthogonality of the rota-
i

tional and divergent components of the wind fields (O'Brien, 1970 and
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Fankhauser, 1974).

Solution of equations (lla-llc) is facilitated by defining a

variable

$ = pxu+pyv+pp W 	 (14)

and rewriting the equations as

u(u-u) - p pxu	 0	 (15a)

I -v) -	 pyv 0	 (15b)

pp$ = 0	 (15c)

The variables u and v can be eliminated from equation (14) by

substituting equation (15a) operated on by px and equation (15b) operated

on by py to produce

pxu + pyv + ( xO + y^) + ppw	 (16)

The omega term is eliminated as an unknown by summing equation

(16) over pressure.	 Since ^ is not a function of pressure, the analysis

equation

^^	

P
o ( x ^ + y ^) - PO = (pxu + pyv)	 (17)

is an elliptic partial differential equation, very similar to equation

(8) (especially for very large values of P), which is solved by relax-

ation techniques (initial b is zero). The resulting field of Q is

then used to adjust the V and 0' fields in equations (15a) and (15b).

The vertical motion field is derived from equation (14).

When mass continuity is a strong constraint, the adjustment of

the u and v fields must be accomplished through several iterations

through the adjustment process due to the non-exact nature of the center
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space finite difference approximations to the first derivatives used

to evaluate the divergence and the gradients of X. For both case study

investigations, convergence of the adjusted u and v fields to the con-

tinuity satisfied u and v fields was rapid; ten iterations were used.
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CHAPTER V

VARIATIONAL OPTIMIZATION ADVECTION ANALYSIS

The analysis of temperature and moisture advection in thunder-

storm environments can be accomplished with the advection equations,

assuming dry ao abatic processes. These equations are

de a0= Me +u Me
dt	 bt

+v .-
bx by

. +(u ae (18a)
ap

dw = 0 = aw +
dt	 at

u aw + v
Ax

3w +
by

w ^w
	 (18b)

ap

The temperature is expressed as potential temperature, 6, through

Poisson's equation (Hess, 1959)

e = T (1000/p) Rd/Cp	 (19)

where Rd /Cp , the ratio of the gas constant for dry air to the specific

heat of air at constant pressure, is equal to 2/7 and p is the pressure.

The moisture is expressed as mixing ratio, w, through the conversion of

dew point temperature, Td, to vapor pressure, e, through Tetens empiri-

cal formula (Saucier, 1955)

e = 6.108 exp (17.27 Td / (237.3 + Td))	 (20a)

and the conversion of vapor pressure to mixing ratio by

W = 
622 

a	 (20b)

where •} is the pressure level, a is the vapor pressure in millibars and

27
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w is the mixing ratio in grams water vapor per kilogram dry sir.

These advection equations are often applied diagnostically to

determine advection fields, such as horizontal temperature advection

for vertical motion analysis. Since these equations contain a time

derivative, they are also used in prognostic form; the local time

change is evaluated at each grid point and added to the initial value

to produce a forecast. A major problem with the use of the advection

equation in prognostic form is that discontinuities appear in the fore-

cast field, even when the wind field satisfiea mass continuity. Vari-

able propagation speeds, i.e., the wind components, wi I.l increase the

amount of discontinuity present.

Computational instability is another major problem with the use

of the advection equations as prognostic equations. When an advection

equation is expressed in center time, center space finite difference

approximation form in the x-t plane, the computational form is

(§x,t+l - ^x,t- 1) : ux ^pxt rk(§x+l,t - Ix-1,t))	
(21)

where ^ is the field to be advected, At is the time interval, Ax is the

grid distance, and u is the propagation speed. As discussed in Haltiner

(1971), this form is computationally stable for values of u At/Ax less

than ore, When u is a variable propagation speed, the stability crite-

rion must be satisfield for the maximum speeds in the grid. With y and

p grid dimension added, the stability criterion value of one for the

coefficients decreases.

Stability can be defined in terms of the amplification tendency

in future time steps of a current time step error term, introduced
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through roundoff or truncation error or from error in the data field.

The numerical scheme is stable if the amplitude of the error remains

the same or decreases; instability arises when the amplitude increases.

In two dimensions, the new variable value at a time step contains

error from only two dimensions, but with three or four dimensions, the

error terms which may have been originally or^hogonal accumulate at

the new time step value of the variable. Thus the stability criterion

value decreases. For an excellent graphical presentation of the props-

gation of error as a function of the coefficient values, see Ketter

and prawel (1969).

Another form of instability, the computational mode, is a

result of the use of center time finite difference approximation in

the numerical scheme. After the first time step, normally accomplished

with a forward time step (which is always unstable), the value of a

variable, ¢, at the nth time step, $ n , is based on advective changes

to ¢	 . Thus, the values of t at alternate time steps may diverge.

Magata and Nishida (1971) found that this non-linear instability could

produce the complete destruction of the advective forecast scheme, but

could be controlled with the restart technique. They found in a simple

advective numerical experiment that the introduction of a forward time

step, the restart, at specified time intervals in the forecast scheme

would control this instability.

A final problem with the use of the advection equation as a

forecast is that new observational data cannot be incorporated into

the grid wihout producing sharp gradients which then dominate the ad-

vective scheme. The advective forecast scheme is limited to synoptic
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data fields; data available from remote sensing at later times but

before the next synoptic observation time cannot be incorporated.

The problems of discontinuities in the advection fields and

the inability to update the observational data lead to the formulation

of the temperature and moisture advection in storm environments in

variational optimization analysis form.

For a purely advective model, the functional is established

as

J fff {«(e-Ne) 2 + a(w-w) 2 + al(dt ) 2 
+al 

11 )dt dp dy dx (22)

The terms represent the observational constraints and the advection con-

straints for potential temperature and mixing ratio. In this form,

N
both a and a are functions of time, so new data can be incorporated

into the advective process at any time by adjusting the appropriate

N
0 tense.

The propagation speeds of the advection equations are the con-

tinuity satisfied wind components to insure that there are no advection

sinks or sources within the field. Through this requirement for mass

continuity, the wind component fields will not vary with time at the

grid points (this can be established in a functional with observational

constraints on the wind components and with the local time change

included as either a weak or strong constraint). The wind components

remain variable with respect to the spatial derivatives and thus take

part in the variations with interesting consequences.

For simplicity, consider a functional similar to equation (22)

but for a in the x-t dimensions only.
1^	 €

't
5

a^
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J a ?II {a(6 -A) 2 + al (ae) 2 } dt dx	 (23)

bJ a 0 = b f
P
l a(0 0) 2 + al (at + u a

x) 2
}dt dx	 (24)

0 a ff(2a(0 )be + 2a l (de + uax) 6(a + u ax))dt dx (25)

JJ {2ty --6) be + 2a1[be( 
at dt - ax (u RV

+ 2a1 6u ^ ae } dt dx	 (26)

The Euler-Lagrange equation from the variation of u is

2u me Le 0	 (27)1 ax dt

Since ax 
is non-zero, then de/dt is exactly zero, which is analogous to

the use of the advcution equation as a strong constraint; the local

time change of a is determined solely by advective changes.

The derivation of the Euler-Lagrange equations from equation

(22) written for a is

61 = 0 6 ffffC, ( 9 - 6) 2 + al (de) 2 } dt dp dy dx	 (28)

° M,.d {2ce --e) 6e + 2°'l de (^ + bu a + u ax

+ by

(r

-U + v ay + 6w _U + w a6e} 	 dt dp dy dx	 (29)

fff(6e[a(6-e) - al a dt - a (u de >

ay (v de) - ap(w 
dc)] + bual a ae

+ bval ay ae + buOl ap ae ) dt dp dy dx	 (30)
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The other problem is the difficulty of numerical solution of

this parabolic equation with four dimensions. With the time dimension

plus any other spatial dimension, a marching method, common to the

numerical solution of parabolic equations, will generate three unknown

coefficients at each time step due to the finite difference approxi-

mation form of the mixed derivative term. At each time st:p, a square

tridiagonal matrix of these unknown coefficients is generated. When

the computational stability criteria are satisfied, the tridiagonal

matrix is well- conditioned (dominant diagonal elements) and the coeffi-

cients are easily determined by Gauss elimination (Ketter and Prawel,

1969). When other spatial dimensions are added, the numerical solution

become-a very complex.

Both of these problem areas can be adequately resolved by the

addition of temporal and spatial first derivative filters to the func-

tional (Sasaki, 1971b) to produce (in 8 only for simplicity)

J	 ^.^,l u^ ( ce(6-e) 2 + al( de 
)2 + $1( at )2

+ 021(a ) 2 + ( a )
2 ] + 03 ( a ) 2 }dt dp dy dx	 (34)

The inclusion of the filter terms effectively suppresses the

discontinuities, which are high frequency. The solution field of 9 is

basically an advection field with the discontinuities suppressed. As

a very essential additional benefit, the inclusion of the filter terms

changes the analysis equations from parabolic partial differential

equations to the more tractable elliptic form. The Euler-Lagrange

equation from the variation of g is now

PRECEDING PAGE' BI,ANk k1DT VMM
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2	 2	 2 
al (d 2) + ^1 3 + ^2 (^ a +) + ^g () ° «(e-e)	 (35)

	dC	 at	 ax

	

by	 ap

Equation (35) expanded and rearranged forms the analysis equa-

tion

	

2	 2	 2
(al°^^1) az + (alu2 + ^2) a2 + (alv2 + ^2)

	

at	 ax	 by

2	 2	 2
+ 

(al W2 + 
03) 

pat -

g al (u ax
	 byat + v ap +

2

Wa

2
t+uva

2

xay+uWaa

2

p+vWAA20 >

+a[u(auae + +aur ae )+V (au^e
1	

avae
 ax ax ax by ax ap	 by ax

+ Lvvae + aWae)+W (auae+a„ae+aWae)3
by ay by ap	 ap ax ap op ap bp

N	 N

	

= a (e ' 8)
	

(36)

This equation is an elliptic type partial differential equation, which

is solved through relaxation techniques. The type of equation may be

verified in any two dimensions by examining the characterist{ oz quadratic

form (the familiar B2 -4AC < 0). In x and t,

4u2o
2
1 ' 4 (al + 01 ) (^2 + alu2) < 0

is satisfied for any positive weights a l , 01 , and 02 . Note that without

the addition of the weights (the filter terms), equation (36) reduces

to a parabolic type equation.

4u2 si - 4u2 
C', = 0

Equation (35), a linear partial differential equation with vari-

able coefficients, is the primary analysis equation for the advection

of temperature; a comparable equation for moisture is obtained by the

i
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same derivation technique.

'Ib a solution of equation (35) requires that the 'observed"

fields of temperature and mixing ratio be established for all time

steps. As a result of the variational optimization analysis, which

determines the best fit of a field subject to the constraints imposed,

the observed data fields must be as accurate as possible. Accuracy in

this sense implies a consistency of the observed fields with the diag-

nostic and prognostic constraints, although a simultaneous consistency

is not possible without using a variational model. Tais indicates that

the observed data fields in time should be determined by advection from

the initial time. The result should be a faster convergence (savings

on computer time) to more realistic final data fields.

An interesting corollary to this point is that perhaps the most

important application of the variational optimization analysis method

is to adjust observed data fields to a form consistent with the diag-

nostic and prognostic equations of the model. The data fields are

adjusted using explicitly all available information, which may be sta-

tistical, dynamic, kinematic, thermodynamic, or energetic (see, for

example, Lewis and Grayson, 1972).

The observed fields at the time steps were determined by the

linear advection equations in the form

- tcu 
x

+V by +^a
	

(37)

In scaled, non-dimensional form using center time and center space

finite difference approximations, equation (37) is

- Gt 8 = V*A (u'4 x8 + v'Dy8) + W*pt w'o p e	(38)
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j

where	 u = u'V*	 V* = 10 m sec-1

v = v'V*

W = W'W*	 W* = 10-3 mb sec-1

Ax = horizontal grid distance, approximately 1,25 x 10  m

Ap = vertical grid distance, 50 mb

At = time grid scale, 600 sec

Vn' - k('n+l - 'n-1)

In view of the variable propagation speeds, the scheme was re-

started every two hours (7200 sec) as a precaution to prevent the high

frequency computational instability.

3
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CHAPTER VI

RESULTS

With cyclogenesis and frontogenesis in the lee-of-the-mountain

trough, temperature and moisture advection patterns from the surface

to the 700 millibar level are pronounced, as shown in Figures 1, 2,

and 3. From the omega equation, upward motion should be associated

with the low level temperature advection and from Miller (1972), storm

development should be associated with the moist and dry advection pat-

terns. He states,

In situations preceding significant tornado
development, a distinct dry tongue is present
in low or middle levels, and, provided other
criteria are satisfied, the primary develop-
ment will occur where the dry tongue intrudes
into or over the lower moist tongue...
Dry air intrusions not only help in delineating
future tornado and severe weather areas, but
apparently provide a major contribution to the
trigger mechanism in the majority of tornado
situations.

The 26/120OZ May 1973 case study shows that the warm air of the

thermal ridge is also very dry; most dew point depressions in the dry

air were reported as the maximum reportable 30 degrees Celsius. Several

fLgures emphasize these features and that they are of sufficient hori-

zontal and vertical extent to be resolvable in the advection analysis.

Figure 5a shows the pressure and frontal patterns at 26/12002 May 1973

37
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Figure 5a.	 NMC Surface Analysis, 26/120OZ MAY 1973
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and Figure 5b shows the pressure and frontal patterns at 26/2100Z with

the radar detected thunderstorm coverage at 26/20402. At 26/12002,

there were no radar echoes in Oklahoma except along the extreme north-

ern border with Kansas. The prefrontal squall line depicted in Figure

5b originated in north central Oklahoma and developed southward. The

radar echo coverage included for reference in succeeding figures is

the 26/2140Z thunderstorm activity.

As shown in Figure 3, the warm, dry air lies over cooler,

moist air with a very sharp inversion surface at the boundary. Figure

6 shows that this inversion is horizontal over several hundred kilo-

meters extent; the location where this sharp moisture discontinuity

intersects the higher terrain of West Texas is known as the dry line,

dry front, or Marfa front (from Marfa in southwest Texas). The dry

line location at 26/12002 was between Midland TX and Abilene TX; the

Midland dew point temperature was -5 deg C (23 deg F) and the Abilene

dew point was 21 deg C (70 deg F). The temperature and dew point pro-

file or these two stations is shown in Figure 7; the moist layer at

Abilene is shallow. The high dew point temperature at Abilene is part

of the surface layer moisture ridge, which is shown in Figure 8.

The advection analysis grid was a 11 by 10 by 18; the grid

spacing was near 125 km horizontally and 50 mb vertically. Twelve

time steps were used in the four dimensional advection analysis; the

time interval was 20 minutes. The actual wind speeds were used as the

advective propagation speeds. The horizontal grid network is shown in

Figure 9. 4

The continuity satisfied vertical motion field at 26/12Z

(I

i



i

40

900

1000

TENWEPATIME (DEC C)

Figure 6.	 Temperature profiles for Abilene TX (ABI),
Greater Southwest Airport TX (GSW), and
Tinker AFB OK (TIK) 26/120OZ May 1973.
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contained several features of interest. The omega fields at the 900,

600, 700, 600, and 500 millibar levels are in Figure 10. The axis of

maximum upward vertical motions (negative w) coincides with the area

of maximum temperature advection apparent in Figure lb and 2c. This

axis also bears a strong similarity to the squall line location. A

secondary axis of upward vertical motion is parallel to the frontal

thunderstorm development. This is most evident at the 700 millibar

level. At the 500 millibar level, an area of downward vertical motion

appears through central Oklahoma. Downward motion behind a squall line

has been proposed as a compensatory motion which transfers the higher

wind speeds to lower levels (Miller, 1972); the appearance of this

downward motion may be purely coincidental, although it does occur in

these data before squall line initiation.

The vertical motion in the cross-section along line A-A' (see

Figure 9) perpendicular to the squall line axis shows that the downward

vertical motion at the 500 millibar level is part of an organized circu-

lation, illustrated in Figure 11. The nature of this potentially very

significant circulation pattern will have to be verified in other case

studies; perhaps the downward motion is a compensating motion for the

upward motion associated with the warm air advection at lower levels.

11iis would produce warming and drying with the subsiding air, which

could then enhance the warm, dry intrusion.

The existing temperature and moisture advection fields were cal-

culated at 26/12002 from the advection equations

Be _ - (u ax + v a + w ^ ) 	 (39a)

w-= - (u ax + v aw + w P )	 (39b)
at
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These advective fields, Figure 12 and 13, show that the maximum tempera-

ture advection is positively correlated with the maximum drying. The axes

of the maximum drying and maximum warming are both parallel to the squall

line, as anticipated by application of Miller's (1972) empirical rules.

Figure 13 also illustrates the l,jw level moisture increase at the 900

millibar level beneath the drying associated with the warm, dry intrusion.

This pattern is more pronounced in cross-section in Figure 14, which includes

the 950 millibar level advective fields. The moisture increase at low level

on the left hand side of the section is associated with the moisture advec-

tion from the moisture ridge depicted in Figure B. The low level tempera-

ture advection fields are weak beneath the warm intrusion, as shown in

cross section in Figure 15.

The advective fields computed from the forecast potential tempera-

ture and mixing ratio fields show the continued development of the patterns

Miller cites as necessary for severe storm development, as shown in Figures

16, 17, 18, and 19. The advective patterns reflect moisture advection be-

low the warm, dry intrusion, which is being advected eastward. This is

coincident with continued weak moist advection above the dry intrusion,

not shown in these figures but evident from Figure 3. This pattern is

cited by Miller as a possible trigger mechanism for the squall line initia-

tion, as shown in Figure 20. The temperature advection pattern shows the

strengthening of the mid-level cooling behind the intrusion and continued

warm advection with the intrusion.

As suggested by Miller and as indicated by the results of the advec-

tion model (Figures 12 and 16), the severe thunderstorms initially develop

through the warm, dry inversion layer. Further evidence of this is contained

in the ATS-III imagery of 26 May 1973. The ATS III imagery and possible,

interactions of the mesoscale warm, dry intrusion and the thunderstorm scale

processes are discussed in Appendix C.
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CHAPTER VII

SUMMARY AND RECOMMENDATIONS

Several features of the advection analysis with variational

optimization analysis techniques are especially noteworthy. The first

is inherent with the variational technique; the governing equations

and conditions imposed on a model are simultaneously applied. For

example, the data filtering is accomplished simultaneously in all

dimensions with the ability to specify the amount of scale smoothing

for each dimension.

The method of determination of the vertical component of motion

is another major feature. The use of the non-homogeneous, anisotropic

exponential weight function for the objective analysis of the data

fields produces physically realistic divergence values at all pressure

levels. These divergence values are then used in a variational tech-

nique to determine, the vertical motion, within the boundary conditions

imposed, consistent with mass continuity. The vertical motion field,

crucial to the three spatial dimensional analysis of advection of tem-

perature and mixing ratio, can be assumed to be accurate with a high

degree of confidence.

Several promising areas for continued research constitute the

final major feature of this research. Research should continue to con-

firm the existence of the vertical circulation pattern identified with

the 26/12002 May 1973 case study. This vertical circulation may produce

is
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vital clues to the development and maintenance of the severe thunder-

storm and its parent squall line.

Another promising area for future research would be the adapta-

tion of the model to a finer mesh grid over a smaller geographical area

in order to study the advection fields on the scale of the thunderstorm

and Its parent squall line. The densely-instrumented Beta network,

operated by the National Severe Storms Laboratory, in central Oklahoma

is a distinct possibility as the data source. Because the degree of

scale smoothing is controllable at each analysis step from the initial

objective analysis to the final four dimensional advective analysis, the

mesoscale features of interest can be preserved.

The final recommendation for further research is to investigate

the short range forecast capabilities of the variational models described.

In addition to using the advective patterns and forecast fields to iden-

tify the primary areas of squall line initiation several hours in advance,

the distinct possibility exists of parameterizing the data to provide

severity criteria, such as stability indices. These operational possi-

bilities should be explored in an effort to increase the accuracy of the

severe weather watches and warnings.

1.
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APPENDIX A

COMPARISON OF CRESSMAN AND ANISOTROPIC EXPONENTIAL

WEIGHTING FUNCTIONS—A CASE STUDY

Both the Cressman Weight function and the anisotropic weight-

ing function assign values to grid points from irregularly spaced ob-

servation points by using the equation

E Wk $k

^ij
EW k

where % and 
^ij 

are the variable values at the observation point and

grid point respectively and W k is the weight for that observation point.

Each observation is weighted according to a prespecified relationship

and the sum of these weighted observations is normalized by the sum of

the weights.

Since the Creasman weighting function is distance dependent

only, it is isotropic, and because the weighting function is not a func-

tion of location, it is also homogeneous. The analysis of a wind field

or any other anisotropic, non-homogeneous field with an isotropic, homo-

geneous weight function is likely to introduce errors into the objective

analysis.

In the early stages of this study, the Creasman weighting func-

tion was used to objectively analyze the wind fields at each of 19-

levels at 50 millibar increments from 1000 to 100 millibars over the

15 by 21 horizontal grid shown in Figure Al. However, at certain levels,

the divergence of the horizontal wind was not consistent physically with

59

rl



W 0
M N

do

44 rO,

10 m
a u
) co

N
b

^w
m
uN
H

bh u

L p
w u ui

rC u O
L N 1u
O al L
1i•i G N

b 01 00
co

aS H G
M

c o u,.i	 H
fu

OS O
ca

d H

b ?^ W
W tn N
00 N u

.•4 a

L Nh

N p
L̂

p L
H 4 O
0 k
F N

€c a w
m o

P

o

^J

0	 V B .r tl i

60

XT
`^ ^'i ry

°•1, %^ 3 3

•O —. •„ , d' ^„ ,4^ ^ vgtr

"tiu, v t;• /"
1. .• \°'S

wry. ix.• , ..\^ ., .^y
••``

^ ^x ..,. a .^^^ _ ^ i•
Aq

^,

3
^^ •

R

au v

11 4

H	 t

+	 r,

?t	 •^a'9

p ^ G

2q

er 'r ^^ y
(D ^ t^^adv'

'PS	 '4v

u^

k .

IS

W

ORIGINAL PAGE IS
OF POOR QUALITY

u



1	 ^	 ll	 d	 ^

61

the synoptic situation. Since the accurate computation of the diver-

gence is no"ssary in this investigation, significant error in the

initial objective analysis could easily produce unknown error terms

in the remainder of the calculations.

As an example, the divergence field was calculated from the

horizontal wind components assigned by a successive correction objec-

tive analysis with the Creasman weighting function. The observed data

field is shown in Figure A2.

As shown in Figure A2, a closed low height center was in central

Texas with a sharp ridge extending from New Mexico through Colorado and

Kansas. Wind maxima were present in the northwest and southeast por-

tions of the grid. Synoptically, convergence is associated with the

confluence of airflow and divergence is associated with diffluence.

The divergence calculated from the Creasman analysis is shown

in Figure A3. The calculated divergence values in northern Arizona and

northern New Mexico do not appear to be realistic—apparently the scheme

treated the wind at INW (Winslow, AZ) and the wind at AEZ (Albuquerque,

NM) to be strongly convergent. Another apparent error exists in north-

ern Texas and central Oklahoma where the very high divergence values

appear to be the result of the wind differences at AMP, (Amarillo, TX),

FTW (Fort Worth, TX), and OKC (Oklahoma City, OK). A streamline analysis

suggests significance error.

The same field was then analyzed using an anisotropic exponen-

tial weighting function, with only one pass through the data field.

The divergence values calculated from these analyses are shown in Figures

A4a, Akh, and A4c, and appear much more realistic. Notice that the
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selection of different sets of K and d change the magnitudes but not

the patterns of divergence.

The divergence values calculated from the Creasman analysis

have a greater magnitude, even though the patterns were derived from

wind fields subjected to greater implicit smoothing than in the analy-

sis based on the new weighting function. Also, a comparison of the

divergence patterns shows significant differences in sign of the

divergence as well as the magnitude. The differences are most pro-

nounced in the vicinity of the smaller wavelength features of primary

interest to the advection investigations.

The differences appear to be a function of the isotropy of the

Creasman weight function; perhaps any isotropic weighting function will

introduce significant error, which would affect the validity of the

computations and conclusions of later parts of the study. In any event,

the necessity of accuracy in the initial objective analysis of the data

field is emphasized.
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APPENDIX B

THE USE OF VARIATIONAL ^PTIMIZATION ANALYSIS IN DATA FILTERING

Variational calculus may be used to find the stationary points

of a functional, an integral of a function which may be composed of

several dependent variables and their first and second order time and

space derivatives, in a manner analogous to the use of differential

calculus to find the stationary points of a function with regard to

each of its variables. When the functional is in quadratic form, the

stationary values of the functional will be minimum (Sasaki, 1970a).

The functional is composed of a series of weighted terms rep-

resenting conditions to be satisfied, either exactly with strong con-

straint weighting or approximately with weak constraint weighting. The

strong constraint weights are termed Lagrange multipliers and are

treated as introduced dependent variables with respect to the functional

The terms representing conditions to be exactly satisfied are premulti-

plied by a Lagrange multiplier for inclusion in the functional (Sasaki,

L970a). For terms representing conditions to be approximately satis-

Ci.ed, the square of the term is multiplied by a variable independent

of the functional. This term is known as a weak constraint; terms with

a Lagrange multiplier are known as strong constraints. These weak and

strong constraints may represent the model dynamics, kinematics, thermo-

dynamics, and energetics. One weak constraint term common to the

majority of all functionals is the observational constraint, a weak

68
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constraint, which relates the observed or initial field (the "til(

field) to the true field, or that which satisfies all constraints

the formalism. By specifying the observational constraint weight

the amount of departure from the initial field can be controlled.

'Ibis ability of the variational optimization analysis metl

to simultaneously impose dynamic, statistical, kinematic, and othi

conditions in both diagnostic and prognostic forms is perhaps the

major advantage of the variational method (Sasaki, 1971). The most

important uses of variational optimization analysis have been in data

filtering and in the initial assignment of data fields consistent with

the dynamics or other conditions of the model incorporating the data.

Thus, a geostrophic forecast model can be initialized with wind and

geopotential height fields adjusted to geostrophic balance.

Each term or squared exprei--ion in the functional is minimized;

as many terms as can be adequately treated analytically and computationally

may be added to the functional. However, due to noise and unresolvable

wavelengths in the data, not all conditions can be simultaneously exactly

satisfied. The degree to which a condition must be satisfied can be

specified through the assignment of the weights to the weak constraints.

A low value of a weight will allow more deviation from the constraint

than a high value.

The weak constraint weights are specified independent of the

functional but may vary as a function of the spatial and temporal coor-

dinates. The value of the weights may be determined empirically from

r	 ^'

14
	 examination of the final or true data fields, from statistical descrip-

tions of the data fields, from a priori knowledge of the reliability

r'

I.
1?
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or accuracy of the data, which may be a function of source, time,

location, or observation method; and from analytic solutions of the

analysis equations derived from the variational formalism. For the

simpler finite difference approximations and assumed wave forms of

the solution data fields, the response function for varying weights

can be determined.

In a low pass filter, the desired result is to suppress the

4	 amplitudes in the higher frequencies in the data field by locally
i

i ,

	

	altering the values of the data. This can be accomplished with varia-

tional optimization analysis by including first derivative terms as

weak constraints in the functional (second derivative terms, represent-

'	 ing curvature, may also be used (Wagner, 1971)). A high frequency in
f

?	 the observed data field would appear as locally large slope values;

the effect of the weak constraint as the first derivative is to strongly

j
reduce locally large slope values and to have little effect on the low

slope values representing low frequencies in the data.

is
The variational functional selected as the filter contains an

observational constraint and the first derivative constraints in three

dimensions. The functional is

J = .^.^.^ Y «((u-u)
2
 + (V -V )

2
 + af ( (^ ) ^ + (ay)2

j

(oX)2 + (ay)^) + op 'f + (rP)	 dy dx	 (1)
i
1

!	 where 'a•, axf and ce are the weak constraint weights; u and v are the

l'.	analyzed fields and u and v are the observed or assigned fields.

The stationary value of the functional, is found by equating
^I

the first variation of the functional to zero. Some basic p.roperiies

k	 11
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of the variational operator, 6, are:

1. Variation and differentiation are permutable (Sasaki and

Lewis, 1970; Sheets, 1973).

2. Variation and integration are permutable (Sasaki and
Lewis, 1970; Sheets, 1973).

3. In finite difference form summed over the domain, the
commutation property of the variation is (from Sasaki,
1969; Wagner, 1971):

4. In the following derivations, each variable 8 varies by
an arbitrary non-zero amount H in the interior. H is
zero on the boundaries as the boundary condition.

5. °The variational operator acts on all variables in much
the same way as a partial differential operator. The
laws of variation of sums, products, ratios, and powers
are completely analogous to the corresponding laws of
differentiation (Hildebrand, 1965).

'Elie derivation of the Euler -Lagrange equation in the finite difference

form for numerical solution is, where X, Y, and P are the summation domains:

61 = 0 = `rs E 6(ct((U -u) 2 + (v-v)2) + «f ((V.U) 2 + ( 17 U) 2 +
XY P

(vxv )
2
 + (vyv) 2 ) + c'P ((vpu ) 2 + (vpv ) 2 )1	 (2)

6J = 0 =	 E 2a (u-Z)6u + 2 CY (v-v)bv + af (2 vxuvx6u +
X Y P

2 yuvy6u) + cyf (2 vxvvx6v + 2vyvvy6v)

+ up (2 vpu vP bu + 2 vpv 
V  

6v)	 (3)

Use of the commutation properties of the variational operator produces

tJ = 0 = EEE (Ce(u-u) - of xu - of yu - ap 2u) 26u
XY P

+ ^(v-v) - afvx - of Yv - aP yv) 26v
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Since the variation is arbitrary on the interior, the only way

that 61 can be zero is for the coefficients of 6u and 6v to be zero.

This condition forms the Euler-Lagrange equations

of (pXu + yu) + ap Opu  - a u - - Cyu	 (5)

CYf
 NxV	 a+ nyv) + p pv - i v e - a v	 (6)

These decoupled equations form the analysis equations. They

are elliptic partial differential equations which can be solved by

Richardson or Liebmann relaxation numerical techniques.

The relaxation technique for specified boundary values is a con-

vergent, iterative process in the grid interior. The initial fields form

the first guess field, a residual is computed and a correction is applied

to the current value, and the iteration continues until there is conver-

gence to a pre-selected tolerance. In the use of the variational tech-

nique to filter data fields, the author noted that convergence was

significantly increased by eliminating sharp gradients on the boundaries

with a Hanning filter (Blackman and Tukey, 1958). The boundaries then

remain constant during the relaxation.

To solve the analysis equations, equations (5) and (6) are ex-

pressed in center-space finite difference form and then non-dimensionalized

and scaled so that the terms are of the same magnitude in the analysis

equations. The center space finite difference form for a three-

dimensional grid with the i, j, and k directions correspond to x,y,

and p respectively. Equation (5) becomes

^f	 II

d2 (ui ,J+l , k + ui,J-1,k + ui+1,J,k + 
u
i- 1 , j ,k - 4ai , j , k +

Cy
(U	 2u

 + ui,j,k-1 -Zui,j,k)-aui,j,k + aui,J,k = 0 	 (7)
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where d is the grid distance in the i and j directions and h is the

grid distance in the k direction.

Collect terms and rewrite as

a

d2 (u i,J+l ,k + ui,^-1,k + ui+1,J,k + 
u
i-1 ,J, k) +

a

	

h2 
(ui,j,k+l - u i,j,k+l )	A

4af ?c	 (8)_
(-a	 d2 	 h2 ) u i,J, k =	 B ui,j,k

a 
ui ,J, k 	C

thus, B u
i,J,k 

+ A + C = 0 is the desired numerical solution. For the

n th iterative pass (and notationally dropping the subscripts of u),

B u  + An + C - Residual°	 (9)

when a correction is applied to u, the residual vanishes to produce

B un+l + An + C = 0	 (10)

If equation (10) is subtracted from (9), the result is

U.
	 = an - Residual 	 (11)

B

Substitution of B back into the expression produces

	

n+l = n	 Residual u	 u + 	 (12)
C + 4af + ?3

	d 2	h2

The substitution of (9) into (12) produces the correction to apply u

sequentially at each grid point until the desired convergence is

achieved. This is

U.	
+n+l = un	 e + Bun + C

c + 4af+ p
d2	h2
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or	 (a + 4a2 + ^).n+l k . Cl u i k + op (ui k + ui k_1)

d	 h	 ,jr	 ,jr	 h	 ,j,	 ,j,

+ d2 (ui,j+l , k + °i,j -1,k + ui+lrj,k + ui_l,j,k)
	 (14a)

N
and	 (a + d2 + 2 2)°^j,k v avi, j , k + ^(vi , j , k+l + vi,J,k-1)

+d2(vi,j+l,k + vi,j-1,k + vi+l,jrk + vi-l,j,k)
	 (14b)

To examine the analytical response function, which is defined

as the ratio of the analyzed wave amplitude to the initial wave ampli-

tude as a function of wavelength, assume that u and u have the analytic

form

U = A 
e i(kx + ky + np) 	

(15)

u = A e
i(kx + ky + np)	

(16)

where k and n are wave numbers in the horizontal and vertical directions,

and substitute into the analysis equations (5) and (6). For the

analysis equation for u only, after the substitution of (15) and (16) into

(5), carrying out the indicated differentiation (in continuous form),

and canceling the exponential term which remains unchanged, the result

is

- 2k2afA - n2apA = a(A-A)	 (17)

Expressing the analytic response function, R, as A/A, the response

function is

	

2k2	 2af	 na -1
R = (1 +	 + ---e)	 (18)

	

a	 a

To determine the filter response function of the finite differ-

ence analog, we need initially consider only the response in the x
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(24)
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direction. The assumed forms of the analyzed and initialized u fields

are, in finite difference form
i (krAx

u W A e	 )	 (19a)
i(krAx)

U W A e	 (19b)

where k 2Tr/L P the wave number, and x rAx, and Ax grid spacing.

The analysis equation (7) in the x direction is

of
AX

2 Cu i+ 
1 + u—	 i_l 2ui) a(u-u)	 (20)

Substitution of equations (19a) and (19b) into (20) produces

Act 
f

AX 
2 Cexp ( ik(n+I ) Lx) + exp(ik(r-l ) Ax)-2 exp ( lkrAx)]

^(Acl -1) exp ( ikrAx)

Cancellation of the exponential term yields

Ac, 
f 

(e 
ikAx 

+ e- ikAx - 2) . —cl (A--A )2
AX

Use of the identities

2 cos(x)	 e ix + e- ix

2 cos (2x)	 2 = -4 sing (x)

produces

Ax

fa
—2 (-4 sing (kAx/2))	

A 
(A- 'A)

which simplifies to the response function

R - I = (I + Lalf sing ( Ax))
- 1
-

X 

A

A	
^ 2	 L
014X

(21)

(22)
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Similarly, the response function in the p plane is

It
P
 = (1 + 4af2 sing ( p AP))-1	 (25)

CIAP	
P

°

	

	 The low pass filter characteristics of the first derivative

filter may easily be verified from equation (24). As the wavelength

L, expressed as a multiple of Ax, increases from twice the grid spacing

(which corresponds to the Nyquist frequency) to large values, the

filter response function approaches a value of 1; i.e., no amplitude

change for that wavelength. .d with the majority o f filtering tech-

niqueu, aliasing viLll occur for frequencies greater than the Nyquist

frequency, the highest resolvable frequency. Since the Nyquist fre-

quency is defined in terms of the grid spacing, the filtering charac-

teristics are a function of the grid spacing. It is advantageous

therefore to select a grid interval smaller than the data measurement

point spacing. This results in a greater discriminatory filtering

capability.

To this point, the equations and derivations may be regarded

as either dimensional or as scaled and dimensionless. However, the

c ,imputations and the selection of the weights are simplified when the

equations are in scaled, non-dimensional form.

For the analysis equation (5)

N
c'f (Oxu + y	 a'u)+ p (p	 a	 auU) -u=- 

let each variable be the product of a "star" term and a "prime" term

wh,ere the pr-med term is dimensionless and of the magnitude of one.

^	 ^	
_4
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Thus,

of 	 of ce,'

QIP	CIP alp

U	 U* U

u	
U*

u

1 2and,
Yx	 T2 Vx

2	 1 2
2

Vy	 d
Vy

2	 1 2
2VP
	 h

Vp

The substitution of the variables and operators into equation (5) and

the collection of all dimensional terms produces

(Yf

—	
2

21
(Vx

21
U, + Vy U (	 p	 2'

u+	 .71(ul--ul)	 (26)
—*h2	 CIPVP

j

(x*d
f Cy

The selection of the scale values is largely independent on the

scales of interest in the study and the grid spacing established. For

this study, the scale values are

U* 10 m/sec

d	 125 !::n

h	 50 mb

To reduce the left hand side of equation (26) to the order of

magnitude of one, select

2
Cif	 d

h 2
alp
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Equation (26) then becomes identical to the form used in

derivation of the filter response. The only difference is tha; vari-

ables and parameters have scaled, non-dimensional values. For example,

in equation (24), the dimensional value of Ax  is near (125 km) 2 ; the

non-dimensional value of 
6x  

is (1)2.

The response function of equations (24) and (25) may easily be

calculated for any wave length in multiples of the grid spacing. The

response functions for both first derivative filters and second deriva-

tive filters are published by Wagner (1971). The response function for

the first derivative filter term comprises a family of curves. Since

the measurement point spacing (not the grid spacing) in the horizontal

and vertical defines the minimum resolvable wavelengths in the data,

the filtering response should differ for horizontal and vertical wave-

lengths. This is controllable by adjusting the ratio of the non-

dimensional weights, as shown in Wagner's study. The response functions

shown in Figure B1 illustrate the family of response functions for this

investigation.

It should le noted that this filter technique does not produce

a phase shift or frequency change. This feature is found in other

finite difference filters (Haltiner, 1971).
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Figure B1.	 Response function of the first derivative filter
as a function of wavelength, expressed as multiples
of the grid interval, for varying ratios of filter
weight, ct , to observational weight, Z.
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APPENDIX C

SEVERE THUNDERSTORM DEVELOPMENT THROUGH THE WARM, DRY INTRUSION

The initial conditions at 26/120OZ May 1973 and the advective

forecasts from the variational model indicated that at the time and

location of squall line development, the low-level moist air was over-

lain by a deep layer of warm, very dry air. The presence of the

thunderstorms thus indicates an indirect circulation; cooler moist

air is rising convectively through the warmer, dry layer above. At

cloud base, the thunderstorm updraft air would be negatively buoyant

with respect to the mesoscale environmental conditions. The existence

of this indirect circulation is supported by an examination of the

ATS III imagery for 26/120OZ May 1973 in cor.junction with the varia•-

tional model results. Six oelected frames with brief descriptions

are included as Figures C1 to C6.

Figure Cl depicts the pre-thunderstorm environment. The warm,

dry air of the dry intrusion extends eastward over the stratus in

eastern Oklahoma (apparent also in Figure 3, the Pinker AFB sounding)

from the surface position to the west of the stratus boundary. The

initial thunderstorm development occurred on the western boundary of

the moist air. This is a preferred location for squall line thunder-

storm development (Tegtmeier, 1974), which agrees well with Schaefer's

model of the relation of the surface dryline to the inversion marking

the lower boundary of the dry intrusion (Schaefer, 1974).

80
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As the thunderstorms develop, the warm, dry air continues to

	

I!
	 advert toward the east, as shown in Figures C3 to C5. This eastward

advection is indicated also in the forecasts from the variational

advective model as depicted in Figures 15 and 19, for example.

The mesoscale environment of the severe thunderstorms shown

in Figures C5 and C6 appears to be a low level moist layer (below 850 mb),

capped by an air inversion marking the boundary between the moist air

	

I	 and the much warmer dry air intrusion, which extends at least through

the 700 mb level. The mesoscale environment thus indicates an indirect

convective circulation below the 700 mb level; cool moist air rises

convectively through warmer, dry air.

As the thunderstorms develop to severe levels, they signifi-

cantly modify their mesoscale environment in the vicinity of the storm

and it the area downwind from the storm, since the storms typically

translate at a rate less than that of the environmental winds. The

scale interactions which exist at the levels of the dry air intrusion

immediately upwind of the storm may be a significant factor in the

development of the storm to severe levels. The variational advective

forecast results indicate that the intrusion is very dry, with virtually

an unlimited capacity for evaporation, and warm with a near neutral

j	 lapse rate. Thus, evaporation of cloud material into the dry air would

	

r i,
	 produce a strong subsistance of the cooler air, especially since even

i'

	°i	 with a dry adiabatic descent ,, the equilibrium level may be several

hundred millibars below the original level of cooling. As surface

	

j	 heating warms the cooler layer beneath the inversion, this subsiding

	

^i
	 air may reach the surface.

A major effect of the warm, dry intrusion in %e severe storm

c'r,
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environment is to facilitate a detrainment of the storm air into the

mesoscale environmental air, as opposed to the entrainment of environ-

mental air into the storm. The zone where rapid evaporative cooling

occurs will protect the storm updrafts from the dry environmental air,

and perhaps is necessary for development to severe levels.

Recent published research on severe storms support detrainment

into the dry intrusion (Davies-Jones, 1974; Marwitz, 1972a and 1972b;

Foote and Fankhauser, 1973). Davies-Jones observed that soundings in

severe storm updrafts indicated that the cores of strong updrafts were

undiluted by the environmental air. He also observed that the sounding

balloons rose almost vertically in the storm in spite of pronounced

environmental shear. A negative buoyancy at cloud base was observed

from aircraft measurements by Marwitz. Based on time-section analyses

of two storms, Marwitz inferred that the descending air to the south-

west (the windward side) of the thunderstorms had subsided from above

the cloud base. He suggested that this mid-tropospheric air is directed

downward as a result of evaporative cooling and deflection; this sub-

siding air reaching the surface layers could intensify the gust front.

Foote end Fankhauser (1573) state that negatively buoyant in-

flow air is a fairly general observation for large, persistent storms

and conclude that dynamic forcing drives the low-level inflow into the

storm. Correlations of the surface conditions, as indicative of the

low-level inflow, with squall line thunderstorm development have been

good. Sasaki (1973) concluded that intense surface moisture conver-

gence coincides to squall line development and local severe weather

areas and that a local downward momentum transport is very important

to squall line formation.

i
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The role of the dry air intrusion to severe storm development

is as yet speculative. The scale interactions are difficult to param-

eterize, describe, and model and the measurements made of severe thunder-

storms may sample either the mesoscale unaltered environmental conditions,

the thunderstorm scale conditions, or the interacting zones. Some con-

clusions may be hypothesized, however. The warm, dry intrusion facili-

tates detrainment with a resulting downward transport of modified air

and deflection of environmental air. This mechanism provides for a

protection of the €.tnrm interior from the dry air and the environmental

shear through the dry layer. The subsiding air provides for a downward

momentum transport and will serve to intensify the gust front. Another

significant factor not directly commented upon is that the inversion

layer marking the lower boundary of the dry intrusion serves to cap the

potential instability of the moist air below. The relation of the dry

intrusion to the initial development of thunderstorms was not indicated

in the variational advective model results.

j

i'
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Figure Cl.	 ATS Ili, 26/1819; 'Ay 1973. The location of thf dry

air intrusion is approximated by the clear area, in-

dicated by A. The cloudiness B is associated with

the southeastward moviig cold front from the low

pressure center in central Kansas. The cloudiness
C is stratiform beneath the dry air intrusion. There
is no thunderstorm activity in Oklahoma at this time.

Figure t;2.	 ATS III, 26/18587. May 1973. The location of the
first reported thunderstorms in Oklahoma is indicated

by D.
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Figure C3.	 ATS III, 26/200621 Mav 1973.	 The thunderstorm

activity in Ok.lahvma has developed southward and

is aligned as the well-defined squall line E.

EN

Figure C4.	 A -I'S III, 26/2031Z May 1973. The rapid development
of the squall line E in the 25 minutes between
Figure C3 and Figure C4 is very apparent. The first

of the numer-,ds tornadoes witn this squall line was

reported at 2052Z with the thunderstorm in Kansas

just north of the 0klahema border. Cornadoes were
l.)Rl(iI1TAi^ PAGE LS	 also reported at 20516 with the thunderstorm complex
Uf p, lt; 07':1 TATY 	G in southern Kansas.
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Figure CS.	 AT5 III, 26/21102 May 1973. The squall line t: is
now producing funnel clouds and tornadoes along its
entire length. Moderate rht!nderstorms are occurring
along the cold front in northwestern Oklahoma and

tier• thwiderstorrn complex in central Kansas.

Figure C6.	 Al-3 III, 26/22012 May 1973. The fatality-producing

tornado occurred near 220OZ at F in the southern end
of the squall line. Large tornadoes were also reported
near 22007, at G.

ORIGUNAL PAGE 1^;

OF PWR {QUALITY


	GeneralDisclaimer.pdf
	0001A03.pdf
	0001A04.pdf
	0001A04_.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F13_.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf



